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1 Introduction

In this article, we deal with linear additive difference equations whose co-
efficients are rational functions, as subjects of complex analysis similar to
differential equations. Algebraic multiplicative difference equations, so called
q-difference equations are well studied recently. An additive difference equa-
tion with rational coefficients, in this text, means the equation such as

(1) F (f(x), f(x+ 1), . . . , f(x+N), x) = 0.

Here, F (y0, y1, . . . , yN , x) is a polynomial in C[y0, y1, . . . , N, x]. Indeed, ad-
ditive difference equations are traditional, common difference equations. Al-
though we get a multiplicative difference equation

(2) F (g(t), g(qt), . . . , g(qN t), logq(t)) = 0,
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by changing the variable x to t, t = qx, we regard them as different subjects.
The equation (2) is not a difference equation with rational coefficients, so it
is difficult to treat the equation (2), though Poincaré or Picard looked them
as the same objects. Therefore, it is meaningful to treat the equation (1) as
an additive difference equation. The purpose of this paper is to investigate
analytic continuations of solutions of linear difference equations whose coef-
ficients are rational functions. Linear difference equations whose coefficients
are rational, in this paper, means equations of which form are

(3) Lf(x) =
N∑

n=0

an(x)f(x+ n) = 0.

Here, {an(x)} are polynomials of x, an(x) ∈ C[x]. In order to compare
difference equations with differential equations, we look over what is well
known in the studies of algebraic linear ordinary differential equations.

Studies about the linear ordinary differential equations of Fuchsian types
on the surface P1 with respect to the global monodromy, have been contin-
ued one hundred or more years. The global monodromy is a concept which
describes transition of fundamental solutions when we continue them analyt-
ically along the loops in P1. However, most of differential equations’ mon-
odromies are very difficult to calculate. We call the differential equations
rigid if their global monodromies are determined by the data of locations
of the singularity points and characteristic exponents (or, we may say that
the global monodromies of rigid equations are determined by local mon-
odromies). For example, as is well known, the hypergeometric equation is a
rigid equation. In this manner, the solutions of the linear ordinary differential
equations are investigated from the view point of the complex analysis.

In a history of the study of difference equations, G.D.Birkhoff tried to
solve the connection problem about the singular points −∞ and ∞ or, the
generalized Riemann problem[1]. The connection problem is the following.

Problem 1. Let A(x) be a n× n matrix of which elements are polynomials
of x. Assume that S(x) is a formal solution of a equation

(4) Y (x+ 1) = A(x)Y (x).

Assume that there exists 2 analytic solutions Y −(x) and Y +(x) which have
the asymptotic expansions Y −(x) ∼ S(x) in the left half plane (x → −∞),
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and Y +(x) ∼ S(x) in the right half plane (x → ∞). Calculate the connection
matrix P (x) which satisfies the relation

(5) Y −(x) = Y +(x)P (x).

The generalized Riemann problem, which is introduced by Birkhoff, is as
follows.

Problem 2. Are the difference equations determined uniquely by giving the
characteristic constants?

Where the characteristic constants in Birkhoff’s sense, are specific param-
eters included in the matrices S(x) and P (x). For reference, to mention the
notation Birkhoff made, the formal solution matrix S(x) = (si, j(x))i, j has a
form

(6) si,j(x) = xµx(ρje
−µ)xxrj{s(0)i,j + s

(1)
i,j x

−1 + (lower order)},

where µ is a degree of A(x) with respect to x, and P (x) = (pi, j(x))i, j has a
form

pi, i = 1 + c
(1)
i, i e

2π
√
−1x + · · ·+ c

(µ−1)
i, i e2π

√
−1(µ−1)x + e2π

√
−1rie2π

√
−1µx,

pi, j = e2π
√
−1λi,jx[c

(0)
i,j + · · ·+ c

(µ−1)
i,j e2π

√
−1(µ−1)x].

The characteristic constants are a set {ρj, rj, c(k)i,j } which appear in S(x) and
P (x). Birkhoff announced that he solved the generalized Riemann problem
of difference equations. Definitely, by diagonalizing Aµ, the highest term of
A(x), we find the number of parameters included in A(x) is n2µ+n, and the
number of characteristic constants is n(µ− 1)+ (n2−n)µ+2n = n2µ+n, so
the correspondence must be there. However, there remains a question. Can
we make the space of characteristic constants smaller? There are too many
parameters in the set of characteristic constants to explain them from the
view point of analysis of difference equations. We must determine what kind
of parameters are essential.
In this article, we do not touch the generalized Riemann problem, but we
consider the connection problem of single difference equation (3). This corre-
spond to the Problem 1 of the case that the elements of the coefficient matrix
are rational functions.

3



Loosely speaking, Birkhoff “solved” the connection problem by using the
following method.

Y (x) = A(x)−1Y (x+ 1) = . . .

= A(x)−1A(x+ 1)−1 · · ·A(x+ k − 1)−1Y (x+ k),

Y (x) = A(x− 1)Y (x− 1) = . . .

= A(x− 1)A(x− 2) · · ·A(x− k)Y (x− k).

Therefore, if we can control the infinite products
∏∞

k=0A(x+k)−1 and
∏∞

k=1A(x−
k), we get the connection matrix

P (x) = (
∞∏
k=1

A(x− k))−1

∞∏
k=0

A(x+ k)−1.

That trial is natural, because the difference equation includes the difference
operator σ : f(x) 7→ f(x + 1). Indeed, we can bring the information of the
domain U+ to U , or U− to U .

Figure 1: the acts of σ

Then, we should have questions; can we connect the functions analyti-
cally to the different directions, or, from the very first, is there any analytic
solutions of difference equations? The question about the existence of an-
alytic solutions is quite difficult. However, there exist formal power series
solutions of linear difference equations whose coefficients are polynomials,
with their growth estimates of Gevrey order. In this paper, we study differ-
ence equations in the aspect of Stokes phenomena of the formal fundamental
solutions, because we are concerned with the analytic continuation of the
solutions in wide domains or sectors. Birkhoff tried to connect solutions only
along the line Imx = (constant) or a strip region including this line, but in
this text, we try to connect solutions to the direction of rotation; x 7→ x · eiθ.
An advantage of this new method is giving us asymptotical information of
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difference equations thoroughly. For example, the hypergeometric difference
equation has infinitely many Stokes directions. We can calculate the Stokes
multipliers on each directions by that method. Here, we used a word “the
hypergeometric difference equation”. In the study of q-difference equations,
the basic hypergeometric difference equation is well known. That is a second
order q-difference equation, whose coefficients are polynomials of degree 1,
and have some generic conditions. We can find the similar equation, in the
case of additive difference equations. We call it the hypergeometric difference
equation. In fact, the hypergeometric difference equation is well known as
a contiguity relation of the hypergeometric series (which is a solution of the
hypergeometric differential equation).

This text consists of 3 sections. In the first section, we compare formal
solutions of difference equations with formal solutions of differential equa-
tions of Fuchsian type. Differential equations of Fuchsian type have local
solutions around their regular singular points, which are composed by Frobe-
nius method. We usually calculate characteristic exponents at regular sin-
gular points, and create power series solutions recursively. In short, singular
points and characteristic exponents are important to make a basis of local
solutions. We suggest formal solutions of linear difference equations similar
to differential equations of Fuchsian type, and we reveal that what should
we calculate for consisting formal solutions, in the first section.

In the second section, we review the Borel-Laplace analysis and Stokes
phenomena quickly. The Stokes phenomena is a term of asymptotic analysis;
in short, the Stokes phenomena is a phenomena: “the change of asymptotic
expansion of the analytic functions, when we change a sector for asymptotic
expansion”. Or we may say the phenomena “exponentially small terms ap-
pears when we connect the analytic functions”. The Borel transformation
is a formal inverse Laplace transformation of the formal power series. We
can create analytic functions by combining the Borel transform and Laplace
transform for formal power series, on some conditions. The Borel-Laplace
analysis is a studies for these newly created analytic functions in the aspects
of Stokes phenomena or analytic continuations, often applied to differential
equations in a complex domain. We see these facts briefly, and show that
the Stokes phenomena also appear in the analysis of difference equations in
this section. At the last of this section, although the discussion leaves from
the main subject, we apply the Borel-Laplace analysis to the hypergeomet-
ric difference equation and we get the monodromies of the solutions of the
hypergeometric “differential” equation. In other words, the difference equa-
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tion possess the analytic property of the differential equation. The author
wonders why the analysis of difference equations gives us informations of
differential equations. We leave this issue for the future.

In the third section, we will see how we can calculate Stokes multipliers
of solutions. Unfortunately, we cannot understand the calculus of the Stokes
multipliers by seeing only Borel transform of the solutions. Therefore we in-
troduce the inverse Mellin transformation of difference equations, and watch
them in details. The Borel transformation and the inverse Mellin transfor-
mation are equivalent each other when we change variables, but their merits
are different. Roughly speaking, the Borel-Laplace analysis is an useful tool
for seeing when the Stokes phenomena occurs, and by taking an inverse
Mellin transform, we can specify what kind of characters we should calculate
for revealing the Stokes multipliers of the solutions of difference equations.
There is a technical difficulty to calculate the connection formulae of Borel
transformed equations’ solutions, and also there is a difficulty to make sure
that which direction a Stokes phenomenon occurs, only by seeing the inverse
Mellin transformation. By combining these two transformations with mak-
ing up for each other’s weak points, we can verify the analytic continuation
of solutions in details. We also see benefits of these calculus in examples.
In the last of this section, we confirm that we can calculate the connection
formulae of the beta function’s difference equation and the hypergeometric
function’s difference equation, for the results of Stokes phenomena.

Figure 2: conceptual diagram of theory

The main theorem of this paper is as follows.
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Theorem 3. Let Lf(x) = 0 be a difference equation. Assume that the inverse
Mellin transformation of L, M−1L be a Fuchsian type differential operator.
If we have connection formulae between the singular points of the equation
M−1L(M−1f)(t) = 0, then the following holds.

1. The Stokes multipliers of the difference equation can be calculated by
using the connection formulae of the Fuchsian differential equation
M−1L(M−1f)(t) = 0.

2. In particular, the connection of the solutions of the difference equation
can be calculated by using the Stokes multipliers which are obtained by
1. Especially, the connection is represented by Fourier series.

2 The basic parameters and formal solutions.

In this paper, we denote ϑ as a Euler operator,

(7) ϑ = x
d

dx

for simplifying. The Euler operator is useful for the analysis of regular singu-
lar points of differential equations. It is important calculating the character-
istic exponents for the construction of the convergent power series solutions
around the regular singular point of the differential equations of fuchsian
types, because they determine the major parts of the local solutions. At
the beginning, we remember the proposition about the singular points of the
linear differential equations.

Proposition 4. Let L be a differential operator of which coefficients are
polynomials:

(8) L =
N∑
j=0

aj(z)
dj

dzj
, aj(z) ∈ C[z].

