
博士論文

論文題目：　 Besov and Triebel-Lizorkin spaces associated

　 to non-negative self-adjoint operators

　（非負自己共役作用素に関するBesov及び
　Triebel-Lizorkin空間）

氏　　名：　Guorong HU (胡 国荣)



ABSTRACT

Besov and Triebel-Lizorkin Spaces Associated to
Non-negative Self-adjoint Operators

Guorong Hu

Let (X, ρ, µ) be a metric measure space satisfying the doubling, reverse doubling, and

non-collapsing conditions. Let L be a non-negative self-adjoint operator on L2(X, dµ) whose

heat kernel satisfies the pointwise Gaussian upper bound. In this thesis, we develop the Besov

spaces Bs,Lp,q (X) and the Triebel-Lizorkin spaces F s,Lp,q (X) associated to L with complete range

of the exponents s, p and q. Characterizations and properties of these spaces such as Peetre

type maximal function characterization, continuous Littlewood-Paley characterization, atomic

decomposition, complex interpolation, lifting property and embedding theorem are given. The

homogeneous spaces Ḃs,Lp,q (X) and Ḟ s,Lp,q (X) are also discussed. In particular, the identification

of Ḟ 0,L
p,2 (X) with various definitions of Hardy spaces associated to L is verified. In the special

case where X is a stratified Lie group, these function spaces are applied to study the boundedness

of singular integral operators.
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Chapter 1

Introduction

Function spaces are useful tools for studying problems in harmonic analysis, partial differen-

tial equations, probability theory and many other areas of mathematics. In harmonic analysis,

various classical function spaces such as Lebesgue, Sobolev, Bessel-potential, Hardy, BMO and

Hölder-Zygmund spaces can be studied from a unifying perspective via the Littlewood-Paley

theory. In particular, when one studies interpolations, embeddings, wavelet characterizations,

Fourier multipliers or boundedness of singular integrals of/on these function spaces, it is conve-

nient to regard them as special cases of Besov and Triebel-Lizorkin spaces which are defined via

Littlewood-Paley decomposition.

On the other hand, the developments of many function spaces arising in harmonic analysis were

originally tied to the properties of harmonic functions and the Laplacian ∆ := −
∑n
j=1 ∂

2/∂x2j .

For instance, one well-known characterization of the real Hardy spaces Hp(Rn) (0 < p < ∞)

states that a (bounded) distribution f ∈ S ′(Rn) belongs to Hp(Rn) if and only if S∆f ∈ Lp(Rn),
where S∆f is the square function (associated to the Laplacian ∆) defined by the area integral

S∆f(x) :=

(∫∫
Γ(x)

∣∣∣∣ ∂∂te−t√∆f(y)

∣∣∣∣2 t1−ndydt
)1/2

, (1.1)

with Γ(x) := {(y, t) : |y − x| < t}. The harmonicity of the Possion integral e−t
√
∆f in the upper

half-space Rn+1
+ plays a role in deriving such a characterization. Besides Hardy spaces, the study

of the Besov(-Lipschitz) spaces Bsp,q(Rn) and Ḃsp,q(Rn), especially in the 1960s and 1970s, was

also connected with the properties of harmonic functions and the Laplacian. Indeed, these spaces

were usually done by considering the Possion integral e−t
√
∆f or the Gauss-Weierstrass integral

e−t∆f of distributions f (see Bui [9], Flett [31], Johnson [57], Stein [74], Taibleson [81]; see also

Saka [69] for a generalization to nolpotent Lie groups). Analogous results in the Triebel-Lizorkin

case can be found in [10, 11, 12].

In the seminal paper of Fefferman and Stein [30], a real-variable theory for the Hardy spaces

Hp(Rn) with p ∈ (0,∞) was systematically developed. The real-variable method made it possible

to extend Hardy spaces to a much more general setting, which is called “spaces of homogeneous

type” (see Coifman and Weiss [18]). We refer also to Han et al. [42, 43, 44, 45] for extensions

of Besov and Triebel-Lizorkin spaces to spaces of homogeneous type. However, there are some

important situations in which the classical real-variable function spaces are not the most suitable

choices. For instance, the classical real-variable Hardy spaces Hp(Rn) seem not applicable when

one studies problems related to the divergence form elliptic operator L f = −div(A∇f) with

bounded complex coefficients. In fact, the Riesz transform ∇L −1/2 associated to L may not

1



Chapter 1 Introduction 2

be bounded from the classical Hardy space H1(Rn) to L1(Rn). Therefore, it seems reasonable

to introduce function spaces adapted to a linear operator L which generalizes the Laplacian ∆,

in much the same way that the classical Hardy spaces, Besov spaces and Triebel-Lizorkin spaces

are adapted to the Laplacian.

Auscher, Duong and McIntoshi [4] first introduced a class of Hardy space H1
L associated to

an operator L by means of the square function in (1.1) with the Poisson semigroup e−t
√
∆

replaced by the semigroup e−tL , under the assumption that the heat kernel of L satisfies a

pointwise Poisson upper bound. Then Duong and Yan [24] introduced BMO spaces associated

to such an L and they proved in [25] that BMO spaces associated to the adjoint operator L ∗

is the dual space of H1
L . Recently, Auscher, McIntoshi and Russ [5] studied the Hardy space

associated to the Hodge Laplacian on a Riemannian manifold, while Hofmann and Mayboroda

[47] investigated Hardy spaces associated to a second order divergence form elliptic operator L

on Rn with complex coefficients. The theory of the Hardy spaces Hp
L (X), 1 ≤ p < ∞, on a

metric space X associated to a non-negative self-adjoint operator L satisfying Davies-Gaffney

estimates was developed in [46]. Function spaces associated to operators turn out to be useful

for studying the boundedness of non-classical singular integrals (e.g., Riesz transform ∇L −1/2

associated to a divergence form elliptic operator L ) which may not fall within the scope of the

Calderón-Zygmund theory.

In the case that L = −∆+ V is a Schrödinger operator with a locally integrable non-negative

potential V , the Hp spaces associated to L was earlier investigated by Dziubański et al.; see

[27, 28] and the references therein. In these works the spaces Hp
L (Rn) were introduced by

means of the radial maximal function associated to the semigroup e−tL , instead of using square

functions. Note that the operator L = −∆ + V satisfies the Davies-Gaffney estimates, and

it was proved in [46] and [55] that for such a special operator L the Hardy spaces defined via

square functions are equivalent to those defined via maximal functions. Hence, the general theory

developed in [46] applies to this Schrödinger setting. However, the spaces Hp
L (Rn) associated

to L = −∆+ V enjoy some interesting properties which may not be satisfied by Hardy spaces

associated to general operators satisfying Davies-Gaffney estimates. For instance, if the potential

V satisfies certain additional assumptions (e.g., reverse Hölder inequality), the space H1
L (Rn)

associated to L = −∆+V is characterized by the (generalized) Riesz transform ∇(−∆+V )−1/2;

see [26] for more details.

