
Calculation of the reflection function of an optically thick 

scattering layer for a Henyey-Greenstein phase function 

Irina N. Melnikova, Zhanna M. Dlugach , Teruyuki Nak司ima， and Kazuaki Kawamoto 

Simple analytical methods are proposed for calculating the reflection function of a semi-infinite and 
conservative scattered layer, the value of which is needed to solve many atmospheric optics problems. 
The methods are based on approximations ofthe exact values obtained with a strict numerical method. 
For a Henyey-Greenstein phase function , knowledge of the zeroth and sixth higher harmonics appears 
to be sufficient for a quite accurate approximation ofthe angle range, which is acceptable for solution of 
direct and inverse problems in atmospheric optics when a plane atmosphere is assumed. An error 
estimation and a ∞mparison with the exact solution are presented. @ 2000 Optical Society of America 
OCIS codes: 010.1290, 010.1300, 010.1310. 

1. Introduction 

匝10W叫le吋dg，伊e 0ぱf the value of the re自flec出t“io叩nn如江皿lC出t“ion iおs 
ne凹ce朗ss回aIηγfおormany problems whose solutions involve 
using s阻at旬ell阻lit旬e radiance measurements. There are 
several complicated strict numerical methodologies for 
calculating the reflection functionl-4 that are qui胞
suitable for determining the reflected radiance for soｭ
lution of direct problems in atmospheric optics. For 
remote sensing of cloud layers, analysis of an inverse 
problemι9 requires knowledge of the value of the reｭ
flection function for a semi-infinite conservatively scatｭ
tering medium, preferably presented 田lalytically.
Here we illustrate an analytical method for soluｭ
tion of inverse problems. It is based on an analysis 
of the numerical results of calculating the zeroth and 
higher harmonics ofthe reflection function for a set of 
Henyey-Greenstein phase function χ(γ) parameters 
g.3 ,1O,11 A brief description ofthis method is given in 
Appendix A. Two approximations are analyzed 
here. The first consists of 五ttingregressions by lin-
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ear and exponential functions for the harmonics that 
make the largest contributions to the value of the 
reflection function. The second consists in accuｭ
rately taking into account the first order of scattering 
for all harmonics and the higher scattering orders for 
only the zeroth harmonic of the reflection function. 
We point out that real cloud is characterized by a 
complicated phase function that might be different 
仕om the Henyey-Greenstein model. In this case 
the reflection function might differ 企om the model 
function by as much as 10%.5 Here we do not treat 
the problem of calculating the real cloudy phase funcｭ
tion, but it is necessary to have in mind when one is 
dealing with real clouds that errors of application of 
these methods might be larger than those shown here 
for the Henyey-Greenstein phase function. 

2. Approximation of Numerical Calculation Results 

As is usually done,1-4 let us describe the reflection 
function by i旬 expansionon the azimuth angle cosine: 

p(ψ， μ， μ。) = pO(μ ，f.10) + 2 ~ pm(μ， μo)cos mψ， (1) 
m~l 

where μand μo are zenith-viewing 副ld solar-angle 
cosines ， ψis the azimuth angle, and pm(μ， μ。) are the 
harmonics of 吐le reflection function of order m. As 
was mentioned above, here we use the phase function 
described by the HenyeyーGreenstein formula: 

1_g2 
χ(γ -:---;;--~--， ~~J~ , (2) 
(1 + g辺 2g cos γ)3/~ 

where "y is the scattering angle. 
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Fig. 1. Coefficientsαm ， bm , and cm (thinner solid, short-dashed, and long-dashed curves, r巴spectively)in Eq. (3) versus phase function 
parame旬rg: (a) for the zeroth (m = 0) harmonic ofthe reflection function, (b) for the second (m = 2) harmonics ofthe reflected function 
and their linear approximation according to Table 1 (thicker curves). The thinner and thicker curves are almost coincident 
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where ψ(μis Ambartsumian's function.1 In this 
case the approximation <p(μ) = 1.874μ+ 1.058 is 
correct，創ldαo = 0.88 , bO = 0.47, and CO = 0.28.12 It 
is known that the reflection function for isotropic 
scattering ~oes not di首位 much from the anisotropic 
values of pU(μ ， μ。) ifμ， μ。> 0.25 ,2 ,13 so it is possible 
to improve this approach and make it applicable for 
an enlarged angle. The simple formula for isotropic 
scattering can be approximately corrected by a linear 
dependence on the phase function, as follows: 

ψ(μ)ψ(μ0) + g[4.8μ。μ- 3.0(μ。 +μ) + 1.9] 

