Calculation of the reflection function of an optically thick
scattering layer for a Henyey-Greenstein phase function

Irina N. Melnikova, Zhanna M. Dlugach, Teruyuki Nakajima, and Kazuaki Kawamoto

Simple analytical methods are proposed for calculating the reflection function of a semi-infinite and
conservative scattered layer, the value of which is needed to solve many atmospheric optics problems.
The methods are based on approximations of the exact values obtained with a strict numerical method.
For a Henyey—Greenstein phase function, knowledge of the zeroth and sixth higher harmonics appears
to be sufficient for a quite accurate approximation of the angle range, which is acceptable for solution of
direct and inverse problems in atmospheric optics when a plane atmosphere is assumed. An error
estimation and a comparison with the exact solution are presented. © 2000 Optical Society of America
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1. Introduction

Knowledge of the value of the reflection function is
necessary for many problems whose solutions involve
using satellite radiance measurements. There are
several complicated strict numerical methodologies for
calculating the reflection function'-4 that are quite
suitable for determining the reflected radiance for so-
lution of direct problems in atmospheric optics. For
remote sensing of cloud layers, analysis of an inverse
problem? requires knowledge of the value of the re-
flection function for a semi-infinite conservatively scat-
tering medium, preferably presented analytically.
Here we illustrate an analytical method for solu-
tion of inverse problems. It is based on an analysis
of the numerical results of calculating the zeroth and
higher harmonics of the reflection function for a set of
Henyey—Greenstein phase function x(y) parameters
g.310.11 A brief description of this method is given in
Appendix A. Two approximations are analyzed
here. The first consists of fitting regressions by lin-
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ear and exponential functions for the harmonics that
make the largest contributions to the value of the
reflection function. The second consists in accu-
rately taking into account the first order of scattering
for all harmonics and the higher scattering orders for
only the zeroth harmonic of the reflection function.

We point out that real cloud is characterized by a
complicated phase function that might be different
from the Henyey—Greenstein model. In this case
the reflection function might differ from the model
function by as much as 10%.5 Here we do not treat
the problem of calculating the real cloudy phase func-
tion, but it is necessary to have in mind when one is
dealing with real clouds that errors of application of
these methods might be larger than those shown here
for the Henyey—Greenstein phase function.

2. Approximation of Numerical Calculation Results

As is usually done,'-4 let us describe the reflection
function by its expansion on the azimuth angle cosine:

p(e, 1y o) = P (1, po) +2 D p" (1, po)cos me, (1)
m=1
where n and p, are zenith-viewing and solar-angle
cosines, ¢ is the azimuth angle, and p™(u, ) are the
harmonics of the reflection function of order m. As
was mentioned above, here we use the phase function
described by the Henyey—Greenstein formula:

1-—g*%
= 5 2
Xt (1+g*—2g cos y)*? @

where v is the scattering angle.
20 August 2000 / Vol. 39, No. 24 / APPLIED OPTICS 4195



(a)
2.0
1.5 A
0
Q 1.0
5 _,—,.."""'—-
o
-
0.5 4 “-,—l
-
-
S
0.0 — .t-.__
‘---
-~.
-0.5 Bl

Fig. 1.
parameter g:

and their linear approximation according to Table 1 (thicker curves).

Numerical calculations©1! show that for an accu-
rate description of the function p(e, p, p) it is enough
to know the first six harmonics, even for g = 0.9 if p
and ., are greater than 0.15. This limitation does
not restrict our calculations because for the small
zenith solar and viewing angles it is also necessary to
use a complicated model of a spherical atmosphere
and to take into account the refraction of solar rays.
Those cases are not studied here.

The values of p™(w, po) form = 0, ..., 6 are ana-
lyzed in this study. The following formula, which is
similar to the formula for the zeroth harmonic,! is
used here for a description of high harmonics also:

P (s o) = [@"p + 07 (W + o) + "]/ ( + o). (B)

This presentation shows the reciprocity of the reflec-
tion function for the zenith-viewing and solar angles.