It is natural to ask whether one can establish a theory of Besov and Treibel-Lizorkin spaces

associated to operators. To do this one first needs to generalize the classical Littlewood-Paley

decomposition to operator settings. Recall that if ψ and φ are two functions in S(Rn) such that

supp φ̂ is compact and bounded away from the origin, and

ψ̂(ξ) +

∞∑
j=1

φ̂(2−jξ) = 1 for all ξ ∈ Rn,

whereˆdenotes the Fourier transform on Rn, then for any tempered distribution f ∈ S ′(Rn),

f = ψ ∗ f +

∞∑
j=1

φj ∗ f in S ′(Rn), (1.2)

where φj(x) := 2jnφ(2jx) for j ≥ 1. This reproducing identity is the starting point of establishing

Besov and Triebel-Lizorkin spaces. However, when one considers function spaces associated to

abstract operators, the Fourier transform is unavailable in general. Nevertheless, for (unbounded)

self-adjoint operators, the function calculus can be regarded as a good substitute of the Fourier

transform. To be precise, let (X,µ) be a measure space and consider a non-negative self-adjoint

operator L on L2(X, dµ). Let {E(λ) : λ ≥ 0} be the spectral resolution of L . Given any
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bounded Borel measurable function Φ : R≥0 → C, the operator Φ(L ) defined by

Φ(L ) =

∫ ∞

0

Φ(λ)dE(λ)

is bounded on L2(X, dµ). If Φ0 and Φ are two function in C∞(R≥0) such that suppΦ0 and

suppΦ are compact, 0 /∈ suppΦ, and

Φ0(λ) + Φ(2−2jλ) = 1, ∀λ ∈ R≥0,

then by the spectral theory we know that for any f ∈ L2(X, dµ),

f = Φ0(L )f +
∞∑
j=1

Φ(2−2jL )f, (1.3)

where the convergence of the sum is in L2(X, dµ). This can be viewed as an analogy of the

reproducing identity (1.2), though it is far from being sufficient to establish Besov and Triebel-

Lizorkin spaces associated to L . It is now understood that, to get well-defined Besov and

Tribel-Lizorkin spaces via (1.3), one needs to have some size and smoothness estimates for the

integral kernels of the operators Φ(2−2jL ) which ensure the “almost orthogonal estimates” for

the integral kernels of the operators Φ(2−2jL )Φ(2−2ℓL ).

Very recently, Kerkyacharian and Petrushev in [59] proved that if the heat kernel of the non-

negative self-adjoint operator L satisfies the Gaussian upper bound and the Höler continuity,

and if the function Φ : R≥0 → C is sufficiently good, then the operator Φ(L ) is an integral

operator and its kernel satisfies appropriate size and smoothness estimates. These estimates

enabled them to develop a theory of Besov and Triebel-Lizokin spaces associated to the operator

L . Let us describe a bit more precisely their work. Suppose (X, ρ, µ) is a locally compact metric

measure space satisfying the doubling, reverse-doubling, and non-collapsing conditions. Suppose

further that L is a non-negative self-adjoint operator on L2(X, dµ) whose heat kernel satisfies

the pointwise Gaussian upper bound and the Hölder continuity. Let Φ0,Φ be two functions in

C∞(R≥0) such that

Φ
(2ν+1)
0 (0) = 0 for all ν ∈ N0, (1.4)

suppΦ0 ⊂ [0, 2], |Φ0(λ)| ≥ c > 0 for λ ∈ [0, 23/4], (1.5)

suppΦ ⊂ [2−1, 2], |Φ(λ)| ≥ c > 0 for λ ∈ [2−3/4, 23/4]. (1.6)

We point out that Φ0,Φ lie in C∞(R≥0) and satisfy (1.4)–(1.6) if and only if the functions Ψ0,Ψ

defined by

Ψ0(λ) := Φ0(
√
λ), Ψ(λ) := Φ(

√
λ)

lie in C∞(R≥0) and satisfy

suppΨ0 ⊂ [0, 22], |Ψ0(λ)| ≥ c > 0 for λ ∈ [0, 23/2], (1.7)

suppΨ ⊂ [2−2, 22], |Ψ(λ)| ≥ c > 0 for λ ∈ [2−3/2, 23/2]. (1.8)

Set Φj(λ) := Φ(2−2jλ) for j ≥ 1. In [59], the Besov space Bs,Lp,q (X), with s ∈ R and p ∈ (0,∞]

and q ∈ (0,∞], is defined as the collection of all distributions f ∈ S ′
L (X) (see Section 2.5 for

the definition of S ′
L (X)) such that

∥f∥Bs,L
p,q (X) :=

 ∞∑
j=0

∥∥2jsΦj(√L )f
∥∥q
Lp(X)

1/q

<∞,
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and the Triebel-Lizorkin space F s,Lp,q (X), with s ∈ R, p ∈ (0,∞) and q ∈ (0,∞], is defined as

the collection of all distributions f ∈ S ′
L (X) such that

∥f∥F s,L
p,q (X) :=

∥∥∥∥∥∥∥
 ∞∑
j=0

∣∣2jsΦj(√L )f
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

<∞.

Kerkyacharian and Petrushev in [59] showed that these function spaces are independent of the

choice of Φ0,Φ as long as Φ0,Φ satisfy (1.4)–(1.6), by using the smooth functional calculus related

to the heat kernel and a generalized Peetre’s maximal inequality established by themselves.

Moreover, using elegant techniques on functional calculus and on the construction of frames, they

also established embedding theorems, heat-kernel characterization and frame decomposition for

these function spaces. Their theory applies in quite general situations such as uniformly elliptic

divergence form operators on Rn with real symmetric coefficients, Riemannian manifolds with

non-negative Ricci curvature and Lie groups of polynomial growth. However, the restriction

that the heat kernel satisfies Hölder continuity makes some interesting operators fall outside the

scope of their setting. For example, the heat kernel of the Schrödinger operator −∆+ V , with

0 ≤ V ∈ L1
loc(Rn), enjoys Gaussian upper bound; however, in general its heat kernel does not

satisfies the Hölder continuity. Also, the Dirichlet or Neumann heat kernels of some non-smooth

domains enjoy the Gaussian upper bound but may not satisfy the Hölder continuity. See Section

2.6 for a more detailed discussion.

The primary goal of the current thesis is to generalize the work of Kerkyacharian and Petrushev

[59]. To be precise, in this thesis we develop the Besov and Triebel-Lizorkin spaces on a doubling

metric measure space (X, ρ, µ) associated to a non-negative self-adjoint operator L on L2(X, dµ)

whose heat kernel pt(x, y) satisfies the Gaussian upper bound but need not satisfy any condition

on the regularity in the variables x and y. As we mentioned above, there are some interesting

operators whose heat kernels satisfy Gaussian upper bound but may not satisfy the Hölder

continuity. Thus, our setting is more general than that considered in [59]. Let us describe our

definition of Besov and Triebel-Lizorkin spaces associated to operators. Let s ∈ R and q ∈ (0,∞].