4(μ。 +μ

pO(μ， μ。)=

Numerical calculations10,11 show that for an accuｭ
rate description ofthe function p(<p， μ ， μ。)it is enough 
to know the :first six harmonics, even for g = 0.9 ifμ 
and μo are greater than 0.15. This limitation does 
not restrict our calculations because for the small 
zenith solar and viewing angles it is also necessary to 
use a complicated model of a spherical atmosphere 
and to take into account the refraction of solar rays. 
Those cases are not studied here. 
The values of pm(μ， μ。) for m = 0 , . . . , 6 are anaｭ
lyzed in this study. The following formula, which is 
similar to the formula for the zeroth harmonic,l is 
used here for a description of high harmonics also: 

(5) 

which is further named the corrected isotropic (CI) 
method. It is shown below in Table 6 that this apｭ
proach yields results that are closer to the exact valｭ
ues of the zeroth harmonic than does the linear :fit , 
which is why the :final approximation is derived acｭ
cording to Eq. (5). 
It is useful to test the above zeroth-harmonic an 
proximation by a formula that connects pO(μ ， μ。) and 
escape function Ko(μ) for the conservative case1: 

(6) 九(μ0ドル。(μ，内)(μ+ 内)μd

Table 1. LA's for Coefficients am , b m , and cm of the Zeroth, First, and 
Second Harmonics of the Analytical Presentation of the Reflection 

Function 

pm(μ， μ。)= [αmμμ。 + bm(μ 十件。) + cln]/(μ 十件。).

This presentation shows the reciprocity of the reflecｭ
tion function for the zenith-viewing and solar angles. 
In Fig. 1 we present coef:ficientsαm ， bm , and cm for 
the zeroth and second harmonics as functions of 
phase function parame旬rg. One can see that the 
approximation with the linear functions yields a satｭ
isfactory :fit in the 0.3 三 g 壬 0.9 range of the phase 
function parameter with m = 0, 1, 2. This approxｭ
imation by linear functions gives errors of less than 
5%. It is necessaη， however, to point out that for g 
intheO :5 g 壬 0.9range there is no linearity, even for 
these harmonics. The approximation of the coef日.
cientsαm ， bm , and cm in theg 0.3 三 g 三 0.9 range is 
called the linear approximation method and is preｭ
sented in Table 1. It can be seen that the values of 
the :first and second harmonics for g -0.3 are close to 
zero. 
The well-known relation of the strict theory1 ,2 ,4 is 
assumed for isotropic and conservative scattering 
(g = 0 ， ω。 1) ， namely, 

(3) 

m 

A
U
噌

i
n
孟

件limit

0.80 
0.55 

Cm 

0.930g + 0.023 
1.150g ー 0.239

1.042g -0.293 

b m 

1.420g + 0.831 
-1.413g 十 0.387

1.564g + 0.481 

α m 

2.051g + 0.508 
1.821g一 0.558

2.227g -0.669 (4) 
。中(μ)ψ(μ。)
pU(μ，内)=一一一一一

4(μ+μ。) , 
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bm , and c1n on parameter g for higher harmonics (m > 
2), which indicates that a linear fitting for a range of 
the phase function parameter of 0.3 :::; g 三 0.9 is 
impossible. Although it appears impossible to find a 
linear presentation for the third through the sixth 
harmonics for any values ofparameter g , it is possible 
to approximate the dependence of coefficientsαn'l.， bm ， 

and cm for m 三 3 by exponents with powers 2 and 3. 
These fitting regressions are presented in Table 2. 
We refer to this method below as to the power-fitting 
(PF) method. 
In the case of the Henyey-Greenstein phase funcｭ
tion the high harmonics are close to zero [p1n (μ ， μ。)旬

0 , m > 0] if either ofthe zenith angle cosinesμorμ。
is greater than μlimit. The values of μlimit differ for 
different harmonics , and they are shown in Tables 1 
and 2. 
The approximation by Eq. (1) with coefficientsαrn 

bm , and cm in Tables 1 and 2 gives an acceptable 
presentation for all harmonics of the reflection funcｭ
tion considered here. Errors in this approximation 
depend on values of zenith-viewing and solar-angle 
cosines, number of harmonics m , and phase function 
parameter g. Results for the zeroth harmonic are 
shown in Fig. 4. The figure indicates that the errors 
are less than 2% for the values ofzenith angle cosines 
μ， μ。> 0.02 when g :::; 0.75. For g in the 0.8-0.9 
range the error of our approximation is less than 3% 
if either of the values of μand μ。 is greater than 0.3 
and the error is less than 10% for arbitrary values of 
μand μ0・ The first and the second harmonics are 
approximated with an error of less than 1-2% if g is 
less than 0.8 and either μorμ。 is greater than 0.12. 
The approximations for the high harmonics are 
proposed in the range of the zenith angle cosines, 
where pm(μ ， μ。) differs from zero (μ<μlimit). The 
relative error is less 10% even for g = 0.9 and small 
values ofμ ， as Fig. 5 indicates for the sixth harmonic 
and g = 05 , 0.9. 