Assume that {aj(z)} has no common factors. Then the singular points of the
solutions of the linear differential equation Lf(z) = 0 are limited at most to
the points z = z1, z2, . . . , zn,∞, where z1, . . . , zn, zj ̸= zk(j ̸= k) are the zero
points of aN(z) = A(z − z1)

l1 . . . (z − zn)
ln, A ∈ C.
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The proof is clear because we can construct analytic solutions around
z = z0, a(z0) ̸= 0 by substituting the power series f(z) =

∑∞
k=0 fk(z − z0)

k,
here we can choose N -parameters {fk}k=N−1

k=0 freely. Therefore the singular
points of differential equations’ solutions are limited to the zero points of
aN(z).

Proposition 5. Let L be a differential operator which satisfies the conditions
of Propisition 4. We may assume that z1 = 0. Then z1 = 0 is at most a
regular singular point if there exists a natural number l1, such that zN−l1L
becomes the following form.

(9) zN−l1L =
∑
s≥0

zsPs(ϑ).

Here, Ps(x) ∈ C[x], and degP0(x) = N . We call the roots ν1,1, . . . , ν1,N
of the indicial polynomial P0(ν), the characteristic exponents of the regular
singular point z = 0.

If the polynomial P0(ϑ) has a degree degP0 < N , the point z = 0 is
called a irregular singular point. We do not touch the case that differential
equations have irregular singular points. We call the differential equations
Fuchsian types when all of their singular points are regular singular points.
The table of the set of the singular points and characteristic exponents is
called the Riemann scheme:


z = z1 · · · zn ∞
ν1,1 · · · νn,1 ν∞,1
...

...
...

ν1,N · · · ν1,N ν∞,N

 .(10)

The Riemann scheme seems to include almost all important data of the local
solutions, because it determine the form of the local solutions in generic cases.
For example, the following proposition holds.

Proposition 6. Let νl,1, . . . , νl,N be characteristic exponents of the regular
singular point z = zl which satisfy the generic condition

(11) ∀j ̸= k, νl,j − νl,k ̸∈ Z.
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Then there exist N solutions of the form

(12) f l
j(z) = (z − zl)

νl,j

∞∑
n=0

aln,j(z − zl)
n (j = 1, 2, . . . , N).

Here al0,j is an arbitrary number in C\{0}, and {aln,j} are determined by the
Frobenius method.

Thus, the Riemann scheme holds almost all information around the reg-
ular singular points. The monodromies of rigid equations are determined
by these data. More precise discussion will be done in section 4, where we
extend the definition of such data to the generalized Riemann scheme which
is recently mentioned by T. Oshima[2].

Now, let us consider the similar situation about additive difference equa-
tions, namely, we clarify the important parameters of difference equations
to determine formal solutions. In the case of differential equations the char-
acteristic exponents immediately correspond to the solutions, hence we ex-
amine the same parameters which correspond to the solutions. We prepare
some definitions and a proposition about formal solutions of linear difference
equations.

Definition 7. Let L be an additive difference operator

(13) L =
N∑
j=0

aj(x)σ
j

where σ is the difference operator σ : f(x) 7→ f(x + 1), and coefficients
{aj(x)} are polynomials of x, of which coefficients are denoted as {aj,l}l=0,...,lj ,

aj(x) =
∑lj

l=0 aj,lx
l ∈ C[x], aj,lj ̸= 0. We assume about the degrees of the

coefficients that M := l0 = lN and l0 ≥ lj for all j, 1 ≤ j ≤ N − 1. Then we
call the following polynomial the characteristic polynomial.

(14) D(λ) :=
N∑
j=0

aj,Mλj.

Here, some coefficients aj,M may not be defined, then we interpret them to
be 0. We call the roots of D(λ) = 0 the deterministic roots.

The deterministic roots are used to solve difference equations with con-
stant coefficients.
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Example 8. Assume that Aj ∈ C, AN and A0 are not 0, and

ANλ
N + AN−1λ

N−1 · · ·+ A0 = 0

has roots λ1, . . . , λN which differ from each other. Then the equation

ANf(x+N) + AN−1f(x+N − 1) + · · ·+ A0f(x) = 0

has N solutions
fk(x) = λx

k (k = 1, . . . , N).

The proof is trivial; we can verify that they are solutions by substituting
them into the equation.

The proof of this example is easy, however, it is useful for solving formally
the difference equations, or analyzing the difference equations asymptotically
like the theorem which is called Poincaré-Perron. Now, we define the char-
acteristic exponents of the difference equations. Roughly speaking, the de-
terministic roots shows how the solution of the difference equation growth
exponentially, and the characteristic exponents indicates the order of the
polynomial growth (although the term turned out to be not polynomials).
Let L be a difference operator satisfying the condition denoted in Definition
7., and we assume that the roots of D(λ) = 0 differ from each other. We
denote Lk as the difference operator

Lk : = λ−x
k Lλx

k =
N∑
j=0

λj
kaj(x)σ

j(15)

=
N∑
j=0

M∑
l=0

λj
kaj,lx

lσj.(16)

We also denote L̂k as the differential operator

(17) L̂k =
N∑
j=0

M∑
l=0

λj
kaj,lx

l(1 + j
d

dx
)

Then, the highest weight operator of L is written as

(18) (L̂k)max = xM−1Hk := xM−1

(
N∑
j=0

jλj
kaj,Mx

d

dx
+

N∑
j=0

λj
kaj,M−1

)
.
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The highest weight operator in this context, is defined as follows. Let D
be a differential operator (including infinite order differential operator) which
has polynomial coefficients

D =

finite∑
p=0

∑
q≥0

Cp,qx
p dq

dxq
.

Let ∆D be the subset of N2, ∆D = {(p, q)|Cp,q ̸= 0}. We take the weight
(x, d

dx
) 7→ (1,−1). Let H be a integer H = max(p,q)∈∆D

(p − q). The highest
weight operator Dmax is defined as

Dmax =
∑

(p,q)∈∆D

Cp,qx
p dq

dxq
.

In these conditions ,

Definition 9. Let νk be a complex number

(19) νk :=

∑N
j=0 λ

j
kaj,M−1∑N

j=0 jλ
j
kaj,M

.

We call νk the characteristic exponent of L related to a deterministic root
λk.

This definition is not essential. This characteristic exponent is obtained
from the highest weight operator; νk is a characteristic exponent of Hk at the
singular point x = ∞. Such sets of constants {λk}, {νk} play an important
roles to construct the formal power series solutions of the difference equations.
Indeed, the next proposition holds.

Proposition 10. Let L be a difference operator satisfying the condition de-
noted in Definition 7., and the deterministic roots of L are differ from each
other. Then, the equation Lf(x) = 0 has formal solutions written in the form

(20) fk(x) = λx
kx

−νkgk(x),

where gk(x) is a formal power series of x−1, gk(x) =
∑∞

n=0 gk,nx
−n.
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Proof. Let us take a gauge transformation of L, Lgauge = λ−x
k xνkLλkx

−νk .
Then, have a look at the acts of Lgauge on the space of formal power series
C[[x−1]] = {g(x)|g(x) =

∑∞
j=0 gjx

−j}. By taking a simple calculus, we find

Lgauge =
N∑

n=0

λn
k(1 +

n

x
)−νkan(x)σ

n

=
N∑

n=0

λn
k

∞∑
m=0

(−1)m(νk)m
m!

(n
x

)m M∑
l=0

an,lx
lσn

= xM

N∑
n=0

λn
k

[
an,M + (−nνkan,M + an,M−1)x

−1 + x−2rn(x)
]
σn.

Where rn(x) means a power series of x−1. σn acts to x−j in this way;

σnx−j = x−j

∞∑
p=0

(−1)p(j)p
p!

npx−p = x−j − jnx−j−1 + . . . .

We get the formal Laurent series h(x) = Lgaugeg(x) has a degree at most

M − 1, because the coeficient of the term xM is (
∑N

n=0 an,Mλn
k)g0 = 0, from

the definition of deterministic roots {λk}. The coefficient of xM−1 is

g0

N∑
n=0

λn
k(−nνkan,M + an,M−1) + g1(

N∑
n=0

an,Mλn
k) = 0.

Here, we used the definition of characteristic exponents {νk}. By calculating
the coefficients of h(x) =

∑∞
p=−M+2 hpx

−p, we find

hp = gp+M−1

N∑
n=0

λn
k(−n(νk + p+M − 1) + an,M−1) +Rk,p

= −gp+M−1(
N∑

n=0

nλn
k)(p+M − 1) +Rk,p

where Rk,p means the terms of {g0, . . . , gp+M−2}. Hence, if we hold the
formal Laurent series h(x) = 0, then we get

gp+M−1 =
Rk,p

(
∑N

n=0 nλ
n
k)(p+M − 1)

, p+M − 1 = 1, 2, . . . .
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Let us see the denominator of the right-hand side of this equation. We can
write down it as

N∑
n=0

nλn
k(p+M − 1) = λkD

′(λk)(p+M − 1).

Here, D is the characteristic polynomial of the difference equation Lf(x) = 0.
By the assumption that L satisfies the condition denoted in Definition 7, we
find λk ̸= 0, and also we assumed that the characteristic polynomial D does
not have any multiple root, we get D′(λk) ̸= 0. Consequently, we get the
formal power series g(x) satisfying Lgaugeg(x) = 0, where we can choose
g0 ∈ C arbitrarily.

In brief, the set {fk(x)} is a basis of the space of the solutions formally.
In this sense, {λk}, {νk} are the basic parameters of the linear difference
equations like the characteristic exponents of differential equations. How-
ever, there must be more parameters to identify the difference equations.
In other words, the difference equations are not specified only by their for-
mal solutions around x = ∞. We can construct two difference equations
Lf = 0 and L̃f = 0, having the same deterministic roots and the same
characteristic exponents, but they are different from each other; for example,
the coefficients polynomials’ degree about the variable x can be different,
degx(L) ̸= degx(L̃). It is doubtful that they have the same analytic aspects,
so we should make an effort to specify difference equations. To find another
parameters of the difference equations, we recall the case of the differential
equations. A special affair of rigid differential equations is that we can calcu-
late their quantities which shows us analytic properties for a global condition.
The global monodromy is such a property. Therefore we introduce the global
analytic properties on the difference equations, by following a precedent of
the case of differential equations. An analytic property we already know
about the formal power series (or we can say asymptotic expansions of an-
alytic functions) is the Stokes phenomenon. We will see the Borel Laplace
analysis in the next section to verify how the Stokes phenomena occur, and
we will see the Stokes structures of the difference equations in the section 3.

Remark 11. We assumed that the deterministic polynomial has N roots
which are different from each other, however, we can construct formal solu-
tions when the deterministic roots are not different from each other. In such
cases, we must define the characteristic exponents of difference equations in
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another way. We replaced the difference operator σj with 1+j d
dx

in the oper-
ator (19), but we should replace them with σj 7→

∑nk

p=0
1
p!
(j d

dx
)p, where nk is a

multiplicity of the deterministic root λk. When the equation has nk solutions
of the form (20), the highest weight operator becomes the fuchsian operator
of order nk. If there does not exist the solution of the form (20), the highest
weight operator does not include the differential term.