Let Φ0,Φ be two functions in S(R≥0) such that

|Φ0(λ)| ≥ c > 0 on {0 ≤ λ ≤ 23/2ε}, (1.9)

|Φ(λ)| ≥ c > 0 on {2−3/2ε ≤ λ ≤ 23/2ε} (1.10)

for some ε > 0, and

the function λ 7→ λ−MΦ(λ) belongs to S(R≥0) (1.11)

for some nonnegative integer M > s/2. Set Φj(λ) := Φ(2−2jλ), j ≥ 1. For p ∈ (0,∞], we define

the Besov space Bs,Lp,q (X) as the collection of all distributions f ∈ S ′
L (X) such that

∥f∥Bs,L
p,q (X) :=

 ∞∑
j=0

∥∥2jsΦj(L )f
∥∥q
Lp(X)

1/q

<∞. (1.12)

For p ∈ (0,∞), we define the Triebel-Lizorkin space F s,Lp,q (X) as the collection of all distributions

f ∈ S ′
L (X) such that

∥f∥F s,L
p,q (X) :=

∥∥∥∥∥∥∥
 ∞∑
j=0

∣∣2jsΦj(L )f
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

<∞. (1.13)
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To see that these function spaces are well-defined, we first need to show that different choices

of Φ0,Φ yield equivalent Besov and Triebel-Lizorkin quasi-norms, as long as Φ0,Φ satisfy (1.9)–

(1.11). However, since there is no assumption on the regularity of the heat kernel of L , the

generalized Petree’s inequality established in [59, Lemma 6.4] fails in our setting. To overcome

this obstacle, we follow the ideas of Bui et al. [11, 12], Rychkov [68] and Ullrich [84]. Note that

the most important contribution of these papers is the characterization of classical Besov and

Triebel-Lizorkin spaces on Rn using Littlewood-Paley decomposition (1.2) involving functions

ψ,φ ∈ S(Rn) which are not required to be band limited but only satisfy a Tauberian condition

and a moment condition. In the present thesis we extend such type characterization to the

operator setting. This approach enables us to remove the restriction that Φ0,Φ have compact

supports. (Compare (1.9)–(1.11) to (1.7)–(1.8)).

This thesis is organized as follows: In Chapter 2 we present notations and preliminaries. After

introducing some notations in Section 2.1, we recall the notions of doubling, reverse doubling,

and non-collapsing conditions for the metric measure space (X, ρ, µ) in Section 2.2 and recall

the notions of Gaussian upper bound and Hölder continuity for heat kernels in Section 2.3. In

Section 2.4 we recall an important result of Kerkyacharian and Petrushev concerning smooth

functional calculus induced by the heat kernels. In Section 2.5 we recall the notions of test

functions and distributions associated to operators which were first introduced by Kerkyacharian

and Petrushev. In Section 2.6 we describe several examples.

In Chapter 3 we introduce Besov and Triebel-Lizorkin spaces associated to the operator L using

the quasi-norms (1.12) and (1.13) in which Φ0 and Φ are chosen to satisfy (1.9)–(1.11). The

main result in this chapter is the well-definedness of our function spaces. More precisely, we

show that a different choice of (Φ0,Φ) yields equivalent Besov and Triebel-Lizorkin quasi-norms.

We divide the proof into two steps. The first step (see Theorem 3.4) is to show that if (Φ0,Φ)

is a couple of functions in S(R≥0) satisfying (1.9)–(1.11) then ∞∑
j=0

∥∥2js[Φj(L )]∗af
∥∥q
Lp(X)

1/q

∼

 ∞∑
j=0

∥∥2jsΦj(L )f
∥∥q
Lp(X)

1/q

,

∥∥∥∥∥∥∥
 ∞∑
j=0

∣∣2js[Φj(L )]∗af
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

∼

∥∥∥∥∥∥∥
 ∞∑
j=0

∣∣2jsΦj(L )f
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

,

where [Φj(L )]∗af is the Peetre maximal functions defined by (3.3), and the notation ∼ means

that the quantities on both sides are comparable. The second step (see Theorem 3.5) is to show

that if (Φ0,Φ) and (Φ̃0, Φ̃) are two couples of functions in S(R≥0) satisfying (1.9)–(1.11) then ∞∑
j=0

∥∥2js[Φ̃j(L )]∗af
∥∥q
Lp(X)

1/q

∼

 ∞∑
j=0

∥∥2js[Φj(L )]∗af
∥∥q
Lp(X)

1/q

,

∥∥∥∥∥∥∥
 ∞∑
j=0

∣∣2js[Φ̃j(L )]∗af
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

∼

∥∥∥∥∥∥∥
 ∞∑
j=0

∣∣2js[Φj(L )]∗af
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

.

Combining these two steps we see that our definition of Bs,Lp,q (X) and F s,Lp,q (X) is independent

of the choice of Φ0,Φ, as long as Φ0,Φ satisfy (1.9)–(1.11). In Section 3.3 we give some basic

properties of Bs,Lp,q (X) and F s,Lp,q (X), including the completeness of these spaces and the con-

tinuous embeddings Bs,Lp,q (X) ↪→ S ′
L (X) and F s,Lp,q (X) ↪→ S ′

L (X). In Section 3.4 we show the
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continuous Littlewood-Paley characterization which states that if Φ0,Φ satisfy (1.9)–(1.11) then

∥f∥Bs,L
p,q (X) ∼ ∥Φ0(L )f∥Lp(X) +

(∫ 1

0

t−sq
∥∥Φ(t2L )f

∥∥q
Lp(X)

dt

t

)1/q

, (1.14)

∥f∥F s,L
p,q (X) ∼ ∥Φ0(L )f∥Lp(X) +

∥∥∥∥∥
(∫ 1

0

t−sq
∣∣Φ(t2L )f

∣∣q dt
t

)1/q
∥∥∥∥∥
Lp(X)

. (1.15)

This characterization is very useful because it leads immediately to the heat kernel characteri-

zation of Bs,Lp,q (X) and F s,Lp,q (X). Indeed, if we take

Φ0(λ) = e−λ and Φ(λ) = λMe−λ

in (1.14) and (1.15), we get

∥f∥Bs,L
p,q (X) ∼ ∥e−L f∥Lp(X) +

(∫ 1

0

t−sq
∥∥(t2L )Me−t

2L f
∥∥q
Lp(X)

dt

t

)1/q

,

∥f∥F s,L
p,q (X) ∼ ∥e−L f∥Lp(X) +

∥∥∥∥∥
(∫ 1

0

t−sq
∣∣(t2L )Me−t

2L f
∣∣q dt
t

)1/q
∥∥∥∥∥
Lp(X)

.

In Chapter 4 we systematically discuss properties and characterizations ofBs,Lp,q (X) and F s,Lp,q (X).

First we establish the atomic decomposition of Bs,Lp,q (X) and F s,Lp,q (X). Then, using the atomic

decomposition and following the idea of [64], we show the complex interpolation property for

Bs,Lp,q (X) and F s,Lp,q (X). We also obtain the lifting property and embedding theorem for these

spaces. Finally, in Section 4.5 we point out that F 0,L
p,2 (X) is identified with Lp(X) for p ∈ (1,∞).

In Chapter 5 we introduce homogeneous Besov spaces Ḃs,Lp,q (X) and homogeneous Triebel-

Lizorkin spaces Ḟ s,Lp,q (X). To define these homogeneous spaces, we need to introduce the new

test function space S∞,L (X). The key ingredient in this chapter is a homogeneous Calderón

reproducing formula in the distribution space S ′
∞,L (X) (see Proposition 5.5). In Section 5.3 we

list some properties and characterizations of Ḃs,Lp,q (X) and Ḟ s,Lp,q (X). Most of the proofs of these

properties and characterizations are skipped since they are analogous to their inhomogeneous

versions given in Chapter 3. In Section 5.4 we show that Ḟ 0,L
p,2 (X) (0 < p < ∞) are character-

ized by the Lusin area integral. In Section 5.5 we show that Ḟ 0,L
p,2 (X) (0 < p ≤ 1) can also be

identified with the atomic Hardy spaces Hp,q,M
L (X) associated to L .