1.0 

Fig. 2. Exact (solid, thin curve) and approximate (thick curves) 
values ofthe escape function Ko(μ) for g = 0.85 [long-dashed curve 
for Eq. (7)] and for g = 0.85 , 0.9 [short悶 andlong-dashed curves for 
Eq. (8)] and relative errors llKo(μ)/Ko(μ) (lower cu円es) of the 
appro氾mations.
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Mter calculations it is easy to express the escape 
function from the approximation of the numerical 
calculation, Eq. (3), and Table 1 as 

(7) Ko(μ) = (0.780 + 0.090g)μ+ 0.437 -0.017g 

or from Eq. (5) (corrected isotropic formula) as 

(8) 

Both of the approximations are shown in Fig. 2, and 
it can be seen that their agreement with the angular 
dependence of the escape function4 is rather good. 
Thus it is reasonable to consider that Eqs. (3) and (5) 
are suitable for these calculations ifμ 三 0.15.
Figure 3 shows the dependence of coefficientsαm 

Ko(μ) = (0.793 + 0.048g)μ+ 0.445 -0.003g. 
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Fig.3. Dependence ofcoefficients a= , b= , and cm ofharmonics with numbers (a) m = 3 and (b) m = 6 on phase function parameter g 
(thinner curves) and power fit approximations according to Table 2 (thicker cu円es)
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Table 2. Exponential Approximations of Coefficients am , b m , and cfηof the Third through Sixth Harmonics of the Reflection Function (PF Method) 

0.3 :s g 三 0.9

3
4
5
6
 

μlimit 

0.50 
0.45 
0.35 
0.35 

cm 

2.75g2 - 2.03g + 0.39 
3.70g2 - 3.20g + 0.65 
3.23g2 - 2.75g + 0.55 
3.90g2 - 3.41g + 0.70 

bm 

15.24g:J + 19.70g2 - 8.73g + 1.25 
-30.30i1 + 43.04g2 - 19.83g + 2.89 
25.84g3 + 35.15g2 - 15.61g + 2.22 
32.60g3 + 43.88g2 - 19.15g + 2.67 

日間

62.00g3 - 90.28g2 + 42.42g - 6.26 
105.26g3 - 155.06g2 + 72.93g -10.76 
120.63g3 - 177.60g2 + 83.48g -12.32 
144.92g3 - 202.16g2 + 90.48g -12.85 

m 

tion on radiative forcing are almost the same for sevｭ
eral phase functions if the solar incident angle is 
approximately 45-500 (μ。= 0.643 -0.707). The 
influence of particle-size distribution on the cloud 
phase function for scattering angles of ~90o (Ref. 16) 
(which approximately correspond to the zenith-angle 
coslnesμo 二 μ 二 0.67) is slight. 
These facts can be explained because in this anguｭ
lar range the reflection function (and the escape funcｭ
tion) depends on a phase function that is weaker than 
for other angles. Thus it is useful to measure the 
reflected radiation for either the zenith-viewing or 
solar angle in the 45-500 range for retrieval of the 
optical thickness and the single-scattering albedo. 
Otherwise it is better to use other zenith angles , at 
which the radiance is susceptible to the phase funcｭ
tion, to estimate the phase function parameter, as 
was pointed out earlier.15 

3. First and Higher Orders of 5ca枕ering

High harmonics of the radiation reflected by a thick 
cloud form mainly in the upper part of the cloud. 
Calculations of the radiation field in the optically 
thick layer16 showed that almost all harmonics with 
numbers m > 0 are approximately zero at optical 
depth 'T田 2. The ratio of the high harmonic to the 
zeroth harmonic is in the 10-20% range for 'T ~ 1 and 
is applicable only for a zenith angle μof less than 

It is necessary to point out that for the zenith-angle 
cosine μ= 0.67 (which corresponds to 48 0