In Fig. 1 we present coefficients a™, b™, and ¢ for
the zeroth and second harmonics as functions of
phase function parameter g. One can see that the
approximation with the linear functions yields a sat-
isfactory fit in the 0.3 = g = 0.9 range of the phase
function parameter with m = 0, 1, 2. This approx-
imation by linear functions gives errors of less than
5%. It is necessary, however, to point out that for g
in the 0 = g = 0.9 range there is no linearity, even for
these harmonics. The approximation of the coeffi-
cients a™, b™, and ¢™ in the g 0.3 = g = 0.9 range is
called the linear approximation method and is pre-
sented in Table 1. It can be seen that the values of
the first and second harmonics for g ~ 0.3 are close to
zero.

The well-known relation of the strict theory24 is
assumed for isotropic and conservative scattering
(g = 0, vy = 1), namely,

~o()e(po)

= , 4
4(p + o) @

p%(1s o)
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Coefficients a™, b™, and ¢ (thinner solid, short-dashed, and long-dashed curves, respectively) in Eq. (3) versus phase function
(a) for the zeroth (m = 0) harmonic of the reflection function, (b) for the second (m = 2) harmonics of the reflected function

The thinner and thicker curves are almost coincident.

where ¢(w) is Ambartsumian’s function.! In this
case the approximation ¢(pn) = 1.874p + 1.058 is
correct, and a® = 0.88, 5° = 0.47, and ¢ = 0.28.12 It
is known that the reflection function for isotropic
scattering does not differ much from the anisotropic
values of p°(w, W) if W, po > 0.25,213 so it is possible
to improve this approach and make it applicable for
an enlarged angle. The simple formula for isotropic
scattering can be approximately corrected by a linear
dependence on the phase function, as follows:

p%(1, o) =

o()p(po) + 8[4.8pop — 3.0(ug + ) + 1.9]
4o + )

>

(5)

which is further named the corrected isotropic (CI)
method. It is shown below in Table 6 that this ap-
proach yields results that are closer to the exact val-
ues of the zeroth harmonic than does the linear fit,
which is why the final approximation is derived ac-
cording to Eq. (5).

It is useful to test the above zeroth-harmonic ap-
proximation by a formula that connects p°(u, po) and
escape function K(p) for the conservative casel:

3 1
Ky(po) = 2 J' PO, po)( + po)pdp. (6)

0

Table 1. LA’s for Coefficients a™, b™, and c™ of the Zeroth, First, and
Second Harmonics of the Analytical Presentation of the Reflection
Function
m a,, bm Cm Miimit

0 2.051g + 0.508
1 1.821g - 0.558
2 2.227g — 0.669

~1.420g + 0.831 0.930g + 0.023 —
~1413g + 0.387 1.150g — 0.239 0.80
~1564g + 0.481 1.042g — 0.293 0.55
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Fig. 2. Exact (solid, thin curve) and approximate (thick curves)
values of the escape function K,(p) for g = 0.85 [long-dashed curve
for Eq. (7)] and for g = 0.85, 0.9 [short- and long-dashed curves for
Eq. (8)] and relative errors AKy(n)/Ko(p) (lower curves) of the
approximations.

After calculations it is easy to express the escape
function from the approximation of the numerical
calculation, Eq. (3), and Table 1 as

Ky(w) = (0.780 + 0.090g). + 0.437 — 0.017g  (7)

or from Eq. (5) (corrected isotropic formula) as

Ky(w) = (0.793 + 0.048g)p + 0.445 — 0.003g. (8)

Both of the approximations are shown in Fig. 2, and
it can be seen that their agreement with the angular
dependence of the escape function? is rather good.
Thus it is reasonable to consider that Egs. (3) and (5)
are suitable for these calculations if p = 0.15.
Figure 3 shows the dependence of coefficients a™,
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b™, and ¢™ on parameter g for higher harmonics (m >
2), which indicates that a linear fitting for a range of
the phase function parameter of 0.3 = g = 0.9 is
impossible. Although it appears impossible to find a
linear presentation for the third through the sixth
harmonics for any values of parameter g, it is possible
to approximate the dependence of coefficients ™, b,
and ¢™ for m = 3 by exponents with powers 2 and 3.
These fitting regressions are presented in Table 2.
We refer to this method below as to the power-fitting
(PF) method.