In Chapter 6 we apply our theory to the special setting of stratified Lie groups. It is well

known that any stratified Lie group G satisfies the doubling, reverse doubling and non-collapsing

conditions, and the heat kernel of any sub-Laplacian ∆ on G satisfies the Gaussian upper bound.

Hence, applying the general theory established in Chapter 3 and Chapter 5, we can define the

Besov spaces Bs,∆p,q (G) and Ḃs,∆p,q (G) and the Tribel-Lizorkin spaces F s,∆p,q (G) and Ḟ s,∆p,q (G). In

section 6.2 we prove that for any two sub-Laplacians ∆ and ∆̃ on G, we have Bs,∆p,q (G) = Bs,∆̃p,q (G),

Ḃs,∆p,q (G) = Ḃs,∆̃p,q (G), F
s,∆
p,q (G) = F s,∆̃p,q (G) and Ḟ s,∆p,q (G) = Ḟ s,∆̃p,q (G). This result tells us that the

Besov and Triebel-Lizorkin spaces on G reflect properties of the group, not of the sub-Laplacian

used for the construction of the Littlewood-Paley decomposition. In Section 6.3 we obtain the

Ḃsp,q(G)- and Ḟ
s
p,q(G)-boundedness of singular integral operators of convolution type on G.

In Chapter 7 we consider the maximal function characterization the space Ḟ 0,∆
p,2 (X) in the special

case that X is a Riemannian manifold and ∆ is the Laplace-Beltrami operator on X. We show

that in this case Ḟ 0,∆
p,2 (X) can be identified with Hp

max,∆(X), where Hp
max,∆(X) is the Hardy

space on X defined via the non-tangential or radial maximal functions associated to ∆.



Chapter 2

Notations and preliminaries

2.1 Notations

Throughout this thesis we assume that X is a locally compact metric space with a distance ρ,

and µ is a positive regular Borel measure on X. To avoid repetition, we skip this assumption in

all the subsequent statements.

We denote by B(x, r) the open ball with center x ∈ X and radius r > 0, and by V (x, r) its

measure µ(B(x, r)).

The symbol N will denote the set of all positive integers while N0 will denote the set of all

non-negative integers.

If σ is a positive number, we denote by ⌊σ⌋ the largest integer less than or equal to σ. For

p ∈ (1,∞), the conjugate exponent p′ is defined by 1/p+ 1/p′ = 1.

For p ∈ (0,∞), the Lebesgue space Lp(X, dµ) will be written in short Lp(X).

Let R≥0 := [0,∞) and R>0 := (0,∞). If Φ is a smooth function on R≥0 and ν ∈ N0, then we

use Φ(ν) to denote the ν-th order derivative of Φ. In addition, we define the space S(R≥0) by

S(R≥0) :=
{
Φ ∈ C∞(R>0) : ∀ν ∈ N0,Φ

(ν) decays rapidly at infinity and lim
λ→0+

Φ(ν)(λ) exists
}
.

Throughout this thesis, the letters C, c will denote positive constants, which are independent of

the main parameters and not necessarily the same at each occurrence. By writing A . B, we

mean A ≤ CB. We also use A ∼ B to denote A . B . A. Some important constants will be

denoted by C∗, C†, C♭, C♯, · · · , and they will remain unchanged throughout.

2.2 Doubling, reverse doubling, and non-collapsing condi-

tions

One says that the metric measure space (X, ρ, µ) satisfies the doubling condition, if there exists

a constant C∗ > 1 such that

0 < V (x, 2r) ≤ C∗V (x, r) <∞ (2.1)

7
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for all x ∈ X and r ∈ (0,∞). Notice that (2.1) implies

V (x, λr) ≤ C∗λ
dV (x, r) (2.2)

for all x ∈ X, r ∈ (0,∞) and λ ∈ [1,∞), where d = log2 C∗ > 0 is a constant playing the role of

a dimension. Since B(x, r) ⊂ B(y, ρ(x, y) + r), (2.2) yields that

V (x, r) ≤ C∗

(
1 +

ρ(x, y)

r

)d
V (y, r) (2.3)

for all x, y ∈ X and r ∈ (0,∞).

One says that (X, d, µ) satisfies the reverse doubling condition, if there exists a constant C† > 1

such that

V (x, 2r) ≥ C†V (x, r) (2.4)

for all x ∈ X and r ∈ (0, diamX
3 ]. Note that (2.4) implies

V (x, λr) ≥ C−1
† λςV (x, r) (2.5)

for all x ∈ X, r ∈ (0,∞), λ ∈ [1,∞) and r ∈ (0, 2 diamX
3λ ], where ς = log2 C† > 0. It was shown

in [19, Proposition 2.2] that the reverse doubling condition (2.4) is a consequence of the doubling

condition (2.1) whenever X is connected.

One says that (X, d, µ) satisfies the non-collapsing condition, if there exists a constant C♭ > 0

such that

inf
x∈X

V (x, 1) ≥ C♭. (2.6)

Note that (2.6) coupled with (2.1) imply that for all r ∈ (0, 1]

inf
x∈X

V (x, r) ≥ C−1
∗ C♭r

d. (2.7)

2.3 Gaussian upper bound and Hölder continuity of the

heat kernel

Let L be a non-negative self-adjoint operator with domain D(L ) dense in L2(X). Let E(λ)

be the spectral resolution of L . For any bounded Borel measurable function Φ : R≥0 → C, the
operator

Φ(L ) =

∫ ∞

0

Φ(λ)dE(λ).

is bounded on L2(X). We assume that the associated semigroup Pt = e−tL consists of integral

operators with (heat) kernel pt(x, y). We say that the heat kernel of L satisfies the Gaussian

upper bound, if there exist two constants C♯, c♯ > 0 such that

|pt(x, y)| ≤ C♯
exp

{
− ρ2(x,y)

c♯t

}√
V (x,

√
t)V (y,

√
t)
. (2.8)
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for all t ∈ (0, 1] and x, y ∈ X. We say that the heat kernel of L satisfies the Hölder continuity,

if there exists a constant α > 0 such that

|pt(x, y)− pt(x, y
′)| ≤ C♯

(
ρ(y, y′)√

t

)α exp
{
− ρ2(x,y)

c♯t

}√
V (x,

√
t)V (y,

√
t)

(2.9)

for all t ∈ (0, 1] and x, y, y′ ∈ X satisfying that ρ(y, y′) ≤
√
t.

2.4 Smooth functional calculus induced by the heat kernel

For t, σ > 0 and x, y ∈ X, we set

Dt,σ(x, y) := [V (x, t)V (y, t)]−1/2

(
1 +

ρ(x, y)

t

)−σ

. (2.10)

In addition, for Φ ∈ S(R≥0) and m ∈ N0, we put

∥Φ∥(m) := sup
λ∈R≥0, 0≤ν≤m

(1 + λ)m+d+1|Φ(ν)(λ)|. (2.11)

Next we recall an important estimate obtained by Kerkyacharian and Petrushev [59].

