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Chapter 1

Introduction and Main results

This thesis consists of four papers and one preprint by the author [81], [82],
[83], [84] and [85]. Chapter 1 is devoted to state introduction and main
results of these papers. Sections 1.1 to 1.5 consist of [81] to [85], respectively.
Sections 1.2, 1.3, and 1.4 relate to each other. Some results and arguments
in Sections 1.3 and 1.4 depend on some results and arguments in Section 1.2.
Chapters 2 to 6 are devoted to proofs of main results and related results of
[81] to [85], respectively.

First, we briefly summarize contents of these papers.

In Section 1.1, we consider the range of random walks up to time n,
R,, on graphs satisfying a certain uniformity condition, characterized by
potential theory. Not only all vertex transitive graphs but also many non-
regular graphs satisfy the condition. We will state certain weak laws of R,
from above and below. We will also state that there is a graph satisfying the
condition such that the sequence of means of R,,/n fluctuates. By noting the
construction of the graph, we see that under the condition, the weak laws are
best in a sense. We will give proofs of these statements and related results
in Chapter 2.

In Section 1.2, we consider functional equations driven by linear fractional
transformations, which are special cases of de Rham’s functional equations.
We consider Hausdorff dimension of the measure whose distribution function
is the solution. We will state a necessary and sufficient condition for singu-
larity. We will also state that the functional equations have a relationship
with stationary measures. These arise from a research for the range of self-
interacting walks on an interval in the author [83], which will be stated in
Section 1.3. We will give proofs of these statements and related results in
Chapter 3.



In Section 1.3, we consider the range of a one-parameter family of self-
interacting walks on the integers up to the time of exit from an interval.
We will state a weak convergence of an appropriately scaled range. We will
state that the distribution functions of the limits of the scaled range satisfy a
certain class of de Rham’s functional equations. We examine the regularity
of the limits. We will give proofs of these statements and related results in
Chapter 4.

In Section 1.4, we define a probability measure on the Cantor space by us-
ing two linear fractional transformations consisting of computable real num-
bers. Specifically, this measure is defined in the same manner as in Section
1.2. We will consider the constructive dimensions for the points which are
random with respect to the measure. We will examine limit frequencies of
the outcome of 0 for such random points. These results corresponds to the
results in Section 1.2. We will give proofs of these statements in Chapter 5.

In Section 1.5, we state quenched large deviations for simple random
walk on a certain class of percolations with long-range correlations. This
class contains supercritical Bernoulli percolation, the model considered by
Drewitz, Réth, and Sapozhnikov [28], and, the random-cluster model up to
the slab critical point. Our result is an extension of Kubota’s result [69]
for supercritical Bernoulli percolation. We will also state a shape theorem
for the chemical distance, which is an extension of Garet and Marchand’s
result [38] for supercritical Bernoulli percolation. We will give proofs of
these statements and related results in Chapter 6.

1.1 On the range of random walk on graphs
satisfying a uniform condition

This section will be based on the author’s paper [81].

The range of random walk R,, is simply the number of sites which the
random walk visits up to time n. We review known results for R,,. If we do
not refer state spaces of random walks, they are always the integer lattices
Z%, and, if we do not refer random walks (S,),, they are always given by
the sum of i.i.d. Z%valued random variables (X;); (That is, S, = >, Xi.)
such that E[X;] = 0 and it satisfies some integrable conditions. (Integrable
conditions for X; vary depending on settings, but in the following review we
do not state them precisely.)



Dvoretzky and Erdds [29] derived the strong law of large numbers (SLLN)
for the simple random walks by considering the variances Var(R,,). An un-
published work by Kesten, Spitzer and Whitman showed it for general ran-
dom walks by using Birkoff’s ergodic theorem. See Spitzer’s book [101] p35-
40 for details. A discussion Kingman with Spitzer [102], and, Dekking [21]
showed the SLLN for the case that (X;); is a stationary ergodic sequence. If
d = 1,2, then, R,/n — 0, almost surely, and therefore the asymptotic for
R,/E[R,] is considered alternatively. Jain and Pruitt [57], [60] considered
the asymptotic for the variances and showedthe SLLN for the general ran-
dom walks for d = 1,2. Pitt [92] considered the multiple point range on any
discrete Abelian group. Derriennic [25] characterized recurrence for random
walk on groups by the range of it.

Jain and Orey [56] showed the central limit theorem (CLT) for R, for
strongly transient random walks (including the simple random walk on d >
5). Jain and Pruitt [58], [61] showed the CLT for d = 3,4 by improving
estimates of the variances by [29]. Le Gall [71] showed the CLT for d = 2.

An almost sure invariance principle was shown by Hamana [44] for d > 4,
Bass and Kumagai [9] for d = 3, and Bass and Rosen [11] for d = 2. It is a
further extension of the Donsker-type invariance principle by [61]. Jain and
Pruitt [59] showed the law of the iterated logarithm (LIL) for d > 4 and Bass
and Kumagai [9] showed the LIL for d = 2,3. Bass, Chen, and Rosen [10]
solved some parts which are not investigated in [9] for d = 2. A very rough
outline of their proofs for d > 3 is described as follows : First, decompose R,
into a main process and an error process, second, apply the standard LIL (for
the sum of i.i.d. random variables or Brownian motion') to the main process,
and, finally, give a nice estimate for the error process and then neglect it.

Donsker and Varadhan [27] considered the asymptotic for log Elexp(—0R,,)]
as n — oo for a fixed # > 0. Hamana and Kesten [47], [48] showed the large
deviations. [47] deals with d > 2, and, [48] deals with d = 1. Hamana [46]
considered the asymptotic for A(f) := inf, log E[exp(0R,,)]/nasd — 0,0 > 0
for d > 2. Chen [18] obtained moderate and small deviations for d = 1. [10]?
shows moderate deviations for d = 2.

[27] has an application to knowing about the return probability of random
walk on a certain class of discrete groups, specifically, the wreath product
of a finitely generated group G with Z?. This research yields the asymp-
totic for log Elexp(—0R,)] as n — oo on more general graphs than Z<. Er-
schler [31] showed that for the simple random walk on the Cayley graph
of finitely generated groups whose volume growth is polynomial degree d,

!The Skorokhod embedding is used in [14]
2Chapter 2 in [10] is devoted to review for the random walk range.
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—log Elexp(—0R,)] ~ n¥(@+2) (Here f ~ g means that c;g < f < cyg for
some two constants c1, c2 > 0.) Gibson [39] extended the result and obtained
an estimate applicable to graphs satisfying a certain (upper and lower) sub-
Gaussian heat kernel estimates. The class of graphs contains not only the
Cayley graphs of finitely generated groups but also some fractal graphs (e.g.
the graphical Sierpinski gaskets and carpets, Vicsek trees).

The asymptotic of R, conditioned that the random walk returns to a fixed
point at time n has been considered. Hamana [45] showed the weak law of
large numbers and the large deviations of Rs, conditioned that the simple
random walk returns to the origin at time 2n. Uchiyama [107] derived a de-
tailed asymptotic expansion of the mean of R,, conditioned that the random
walk returns to a point which is not too far from the origin at time n. Ben-
jamini, Izkovsky and Kesten [13] showed the conditioned weak law of large
numbers on vertex-transitive graphs (in particular Cayley graphs of finitely
generated groups) under some assumptions for the return probabilities.

We consider the range of nearest-neighbor random walk on graphs sat-
isfying a uniform condition (U). See Definition 1.1.1. This condition is
characterized by potential theory, specifically, effective resistances. Not only
all vertex transitive graphs but also some non-regular graphs satisfy (U).
See Section 2.3 for details. We state certain weak laws of R,, from above
and below in Theorem 1.1.2. Under a stronger assumption, a certain strong
law holds for R,. In Theorem 1.1.3, we state the existence of a graph such
that it satisfies (U) and the sequence of the mean of R, /n fluctuates. This
construction shows that under (U), the two convergences are best in a sense.
The initial motivation for this work is an attempt to extend the results by
[13] to non-regular graphs. In Corollary 2.1.4, we extend Theorem 1 in [13]
to graphs satisfying (U).

1.1.1 Settings and Main results

Now we describe the settings. Let (X, u) be a weighted graph. That is,
X is an infinite graph and X is endowed with weights p,, which form a
symmetric nonnegative function on X x X such that p,, > 0 if and only if
x and y are connected. We write  ~ y if x and y are connected by an edge.
Let pip =, cx Hay, © € X. Let p(A) =3 4 pz for A C X,

In this section we assume that sup,. y deg(z) < +o0and 0 < inf, yex sy flay <
SUD,, ye X gy Hay < +00. Whenever we do not refer to weights, we assume that
Uy = 1 for any x ~ y.

Let {Sy}n>0 be a Markov chain on X whose transition probabilities are
given by P(Sp41 = y|Sn = ) = pay/tte, n > 0, z,y € X. We write
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P =P, if P(Sy =x)=1. We say that (X, u) is recurrent (resp. transient)
if ({Sn}n>0, {Pr}zex) is recurrent (transient). Let the size of random walk
range R, = [{So,...,Sn_1}|-

Let Ty =inf{n >0:S, € A} and Tf =inf{n >1:9, € A} for A C X.
For z,y € X, n >0 and B C X, let p?(x,y) = P.(S, = y, T > n)/pu, and
9%(x,y) = 3,50 Pn (2, y). Let pu(2,y) = p; (z,y) and g(z,y) = ¢*(z,y). g
is the Green function.

Let Fy = inf,ex Po(T,” < +00) and Fy = sup,y Pr(T, < 400).

Let d be the graph metric on X. Let B(z,n) ={y € X : d(z,y) < n},x €
X, n € Nsy. Let V(z,n) = u(B(x,n)). Let E(f, f) = %Zx,yEX,xNy(f(m) —
F(y))*uzy for f: X — R. Let us define the effective resistance by Reg(A, B) ™! =
inf{E(f, f): fla=1,flp=0}for A,BC X with AN B =10.

Let p(z,n) = Reg({z}, B(z,n)°), z € X,n € N. Let p(x) = lim,_ p(z,n).
If (X, p) is recurrent (resp. transient), then, p(z) = +oo (resp. p(z) < +00)
for any z € X. It is known that

1
:LLIPI(T; > TB(m,n)C)

gP@m (g 1) = p(x,n) = ,reX,n>1.
We refer the readers to Kumagai [70] or Peres [88] for the theory of electrical

networks. Now we define a uniform condition for weighted graphs.

Definition 1.1.1 (uniform condition). We say that a weighted graph (X, u)
satisfies (U) if p(x,n) converges uniformly to p(x), n — oo. More precisely, if
(X, p) is recurrent, then, the above uniform convergence means that for any
M > 0, there exists N such that for any n > N and any = € X, p(x,n) > M,
if (X, p) is transient, then, it means that for any € > 0, there exists N such
that for any n > N and any x € X, |p(z,n) — p(z)] < e.

Not only vertex transitive graphs (e.g. Z<, the M-regular tree Ty, Cayley
graphs of finitely generated groups) but also some non-regular graphs (e.g.
graphs which are roughly isometric with Z?, Sierpiniski gasket or carpet)
satisfy (U) if all weights are equal to 1. See Section 2.3 for detail.

Now we describe the main results.

Theorem 1.1.2. Let (X, u) be a weighted graph satisfying (U). Then, for
any x € X and any € > 0, we have that

lim P.(R, >n(l—F, +¢€)) =0, (1.1.1)
and,
lim P.(R, <n(l—F,—¢€))=0. (1.1.2)

For a fized € > 0, these convergences are uniform with respect to x. The
convergence in (1.1.1) is exponentially fast.
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We do not know whether the convergence in (1.1.2) is exponentially fast.
If (X, p) satisfies an assumption which is stronger than (U), then, certain
strong laws hold for R,, that is,

R, R,
1— F <liminf — <limsup — < 1— F}, P,-a.s.

n—oo M n—oo M
See Corollary 2.1.3 for details.

Theorem 1.1.3. There exists an infinite weighted graph (X, u) with a ref-
erence point o which satisfies Fy < Fy, (U),

liminf@ =1-F,, and, limsup @ =1-F. (1.1.3)
Remark 1.1.4. (i) If X is vertex transitive, then, F; = F, and hence
R,/n — 1 — F; € [0,1] in probability. On the other hand, by noting The-
orem 1.1.3, there exists an infinite weighted graph (X, p) with a reference
point o which satisfies (U) and R,,/n does not converge to any a € [0, 1] in
probability under P,.

(ii) If we replace Fy (resp. [F,) with a real number larger than Fy (resp.
smaller than F5), (1.1.1) (resp. (1.1.2)) fails for a weighted graph in Theo-
rem 1.1.3. In this sense, the convergences (1.1.1) and (1.1.2) are best.

The main difficulty of the proof of Theorem 1.1.2 is that P, # P, can
happen for x # y. On the other hand, we use the fact in order to show
Theorem 1.1.3. We will give proofs of Theorems 1.1.2 and 1.1.3 in Chapter
2.

1.2 Singularity results for functional equations
driven by linear fractional transformations

This section will be based on the author’s paper [82].

De Rham [96]® considered the following functional equation.

Fla) = {Fo(f(2m)) 0<2<1/2

(1.2.1)
Fi(fex—-1)) 1/2<z<L1

He showed that there exists a unique, continuous and strictly increasing
solution f of (1.2.1), if Fy and F} are strictly increasing contractions on [0, 1]
such that 0 = Fy(0) < Fo(1) = F1(0) < Fi(1) = 1.

3An English translation of [96] is included in Edger [30].
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Let up,, p € (0,1), be the probability measure on {0, 1} with p,({0}) =p
and f1,({1}) = 1—p. Let z2™ be the infinite product measure of 11, on {0, 1}".
Let ¢ : {0, 1} — [0, 1] be a function defined by ¢((z,)n) = > oo | @,,/2". Let
fp be the distribution function of the image measure of ,u;?N by ¢. We see
that f, is a singular function on [0,1] if p # 1/2 and fi/5(z) = .

De Rham [96] studied f, as a solution of the functional equation (1.2.1)
for Fy(z) = pr and Fy(z) = (1—p)x+p. This is a typical example of (1.2.1).
We will consider this case in Example 3.4.1. In the case, both Fy and F}
are affine maps on R. It is natural to consider singularities for the solution
of (1.2.1) for more general Fy, F}. However, it is difficult to see singularities
for general cases, because we do not see that what properties of Fjy and F}
definitely affect singularities.

It seems that the first study of { f,}pe(0,1) was done by Césaro in 1906 and
Heillinger [53] in 1907. {f,}pe(0,1)\{1/2} are examples for singular functions
(that is, continuous strictly? increasing functions whose derivatives take zero
almost everywhere). They are called the Lebesgue’s singular function. We
briefly review studies for singular functions.

Minkowski [78] introduced a function called Minkowski’s question-mark
function, which is denoted by ?(z). We define ? : [0,1] — [0,1] in the
following way : 7(0) =0,7(1) =1, ?((a+c)/(b+d)) = (?(a/b)+7?(c/d))/2 for
two consecutive fractions a/b and ¢/d in the Farey sequence. We can extend
this to a unique continuous function on [0, 1]. This function is considered by
an arithmetic motivation. There is a relationship between the function ? and
quadratic irrationals and continued fractions. x is a quadratic irrational if
and only if ?(z) is a non-dyadic rational, and, z is a rational number if and
only if ?(z) is a dyadic rational. Singularity for ?(z) was shown by Denjoy
[22], [23]. Salem [98] used a geometric approach and gave a short proof of the
singularity for ?(z). This approach yields many results for singular functions,
for example, the first edition of Riesz and Sz. Nagy’s book [97] Hewitt and
Stromberg’s book [54], Takacs [105], recently, Paradis, Viader, and Bibiloni
[86], [87], Okamoto and Wunsch [80], Fernandez-Sanchez, Viader, Paradis,
and Diaz Carrillo [33], [34].

De Rham [96] regarded 7(x) as a solution of a functional equation. Gir-
gensohn [40] constructed a class of singular functions by using a certain class
of functional equations, which includes 7(x). In this section, we focus on
this approach. A survey by Kairies [62] and the section 14.4 in a mono-
graph by Kannappan [65] study a class of functional equations containing
the Lebesgue singular functions and the Minkowski question-mark functions.
This approach to singular functions is not taken many times. Some recent

4Here we do not deal with non-monotone functions such as the Cantor-type functions.
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results concerning this approach are Berg and Kriippel [14], Kawamura [66],
Kriippel [68], Protasov [94], and, De Amo, Diaz-Carrillo and Fernéndez-
Sénchez [1]. Conley [19] surveyed Minkowski’s question-mark function.
We return to the description of settings. In this section, we consider
the equation (1.2.1) under the assumption that both Fy and F) are linear
az+b

cz +
A= (i 2) and z € R. Let F;(z) = ®(A;;x), z € [0,1], ¢ = 0,1, such that

for a 2 x 2 real matrix

fractional transformations. Let ®(A4;z2) =

a; b

2 x 2 real matrices A; = <
C; dl

(A1) - (A3).

), i = 0, 1, satisfy the following conditions

( a0+bozﬁ<a1+blzl‘
cotdy di  atd
(A2) a;d; — b;c; > 0,:=0,1.

(A?)) (CLZCZZ — bici)l/Q < min{di, ¢ + dl}7 1 =0,1.

The conditions (A1) - (A3) guarantee that F; := ®(A;;-), i = 0, 1, satisfy
de Rham’s conditions. Let us denote p; be the probability measure such
that the solution f of (1.2.1) is the distribution function of yy.

Let o = min{0,¢o/(do — ap),c1/b1}, B = max{0, co/(do — ap),c1/b1} and
v =1/P(Ap;1) > 1. Let po(x) = (z+1)/(x + ) and pi(z) = 1 — po(x) for
x > —v. Let s(p) = —plogp — (1 — p)log(1l — p) for p € [0,1]. We denote
the s-dimensional Hausdorff measure, s € (0,1}, of £ C R by H,(F) and the
Hausdorff dimension of E by dimy(E).

The following theorems are main results in this section.

Theorem 1.2.1. (1) There exists a Borel set Ky such that us(Ko) =1 and
dimp (Ko) < max{s(po(y)):y € [a, 5]}/ log 2.

(2) We have that j1s(K) = 0 for any Borel set K with dimy (K) < min{s(po(y));y €
[, 5]}/ 1og 2.

Denote the set of Borel subsets of [0,1] by B([0,1]). Let us define the
Hausdorff dimension of y; by dimy puy := inf{dimgy(E) : E € B([0,1]), u(E) >
0}. Then, by the above theorem, we have that
max{s(po(y));y € [a, ]}

< dimpg py < log 2 ~

min{s(po(y)); vy € [a, ]}
log 2

Theorem 1.2.2. (1) If both (i) (co + do — 2a0)(do — ap) = apco, and (i7)
(a1 — 2¢1)(dy — 2by) = bicy are satisfied, then pg(de) = (1 + 2¢)/(—2cox +
1+ 2co)%dx. In particular, py is absolutely continuous.

(2) If either (i) or (ii) fails, then there exists a Borel set Ky such that
pe(Ky) =1 and dimy (K,) < 1. In particular, py is singular.
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We remark that singularity is robust as a function of a;, b;, ¢;,d;, i = 0,1,
on the other hand, absolute continuity is not robust.

We will give proofs of Theorems 1.2.1 and 1.2.2 in Chapter 3. The key
points of Theorems 1.2.1 and 1.2.2 are Lemmas 3.2.1 and 3.2.3, respectively.
Our proofs are quite probabilistic and different from the proofs in [98]°,
[40]. The study in this section is motivated by the study of a range of self-
interacting random walks on an integer interval. We will state it in the
following section.

1.3 On the range of self-interacting random
walks on an integer interval

This section will be based on the author’s paper [83].

The range of random walk has been studied for a long time. Examining
the range at the time the random walk leaves an interval is a simple and
natural concern. Recently, Athreya, Sethuraman and T6th [3] considered
questions of this kind. They studied the range, local times and periodicity
or parity statistics of some nearest-neighbor Markov random walks up to the
time of exit from an interval of N sites. They derived several associated
scaling limits as N — oo and related the limits to various notions such as
the entropy of an exit distribution, generalized Ray-Knight constructions,
and Bessel and Ornstein-Uhlenbeck square processes.

Inspired by [3], we consider the ranges of a certain class of self-interacting
random walks up to the time of exit from an interval. The study of self-
interacting walks originated from the modeling of polymer chains in chemical
physics. There are various models in this study. We consider the model
defined by Denker and Hattori [24], Hambly, Hattori and Hattori [49], Hattori
and Hattori [51], [52]. They constructed a natural one-parameter family of
self-repelling and self-attracting walks on Z and the infinite pre-Sierpinski
gasket. It interpolates continuously between self-avoiding walk and simple
random walk in the sense of exponents.