In the case of the Henyey—Greenstein phase func-
tion the high harmonics are close to zero [p" (i, po) =~
0, m > 0] if either of the zenith angle cosines w or .,
is greater than py;,,;;- The values of w;,,;; differ for
different harmonics, and they are shown in Tables 1
and 2.

The approximation by Eq. (1) with coefficients a™,
b™, and ¢™ in Tables 1 and 2 gives an acceptable
presentation for all harmonics of the reflection func-
tion considered here. Errors in this approximation
depend on values of zenith-viewing and solar-angle
cosines, number of harmonics m, and phase function
parameter g. Results for the zeroth harmonic are
shown in Fig. 4. The figure indicates that the errors
are less than 2% for the values of zenith angle cosines
W, Ko > 0.02 when g < 0.75. For g in the 0.8-0.9
range the error of our approximation is less than 3%
if either of the values of w and p, is greater than 0.3
and the error is less than 10% for arbitrary values of
p and py. The first and the second harmonics are
approximated with an error of less than 1-2% if g is
less than 0.8 and either w or p, is greater than 0.12.

The approximations for the high harmonics are
proposed in the range of the zenith angle cosines,
where p™ (., o) differs from zero (i < i) The
relative error is less 10% even for g = 0.9 and small
values of ., as Fig. 5 indicates for the sixth harmonic
and g = 05, 0.9.
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Fig. 3. Dependence of coefficients a”, b™, and ¢ of harmonics with numbers (a) m = 3 and (b) m = 6 on phase function parameter g
(thinner curves) and power fit approximations according to Table 2 (thicker curves).
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Table 2. Exponential Approximations of Coefficients a™, b™, and ¢™ of the Third through Sixth Harmonics of the Reflection Function (PF Method)
03=g=09
m a” b c” Mimit
3 62.00g3 - 9028g2 + 42.42g — 6.26 —15.24g3 + 19.70g2 - 8.73g +1.25 2.75g2 - 2.03g + 0.39 0.50
4 105.26g3 — 155.06g% + 72.93g — 10.76 -30.30g3 + 43.04g% — 19.83g + 2.89 3.70g% — 3.20g + 0.65 0.45
5 120.63g3 - 177.60‘:__:,r2 + 83.48g — 12.32 —25.84g3 + 35.15g2 - 15.61g + 2.22 3.23g2 — 2.75g + 0.55 0.35
6 144.92g3 - 202.16g2 + 90.48g — 12.85 —32.60g3 + 43.88g2 — 19.15g + 2.67 3‘90g2 — 3.41g + 0.70 0.35

It is necessary to point out that for the zenith-angle
cosine p = 0.67 (which corresponds to 48°), for which
the zeroth harmonic of the reflection function is very
close to 1, especially in the case of the Henyey—
Greenstein phase function, the other harmonics are
close to zero and the escape function K,(p) is equal to
1. Thus the reflected radiance measured in viewing
angles close to 48° is equal to the reflected irradiance
(the same is true for the transmitted radiation). The
radiance and irradiance measured at a solar angle of
48° also approximately coincide with the spherical
albedo of the cloud layer. The values of [1 — p°(u,
Wo)| for recent approximations are listed in Table 3 for
g£=0.3-09and p = py = 0.67. The small deviations
from 1 show rather small approximation errors. An
analysis of the reflection function’s zeroth harmonic
p°(i, 0.67) for the various values of g shows that the
deviation from 1 is ~8% for g = 0.5 and 10% for g =
0.85-0.9.

The reflection function has been calculated for the
Mie phase function that corresponds to the model of
fair-weather cumulus clouds.? These results indi-
cate that, at the zenith angles in the 47-50° range,
the reflection function differs from 1 by 2-5%.
Hence it is possible to conclude that the reflection
function is close to 1 at these zenith angles, even for
a complicated phase function.

It was shown?5 that the effects of the phase func-

10

Pols 1y)

tion on radiative forcing are almost the same for sev-
eral phase functions if the solar incident angle is
approximately 45-50° (n, = 0.643 — 0.707). The
influence of particle-size distribution on the cloud
phase function for scattering angles of ~90° (Ref. 16)
(which approximately correspond to the zenith-angle
cosines p, = w = 0.67) is slight.