) , for which 
the zeroth harmonic of the reflection function is very 
close to 1, especially in the case of the Henyey 
Greenstein phase function , the other harmonics are 
close to zero and the escape function Ko(μ) is equal to 
1. Thus the reflected radiance measured in viewing 
angles close to 480 is equal to the reflected irradiance 
(the same is true for the transmitted radiation). The 
radiance and irradiance measured at a solar angle of 
480 also approximately coincide with the spherical 
albedo of the cloud layer. The values of 11 - pO(μ ， 
μ。)1for recent approximations are listed in Table 3 for 
g = 0.3-0.9 and μ 二 μ。二 0.67. The small deviations 
from 1 show rather small approximation e町ors. An 
analysis of the reflection function's zeroth harmonic 
pO(μ ， 0.67) for the various values of g shows that the 
deviation from 1 is ~8% for g :=; 0.5 and 10% for g 二
0.85-0.9. 
The reflection function has been calculated for the 
Mie phase function that corresponds to the model of 
fair-weather cumulus clouds.5 These results indiｭ
cate that, at the zenith angles in the 47-500 range , 
the reflection function differs from 1 by 2-5%. 
Hence it is possible to conclude that the reflection 
function is close to 1 at these zenith angles , even for 
a complicated phase function. 
It was shown15 that the effects of the phase func-
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In the case of first-order scattering the scatteringｭ
angle cosine is expressed in terms of the solar-angle 
and zenith-viewing cosines by cosγ=μμ。+ [(1 
μ乙)(1 一 μ。勺y/" cos 中・ If the phase function is asｭ
sumed to have a Henyey-Greenstein formula , the 
functionpり(μ， μ。) can be presented as4 

0.25. For an optical thickness ofT ~ 2-14 the first , 
second, and third harmonics are 50%, 30%, and 109も，
respectively, ofthe zeroth harmonic. Thus it is clear 
that first-order scattering includes most of the high 
harmonics and that multiple scattering corresponds 
mostly to the zeroth harmonic ,17 It is possible to 
express the refl.ection function as 

。 2(1 -g2) rτdψ 
pU( μ0 ， μ) ='  = " I 

τ 人 (e ::!: f cos <p )3/2 

2(1 -g2) (e工rJ 凡九
τ(e2 -f2) ~\~e+fJ' 

where E(x) is the complete elliptical integral of the 
second kind and the following notation is used: 

P(μ ， μ0，中) = Pl(μ ， μ0 ， ψ) + [pO(μ ， μ。) -p~(μ ， μ。)] 
N 

+2 玄 [pm(μ， μ。)一 ρ'['(μ，内)]cos mψ， 
(12) 

(9) 

where P1(μ ， μ0 ， ψ) is the first-order scattering term of 
the refl.ection function for a semi-infinite and conserｭ
vatively scattering medium: f= 2g[(1 - μ2)(1μ~)]1/2. 

(13) 

e = 1 + g2 + 2gμμ0 ， 

(10) 

and the first-order scattering part of the zeroth harｭ
monic is as follows: 

x(γ1 
Pl(μ ， μ0 ， ψ) =一一←一一，

4μ+μ。

p~(μ ， μ0) 二 1|2Tτx(γ)dψ
8τ(μ。 +μ) 九

ρm(μ ， μ。)
õ(μ ， μ0 ， m) n，一一一

pU(μ ， μ。) , 

pm(μ， μ。)一 ρア(μ ， μ。)
ム(μ ， μ0 ， m , i) = 。

pU(μ ， f.L0) 

where i and m indicate the scattering order and 仕le
harmonic order, respectively. Here 0 is the relative 
contribution of each harmonic (m = 0, 1, • • • ) to 仕le
value ofthe refl.ection function and ﾔ is the contribuｭ
tion of ith-order scattering in azimuth-angleｭ
dependent terms relative to 出e zeroth harmonic. 

(11) 
pO(一 μ0 ， μ)

4(μ。 +μ)

(14) Deviation of the Approximation of Zeroth Harmonic 
1,0(0.67 , 0.67) from 1 

Tab/e 3. 