In general, most of the studies of self-interacting walks are difficult due to
the lack of Markov property, even if they are one-dimensional. In the studies
of Markov walks, we can use techniques in analysis, especially, potential
theory. However, in the case of non-Markov walks, we cannot use most of
the techniques used in the studies of Markov walks. Most of the arguments
in [3] depend heavily on the Markov property. Therefore, we have to use

>The fact that almost all numbers in (0, 1) is normal is used.



alternative methods for our study. We apply the result in Section 1.2 which
considers a certain class of de Rham’s functional equations.

Now we state our settings and results briefly. Let W, be the path space
of the nearest-neighbor walk starting at 0 on Z. Let {P"},>o be a one-
parameter family of probability measures on W, defined by [26] and [52].
We will give the precise definitions of them in Section 4.1. P defines the
self-avoiding walk on Z and P! defines the standard simple random walk. If
u # 1, P* defines a non-Markov random walk on Z.

Definition 1.3.1. Let n ¢ N={1,2,...} and w € W,,. Let R,(w) be the
range of w up to the time of exit from {—2",... 2"}, that is,

R, (w) = (the number of points which w visits before it hits the points {£+2"}).
Note that 2" < R,, < 2n*+1 — 1.

Then, we have the following results which are analogous to [3], Proposition
2.1.

Theorem 1.3.2. (1) Let uw > 0. Then, the random variables {(R,/2")—1},
converges weakly to a distribution function f, on [0,1], n — oc.

(2) Let u > 0. Then f, salisfies a certain class of de Rham’s functional
equations [96] :

Fa) = {@(Au,o;f@x)) 0<w<1)2 131)

Ay f2r—1)) 1/2<z<1,

where we let

b
O(A;z) = ij—_d for A= (CCL b) , and,

A T 0 o 0 Tu — 2
WO\ 222 1) et T a2 122 ) T L T 18R

(3) Let P* be the probability measure on [0,1] such that its distribution func-
tion s fu. If u =1, P* is absolutely continuous with respect to the Lebesgue
measure on [0,1]. If u # 1, P" is singular.

We remark that PO = P? = ), where § denotes a point mass.

Let us denote the Hausdorff dimension of K C [0,1] by dimpy(K). Let
s(p) = —plogp — (1 — p)log(1 — p) for p € [0,1].

If 0 <u < V3, (Auo, A1) satisfies the conditions (A1) - (A3) in Section
1.2 (See also Example 3.4.2), so we can apply the results in Section 1.2 to
this case and obtain the following results.
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Theorem 1.3.3. (1) If u # 1 and 0 < u < /3, then, then, there exists a
Borel set Ky such that P*(Ky) = 1 and dimpy(K) < 1.

(2) If 0 < u < 1, then, there exists a Borel set Ky such that P*(Ky) = 1
and dimp (K) < s(z,)/log2 < 1. Moreover, P*(K) = 0 for any Borel set K
with dimy (K) < s(2z,/(1 4+ z,))/ log 2.

Hence, if 0 < u < 1,

s(2x, /(1 4 xy,))
log 2

5(£U)

< dimy P* < :
= Cim log 2

We also examine whether P* has atoms.

Theorem 1.3.4. (1) Let u < V3. Then, P" has no atoms.
(2) Let u > /3. Then, P*({x}) > 0 for any x € DN (0,1]. Here D is the
set of dyadic rationals on [0, 1].

We will give proofs of Theorems 1.3.2-1.3.4 in Chapter 4.

1.4 Random sequences with respect to a mea-
sure defined by two linear fractional trans-
formations

This section will be based on the author’s paper [84].

In terms of mathematics and the theory of computing, it is interesting
to define random sequences in the space of infinite binary sequences {0, 1}
rigorously. Martin-Lof [77] gave a mathematically rigorous definition of ran-
domness of individual infinite binary sequences. By using the theory of com-
puting, he introduced the notion of constructive null sets for a computable
measure on {0, 1}V, and defined the randomness by being not contained in
any constructive null set. Levin [72] and Chaitin [17] introduced the notion
of the prefix-free Kolmogorov complexity K, which is a modification of the
plain complexity considered by Kolmogolov [67]. They defined random se-
quences by an incompressibility of K(z [ n), where x | n denotes the first
n bits of x € {0, 1}, This definition is equivalent to Martin-Lof’s one if we
consider constructive null sets for the Lebesgue measure on {0, 1}

It is natural to consider limit behaviors of K (z [ n) for a random sequence
x with respect to a more general computable measure. Lutz [75] introduced
the notion of constructive dimensions by using supergales, which are gener-
alizations of supermartingales. The constructive dimension is a constructive
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version of Hausdorff dimension and has properties similar to it. However,
the constructive dimension of one point set {} can be positive, whereas the
Hausdorff dimension of {z} is always 0. There are relationships between
constructive dimension and Kolmogorov complexity. In particular, the con-
structive dimension of {z} is equal to the limit infimum of K(z [ n)/n as
n — oo. This is a consequence of Levin’s result. See Zvonkin and Levin
[112], Staiger [104], and Section 13.3 in Downey and Hirschfeldt [26] for de-
tails. Constructive dimensions for strongly positive computable measures
have been considered in [75], Lutz and Mayordomo [76], and, Nandakumar
[79], for example. [75] Theorem 7.7 states that there is a relationship between
the constructive dimension of {z} for y-random x and the Shannon entropy
if 1 belongs to a class of product measures on {0,1}N. In [75], this issue
is considered for product measures on {0,1}". Under any product measure,
the projection mappings from the Cantor space to the coordinates are inde-
pendent. However, non-product measures do not have such nice property.

In this section, we consider the constructive dimensions for f14, 4,-random
points, where j14, 4, is a measure on {0, 1} defined by a pair (Ag, A;) of two
linear fractional transformations satisfying some conditions. We define this
by following Section 1.2, which considers regularity for a functional equation
driven by (Ag, A;). Such functional equations form a class of de Rham’s
functional equations [96]. The initial motivation is the range of a class of self-
interacting random walks on an integer interval considered in Section 1.3. In
Section 1.3, it is shown that an appropriately scaled range of one-dimensional
self-interacting (that is, non-Markov) random walks before exiting intervals
converges weakly to fi4, 4, for some (Ag, A;). We emphasize that jia, 4,
can be a non-product measure. In Theorems 1.4.1 and 1.4.2, we will show
that there are relationships between the constructive dimensions for j14, 4,-
random points and the Shannon entropy. These statements are similar to [75]
Theorem 7.7. On the other hand, g4, 4, can also be the Bernoulli measure,
which is a very typical product measure on the Cantor space. We will consider
this case in Corollary 1.4.4, which is also a corollary of [75], Theorem 7.7.
Specifically, Corollary 1.4.4 is the case that all of the biases in the assumption
of [75] Theorem 7.7 are the same.

The main ingredients of proofs are to show that if all elements in Ag and
A, are computable numbers, then, some pa, 4,-null sets in the arguments
in Section 1.2 are constructive. The proofs are different from the proof of
[75], Theorem 7.7. Some ingredients of the proofs rely on the results and
arguments in [82]. In the proof of Theorem 1.4.2, we will show a lemma
which describes the limit frequency of the outcome of 0 for ja, 4,-random
points. See Proposition 5.1.3 for details.

Let 15 be the characteristic function of a set B. Let {0,1}* be the set
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of finite binary sequences and {0, 1} be the set of infinite binary sequences.
Let A be the empty sequence. We remark that A € {0,1}*. Let |o| be its
length for o € {0,1}*. Let = | n = (z(0),...,z(n — 1)) € {0,1}*, n > 1,
and, x | 0 = A, for 2 = (2(k))ren € {0,1}N. We define o | n for o € {0,1}*
and n < |o] in the same manner. Let [0] = {z € {0,1} : 2 | |o| = o} for
o €{0,1}*. Let [V] = Usey|o] for V C {0,1}".

Let D =N, {0,1}*, or, N x {0, 1}*. We say that a function f : D — R is
lower semicomputable if there exists a computable function g : D x N — Q
such that for any x € D and n € N, g(z,n) < g(x,n + 1) < f(x), and,
f(z) = lim, . g(x,n). We say that a function f : D — R is computable if
both f and —f are lower semicomputable. We say that a real number » € R
is computable if the constant function f = r is computable. We say that
a Borel probability measure p on {0, 1} is computable if o — u([o]) is a
computable function on {0,1}*. We say that a sequence {V,,, }men C {0, 1}
is uniformly c.e. if {(m,0) € N x{0,1}* : ¢ € V,;} is a c.e. subset of
N x {0, 1}*.

We say that N C {0,1}" is an constructive p-null set if there exists a
uniformly c.e. sequence {U,},, C {0,1}* such that N C [U,] and u([U,]) <
27" n € N. Let u be a Borel probability measure on {0, 1}Y. We say that
x € {0,1} is y-random if x ¢ N for any constructive p-null set N.

Let 1 be a Borel probability measure on {0, 1}". We say that a function
d : {0,1}* — [0,400) is a p-martingale if d(o)u([o]) = d(c0)u([c0]) +
d(o1l)pu([ol]) for any o € {0,1}*. We simply call the function d(-) martingale
if p is the Lebesgue measure.

Let s > 0. We say that a function d : {0,1}* — [0,+00) is s-gale if
d(o) =27%(d(c0)+d(c1)), o0 € {0,1}*. We note that 1-gales are martingales.
Let G.(A), A C {0,1}", be the set of s > 0 such that there exists lower
semicomputable s-gale d such that limsup,,_, d(z | n) = +oo for any x € A.
Let cdimpy(A) = inf G.(A). We call this the constructive dimension of A.°
We call the value cdimpy({z}) the constructive dimension of a sequence z.
We denote this by cdim(z) for simplicity.

b
Now we define f14,,4,. Let ®(4;2) = az—i—i_—d for a real matrix A = (CCL b)
cz

d
a; bl

and z € R with cz+d # 0. Let A; = (c- 4

), t = 0,1, be two real matrices

satisfying the following conditions.
(Al) 0= bo < (CL() + bo)/(Co + do) = bl/dl < (a1 + bl)/<01 + dl) =1.

SIn [75], Lutz defined constructive dimension by using supergales instead of gales.
Fenner [32] and Hitchcock [55] showed that gales can be used to define the dimension.
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(AB) (azdl — biCi)1/2 < min{di, ¢ + dz}, 1= O, 1.
(A4) a;, b, c;,d;, i = 0,1, are computable real numbers.

Let @ = min{0,¢y/(dy — ao),c1/b1}, = max{0,cy/(dy — ag),c1/b1},
v = 1/@(Ap; 1), polt) = (t+ 1)/t +7), pi(t) = 1 —po(t), t > —. These
definitions and assumptions other than (A4) are the same as in Section 1.2.

Let F(i,0) be a partial function on N x {0,1}* to R defined by F'(i,0) =
P(*Agi—1); F(i — 1,0)), 1 < i < |of, and, F'(0,0) = 0. Here ‘A denotes the
transpose matrix of A. F is not defined for ¢ > |o|. This is a computable
function by (A4). We will give a proof of computability of F'in Section 5.2.
We remark that F(i,0) = F(i,0 | i). By using (Al)-(A3), we have that
a < F(i,o) < g for any 7,0, and, 0 < po(a) < po(f) < 1. See also Chapter
3, in particular, Lemma 3.2.1. These will be used later.

Let 14,4, be the probability measure on {0, 1}" defined by

lo|-1
paoar([0]) = ] po(F(i,0)) for o € {0,1}* with |o| > 1.
=0

This is well-defined due to (A1)-(A3), and, a computable measure due to
(A4) and the computability of F'. This corresponds to ps in Section 1.2. We
have that

0 < min{pg(),p1(B)} < /%"“—([Ui])

S NG < max{po(8),p1(a)} <1

for any o € {0,1}* and i € {0,1}. Therefore, any i, 4, is a well-balanced
measure in [32], an additive geometric premeasure in Reimann and Stephan
[95], and, a balanced measure in Staiger [103].

Let H(p) = —plogyp — (1 — p)log,(1 — p), p € [0,1]. Let M be a total
function on {0, 1}* defined by M(\) = 0, and,

|lo|—1

M(o) =Y (—10g, po(i)(F(i,0)) = H(po(o) (F(i,0)))) for o with o] > 1.

=0

This is a computable function and a j14, 4,-martingale. This corresponds to
(M,),, in Chapter 3.
Now we describe our main results.

Theorem 1.4.1. Let z € {0, 1} be pa, a,-random. Then we have the fol-
lowing assertions.

(1) If po(e) > 1/2, then, cdim(z) € [H(po(B)), H(po())].
(2) If po(P) < 1/2, then, cdim(z) € [H(po()), H(po(5))]
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Theorem 1.4.2. Let (i) : (co + dy — 2a9)(do — ap) = apco and (i7) : (a3 —
2¢1)(dy — 2b1) = bycy. Let © € {0,1} be pa, a,-random. Then we have the
following assertions.

(1) If both (i) and (i) hold, then, cdim(x) = 1.

(2) If (i) fails or (ii) fails, then, cdim(x) < 1.

Theorems 1.4.1 and 1.4.2 correspond to Theorems 1.2.1 and 1.2.2 respec-
tively.
Now we give two examples of fi4, 4,-

Example 1.4.3. (i) Let p € (0,1) be a computable number. Let Ay =
(g (1)> and A, = (1 ap 219> Then, (Ao, A1) satisfies (A1)-(A4). We have
that a = 0 =0, F(i,0) = 0, and v = 1/p. In this case, p4, 4, is the Bernoulli
measure with parameter p.

(ii) Let Ay = (_31 2) and A; = (_02 ?) Then, (Ao, Ay) satisfies (Al)-

(A4). We also have that o = —2/3, =0, v =5/3, F(1,00) = F(1,01) =
—1/6 and F(1,10) = F(1,11) = —2/5. Therefore,

3
57
paoa ([00) 5 paga, (01]) 4 paga, ((10) 9 paga, (1) _ 10

MA07A1([0]) = MA07A1([]‘]) = %)

/‘LAO:Al([O]) 9’ :qu,Al([O]) 9’ /J’A07A1([1]) 19° IUAO,A1<[1]) 19

Therefore, 14, 4, is not a product measure.

Applying Theorem 1.4.1 to the case in Example 1.4.3(i), we have the
following.

Corollary 1.4.4. Let p € (0,1) be a computable number. Let p, be the
probability measure on {0,1} such that p,([o0]) = puy([o]) for any o €
{0,1}*. Let x € {0,1}" be p,-random. Then, cdim(x) = H(p).

The case in Example 1.4.3(i) is special, because o = 3. If a = (3, then,
either po(a) > 1/2 or po() = po(a) < 1/2 happens, and hence, Theorem
1.4.1 is always applicable. However, in general, a < (§ and py(a) < 1/2 <
po() can happen. Theorem 1.4.1 is not applicable to such cases, but we can
apply Theorem 1.4.2 instead.

We can see such example in Example 1.4.3(ii). In that case, po(a) = 1/3,
po() = 3/5, and, the condition (i7) in Theorem 1.4.2 fails.

We will give proofs of Theorems 1.4.1 and 1.4.2 in Chapter 5.
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1.5 Large deviations for simple random walk
on percolations with long-range correla-
tions

This section will be based on the author’s preprint [85].

In the research of percolation, it is important to understand geometric
properties of clusters and behaviors of random walks on the clusters. In the
case of supercritical Bernoulli percolation, Antal and Pisztora [2] gave large
deviation estimates for the graph distance of two sites lying in the same clus-
ter. Kubota [69] showed quenched large deviations for the simple random
walks on the supercritical Bernoulli percolations on Z?. The strategy of proof
in [69] is similar to the one in Zerner [111], which showed large deviations for
random walks in random environment. However, the configurations of perco-
lations fluctuate and the random walk has non-elliptic transition probability.
These obstructions were overcome by using [2] Theorem 1.1.

In this section, we state quenched large deviation principles for simple
random walk on a certain class of percolations on Z? with long-range cor-
relations. Our result is an extension of Kubota’s result for supercritical
Bernoulli percolations. We can apply this result to the model considered
by Drewitz, Réth, and Sapozhnikov [28]. The model contains supercritical
Bernoulli site percolations, random interlacements, the vacant set of random
interlacements and the level set of the Gaussian free field. We can also apply
this result to the random cluster model up to the slab critical point. See
Section 6.1 for details.

Our strategy of proof follows the one in [111] and [69]. In [69], the fact
that the Bernoulli measure P, is a product measure on the configuration
space is essentially used in order to show that the Lyapunov exponent ay () is
subadditive. However, in the case under consideration, a probability measure
P on the configuration space is not necessarily a product measure. In [85],
in order to get over this obstruction, we use some ergodic theoretical results
for commutative transformations, specifically, Furstenberg and Katznelson’s
theorem [37] and Tao [106] Theorem 1.1. However, an anonymous referee in
a journal to which the author submitted [85] pointed us a smarter proof than
the author’s proof in [85]. We write the referee’s proof here. See Sections 6.3
and 6.4 for the proof of the large deviation. The author’s original proof in
[85] will be discussed in Section 6.7.

By using the technique, we can also show a shape theorem for the chemical
distance, which is an extension of Garet and Marchand [38] Corollary 5.4.
We discuss this in Section 6.5.
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In Section 6.6, we briefly discuss the asymptotics for the rate function
I(z) as  — 0 in the settings of [28].

Now we describe the setting. We consider both bond and site percolations
on Z4, d > 2. Let E(Z%) be the set of edges of the graph Z¢. We write
7] 0o = maxi<i<a 7], and, |z|1 = >, ey |zi] for © = (21,...,24) € R% Let
B(z,r):={y€Z: |y —z|s <r}and By(z,7) = {y € Z% : |y — 2z|]oo <1}
Denote the configuration space by Q. Qis {0, 1}2Z) or {0, 1}%", according to
bond or site percolation respectively. Denote by w a configuration on 2. We
write x < y if 2 and y are in the same open cluster. Let D(z,y) be the graph
distance on the vertices of open clusters between x and y. If x and y are in
different open clusters, we let D(x,y) = +0o0. We often call D the chemical
distance. Let 6,, z € Z%, be the shifts on Q, that is, 0,(w)(-) = w(x + -).

Assumption 1.5.1. Let P be a probability measure on 2. We assume the
following conditions :

(i) P is invariant and ergodic with respect to 6, for any x € Z¢\ {0}.

(ii) P-a.s. w, there exists a unique infinite open cluster Co, = Coo(w).

(iii) There exist constants ci, ¢y, c5 > 0 such that for any z € Z<,

P(O T, D(()?x) > Cl‘x|1) < eXp(—Cz(log ‘$’1)1+C3).

Denote the set of vertices of the infinite connected graph C., by the same
symbol Cw. Let the event Qg := {0 € Co}. Thanks to (i) and (ii), P(Q0) > 0.
Let P := P(-|€).

Let ((Xn)n>0s (P2)secco(w)) be the Markov chain on Coo(w) whose transi-
tion probabilities are given by P¥(X, = x) = 1,

1
P (X =x+elX,=12) = 2 if le]y =1 and x + e € Coo(w),
and,
1

Pi(Xuir = 01X, =) = ool{€ [ = Lo+ ¢ ¢ Cufw)}],

for any x, 2z € Coo(w).
Let H, be the first hitting time to y € C for (X,,),. For z,y, 2 € Cs, we

define the Laplace transform of the hitting time by

ax(z,y) = ay(z,y) = —log E[exp(—=AHy)1{f, <100}, A > 0.

Let # € Z4\ {0}. Let T, : Q@ — N U {400} be the map defined by
T.(w) = inf{n > 1 : nx € Cx(w)}, where we let inf() = +o0o. We define
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the maps ©, : Qy — Qy by O,w = 9;&”(“’)@ Due to the Poincaré recurrence
theorem (See Theorem 9.2 in Pollicott and Yuri [93]), O, is well-defined up
to sets of measure 0 under P. By using Lemma 3.3 in Berger and Biskup
[15], ©, is invertible measure-preserving and ergodic with respect to P. Let

T = ST, 0 OF,

Theorem 1.5.2 (Existence of the Lyapunov exponents). Assume that P
satisfies Assumption 1.5.1. Let X > 0. Then, there ezists a function cy(-)
on Zsuch that a(0) = 0 and for any x € Z%\ {0},

0, 7" _
lim (0. Tz "x) = ay(z), P-a.s.
We can extend «y uniquely to a continuous function on R, ay(-) satis-
fies the following properties : for any x,y € RY and for any q € (0, +o0),
ax(qr) = qan(z), ax(z +y) < ax(z) + axly), and, Mz|1 < ay(z) <
(A + log(2d))CP()|z|1, where C is a constant which does not depend on

(A, ).

ay(+) is called the Lyapunov exponent. This is an extension of Theorem
1.1 in [69] and this is the key ingredient of the proof of the following result.