3 The Borel-Laplace analysis and the Stokes

phenomena

In this section, we introduce the Borel resummation of the formal power
series, and its analytic continuation . The Borel resummation is a method
which is used for asymptotic analysis. We also describe an example of differ-
ence equations of which Stokes phenomena can be calculated easily. In fact,
that difference equation is the equation which corresponds to the Gauss’ hy-
pergeometric functions, therefore, connecting Stokes multipliers matches to
the local monodromy of the Gauss’ hypergeometric equation.

3.1 Borel resummation

First of all, we define the Borel transform of the formal power series. The
Borel transform is defined as a map from the formal power series to the
formal power series. However, it acts to their coefficients to decrease the
growth of them. Therefore, if a formal power series satisfies a good condition
for coefficients (the condition is called Gevrey 1) , then it can be transformed
to an analytic function. The definitions and Proposition 15 written in this
subsection are detailed in [4].

Definition 12. Let x be a positive constant and f be a formal power series
which has the form

(21) f(x) = eλxx−ν

∞∑
n=0

fnx
−n

where λ, ν, fn ∈ C, and ν is not the negative integer. We define the Borel
transform of f as

(22) B(f)(ξ) := fB(ξ) :=
∞∑
n=0

fn
Γ(n+ ν)

(ξ + λ)n+ν−1.
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The Borel transform is a formal inverse Laplace transform. To make it
clear, calculating the Laplace transform of B(f)(ξ) term by term formally,
we get formal power series f(x) again. fB(ξ) is an analytic function if and
only if the coefficients {fn} satisfies the condition

(23) ∃A,C > 0, ∀n, |fn| ≤ ACnn!.

Definition 13. Assume that the function fB(ξ) is continued analytically
along the line (−λ,∞). The Borel resummation of f(x) is defined by

(24) F (x) = L ◦ B(f)(x) =
∫ ∞

−λ

e−xξfB(ξ)dξ

when the integral converges.

Under these definitions the variable x is limited to a real variable, but we
can remove the restriction as follows. Let us denote the complex variable x
in the polar form x = reiθ. Then we find the formal power series f(reiθ) is

(25) f(reiθ) = e(λe
iθ)r

∞∑
n=0

(fne
−(n+ν)iθ)r−n−ν .

The Borel transform of (25) with respect to the variable r is

B(f)(ρ) =
∞∑
n=0

fne
−(n+ν)iθ

Γ(n+ ν)
(ρ+ λeiθ)n+ν−1(26)

=
∞∑
n=0

fn
Γ(n+ ν)

(e−iθρ+ λ)n+ν−1 · e−iθ = fB(e
−iθρ) · e−iθ.(27)

Therefore the Laplace transform of Bf(ρ) is

(28)

∫ ∞

−λeiθ
e−rρfB(e

−iθρ) · e−iθdρ =

∫ e−iθ∞

−λ

e−xξfB(ξ)dξ

here, we chose the variable ξ = e−iθρ. Thus, we saw that the Borel resum-
mation can be extended to the complex variable naturally. The advantage of
the Borel resummation is a possibility of analyzing the function in the Borel
plane. Although the original function f(x) is a formal power series, its Borel
transform fB(ξ) can be an analytic function, so we can obtain the analytic
information from it. Before we see them, we prepare a proposition for the
relation of the difference operator and the Borel transform.
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Proposition 14. Let f(x) be a formal power series of the form (21) satis-
fying the condition (23). Then σf(x) satisfies the condition (23) again, and
B(σ(f))(ξ) = e−ξfB(ξ) holds.

Proof. First of all, we confirm the action of σ to a formal power series, and
later, we prove that σ holds the condition (23). The difference operator σ
acts naturally to the monomial x−n−ν as

(29) σ : x−n−ν 7→ x−n−ν

∞∑
k=0

(−1)k(n+ ν)k
k!

x−k.

Then we find the relation

(30) σ

(
eλxx−nu

∞∑
n=0

fnx
−n

)
= eλxx−ν

∞∑
n=0

∞∑
k=0

(−1)keλ(n+ ν)k
k!

x−n−k.

Hence we get by confirming the Borel transform of this power series

B(σf)(ξ) =
∞∑
n=0

∞∑
k=0

(−1)keλ(n+ ν)k
k!Γ(n+ k + ν)

(ξ + λ)n+k+ν−1(31)

= eλ
∞∑
k=0

(−1)k

k!
(ξ + λ)k ·

∞∑
n=0

fn
Γ(n+ ν)

(ξ + λ)n+ν−1(32)

= eλe−ξ−λBf(ξ).(33)

Thus we get B(σf)(ξ) = e−ξfB(ξ). Now it is clear that σ holds the condition
(23) because (ξ+λ)1−νe−ξfB(ξ) is a convergent power series at ξ = −λ, when
f(x) satisfies the condition (23).

In the same way, we can prove the relation B(x · f)(ξ) = ∂ξfB(ξ), where
∂ξ =

d
dξ
.

Proposition 15. Let f(x) be a formal power series of the form (21). Assume
that f satisfies the condition (23). Then the following holds.

(34) B(x · f)(ξ) = ∂ξfB(ξ).
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Proof. Let us see the left-hand side of the equation (34). We find

B(x · f)(ξ) = B(eλxx−ν+1

∞∑
n=0

fnx
−n)

=
∞∑
n=0

fn
Γ(n+ ν − 1)

(ξ + λ)n+ν−2

=
∞∑
n=0

fn
Γ(n+ ν)

(n+ ν − 1)(ξ + λ)n+ν−2

= ∂ξBf(ξ).

We immediately get the following proposition about the solution of the
linear difference equation.

Proposition 16. Let the formal power series (21) satisfies formally the lin-
ear difference equation

(35) Lf(x) =
N∑
j=0

aj(x)σ
jf(x) = 0.

Assume that L satisfies the condition denoted in Definition 7, and the char-
acteristic polynomial D does not have any multiple root. Then fB(ξ), the
Borel transform of the formal power series, satisfies the differential equation

(36)
N∑
j=0

aj(∂ξ)e
−jξfB(ξ) =

N∑
j=0

e−jξaj(∂ξ − j)fB(x) = 0.

Furthermore, f(x) satisfies the condition (23).

Proof. It is obvious that the Borel transform of the formal solution of (35)
satisfies the differential equation (36) from the Propositions 14 and 15. Now,
the formal power series fB(ξ) has a singular point ξ = −λ. From the general
theory of meromorphic differential equations, −λ is limited to the singu-
lar points of the differential equation, and if the singular point is a regular
singular point, the formal power series solutions of the differential equation
converge. The singular points of the differential equation is the zero point of

17



the coefficient of the highest order differential term. By following the nota-
tion of the Definition 7 in the previous section, the coefficient of the highest
order differential term is

N∑
j=0

e−jξaj,M = D(e−ξ).

Therefore, there exists a deterministic root λk such that eλ = λk. Because D
does not have any multiple root, the point ξ = λ = − log λk is a regular singu-
lar point. At that regular singular point, we can calculate the characteristic
exponents of the differential equation. They are

0, 1, . . . ,M − 2, νk − 1.

Hence, the Borel transform of the formal solution of the difference equation
correspond to the convergent power series solution of (36). Consequently, we
get the estimate

∃A, C > 0 ,∀n ∈ N,
∣∣∣∣ fn
Γ(n+ ν)

∣∣∣∣ ≤ ACn.

After that, by changing A,C slightly greater, we get (23).

We call the equation (36) the Borel transform of the difference equation
(35). In the next subsection, we apply this proposition to the simple dif-
ference equation which is obtained from the Gauss’ hypergeometric function

2F1(α, β, γ; x).

3.2 A simple example of a difference equation and the
Stokes phenomenon

The hypergeometric differential equation has shift operators which adds ±1
to the parameter α, β or γ, for example, x d

dx
+α = ϑ+α acts to the Riemann

scheme as follows: 
x = 0 1 ∞
0 0 α

1− γ γ − α− β β


7→


0 1 ∞
0 0 α + 1

1− γ γ − (α + 1)− β β

 .
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We can interpret this fact in an aspect of operators. Let L be the differential
operator

L = x(ϑ+ α)(ϑ+ β)− ϑ(ϑ+ γ − 1).

We call this operator the hypergeometric differential operator in this text.
Then, the following conjugate transform holds;

(ϑ+ α)L(ϑ+ α)−1 = [x(ϑ+ α + 1)(ϑ+ α)(ϑ+ β)

−ϑ(ϑ+ γ − 1)(ϑ+ α)](ϑ+ α)−1

= x(ϑ+ α + 1)(ϑ+ β)− ϑ(ϑ+ γ − 1).

Thus, we see the action of operator (ϑ + α) to the space of solutions is
denoted as the changing of the Riemann scheme above. In this time, we
examine this operator to the hypergeometric series. The hypergeometric
series 2F1(α, β, γ;x) =

∑∞
n=0

(α)n(β)n
(γ)nn!

xn satisfies the next relation

(37)
ϑ+ α

α
·

∞∑
n=0

(α)n(β)n
(γ)nn!

xn =
∞∑
n=0

(α + 1)n(β)n
(γ)nn!

xn.

Therefore, by setting the difference operator σ = ϑ+α
α

and σ2 = (ϑ+α+1)(ϑ+α)
(α+1)α

,

and dividing the differential operator L by σ2 first, and then by σ, we get
the next difference equation about the hypergeometric series.

[(1− x)(α + 1)σ2 + {(x− 2)(α + 1) + γ − βx}σ(38)

+α + 1− γ]f(α) = 0.(39)

Remark 17. We usually introduce a raising operator and lowering operator
for a solution of the differential equation and make a recurrence equation
in the elementally quantum mechanics, however, the method for making a
difference equation denoted in the above context doesn’t need to introduce a
lowering operator. In fact, these two methods are different essentially. The
former method acts only to the subspace of the solutions’ space, but the latter
acts for all over the space of the solutions. See the Hermitian differential
equation for example.

We analyze this difference equation about the independent variable α. We
give formal power series solutions of the form (21) and see that the Stokes
phenomenon occurs. The characteristic polynomial is calculated as

D(eλ) = (1− x)e2λ + (x− 2)eλ + 1(40)

= (1− x)(eλ − 1)(eλ − 1

1− x
)(41)
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therefore the deterministic roots are determined as eλ = 1, 1
1−x

. The charac-
teristic exponent of L related to the deterministic roots 1 is

ν1 =
(1− x) + (x− 2) + γ − βx+ 1− γ

2(1− x) + (x− 2)

=
−βx

−x
= β.

In the same way, the characteristic exponent of L related to the deterministic
roots 1

1−x
is calculated as follows:

ν2 =

(
1

1−x

)2
(1− x) + 1

1−x
(x− 2 + γ − βx) + 1− γ

2( 1
1−x

)2(1− x) + 1
1−x

(x− 2)

=
1 + (x− 2 + γ − βx) + (1− γ)(1− x)

2 + (x− 2)
=

(γ − β)x

x
= γ − β.

Thus we conclude that there are two solutions f 1 and f 2 denoted as follows.

f 1(α) = α−β(1 + · · · ),(42)

f 2(α) = (
1

1− x
)ααβ−γ(1 + · · · )(43)

where · · · means formal power series of x−1, starting with (constant)× x−1,
which is determined uniquely. The Borel transform of these power series are

f 1
B(ξ) = ξβ−1(1 + · · · ),(44)

f 2
B(ξ) = (ξ − log(1− x))γ−β−1(1 + · · · ).(45)

We verify that the function f 1
B(ξ) and f 2

B(ξ) are local solutions of the differ-
ential equation (36) around the regular singular points. The Borel transform
of the difference equation (38) is following.