Value ofg 

0.9 

Deviation of 0.0037 0.024 0.021 0目0059 0.013 0.0046 
11 一 ρ。(0.67 ， 0.67)1 

The results of calculations of exact values of the 
four refl.ection function harmonics for phase function 
parameter g 二三 0.5 and ten harmonics for g = 0.85 
have been presented, as well as values ofthe first and 
second orders of scattering for the same harmonics.18 
The ratio of each azimuth harmonic (m > 0) to the 
zeroth harmon� is taken as follows: 

0.85 0.8 0.75 0.5 0.3 Variable 
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Table 4. Contributions 01 the First through Fourth Harmonics Relative to the Zeroth Harmonic to the First and Second Scattering Orders 10r Phase 
Function Parameter 9 = 0.5 

Parameter � Parameter ム (i = 1) Parameter Ll (i = 2) 

Case Case Case Case Case Case Case Case Cas巴

Variable I II III I II III II III 

μ;μ。 0; 0.1 0; 0.9 0.9; 0.9 0; 0.1 0; 0.9 0.9; 0.9 0; 0.1 。司 0.9 0.9; 0.9 
m = 1 0.600 0.089 0.0078 0.048 0.008 0.0055 0.009 0.007 0.003 
m = 2 0.345 0.018 2.9 X 10-4 0.014 0.001 1.5 X 10-4 0.001 3.2 X 10-4 5.7 x 10 • 5 

m = 3 0.192 0.0035 1.2 X 10-5 0.004 1.1 X 10-4 5.1 X 10-6 2.3 X 10-4 1.6 X 10-5 1.8XlO-6 

m = 4 0.105 6.9 X 10 4 6.0 X 10-6 0.001 1.3 X 10-5 1.6 X 10-6 。 。 2.4 X 10-7 

The va1ues of parameters � and ム for the cosines of 
zenith ang1esμ= 0 and μ。= 0.1 (case 1) ， μ= 0 and 
μ。= 0.9 (case II) , and μ= 0.9 and μ。= 0.9 (case III) 
are listed in Tab1es 4 (g = 0.5) and 5 (g = 0.85) for the 
first and second orders of scattering. These tab1es 
indicate that the third term in Eq. (9) is close to zero 
if either ang1e cosineμorμ。 isclose to or greater than 
0.9. We refer to this methodo1ogy as the LS method. 
A comparison ofthe zeroth harmonic calcu1ated by 
the CI approximation, the LA method, the discrete 
ordinate method, and the method described in Refs. 
10 and 11 is presented in Tab1e 6. This tab1e indiｭ
cates that the simp1est way to ca1cu1ate the zeroth 
harmonic of the refl.ection function is the CI method 
(Eqs. 4) and (5). Errors ofthe LA method are in the 
2-3% range for zenith-ang1e cosinesμoand μand are 
greater than 0.2 and ~5% for one ofthe cosines equa1 
to 0.2. The CI approximation yie1ds errors of less 
than 1% for μ> 0.2 and approximate1y 3-5% for μ= 
0.2. We compare the discrete ordinate method, the 
method ofRefs. 10 and 11, and the two methodo1ogies 
proposed above in Tab1e 7 and calcu1ate the refl.ection 
function. Two solar-ang1e cosines, five viewingｭ
ang1e cosines, and an azimuth ang1e of 0 are considｭ
ered. We found that the exactness of the PF 
approximation together with the CI method for the 
zeroth harmonic is quite good for all the ang1es conｭ
sidered. The LS method can be suitab1e for calcu1aｭ
tion of the refl.ection function , preferab1y in cases of 
nadir observation or when the Sun is close to zenith, 
because it shows good agreement with the resu1t of 
numerical ca1cu1ation forμ1 and a much worse 
result for μ= 0.5. 

We propose the following a1gorithm for calculation 
of the refl.ection function p( 4J， μ ， μ。)・

(1) If cosine μorμ。 is greater than 0.8, the zeroth 
harmonic is calcu1ated with Eqs. (4) and (5) and is 
approximate1y equa1 to the refl.ection function. 
(2) In the opposite case the approximations in Taｭ
b1es 1 and 2 for high harmonics must be added to the 
va1ue of the zeroth harmonic. 

4. Paran、eterization of Cloud Horizontal 
Inhomogeneity 

A simp1e approximate parameterization of the cloud 
top boundary heterogeneity was proposed earlier.19 
A rough cloud top causes an increase of the part of 
diffuse radiation in the incident fl.ux. Hence know1-
edge ofthis increase is essentia1 for ca1cu1ation ofthe 
radiative characteristics that depend on solar inciｭ
dent ang1e. The escape function together with the 
refl.ection function describes this dependence for the 
refl.ected radiance, and the escape function together 
with the p1ane a1bedo of the semi-infinite medium 
describes the refl.ected irradiance.1.2 Thus we proｭ
pose to rep1ace all functions that depend on the 
incident-ang1e cosine μo by their modifications acｭ
cording to the following expressions: 