Theorem 1.5.3 (Quenched large deviation principles). Assume that P sat-
isfies Assumption 1.5.1. Then, the law of X,/n obeys the following large
deviation principles with rate function I(x) = supyso(ax(z) — A), € RY,
where a(+) is the function on R in Theorem 1.5.2.

(1) Upper bound : For any closed set A in R, we have P-a.s. w,

0
lim sup log u(Xn/n € A) < —inf I(z). (1.5.1)

N—00 n €A

(2) Lower bound : For any open set B in R, we have P-a.s. w,

0
limint 8K/ E€B) oy, (1.5.2)
n—00 n zeB
The rate function I is +oo outside the ball of radius 1 in the {!-norm.
In Section 6.1, we give examples of models satisfying Assumption 1.5.1.
In Section 6.2, we give some preliminaries. In Sections 6.3 and 6.4, we show
Theorems 1.5.2 and 1.5.3 respectively. In Section 6.5, we discuss a shape
theorem for the chemical distance. In Section 6.6, we briefly discuss some
properties for the rate function, which is based on [99]. In Section 6.7, we
discuss the author’s original proof of Theorem 1.5.2, which is described in
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Chapter 2

On the range of random walk
on graphs satisfying a uniform
condition

This chapter will be based on [81]. In Sections 2.1 and 2.2, we give the proof
of Theorems 1.1.2 and 1.1.3, respectively. However, the proof of Theorem
1.1.3 is simpler than [81]. In Section 2.3, we give some examples for graphs
satisfying (U).

2.1 Proof of Theorem 1.1.2

First, we show the following lemma.

Lemma 2.1.1. Let (X, p) be a weighted graph satisfying (U). Then,

lim sup P,(n < T, < 400) = 0.

n—=00 ge X

Proof. By [70] Theorem 2.2.5, p(z,n)~! = p
n > 1. Letting n — oo, we have p(z)™' = p, P.(T;f = +00).
Since p(z,1)™" = pg,

Px<TB(x,n)C < T; < —|—OO) = M;l(p(xvn)_l - p(x)_l)
< pa(p(z) — plz, n)).

~—
~—

Since p1, < supyex deg(y) sup, e x . fy= < +00 and (X, u) satisfies (U),
we see that
lim sup P, (Tpne < T, < +00) = 0. (2.1.1)

n—oo $€X

20



Since sup, deg(r) < oo and sup, ,cx,..Hy. < +00, we have that
sup,ey V(z,n) < 400, n > 1. Since p(z,n)™t > inf, .ex yos fly=/n > 0,
we have that sup,.y p(z,n) < 400, n > 1.

Thus we can let f(n) = sup,cx p(x,n)sup,cx V(z,n), n > 1.

By [70] Lemma 4.1.1(v),

EJ: T x,n)°¢ 3 V 3 ]-
P, (Ts(any > nf(n)) < 22 e G :}(é)‘” Wl
Hence,
lim sup Py (Tp(zn)e > nf(n)) = 0. (2.1.2)

=00 peX

We have that
P.(nf(n) < T} < +00) < Po(Tpany < T, < +00) + Po(Thm)e > nf(n)).
By noting (2.1.1) and (2.1.2), we have that

lim sup P,(nf(n) < T,)f < +00) = 0.

n—00 pe X
This completes the proof of Lemma 2.1.1. ]

Let Y; ; be the indicator function of {S; # Siy for any 1 < k < j}. Let
Y « be the indicator function of {S; # S for any k& > 1}.

Proof of Theorem 1.1.2. We show this assertion in a manner which is par-
tially similar to the proof of Theorem 1 in Benjamini, Izkovsky and Kesten
[13]. However P, # P, can happen for = # y and hence the random variables
{Yitar,m faen are not necessarily independent. The details are different from
the proof of Theorem 1 in [13].

First, we will show (1.1.1). Let € > 0. Let M be a positive integer such
that sup,cy Pe(M < Tf < +00) < €/4. We can take such M by Lemma
2.1.1.

By counting the random walk range up to time n from the terminal time
n (it is called a last exit decomposition in [13]),

n—2 n—1—-M n—1-M
Ro=14> Yipa i <M+ Y Yipaa <M+ Y Y
1=0 1=0 =0
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Hence for n > 2M /e,

nlM
Po(R, > n(l — F +¢)) Z YM>n<1—F1 2))

Yiar >n (1= Fi+3)
a= 07, amod (M+1)

M
n €
<>r Vi > (1-F+2)

a=0 i=a mod (M+1) M+1 2

Therefore it is sufficient to show that for each a € {0,1,..., M},

P, | Z Yin > MZ— 1 <1 —Fi + %) — 0, n — 00, exponentially fast.
i=a mod (M+1)
(2.1.3)
For any ¢ > 0, we have that

n
P 2 Yi’M>M+1<1_F1+§>

i=a mod (M+1)

< exp (_tMZ . <1 — F + g)) E, lexp |t Z Yim . (2.1.4)

it=a mod (M+1)

By using the Markov property of {5, },,

E, lexp |t Z Yim =F, H exp(tY; ar)
i=a mod (M+1) i=a mod (M+1)
/(M+1)
< (sup Ey[exp(t%M)])
yeX

/(M+1)
:(1+(exp()—1)supP(T+>M)) :

yeX

By noting the definition of M and F},

sup P,(T,” > M) < sup P,(M < T,} < +00) 4 sup P,(T, = +o0)
yeX yeX yeX
< S 1— Fi.
< 4+ 1
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Hence, for any ¢t > 0 and x € X,

n/(M+1)
E ep |t Y Y| < <1—|—(exp(t)—1) <§1+1—F1>>

i=a mod (M+1)

Hence, the right hand side of the inequality (2.1.4) is less than or equal
to

[exp (—t (1 - F + g)) {1 + (exp(t) — 1) <ZEL +1- F1> Hn/(MH) :

It is easy to see that for sufficiently small t; = ¢;(Fy,€) > 0,

{1+ (exp(ty) — 1) (i vl F1>} < exp <t1 (1 o g)) .

Thus we have (2.1.3) and this convergence is uniform with respect to .
This completes the proof of (1.1.1).

Second, we will show (1.1.2). Let € > 0. Let M be a positive integer.
By considering a last exit decomposition,

P.(R,<n(l—Fy,—¢€))=PFP.n—R, >n(Fy+¢))

=D, (i(l —Yin1-4) > n(Fy+ 6))

1=0

<P, (ig(l — Vi) > n(Fy + e)) :

=0

Now we have 1 =Y, o =1 =Y, p + Yinr — Yoo and

P, (ni(l —Yi) > n(Fy + €)> <P, (ni(l —Yiu)>n (F2 + %))

i=0
< ne
+ P, <ZO(Yi,M — Vi) > 7) . (2.1.5)
We have that Y; py — Y, « is the indicator function of

{S; # Siyx for any 1 < k < M, S; = S; 1, for some k > M},

and hence, F,[Y;y — Yioo] < supyex Py(M < TS < +00).
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Then for any n,

n—2 n—2
ne 2
P, (Z(Yi,M — Vi) > 3> <= EulYiw - Vi

i=0 =0

2
< —sup Py(M < T,/ < +00). (2.1.6)

€ yeX

On the other hand,

P, (%2(1 ~Yiar) = n (B + g))
sia( > (1—1@,M)2M711(F2+§)>.

i=a mod M+1

By using the Markov property of {S,},, we have that for any ¢ > 0 and
any a € {0,1,..., M},

Px( 2 (1_Y;’M)2M71+1(F2+§>>

i=a mod M+1

I expt(t —Yim)

< exp (_tMZ 1 <F2 + %)) Ee

i=a mod M+1
n/(M+1)
< exp ( ( )) (Sg{) E, [exp(t(1 — YbM))])
E n/(M+1)
= [exp ( —) { (exp(t) — 1) sup P, (T, < M)}] :
2 yeX

Since sup,¢x P, (TJr M) < F5, we have that for sufficiently small ¢, =
to (FQ, ) > 0,

exp <—t2 <F2 + %)) {1 + (exp(tz) — 1)sup P (T, < M)} < 1L

yeX

Therefore for any a € {0,1,... M},

n €
A R e R ) IR

i=a mod M+1
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Thus we see that

P, (niu—y;,M) > n<F2—|—§>> 0,1 — o0, (2.1.7)

1=0

This convergence is uniform with respect to x.
By using (2.1.5), (2.1.6) and (2.1.7), we have

2
limsup Py (R, <n(l — Fy —€)) < —sup P(M < T, < 400).
n—00 € yeXx

By letting M — oo, it follows from Lemma 2.1.1 that

limsup P, (R, < n(l —F, —¢)) = 0.

n—oo

This convergence is uniform with respect to x. This completes the proof of
(1.1.2). m

Remark 2.1.2. If F} = Fy, then (1.1.2) is easy to see by noting (1.1.1) and
E.R,)>n(1—-F),n>1,ze€X.

Corollary 2.1.3. If sup, P.(M < T} < +00) = O(M~17?%) for some § > 0,

then, certain strong laws hold. More precisely, for any v € X,

R, R,
1—F <liminf — <limsup — <1 — F}, P,-a.s.

n—oo 1 n—oo N

Proof. By noting the Borel-Cantelli lemma, we see that it suffices to show
that for any z € X and € > 0,

> PRy, =n(l—F +e)) < +oo, (2.1.8)
n>1

and,
> PR, <n(l—F—¢) < +oo. (2.1.9)
n>1

(2.1.8) follows from that the convergence (1.1.1) is exponentially fast.
By noting (2.1.5), (2.1.6) and (2.1.7), we have that there exists a =
a(Fy,€) € (0,1) such that for any n and M < n,

2
Py(R, <n(l—F,—¢)) < _O(M_l_(s) + @™/ MFD)
€
If we let M = n=92 — 1 for each n, then, we see (2.1.9). n
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The assumption in Corollary 2.1.3 is used only in the proof of the lower
bound. The upper bound holds whenever the graph satisfies (U).

Since the convergence in (1.1.1) is exponentially fast, we can extend The-
orem 1 in [13], which considers the range of the random walk bridge on vertex
transitive graphs.

Corollary 2.1.4. Let (X, p) be a weighted graph satisfying (U). Let v € X.
We assume that limsup,, . Py(Ssn = 2)Y/" = 1. Let ¢ > 0. Then,

lim P, (R, > n(l— F| +¢€)|S, =x)=0.
The limit is taken on n such that P,(S, = x) > 0. This convergence is
exponentially fast.

2.2 Proof of Theorem 1.1.3

To begin with, we state a very rough sketch of the proof.

Let Ny, Ny be integers such that 3 < N; < N,. First, we prepare a
finite tree with degree N; and denote it X, Second, we surround X with
finite trees with degree N,. We denote the graph we obtain by X®. Third,
we surround X with finite trees with degree N;. We denote the graph
we obtain by X®). Repeating this construction, we obtain an increasing
sequence of finite trees (X™),. X@+D\ X (yesp. X(2n+2)\ X (nt1) g 5
ring-like object consisting of the Ny (resp. Ny) -trees. Let ro, 1 (resp. ra,12)
be the width of the ring. Assume r; < ;41 for any i. Let X be the infinite
graph of the limit of (X(™),. This satisfies (U). Lemma 2.2.2 in below states
this formally. X also satisfies F} < F, and (1.1.3), because r; < r;;; for any
i

In this section, we assume that any weight is equal to 1, that is, pz, =1
for any = ~ y. In the following proof, we use the theory of flow. See [88] for
terminologies.

Let X be an infinite tree. For a connected subgraph Y of X, we denote
the restriction of £, deg, and p to Y by &y, degy, and py respectively.

Let x € X. Let

D.(y) = {z € X : the path between x and z contains y}, y € X.
We remark that y € D,(y) and D,(z) = X. Let I,(y,n) = pp,(y,n) ",

y € X. We remark that I.(z,n) = px(z,n)™' = p(z,n)"!. By using the
series and parallel laws for conductances, we see the following easily.
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Lemma 2.2.1. Let X be an infinite tree. Let v,y € X. Let n > 1. Let y;,
1 <i<degp,,)(v), be the neighborhoods of y in D,(y). Then,

degDm (y) (y)

L(y,n+1)= Z

=1

1+ L(yi,n)

Lemma 2.2.2. Let X be an infinite tree with minimal degree at least 3.
Then, X satisfies (U).

Proof. Let x € X and n > 1. Let a;, 1 <i < degy(z), be the neighborhoods
of x. Let X, be the subtree of X which consists of a single edge from x to
z; and D,(z;) N B(x,n + 1). Then, by using the series and parallel laws,
we see that the conductance of X; is I.(x;,n — 1)/(1 + I.(z;,n — 1)). By
using Lemma 2.2.1 and that the minimal degree of X is at least 3, we see
that I,(xz;,n — 1) > 1. Therefore we have that the conductance of X; is
between 1/2 and 1. Let 6 be the unit current flow from x to B(z,n)¢. Then,
0 < O(zw;) < 2/3 for each i.

Let {xx;}; be the vertices of the outer boundary of B(x,k), 1 < k < n,
and let az; be the amount of § going into xj,; from a point in the outer
boundary of B(x,k — 1). Since 6 is the unit current flow, ax;, > 0. By
using the same argument as in the case k = 1, we see that ax; < (2/3)* by
induction on k. Hence Y, a2 ; < (2/3)™.

Now we extend the flow 6 to a unit flow on X from x to co. Since the min-
imal degree of X is at least 3, we can construct a flow 6 on D,(x, ;) such that
it starts at x,,;, the strength of the flow is a, ;, and, > . edge in Da(n.s) f(e)? <
a?w-. By using Thomson’s principle, we have that

s X s+ Y o<+ (3)

e: edge in X i e: edge in Dy (x;)
[l

Let N > 3. Let Ty be the infinite N-regular tree. Let Ty (o) be the
infinite tree 7' such that deg(o) = N — 1 for o € T and deg(x) = N for
any « € T'\ {o}. For the simple random walk on Ty, we let gy = P.(T, =
+00) = (N—=2)/(N—1). and gy(n) = P.(T,;7 > n) for some (or any) = € Ty.

Definition 2.2.3. Let Y be a finite tree. Let L(Y) = {y € Y : deg(y) = 1}.
Let N > 3. We define an infinite tree Yy as follows : We prepare Y and
|L(Y)| copies of Tiy(0). Let Yy be the infinite tree obtained by attaching
0 € Tn(0) to each y € L(Y).
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Lemma 2.2.4. Let N > 3. Let Y be a finite tree with a reference point o
such that deg(y) > 3 for any y € Y \ L(Y). Let Yy be the infinite tree in
Definition 2.2.3. Let R,, be the range of the simple random walk up to time
n—1onYy. Then,

Eo[R,]

lim =2 — g
n

n—oo

Proof. First, we remark that Yy satisfies (U) thanks to Lemma 2.2.2. For
m € N, let 1 = infyeyvi\Blom) Py(T, < +00) and Fy, 5 := SUD, ey \ Bloym) Py
00). We will show that for any m,

EO mn . EO mn
1 — F,,2 <liminf ﬂ < lim sup ﬂ <1-F,.. (2.2.1)

n— o0 n n—o0 n

By considering a last exit decomposition, we have that

Eo[Ry) =1+ > Po(S; =y)P(T, >n—1—1i)

=1+ > P(Si=y)P(T) >n—1-1)

1=0 yeB(o,m)

+nz > PSi=y)R(T,) >n—1—1i)

i=0 yeYy\B(o,m)

Therefore, we have that

<1+Z< (S; € B(o,m))+  sup Py(Ty*>n—1—i)>,

yeYn\B(o,m)
(2.2.2)
and,

[\

n—

Eo[Ry] > Y P,(S; €Yy \B(o,m)) _inf P/(T>n—1-1). (22.3)

y€YN\B(o,m)

Il
=)

%

We have that for any z,y € X,

e 1/2

By using (2.2.2), (2.2.3), (2.2.4), and, that Yy satisfies (U), we have
(2.2.1).
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We have that if m is sufficiently large, then, for any y € Yy \ B(o,m),

Py(TyJr = 400) = Py(TyJr >m/2) — P,(m/2 < TyJr < 400)
=gn(m/2) — P,(m/2 < T; < 400).

Since Yy satisfies (U) and limg_o gn (k) = gn,

lim F,,; = lim F,,>,=1—gn. (2.2.5)
(2.2.1) and (2.2.5) complete the proof. O

Proof of Theorem 1.1.3. First, we will construct an increasing sequence of
finite trees (X (), by induction on n. Second, we will show that the limit
infinite graph X of (X™),, satisfies (U), Fy < F, and (1.1.3).

Let 3 < N; < Ny. Let X be a finite tree such that deg(z) = N; for any
r e XW\ EBXWY)and XO = B(o, k) for a point 0 € XV and a positive
integer k.

We assume that X @1 ig constructed and X @1 = Bx@n-1(0, kop_1)
for a positive integer kg,,_1. Thanks to Lemma 2.2.4, there exists kq,, > 2ks,_1
such that for the simple random walk on (X 2"=1)y, starting at o,

E,[Ry,,] 1
— > — —. 2.2.6
Then we let X(2n) = ()((271'_1))]\[2 N B(X(Qn—l))N2 (0, k2n>
We assume that X" is constructed and X®" = By (0, kay,) for a
positive integer ky,. Thanks to Lemma 2.2.4, there exists ko, 11 > 2ko, such
that for the simple random walk on (X 2™)y, starting at o,

1
< gN1 + E (227)

Then we let X @1 — (X(Qn))Nl n B(X(2n))N1 (0, kant1)-

Let X be the infinite graph obtained by the limit of a sequence of (X ™).
Then, X is a tree with minimal degree at least 3. By Lemma 2.2.2, X satisfies
(U).

Now we show (1.1.3). We remark that the distribution of the simple
random walk up to time k — 1 on X starting at o is determined by Bx/(o, k),
k > 1. By the definition of X, (2.2.6) and (2.2.7) hold also for the simple
random walk on X. Hence,
EolR]

lim inf — < gn,, and, lim sup

n—0o0 n n—oo

Eo| Ry
Tl 5 o 228)
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By considering a last exit decomposition as in the proof of Theorem 1.1.2,
and, noting that X satisfies (U), we have

Eo[Ry)

1 — Fy = inf Py(T = +00) < liminf , (2.2.9)
zeX n—00 n
and,
E,| Ry
lim sup [Fin] <sup P.(T,] = +00) =1— Fy. (2.2.10)
n—o0 n reX

In order to see (1.1.3), it is sufficient to show that for any = € X,
gn, < Po(T. = +00) < gn,. (2.2.11)

We can regard T, as a subtree of X, and, X as a subtree of Ty,. By
using [70] Theorem 2.2.7 and the monotonicity of the effective resistance, we
see that if degy (z) = Ny, then,

gv, = Ny 'pry (@) < Nyl px (2) ™ = Po(T = +o0) < Ny oy, (2) ™) = g,
and, if degy (z) = Ny, then,
gny = Ny oy, (2) 7 < Nyl ()™ = Po(T = +00) < Nypry, ()7 = g,

Thus the proof of (2.2.11) completes and we obtain (1.1.3).

By using [110] Lemma 1.24 and N; < N,, we see that gy, = (N —
2)/(Ny — 1) < gn, = (Ny — 2)/(N — 1). By using (2.2.8), (2.2.9), (2.2.10)
and (2.2.11), we see gy, = 1 — F» and gy, = 1 — Fy. Hence F} < F5.

Thus we see that X satisfies (U), F} < Fy, and, (1.1.3). O

2.3 Examples of graphs satisfying the uni-
form condition

In this section, we give some examples of graphs satisfying (U). We assume
that all weights are equal to 1.

Here we follow [70] Definition 2.1.8 for the definition of rough isometry
introduced by Kanai [63].

Definition 2.3.1. Let X; be weighted graphs and d; be the graph metric
of X;, i = 1,2. We say that a map T : X; — Xy is a ((A, B, M)-)rough
isometry if there exist constants A > 1, B > 0, and, M > 0 satisfying the
following inequalities.

A_ldl(x7y> - B S dQ(T(.T),T(y)) é Adl(aj)y) + B7 z,y € Xl-
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dQ(T(Xl),Z) S ]\4—7 A XQ.