[(1− x)(∂ξ + 1)e−2ξ + {(x− 2)(∂ξ + 1) + γ − βx}e−ξ + ∂ξ + 1− γ]fB(ξ)

= [D(e−ξ)∂ξ + {−(1− x)e−2ξ + (γ − βx)e−ξ + 1− γ}]fB(ξ) = 0.

In this equation, we used a notation D(e−ξ) = ((1 − x)e−ξ − 1)(e−ξ − 1).
This differential equation is a first order linear differential equation because
the difference equation’s coefficients are all first-degree polynomials. We can
solve this equation by separating variable method. We get

(46) fB(ξ) = exp

(∫
(1− x)e−2ξ − (γ − βx)e−ξ + γ − 1

((1− x)e−ξ − 1)(e−ξ − 1)
dξ

)
.
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Here, the integral included in exp ·, is calculated by substitution e−ξ = Y ,
dξ = −dY/Y , and we obtain

fB(ξ) = exp

(
−
∫

(1− x)Y 2 − (γ − βx)Y + γ − 1

Y {(1− x)Y − 1}(Y − 1)
dY

)
= (Const) · Y 1−γ(Y − 1)β−1(Y − 1

1− x
)γ−β−1

= (Const) · e(γ−1)ξ(e−ξ − 1)β−1(e−ξ − 1

1− x
)γ−β−1.

It is clear that the singular points of this function are located at ξ = 2πiZ
and ξ = log(1− x) + 2πiZ. Taking a series expansion around there, we find

(47) e(γ−1)ξ(e−ξ − 1)β−1(e−ξ − 1

1− x
)γ−β−1 = (−1)β−1

(
−x

1− x

)γ−β−1

f 1
B(ξ)

around ξ = 0, and

(48) e(γ−1)ξ(e−ξ − 1)β−1(e−ξ − 1

1− x
)γ−β−1 = (−1)γ−β−1(1− x)−1xβ−1f 2

B(ξ)

around ξ = log(1−x). Hence we got the relation of the difference equation’s
formal power series solutions and the solutions of the differential equation
which is obtained by the Borel transform. We consider the Borel resumma-
tion of f1 and f2.

F1(α) = L ◦ B(f1)(α) =
∫ ∞

0

e−αξf 1
B(ξ)dξ

F2(α) = L ◦ B(f2)(α) =
∫ ∞

log(1−x)

e−αξf 2
B(ξ)dξ.

We analyze these functions as an example of the Stokes phenomena. Because
the monodromy of the Gauss’ hypergeometric equation is known, we analyze
F1 and F2 with respect to the parameter x, for instance, we consider the case
that the parameter x turn around the point x = 0 or x = 1. The move of the
parameter x corresponds the move of the initial point of the Laplace integral
in (44). We assume α is a positive real number for simplicity.
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x

x-plane

0

ξ-plane

1
⇐⇒

log(1-x)

0

Figure 3: Movements of x.

log(1-x)

0 0

log(1-x)

Figure 4: The path bifurcation.

In the loop (Figure 3), we assume that x is in the 4th quadrant at the
beginning, and it goes around counterclockwisely the point ξ = 0. Then, the
integral interval of F2(α), [log(1 − x),∞], moves parallel. When the initial
point log(1−x) approaches to the line Im ξ = 0, the integral path is devided
into two curves, because f 2

B(ξ) has branch point at ξ = 0. One curve C1 is the
line with the interval [log(1− x) ,∞], and another curve C2 is a curve which
comes from ∞, rotate the point ξ = 0 and goes toward ∞ again (Figure 2).

Thus, continuing F2(α) analytically across the line Im ξ = 0, we find that
discontinuous analytic continuation occurs.

(49)

∫ ∞

log(1−x)

e−αξf 2
B(ξ)dξ 7→

∫
C1

e−αξf 2
B(ξ)dξ +

∫
C2

e−αξf 2
B(ξ)dξ

From the relation (47) and (48), we get

(50) f 2
B(ξ) = (−1)β−1(1− x)β−γ+2xγ−2βf 1

B(ξ)
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and the relation (49) turns out to be following

(51) F2(α) 7→ F2(α) + 2i sin(π(β − 1))(1− x)β−γ+2xγ−2βF1(α).

We call a phenomenon occurring discontinuous analytic continuation, the
Stokes phenomenon. The non-trivial coefficients like 2i sin(π(β − 1))(1 −
x)β−γ+2xγ−2β in (51), is called Stokes multipliers. In the same way, we can
verify that the Stokes phenomenon occurs when the point log(1−x) across the
interval (0 , +∞). In this case, the non-trivial term appears to the function
F1(α) as follows.

(52) F1(α) 7→ F1(α)+2i(−1)γ−2β sin(π(γ−β−1))(1−x)−β+γ−2x−γ+2βF2(α).

As a result, we find the (local) monodromy of the difference equation’s solu-
tions, with respect to the behavior of the parameter x. Namely, by the move
of x, x rotates near the point 0, the functions ⟨F1, F2⟩ changes linearly

⟨F1(α), F2(α)⟩ 7→ ⟨F1(α), F2(α)⟩A

where the elements of the matrix A ∈ M2 doesn’t depend on the independent
variable α,

A =

(
1 A1,2

A2,1 A2,2

)
.

Here, we denoted Ai,j

A1,2 = 2i sin(π(β − 1))(1− x)β−γ+2xγ−2β,

A2,1 = 2i(−1)γ−2β sin(π(γ − β − 1))(1− x)γ−β−2x2β−γ,

A2,2 = −4sin(π(β − 1)) sin(π(γ − β − 1)) + 1.

Remark 18. In this discussion, we held the formal solutions f 1(α) and f 2(α)
to the form which the coefficients of the leading term is 1 so the Stokes coeffi-
cients are not simple. We may have an exchange of the basis of the solutions’
space, f 2(α) = (1 − x)β−γ+2xγ−2β f̃ 2(α), then we find that the Stokes multi-
plier does not include the parameter x. Then the monodromy is calculated by
using only the sin and exp function of the parameter β and γ.
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Remark 19. Although we calculated the monodromy of the function when
the parameter x goes around the point x = 0, we can get the monodromy
of the case x rotates the point x = 1 in the same way (see Figure 3). It
is rather easy to discuss, because the circle rounding only the singular point
x = 1 correspond to the changes of integral path in the Borel plane parallel for
upper(see the figure 5). Therefore we should calculate one Stokes multiplier
to clarify the monodromy. By incorporating these affairs, we can construct
the global monodromy of the hypergeometric functions from the view point of
the Stokes phenomena of the difference equation. Indeed, the hypergeometric
difference equation includes an important information of the hypergeometric
differential equation. The author loves this harmony of functional equations.

Figure 5: x goes around 1.

In summary, we obtained the Stokes multipliers of the difference equa-
tion of the hypergeometric functions about the variable α, by investigating
the Borel transform of the formal power series solutions. What we used for
calculating the Stokes multipliers are, the deterministic roots of the differ-
ence equation, the characteristic exponents of it, and finally, the connection
formula (50) of the solutions of the differential equation. Although the con-
nection formula does not seem important because the differential equation is
first order so the formula is trivial, but in general, the connection formula is
quite important; almost all differential equations’ connection formulae is not
trivial, or can’t be calculated easily. Also, we should consider that the differ-
ential equation which is transformed from the difference equation has infinite
number of regular singular points. We manage to transform the differential
equations to the case of finite number of the regular singular points in the
next section, and show how we get the Stokes multipliers of the solutions of
the difference equations.
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4 Mellin transform and Stokes phenomena.

In the previous section, the Borel resummation (or we may say that the Borel
Laplace analysis) turned out to be useful to calculate the Stokes multipliers
which denote the global characters of the equations. However, in the method
of the Borel transform, there is a problem that the number of singular points
is infinite. To dispose this problem, we introduce a change of the independent
variable. In the Borel plane, the description of the Stokes phenomena is quite
simple, but in the another variable, the connection formulae becomes simple.
We mix these analytic aspects and get the Stokes multipliers in some cases
corresponds to the rigid cases. On the process of these analysis, we reveal
the important parameters of the difference equations which are not clarified
in the section 2, namely, we get the parameters which are not obtained from
the analysis of the formal power series solutions.

4.1 The inverse Mellin transform

In this subsection, we change the variable of the differential equations intro-
duced by the Borel transformation of the difference equation. Let L be a
difference operator of which deterministic roots differ from each other, and
we assume that the deterministic polynomial of L have N roots which are
not 0. We consider the difference equation

(53) Lf(x) =
N∑
j=0

aj(x)σ
jf(x) = 0.

The Borel transform of this difference equation is the following.

N∑
j=0

aj(∂ξ)e
−jξfB(ξ) = 0.

We mentioned that this equation has infinitely many singular points.
However, by exchanging the variable ξ to the variable Y = e−ξ, we get the
differential equation

(54)
N∑
j=0

aj(−ϑY )Y
j f̂B(Y ) =

N∑
j=0

Y jaj(−ϑY − j)f̂B(Y ) = 0

25



where ϑY = Y d
dY

. This equation has finitely many singular points, be-
cause its coefficients are polynomials. We call this differential equation the
inverse Mellin transform of the difference equation. Remember that aj(x)

was written as aj(x) =
∑lj

l=0 aj ,lx
l in section 1. We defined M as the maxi-

mal degree of {aj(x)}: M = maxj deg aj(x) = deg a0(x) = deg aN(x). Then,
the differential equation (54) is written as follows:

(55)
N∑
j=0

lj∑
l=0

Y jaj ,l(−1)l(ϑ+ j)lf̂B(Y ) = 0.

Let us confirm the coefficients of the highest order term of the differential
operator. The following relation is clear.

ϑM
Y = Y M∂M

Y + (lower order operators).(56)

Therefore, the highest order term is

(57) Y M

N∑
j=0

Y jaj ,M(−1)M∂M
Y = (−1)MY MD(Y )∂M

Y .

Here, D indicates the characteristic polynomial of the difference equation
Lf(x) = 0. Namely, setting the roots of D(λ) = 0 to be λ = λ1, · · · , λN ,
we find that the singular points of the differential equaltion (54) is limited
to the points 0, {λj}Nj=0, and ∞ at most. In fact, these singular points are
turned out to be regular singular points at most.

Proposition 20. Let L be a difference operator satisfying the condition of
Definition 7, and assume that its deterministic roots λ1, λ2, · · · , λN are differ
from each other. Then, differential equation (54) constructed as above has at
most N + 2 regular singular points.

Proof. It is obvious that λj becomes the regular singular point, because the
coefficient of the highest order is factorized as Y MΠN

j=0(λ−λj)×Const. We
prove that Y = 0 and Y = ∞ are the regular singular points. Let us pay
attention to the equation (54) and confirm the assumption that the degree
of the coefficient a0 is M . Then, by Proposition 5, we find that the point
Y = 0 is at most a regular singular point. In the same manner, we find that
Y = ∞ is at most a regular singular point.
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In short, we saw that the difference equation was transformed to the
differential equation of a Fuchsian type. To see that equation more precisely,
we calculate its characteristic exponents, and give the generalized Riemann
scheme of it. Before we define a generalized Riemann scheme, we define the
generalized characteristic exponents.