ρ。(μ ， μ。) = pO(μ ， μ。)(1 -r) + rα(μ) ， 

K(f.1o) = K(μ。)(1 -r) + rn , 

a(μ。)=α(μ。)(1 -r) 十 rα七 (15)

Table 5. Contributions 01 the First through the Seventh Harmonics Relative to the Zeroth Harmonic to the First and Second Scattering Orders 10r 
Phase Function Parameter 9 = 0.85 

Parameter � Parameter Ll (i = 1) Parameter Ll (i = 2) 

Case Case Case Case Case Case Case Case Case 
Variable I II III II III I II III 

μ;μ。 0; 0.1 0; 0.9 0.9; 0.9 0; 0.1 0; 0.9 0.9; 0.9 0; 0.1 0; 0.9 0.9; 0.9 
m 1 0.905 0.086 0.016 0.158 0.050 0.016 0.062 0.040 0.015 
m = 2 0.805 0.017 5.8 X 10-4 0.121 0.007 5.9 X 10-4 0.041 0.005 5.5 X 10-4 

m = 3 0.705 0.0038 2.5 X 10-5 0.088 0.001 2.3 X 10一月 0.026 8.8 X 10-4 2.1 X 10一日
m = 4 0.611 9.1 X 10-4 1.1 X 10-6 0.064 4.0 X 10-4 9.2 X 10-6 0.016 1.2 X 10-4 7.9 X 10-6 

m = 5 0.528 2.3 X 10-4 5.1 X 10-7 0.047 3.8 X 10-5 4.5 X 10-7 0.010 1.8 X 10-5 3.5 X 10 • 7 

m = 6 0.454 5.1 X 10-5 2.8 X 108 0.034 6.9 X 10-6 2.6 X 10-8 0.006 3.1 X 10-<; 2.1 X 10-8 
m = 7 0.389 1.1 X 10-5 1.0 X 10-9 0.024 1.0 X 10-6 7.8 X 10-9 0.003 4.3 X 10一7 5.9 X 10-9 
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Table 6. Results 01 Appro刻mateand Numerical Method Calculations 01 the Re11ection Function Zeroth Harmonicu 

Isotropic Error Eηor Eηor Discrete 
μ Scattering (%) CI Method (%) LA Method (%) Ref.4 Ordinate 

μ。= 1 
1 1.074 5.0 1.145 1.3 1.161 2.2 1.128 1.130 
0.8 1.041 3.7 1.075 0.5 1.081 0.01 1.073 1.072 
0.6 1.000 0.8 0.995 0.3 0.980 1.6 0.995 0.995 
0.4 0.946 6.7 0.886 0.2 0.850 3.7 0.882 0.882 
0.2 0.875 24.8 0.720 5.5 0.676 4.0 0.708 0.707 

μ。= 0.5 
1 0.975 2.5 0.944 0.1 0.919 2.6 0.943 0.942 
0.8 0.981 0.9 0.965 0.7 0.944 2.9 0.974 0.973 
0.6 0.990 2.6 0.993 0.8 。司978 3.7 1.010 1.012 
0.4 1.002 4.6 1.035 1.4 1.028 2.2 1.062 1.063 
0.2 1.021 4.3 1.099 3.0 1.106 3.6 1.064 1.063 

αThe CI method calculates the isotropic zeroth harmonic and adds the item that is linearly dependent on phase function parameter g 
for correction; the LA method calculates the zeroth harmonic with the linear approximation on the parameter g according to Table 1. 

where spherical albedo αへ plane albedo α(μ。)， and 
the value of n are defined as 

ょ =2ト山内= 4 f f10dμo f pO(μ，内川叫)f1μ
n=2 fドトト町刈恥μ内ω叫川0ρ山仙)恥川Mμ内f10d中μ0 (16) 

and the parame旬r r describes the completely diffuse 
part of the light in the incident ftux. 
The inftuence of the overlying atmospheric layers 
(including high thin clouds), the difference between 
the reftection functions ofthe real cloud (described by 
Mie phase function) and the model (described by the 
Henyey-Greenstein phase function) and the other 
factors that affるctthe angular dependence of the ra同
diation are also partly corrected by the same paramｭ
eter. 
Let us consider the numerical and analytical re司
sults that concern cloud heterogeneity. There have 