These facts can be explained because in this angu-
lar range the reflection function (and the escape func-
tion) depends on a phase function that is weaker than
for other angles. Thus it is useful to measure the
reflected radiation for either the zenith-viewing or
solar angle in the 45-50° range for retrieval of the
optical thickness and the single-scattering albedo.
Otherwise it is better to use other zenith angles, at
which the radiance is susceptible to the phase func-
tion, to estimate the phase function parameter, as
was pointed out earlier.15

3. First and Higher Orders of Scattering

High harmonics of the radiation reflected by a thick
cloud form mainly in the upper part of the cloud.
Calculations of the radiation field in the optically
thick layer!é showed that almost all harmonics with
numbers m > 0 are approximately zero at optical
depth 7 = 2. The ratio of the high harmonic to the
zeroth harmonic is in the 10-20% range for + ~ 1 and
is applicable only for a zenith angle w of less than

(b)

POOLU ()

Fig. 4. Exact (thinner curves) and approximate according to Table 3 (thicker curves) angular dependence of the zeroth harmonic of the
reflected function on (a) phase function parameter g = 0.3 and p, = 0.01986, 0.1017, 0.4083, 0.7628, 0.9801, (b) phase function parameter

g = 0.9 and p, = 0.1223, 0.4525, 0.8089, 0.9947.
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Fig. 5. Exact (thinner curves) and approximate according to Table 3 (thicker curves) angular dependence of the sixth harmonic of the
reflected function on (a) phase function parameter g = 0.5 and ., = 0.01986, 0.4083, 0.7628, 0.9801, (b) phase function parameter g = 0.9

and po = 0.1223, 0.1911, 0.271.

0.25. For an optical thickness of 1 ~ 27'* the first,
second, and third harmonics are 50%, 30%, and 10%,
respectively, of the zeroth harmonic. Thus it is clear
that first-order scattering includes most of the high
harmonics and that multiple scattering corresponds
mostly to the zeroth harmonic.l” It is possible to
express the reflection function as

(s o> @) = p1(i, oy @) + [p (s 1) — PI(L, 1o)]
N
+2 > [p"(1, o) — PT (R, po)]cos me,

m=1
(9)

where p; (W, po, ¢) is the first-order scattering term of
the reflection function for a semi-infinite and conser-
vatively scattering medium:

( =X _1
P1\ML; Mo, @ 4 |J«+PL0,

(10)

and the first-order scattering part of the zeroth har-
monic is as follows:

2m

P, Bo) = x(v)de

_
8m(po + ) f

0
_ pO(_ Ho» p“)

= . (11)
4(po + )

Table 3. Deviation of the Approximation of Zeroth Harmonic
p°(0.67, 0.67) from 1

Value of g

Variable 0.3 05 0.75 038 085 0.9

Deviation of 0.0037 0.024 0.021 0.0059 0.013 0.0046

11 - 0%0.67, 0.67)|

In the case of first-order scattering the scattering-
angle cosine is expressed in terms of the solar-angle
and zenith-viewing cosines by cos v = ppo + [(1 —
31 — A2 cos ¢. If the phase function is as-
sumed to have a Henyey—Greenstein formula, the
function p°(—p, p,) can be presented ast

o gy = 20 -&) (" de
P A7 Ho b , (e = fcos ¢)*?
21 -g)\e+f 2f
B w(e? — f?) E( Ve + f) , (12)

where E(x) is the complete elliptical integral of the
second kind and the following notation is used:

e=1+g"+2gupo, F=28[(1— p’(1 - pdl2
(13)

The results of calculations of exact values of the
four reflection function harmonics for phase function
parameter g = 0.5 and ten harmonics for g = 0.85
have been presented, as well as values of the first and
second orders of scattering for the same harmonics.18
The ratio of each azimuth harmonic (m > 0) to the
zeroth harmonic is taken as follows:

p" (1, o)
8(““’ Mo, m) = 0—0 )
P (“-‘a 'J“O)

"y o) = 7 (s o)
p°(1, o)

where i and m indicate the scattering order and the
harmonic order, respectively. Here 3 is the relative
contribution of each harmonic (m = 0, 1, .. .) to the
value of the reflection function and A is the contribu-
tion of ith-order scattering in azimuth-angle-
dependent terms relative to the zeroth harmonic.