We say that X is roughly isometric to X, if there exists a rough isometry
between them. We say that a property is stable under rough isometry if
whenever X satisfies the property and is roughly isometric to X5, then X,
also satisfies the property.

2.3.1 Recurrent graphs

Proposition 2.3.2. The condition (U) is stable under rough isometry be-
tween recurrent graphs.

We do not know whether (U) is stable under rough isometry between
transient graphs.

Proof. Assume that X; is a recurrent graph satisfying (U) and X5 is a (re-
current) graph which is roughly isometric to X;. We would like to show that
X, satisfies (U).

Since rough isometry is an equivalence relation, there exists a (A4, B, M)-
rough isometry T : Xy — X;. Fixn € N and x € X,. Let f be a function
on X; such that f(T'(x)) =1 and f =0 on X; \ B(T(z), A~'n — B). Since
T is a (A, B, M)-rough isometry, we have that for any y € X, \ B(x,n),
T(y) € X;\ B(T(z),A~'n — B), and hence, f oT =0 on X5\ B(z,n).

By using Theorem 3.10 in [110], we see that there exists a constant ¢ > 0
such that Ex, (f, f) > cEx,(f o T, f o T). This constant does not depend on
(x,n, f). Therefore,

inf {Ex, (f, f): f(T(z))=1,f=0o0n X; \ B(T'(z),A"'n— B)}

> cinf{€x,(g,9) : g(x) =1,9g=0o0n Xy \ B(z,n)}.

Hence, px,(z,n) > cpx,(T(x), A~'n— B). By recalling that X satisfies (U),
we see that X, satisfies (U). O

Proposition 2.3.3. Let X be a graph such that there exists C' > 0 such that
V(z,n) < Cn? for any x € X and n > 1. Then, X satisfies (U).

We can show the above assertion in the same manner as in the proof of
[110], Lemma 3.12, so we omit the proof.

Proposition 2.3.4. Let X be a graph such that
lim inf Zpk(x,a:) = +00. (2.3.1)
k=0
Then, X satisfies (U).
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Proof. By noting [70] Lemma 4.1.1(iv), we see that p(z,n) = ¢g®@"(z, z),
x € X, n>1. Since pkB(x’n)(x,x) = pr(z, z) for k < n,

p(x,n) = gB(Ln)(xax) > Z pk(.T,l').

0<k<n
By noting (2.3.1), we see X satisfies (U). O

By using Section 5 in Barlow, Coulhon and Kumagai [8], we see that the
d-dimensional standard graphical Sierpinski gaskets, d > 2, and Vicsek trees
(See Barlow [5] for definition) satisfies (2.3.1). Thus we have

Example 2.3.5. The graphs which are roughly isometric with the following
graphs satisfy (U).

(i) Infinite connected subgraphs in Z2.

(ii) Infinite connected subgraphs in the planer triangular lattice.

(iii) The d-dimensional standard graphical Sierpiriski gaskets, d > 2.

(iv) Vicsek trees.

2.3.2 Transient graphs

We say that X satisfies (UC,), o > 2, if there exist C' > 0 such that
SUpex Pul(®,2) < Cn~/2 for any n > 1. The stability of the property
(UC,), a > 2, under rough isometry follows from Varopoulous [108] Theo-
rem 1 and 2, and, Kanai [64] Proposition 2.1.

Proposition 2.3.6. If X satisfies (UC,) for some a > 2, then, X satisfies
U).
Proof. Let m > n. Then, by using [70] Lemma 4.1.1(iv) and p?""™ (z,z) =

B )
L (z n)(

x,x) = pr(x,x) for k < n,
p(x,m) — p(z,n) = "= )( ) g7 (@, x)

— Z pP ™ (2, ) — pPU (2, 2))

k>n

< Zpk(x,x).

k>n
Letting m — oo,
p(z) = plz,n) <Y pr(z,z),2 € X,n > 1.
k>n
Thus we see that if X satisfies (UC,) for some a > 2, then X satisfies
(U). [
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7% satisfies (UCy). By using Barlow and Bass [6], [7], we see that if d > 3,
then d-dimensional standard graphical Sierpinski carpet satisfies (UC,,) for
some « > 2. Therefore we have

Example 2.3.7. The graphs which are roughly isometric with the following
graphs satisty (U).

(i) 24, d > 3.

(ii) d-dimensional standard graphical Sierpiniski carpet, d > 3.

2.3.3 A graph which does not satisfy (U)

Finally, we give examples of recurrent and transient graphs which do not
satisfy (U).

Remark 2.3.8. The recurrent tree T" considered in [110], Example 6.16 does
not satisfy (U). T is constructed as follows : Let the vertex set V := {{z,,;
1 < i< 2% n > 0}} and the edge set E = {{zo1, 211}, {01, 212}} U
{@nis Tngr} 1 3i—2< 5 <3i,1<i <21 n>1}

U{{Tni, Tny1onpi} : 27 +1<i<2" n>1}. Then, T = (V, E). For any
n > 1, there exists x, € T such that p(z,,n) = pr,(z,,n), where Ty is
the 4-regular tree. Since T} is vertex transitive and transient, we have that
o1y (T, n) < pr,(z,) = pr,(0) < 400, n > 1, for a reference point o € Ty.
However, T is recurrent and hence p(z,n) — oo, n — oo, € T. Thus we
see that 7" does not satisty (U).

Now we give an example of a transient graph which does not satisfy (U).
Let T5 = (V(T3), E(T3)) be the 3-regular tree and o be a point of T3. Let
C = {¢; : i > 1} be an infinite countable set. Let V := V(T3) U C' and
E = E(T5)U{o,c1} U{{ci,ciy1} : i > 1} and define a new tree 17" := (V, E).
Then, T" is transient. Reg(cn, V' \ B(cy,n)) = n/2 and Reg(c,, V \ B(cn, n —
1)) = (n—1)/2 and hence 7" does not satisfy (U).
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Chapter 3

Singularity results for
functional equations driven by
linear fractional
transformations

This chapter will be based on [82]. This chapter is organized as follows. In
Section 3.1, we state some lemmas. In Section 3.2, we show the main results.
In Section 3.3, we state a relationship between these functional equations
and stationary measures. In Section 3.4, we give examples and remarks.

3.1 Lemmas

First, we introduce some notation.

Let X, : [0,1) — {0,1} , n > 1 be given by X, (z) = [2"z] — 2[2" '],
r € [0,1). Let p,(ir,...,0n) = ur({X; = i;,1 < j < n}) for n >
i1y ..yin € {0,1} and R, (x) = pp(Xi1(z), ..., Xp(x)) forn > land z € [0,
Let
() = [0 279 X,(2), 350, 279X, (2) +277) = [277[2%], 27 ((2"] + 1),
Then, = € I( ), x €[0,1), and, X,,(v) = X, (x) and I,,(y) = I,(x) for y €
I,(z). We have that R,(z) = uf({X Xi(x),1 <j<n}) = pur(l(x)).

Let
(ngg EZEiD = Ax,@) Ax@); T €10,1).

b

1
1).

Lemma 3.1.1. Let n > 1 and iy,...,i, € {0,1}. Then we have the follow-
mng.
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(1) f (301 2771)) = DAy -+ A3,50) and f (307, 27715 +277) = B(A;, -+ Ay 5 1),
(2) Ruga(x )/R (%) = Pxois @) (P (@) /50 ()).

Proof. (1) By recalling (1.2.1), we easily show the assertion by induction in
n.
(2) By the assertion (1), we have that

Rk(x) = CI)(AX1 AXk(x ) 1) cI)<14X1(oc) U AXk(a:); O)
_ p(2)s ( )_Qk( )ri(z)
si(w) (ri() + se(x))

By computation, we have that

(@) (detAx,,,@)sn(7)
R,(x) b1 (@)"n(T) + dx, ) (2)5n(2)
ro(x) 4 $p(x)
(aXn+1(3f) + bXnJrl(f)) ra(z) + (CXn+1 +dx, 1 (2) ) sn()

X

By noting (A2), we have that

Ry () (M) .

Ru(w) — e

Thus we obtain the assertion (2). O

Now we state some properties of ®(*4;;-), i =0, 1.
We remark that ®(*Ag;-) (resp. ®(*Ay;-)) is well-defined and continuous
on R (resp. (—v,00)).

Lemma 3.1.2. (1) dy > a9 >0, by +¢; >0 and a > —1.
(2) ®(*Ag; 2) = 2z if and only if z = ¢o/(do — ap).-
(3) ®(*A1;2) =z if and only if z = —1 or z = ¢, /by.

Proof. (1) By (A2) and (A3), we have that dy > 0, and then ay > 0. By
(A3) and (A1), we have that 0 < (agdg)"/? = (apdo — boco)'/? < dy and then
0 <ag<dy.

By (A1), we have that a; + b; = ¢; + d; and then a;dy — bic; = (¢ +
d1)(dy—b1). By (A2) and (A3), we have that ¢; +d; > 0, and then d; —b; > 0.
By (A3), we have that 0 < (¢; +d;)"?(d; — by)'/? < ¢; + d;. Hence we have
that d; — by < ¢1 + dq, and then by + ¢; > 0.

By (A2) and (A3), we have that d; > 0. By (Al), we have that b; > 0.
Since by +¢; > 0, we see that ¢y /by > —1. Then, we have that ¢y/(dy — ag) >
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—1 by noting (A1) and ay < dyp. Now we have that a = min{0, co/(dy —
CLQ),Cl/bl} > —1.

(2) Since by = 0, we have that ®(*Ag;2) — 2z = —(do — ag)z/dy + co/do.
Since dy > ag, we see that ®(*Ag; z) = z if and only if z = ¢q/(dy — ag).

(3) Since

—0122 — (dy —a1)z + ¢

CI) tA . _ —
(4i2) == biz +d;
- (—b12+C1>(2+1) . _(Z+ 1)(2-01/()1)
biz +dy Z+7 ’
we see that ®(*A;;2) = z if and only if 2z = —1 or 2 = ¢ /b;. O

Let Fn = O'(Xl, e ,Xn), n>1. Let Ln = Z:Lzl E'U’f[— log(RZ/Rl_l)Lﬂ_l]
and M,, = —log R, — L,,, n > 1. Then we have the following.

Lemma 3.1.3. We have that

(1) Loa(2) = La(x) = s(po(ra()/sn(x))) for ps-a.s.x € [0,1).
(2) M,/n— 0, (n— o0) for js-a.s.

Proof. (1) It is sufficient to show that for any = € [0,1),

/In(x) § (po (Z:—Eny) py(dy) = /In(x) —log (ngzzg)) 1y (dy).

Since 7, (y)/sn(y) = rn(x)/sn(z) for y € I,(x), we see that

[ G (i) Y tin =stastons (i (555 )

By Lemma 3.1.1(2), we see that

,Uf(]nJrl(y)) Ry (y) TTL(:E)

—log ———F=~ = —log = —logpx, ., ,
17 (La(y)) Ru(y) aw

<

W

and,

/In(x) ~los <Rf§:z > / —log (an+1(y) <T:—Ez§)> fs(dy)

T R =) 1°gp°< i) () 0 X = ) togp (2
)5 (ulra(2)/50(2))),

= pug (In(x

36



which implies the assertion (1).
(2) By noting Jensen’s inequality, we have that
EM [(My — Mj—1)?] < 2 (B [(—log Ry, + log Ry—1)*] + E" [(Ly, — Lg—1)?])
< 4B [(—log Ry + log Re_1)?] .
Let Cy = sup {z(logz)?+ (1 — z)(log(1 — z))? : z € [0,1]} < +o00. We
will show that E* [(log(Rny1/Rn))?] < Cp for any n > 1.

Let 7(p) = p(logp)? + (1 — p)(log(1 — p))? for p € [0, 1]. We remark that
7(p) = 7(1 — p). Then we have that

2n—1

E*1 [(—log R, +log Ry 1)?] = kZ:O Ky (I” (2@1)) (k)g %)2

L (3) (i)

(1 (Pt Lo 2k +1/27) 2
A\ Ton SR (2k+1/27))
By noting that R,,—1(2k/2") = R,—1(2k+1/2") = R,—1(k/2"1), ps (1,(2k/2™)) =
R, (2k/2") and pyf (1,(2k +1/2")) = R,(2k + 1/2™), we have that

R, \Y] T k R, (k/2" )
1 = R, —— ) < (.
(oe7.5) ] 2 o ()7 (i) <O
Thus we have that supys, E*/[(M, — Mj_1)?] < 4Cy < 4o00. Since {M,}
is an {F, }-martingale, { M?} is an {F, }-submartingale. Noting that M, = 0,
we have that E#/[M?2] = >0 EF (Mg — My_1)?).
By Doob’s submartingale inequality, we have that

ErM2]  4AC,
2 l 9l 0
uf(lrgnkegle>e4)< A < 62l,l>1,e>0.

Er

Now we have that for ps-a.s.z, there exists m = m(z) € N such that
max;<p<o(Mi(7)/2")* < €, | > m, and then, (M,(z)/n)* < 46, n > 2™,
Then we see that limsup,,_, . (M,/n)? < €, ps-a.s., which implies our asser-
tion. [l

Lemma 3.1.4. (1) Suppose that limsup,,_,, . (—logR,)/n < 0 for a con-
stant 6, then there exists a Borel set Ko such that ug(Ko) = 1 and dimpy (Kjp) <
6,/ log 2.

(2) Suppose that liminf, . (—log R,)/n > 6y for a constant 02, then we
have that ps(K) = 0 for any Borel set K with dimy(K) < 65/ log 2.
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Proof. We denote the diameter of a set G C R by diam(G).

(1) Let Y, , = o, {(—log Ry,)/k < 61 + €}. Then we have that yiy (>, Yen) =
1. Let A, be the set of I(x), x € [0, 1), such that Ry(z) > exp(—k(0; +¢)).
Then, for any k > n, {Ix(z) € Ay : x € Y., } is a 27%-covering of Y, ,,.

Since pr([0,1)) = 1, we see that #(Acx) exp(—k(0; +¢€)) < 1. Then

Z diam(I)1F29/182 — 4( A ) exp (—k(0; + 2€)) < exp(—ke).

IE.AS’/g

By letting k — +00, we see H(g,12¢)/10g2(Yen) = 0.

Let Ky = ﬂk21 Un21 Y1 /kn- Then, we have that pr(Ko) = 1 and Hp, 42¢)/10g2(K0) =
0 for any € > 0. Hence dimpy(Ky) < 6,/log?2.

(2) Let K be a Borel set such that dimy(K) < 05/log2. Then, there
exists € > 0 such that Hg,_¢)/1052(K) = 0. Then, for any n > 1 and § > 0,
there exist intervals {U(n,1)};2, on [0,1) such that K C U5, U(n,l) and
diam(U(n,l)) < 27" for [ > 1 and >, diam(U(n, 1))#2-9/182 < 5. For
cach | > 1, let k(n,1) > n be the integer such that 27*™) < diam(U (n, 1)) <
9= (k(n,l)=1)

Let Ze, = sy 1(—log Ry)/k > 65 — €}. Then we have that
My, oo pif(Zen) = piy (Un21 Ze,n) =1, and,

15 Tk () = Ry (y) < exp (—k(n,1)(85 — €)) < diam(U(n, 1))/ oe2,

forye Z.,, and [ > 1.

Since diam(Iy(, ) (z)) = 27¥m0 and diam(U(n,1)) < 2=*00=D " e see
that § { Ly (2); Temp () N U(n, 1) # 0} < 3 and that
pp (KN Zo,NU(n, 1)) < 3diam(U(n, 1)) 029/ los2,

Noting that K C ;s U(n,!1), we see that

pr(KNZen) <3 pp(KNZeuNU(n, 1) <3 diam(U(n, 1)) %7912 < 36,

>1 1>1

Since 0 is taken arbitrarily, we see that pu;(K N Z.,) = 0. Recalling
1tf (Unst Zen) = 1, we see that pus(K) = 0. O

3.2 Proofs of Main Theorems

Lemma 3.2.1. Letn > 1 and iy,...,i, € {0,1}. Then,
a < O(A;, -+ Aja) SO(A;, Ay 8) < 6.
In particular, r,(x)/s,(z) € [o, B] forn>1 and x € [0,1).
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Proof. By noting Lemma 3.1.2, we have that ®(*Ag; 2) —2z = —(do—ag)z/do+
co/dy and P(*A1;2) — 2z = —(z + 1)(z — e1/b1)/(z + 7). We remark that
a>—1> —~. Since o < ¢/ (dg—ap),c1/by < 3, we see that o < ®(*A4;; ) <
O('A;; 8) < B fori =0, 1.

Since ®(‘Ap;-) and ®(‘A;;-) are increasing, we obtain the assertion by
induction in n.

We have that a < 0 < g by the definition of o and . Since r,,(z)/s,(z) =
P(*Ax, () - "Ax,(2): 0), we see that 7, (x)/s,(z) € [, O] O

Now we show Theorem 1.2.1.
By noting Lemma 3.1.3 and Lemma 3.2.1, we see that for ps-a.s.,

N
' —logR, .. L, . 1 ()
hmsupT:hmsupgzhmsupNZsQ)O< ))

n—+o0 n—oo N—oo n=1 Sn (ZL’)

< max {s(po(v));y € [o, B},

and,

N
.. .—logR, .. . L, .1 Tn ()
liminf ——— = liminf — = lim inf N E s (po ( >>

n—-+o0 n n—oo T N—o0 Sn(l.)
> min {s(po(y)); ¥ € [a, B]}.

Let 6 = max{s(po(v));y € [a, 5]} and 6y = min{s(po(v));y € [, 5]}
Then, by Lemma 3.1.4(1) (resp. (2)), we obtain the assertion (1) (resp. (2)).
These complete the proof of Theorem 1.2.1.

Lemma 3.2.2. Let Nyj(z) = {n € N: X, (z) =i} forx € [0,1), i =0, 1.
Then,

n=1

N—oo N
Proof. Let Cy(x) = [No(2) N {1,..., N} Then, Cw(z) = S22, 110y (Xa(a)).
Let M, = > ", (140}(Xn) — po(a)). Then, {M,} is an {F,}-submartingale
because

> po(ar) >0, py-a.s.x.

B M1~ M )(0) = B 10 (o) -l 5,1e) = o (2451 ) () 2 0

We remark that |M,1 — M,| = [Lioy(Xn+1) — po(@)| < 1+ po(a) for
pr-a.s.. By Azuma’s inequality! [4], we see that for N € Nand 0 < ¢ < 1,

pp(Cnv < Nepo(a)) = pp(My < —N(1—c)po(a)) < exp <_]\;((11120é92§;) ) '

1t is also called Azuma-Hoeffding inequality. See Exercise 14.2 in Williams’ book [109]
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Hence, for any 0 < ¢ < 1, iminfy_ .o (n/N > cpo(a) for ps-a.s.. Thus we
obtain the assertion. O]

Lemma 3.2.3. We assume that the condition (i) in Theorem 1.2.2 fails.
Then,

(1) There ezists €y € (0,2(y—1)) such that for any z € R with |z —(y—2)] <
€0, [D("Ao; 2) — (v = 2)| > €o.

Let A(x) = {n e N:[r(2)/sn(z) = (v = 2)| <&}, B(r) = N\ Az),
Cz)={ne€ A(x) :n—1¢€ B(x)} and D(z) = B(z) UC(x). Then we have
the following.

(2) No(z) € D(x) for z €[0,1).
(3) iminfy_o |B(x) N{1,...,N}|/N > po(c)/2, prs-a.s.x.
(4) Let eg = s(po(y — 2+ €9)) < log2. Then,

N
1 log2 —
lim sup — g S (po (rn(a:)>) <log2 — (log eo)po(a)7 [f-0.8.T.

Nooo N Sn(T) 2

n=1

Proof. (1) This is a direct consequence of the assumption that the condition
(i) in Theorem 1.2.2 fails, that is, ®(*Ag;y —2) # v — 2.

(2) It is sufficient to show that N\ D(z) C Ny(x). We see that N\ D(z) =
A(z)N(N\ C(z)) = {n € A(z) : n—1 € A(zx)}. We assume that there
exists n € N\ D(x) such that n € Ny(x). Since n — 1 € A(x), we have
that |r,—1(z)/sp_1(x) — (v — 2)| < €. Since n € Ny(z), rp(z)/s,(z) =
O("Ag;rp_1(x)/sp_1(x)). By the assertion (1), we see that |r,(z)/s,(z) —
(v — 2)| > €. But this is contradict to n € A(x).