been many studies of this subject in the past several 
years.20-23 It was shown that the inftuence of geo・
metric variations of the cloud parameters is greater 
than the internal inftuence for one order戸Analyt­
ical solutions20.23 show that cloud heterogeneity 
greatly affects radiance and irradiance, and we can 
actually describe it by modiちringthe escape function 
(or analogous functions) with an expression similar 旬
Eqs. (15). 
There are different estimations ofthe power ofsuch 
effects. 1n our case it is expressed by a value of the 
parameter r , and an analysis based on the studies 
mentioned above20 ,23 allows us to let r ~ 0.01-0.1. 
Most results also show that the minimal disturbance 
in the radiation field caused by cloud heterogeneity is 
at a solar angle of 48 -490. As was mentioned above, 
all the functions that depend on the incident angle 
are approximately equal to the integrals of these anｭ
gles, which is why the value of the parameter r is 
small if the measurement is made at these incident 
angles , 

Parameter r can be estimated from the ground ra-

Table 7, Results 01 Approximations and Exact Methods 01 the Re11ection Function Calculationsα 

Difference 
between Two 

E町ur Error Discrete Strict Methods 
μ LS Method (%) PF Method (%) Ref.4 Ordinate (%) 

μ。= 1 
1 1.128 。 1.145 1.8 1.128 1.131 0.3 
0.8 1.073 0.1 1.075 0.7 1.074 1.072 0.1 
0.6 0.995 0.1 0.995 0.1 0.996 0.995 0.1 
0.4 0.881 0.1 0,886 0.7 0.882 0.882 。

0.2 0.711 0.1 0,720 1.4 0.708 0.706 0,2 
μ。 = 0.5 
1 0.950 0.4 0.944 1.1 0.943 0.942 0.1 
0.8 1.006 10 1.104 1.7 1.124 1.123 0.1 
0.6 1.044 22 1.328 1.1 1.347 1.350 0.2 
0.4 1.146 33 1.684 1.4 1.710 1.713 0.2 
0.2 1.309 42 2.245 1.6 2.178 2.183 0.2 

αThe LS method takes into account all the scattering orders for the zeroth harmonic and only the first scattering order for high 
harmonics; the PF method fits the power regression on parameter g for harmonics with numbers higher than 2 
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diance or irradiance measurements in stable overcast 
conditions in the following way: Ground-based and 
satellite observations indicate that the dependence of 
radiance or irradiance on solar incident angle is less 
than was calculated or than the dependence on viewｭ
ing angle24 and termed a “violation of the directional 
reciprocity"24 for reflected radiation. It is known 
that the dependence of both the incident-angle and 
the viewing-angle cosines on the radiation that esｭ
capes from an optically thick layer is described by the 
escape function K(μ。)， which has been presented in 
tabular and analytical form. 1,2,4 Thus time data 
taken for a period of several hours may give us the 
dependence of the escape function on the solar inciｭ
dent angle. If it differs from the dependence of raｭ
diance on the viewing angle it is possible to obtain a 
value of r as follows: 

I(J.Lh J.L2) -1( J.L2' μ1) Ko(μ1) 
r= 
1 -1(J.L1' 0.67) Ko(μ1) -Ko(μ2) , 

5. Conclusion 

Two ways to calculate the reflection function in semiｭ
infinite and conservative media (the PF and LS 
methods) have been proposed for which a Henyeyｭ
Greenstein phase function was assumed but the real 
phase function of the cloud was unknown. On the 
one hand the Mie phase function may describe natｭ
ural clouds better than the Henyey-Greenstein 
phase function does. On the other hand, the influｭ
ence of molecular scattering may be increased in 
clouds by multiple scattering and could smooth out 
the real phase function and the real reflection funcｭ
tion. Thus the proposed method may be applicable 
旬 real clouds with better precision than we suspect. 
The PF method together with the CI method takes 
into account the zeroth and the sixth azimuth harｭ
monics. They are suitable for use over a wide range 
of phase function parameter g and zenith-viewing 
and solar angles if at least one cosine angle is greater 
than 0.15 (angle is less than 800). This assumption 
does not restrict solution of the problem because the 
same requirements for the plane model of the atmoｭ
sphere are usually made. It seems enough to calcuｭ
late only the zeroth harmonic to obtain the reflection 
function in the case when at least one cosine angle is 
greater than 0.8 (angle is less than 370). A similar 
condition is necessary for use of the LS method. 
Thus the PF method is more convenient than the LS 
method for calculating the reflected radiance at a 
larger angular range. 
It is certain that analytical methodology is espe幽
cially important for solution of the inverse problem, 
namely, for retrieval of the optical cloud parameter 
from radiance satellite observations. In such a case 
it is better to choose for measurements a viewing 
angle in the 45-500 range because this will result in 
the least effect of the phase function and the highest 
harmonics on the reflection function. Errors in the 
proposed approximations usually do not exceed 5%. 
The way to take into account the heterogeneity of 
the cloud top border, the influence of the overlying 