Lemma 2.1. ([59, Theorem 3.4]) Suppose (X, ρ, µ) satisfies the doubling condition (2.1), reverse

doubling condition (2.4) and non-collapsing condition (2.6). Suppose L is a non-negative self-

adjoint operator on L2(X) whose heat kernel satisfies the Gaussian upper bound (2.8) and the

Hölder continuity (2.9). Suppose m ∈ N0, m ≥ d+ 1, r ≥ m+ d+ 1, Φ ∈ Cm(R≥0), and there

exists a constant C̃ > 0 such that

|Φ(ν)(λ)| ≤ C̃(1 + λ)−r

for all λ ∈ R≥0 and ν ∈ {0, 1, · · · ,m}. Suppose further that

Φ(2ν+1)(0) = 0

for all ν ∈ N0 with 2ν + 1 ≤ m. Then for any t ∈ (0, 1], Φ(t
√

L ) is an integral operator with a

kernel KΦ(t
√

L )(x, y); moreover, there exists a constant C > 0 (depending on m) such that∣∣KΦ(t
√

L )(x, y)
∣∣ ≤ CC̃Dt,m(x, y) (2.12)

for all t ∈ (0, 1] and x, y ∈ X, and

∣∣KΦ(t
√

L )(x, y)−KΦ(t
√

L )(x, y
′)
∣∣ ≤ CC̃

(
ρ(y, y′)

t

)α
Dt,m(x, y) (2.13)

for all t ∈ (0, 1] and x, y, y′ ∈ X satisfying ρ(y, y′) ≤ t.

Remark 2.2. If we do not assume the Hölder continuity for the heat kernel of L , the estimate

(2.13) fails but the estimate (2.12) still holds.

Observe that if Φ ∈ S(R≥0), then the function Ψ : R≥0 → C defined by Ψ(λ) := Φ(λ2) also lies in

S(R≥0), and moreover, Ψ(2ν+1)(0) = 0 for all ν ∈ N0. Also note that for anym ∈ N0, there exists

a constant C > 0, which depends on m but is independent of Φ, such that ∥Ψ∥(m) ≤ C∥Φ∥(m).

By these facts, we can reformulate Lemma 2.1 as follows:
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Lemma 2.3. Suppose (X, ρ, µ) satisfies the doubling condition (2.1), reverse doubling condition

(2.4) and non-collapsing condition (2.6). Suppose L is a non-negative self-adjoint operator on

L2(X) whose heat kernel satisfies the Gaussian upper bound (2.8) and the Hölder continuity

(2.9). Then for any Φ ∈ S(R≥0) and t ∈ (0, 1], Φ(t2L ) is an integral operator with a kernel

KΦ(t2L )(x, y); moreover, for any m ∈ N0 with m ≥ d + 1, there is a constant C > 0, which

depends on m but is independent of Φ, such that∣∣KΦ(t2L )(x, y)
∣∣ ≤ C∥Φ∥(m)Dt,m(x, y) (2.14)

for all t ∈ (0, 1] and x, y ∈ X, and

∣∣KΦ(t2L )(x, y)−KΦ(t2L )(x, y
′)
∣∣ ≤ C∥Φ∥(m)

(
ρ(y, y′)

t

)α
Dt,m(x, y) (2.15)

for all t ∈ (0, 1] and x, y, y′ ∈ X satisfying ρ(y, y′) ≤ t.

Remark 2.4. If we do not assume the Hölder continuity for the heat kernel of L , the estimate

(2.15) fails but the estimate (2.14) still holds.

2.5 Test functions and distributions associated to opera-

tors

We recall from [59] the notions of test functions and distributions on X associated to L . The

test function space SL (X) is defined as the collection of all functions ϕ ∈ ∩k∈N0
D(L k) such

that

Pk,m(ϕ) := ess sup
x∈X

(1 + ρ(x, x0))
m|L kϕ(x)| <∞

for all k,m ∈ N0, where x0 ∈ X is arbitrary fixed point on X. Obviously, the definition of

SL (X) is independent of the choice of x0. So we fix x0 once and for all. For our purpose it is

convenient to introduce the following directed family of norms: For k,m ∈ N0 and ϕ ∈ SL (X),

we define

P∗
k,m(ϕ) :=

∑
0≤j≤k
0≤ℓ≤m

Pj,ℓ(ϕ).

It was shown in [59] that SL (X) is a Fréchet space. The space S ′
L (X) of distributions on X is

defined as the space of all continuous linear functionals on SL (X). The action of f ∈ S ′
L (X)

on ϕ ∈ SL (X) will be denoted by (f, ϕ) := f(ϕ). However, sometimes we will work with the

sesquilinear version ⟨f, ϕ⟩ = (f, ϕ̄).

An important consequence of Lemma 2.3 and Remark 2.4 is the following

Corollary 2.5. Suppose (X, ρ, µ) satisfies the doubling condition (2.1), reverse doubling condi-

tion (2.4) and non-collapsing condition (2.6). Suppose L is a non-negative self-adjoint operator

on L2(X) whose heat kernel satisfies the Gaussian upper bound (2.8). Let Φ ∈ S(R≥0). Then:

(i) For any t ∈ (0, 1] and for almost every fixed y ∈ X, KΦ(t2L )(·, y) belongs to SL (X).

(ii) For any t ∈ (0, 1] and for almost every fixed x ∈ X, KΦ(t2L )(x, ·) belongs to SL (X).

Proof. Let t ∈ (0, 1]. From (5.14) in [59] we see that for almost every fixed y ∈ X and for any

k ∈ N0,

L k
[
KΦ(t2L )(·, y)

]
= KL kΦ(t2L )(·, y) = t−2kK(t2L )kΦ(t2L )(·, y).
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Hence, if m is an integer with m ≥ d+ 1, we have by Lemma 2.3,∣∣L k
[
KΦ(t2L )(·, y)

]
(x)
∣∣ = t−2k

∣∣K(t2L )kΦ(t2L )(x, y)
∣∣

. t−2k∥λ 7→ λkΦ(λ)∥(m)Dt,m(x, y)

. t−2k∥Φ∥(k+m)Dt,m(x, y), for a.e. x ∈ X.

(2.16)

This implies that KΦ(t2L )(·, y) ∈ SL (X). Since KΦ(t2L )(x, ·) = KΦ(t2L )(·, x), we also have

KΦ(t2L )(x, ·) ∈ SL (X) for almost every fixed x.

Thanks to Corollary 2.5, it is now natural to define, for any f ∈ S ′
L (X) and Φ ∈ S(R≥0),

Φ(L )f(x) :=
(
f,KΦ(L )(x, ·)

)
, for a.e. x ∈ X.

This extends the domain of Φ(L ) from L2(X) to S ′
L (X).

Lemma 2.6. (i) Suppose f ∈ S ′
L (X) and Φ ∈ S(R≥0). Then there is a non-negative integer N

such that for a.e. x ∈ X,

|Φ(L )f(x)| ≤ C(1 + ρ(x, x0))
N . (2.17)

In particular, Φ(L )f can be regarded as a distribution in S ′
L (X).