(3) By the assertion (2), we see that |[No(z) N{1,...,N}| < |D(z) N
{1,..., N}|. We have that |C(z)N{1,...,N}| < |B(x)Nn{l,..., N}| for any
N > 1, by the injectivity of the map h : C(x) — B(x) given by h(n) =n—1.
Then we see that |D(x) N {l,...,N}| < 2|B(x) N {1,...,N}|, and then,
No(z)N{1,...,N}| <2|B(z)n{1,...,N}|, for any N > 1.

By Lemma 3.2.2,

[B(z)N{L,..., N} pola)

lim inf

-a.8.7.
hmin N s f

Thus we obtain the assertion (3).
(4) By noting the definition of B(z), we see that

s(po(rn(z)/sn(x))) < max{s(po(y —2 —€)),s(po(y — 2+ €0))} = € for any
x €[0,1) and n € B(x).
Now we have that

() [ 2 e s Je(w(2)).

neA(x),n<N neB(z),n<N
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Let {n(x) = |B(x)N{1,..., N}|/N. Then, by noting that s(po(r,(z)/s.(z))) <
log 2, we see that

% > 5<p0 (m@))S|A(x)m{1,...,N}|bg2:(1_£N(m))10g2'

N
neA(z),n<N

Now we have that

v o2 () sete

neB(x),n

By noting that eg < log 2, we see that

limsup ((1 — &n(2)) log 2 + En(x)en) < log2 — (log2 — e) li]\rfn inf &y ().
N—oo oo
By the assertion (3), we see that liminfy_.. En(z) > po(a)/2 > 0 for py-
a.s.z. Thus we obtain the assertion (4). O

Now we show Theorem 1.2.2 (1). We remark that ®(cA; z) = ®(A4; z) for
any constant ¢ > 0 and the conditions (A1) - (A3) remain valid for (cAo, cA;).
Then, we can assume that dg = 1 and b; = 1.

By computation, we see that

_(1/2 0 (4o +1 1
A°_<c0 1)’ Al_( 2¢o 2(1+c0))’

and f(z) = Sy —fl e satisfies the equation (1.2.1). This completes

the proof of Theorem 1.2.2 (1).

Now we show Theorem 1.2.2 (2). We assume that the condition (i) fails.
Then, by Lemma 3.1.3, we have that for ps-a.s.z,

. —log Ry(z) . Ly(r) . 1« ()
hmsupT—hmsup N —hmsupNZs Do sn—(x) .

N—4o00 N—oo N—o0 n—1

Then, by noting Lemma 3.2.3(4) and Lemma 3.1.4(1), we obtain the desired
result.
We can show the assertion in the same manner if the condition (ii) fails.
These complete the proof of Theorem 1.2.2(2).
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3.3 A relationship with stationary measures

In this section, we state a relationship between a certain class of de Rham’s
functional equations and stationary measures.

We state a general setting. Let G' be a semigroup and p be a probability
measure on G. Let M be a topological space. We assume that G acts on
M measurably, that is, there is a map from (¢g,2) € G x M to g-x € M
satisfying the following conditions :

(1) (9192) - @ = g1 - (g2 - x) for any g1,9> € G and = € M.
(2)  — ¢ - x is measurable map on M for any g € G.
We say that a probability measure v on M is a u-stationary measure if

v(B) = /Gu(hlB)u(dh), (3.3.1)

for any B € B(M). Furstenberg [36] Lemma 1.2 showed that if M is a
compact metric space, then there exists a p-stationary measure.
Let

G:{(Z Z) EM(2;R):ad>bc,b20,d>0,0<a—|—b§c+d}7

and, M = [0,1]. Then G is a semigroup. We define a continuous action
of Gto M by A-z = ®(A;2). For (Ap, Ay) satisfying (A1)-(A3), we see
that Ay, A; € G. Let u be a probability measure on G such that u({Ay}) =
u({A1}) = 1/2. Then we have the following.

Lemma 3.3.1. (1) For k > 1,

{Ao%f(fk(x))) F(I 1 (22)), A
AT (@) = 0, AT (F (i)

(k@) =0 ze0,1/2)
)= f(I—1(2x — 1)) =€ [1/2,1).

(2) For any p-stationary measure v and k > 1,

v(f(Ik-1(22)))/2 z€[0,1/2)

V(fkle)) = {y(f([k_l(% —))/2 well/20).

(3) There ezists exactly one p-stationary measure v.

Proof. (1) By Lemma 3.1.1(1), we see that

k(@) = P(Ax,(2) - Ax()3 [0, 1)) = P(Ax, () P(Axy(e) - Axp3 |
We see that f(I;-1(22)) = ®(Ax,@) - Ax 10,1)) = A5 (f(Lu(2))
0,1/2), and, f(Ix_1(2z — 1)) = ®(Ax, () - AXk [0, !
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[1/2,1). Since ®(4y[0,1)) N (4 [0,1)) = 0, A7 (1)) = D,
€ [0, 1/2), and, Ay (f(I(x))) = 0, x € [1/2,1). Thus we have the asser-

tion (1).

(2) By noting the assertion (1) and (3.3.1), we obtain the desired result.

(3) Let v, i = 0,1, be two u-stationary measures. By the assertion (2),

we see that vo(f(Ix(x))) = vi(f(Ii(2))) for k > 1, x € [0,1). Let

C= {f(Zlez—ij(a:)) E>1,2€(0,1) } ={f(/2¥):0<1 <281 k> 1},
Then, we have that v([a, b)) = v1([a,b)) for a,b € C. Since f is continuous
on [0,1], C is dense in [0, 1]. Thus we see that vy = v;. O

Lemma 3.3.2. Let g : [0,1] — [0,1] be the inverse function of the solution
f of (1.2.1). Then,

(1) g is continuous and strictly increasing. Hence, p, is well-defined.

(2) py is singular if and only if pg is so.

Proof. (1) Noting that f is continuous and strictly increasing on [0, 1], f(0) =
0 and f(1) = 1, we obtain the desired result.

(2) Since I([a, b)) = iy (f~([a,5))) = ptg (97 ([a,b))) for 0 < a < b < 1,
we see that I[(B) = s (f~1(B)) = p, (¢~ *(B)) for any Borel set B.

We assume that py is singular. Then, there exists a Borel set By such
that pup(By) = 0 and [(By) = 1. Then, pu, (g7 *(By)) = 1 and I (¢7*(By)) =
pr (f74g7*(Bo))) = py(Bo) = 0. Thus we see that p, is singular.

We assume that ji, is singular. Then, we see that pf is singular in the
same manner as in the above argument. O

The following theorem gives a necessary and sufficient condition for the
regularity of the stationary measure in this setting.

Theorem 3.3.3. Let the conditions (i) and (i) as in Theorem 1.2.2 and v
be a unique p-stationary measure. Then, we have

(1) v is absolutely continuous if and only if both (i) and (ii) hold.

(2) v is singular if and only if either (i) or (i1) fails.

Proof. 1t is sufficient to show “if” parts.

(1) By noting Theorem 1.2.2(1), we have that f(z) = z/(—2cox +2co+1)
and then ¢g(y) = (2¢o + 1)y/(2¢coy + 1). By Lemma 3.3.2(2), we have that p,
is absolutely continuous and obtain the assertion (1).

(2) We see that pug(f(Ik(x))) = pg(g7 (In(x))) = 27F, z € [0,1), k > 1.
By Lemma 3.3.1(1),

1
g (F(I(@))) = 5 (g (Ao (F (1)) + g (AT (F(Ie(@)))) ), 2 € [0,1), & >
1. Then we see that (3.3.1) holds for [a,b), a,b € C and that p, is a p-
stationary measure. By noting Theorem 1.2.2(2), we have that p ¢ is singular.
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By Lemma 3.3.2(2), we have that pu, is singular and obtain the assertion
(2). O

3.4 Examples and Remarks

The following example concerns Lebesgue’s singular functions.

Example 3.4.1. Let us define 2 x 2 real matrices A,, A,1, p € (0,1), by

p 0 I—p p
A”’°:<O 1)’APJ:( 0 1)'

Then, (Ao, A1) = (4,0, Ap1) satisfies the conditions (A1)-(A3).

Let f, be the solution of (1.2.1) for (Ay, A1) = (4,0, Ap1). By the main
theorems, we immediately have the following.
(1) py, is absolutely continuous if p = 1/2, and puy, is singular if p # 1/2.
(2) There exists a Borel set K, such that puz (K,) = 1 and dimg(K,) <

s(p)/ log 2.
(3) ps, (K) = 0 for any Borel set K with dimg(K) < s(p)/log 2.

The following example concerns the range of self-interacting walks on an
interval in [83]. This is used in Section 1.3 and Chapter 4.

Example 3.4.2. Let z, = 2/(1 + VI +8u?), u > 0. Let A,;, i = 0,1, be
two 2 x 2 real matrices given by

~ Ty 0 ~ 0 Ty,
4 N 4 J— >
w0 (—u%i 1> » Ful (—u%i 1-— u2x2) yuz0.

u

Let 0 < u < v/3. Then (Ag, A1) = (Ao, Ay1) satisfies the conditions
(A1)-(A3). Let g, be the solution of (1.2.1) for (Ag, A1) = (Aug, Au1). We
remark that v = (1 — v?22) /2, = (1 + z,)/22,. By the definition of z,, we
see that each of the conditions in Theorem 1.2.2 is equivalent to =, # 1/2,
that is, v # 1. Then, by Theorem 1.2.2, we have that p,, is singular for
0 < u < /3 and u # 1, and absolutely continuous for v = 1.

Let 0 < u < 1. Then we have that z,, > 1/2, o = min{0, —1/2, —u?z,} =
—1/2, 8 = 0 and v < 3/2. Hence we see that v — 2 < «, in particular,
v —2 ¢ [o, 8]. By Theorem 1.2.1, we see that there exists a Borel set K,
such that dimpy(K,) < s(po(a))/log2 = s(z,)/log2 and pu,, (K,) = 1 and
that pg, (K) = 0 for any Borel set K with dimpy(K) < s(po(8))/log2 =
s(2x, /(1 + z,))/log 2.
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Remark 3.4.3. (1) Pincus [89], [90] obtained results similar to Theorem
3.3.3. Hata [50] Corollary 7.4 showed the singularity of the solution of (1.2.1)
under the assumptions similar to the ones in [90] Theorem 2.1.

(2) Let T': [0,1) — [0, 1) be given by T'(z) = 2z mod 1. Then, by compu-
tation,

ur (1) = [ (P () + S (1)) st 4 € (.1

We see that T is a non-singular transformation on [0, 1) with respect to py,
that is, upoT ' < ppand pp < ppoT'. We remark that p; is not invariant
with respect to 1" in some cases.
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Chapter 4

On the range of self-interacting
random walks on an integer
interval

This chapter will be based on [83]. In Section 4.1, we give some preliminaries.
In Section 4.2, we show the main results.

4.1 Preliminaries

We briefly state our settings by following [24] and [51]. See the references for
details.
For each n € NU {0}, let

W(n) = {(w(0),w(1)...w(n)) € Z"":w0) =0, |w(i)—wi+1)|=1,0 <i < n-1}.
Let W* = U2 ;W(n). Let L(w) = n for w € W(n). For w € W*, we define

TM(w), i, M € NU{0}, by Tg¥(w) = 0,
() = min {j > T (0) : w(j) € 2\ (T @)}} i > 1

7

Let TM(w) = 400 if the above minimum does not exist.

We define a decimation map Qy : W* — W* M € N, by (Quw)(i) =
w(TM(w)) for 4 such that TM(w) < +oo. Let Qo be the identity map
on W*. Let (27MQpnw)(i) = 27 Mw(TM(w)). Then, 27MQyw € W* and
L(2™MQpyw) = k, where k = max{i : TM(w) < co}. Let Wy t(resp.—) = {w €
W*: L(w) = TN (w), w(T) (w)) = +(resp.—)2V } and Wy = Wy, U Wy _.

For w € Wyin, let o = 27¥Qnw. For 1 < j < L(W'), we let w; =
(0, (T4 (@) + 1) — (T, (@), - (TN () — (T, (@))) € Wy, and,
& = sign (w(T)¥ (W) — w(T}Y,(w))) wj € Wi+
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Now we will define a probability measure Py, u > 0, on Wy + by induc-
tion on N in the following manner. We recall that x, = 2/(1 + v/1 + 8u?).
Let P, ({w}) = ul@ =211 e Wy L where we adopt the conventions
0°=1and 0"=0,n>1. Forw € Wi+, let

L(w")

Py ({wh) = P ({w')) H Py ({@i}). (4.1.1)

We define Py _({w}) = Py, ({—w}) forw € Wy _, N € N. Let Py be a
probability measure on Wy given by Py = (PN, + Py _)/2.
We denote the set of the paths of infinite length by

Weo = {(w(0),w(1),...) € Z"D 1 5(0) = 0, |w(i) —w(i+1)| =1,i>0}.

Let the o-algebra on this set be the family of subsets which is generated by
cylinder sets. By [26], Proposition 2.5, there exists a probability measure P*
on W, such that

P ({w € Wee 2 w(3) = 3), 055 < L@)) = 3Pl e (B,

for any W € Wy 4 (resp.—), IV > 1.

4.2 Range of random walk on the interval
[—2",2"] and its scaling limit

Here and henceforth, we assume that u > 0.

First we will show Theorem 1.3.2. The main ingredient of the proof is to
show that g,(k/2") := P}, (R, < 2"+ k — 1) satisfies (1.3.1) on the dyadic
rationals. This depends heavily on the definition of P, in Section 2. Then,
we will see that the right continuous modification of g, satisfies (1.3.1) on
[0,1]. Next, we will show that the distribution of R,,/2" — 1 converges to g,
weakly as n — oo and examine the regularity of g,.

We remark that P*(R, = 2" + k) = P!, (R, = 2"+ k), 0 < k < 27,
n > 1.

Lemma 4.2.1.

. (Ry k . (R, k
PN,+(2—N—1227)=P71,+<2—”—122—”)7

forany N >n, 0<k<2" andn > 1.
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Proof. Let N > n. Then,

Py (% —1> 2%) = Py ({w € Wy : whits the point {—2"""k}})
= P} . ({w: Qn_nwhits the point {—2V""k}})
=Py, ({w: 2~ (N=m) Q) y_,w hits the point {—k}})

= P, ({¢ € Wy, 4 : Chits the point {—k}})

i (f025).
2n 2n

where in the fourth equality we have used [26] Proposition 2.2. O

Definition 4.2.2. (1) Let g, be a function on D given by ¢, ((k +1)/2") =
Py (R, <2"+k), -1 <k <2"—1. By Lemma 4.2.1, this is well-defined.
We immediately see that g,(x) is increasing and ¢,(0) = 0, g, (1) = 1.

(2) Let g, be a function on [0,1] given by g,(z) = limyep ysuy—z Gu(Yy),
0 <z <1and g,(1) = 1. This is right continuous.

The following is a key proposition.
Proposition 4.2.3. The function g, satisfies (1.3.1) on D, that is,

D (Ayo; PP (R, <2+ k) —1<k<2"—1

P (Rpp1 < 2"M4k) =
n+1,+( +1 = ) {CI) (Au,hP#’_F(RnSk)) om _ 1 §k§2n+1_1

Proof. If k = —1, we have that ® (A,0; PY (R, < 2" +k)) = ®(A,;0) =
0=PY, (Royr <21 4 k). If k= 2" — 1, we have that

o (Au 0; P (Rn S 2"+ k)) = (I)(Auﬂ; 1) = (I)(Au,l; 0) = (Au,l; P#,-l—(Rn S k))
Then, it is sufﬁcient to show this assertion in the following two cases. For
any w € W41 4, define (W', @1, ..., W) as in Section 4.1.

Case 1. 0 < k <2™ —1. We have
Py Ry <2 4k) = Z o ({w s LW) = 2m, Rypa(w) < 277+ k)).

Since 0 < k£ < 2" — 1, we see that ' € Wj, does not hit —1 for any
w € Wypy 4 with R,y (w) < 2" + k. Then we see that
{w: L) =2m, Ryj1(w) <2"' + k}

={w:w =1(0,1,0,1,...,0,1,2), L(w') = 2m, Rp(@si1) < 2"+ k, 1 <i<m}.
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By (4.1.1), we see that
Pl ({w: L) =2m, Rypi(w) < 2" + k})
=P' ({¢:¢=1(0,1,0,1,...,0,1,2), L(¢) = 2m}) - P}, (R, < 2" + k)™
= u?" 2 P (R, < 2"+ k)™

u

Then,

P#—Q—l (Rn+1 < 2n+1 +k’ Zu2m 2 im 1Pu (Rn < 2n_|_k,)m
— cp (Aw, P! (R, <2"+k)),

which is the desired result.

Case 2. 2" < k< ontl 1,
Since L(w') = 2m, we can write w’ = (0,€1,0,€9,...,0,€,-1,0,1,2), ¢; €
{£1}, 1 <i < m — 1. Then we see that

{w:L(W) =2m, Ryp1(w) <2"' + &}

We remark that the union in the above is disjoint.
For1<:<m-—1,

{w:it(j:e=—-1)=4,L(W) =2m, Ry (w) < 2" + k}

= U {w:{j:eg=—-1}={n <ny <--- <ny},

1<ni<ng<---<n;<m—1

L(W) = 2m, Ry (w) < 2" + k).

We remark that the union in the above is disjoint.
By (4.1.1),

n+1 ({w {j __1}:{n1<n2<'”<ni}7
L) = 2m, Rua() < 27 4 )

:P#+17+({W2{j:ej:—l}:{n1<n2< ce <ty
L(w,) = 2m7Rn(&2nj) <k1<;< Z})
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=Py, o' {j:e==1}={nmi <ny <--- <}, L) = 2m}) Py (R, < k)
— 2m—2 2m 1(Pu (Rngk))i.
Since the number of choices {n; < ny < --- < m;} C{l,....m—1}is
m—1
equal to ( , ), we see that
i

Py ({w 40 —1) =i, L(w') = 2m, Rys1(w) < 2" + k})

= Z P#H,Jr({w:{j:ej:—l}:{nl<n2<---<ni},

1<ni<ng<---<n;<m—1

L(w') = 2m, Ry (w) < 2" 4 k})

-1 i .
:(m‘ )2m22m1(P“ (R, <k))', 1<i<m-—1.
1

This is also true for i = 0.
Therefore, by summing up over 7, we see that

Pr L (fw: L) = 2m, Ry () < 27 kD) = ?™ 2021 (14 PY (R, < K))™

u

By summing up over m, we see that

PYy (R <277 4 k) = Zu% 2271 (14 PY (R, < k)™

= q> (Aul,P“ (R, < k)).
This completes the proof. n

Next, we will show that g,, which is the right continuous modification of
Gu, satisfies (1.3.1) on [0, 1], not only on D. We define some notation. Let
X,(z) = [2"z] — 2|2 2] and ¢, (x) = >4, 27" Xk(2), z € [0,1), n > 1.
Then, (,(z) <z < (u(z)+27", 2 €[0,1),n > 1. Let v, = 1/®(Ay0;1). Let
Puo(2) = (2 +1)/(2 + ) and py1(2) =1 — puo(z) for 2 > —~,. Let

un () Qun(T)
) v — . >
(et 2er2)) = Awnor=+- Auo 2 €02 1
Proposition 4.2.4. (1) g.(Gn(2)) = P(Aux,(2) - - Auxm(2): 0) and
Gu(Gm(2) +277) = ®(Auxi(@) - Auxn(@)i 1), 2 € [0,1), m > 1.

(2) Gu = gu on D.

(3) gu satisfies the equation (1.5.1) on [0, 1].
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Proof. (1) Using (1.3.1), we can show the assertion by induction in n.
(2) By noting the definition of g, and g,, we have that g,(1) =1 = g,(1).
Let z € DN [0,1). Then, there exists N such that X,,(z) =0, n > N.
Then, by using the assertion (1),

lim g, (z +27) = lim g, (G(x) +27)
=l @ (A Auxyios A D).
Since ®(A,0;-) is a contraction map on [0, 1], lim,, oo ®(A7; 1) = 0. Then,
by using the assertion (1),
lim @ (Aux, @) Auxy@; P(A705 1) = @ (Auxi@)  Auxy @) 0) = gu(2).

m—00

Thus we obtain the assertion (2).

(3) Since g,(1) =1 and ®(A, ;1) =1, (1.3.1) holds for z = 1.

Let x € [0,1/2). Then there exists a sequence {z,}, C D N|0,1/2) such
that x, | =. By using Proposition 4.2.3 and the assertion (2), g,(z,) =
O (Auo; Gu(22,)), n > 1. Since ®(A, ;) is continuous and g, is right con-
tinuous, we have that §,(z) = ® (A 0; §u(22)).