A(p‘a Mo, m, L) = p ) (14)

20 August 2000 / Vol. 39, No. 24 / APPLIED OPTICS 4199



Table 4. Contributions of the First through Fourth Harmonics Relative to the Zeroth Harmonic to the First and Second Scattering Orders for Phase
Function Parameter g = 0.5

Parameter &

Parameter A (i = 1)

Parameter A (I = 2)

Case Case Case Case Case Case Case Case Case
Variable I I II1 1 11 111 I II 111
[TRTI 0; 0.1 0;09 0.9;0.9 0; 0.1 0;0.9 0.9;0.9 0;0.1 0;0.9 0.9;09
m = 0.600 0.089 0.0078 0.048 0.008 0.0055 0.009 0.007 0.003
m=2 0.345 0.018 2.9 x 107 0.014 0.001 1.5 x 1074 0.001 32x1074 5.7 X 107°
m=3 0.192 0.0035 1.2 x107° 0.004 1.1 x 107% 51x10°¢ 2.3x 1074 1.6 x107° 1.8 x 1076
m=4 0.105 69x10°* 6.0 X 107 0.001 1.3 x10°° 1.6 xX10°° 0 0 2.4 %1077

The values of parameters  and A for the cosines of
zenith angles p = 0 and py = 0.1 (case I), . = 0 and
o = 0.9 (case II), and . = 0.9 and py = 0.9 (case III)
are listed in Tables 4 (g = 0.5) and 5 (g = 0.85) for the
first and second orders of scattering. These tables
indicate that the third term in Eq. (9) is close to zero
if either angle cosine p. or . is close to or greater than
0.9. We refer to this methodology as the LS method.

A comparison of the zeroth harmonic calculated by
the CI approximation, the LA method, the discrete
ordinate method, and the method described in Refs.
10 and 11 is presented in Table 6. This table indi-
cates that the simplest way to calculate the zeroth
harmonic of the reflection function is the CI method
(Egs. 4) and (5). Errors of the LA method are in the
2—3% range for zenith-angle cosines ., and p. and are
greater than 0.2 and ~5% for one of the cosines equal
to 0.2. The CI approximation yields errors of less
than 1% for p. > 0.2 and approximately 3-5% for p. =
0.2. We compare the discrete ordinate method, the
method of Refs. 10 and 11, and the two methodologies
proposed above in Table 7 and calculate the reflection
function. Two solar-angle cosines, five viewing-
angle cosines, and an azimuth angle of O are consid-
ered. We found that the exactness of the PF
approximation together with the CI method for the
zeroth harmonic is quite good for all the angles con-
sidered. The LS method can be suitable for calcula-
tion of the reflection function, preferably in cases of
nadir observation or when the Sun is close to zenith,
because it shows good agreement with the result of
numerical calculation for p = 1 and a much worse
result for . = 0.5.

We propose the following algorithm for calculation
of the reflection function p(p, w1, po):

(1) If cosine p or ., is greater than 0.8, the zeroth
harmonic is calculated with Egs. (4) and (5) and is
approximately equal to the reflection function.

(2) In the opposite case the approximations in Ta-
bles 1 and 2 for high harmonics must be added to the
value of the zeroth harmonic.

4. Parameterization of Cloud Horizontal
Inhomogeneity

A simple approximate parameterization of the cloud
top boundary heterogeneity was proposed earlier.19
A rough cloud top causes an increase of the part of
diffuse radiation in the incident flux. Hence knowl-
edge of this increase is essential for calculation of the
radiative characteristics that depend on solar inci-
dent angle. The escape function together with the
reflection function describes this dependence for the
reflected radiance, and the escape function together
with the plane albedo of the semi-infinite medium
describes the reflected irradiance.»2 Thus we pro-
pose to replace all functions that depend on the
incident-angle cosine p, by their modifications ac-
cording to the following expressions:

p°(1s o) = P, po)(1 — 1) + ra(p),
K(P«o) = K(on)(l —-r)+rn,

a(p) = alwe)(1 —r) + ra”, (15)