(17) 

wherel(μ。， μ) is the observed (reflected or transmitｭ
ted) radiance. In addition, we assume here that 
pO(μ ， 0.67) = Ko(0.67) = 1 and that there is a small 
amount of radiation absorption. Certainly we need 
here a high cloud stability that is not often but some幽
times possible, especially at northern latitudes. 
This method seems preferable for ground-based obｭ
servation. 
There is 田lotherway 旬 estimateparameter r 仕om
multidirectional radiance measurements [e.g. , with 
the Polarization and Directionality ofthe Earth's Reｭ
flectance (POLDER) instrument]. Approximate valｭ
ues of the optical thickness of the cloud layer are 
obtained for each viewing direction available for each 
pixel; conservative scattering is assumed at 仕le first 
stage of data processing. Then the average value of 
the optical thickness is calculated for each pixel. 
The relative deviations 企om average of the optical 
thickness obtained for each direction can be taken as 
a measure of the deviation of the cloud top from the 
plane. It is necessary to have in mind that the deｭ
viation also includes the influence ofthe other factors 
mentioned above. Then we propose to evaluate paｭ
rameter r as follows: 

唱 N

r=ZE22|干 Til ，
lVT i~1 

(18) 

where N is the number ofviewing directions for each 
pixel and 子 is the average optical thickness over the 
viewing directions. This methodology was applied 
旬 POLDER level-2 data containing the reflected raｭ
diance in 14 directions. Pixels with greater than 
0.5% cloud were chosen. Only averaged data for a 
low-resolution grid were available, and the size of a 
pixel was -59 km. The date ofthe observations was 
24 June 1997. Figure 6 shows the dependence of 
parameter r on the pixel number for two cloud fields. 
In fact, the value ofr was found to range from 0.01 加
0.06. 
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atmosphere and high cirrus clouds, the differences 
between the real phase function and the Henyeyｭ
Greenstein phase function, and other factors is deｭ
veloped by use of a shadow parameter. It is certain 
that this method is approximate and partly takes into 
account all the above factors. Two ways to retrieve 
the shadow parameter from ground or satellite meaｭ
surements were proposed. Results of estimating 
this parameter for two latitudes from POLDER obｭ
servations were presented relative to pixel numbers. 
This parameter was found to range from 0.01 to 0.1; 
variations are in the 40-50% range for one site. No 
spectral dependence of shadow parameter r was 
found. 

Appendix A 

Here we briefiy summarize the method 10 that we 
used for strict computation of the Fourier compoｭ
nents of refiection function pm(トL ， μ。). Specifically, 
we numerically solved Ambarlsumian's nonlinear inｭ
tegral equation1: 

w 
(μ+μ。)pm(μ ， μo)=}ipm(一 μ ， μ0)

+;μof内山内)dμ

+;μr1 p'〆山F
ν0 

+ωμμ。 I I p川(μ ， μ')

引) UQ 

Xpm(一 μμ")p'" (μヘ μ。)dμ'dμ

(A1) 

where ω。 isthe single-scattering albedo and pm(μ ， μ。)
are the Fourier componen臼 of the phase function. 
Form 三 1 ，the solution ofEq. (A1) can easily be found 
by simple iterations. For m 0 , the standard 
scheme of successive iterations works well only ifω。
is sufficiently far from unity, and it becomes inappli悼
cable when 1 一 ωo <<1. To ameliorate this converｭ
gence problem, it was suggested 10 that the zeroth 
harmonic of the refiection function ρU(μ ， μ。) be modｭ
ified after each iteration by use of the so司called
Sobolev-van de Hulst relation1: 
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The function i(μ) is the solution of the equation 

印)(1 一郎) =引 i(μ)内 μ胤仇

in which we found the diffusion exponent k by satisｭ
fying the normalization condition 

(A4) 

The algorithm10 ofthe solution is constructed in such 
a way that each successive iteration satisfies Eq. (A2) 
also. As a result, for each n (n is the number of 
iterations) , the modified value of Pn O(μ ， μ。) is substiｭ
tuted into the right-hand side ofEq. (A1). For m 2: 
1, we used the standard iterative procedure. This 
technique has proved to be highly efficient and gave 
accurate results even in the case of strong anisotropic 
scattering.4 ,11 
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