Definition 21. Let P be a differential operator P = bn(x)∂
n
x+bn−1(x)∂

n−1
x +

· · ·+ b0(x), where {bj(x)} are polynomials. Assume that the operator P has
a regular singularity at the point x = 0, and bn(x) satisfies the condition

bn(0) = b′n(0) = · · · = b
(n−1)
n (0) = 0, b

(n)
n (0) ̸= 0. Furthermore, we assume

that there exists a positive integer k and differential operator R, of which
coefficients are all holomorphic at x = 0, and P is written as P = xkR (of
course k is smaller than n, because P has a regular singularity at x = 0). We
also assume that k is the maximal integer satisfying such a condition. Then,
we call P has a generalized characteristic exponents [0]k at the point x = 0.

If the operator P has a generalized characteristic exponents at x = 0,
then P has characteristic exponents 0, 1, · · · , k − 1. In the same way, if the
operator P satisfies the condition x−νPxν = xkR, R is holomorphic operator
at x = 0, then we call the operator P has generalized exponents [ν]k at
x = 0. We limited to the regular singular point x = 0 in this arguments,
but we can generalize to the regular singular point x = x0 ∈ C, because
we can exchange the independent variable x to x̃ = x − x0. Moreover, we
may argue about the regular singular point ∞ because we can exchange
the variable w = 1/x. Thus, we finished the definition of the generalized
exponents in P1. The generalized characteristic exponents correspond to the
characteristic exponents if k = 1, so we regard the characteristic exponent
as the generalized one in such occasion, and denote [λ]1 = λ for simplifying.
Now, we define the generalized Riemann scheme.

Definition 22. Let the Fuchsian differential operator P has regular sin-
gular points x1, x2, · · · , xm ∈ P1. We assume that P has the generalized
characteristic exponents [ν

(j)
1 ]

n
(j)
1
, · · · , [ν(j)

l ]nlj
(j) at x = xj, and also assume

n
(j)
1 + · · · + n

(j)
lj

= n for any j = 1, · · · ,m. We define the generalized Rie-
mann scheme as the table of the singular points and generalized exponents
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corresponding to them, denoted as follows.

x = x1 · · · x = xm[
ν
(1)
1

]
n
(1)
1

· · ·
[
ν
(m)
1

]
n
(m)
1

...
...[

ν
(1)
l1

]
n
(1)
l1

· · ·
[
ν
(m)
lm

]
n
(m)
lm


.(58)

Remark 23. In Proposition 6, we assumed that the characteristic exponents
are satisfying the generic condition νl,j − νl,k ̸∈ Z for simplify the prob-
lem. In general, if the characteristic exponents don’t satisfy the generic
condition, then, the local solution of the equation includes a logarithmic
term. However, if the operator P has the generalized characteristic exponents
[ν

(j)
1 ]

n
(j)
1
, · · · , [ν(j)

l ]nlj
(j) at x = xj, and ν

(j)
i − ν

(j)
k ̸∈ Z, then the local solutions

are written in the form of the power series only. This means that the local
monodromy matrix of the singular point xj is diagonalizable (semi-simple).

Remark 24. It is important to reveal the generalized Riemann scheme of
the Fuchsian differential equation, because we can specify the equation rigid
or not rigid from m set of partition of n, n

(1)
1 , . . . , n

(1)
l1
; . . . ;n

(m)
1 , . . . , n

(m)
lm

.

Let us see the generalized Riemann scheme of the equation (54). Seeing
the relation (57), we conclude that the regular singular point Y = λk has
the generalized exponents [0]M−1. This is because the deterministic roots
are differ from each other. Another characteristic exponent is calculated by
following manner. Pay attention only to the highest order term and the
second highest order terms, because lower order terms do not affect to the
nontrivial characteristic exponents. The operator (56) is refined as ϑM

Y =

Y M∂M
Y + M(M−1)

2
Y M−1∂M−1

Y + · · · . Therefore we find (55) is

[
(−1)MD(Y )

{
Y M∂M

Y +
M(M − 1)

2
Y M−1∂M−1

Y + · · ·
}

+(−1)M(
M∑
j=0

jMaj,MY j)Y M−1∂M−1
Y

+(−1)M−1(
M∑
j=0

aj,M−1Y
j)Y M−1∂M−1

Y + · · ·

]
f̂B(Y ) = 0
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The characteristic exponent s of this equation at the regular singular
point Y = λk satisfies

λkD
′(λk)s(s− 1) · · · (s−M + 1) +MλkD

′(λk)s(s− 1) · · · (s−M + 2)

−
M∑
j=0

aj,M−1λ
j
ks(s− 1) · · · (s−M + 2) = 0.

Indeed, we get s = 0, 1, · · · ,M − 2,
∑M

j=0 aj,M−1λ
j
k

λkD′(λk)
− 1. Remember the def-

inition of the characteristic exponents of the difference equations mentioned
in Definition 9, then, the nontrivial exponent is written as s = νk − 1. Thus,
we conclude that the generalized Riemann scheme of the equation (54) is


Y = 0 Y = λ1 · · · Y = λN Y = ∞
−ν0, 1 [0]M−1 · · · [0]M−1 ν∞, 1 +N

...
...

−ν0,M ν1 − 1 · · · νN − 1 ν∞,M +N

 .(59)

Here, {ν0,l} are roots of a0(x) = 0, and {ν∞, l} are roots of aN(x) = 0.
The characteristic exponents at Y = 0 and Y = ∞ are not become

known to the generalized characteristic exponents by themselves. To reveal
that they are generalized one or not, we prepare a lemma.

Lemma 25. The differential operator of M-th order P =
∑∞

l=0 x
lpl(ϑ) has

generalized characteristic exponents [ν]k at the point x = 0 if and only if the
polynomial pl(s) has a form

(60) pl(s) = ql(s)
k−l∏
m=0

(ϑ− ν −m)

and k is a maximal integer that P is written as above.

We can import this fact to the difference equation simply. We set the
difference equation L =

∑N
j=0 aj(x)σ

j satisfying the condition mentioned in
Definition 4. Then the proof of the next proposition is clear.

Proposition 26. Suppose that the coefficients {aj(x)} are factorized to the
form aj(x) = qj(x)

∏n−j
l=0 (x + ν + l), and q0(−ν) ̸= 0. Then the Mellin

transform of the equation Lf(x) = 0 has a generalized characteristic exponent
[ν]n at Y = 0.
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Example 27. We see the difference equation obtained from the hypergeo-
metric series 4F3(a1, a2, a3, a4; b1, b2, b3;x), about the main variable a1. The
function 4F3 has the shift operator σ = 1

α
(ϑ + α) : 4F3(a1) 7→ 4F3(a1 + 1).

Therefore we get σk =
∏k−1

j=0
1

α+j
(ϑ+ α + j). To get the difference equation,

we divide the differential operator P4,

P4 = x(ϑ+a1)(ϑ+ a2)(ϑ+ a3)(ϑ+ a4)− (ϑ+ b1− 1)(ϑ+ b2− 1)(ϑ+ b3− 1)ϑ,

by difference operators. Let L[K], K = 0, . . . , 4 be differential operators
obtained by following algorithm.

L[0] = P4.(61)

for K = 1, . . . , 4, there exist a unique polynomial Q[K − 1] and a unique
differential operator L[K] of which order is 4−K, such that

L[K − 1] = Q[K − 1]σ5−K + L[K],(62)

(63) R = L[4].

This algorithm gives us the representation of P4 by using difference operators

(64) L = P4 =
3∑

K=0

Q[K]σ4−K +R.

The difference operator obtained by this algorithm, has the following form,
4-th order difference operator with its coefficients are polynomials of degree
4.
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L =

a1[(x− 1)(a1 + 1)(a1 + 2)(a1 + 3)σ4

−(a1 + 1)(a1 + 2){(3a1 − a2 − a3 − a4 + 6)x+ b1 + b2 + b3 − 4a1 − 9}σ3

+(a1 + 1){(3a21 + (−2a2 − 2a3 − 2a4 + 9)a1

+(a3 + a4 − 3)a2 + (a4 − 3)a3 − 3a4 + 7)x

+(−b2 − b3 + 3a1 + 5)b1 + (−b3 + 3a1 + 5)b2

+(3a1 + 5)b3 − 6a21 − 21a1 − 19}σ2

−(a31 + (−a2 − a3 − a4 + 3)a21
+((a3 + a4 − 2)a2 + (a4 − 2)a3 − 2a4 + 3)a1

+((−a4 + 1)a3 + a4 − 1)a2 + (a4 − 1)a3 − a4 + 1)x+ ((b3 − 2a1 − 2)b2

+(−2a1 − 2)b3 + 3a21 + 7a1 + 4)b1 + ((−2a1 − 2)b3 + 3a21 + 7a1 + 4)b2

+(3a21 + 7a1 + 4)b3 − 4a31 − 15a21 − 19a1 − 8, 1]σ

+(b3 − a1 − 1)(b2 − a1 − 1)(b1 − a1 − 1)].

Infact, this operator can be divided by a1, so the essential operator be-
comes L/a1, 4-th order, degree 3 operator. This shows that the inverse Mellin
transform of L/a1 has generalized characteristic exponents [1]3 at Y = ∞
and characteristic exponents {1 − b1, 1 − b2, 1 − b3} at Y = 0. The other
singular points’ characteristic exponents are difficult to calculate, but we get
{a2, a3, a4} at Y = 1, and {[0]2, a2+a3+a4−b1−b2−b3−1} at Y = 1

1−x
. For

the better understanding of this facts, we suggest the program code written
in the calculating language Risa/Asir in the Appendix. In summary, the
inverse Mellin transform of the hypergeometric difference equation obtained
from 4F3(a1, a2, a3, a4; b1, b2, b3;x) has a Riemann scheme

(65)


Y = 0 1 1

1−x
Y = ∞

1− b1 a2 − 1 [0]2 [1]3
1− b2 a3 − 1
1− b3 a4 − 1 ν 1

1−x


where ν 1

1−x
= b1 + b2 + b3 − a2 − a3 − a4 − 1. Of course, this Riemann

scheme satisfies the Fuchs relation. In generic case, this type of differential
equation is reduced to the hypergeometric equation P3f = 0 by using Möbius
transformation.
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Indeed, for clarifying the generalized Riemann scheme of the Mellin trans-
form of a difference equation, it is important seeing the information of roots
of coefficients. In this subsection, we saw that the Mellin transform of the
difference equation becomes a Fuchsian differential equation, and we clari-
fied the relation between the information of the difference equation and the
differential equation’s generalized Riemann scheme. In the next subsection,
we show how we can calculate the Stokes multipliers of difference equations
by using these information obtained in this subsection.