Table 5. Contributions of the First through the Seventh Harmonics Relative to the Zeroth Harmonic to the First and Second Scattering Orders for
Phase Function Parameter g = 0.85

Parameter 3

Parameter A (i = 1)

Parameter A (i = 2)

Case Case Case Case Case Case Case Case Case
Variable I 1I 111 1 11 111 I II 111
[TRTRY 0;0.1 0; 0.9 0.9;0.9 0;0.1 0; 0.9 0.9; 0.9 0;0.1 0; 0.9 0.9; 0.9
m=1 0.905 0.086 0.016 0.158 0.050 0.016 0.062 0.040 0.015
m=2 0.805 0.017 5.8 x 107% 0.121 0.007 5.9 x 107* 0.041 0.005 55 x 1074
m=3 0.705 0.0038 25x 1078 0.088 0.001 2.3x107° 0.026 88 x 1074 2.1x 107"
m=4 0.611 9.1x 1074 1.1x 1078 0.064 40x107* 9.2x 1076 0.016 1.2 x 107% 79x%x10°¢
m=25 0.528 2.3x107* 51x 1077 0.047 3.8x107° 45%x 1077 0.010 1.8 X 10°° 3.5x 1077
m=6 0454 51x10°° 2.8 X 108 0034 69x10°° 2.6 X 1078 0.006 3.1x10°° 2.1x 1078
m=17 0.389 1.1x10°° 1.0 X 107° 0.024 1.0 x 1076 7.8 X 107° 0.003 43x1077 59 x 107°
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Table 6. Results of Approximate and Numerical Method Calculations of the Reflection Function Zeroth Harmonic”

Isotropic Error Error Error Discrete
I Scattering (%) CI Method (%) LA Method (%) Ref. 4 Ordinate
po =1
1 1.074 5.0 1.145 1.3 1.161 2.2 1.128 1.130
0.8 1.041 3.7 1.075 0.5 1.081 0.01 1.073 1.072
0.6 1.000 0.8 0.995 0.3 0.980 1.6 0.995 0.995
04 0.946 6.7 0.886 0.2 0.850 3.7 0.882 0.882
0.2 0.875 24.8 0.720 5.5 0.676 4.0 0.708 0.707
e = 0.5
1 0.975 2.5 0.944 0.1 0.919 2.6 0.943 0.942
0.8 0.981 0.9 0.965 0.7 0.944 2.9 0.974 0.973
0.6 0.990 2.6 0.993 0.8 0.978 3.7 1.010 1.012
04 1.002 4.6 1.035 14 1.028 2.2 1.062 1.063
0.2 1.021 4.3 1.099 3.0 1.106 3.6 1.064 1.063

“The CI method calculates the isotropic zeroth harmonic and adds the item that is linearly dependent on phase function parameter g
for correction; the LA method calculates the zeroth harmonic with the linear approximation on the parameter g according to Table 1.

where spherical albedo a”, plane albedo a(.,), and
the value of n are defined as

1 1 1
a” =2 f a(po)modpse = 4f Hodpro f (1, po)pdp,

0 0 0

1
n=2 f K(jo) podiso, (16)

0

and the parameter r describes the completely diffuse
part of the light in the incident flux.

The influence of the overlying atmospheric layers
(including high thin clouds), the difference between
the reflection functions of the real cloud (described by
Mie phase function) and the model (described by the
Henyey—Greenstein phase function) and the other
factors that affect the angular dependence of the ra-
diation are also partly corrected by the same param-
eter.

Let us consider the numerical and analytical re-
sults that concern cloud heterogeneity. There have

been many studies of this subject in the past several
years.20-23 It was shown that the influence of geo-
metric variations of the cloud parameters is greater
than the internal influence for one order.22 Analyt-
ical solutions2023 show that cloud heterogeneity
greatly affects radiance and irradiance, and we can
actually describe it by modifying the escape function
(or analogous functions) with an expression similar to
Egs. (15).