In the same manner, we see that g,(x) = ® (A, 1;0.(20 — 1)) for x €
[1/2,1). Thus we obtain the assertion (3). O

Proof of Theorem 1.3.2. First, we show the assertion (1). Let P* = P%o
((R./2") —1)™*. Let P* be the probability measure on [0, 1] whose distribu-
tion function is g, and satisfying P*({0}) = 0. In other words, we will show
that the function f, in the statement in Theorem 1.3.2 is equal to g,. It
suffices to show that P" converges weakly to P, that is, for any continuous
function f on [0, 1],

lim f(z)P*(dx) = f(z)P*(dx). (4.2.1)
=0 Jlo0,1] [0,1]

Let € > 0. Then, maxj<x<om |f(k/2™) — f((k —1)/2™)| < € for some m.
We have that

2m
k—1 k
[, 1] kz 2 2
and,
= k—1 k
[0, 1] ,; 2m 2
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where we have used P*({1}) = P*(R, = 2"*!) = P! (R, =2""") =0 for
the first inequality, and, P*({0}) = 0 for the second.
Let n > m. Then, by using Lemma 4.2.1, we see that for 1 < k < 2™,

- 1 - 1 1
B f[E=t VY _ g ([E=1 VY _ o (5, (E=1)
2m - 2m 2m - 2m 2m 2m

By using Proposition 4.2.4(2), we see that for 1 < k < 2™,
Pu kE—1 k e N e A ko kE—1
Therefore, we see that

(kN = (k-1 k N (kN = (k=1 k

> (=) (7)) -2 () (=)

k=1 k=1
Recalling (4.2.2) and (4.2.3), we see that for any n > m,

(z) By (da) — (z) P (dx)

[0,1] [0,1]

< 2e.

Thus we see (4.2.1) and the proof of (1) completes.

The assertion (2) immediately follows from the definition of P* and
Proposition 4.2.4(3).

Finally, we show the assertion (3). Let u = 1. Then, the absolute conti-
nuity of P! follows from Theorem 1.2.2(1) in Section 1.2.

Lemma 4.2.5. Let u # 1. Let x € [0,1]\ D. If g, is differentiable at  and
g, (x) € [0,400), then, g, (z) =0.

Proof. We assume that there exists a point x € [0,1] \ D such that g, is
differentiable at = and g, (x) € (0, +00).
Since g, is strictly increasing and = ¢ D, we have that

g;(x) = 7111—>I£lo 2n(§U(<n(x)+27n)_gzL(Cn(x))) = nlLHOlO Qn(gu(cn(x)"i_Qin)_gu@n(x)))
Since g,,(z) € (0, +00),

@)+ 2) () 1

Then, by using Proposition 4.2.4(1),

ru,n(x)) — gu(Cn—i—l(x) + 2_(n+1)) - QU(CTL-H ($))
Sun(7) Gu(Gu(@) +277) = gu(Calz))
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and, limy, oo Pu, x4 1 (2) (Tun (2) /Sun(2)) = 1/2. Since py1 =1 — puo,

limy, 00 Pui(Pun (%) /Sun(z)) = 1/2 for i = 0,1. Now we see that

limy, oo Ty () /Sun(x) = v — 2. Since x ¢ D, there exists infinitely many
natural numbers n such that X,,(x) = i foreachi = 0,1. Since ry ,+1(2)/Sypn+1(x) =
® ("Ayx, 11 (2); Tun () /Sun()), We see that ("4, ;57 — 2) = 7, — 2 for each

¢ = 0,1. This is true if and only if uw = 1. But this contradicts the assump-

tion. [

Let u # 1. Then, by noting Lemma 4.2.5 and the Lebesgue differentiation
theorem, we see that g/, = 0 a.e. and P" is singular. These complete the
proof of (3). O

Proof of Theorem 1.3.4. In this proof, we write ®,;(z) = ®(A,;;2), i =0, 1.
We first explain the meaning of the value v = /3. By explicit calculation,
we see that if u < /3, then, 0 < ®/ () < 1, z € [0,1], namely, (")
is a contraction map on [0,1], and de Rham’s theory [96] is applicable to
(Au0, A1) in the form of Section 1.2. In contrast, this property fails if
u > /3. In fact, (I)lx/ﬁg(z) < 1, with (ID/\/gJ(z) = 1 implying z = 1. If
u > /3, there exists zy = zo(u) € (0,1) such that @}, 1(2) < 1for z < 2, and
®;, 1 (2) > 1 for z > 2.

We now turn to the proof of the theorem. We denote fm™+! = fo f™,
m > 1, for f:1]0,1] — [0, 1].

(1) If 0 < u < /3, then, (A, 0, A,1) satisfies the conditions (A1) - (A3)
in Section 1.2 and hence P* has no atoms.

Let u = v/3. Let h; = ® 3, ©=0,1. Then we have the following results
by computations.

Lemma 4.2.6. (1) ho(2) < hi(2) for z € [0,1]
(2) B;, i = 0,1, are strictly increasing on (0, 1)
(3) hy(z) < 3h)(z) for z € (0,1).
(4) () < B (2) for = > W3(0).

Now it is sufficient to show the following.

) k k—1
S max, {gﬁ (2—m> ~9vs (2—m>} =0 (424)
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Let m >3 and 1 <k <2™. Let z; = X;((k—1)/2™), 1 <i < m. Then,

k k—1
9v3 (2_m> ~9v3 (2—m) = hgy 00 hy, (1) = hgy 0+ 0hy,(0)

- / B (hay 0 0 gy (2)) -+ B (b (), (2)d
/0 W, (M) B (@), (2)da

Tm—1

< [ BT @) -3 (ha ()30, () da

[e=]

Ne}

/0 (R () = 9(1 — 3°(0)),

where we have used Proposition 4.2.4 (1) for the first equality, Lemma 4.2.6
(1) and (2) for the fourth inequality, and, Lemma 4.2.6 (3) and (4) for the
fifth. Since h7(0) = n/(n+ 1), n > 1, we see that lim,,_, A} (0) = 1. Thus
we see (4.2.4) and the proof of the assertion (1) completes.

(2) Let z € DN (0,1). Let &; = X;(x), ¢ > 1. Then, there exists
a unique m > 1 such that x,, = 1 and z; = 0, ¢« > m + 1. Let ¢ =
Qyp0--r0dy, 0od, Let n >m and y; = X;(x — (1/2")). Then, we
havethat y;, = z;, 1 <i1<m—-1,4, =0,y;, =1, m+1 <1 <n,and, y; =0,
i > n. By noting Proposition 4.2.4 (1) and ®, (1) = ®,,1(0), we have that

(o) = 9(1). g (= 57 ) = S(@L"O) (4.25)

Note that ®,,; is increasing and strictly convex, ®,,1(0) > 0, ®,1(1) =1,
and, @, ;(1) > 1. Therefore, there exists z; € (0, 1) such that

D, 1(21) =21, Pua(2) > 2, 2 € (0,21), Pua(z) <z, 2z € (21,1).

Then, z; = lim,, o ®};,(0) and @7 ,(0) <2 <1,n > 1.
We have that for n > m,

P (o o)) =)= (5 57)



where we have used Proposition 4.2.4 (2) for the first equality, and, (4.2.5)
for the second. Letting n — oo, we have that P*({z}) > ¢(1) — ¢(21) > 0.

We can show that P*({1}) > 0 in the same manner. These complete the
proof of the assertion (2). O
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Chapter 5

Random sequences with
respect to a measure defined by
two linear fractional
transformations

This chapter will be based on [84]. In Section 5.1, we give proofs of Theo-
rems 1.4.1 and 1.4.2. In Section 5.2, we give a proof of computability of F
appearing in Section 1.4.

5.1 Proofs of Theorems 1.4.1 and 1.4.2

We will use the following well-known result.

Proposition 5.1.1 (Schnorr [100]). Let v be a computable Borel probability
measure on {0, 1}, Then, x € {0, 1} is p-random if and only if
limsup,,_,, d(x [ n) < 400 for any lower semicomputable p-martingale d.

The main ingredients of proofs are to show that N; and N, defined in the
arguments below are constructive 14, 4,-null sets. Hereafter, we fix (Ao, A;)
and let @ = pua, 4, for simplicity. The following assertion corresponds to
Lemma 3.1.3 (2) in Chapter 3.

Proposition 5.1.2. Let x € {0,1}" be p-random. Then,

lim —M(z [7)

n—00 n

=0.
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Proof. Let

M= N U{xe{O,l}N:’M(i—rn)'>%}.

k>1 N>1n>N
It is sufficient to show that Ny is a constructive pu-null set. Let

Vo= {o€{0,1} : [M(o)]* >0’ |o] =n}.
n>2m
Since M is computable, {V,1},, is uniformly c.e. It is sufficient to show that
the following assertions.
(ii) There exists a computable function g; : N — N such that N([Vgll(m)]) <
27" m > 1.

Let € N;. Then, there exists & > 1 such that [M(z [ n))| > n/k
for infinitely many n. Since (n/k)* > n3 for large n, |[M(x | n)|* > n? for
infinitely many n. Hence = € [V,}], m > 1. This completes the proof of (i).

Now we will show (ii). Here E*[-] denotes the expectation with respect
to . Let F, = o([r] : 7 € {0,1}"). Let M, (z) = M(x | n), z € {0, 1}".

We now give an upper bound of u([V,}]), m > 1. Let E, = {z € {0, 1}":
M,(z)* >n*}, n > 1, and, Fi,, = E, 0 (Ngrwiep E5), 28 <n < 281 k> 0.
By using that {Fj,}, are pairwise disjoint and F},,, C E,, we see that

pVaD <>l U B =D D wlFin)

k>m 2k<n<2k+l E>m 2k<p<2k+1

<> > nPEMMEF

k>m 2k <p<2k+1
Since M is a p-martingale, we have that
EF[M?, By ] < EF[M201, Frp), 28 <n o< 2F7L

Since { Fj, }n are pairwise disjoint,

Z n_3/2E“[M2, Fion < 9—3k/2 pp M22k+1, U E,

2k<n<2k+l 2k <p<2k+l

Let C' = 2(—logy(po(a)) —logy p1(B) + 1)%. Then, | M, (z) — M;(z)]* <
C/2, and,

9—3k/2 prp ]\422“17 U E, | < 9—3k/2 pp [M22k+1] < o—k/2¢y

2k <p<2k+1
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Thus we have that

k>m
Let g1(m) = 2(m + [4C]). Then, this is computable and /L([V;]ll(m)]) <27,
This completes the proof of (ii).
Thus the proof of Proposition 5.1.2 is completed. O]

By noting Proposition 5.1.2, the definition of M, and, H(po(t)) = H(1 —
po(t)) = H(pi(t)), we have that for y-random z,

- —logy ([ [ n)) S

lzrgigop " —lggilopn § H(po(F(i,z ).  (5.1.1)
lim inf —logp [ I ) = hmmf— E H (po(F fn))). (5.1.2)
n—-+o0o n n—4oo N

Proof of Theorem 1.4.1. We show the assertion (1) only. The assertion (2)
can be shown in the same manner; so we omit the proof of it.

By using the arguments the proof of Lemma 3.2.1 in Chapter 3, a <
F(i,z | n) < 8. Then we have that po(8) > po(F(i, [ n)) > po(a) > 1/2,
and,

H (pato)(F (i, 2 [ ) = H (po(F (i, 2 [ n))) € [H(po(B)), H(po(e))]
By noting (5.1.1) and (5.1.2),

H(po(5)) < liminf — logy p( I'm)) < lim sup — logy p(( ')

n—+00 n n—+00 n

< H(po())

(5.1.3)
First, we will show that cdim(z) < H(po(e)). Let t > H(po(w)). By
using (5.1.3),
lim sup —10g2 {0z 1 1))
n—-4o0o n

Let d(o) = 21lu([o]), o € {0,1}*. Then, this is a martingale. By noting

(5.1.4),
d(x [n)
2(1-t)n

<t (5.1.4)

= limsup 2" u([z | n]) = +oo.

n—oo

lim sup

n—oo

Since d is a martingale, the map o + d(c) /207917l is a t-gale. By noting
the definition of the constructive dimension, we see that cdim(x) < ¢. Since
t > H(po(c)) is taken arbitrarily, cdim(z) < H(po()).
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Second, we will show that cdim(z) > H(po(3)). Let s < H(po(5)). Then,
by noting (5.1.3),
— log, u([z | n])

lim inf > 5. (5.1.5)
n——4oo n
, . ; d(o)
Let d be a lower semicomputable martingale. Let d(o) = Sl @ €
27l u([o])

{0,1}*. Then, d is a lower semicomputable y-martingale. By using (5.1.5),

logy d(x [ n) =logy d(x [ n) —n —log, u([z [ n])

> log, d(z [ n) — (1 —s)n, (5.1.6)
for sufficiently large n. By noting that x is y-random and Proposition 5.1.1,
limsupd(z | n) < +oo. By using (5.1.6), limsup 62((%[,)2) < 4o00. By
the definition of constructive dimensions, we see that cdim(x) > s. Since
s < H(po(B)) is taken arbitrarily, cdim(z) > H(po(3)). O

Proof of Theorem 1.4.2 (1). Let ¢ : {0,1}Y — [0,1] be the map defined by
P(x) = Y2027 te(i). Let f be the distribution function of the image
measure ;0 ¢~ . Then, by using the assumption and arguments in the proof
of Theorem 1.2.2 (1) in Section 1.2, we see that f is differentiable, and, its
derivative is in (0, +00) at any points in [0, 1]. Hence, we see that for any
z € {0, 1},

lim 2'p([x | 4]) exists and is in (0, +00).

Hence,
. —logyu(frIn]) 1 pllz 1)
Jim —=20— = lim 3 —logy et = 1

i=1
By using the same argument in the proof of Theorem 1.4.1, we have that
cdim(x) = 1 for p-random point x. O

Proof of Theorem 1.4.2 (2). We assume that the condition (i) fails. We can
show the assertion in the same manner if the condition (ii) fails, so, we
omit the proof in the case. The main ingredient of this proof is to show
the following proposition which states the frequency of the outcome of 0 for

p-random points. The following assertions corresponds to Lemma 3.2.2 in
Chapter 3.

Proposition 5.1.3. Let x € {0, 1} be u-random. Then,

n—1

o1 ,
h}fllf.}f - Z Lioy(2(7)) = po(a).

=0
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Proof. We will show this assertion in a manner similar to the proof of Propo-
sition 5.1.2. It is sufficient to show that

Ny = {l’ c {0 1}N hmmf—nz 1{0} )) < po(Oé)}

is a constructive pi4, 4,-null set. Let

k—
VSZU{UG{O 1}’C %Zl{o} (1—#)]90(04)},7161\1.

k>n

Since po(a) is a computable real number, {V/2},, is uniformly c.e. Now it is
sufficient to show the following assertions :
(ii) There exists a computable function g, : N — N such that u([‘/;;(m)]) <
27 m > 1.

Let x € Nj. Since po(a) > 0, there exists € € (0,1) such that

n—1

1
liminf =y 1 ) < (1— ' H
im in n; (oy(#(2)) < (1 — €)po(r). Hence,

—21{0} <= am(e < (1- 57 ) mlo)

for infinitely many n. This completes the proof of (i).
We will show the assertion (ii).

Let (2, F, P) = ({0, 1}, B{0, 1}"), ), Xy () = 3217 (Lgoy (x (i) —po()),
and, t = k%*py(a). Here B({0,1}Y) denotes the Borel o-algebra. By apply-
ing Azuma’s inequality [4] to this case, we have that

W2 < Y ({ X el < (1- 137 Po(a)}>

k>m =0
Ppo(@)? 1/2

< — k

> exp (-2

k>m
SN, s 120
- o - m-—-1

k>m

where we let C' = pg(a)?/2. Therefore, for sufficiently large N € N, go(m) =
N™ satisfies u([VgQQ(m)]) < 27™. This completes the proof of (ii). Thus the
proof of Proposition 5.1.3 is completed. O
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Let z be a y-random point. Then, by noting this proposition and the ar-
gument in the proof of Theorem 1.2.2(2) in Section 1.2, in particular, Lemma
3.2.3, we have that

n—1
1
lim sup - ZH(pO(F(i, z [n))) <L

By using (5.1.1), we see that

oy — 1082402 1 1)

n—oo n

< 1.

Now we see cdim(z) < 1 by using the same argument as in the proof of
Theorem 1.4.1. [l

5.2 Computability of F(i,0)

We will give a proof of that F'(i, o) defined in Section 1.4 is computable. Since
—v < —1 < q, there exist o € (—1,«) and ' > [ such that bz + d; # 0 for
any x € [/, 3], i =0, 1. Then,

Lemma 5.2.1. o/ < ®('4;;') < O("A;;8) < F,i=0,1.
Proof. By using the proof of Lemma 3.1.2 in Chapter 3, we have

_(do—a0)2+60 and (I)(tAl'Z)—Z:—<Z+1>(Z_Cl/b1)
dO ) 3 ) Z+’}/ .

D(*Ag; 2) — 2 =

Since dy > ag > 0, ('Ag; z) — z is strictly decreasing. By using o/ < a,
B> B, and, a < P(*Ap; a) < O(*Ap; B) < 5, we have that o/ < &(*Ag; ) <
O("Ap; ') < . By using —y < =1 < o < ¢1/by < (', we have that
o <P(Ay; ) < O(*Ay;p) < B O

There exists L € N such that for any z,y € [o/,5'] and i € {0, 1},
|P(*A;; x) — ©(*A;;y)| < Llz — y|. Since ag, ... ,d; are computable numbers,
there exist computable functions F, : N — @ such that |F.(n) — z| <
(L+1)™" x=ag,...,dy,a1,...,d.

A Fai(n) sz(n) S

Let A;,, = (Fc(n) Fdi(n)>7 1 =0,1, n € N. Then,

Lemma 5.2.2. There exists N € N such that for anyn > N and i = 0,1,
(i) ®(‘A; ; 2) is well-defined on [, 3].

(ii) ®(*A; ; 2) is increasing on [o, 3'].

(iii) o/ < ®(1A; ;) < ®(A;,; 3) < .

(iv) ®(*A; ; 2) € [, B),Vz € [, F].
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Proof. (i) By noting lim,,_, Fy,(n) = b;, lim,, o Fy,(n) = d;, and,
infwe[a/ﬁ/w:m |bll’+d2‘ > 0, we have that infxe[a/7/@/]7i:071 |Fbl (n)x—i—Fdl (n)| >0
for any sufficiently large n.

(ii) By using det A; > 0 and lim,,_., F.(n) = x, z = ay, ..., d;, we have
that det flm > 0 for any sufficiently large n.

(iii) This follows from lim,, (ID('ZZXM; o) = O("A;; ), limy, o q)(t[li’n; g =
®(*A;;4), i = 0,1, and Lemma 5.2.1.

(iv) This follows from (ii) and (iii). O

Let D := {(i,0) € Nx{0,1}* : i < |o|}. We define a function F : DxN —
Q by F(0,0,n) := 0, and, F(i,o,n) := @(tﬁa(i_l),nJrN; F(i—1,0,n)),1<i<
lo|. Due to Lemma 5.2.2, this is well-defined and F(i,0,n) € [/, #]. This is
a computable function.

We let G(m) := max,e(a gj=01 |P(Aj;2) — ®(‘A; in; @)|, H(O,n) =0,
and, H(i,m) := maXy.|o>; |F(i,0) — F(i,0,m)|, i > 1, m € N. Then,

H(i,m) < max |[®("A, ;1) F(i — 1,0)) — D(*Ay4-1); F(i — 1,0,m))|

o:lo|>i
+ max |®("Ay(i-1); F’(z —1,0,m)) — @(tﬁa(i,1)7m+N; F(Z —1,0,m))|

o:lo|>i

< LH(i—1,m)+ G(m).

Hence, H(i,m) < (L+1)'G(m). By noting that |F.(n)—z| < (L+1)"™,z =
ap, . . .,d1, we see that there exists a constant C' > 0 and M € N such that
G(m) < C(L +1)~™ for any m > M. Therefore, there exists a computable
function ¢ : N — N such that g(0) > N, and, G(g(m)) < m™', m > 1.

Let f(i,n) := g((L + 2)"2") and define u : D x N — Q by u(0,0,n) := 0,
u(i,o,n) == F(i,0, f(i,n)), n € N,1 < i < |o|. Then, u is a computable
function and |F(i,0) —u(i,o,n)| < H(i, f(i,n)) < (L+ 1)'G(f(i,n)) < 27",

Thus we see that F': D — R is a computable function.
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Chapter 6

Large deviations for simple
random walk on percolations
with long-range correlations

This chapter will be based on [85], however, as we announce in Section 1.5, the
proof of the crucial part, which concerns the subadditivity of the Lyapunov
exponent, is simplified essentially. Moreover, we give details for some parts
of the proof which we omit in [85].