4.2 The Stokes phenomena

We saw the structure of differential equations which is transformed from
difference equations by the inverse Mellin transformation. In this subsection,
we look over how we can calculate the Stokes phenomena of the difference
equation. In the case there is 1 or 2 deterministic roots, we investigate
a connection of the solutions of the difference equation from ∞ and −∞.
The case that there is only one deterministic root, includes the difference
equation of the beta function. The case the number of deterministic roots is
2, includes the difference equation of the (general) hypergeometric functions.
The specific calculus of each equation’s connection will be appear in the
next subsection. We confirm the relation between the connection of the
solutions of two differential equations. One is the equation which is obtained
by the inverse Mellin transformation. The other one is the equation which is
obtained by the Borel transformation. The connection matrix is defined as
follows. Assume we have a basis of solutions ⟨f1, f2, · · · , fM⟩ at ξ = ξ0, and
⟨f̃1, f̃2, · · · , f̃M⟩ at ξ = ξ1, they can be connected each other along the path
γ. We are considering the solutions of a linear differential equation, so that
the relations of them are represented by a matrix C ∈ GLM(C). We call this
matrix a connection matrix along the path γ. In this subsection, we assume
that

(66) ∀j, ∀k, j ̸= k =⇒ arg(λj) ̸= arg(λk), |λj| ̸= |λk|.

And we arrange the index j of the deterministic roots by following rules.

(67) |λ1| > |λ2| > · · · > |λN |,

for simplicity.
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The inverse Mellin transformation of difference equation was defined as
the differential equation, which is obtained from the Borel transformed equa-
tion by changing variable Y = e−ξ. We associate the connecting path in the
inverse Mellin plane(the Y -plane) with the connecting path in the Borel
plane(the ξ-plane). In the inverse Mellin plane, the equation has N +2 regu-
lar singular points 0, λ1, · · · , λN ,∞. We set the path γj in the inverse Mellin
plane, which is a loop starting from near the point Y = λj, goes around coun-
terclockwise along the circle |Y | = λj until the path getting near the point
Y = λj again, and rotate clockwisely avoiding λj, to the starting point. We
denote the connection matrix of the fundamental solutions along the path γj
as Cj(0), j(1) . This connection corresponds to a connection in the Borel plane,
of the path from − log λj to − log λj − 2πi, as in the following figure.

start and goal

Figure 6: Connection from −logλj to −logλj − 2πi

The connection matrix Cj(0),j(1) is written by using the connection matrix
Cl, 0 which is the connection matrix from the singular point λl to 0 in the
Mellin plane, and the local monodromy matrix M0, Ml, l ≥ j + 1. For the
index l > j, we prepare the permutation as follows:

sj(l) = #{k ∈ {j + 1, . . . , N}| arg(λj) ≤ Aj(λk) ≤ Aj(λl)}+ j.(68)

Here, we denoted Aj

Aj(λk) =

{
arg(λk) (arg(λk) > arg(λj)),
arg(λk) + 2π (arg(λk) ≤ arg(λj)).

(69)

The map s is a permutation of the set {j+1, . . . , N}. For example, when
{λ1, . . . , λ5} locates as following figure 7, we get s1 is

(70) (s1(2), s1(3), s1(4), s1(5)) = (3, 5, 4, 2).
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We denote t as the inverse permutation of s, that is, t(s(k)) = k.

Figure 7: 5-singular points

In such an assumption, the connection matrix Cj(0),j(1) is written as

Cj(0),j(1) = C−1
j, 0M0(Tt(N)) · (Tt(N−1)) · · · (Tt(j+1))Cj, 0.(71)

Where we set Tl = Cl, 0MlC
−1
l, 0 for simplicity, i.e. Tl is the connection matrix

which corresponds to the loop from 0, goes around the point λl, and return
to the point 0. Indeed, the connection Cj(0), j(1) is described by the connection
between the regular singular points of the inverse Mellin plane. We define the
connection from − log λj−2πik to − log λj−2πil as Cj(k), j(l) = (Cj(0), j(1))

l−k.
The connection from − log λj to − log λj+1 in the Borel plane is equal to
the connection λj to λj+1 in the inverse Mellin plane (if 0 < Im(− log λj +
log λj+1) ≤ π then rotate counterclockwisely, and else if π < Im(− log λj +
log λj+1) < 2π then rotate clockwisely). This connection is also calculated
by using the connections in the inverse Mellin plane, in terms of Cl,0 and Tl.
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Figure 8: The connection path and matrices.

More generally, we define Cj(m), k(n) as the connection matrix which rep-
resent the analytic continuation of the basis of the solutions from − log λj −
2πim to − log λk−2πin, as below. Take a line segment from − log λj −2πim
to − log λk − 2πin, when the singular point λj and λk satisfies an inequality
j < k. Calculate the intersection point pl of this line segment and the line
{ξ |Re ξ = − log λl} for l = j + 1, . . . , k − 1. Find an integer hl which is
the minimal integer satisfying the condition − log λl − 2πihl < pl for each l.
Then, we define Cj(m), k(n) as

Cj(m), k(n) = Ck−1(n),k(n)Ck−1(hk−1),k−1(n) · · ·M−1
j+2Cj+1(hj+2),j+2(hj+2)

×C
j+1(hj+1),j+1(hj+2)M

−1
j+1Cj(hj+1),j+1(hj+1)Cj(m),j(hj+1) .

In the case j > k, we need to define the connection the same way basically,
but we should be aware of the changes of sequenses.

Cj(m), k(n) = (Mk+1Ck+1(0),k+1(1))
n−hk+1 · · ·C

j−1(hj−2),j−2(hj−2)

×(Mj−2Cj−1(0),j−1(1))
hj−2,hj−1Mj−1Cj(hj−1),j−1(hj−1)(MjCj(0),j(1))

hj−1−m.

In short, we defined these connection matrix by using connections of singular
points and local monodromies of the inverse Mellin plane. In another words,
connections are completely written in the words of Fuchsian differential equa-
tions. Now, we show how the Stokes phenomena occur, and how we calculate
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the Stokes multiplier by using connection matrices. For simplicity, we con-
sider the situation that there are only two sequenses of singular points in the
Borel plane. In more general cases, we obtain the Stokes multipliers in similar
calculus. Assume that the singular points are denoted as ξ = a = − log λ1,
ξ = b = − log λ2. Then points ξ = a + 2πiZ and ξ = b + 2πiZ are also
singular points. By continuing the solutions analytically about the variable
x from arg x = 0 to arg x = θ < arg(b − a), the integral path of the Borel
ressumation of the formal solutions changes as in the following figure.

Figure 9: changes of paths when we rotate x

Then, we consider the case connecting them from arg x < arg(b − a) to
arg x > arg(b−a). We find that the path of integral passes across the singular
point ξ = b. Therefore we change the path from a to e−iθ∞ as follows. Let
the path be deformed avoiding the point ξ = b, go along the left hand side
of it, and enclose the singular point. Extend the superfluous path to e−iθ∞.
Then the path which starts from the point a, becomes devided into two paths
(see Figure 10).

Figure 10: the path devided into two

The problem is how we calculate the connection. We now know that
the Borel transform of the formal solutions are connected from a to b. The
analytic continuation of Bfa is written as BfbC1(0),2(0) . The difference of the
integral between the upper path and the lower path, is denoted as M−1

2 − I,
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so that the connection formula is

(72) Fa(x) 7→ Fa(x) + Fb(x)(M
−1
k − I)Cj(0), k(0) .

Therefore, we get the following proposition by considering in the same way
to the above calculus.

Proposition 28. Let L be a difference operator of which inverse Mellin
transformation is a Fuchsian differential operator. We consider a connection
of solutions from arg x = θ− to arg x = θ+. Assume that there exists only
one triple of integers (j, k, n) such that the path of Laplace integral {ξ =
− log λj + re−iθ|r ∈ [0, ∞)} pass across the point ξ = − log λk − 2πin, when
we connect θ from θ− to θ+. We note the Borel ressumation of e2πipxf j as
F

(p)
j . Then, the Stokes multipliers are denoted as follows.

F
(p)
l (x) → F

(p)
l (x) (l ̸= j, p ∈ Z),(73)

F
(p)
j (x) → F

(p)
j (x) + F

(n+p)
k

tek M̂kCj(m), k(n) ej.(74)

Here, we denoted ej as N × 1 matrix of which elements are

(ej)r,1 =

{
0 (r ̸= j),
1 (r = j),

and M̂k is

(75) M̂k =

{
M−1

k − I (j < k),
I −Mk (j > k).

By this proposition, we comfirmed that the Stokes phenomena of differ-
ence equation is calculated by the information of the inverse Mellin plane,
except for the connection from arg(x) = π

2
−0 → π

2
+0. Now, let us calculate

the connection.

Proposition 29. Let L be a difference operator which satisfies the condition
of the previous Proposition 28. Then the connection from arg(x) = π

2
− 0 →

π
2
+ 0 is

(76) F
(p)
j (x) → F

(p)
j (x) +

∞∑
n=1

F
(p+n)
j (x)tej(I −Mj)Cj(p),j(p+n)ej.
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This fact can be obtained from the results written in [5 section 2]. They
showed the proposition in some cases, different from this paper (they treated
the problem of Abelian equation in their sense, and it includes some difference
equations). Although, they did not consider the connection between the
singular points generally. The outline of the proof is included in Figure 11.

Figure 11: the connection from π
2
− 0 to π

2
+ 0

From these propositions, we can calculate the Stokes multipliers of differ-
ence equations in principle. Therefore, we obtain the main theorem.

Theorem 3. Let Lf(x) = 0 be a difference equation. Assume that the
inverse Mellin transformation of L, M−1L be a Fuchsian type differential
operator. If we have connection formulae between the singular points of the
differential equation M−1L(M−1f)(Y ) = 0, then the following holds.

1. The Stokes multipliers of the difference equation can be calculated by
using the connection formulae of the equation M−1L(M−1f)(Y ) = 0.

2. In particular, the connection of the solutions of the difference equation
can be calculated by using the Stokes multipliers which are obtained by
1. Especially, the connection is represented by Fourier series.

The connection is represented by Fourier series, because F
(p)
j = e2πipxF

(0)
j ,

so the equation (76) can be written as

(77) e2πipxF
(0)
j (x) → e2πipxF

(0)
j (x)tej(I −Mj)(1 +

∞∑
n=1

(e2πinx)(Cj(0),j(1))
n)ej.
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In particular, we calculate the connection formulae of the difference equa-
tions which have 1 or 2 deterministic roots. The case that there is only one
deterministic root is exactly the proposition 29, i.e., the equation (77) is the
formula of connection from∞ to −∞ (the angle which the Stokes phenomena
occur is only π

2
+ πZ).

Then, think about the connection problem of the case the number of
deterministic roots is 2. We take complex numbers a = − log λ1, and b =
− log λ2. Assume that Re a < Re b and Im a > Im b. We connect θ = arg(x)
0 to π

2
− 0, then we find

(78) F1(x) 7→ F1(x) + F2(x)(1 +
∞∑
s=1

e2πixs (te2)(M
−1
k − I)C1(0), 2(s)) e1.

Figure 12: the connection from 0 to π
2
− 0

And then, take θ to be π
2
+ 0. In this time, we can use Proposition 29.