There are different estimations of the power of such
effects. In our case it is expressed by a value of the
parameter r, and an analysis based on the studies
mentioned above20-23 allows us to let r ~ 0.01-0.1.
Most results also show that the minimal disturbance
in the radiation field caused by cloud heterogeneity is
at a solar angle 0f48—-49°. As was mentioned above,
all the functions that depend on the incident angle
are approximately equal to the integrals of these an-
gles, which is why the value of the parameter r is
small if the measurement is made at these incident
angles.

Parameter r can be estimated from the ground ra-

Table 7. Results of Approximations and Exact Methods of the Reflection Function Calculations*

Difference
between Two
Error Error Discrete Strict Methods
W LS Method (%) PF Method (%) Ref. 4 Ordinate (%)
Bo =1
1 1.128 0 1.145 1.8 1.128 1.131 0.3
0.8 1.073 0.1 1.075 0.7 1.074 1.072 0.1
0.6 0.995 0.1 0.995 0.1 0.996 0.995 0.1
0.4 0.881 0.1 0.886 0.7 0.882 0.882 0
0.2 0.711 0.1 0.720 14 0.708 0.706 0.2
Mo = 0.5
1 0.950 04 0.944 11 0.943 0.942 0.1
0.8 1.006 10 1.104 1.7 1.124 1.123 0.1
0.6 1.044 22 1.328 1.1 1.347 1.350 0.2
0.4 1.146 33 1.684 14 1.710 1.713 0.2
0.2 1.309 42 2.245 1.6 2.178 2.183 0.2

“The LS method takes into account all the scattering orders for the zeroth harmonic and only the first scattering order for high
harmonics; the PF method fits the power regression on parameter g for harmonics with numbers higher than 2.
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diance or irradiance measurements in stable overcast
conditions in the following way: Ground-based and
satellite observations indicate that the dependence of
radiance or irradiance on solar incident angle is less
than was calculated or than the dependence on view-
ing angle?4 and termed a “violation of the directional
reciprocity”2¢ for reflected radiation. It is known
that the dependence of both the incident-angle and
the viewing-angle cosines on the radiation that es-
capes from an optically thick layer is described by the
escape function K(j,), which has been presented in
tabular and analytical form.1.24¢ Thus time data
taken for a period of several hours may give us the
dependence of the escape function on the solar inci-
dent angle. If it differs from the dependence of ra-
diance on the viewing angle it is possible to obtain a
value of r as follows:

Ko(y)
Ko(p1) — Ko(po) ’

where I(j.,, ) is the observed (reflected or transmit-
ted) radiance. In addition, we assume here that
p°(w, 0.67) = K,(0.67) = 1 and that there is a small
amount of radiation absorption. Certainly we need
here a high cloud stability that is not often but some-
times possible, especially at northern latitudes.
This method seems preferable for ground-based ob-
servation.

There is another way to estimate parameter r from
multidirectional radiance measurements [e.g., with
the Polarization and Directionality of the Earth’s Re-
flectance (POLDER) instrument]. Approximate val-
ues of the optical thickness of the cloud layer are
obtained for each viewing direction available for each
pixel; conservative scattering is assumed at the first
stage of data processing. Then the average value of
the optical thickness is calculated for each pixel.
The relative deviations from average of the optical
thickness obtained for each direction can be taken as
a measure of the deviation of the cloud top from the
plane. It is necessary to have in mind that the de-
viation also includes the influence of the other factors
mentioned above. Then we propose to evaluate pa-
rameter r as follows:

_ I(py, po) — I(pg, 1)
1 - I(p,y, 0.67)

amn

1 N
r=ﬁ§|"r—“r,-|, (18)

where N is the number of viewing directions for each
pixel and 7 is the average optical thickness over the
viewing directions. This methodology was applied
to POLDER level-2 data containing the reflected ra-
diance in 14 directions. Pixels with greater than
0.5% cloud were chosen. Only averaged data for a
low-resolution grid were available, and the size of a
pixel was ~59 km. The date of the observations was
24 June 1997. Figure 6 shows the dependence of
parameter r on the pixel number for two cloud fields.
In fact, the value of r was found to range from 0.01 to
0.06.
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Fig. 6. Shadow parameter r for a cloud field at latitude 59.75° N
on 24 June 1997 versus pixel number. Pixel size, approximately
60 km.