In Section 6.1, we state two examples of models. In Section 6.2, we give
preliminary results. In Section 6.3, we give a proof of Theorem 1.5.2. The
subadditivity of the Lyapunov exponent is shown in this section. In Section
6.4, we give a proof of Theorem 1.5.3, by following the strategy in [69]. In
Section 6.5, we state a shape theorem for the chemical distance. In Section
6.6, we state the asymptotics for the rate function near the origin. In Section
6.7, we state the proof of the subadditivity of the Lyapunov exponent given
in [85].

6.1 Examples of models

In this section, we state two examples of models satisfying Assumption 1.5.1.

6.1.1 The model considered by Drewitz, Rath, and
Sapozhnikov

Drewitz, Rath, and Sapozhnikov [28] considered a certain class of percolation
models on Z¢ with long range correlations. They obtained large deviation
estimates for the chemical distance, which is similar to [2] Theorem 1.1.
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By using the result, they also obtained a shape theorem for the chemical
distance.

We now state the conditions (P1)-(P3) and (S1)-(S2) introduced by
[28]. Let 0 < a < b. We define conditions (P1)-(P3) and (S1)-(S2) for a
family of probability measures { P, }4<u<p on {0, 1}Zd :

(P1) P, is invariant and ergodic with respect to the lattice shifts 6,,
x € Z4\ {0}, u € (a,b).

(P2) For any u; < uy and any increasing event G, P,,(G) < P,,(G).

(P3) There exist constants Rp, Lp < 400, €p, xp > 0, and a real valued
function fp with fp(t) > exp((logt)?), t > Lp, such that
PU2 (Al N A2) < PU1 (Al)Pm (AQ) + exp(—fP(L)), and,
Pul (Bl n BQ) < Puz(Bl)Puz(BZ) + eXp(_fP(L))
for any pair (R, L,uq, us, z1, s, A1, Ag, By, By) satisfying the following five
conditions :
(i) R > Rp is an integer.
(ii) L > 1 is an integer.
(iii) u, up are real numbers such that a < u; < ug < band uy > (1+RXP)u;.
(iv) @1, 22 € Z% such that |z; — 2o|o > RL.
(v) A; (resp. By), i = 1,2, are decreasing (resp. increasing) events such that
A; (resp. B;) € 0(®, : y € B(x;,10L)).

(S1) (connectivity) There exists fs : (a,b) x Z; — R such that for any
u € (a,b), there exist Ag(u) and Rg(u) such that fs(u, R) > (log R)'*4s®)
for R > Rg(u). Moreover, for any R > 1,
P'u(CR N B<07 R) 7£ (Z)) >1- eXp(_fS(U, R))? andu
P, ﬂ {z and y are connected in C N B(0,2R)} | > 1—exp(—fs(u, R)).

x,yECR/loﬂB(O,R)
(S2) (density) u +— P,(0 € Cw) is positive and continuous.

Proposition 6.1.1. If a family of probability measures { P, }qcu<y on {0,1}%
satisfies the conditions (P1)-(P38) and (S1)-(S2) in the above. then, for
each u € (a,b), P, satisfies Assumption 1.5.1.
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Proof. Assumption 1.5.1(i) follows from (P1), Assumption 1.5.1(ii) follows
from (S1) and (S2), and, Assumption 1.5.1(iii) follows from Theorem 1.3 in
[28]. O

6.1.2 The random-cluster model

Now we state our setting. See Grimmett’s book [42] for basic definitions and
properties of the random-cluster model. Let d > 2, p € [0,1] and ¢ > 1.
Let IP’iW be the random-cluster measure on a box A in Z¢ with boundary
condition ¢ € {0,1}7ZY. Let P,
limit random-cluster measures.

Let p(q) = inf{p € [0,1] : P} (0 < o0) > 0}, b = 0,1. Then, pd(q) =
p(q) and we write this as p.(q). We have p.(q) € (0,1). For any p > p.(q),
there exists a unique infinite cluster Cu, IP’;q—a.s. See Chapter 5 in [42] for
the results in this paragraph.

We define the slab critical point p.(q) as follows : If d > 3, we let

b = 0,1, be the extremal infinite-volume

S(L,n):=[0,L —1] x [-n,n]* !,

n—oo xeS(L,n)

Pe(q, L) := inf {p :liminf  inf Pg(mmq(o —x) > 0} ,

and,

Pe(q) == lim pe(q, L).
If d =2, we let

- 10 ]P)O O — e
pg(Q) = sup {p - lim g qu( )

n—oo n

>o}, en = (n,0,...,0) € RY

and,
A q(1 = py(q))

Pl = ) ¥ el - pl@)
It is known that p.(q) > p.(q)-

Proposition 6.1.2. If p > p.(q), then, IP)Zq, b = 0,1, satisfies Assumption
1.5.1.

Proof. Pg,q, b = 0,1, satisfies Assumption 1.5.1 (i) for all p € [0, 1] due to
[42] (4.19) and (4.23), and, Assumption 1.5.1 (ii) for p > p.(q) due to [42]
(5.99).

Now we show Assumption 1.5.1(iii). We follow the strategy taken in the
proof of [2] Theorem 1.1. The key point is to show the random-cluster version
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of (2.14) in [2]. Let By(r) := [—r,r]%, r > 0. Let B;(N) := 7an41)iBo(N)
and B(N) = 1on11:Bo(5N/4), i € Z?%, where 7; is the transformation on
Z4 defined by 7;(x) == i 4+ . Let Y. : {0,1}%" — {0,1} be the projection
mapping to the coordinate z € Z.
Let RZ(N) be the event in {0, 1122 satisfying the following conditions (i)
- (i) :
(i) There exists a unique crossing open cluster for B(NN). That is, there is
a connected subset C of an open cluster such that it is contained in B.(N),
and, for all d directions there is a path in C connecting the left face and the
right face of B](N).
(ii) The cluster in (i) intersects all boxes with diameter larger than N/10.
(iii) All open clusters with diameter larger than N/10 are connected in B;(N).
Let ¢y : {0,1}PZ) — {0,1}% be the map defined by (¢yw); := Lo (w),
i € 7% Let IP’Z’ o be the image measure of ngq by ¢n. Let P} be the Bernoulli

measure on {0, 1}2* with parameter p. By using Pisztora [91] Theorem 3.1
for d > 3 and Couronné and Messikh [20] Theorem 9 for d = 2, we see that
there exist constants ¢}, ¢, > 0 depending only on (d, p, q) such that for any
N >1and i€ Z,

sup IP; '(N).p.q ((REN))C> < cyexp(—cyN).

te

This inequality corresponds to (2.24) in [2]. By using the DLR property for
the random-cluster model (See Section 4.4 in [42] for details),

lim supess.supP’ o (Y =0lo(Yy : |z — 2|00 > 2)) = 0.

9 7N
N—00 ,e7d P

By using Liggett, Schonmann and Stacey [74] Theorem 1.3, we see that there
exists a function p(-) such that p(N) — 1 as N — oo and % is dominated
by P, .~ for each N. This claim corresponds to (2.14) in [2]. The rest of the
proof goes in the same way as in the proof of [2] Theorem 1.1. O

Remark 6.1.3. If ¢ = 1, then, p.(1) = p.(1) by Grimmett and Marstrand
[43]. If d > 3, then, by Bodineau [16], p.(2) = p.(2). If d = 2, then,
by Beffara and Duminil-Copin [12], p.(q) = p.(q) for any g > 1. Therefore,
Theorem 1.2 and Theorem 1.3 hold on the whole supercritical regime if ¢ = 1
(the Bernoulli percolation case), ¢ = 2 (the FK-Ising case), or, d = 2.

6.2 Preliminaries

By noting the strong Markov property of (X,,)n,
ax(z, z) < ax(z,y) + ar(y, 2), ,y, 2 € Cx. (6.2.1)
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By considering a path from x to y of length D(z,y) in Cs,
ax(z,y) < (A +log(2d))D(z,y), z,y € Coo. (6.2.2)

By using Birkhoff’s ergodic theorem and Kac’s theorem (See Chapter 9
in [93] for the statements of these results), we see that for any x € Z<\ {0},

7" _ _
lim = B5[T,] = P(Q) ', P-as. and in L'(P). (6.2.3)

n—oo M

Here we denote the expectation with respect to P by Eg.

We now describe some assertions derived from Assumption 1.5.1(iii). The
following assertions correspond to Garet and Marchand [38] Lemmas 2.2 and
Lemma 2.4 respectively. By using Assumption 1.5.1(iii), we can show them
in the same manner as in the proof of [38] Lemmas 2.2 and Lemma 2.4. See
[38] for details.

Lemma 6.2.1. Let P satisfy Assumption 1.5.1. Then, there exist C7,Cy > 0
such that for any r > 1 and for any y with |yl <r,

P (D(0,y) > (3r)%,0 < y) < Cyexp(—Ca(logr)'+).

Lemma 6.2.2. Let P satisfy Assumption 1.5.1. Then, there exists C3 > 0
such that Es[D(0,T,z)] < Cs|z|, for any x € Z°.

Noting Assumption 1.5.1(iii) and Lemma 6.2.1, we can show the following
by using the arguments in the proof of [69], Lemma 3.1, or, in the proof of
[111] Lemma 6.

Let dy(z,y) := max{ay(z,y),ar(y,x)}.

Lemma 6.2.3. Let A > 0. Then the following holds P-a.s. : For any
e € QN (0,400), there exists a positive number N such that for any x € Cy
with |x|; > N,

sup{dx(z,9) : ¥ € Cos, |z — yh < €|z} < (X +log(2d))Caelz|s.

Here Cy s a positive constant.

6.3 Proof of Theorem 1.5.2

Let

ax(z) = P(y) inf Eplax (0, Tén)x)]’

n>1 n

for A > 0 and = € Z¢. They are also obtained by using Liggett’s subadditive
ergodic theorem [73] as the following.
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Proposition 6.3.1. Let A > 0 and x € Z¢\ {0}. Then,

“A(O’—Tx(n)x) = ax(z), P-a.s

R D)

Proof. Fix A > 0 and z € Z%\ {0}. Let Wy, = ax(T8™"a, T"z), 0 < m < n.
Then, by using (6.2.1), (6.2.2) and Lemma 6.2.2, we see that W, 11,41 =
Wi © Opy Wo o, < Wi + Wiy, and, W, ,, € Ll(F), 0 < m < n. Therefore
we can apply Liggett’s subadditive ergodic theorem [73] to {W,, » }o<m<n and

obtain

(n) (n)
T Es T _
lim M = inf 2o (0 x)]7 P-a.s.
n—00 n n>1 n

By using (6.2.3), we have that

(n)
lim ax(0, 7" x) _

A ay(z), P-a.s.

]

Thus we have the first part of Theorem 1.5.2. We now proceed to a proof
of the second part.

Proposition 6.3.2. Let z,y € Z% and q € N. Then, we have that

(1) ax(z +y) < an(@) + an(y).

(i) an(gz) = gan(z).

(7i1) ANx|1 < ax(z) < (A +1og(2d))C3P(Q)|z]1, where Cs is the constant in
Lemma 6.2.2.

Proof. We can see the assertion (ii) by using the methods taken in the proof
of [69], Corollary 2.4.

By using (6.2.2) and Lemma 6.2.2, we have that Epla(0,T,z)] < (A +
log(2d))Cs|z|; and hence ay(xz) < (A + log(2d))C5P()|z|1. We see that
AMz|1 < ay(x) by using the methods taken in the proof of [69], Lemma 2.2.
Thus we have the assertion (iii).

Now we show the assertion (i). As we announce in Section 1.5, the fol-
lowing proof is suggested by an anonymous referee.

Using (6.2.1),

a,\(O,Tz(”) (w)z) + ay (T:]g”)(w)x,T:g )( Yo+ T (@” )y )

tax (T W) + T§(O)y, TL, (@) (@ + )
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> a, (0 T30, (w)( +y)) :

Taking expectations with respect to P and dividing by n,

Bl (0, 7 (w)a)] B | (T (@), T @) + T @)y ) |

_'_
R A AR TE))
Bl (07500 + )1

Hence it suffices to show that

Bg [ar (T (@)a + T (©30)y, T2, @) @ + ) )|

lim = 0.
n—00 n
Using (6.2.2), it suffices to show that
Bz [D (18 (@)o + T (O)y, TL, (@) (2 + 1))
lim =0.  (6.3.1)
n—00 n
We have

Bg [D (T(w)a + T(©10)y, T, (@) (@ + 1) )|

:/OO@(D (T< N(w)a + T (Orw)y, T, (w )(:c+y)) >r> dr.

(D(T{ (W) + T (O8w)y, TV, (W) (x + ) > r

I
o\g
=l

T (@) + Ti(Ow)y — T, (@) + y)| < rfer)dr

+/OOOF<|T( )( )Q?—l—T (@" )y TJE—}—)y( )($+y)’>7’/01) ir

_ / TR (w)r + TO(O)y, T ()@ + ) > 1

T W) + T (Ohw)y — Tipy () (@ + y)| < r/er)dr
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‘+CLEﬁ[
We will show that

T+y

T (@) + T Oy = T, ()@ + )] (6.3.2)

lim |10 ) + TP @)y~ T, @) )] =0, (633
L [[10 @)+ T @200y — T, )+ )
< %EP |7w) - 5, )]

M (©) - T, )|
By using Kac’s theorem, the following three convergences hold in L'(P) :

T (Onw) T (w)

(n)
T (w) _ P(Qo)fl’y— N ]P;(Qo)fl7 and,

n n n

Hence we see (6.3.3).
Recall (6.3.2). In order to obtain (6.3.1), it suffices to show that

— P(Q) "

/OOOWD(T( W)z + IOy, T, (W) (@ + y)) > r/ey,
T (w)a + Ty (Ow)y — TyE, (W) (@ +y)| < r/e)dr. < 4oo. (6.3.4)

T+y

We have that

/Ooo@(D(T( N(w)a + T (Orw)y, T, (W) (@ + 1)) > /e,

T (w)z + T (Ow)y — TV, (@) (& + y)| < 7/er)dr

</ TB(32 € BT, () (@ + y), /),

D(z, TV (W)@ + 1)) > 1,2 = T (w)(z +y))dr. (6.3.5)

) Tty T+y

Using that ©,., is invariant under P,

(6.3.5) = /OO@(EIZ € Bo(0,7/¢1), D(2,0) > 1,z < 0)dr

= cl/ P(3z € B(0,7),D(2,0) > c1r, z <> 0) dr
0
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<c / Z D(z,0) > 17,z < 0) dr
0
Z D(z,0) > cir,z < 0).

7"20 €Bso

In order to obtain (6.3.4), it sufﬁces to show that

ZZIP’ (2,0) > 17, 2 < 0) < +00. (6.3.6)
2€7% r=|z|
By using Lemma 6.2.1,

o

Z P (D(2,0) > e1r, 2 +» 0) < cexp(—c(log |2])' ™), z # 0.
r=3|z|?
We also have that
32|
Z P (D(z,0) > c17, 2 < 0) < 3|z|%; exp(—c1(log|2])+?), 2 # 0.
=|2|

Therefore we have (6.3.6). The proof of (i) completes. O

Now we can easily extend the Lyapunov exponent a,(+) to a unique con-
tinuous function on R?. Thus we have Theorem 1.5.2.

6.4 Proof of Theorem 1.5.3

In the author’s preprint [85], the proof of Theorem 1.5.3 is omitted, because
the proof is essentially the same as in the proof of large deviation in [69].
Here we write down details. First, we state a shape theorem for the Lyapunov
exponent «a,, which is essentially shown by Zerner [111]. Second, we show
the upper bound for Theorem 1.5.3. Third, we show the lower bound for
Theorem 1.5.3.

6.4.1 A shape theorem

First, we state the following lemma, which is essentially the same as Garet
and Marchand [38] Lemma 5.5.

Lemma 6.4.1. Let z € Z¢\ {0}. Let n > 0. Then, we have P-a.s. that
there exists a positive integer N such that for any r > N there exists k €
(1 —=n)r, (1 +n)r] such that kz € Cx
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Let €25, be a set such that P(€ ,.) = 1 and the conclusion in Propo-
sition 6.3.1 holds on €y, , for a fixed (), z). Let €., be a set such that
P(Q5,,) = 1 and the conclusion in Lemma 6.4.1 holds on 5, , for a fixed
(z,m). Let Q3 be a set such that P(Q3 y) = 1 and the conclusion in Lemma
6.2.3 holds on the set for a fixed A. For A > 0, we let

Q(\) == (ﬂ sz> N N Qo | N Q.

2€Z4\{0},n€QN(0,00)
We remark that P(©2(\)) = 1 for any A > 0.
Proposition 6.4.2 (Shape theorem). We have P-a.s. that for any X > 0,

lim ax(0,z) — ay(z)

|z|1—00,26Co0 ’.ﬁE‘l

=0.

Proof. The following proof is the same as the proof of [69] Theorem 1.2. By
using the continuity of «,(z) with respect to (A, z) and the argument in the
final part of [111] Theorem A, we see that it is sufficient to show that for any
fized A > 0 and e € QN(0, 1), the following holds P-a.s., there exists a positive
integer N such that for any = € Cy, with |z|; > N, |ax(0,2) —ax(z)| < €l|z];.

Assume this statement fails. Then, there exist \y > 0 and ¢; > 0 and
an event A with positive probability such that on A, there exists a sequence
(2n)n C Co satistying |z, |1 — o0, and |ay, (0, x,) — ax, (2n)| > €o]Tn|1, n > 1.

Take a configuration w € A N Q(\g) and a sequence (z,), in Cx(w)
described as above. By taking a subsequence if necessary, we can assume
that x,/|z,|1 converges to a point v € {z € R?: |z|; < 1}.

Take n € QN (0,00), which is chosen small enough later. Let v €
St N Q7 such that [v —v'| < 1. Let M € Nsy such that Mv' € Z%. Let
= ||zp/M]Mv', n > 1. By using Lemma 6.4.1 and w € §2()\), we have
that for any n, there exists k,, = k,(n,w) such that (1 —n)||z,[1/M]| <k, <
l|zn]i/M], and, k, Mv" € Cx(w). Let x!! = k, Mv'. Then,

"
nl

< on = 21y + [lenliv” = 2]y + M({ant/M] = k)

[ — aply < — 2l A+ |2, — 2

T, ,
— =

+ M + |z,
‘xnll

S |<Tn|1

Hence |z, — 2| < 3n|z,|; for sufficiently large n.

Recalling z!! = k,Mv'" € Cx(w), Proposition 6.3.1 and w € Q(\g), we
have that
~ lim ax, (0, k, M)

n—00 kn

= OJAO(MUI>.
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Since k, < |z,|1 and oy, (Mv'") = ay, (22) /kn,

n

% (0’ I’Z) — Q) (x/r;)

lim =0.
n—oo |:En|1
Hence,
lim sup |a)\0 (07 xn) — Q) (xn)|
n— oo |xn|1
< lim sup |a’>\0 (07 13n> — Q) <07 x;;)l + lim sup |O‘>\0 (In) — Q) (IZN
T nooo |xn|1 n—o00 ‘xn‘l

By recalling |x,, — z!!| < 3n|x,|; for sufficiently large n, it follows from
(6.2.1), Lemma 6.2.3 and w € 2()\g) that

0, 5) — ax, (0,27, : Ao (Tn, T,
s [0 0.7) = O] (o)

n—oo ‘xn‘l n— o0 ‘xn‘l

< 3n(Ao + log(2d))Cy.

By using Proposition 6.3.1, and |ay, (0, z,) — ax, (0, 27)| < ax,(x, — )V

n
Qo (7, = @n),

o (Tn = a73) V ax (25 — T0)

lim sup
n—oo |xn | 1

< 3n(Xo + log(2d))Cs.

Thus we have

lim sup |a)\0 (07 an) — Q) (ﬂfn)’

n—oo |xn|1

< 3(Ao + log(2d))(C5 + Ca)n.