(ii) Let Φ,Ψ ∈ S(R≥0) and Υ := ΦΨ. Then for all f ∈ S ′
L (X),

Φ(L )
(
Ψ(L )f

)
= Ψ(L )

(
Φ(L )f

)
= Υ(L )f in S ′

L (X). (2.18)

Proof. (i) Since f ∈ S ′
L (X) and KΦ(L )(x, ·) ∈ SL (X), there exist k0,m0 ∈ N0 and a constant

cf (depending on f) such that for a.e. x ∈ X,

|Φ(L )f(x)| =
∣∣f(KΦ(L )(x, ·)

)∣∣
≤ cfP∗

k0,m0

(
KΦ(L )(x, ·)

)
= cf

∑
0≤k≤k0
0≤m≤m0

Pj,ℓ
(
KΦ(L )(x, ·)

)
= cf

∑
0≤k≤k0
0≤m≤m0

ess sup
y∈X

(1 + ρ(y, x0))
m
∣∣L k

[
KΦ(L )(x, ·)

]
(y)
∣∣

= cf
∑

0≤k≤k0
0≤m≤m0

ess sup
y∈X

(1 + ρ(y, x0))
m
∣∣KL kΦ(L )(x, y)

∣∣.
(2.19)

Here, for the last equality we used (5.14) in [59]. Since the function λ 7→ λkΦ(λ) belongs to

S(R≥0), by Lemma 2.3 and (2.3) we have that for k ∈ {0, 1, · · · , k0}

|KL kΦ(L )(x, y)| . ∥λ 7→ λkΦ(λ)∥(m0+⌊d/2⌋+1)[V (x, 1)V (y, 1)]−1/2(1 + ρ(x, y))−(m+ d
2 )

. ∥λ 7→ λkΦ(λ)∥(m0+⌊d/2⌋+1)[V (x, 1)]−1(1 + ρ(x, y))−m0

. ∥Φ∥(m0+k0+⌊d/2⌋+1)[V (x, 1)]−1(1 + ρ(x, x0))
m0(1 + ρ(y, x0))

−m0

. ∥Φ∥(m+k0+⌊d/2⌋+1)[V (x0, 1)]
−1(1 + ρ(x, x0))

m0+d(1 + ρ(y, x0))
−m0

∼ (1 + ρ(y, x0))
−m0 .

This together with (2.19) yield (2.17) with N = m+ d.

(ii) By [67, Theorem 13.24], we know that for all ϕ ∈ SL (X),

Φ(L )
(
Ψ(L )ϕ

)
= Ψ(L )

(
Φ(L )ϕ

)
= Υ(L )ϕ in L2(X). (2.20)
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Also note that by [59, Propostion 5.3] all of the three functions in (2.18) belong to the class

SL (X). Thus (2.18) holds also in SL (X). The validness of (2.18) in the sense of distributions

then follows by duality.

2.6 Examples

As we mentioned in the introduction, Kerkyacharian and Petrushev [59] studied Besov and

Triebel-Lizorkin spaces on (X, ρ, µ) associated to a non-negative self-adjoint operator L under

the assumption that the heat kernel of L satisfies the Gaussian upper bound and the Hölder

continuity, while in the current thesis the heat kernel pt(x, y) of the operator L is not assumed

to have any regularity in the variables x and y. Thus, our setting is more general than that

considered in [59]. In particular, the theory developed in the current thesis applies to all the

examples described in [59]. Next we recall some of these examples. In addition, we also give some

examples of operators whose heat kernel satisfies Gaussian upper bound but may not satisfy the

Hölder continuity.

• Uniformly elliptic divergence form operators on Rn. Let {ai,j(x)}1≤i,j≤n be a matrix-valued

function depending on x ∈ Rn such that

ai,j(x) = aj,i(x) for all 1 ≤ i, j ≤ n and a.e. x ∈ Rn,
ai,j ∈ L∞(Rn) for all 1 ≤ i, j ≤ n,

and the following uniform ellipticity condition holds:

n∑
i,j=1

ai,j(x)ξiξj ≥ θ|ξ|2 for a.e. x ∈ Rn and all ξ ∈ Rn, (2.21)

where θ is a positive constant. Define a sesquilinear form Q on the product space W 1,2(Rn) ×
W 1,2(Rn) by

Q(u, v) =

∫
Rn

n∑
i,j=1

ai,j(x)
∂u

∂xj

∂v̄

∂xi
dx

for u, v ∈W 1,2(Rn). Let L be the self-adjoint operator associated with Q. Then the domain of

L is given by

D(L ) =

{
u ∈W 1,2(Rn) : ∃v ∈ L2(Rn) such that Q(u, φ) =

∫
Rn

vφ̄, ∀φ ∈W 1,2(Rn)
}
.

Formally we can write

L = −
n∑

i,j=1

∂

∂xi

(
ai,j(x)

∂

∂xj

)
.

In this setting, the Gaussian upper and lower bounds of the heat kernel were obtained by Aronson

and the Hölder regularity of the solutions is due to Nash [63].

• Domains in Rn. Let Ω be a domain of Rn. Let {ai,j(x)}1≤i,j≤n be a matrix-valued function

depending on x ∈ Ω such that

ai,j(x) = aj,i(x) for all 1 ≤ i, j ≤ n and a.e. x ∈ Ω,

ai,j ∈ L∞(Ω) for all 1 ≤ i, j ≤ n,
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and the following uniform ellipticity condition holds:

n∑
i,j=1

ai,j(x)ξiξj ≥ θ|ξ|2 for a.e. x ∈ Ω and all ξ ∈ Rn,

where θ is a positive constant. Let V be a linear space such that C∞
0 (Ω) ⊂ V ⊂W 1,2(Ω). Define

a sesquilinear form on the product space V × V by

Q(u, v) =

∫
Ω

n∑
i,j=1

ai,j(x)
∂u

∂xj

∂v̄

∂xi
dx

for u, v ∈ V. Let L the self-adjoint operator associated with Q. Then the domain of L is given

by

D(L ) =

{
u ∈ V : ∃v ∈ L2(Ω) such that Q(u, φ) =

∫
Ω

vφ̄, ∀φ ∈ V
}
.

Different choices of V correspond to different boundary conditions for the operator L . For

example, when V is chosen to beW 1,2
0 (Ω) andW 1,2(Ω), it corresponds to the Dirichlet boundary

condition and the Neumann boundary condition, respectively. We denote by LD and LN the

divergence operator subjecting to the Dirichlet boundary condition and the Neumann boundary

condition, respectively.

Let pt,LD
(x, y) and pt,LN

(x, y) be the heat kernels of LD and LN , respectively. It is well-known

that (see, e.g., [20, Example 2.1.8]) pt,LD
(x, y) always satisfies the Gaussian upper bound (2.8),

without any conditions on smoothness of the boundary of Ω. However, to ensure the Gaussian

upper bound of pt,LN
(x, y) one need to impose suitable regularity condition to Ω. For instance,

if Ω satisfies the extension property (i.e., there exists a bounded linear map E : W 1,2(Ω) →
W 1,2(Rn) such that Eu is an extension of u from to Rn for all u ∈ W 1,2(Ω)), then pt,LN

(x, y)

satisfies the Gaussian upper bound (see [20, Theorem 3.2.9] and [3, Theorem 4.4]). It is worth

noting that every (locally) uniform domain satisfies the extension property, however, a domain

satisfying the extension property need not be (locally) uniform (see [87] and the references

therein). We also point out that the extension property implies that Ω satisfies the doubling

property

|BΩ(x, 2r)| ≤ C|BΩ(x, r)|, ∀x ∈ Ω, ∀r ∈ (0, diam(Ω)),

where BΩ(x, r) := {x ∈ Ω : |x− y| < r}. See

The Hölder continuity of pt,LD
(x, y) and pt,LN

(x, y) are more difficult to establish. For the

Dirichlet boundary condition, it is shown in [22] that if Ω is bounded and satisfies the uniform

outer ball condition, and L = −∆, then pt,LD
(x, y) satisfies the Hölder continuity. For the

Neumann boundary condition, it is proved in [41] that if Ω is a uniform domain or a convex

domain (not necessarily bounded) then pt,LN (x, y) satisfies the Hölder continuity.