(79) F
(0)
j (x) 7→ F

(0)
j (x)(1 +

∞∑
r=1

e2πixr (tej)(I −Mj)(Cj(0),j(1))
r) ej,

where j = 1, 2.
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Figure 13: the connection from π
2
− 0 toπ

2
+ 0

Finally, we take a connection of the argument of x from π
2
+ 0 to π, we

find the following relation by using Proposition 28:

(80) F
(0)
2 (x) → F

(0)
2 (x) + F

(0)
1

∞∑
n=1

e2πinx (te1) (I −M1)C2(0), 1(n) e2

From the connection relations (78), (79) and (80), we get a connection
from ∞ to −∞. Looking over these three connection relations, we have
the connection formulae of the difference equation with 1 or 2 deterministic
roots, in the form of rational function of e2πix. This result was suggested by
Birkhoff[1], but we get this from the view point of the Stokes phenomena of
difference equations, and obtained the coefficients of connection formulae by
using the connection coefficients of Fuchsian differential equations.

We apply these propositions to the cases of the beta-function and the hy-
pergeometric function, and see how we can calculate the connection formula
in details from ∞ to −∞ in next subsection.

4.3 Examples

We calculated the Stokes multipliers of the hypergeometric difference equa-
tion in subsection 3.2, though they are only one Stokes multipliers. To cal-
culate a connection formula of the difference equation from ∞ to −∞, we
should calculate infinitely many Stokes multipliers. The connection formula
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between ∞ to −∞ of the hypergeometric difference equation is a bit diffi-
cult to calculate. Therefore, we search for the connection formula of the beta
function first as the simplest example, and then the hypergeometric equation.

The beta-function B(x, y) = Γ(x)Γ(y)/Γ(x + y) satisfies the following
difference equation.

(81) (x+ y)B(x+ 1, y) = xB(x, y).

We regard the variable y as a parameter. This equation’s Mellin transform
is

(82) (−ϑt + y)tf̂(t) = −ϑtf̂(t),

and the Borel transform is

(83) (∂ξ + y)e−ξfB(ξ) = ∂ξfB(ξ).

We take a base of the space of solutions fB(ξ) = (1− e−ξ)y−1. The singular
points of the equation (82) are t = 1, ∞. The point t = 0 is a removable
singular point, because the roots of a0(x) = x has a root x = 0 only, and
this correspond to the characteristic exponents of t = 0 is 0. The equation
is rewritten as follows.

(84) (1− t)∂tf̂(t) = (1− y)f̂(t)

Therefore we find the characteristic exponent y − 1 at t = 1. The Riemann
scheme of this equation is

{
x = 0 1 ∞
0 y − 1 1− y

}
.(85)

This indicates the connection matrices (in this situation however, they
are 1 × 1 matrices) C1(0),1(j) = 1 because there is any singular point inside
of a circle |t| = 1 − 0, so that the connection along this circle is trivial.
Therefore, accepting the connection formula (79), we find

(86) F (x) 7→ F (x)

(
1 +

∞∑
r=1

e2πirx(1− e2πi(y−1))

)
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when we connect analytically the Borel resummation of the formal solution
from sector (0, π

2
) to (π

2
, π).

Figure 14: connection from θ = 0 to π in the case of beta function

Let us calculate the summation appeared in the right hand side of the
relation (86). If the variable x satisfies Imx > 0, then the series converges
uniformly on compact sets.

1 +
∞∑
r=1

e2πirx(1− e2πi(y−1)) = 1 + (1− e2πi(y−1))
e2πix

1− e2πix

=
1− e2πi(x+y)

1− e2πix
= eπiy

sinπ(x + y)

sin πx
= eπiy

Γ(x)Γ(1− x)

Γ(x+ y)Γ(1− x− y)
.

This sum is analytic at C\Z. On the other hand, the integral is represented
as ∫ e−πi∞

0

e−ξx(1− e−ξ)y−1dξ = −
∫ ∞

0

eξ
′x(1− eξ

′
)y−1dξ′

= −e−πi(y−1)

∫ ∞

0

e−ξ′(1−x−y)(1− e−ξ′)y−1dξ′

= e−πiyB(1− x− y, y)

= e−πiyΓ(1− x− y)Γ(y)

Γ(1− x)
.
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Therefore, we obtain the connection formula

F (x) =

∫ ∞

0

e−ξx(1− e−ξ)y−1dξ 7→ Γ(x)Γ(1− x)Γ(1− x− y)Γ(y)

Γ(x+ y)Γ(1− x− y)Γ(1− x)

=
Γ(x)Γ(y)

Γ(x+ y)
= B(x, y).

Namely, the beta function is connected as the identity. This identity is a
result of the Stokes phenomena, and of course it consistents with the identity
theorem.

Although the connection formula of the difference equation of the Beta
function was quite simple, the connection formulae of the hypergeometric
difference equation becomes more difficult to calculate, because the Mellin
transform of the difference equation has at most 4 singular points, and at
least 2 singular points. We now show the connection formulae of the hyper-
geometric difference equation by calculating the Stokes multipliers.

First of all, we see the Riemann scheme of the Mellin transformed hyper-
geometric difference equation. The hypergeometric difference equation was
the equation (38). Therefore, we get the Riemann scheme{

0 1 1
1−x

∞
1− γ β − 1 γ − β − 1 1

}
.(87)

The Mellin transform of the hypergeometric difference equation is

(88) [(Y − 1)((1− x)Y − 1)ϑY + (1− x)Y 2 + (βx− γ)Y + γ − 1]F (α) = 0.

In the previous subsection, we discussed about the connection formulae with
using the information of the Riemann scheme and connection formulae of
the differential equation. We remember the formal solutions of the difference
equation:

f 1(α) = α−β(1 + · · · ),

f̃ 2(α) = (1− x)γ−β+2x2β−γ(
1

1− x
)ααβ−γ(1 + · · · ).

We denote f 2 as f̃ 2 for simplicity. As in Remark 18, by setting the formal
solutions as above, the connection of the Borel transform of f 2 and f 1 from
ξ = log(1− x) to ξ = 0 in the Borel plane, becomes trivial :

Bf 2 7→ Bf 1.
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The local monodromies of the equation (88) is

M0 = e2πi(1−γ), M1 = e2πi(β−1),
M2 = e2πi(γ−β−1), M∞ = e2πi = 1.

We see the connection of the solutions in the Borel plane. In the Borel plane,
there exist singular points 2πiZ and log(1− x) + 2πiZ.

Figure 15: C1 and C2

Trivial connections are between the points −2πim and log(1−x)− 2πim
(m ∈ Z), so what we have to calculate is the connections between the points
0 and −2πi, and the points log(1− x) and log(1− x)− 2πi. Seeing a figure
16, we conclude that the connection C2 = C2(0),2(1) is

C2 = A−1M0A = M0 = e2πi(1−γ).

Figure 16: reduce of C2
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Here, we denoted A as the connection of the solution between the singular
points 1

1−x
and 0 in the Mellin plane. Infact, A is not important in this

argument, because the Mellin transform of the difference equation is a first
order differential equation : A commutes with M0. In the same way, we find
that C1 = C1(0),1(1) is following (see figure 17) :

C1 = B−1M0AM2A
−1B = M0M2 = e−2πiβ.

Figure 17: reduce of C1

In this way, we revealed the fundamental quantities for calculating the
connections.

M0 M1 M2 C1(0), 2(0) C1 C2

e2πi(1−γ) e2πi(β−1) e2πi(γ−β−1) 1 e−2πiβ e2πi(1−γ)

Table 1: connections between singular points and local monodromies

Now we calculate the connection formulae from arg(α) = 0 to arg(α) = π.
To calculate them, we devide discussion in 3 steps ; 1⃝ : arg(α) = 0 → π

2
−0,

2⃝ : arg(α) = π
2
− 0 → π

2
+ 0, and 3⃝ : arg(α) = π

2
+ 0 → π.

1⃝ : arg(α) = 0 → π
2
− 0.
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Seeing the equation (78), we find the connection from θ = 0 to π
2
− 0 is

F 1(α) 7→ F 1(α) + F 2(α)
∞∑
k=0

e2πikα(M−1
2 − 1)C1(0),2(k)

= F 1(α) + F 2(α)
∞∑
k=0

e2πikα(e−2πi(1−γ+β) − 1)e−2πiβk

= F 1(α) + F 2(α)
e−2πi(1−γ+β) − 1

1− e2πi(α−β)
,

and
F 2(α) 7→ F 2(α).

2⃝ : arg(α) = π
2
− 0 → π

2
+ 0.

The connection from π
2
− 0 to π

2
+ 0 is, by using (79),

F 1(α) 7→ F 1(α)(1 +
∞∑
j=1

e2πijα(1−M1)C
j
1)

= F 1(α)(1 + e2πi(α−β) 1− e2πi(β−1)

1− e2πi(α−β)
)

= F 1(α)
1− e2πi(α−1)

1− e2πi(α−β)
,

F 2(α) 7→ F 2(α)(1 +
∞∑
j=1

e2πijα(1−M2)C
j
2)

= F 2(α)(1 + e2πi(1−γ+α) 1− e2πi(γ−β−1)

1− e2πi(1−γ+α)
)

= F 2(α)
1− e2πi(α−β)

1− e2πi(1−γ+α)
.

3⃝ : arg(α) = π
2
+ 0 → π.

Finally, the connection from π
2
+ 0 to π is

F 1(α) 7→ F 1(α),

F 2(α) 7→ F 2(α) + F 1(α)(
∞∑
l=1

e2πilα(1−M1)C2(0),1(l))

= F 2(α) + F 1(α)e2πi(α−β) 1− e2πi(β−1)

1− e2πi(α−β)
.
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Combining these results, we get the connection formulae from θ = 0 to
θ = π as follows.

(F 1, F 2) 7→ (F 1, F 2)

(
1 e2πi(α−β)(1−e2πi(β−1))

1−e2πi(α−β)

0 1

)

×

(
1−e2πi(α−1)

1−e2πi(α−β) 0

0 1−e2πi(α−β)

1−e2πi(1−γ+α)

)
·
(

1 0
e−2πi(1−γ+β)−1
1−e2πi(α−β) 1

)
= (F 1, F 2)

(
A1,1 A1,2

A2,1 A2,2

)
(89)

where Ai,j are

A1,1 =
1− e2πi(α−1)

1− e2πi(α−β)
+

e2πi(α−β)(1− e2πi(β−1))(e2πi(γ−β−1) − 1)

(1− e2πi(α−β))(1− e2πi(α−γ+1))

A2,1 =
e2πi(γ−β−1) − 1

1− e2πi(α−γ+1)

A1,2 =
e2πi(α−β)(1− e2πi(β−1))

1− e2πi(α−γ+1)

A2,2 =
1− e2πi(α−β)

1− e2πi(α−γ+1)
.

We translate this result to the terms of hypergeometric functions. Let us
write down the functions F 1(α) and F 2(α) when the argument of α is 0 or π,
by using the hypergeometric function. Remember the integral representation
of the hypergeometric function.

(90) 2F1

(
α, β

γ
; x

)
=

Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− tx)−αdx.

The function F 1 is written as follows, when the argument of the variable
α is 0.