By recalling the definition of (z,),, we have that ¢y < 3(A\g+log(2d))(Cs+
Cy)n. However we can take n < €y/(3(Ao + log(2d))(Cs + Cy)). This is a
contradiction. O

As a corollary, we have that
Corollary 6.4.3 (Directionally shape theorem). Let x € Q4 \ {0} and 3 €
(0,1). Let v =x/|z| and M € N such that Mv € Z¢. Then,

1 —
lim —ay <TA¥)£Q°)5”|$|/MJ ]\41},T]\LEZEQO)WCI/MJ MU) = (1 - B)an(x), P-a.s.

n—oo M

This statement is the same as Corollary 3.3 in [69]. We can show this in
the same manner as in the proof of Corollary 3.3 in [69].
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Before we proceed to the proof of Theorem 1.5.3, we define the rate
function I and describe some properties. Let

I(2) == sup(ax(z) — A), z € R%
A>0
Let Dy = (I < +00). By Proposition 6.3.2(iii), we see that there exists
Cs > 0 such that 0 < I(x) < Cs|z|; for z € B(0,C5'). Hence D; contains
an open neighborhood of 0.

Lemma 6.4.4. (i) I is convex on RY.
(13) I is lower semicontinuous (on D).
(7i1) I is upper semicontinuous on intDy.
() I(z) = +o0 if |z|; > 1.

Proof. (i) By using Theorem 1.5.2, aix(+) is convex and then (i) follows.
(ii) Let I € R. Let z, € {I <1} and z, — = € R% Let A > 0. Since
ay(+) is convex, it is continuous (on R?). Therefore,

ay(z) — A= nllrrolo ax(z,) — A <limsup I(z,) <.
This completes the proof of the assertion (ii).
(iii) Let « € intD;. Then, I is bounded on a neighborhood of z. Then, I
is continuous on a neighborhood of x.
(iv) It is sufficient to show that for any # € RY with |z|; > 1, ay(z) >
Alz|;. This follows from Theorem 1.5.2. O

6.4.2 Proof of the upper bound

Let A be a closed set in R?. By Lemma 6.4.4, we can assume without loss of
generality that A is contained in the closed [;-ball centered at 0 with radius 1
in R% If 0 € A, then inf,c4 I(2) = 0 and hence the assertion holds. Hereafter
we assume that 0 ¢ A.

Let I°(2) == (I(z) — 0) A (1/8) and Ay(6) = {z € A : ay(z) — A >
inf,cq I°(x) — 6}, A >0, 6 > 0. Since A is compact, there exist Aj,..., Ay
such that A = U, A, (). Hence we have

0 0
lim sup log P (X € n) < max limsup log P, (Xo € nA’\i(é)).

N—00 n TIKi<m 00 n

(6.4.1)

We will show that for A > 0 and § > 0, the following holds P-a.s.w :

0
lim sup log P (Xn € nAx(9)) < 6§ — inf I’(2). (6.4.2)

n—oo n z€A
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We can assume without loss of generality that nA,(d)NCs(w) # 0. Then,

PB(Xn € nAy(9)) = Z PLS(Xn =)

yenA(6)NCoo (w)

< Z P(H, <n)
yenAX(6)NCoo (w)

< ), exp(n—ai(0,y))
yENAN(§)NCoo (w)
< }nA)\(é) N Zd| exp(An — a5 (0, yn.)),
for some y,, \ € nAL(0) N Coo(w).
Since A, (0) is bounded, we have
log PY(X,, € nAx(9))
n

ClA(O, yn,)\)

<o(l)+A—

n 0, Ynr) — " "

= o(1) + A —ay (22) - 0x(0,4n2) = r(Yn) [Ynrls
’yn,)\‘l n

(6.4.3)

Since A)(0) C A, 0 ¢ A and A is compact, dist(0, Ax(d)) > 0. Hence
|Yn.a]1 — 00, n — oo. Then, by Proposition 6.4.2 and boundedness of A,(9),
we have P-a.s. that

ax(0,yn ) — ax(¥Un) Yol
|yn,)\’1 n
Recalling (6.4.3) and y,, »/n € A,(5), we have P-a.s. that
log P°(X,, Ax(0
lim sup og (X € n4r(9)) < A— inf ay(z) <J— inf I°(2).
n—oo n ZGA)\(LS) z€EA

Thus we see that (6.4.2) holds P-a.s. for fixed A > 0 and § > 0. By (6.4.1),
we see that for fixed 6 > 0 the following holds P-a.s. :

0
lim sup log £, (Xn € nd) < § — inf I°(2).

n—oo n z€A

— 0,n — oo.

By letting § — 0, we see that (1.5.1) holds P-a.s.

6.4.3 Proof of the lower bound
For A >0, w € Qq, 2,y € Coo(w), let

exp(—=AHy (X)) 1, (x.)<+o0}

T (dX) =
el Eglexp(=AHy) 1, <to0)]

P(dX.).
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Then we have the following lemma, which is essentially the same as [69]
Lemma 4.1 and Fukushima and Kubota [35] Lemma 4.1. See the references
for proof.

Lemma 6.4.5. Let x € Q% \ {0}. Let 3 € [0,1). Denote v = x/|z];.
Denote M € Nsy such that Mv € Z2. Denote y) = T\\E@OP M yry and
YD = T%T(QO)"M/MDMU. Then, the following holds P-a.s. : for any A > 0
and 1,72 € R with 0 < < oy, (x) < ay\_(x) < 72,

o [Ty
QLT T S | =1

Now we proceed to the proof of the lower bound.

Step 1. We will show that it suffices to show that for any fixed z €
Q4\ {0} ND; and r € (0,00) N Q, the following holds P-a.s. :

0
i inf log P)(X,, € nB(z,71))

n—oo n

> —1(2). (6.4.4)

Let B C RY be open. If BNDy =), —inf.cp I(2) = —oo and hence the
assertion holds. Assume B ND; # (). Since Dy is convex and B is open,
we see BN intD; # () and for any 2 € B N Dy, there exists u < 1 such
that uz € B NintD;. Therefore, inf.cpnp, [(2) = inf.cpnintp, I(z). By the
continuity of I on intDy, inf.cp I(2) = inf,cprinp,not (). Take a point
z € BNintD; N Q¢ and r > 0 with B(z,r) C B arbitrarily. By applying
(6.4.4) to B(z,r), we see that (1.5.2) holds P-a.s. for B.

Step 2. We will show (6.4.4). Hereafter we fix z and r.
Let
A(2) :=sup {\ > 0: a)\(2) exists and o\ (2) > 1},

where o) (z) denotes the derivative of a,\(z) with respect to A if it exists. Let
v = z/|z|]; and M be the least integer such that Mv € Z%.

Let Q4,5 be a set with probability 1 such that the following (i) and (ii)
hold on Q4,5 :
(i) The conclusions in Corollary 6.4.3 and Lemma 6.4.5 hold.

(ii) yflz)/n — T, n — 00.

Case 1. \.(z) = 0. In this case, we use the methods described in the

proof of [69] Theorem 1.3. Let y, = 3, where 4 is defined in Lemma
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6.4.5 for (z,8) = (2,0). Then, y,/n — z on Q4.9. Let R > 0 be an even
integer. Then, for all sufficiently large n, B(y,, R) C nB(z,r).
P°(X, € nB(z,r)) > P*(H,, <n, Xpm+n,, € B(yn, R),Ym € [0,n])
> P°(H,, <n)P"(Xm € B(yn, R),Vm € [0,n])
> E'lexp(—=AH,,), H,, <n]P¥(Xp =1y, (6.4.5)

Applying Lemma 6.4.5 to the case (z, 5,71,72) = (2,0,0, 1), we have that
on €y ., for any A > 0 such that o\ (z) exists,

E” [exp(—=AH,,), Hy, < n] ~ E"[exp(—=AH,,)] = exp(—ax (0, yn)).

Here f(n) ~ g(n) means that f(n)/g(n) — 1,n — 4o0.
By using Proposition 6.3.1 and (6.4.5), we see that for any A > 0 such
that o\ (z) exists, we have that on 4.0 N Q4 ) ares

l PO Xn B — O n 1 Pyn X =y,
lim inf —& (X € nB(z7)) > hmme 4 liminf 28 (Xr =yn)
n—00 n N 00 n M 00 R
log P (Xp = yn)

= —ay(z) + ligicgf I

Since Cy, is a subgraph of Z¢, P¥(Xgr = y,) > cqR™¢ for any n > 1,

where ¢, is a positive constant depending only on d. See [70] Proposition

4.3.4 for proof. Therefore, by letting R — oo, we see that for any A > 0 such
that o\ (z) exists, on Q4.0 N Q1) arvs

0
i inf log P°(X,, € nB(z,1))

n—oo n

> —a(2).

_ Since \(z) = 0, we have that I(z) = limy o ax(2) and the following holds
P-a.s. :

1 0
i inf og P°(X,, € nB(z,r))
n—oo n

—1(z).

This completes the proof of Case 1.

Case 2. A.(z) € (0,400). In this case, we follow the strategy of
proof of [111] Theorem B. Let € € (0, \.(2) A 1). By noting the assumption
A(2) € (0,00), and, (A, ) — «a,(z) is continuous, there are p € (0,1), n > 0,
and, Ag, Ay such that
(1) @), (2) and ), (2) exist.

(2) A ( )—e<>\0<)\( ) < o
(3) a,(2) < an(2)(2) +e.
(4) pay,(2) + (1 = p)ai, (2) + [=n,+n] C (1 —er/2,1 + er/2).
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Let y(l) yn aS defined in Lemma 6.4.5 for (x, 3) = (z, p). Since yﬁf)/n —
zon (., B(yn ,nr/2) C nB(z,r) for sufficiently large n. Let

An = { H,0) € np(ai (2) + [, +n)) }
M {inf{m: Xu 43 € n(1 = p)(h, () + [, 41 .

Then,
log P°(A,).

X,

PO(A,) = P°(H ) € np(a, (2)+[=n,0) P% (H o € n(1-p) (0, (=) +[-n.71))-

1 1
—log P*(X,, € nB(z,1)) > —
n n
Thanks to the strong Markov property of (

> B [exp (<M () H0 ), Hy) € np(ad, () + [=n,1)]
x exp (A (2)np(a}, (2) = 1)
) B [exp (<A () H ) Hyor € n(1 = p)(ad,(2) + [-m.1])]
x exp (A (2)n(1 = p)(ah, () = 1))

Since —)\*(z)Hyu) > —XAH o + (Ao — Au(2))np(a,(2) +n) on the set
{Hy53> € np(ah, (2) + [-n,+n])}, and, A.(z) < A, we have that on Q4 ,,

hgrigolf 1 log E° [exp(—)\*(z)Hyw), An]
> M(2)(1 = er/2) + (Ao — Au(2))p(, (2) + 1) + a1 + az, (6.4.6)

where we let

1
a; = liminf — log E" [exp(—/\oHyS)), H o € np(ay, (z) + [-n, +n])} , and,

n—oo M

| 1)
a = liminf —log B4 [exp(—AaH o), Hy € n(L = p)(a}, (=) + [, 41|

n—oo M

By using Lemma 6.4.5 for (x, 3) = (z,0), and then by using Proposition
6.3.1,

log E° [exp(—/\gHy(l))]

a; = lim — = —pa, (2), on Q40N Q-
n—0o0 n
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By using Lemma 6.4.5 for (z,3) = (z,p), and then, by using Corollary
6.4.3,

log ol lexp(—XoH (2))]

Yn

as = lim =—(1—p)ax,(2), on Qy,, N .

n—00 n

Therefore we have that on 4., N Q4.0 N Qyx, Ny, the right hand
side of (6.4.6) is larger than or equal to

L

M=) (1= 5) + (o = M(2)p(05, (2) +1) = pang () = (1= play (2).

By using the assumption \.(z) € (0,400), we have that I(z) = ay,(»)(2) —
A«(2). Recalling the properties (1) - (4) which p, A\g and Ay satisfy, we see
that on Q47z7p N 947%0 N QL)\O N QL)\Q,

log PO(X B
lim inf og P"(X, € nB(z1))

n—00 n

> —1(2) — M(2)er — €(2 + er).
By letting € — 0, we see that (6.4.4) holds P-a.s.

Case 3. \.(z) = +o00. In this case, we use the methods taken in the
proof of [35] Theorem 1.4. Since A\.(z) = 400, we have lim, ., a(z) < 1.
Then, for any u € Q N (0,1), there exists A(u) < oo such that for any
A > Au), o\ (uz) < 1, and hence, A\ (uz) € [0,00). lfu € (0V (1 —7r/|z]),1),
we can take r(u) € Q with B(uz,r(u)) C B(z,7). By using Case 1 or 2
according to the value of \,(uz), we have P-a.s. that

0 0
i i log P°(X,, € nB(z,1)) > lim inf log P°(X,, € nB(uz,r(u)))

n—oo n n—00 n

> —1I(uz).

Since I(uz) < ul(z) < I(2), (5.4) holds P-a.s.
Thus the proof of the lower bound (1.5.2) completes.

Remark 6.4.6. The proof of Theorem B in Zerner’s paper [111] and the
first version of the author’s preprint contain a minor error in the case A\.(z) €
(0,+00). Specifically, it concerns the definition of A,,. The above proof is
one way to fix it.

6.5 A shape theorem for the chemical dis-
tance

In this section, we briefly discuss a shape theorem for the chemical distance.
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Theorem 6.5.1 (Existence of directional constants). Assume that P satisfies

Assumption 1.5.1. Then, there exists a non-negative function u(-) on Z such
that u(0) = 0, and, for any x € Z2\ {0},

D0, 7™
lim —(O’ z)

n—o00 Tagn)

= u(x), P-a.s.

We can extend this to a continuous function on R uniquely. u(-) satisfies
the following properties : for any x,y € R® and for any q € (0, 4+00), u(qz) =
au(x), n(x +y) < p(x) + ply), and, [aly < plx) < Cslaly, where Cs is the
constant in Lemma 6.2.2.

This is an extension of [38], Corollary 3.3. By replacing the Lyapunov
exponent ay(+,-) with the chemical distance D(-,-), and modifying the def-
inition of A, ., slightly, the proof goes in the same way as in the proof of
Theorem 1.5.2.

Let D be the Hausdorff distance on R?. For t > 0, we let a random subset
B, :={x € Cx : D(0,2) <t} of Cs on .

Theorem 6.5.2 (Shape theorem). Assume that P satisfies Assumption 1.5.1.
Then, B
tliin D(B:/t,B,) =0, P-a.s.,

where we let B, :={y € R?: u(y) < 1} for the function u in Theorem 6.5.1.

This assertion is an extension of Corollary 6.4.4 in [38]. Thanks to As-
sumption 1.5.1, Lemma 6.2.1 and |z|; < u(x), we can show this in a manner
similar to the proof of Theorem 5.3 in [38]. In our case, u(z) # p(—2x) may
happen, but this is a minor difference and does not affect the argument.

Theorem 6.5.2 holds for the Drewitz, Rath and Sapozhnikov model and
the random-cluster model up to the slab critical point. For the Drewitz, Rath
and Sapozhnikov model, Theorem 1.5 in [28] also states a shape theorem.
However, our approach is different from the one in [28]. [28] introduces a
pseudo-metric, which is equal to the chemical distance on C,. On the other
hand, we do not use the notion.

6.6 The asymptotics for the rate function

Proposition 6.6.1. Assume that a family of probability measures { P, }a<u<b
on {0, 1Y2* satisfies the conditions (P1)-(P38) and (S1)-(S2) in Subsection
6.1.1 and P = P, for some u € (a,b). Let I be the rate function in Theorem
1.5.3. Then, there exist a constant ¢ > 0 such that

I(x) > clz*, z € Dy.
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We can show this in the same strategy as in the proof of Proposition 4.2
in [69]. This proof depends heavily on Theorem 1.15 in [99].

Proof. Let z € Dy and § € (0, |z[). Then, by using (1.5.2) and Theorem 1.15
in [99], the following inequalities hold P-a.s.,

log PO(X, € nB(z,d
—I(z) < — inf I(y) <liminf 08 By (X € nB(z,9))
y€B(z,d) n—-+0o0 n

log Cnf exp(—cn(|z| — §)?)

< lim sup = —c(|z| — 9)%.
n—-+4oo n
In the above C| ¢ > 0 are constants depending on the model only. O]
Remark 6.6.2. We are not sure limsup,_,, % < 4+00. The Gaussian heat

kernel lower bounds in [99] is not sufficient to apply the strategy in [69] to
this case. See Remark 1.21 (3) in [99].

6.7 Appendix : The author’s proof of the
subadditivity of the Lyapunov exponent

We give the proof of Proposition 6.3.2(i) by following [85].
Lemma 6.7.1. Let 21, 2o € Z*. Then,

o1
lim —
n—oo M,

n
Z P(Qo N 9:(20 N 9;90) exists and is positive.
=1

We denote this limit by b., ., .

Proof. By using Tao [106] Theorem 1.1, there exists a function g € L?*(PP)
such that

1 — 4 . . ‘
ﬁ Z(lﬂo o 66) ’ (190 °© 021) ) (190 © 922) — g, — 00, 10 LQ(]P)>
=1

Hence,

1 & , 4
lim — > "P(Q N 670 N 6/Q) = /gd]P.
=1

n—oo N, 4

Since P(€Qy) > 0, it follows from Furstenberg and Katznelson’s theorem
[37] that

R _ —i
lim inf 2; P(Qo N 0% N O.'Q) > 0.
These complete the proof. O
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We can assume without loss of generality that x,y,z +y € Z¢\ {0}. For
21, 2 € 72, let

A, 2 =121, 20 € Coo, an(21, 22) < c1(A +log(2d))|21 — 22]1}

where ¢; is the constant in Assumption 1.5.1(iii).
Let

Ai =

Agiz N Avi(aty) N A i(aty)-
By using (6.2.1),

1 n

HZEP[ Hy))’f‘i]

e )

Now it is sufficient to show the following convergences

A(0,i(z +y)) bezty
li Es A; 6.7.1
lim * z S Al=a@rngEr (T
() i) B be zty
lim —~ ZE { Ai] = oz,\(ac)P(Q()). (6.7.2)
iz i@ +) 1 beasy
nlljglo - ZE [ ,AZ] = a,\(y)P(QO). (6.7.3)
Here b denotes the constant in Lemma 6.7.1.
Now we prepare the following lemma.
Lemma 6.7.2.
li P(A;) = b Hy
Jim = Z

P(Q)’

Proof. By using Lemma 6.7.1, it is sufficient to show that

hm ]P)(A N QO N 9 ZQO N QeryQ()) =0.
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By noting (6.7.2) and Assumption 1.5.1(iii),

P (A5N QNI NOLQ) <P (NI QNAS,) +P (N0,
+P (6,7 N 01,2 N AL iary)
<P (D(0,ix) > cyi|z|1,0 < ix)
+P(D(0,i(z +y)) > crilr +yi, 0 < i(z +y))
+ P (D(iz,i(z +y)) > arily|i, iz < i(x +y))
< 3c1 exp (—02(10g(i min{|z|q, [z + yli, |y|1}))1+63) .

QOQAO@ x+y)

T+y

Since z,y,x +y # 0, exp (—co(log(i min{|z|1, |z + y|1, [y|1})) ) — 0,7 —
0o. This completes the proof of Lemma 6.7.2. m

We show (6.7.2). First, we have that

Es [MA} = F5 {M — ay (), A] + ax(2)P(4;).

By noting Lemma 6.7.1, it is sufficient to show that
Es { a,\(O', i)

By using Proposition 6.3.1, we have that

— ay(z)

1A1} — 0, 1 — 00. (6.7.4)

ax(0,iz)
1

1, < aA(O‘, i)
i

i —

Lioizecosy — 0, @ — 00, P-as.

— ay(x)

— ay(x)

By recalling the definition of A;,

ax(0,ix)
1

—ax(z)|1a, < ar(A+log(2d)) + an(x), i > 1.

By using the Lebesgue convergence theorem, we obtain (6.7.4). Thus (6.7.2)
is shown.
We can show (6.7.1) in the same manner.
Finally we show (6.7.3). By noting Lemma 6.7.2, it is sufficient to show
that
ax(iz, i(x +y))
i

Ep { —ax(y)

1,41} — 0, 1 — o0. (6.7.5)

Here we denote the expectation with respect to P by Ep.
By using the shift invariance of P, we have

bl -5

83

oiniety)

; —ax(y)

G,A(O, Zy)
1

19§Az‘:| .




Now we have that ay(0,1y) < c1(A + log(2d))i|y|; on 6% A;. Hence,

aA(Oviy)
{

—ax(y)| Lgia, < er(A+1og(2d))|ylr + aa(y).

By noting Proposition 6.3.1,

aA(Oviy)
{

aA(Oaiy)

lgia. <
it — 7

—ax(y)

- C“A(y)‘ L0,iyecoy — 0, @ — 00, P-a.s.

Thus we obtain (6.7.5) by using the Lebesgue convergence theorem and
hence (6.7.3) is shown.
Thus we see that «, is subadditive.
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