• Schrödinger type operators. Let V be a locally integrable non-negative function on Rn, which
is not identically zero. Let V = {u ∈ W 1,2(Rn) :

∫
Rn V |u|2dv < ∞}. Let Q be the sesquilinear

form on the product space V × V, given by

Q(u, v) =

∫
Rn

n∑
i,j=1

∂u

∂xi

∂v̄

∂xj
dx+

∫
Rn

V uv̄dx

for u, v ∈ V. Simon proved in [73] that this sesquilinear form coincides with the minimal closure

of the form given by the same expression but defined on C∞
0 (Rn) × C∞

0 (Rn). Let L be the
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self-adjoint operator associated with Q. Then the domain of L is given by

D(L ) =

{
u ∈ V : ∃v ∈ L2(Rn) such that Q(u, φ) =

∫
Rn

vφ̄, ∀φ ∈ V
}
.

Formally we can write L = −∆ + V and call L the Schrödinger operator with potential V .

Since V is non-negative and locally integrable, the Feynman-Kac formula yields that heat kernel

pt(x, y) of L satisfies

0 ≤ pt(x, y) ≤ (4πt)−n/2 exp

(
−|x− y|2

4t

)
for all t > 0 and x, y ∈ Rn. That is, pt(x, y) satisfies the Gaussian upper bound.

In general, pt(x, y) does not satisfy the Hölder continuity condition. However, if one imposes

appropriate conditions on the potential V , then pt(x, y) is Hölder continuous. For example, if

one assume that V belongs to the reverse Hölder class RHq for some q > n/2, that is, there

exists a constant C > 0 such that(
1

|B|

∫
B

V (y)qdy

)1/q

≤ C

|B|

∫
B

V (y)dy for ever ball B,

then for any α ∈ (0,min{1, 2− n/q}), there exists constants C, c > 0 such that for all t > 0 and

x, y, y′ ∈ Rn satisfying |y − y′| <
√
t

|pt(x, y)− pt(x, y
′)| ≤ Ct−n/2

(
|y − y′|√

t

)α
exp

(
−|x− y|2

ct

)
.

See [29, Theorem 4.11].

• Riemannian manifolds with non-negative Ricci curvature. Let M be a complete, connected, n-

dimensional Riemannian manifolds with non-negative Ricci curvature. Let ρ be the geodesic dis-

tance, µ the Riemannian measure, and∇ the Riemannian gradient onM . Denote by |·| the length
in the tangent space. Let ∆ be the Laplace-Beltrami operator, that is the positive self-adjoint

operator on L2(M,dµ) defined by the formal integration by parts ⟨∆f, f⟩ = ∥|∇f |∥L2(X,dµ).

Denote by pt(x, y) the heat kernel of M . By the Bishop-Gromov volume comparison theorem,

we know that on such an manifold M there is a constant C > 0 such that for all x ∈ M and

r′ ≥ r > 0,
µ(B(x, r′))

µ(B(x, r))
≤ C

(
r′

r

)n
.

This implies thatM satisfies the doubling condition. The reverse doubling condition then follows

from the doubling condition and the connectedness of M (cf. [19, Proposition 2.2]).

Li and Yau [60] proved that the heat kernel pt(x, y) of M satisfies the following Gaussian upper

and lower bounds:

C ′ exp
{
− ρ2(x,y)

c′t

}√
µ(B(x,

√
t))µ(B(y,

√
t))

≤ pt(x, y) ≤ C
exp

{
− ρ2(x,y)

ct

}√
µ(B(x,

√
t))µ(B(y,

√
t))

(2.22)

for all x, y ∈ X and t ∈ (0,∞). Note that it was shown in [71] that the estimates (2.22)

are equivalent to the so-called uniform parabolic Harnack principle, and they imply the Hölder

continuity of pt(x, y).

• Compact Riemannian manifolds. LetM be a compact Riemannian manifold without boundary.

In this case, the Ricci curvature of M is obviously bounded from below. Hence, by the Bishop-

Gromov volume comparison theorem, M satisfies the doubling condition (2.1), and by the result

of Li and Yau [60] the heat kernel of M satisfies the estimate (2.22) for t ∈ (0, 1].
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• Lie groups of polynomial growth. Let G be a connected unimodular Lie group and let µ be

a fixed Haar measure on G. Denote by g the Lie algebra of G. Let X = {X1, · · · , Xk} be

left-invariant vector fields on G satisfying the Hörmander condition, that is, the Xi’s and their

commutators of all orders generate g. Let ρ be the Carnot-Carathéodory (control) distance on

G associated to X. For x ∈ G and r > 0, let B(x, r) := {y ∈ G : ρ(x, y) < r}. Then for all x ∈ G

and r > 0, we have µ(B(x, r)) = µ(B(e, r)), where e is the identity element of G. We denote

V (r) := µ(B(e, r)). It was proved by Y. Guivarc’h [40] that either there exists an integer N such

that

∀r ∈ (1,∞), crN ≤ V (r) < CrN

or

∀r ∈ (1,∞), cecr ≤ V (r) ≤ CeCr.

In the first case, we say that G is a Lie group of polynomial growth. For small r, by results of

[62] we know that there exists an integer n, which is not necessarily the topological dimension

of G, such that

∀r ∈ (0, 1], crn ≤ V (r) ≤ Crn.

From all of these, it follows that if G is Lie group of polynomial growth then it satisfies the

doubling, reverse doubling, and non-collapsing conditions.

We denote by ∆X = −
∑k
i=1X

2
i the sub-Laplacian on G associated with X, and by ∇X =

(X1, · · · , Xk) the gradient on G associated with X. It was proved by Varopoulos [85] that G

satisfies the (scaled) Poincaré inequality, namely, there exists C > 0 such that, for every ball

B = B(x, r) and every f with f , ∇Xf locally square integrable,∫
B

|f − fB |2dµ ≤ Cr2
∫
B

|∇Xf |2dµ, (2.23)

where fB := 1
µ(B)

∫
B
f(x)dµ(x). On the other hand, from [70] we see that the Li-Yau type

estimate (2.22) is equivalent to the conjunction of the volume doubling condition and the Poincaré

inequality (2.23). Therefore, the heat kernel of G satisfies the Gaussian upper bound and the

Hölder continuity condition.

Recall that all simply connected nilpotent Lie groups are of polynomial volume growth. In

particular, all stratified Lie groups and all H-type groups are Lie groups of polynomial volume

growth.