F 1(α) =

∫ ∞

0

(−1)1−β(
−x

1− x
)1−γ+βe(−α+γ−1)ξ

×(e−ξ − 1)β−1(e−ξ − 1

1− x
)γ−β−1dξ

=

∫ 1

0

x1−γ+βY α−γ(1− Y )β−1(1− (1− x)Y )γ−β−1dY

= x1−γ+βB(α− γ + 1, β)2F1

(
β − γ + 1, α− γ + 1

α+ β − γ + 1
; 1− x

)
.
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Here, we changed the variable e−ξ = Y . The function F 2(α) is written as

F 2(α) =

∫ ∞

log(1−x)

(−1)1+β−γ(1− x)γ−β−1xβ−γ+1

×e(−α+γ−1)ξ(e−ξ − 1)β−1(e−ξ − 1

1− x
)γ−β−1dξ

= (−1)β−1(1− x)γ−α+1xβ−γ+1B(α− γ + 1, γ − β)

×2F1

(
1− β, α− γ + 1

α− β + 1
;

1

1− x

)
,

by changing variable (1 − x)e−ξ = Y . In the same way, when the argument
of the variable α is π, F 1 and F 2 are written as follows.

F 1(α) =

∫ e−iπ∞

0

(−1)1−β(
−x

1− x
)1−γ+βe(−α+γ−1)ξ(e−ξ − 1)β−1

×(e−ξ − 1

1− x
)γ−β−1dξ

= (−1)2−β(
−x

1− x
)1−γ+β

∫ 1

0

Y −α(1− Y )β−1(1− 1

1− x
Y )γ−β−1dY

= (−1)2−β(
−x

1− x
)1−γ+βB(1− α, β)2F1

(
β − γ + 1, 1− α

β − α + 1
;

1

1− x

)
,

by replacing the variable eξ = Y . To take an integration by substitution
(1− x)eξ = Y , we have

F 2(α) =

∫ e−iπ∞

log(1−x)

(−1)1+β−γ(1− x)γ−β−1xβ−γ+1e(−α+γ−1)ξ

×(e−ξ − 1)β−1(e−ξ − 1

1− x
)γ−β−1dξ

= (−1)2+β−γ(1− x)γ−β−αxβ−γ+1B(1− α, γ − β)

×2F1

(
1− β , 1− α

1− α− β + γ
; 1− x

)
.

Combining these fact, we get formulae of the hypergeometric functions. For
example, connect F 2(α) analytically from the argument arg(α) = 0 to π, we
get
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Γ(1− β)Γ(1− α)

Γ(1− α− β + γ)
2F1

(
1− β , 1− α

1− α− β + γ
; 1− x

)
(91)

=
Γ(1− β)Γ(β − α)

Γ(γ − α)
(x− 1)β−1

2F1

(
1− β, α− γ + 1

α− β + 1
;

1

1− x

)
+
Γ(1− α)Γ(β − α)

Γ(γ − β)
(x− 1)α−1

2F1

(
β − γ + 1, 1− α

β − α + 1
;

1

1− x

)
.

This result is the Barnes’ connection formula[3, p152]. The important
fact is that we obtained this equation (91) by the analysis of the Stokes
phenomena of the difference equation.
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5 Appendix

In the Example 27., we didn’t give the detail of the calculus. In this Ap-
pendix, we give the calculating program of determining the hypergeometric
difference equation, written in Risa/Asir.

/* Program main.rr */

/* Hypergeometric differential operator P_4=L[0], where t is*/

/* a euler operator t=x\frac{d}{dx}. */

/* Following code, we may assume x and t is commute, though */

/* it’s not commute. After calculating, we back x to the */

/* front of the operator. */

L=newvect(4)$

L[0]=x*(t+a1)*(t+a2)*(t+a3)*(t+a4)

-(t+b1-1)*(t+b2-1)*(t+b3-1)*t$

/* D[K]=\prod_{j=0}^{3-K} (a_1+j) \sigma^{4-k+1} */

/* Q[K] is the coefficient of \prod_{j=0}^{3-K}(a_1+j) */

/* \sigma^{4-K} */

D=newvect(4)$

D[0]=(t+a1+3)*(t+a1+2)*(t+a1+1)*(t+a1)$

for (K=1; K<=3; K++) {

D[K]=sdiv(D[K-1],t+a1+4-K,t)$

}

Q=newvect(4)$

for (K=0; K<=2; K++){

Q[K]=sdiv(L[K],D[K],t)$

L[K+1]=srem(L[K],D[K],t)$

}

Q[3]=sdiv(L[3],D[3],t)$

R=srem(L[3],D[3],t)$

/* R is the constant term (does not depend on \sigma). We */

/* get P_4 = \sum_{K=0}^{3} \prod_{j=0}^{3-K} (a_1+j) Q[K] */

/* \sigma^{4-K} +R. */

/* We denote P_4 with the difference operator s=\sigma. */

50



S = newvect(4)$

P = newvect(4)$

P[3]=a1$

P[2]=P[3]*(a1+1)$

P[1]=P[2]*(a1+2)$

P[0]=P[1]*(a1+3)$

S[0]=P[0]*s4$

S[1]=P[1]*s3$

S[2]=P[2]*s2$

S[3]=P[3]*s1$

/* sj is a difference operator \sigma^j */

/* We will substitute sj the differential operator later. */

/* O is a difference operator which is gotten from HG */

/* differential op. */

O=0$

for (K=0; K<=3; K++) {

O=O+Q[K]*S[K]$

}

O=O+R$

/* O has a factor a1, i.e. O/a1 is a difference operator */

/* with its coefficients polynomial. So we devide O by a1 */

/* and name it U. */

U=sdiv(O,a1)$

/* U is the hypergeometric difference operator. */

T = newvect(5)$

T[4]=coef(U,1,s4)$

T[3]=coef(U,1,s3)$

T[2]=coef(U,1,s2)$

T[1]=coef(U,1,s1)$

T[0]=coef(coef(coef(coef(U,0,s1),0,s2),0,s3),0,s4)$

print(" ")$

print("the hypergeometric difference operator is")$

print(" ")$
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for (K=0; K<=3; K++){

print("(",0)$ print(fctr(T[4-K]),0)$ print(") sigma^",0)$

print(4-K,0)$ print(" +")$

}

print(fctr(T[0]))$

/* T[K] is the coefficients of \sigma^K. */

/* The deterministic polynomial of the hypergeometric */

/* difference equation is obtained as follows. */

F=0$

for (K=0; K<=4; K++) {

if ( deg(T[K],a1) > F ) {

F=deg(T[K],a1);

}

}

/* F is the degree of the difference equation. */

G=0$

for (K=0; K<=4; K++){

G=G+coef(T[K],F,a1)*l^K;

}

print(" ")$

print("the deterministic polynomial is")$

print(" ")$

fctr(G);

print(" ")$

/* G is the deterministic polynomial, and the roots l is the*/

/* deterministic roots. If the calculus is correct, then, */

/* the deterministic roots must be triplet roots l=1 and */

/* simple root l=1/1-x. */

/* For the purpose of calculating the characteristic */

/* exponents related to the triplet roots l=1, we substitute*/

/* the differential operator to the difference operator. */

W=newvect(5)$

E=1+q+(1/2)*q^2+(1/6)*q^3$

for (K=0; K<=4; K++){
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W[K]=subst(E,q,K*da1)$

}

Z=0$

for (K=0; K<=4; K++){

Z=Z+T[K]*W[K]$

}

C=newvect(4)$

for (K=0; K<=3; K++) {

C[K]= coef(coef(Z ,K, da1),K,a1)$

}

B=newvect(4)$

B[0]=1$

for (K=1; K<=3; K++) {

B[K]=B[K-1]*(n-K+1)$

}

A=0$

for (K=0; K<=3; K++) {

A=A+B[K]*C[K]$

}

fctr(A);

/* A is the characteristic polynomial of the hypergeometric */

/* difference equation and the root of A is the */

/* characteristic index of the equation related to the */

/* deterministic root \lambda=1. */

/* We calculate a characteristic exponents related to the */

/* deterministic root \lambda=1/(1-x). Let N be a difference*/

/* operator which is obtained by gauge transform of the */

/* hypergeometric operator P_4 with (1/(1-x))^{a1}. We */

/* denote M[K] as the coefficient of the difference operator*/

/* \sigma^K, in the operator (1-x)^4*M. */

M=newvect(5)$

for (K=0; K<=4; K++) {

M[K]=(1-x)^(4-K)*T[K];

}
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/* W is a vector of differential operator, which should be */

/* substituted to the difference operator [1,s,s^2,s^3,s^4].*/

W=newvect(5)$

E=1+q$

for (K=0; K<=4; K++) {

W[K]=subst(E,q,K*da1);

}

Z=0$

for (K=0; K<=4; K++) {

Z=Z+M[K]*W[K];

}

deg(coef(Z,1,da1),a1);

deg(coef(Z,0,da1),a1);

/* if the calculus is correct, the result of deg(**) must be*/

/* 3, and 2. */

fctr(coef(coef(Z,1,da1),3,a1)*n+coef(coef(Z,0,da1),2,a1));

/* This fctr(**) is the characteristic polynomial related to*/

/* the deterministic root 1/(1-x). */

end$

The result is

the hypergeometric difference operator is

([[1,1],[a1+1,1],[a1+2,1],[a1+3,1],[x-1,1]]) sigma^4 +

([[-1,1],[a1+1,1],[a1+2,1],[(3*a1-a2-a3-a4+6)*x+b1+b2+b3

-4*a1-9,1]]) sigma^3 +

([[1,1],[a1+1,1],[(3*a1^2+(-2*a2-2*a3-2*a4+9)*a1+(a3+a4-

3)*a2+(a4-3)*a3-3*a4+7)*x+(-b2-b3+3*a1+5)*b1+(-b3+

3*a1+5)*b2+(3*a1+5)*b3-6*a1^2-21*a1-19,1]]) sigma^2 +

([[-1,1],[(a1^3+(-a2-a3-a4+3)*a1^2+((a3+a4-2)*a2+(a4-2)*a3

-2*a4+3)*a1+((-a4+1)*a3+a4-1)*a2+(a4-1)*a3-a4+1)*x+((b3-

2*a1-2)*b2+(-2*a1-2)*b3+3*a1^2+7*a1+4)*b1+((-2*a1-2)*b3

+3*a1^2+7*a1+4)*b2+(3*a1^2+7*a1+4)*b3-4*a1^3-15*a1^2

-19*a1-8,1]]) sigma^1 +
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[[1,1],[b3-a1-1,1],[b2-a1-1,1],[b1-a1-1,1]]

the deterministic polynomial is

[[1,1],[l-1,3],[l*x-l+1,1]]

The characteristic polynomial of the hypergeometric

difference equation related to the triplet deterministic

root lambda=1 is

[[1,1],[n+a4,1],[n+a3,1],[n+a2,1],[x,1]]

The characteristic polynomial of the hypergeometric

difference equation related to the simple deterministic

root lambda=frac{1}{1-x} is

[[1,1],[n+b1+b2+b3-a2-a3-a4,1],[x,3],[x-1,1]]

These results show that the Riemann scheme of the inverse Mellin trans-
formation of the hypergeometric difference equation is (65).
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