5. Conclusion

Two ways to calculate the reflection function in semi-
infinite and conservative media (the PF and LS
methods) have been proposed for which a Henyey—
Greenstein phase function was assumed but the real
phase function of the cloud was unknown. On the
one hand the Mie phase function may describe nat-
ural clouds better than the Henyey-Greenstein
phase function does. On the other hand, the influ-
ence of molecular scattering may be increased in
clouds by multiple scattering and could smooth out
the real phase function and the real reflection func-
tion. Thus the proposed method may be applicable
to real clouds with better precision than we suspect.

The PF method together with the CI method takes
into account the zeroth and the sixth azimuth har-
monics. They are suitable for use over a wide range
of phase function parameter g and zenith-viewing
and solar angles if at least one cosine angle is greater
than 0.15 (angle is less than 80°). This assumption
does not restrict solution of the problem because the
same requirements for the plane model of the atmo-
sphere are usually made. It seems enough to calcu-
late only the zeroth harmonic to obtain the reflection
function in the case when at least one cosine angle is
greater than 0.8 (angle is less than 37°). A similar
condition is necessary for use of the LS method.
Thus the PF method is more convenient than the LS
method for calculating the reflected radiance at a
larger angular range.

It is certain that analytical methodology is espe-
cially important for solution of the inverse problem,
namely, for retrieval of the optical cloud parameter
from radiance satellite observations. In such a case
it is better to choose for measurements a viewing
angle in the 45-50° range because this will result in
the least effect of the phase function and the highest
harmonics on the reflection function. Errors in the
proposed approximations usually do not exceed 5%.

The way to take into account the heterogeneity of
the cloud top border, the influence of the overlying



atmosphere and high cirrus clouds, the differences
between the real phase function and the Henyey-
Greenstein phase function, and other factors is de-
veloped by use of a shadow parameter. It is certain
that this method is approximate and partly takes into
account all the above factors. Two ways to retrieve
the shadow parameter from ground or satellite mea-
surements were proposed. Results of estimating
this parameter for two latitudes from POLDER ob-
servations were presented relative to pixel numbers.
This parameter was found to range from 0.01 to 0.1;
variations are in the 40-50% range for one site. No
spectral dependence of shadow parameter r was
found.

Appendix A

Here we briefly summarize the method!® that we
used for strict computation of the Fourier compo-
nents of reflection function p™(w, no). Specifically,
we numerically solved Ambartsumian’s nonlinear in-
tegral equation!:

w
(0 + o)p™ (s Ko) = me(_ M, Ho)

oy 1
+ o Mo J P (W, k(W5 mo)dp’
0

) 1
+ Pl f P (W5 o) (e, n')dp
0

1 1
+wwoj f p"(w, ')

0 vo
Xpm(_ }L,, P«”)pm(ll»", Mo)d}l‘ld}ku,

(A1)

where o, is the single-scattering albedo and p™ (., )
are the Fourier components of the phase function.
For m = 1, the solution of Eq. (A1) can easily be found
by simple iterations. For m = 0, the standard
scheme of successive iterations works well only if w,
is sufficiently far from unity, and it becomes inappli-
cable when 1 — wy << 1. To ameliorate this conver-
gence problem, it was suggested!© that the zeroth
harmonic of the reflection function p°(j, o) be mod-
ified after each iteration by use of the so-called
Sobolev—van de Hulst relation!:

1
(=p) =2 f (1, o) od o (A2)

0

The function i() is the solution of the equation

1
()1~ kp) = Q;f ()P (i, w)dp',  (A3)

-1

in which we found the diffusion exponent k by satis-
fying the normalization condition

g .
EJ (w)dp = 1. (A4)

-1

The algorithm© of the solution is constructed in such
away that each successive iteration satisfies Eq. (A2)
also. As a result, for each n (n is the number of
iterations), the modified value of p,°(i, p,) is substi-
tuted into the right-hand side of Eq. (A1l). Form =
1, we used the standard iterative procedure. This
technique has proved to be highly efficient and gave
accurate results even in the case of strong anisotropic
scattering.+11
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