• Heat kernel on [−1, 1] generated by the Jacobi operator. Consider the interval [−1, 1] endowed

with the measure dµ(x) = w(x)dx, where

w(x) := (1− x)α(1 + x)β , α, β > −1.

is the classical Jacobi weight. The Jacobi operator L is defied by

L f(x) := − [w(x)a(x)f ′(x)]′

w(x)
with a(x) := 1− x2

and D(L ) = C2[−1, 1]. It is well known that (cf. [80]) LPk = λkPk, where Pk (k ∈ N0)

is the (normalized) Jacobi polynomial of degree k, and λk = k(k + α + β + 1). Let ρ be an

intrinsic metric on [−1, 1] defined by ρ(x, y) = | arccosx− arccos y|. It is shown in [19] that the

metric measure space ([−1, 1], ρ, µ) satisfies the doubling condition (2.1), and the heat kernel of

L satisfies the Gaussian upper bound (2.8) and the Hölder continuity condition (2.9).



Chapter 3

Besov and Triebel-Lizorkin spaces

associated to operators

Throughout this chapter, we assume that the metric measure space (X, ρ, µ) satisfies the doubling

condition (2.1), the reverse doubling condition (2.4), and the non-collapsing condition (2.6), and

assume that L is a non-negative self-adjoint operator on L2(X) whose heat kernel pt(x, y)

satisfies the pointwise Gaussian upper bound (2.8). We do not assume the Hölder continuity for

pt(x, y) in the variables x and y. Our purpose in this chapter is to introduce and investigate

Besov and Triebel-Lizorkin spaces associated to such an L .

3.1 Definition of Bs,L
p,q (X) and F s,L

p,q (X)

Before we introduce Besov and Triebel-Lizorkin spaces associated to L , we first define the classes

AM (R≥0).

Definition 3.1. Let (Φ0,Φ) be a couple of functions in S(R≥0) and let M ∈ N0. We say that

(Φ0,Φ) belongs to the class AM (R≥0), if

|Φ0(λ)| ≥ c > 0 on {0 ≤ λ ≤ 23/2ε} and |Φ(λ)| ≥ c > 0 on {2−3/2ε ≤ λ ≤ 23/2ε} (3.1)

for some ε > 0, and

the function λ 7→ λ−MΦ(λ) belongs to S(R≥0). (3.2)

Remark 3.2. If M ≥ 1, the condition (3.2) is equivalent to the following one:

Φ(k)(0) = 0 for k = 0, 1, · · · ,M − 1.

Example. Let M ∈ N0. Define Φ0(λ) = e−λ and Φ(λ) = λMe−λ for λ ∈ R≥0. Then clearly

(Φ0,Φ) ∈ AM (R≥0).

We introduce Besov and Triebel-Lizorkin spaces associated with L as follows:

Definition 3.3. (i) Let s ∈ R, p ∈ (0,∞] and q ∈ (0,∞]. Let (Φ0,Φ) ∈ AM (R≥0) for some

nonnegative integer M > s/2. Set Φj(λ) := Φ(2−2jλ) for j ≥ 1. We define the Besov space

16
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Bs,Lp,q (X) as the collection of all distributions f ∈ S ′
L (X) such that

∥f∥Bs,L
p,q (X) :=

 ∞∑
j=0

∥∥2jsΦj(L )f
∥∥q
Lp(X)

1/q

<∞.

(ii) Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞]. Let (Φ0,Φ) ∈ AM (R≥0) for some nonnegative integer

M > s/2. Set Φj(λ) := Φ(2−2jλ) for j ≥ 1. We define the Triebel-Lizorkin space F s,Lp,q (X) as

the collection of all distributions f ∈ S ′
L (X) such that

∥f∥F s,L
p,q (X) :=

∥∥∥∥∥∥∥
 ∞∑
j=0

∣∣2jsΦj(L )f
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

<∞.

3.2 Well-definedness and Peetre maximal function charac-

terization

Given a couple (Φ0,Φ) of functions in S(R≥0), a distribution f ∈ S ′
L (X), and a number a > 0,

we define a system of Peetre type maximal functions by

[Φj(L )]∗af(x) := ess sup
y∈X

|Φj(L )f(y)|
(1 + 2jρ(x, y))a

, x ∈ X, j ∈ N0, (3.3)

where Φj(·) := Φ(2−2j ·) for j ≥ 1.

The following two theorems, which provide the Peetre type maximal function characterization

of Besov and Triebel-Lizorkin spaces associated with L , are the main results of this section.

Theorem 3.4. Let s ∈ R, q ∈ (0,∞] and let (Φ0,Φ) be a couple of functions in S(R≥0) satisfying

(3.1). Set Φj(λ) := Φ(2−2jλ) for j ≥ 1.

(i) If p ∈ (0,∞] and a > 2d
p , then for all f ∈ S ′

L (X),

 ∞∑
j=0

∥∥2js[Φj(L )]∗af
∥∥q
Lp(X)

1/q

∼

 ∞∑
j=0

∥∥2jsΦj(L )f
∥∥q
Lp(X)

1/q

. (3.4)

(ii) If p ∈ (0,∞) and a > 2d
min{p,q} , then for all f ∈ S ′

L (X),∥∥∥∥∥∥∥
 ∞∑
j=0

∣∣2js[Φj(L )]∗af
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

∼

∥∥∥∥∥∥∥
 ∞∑
j=0

∣∣2jsΦj(L )f
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

. (3.5)

Theorem 3.5. Let s ∈ R, q ∈ (0,∞] and a > 0. Let (Φ0,Φ), (Φ̃0, Φ̃) ∈ AM (R≥0) for some

nonnegative integer M > s/2. Set Φj(λ) := Φ(2−2jλ) and Φ̃j(λ) := Φ(2−2jλ) for j ≥ 1.

(i) If p ∈ (0,∞], then for all f ∈ S ′
L (X), ∞∑

j=0

∥∥2js[Φ̃j(L )]∗af
∥∥q
Lp(X)

1/q

∼

 ∞∑
j=0

∥∥2js[Φj(L )]∗af
∥∥q
Lp(X)

1/q

. (3.6)
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(ii) If p ∈ (0,∞), then for all f ∈ S ′
L (X),∥∥∥∥∥∥∥

 ∞∑
j=0

∣∣2js[Φ̃j(L )]∗af
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

∼

∥∥∥∥∥∥∥
 ∞∑
j=0

∣∣2js[Φj(L )]∗af
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

. (3.7)

Combining Theorem 3.4 and 3.5, we get the following corollary:

Corollary 3.6. Our definition of Bs,Lp,q (X) and F s,Lp,q (X) is independent of the choice of (Φ0,Φ) ∈
AM (R≥0), as long as the nonnegative integer M is strictly larger than s/2.

To prove Theorem 3.4 and Theorem 3.5 we need considerable preparation. First note that for

any σ > d there is a positive constant C (depending on σ) such that∫
X

(
1 +

ρ(x, y)

t

)−σ

dµ(y) ≤ CV (x, t) (3.8)

for all t ∈ (0,∞) and x ∈ X; see [19, Lemma 2.3]. This together with (2.3) yields that for any

σ > 3d/2,

∥Dt,σ(x, ·)∥L1(X,dµ) ≤ C (3.9)

uniformly for all t ∈ (0,∞) and x ∈ X, where Dt,σ(x, y) is defined by (2.10).

Combining (2.8) and (2.11) from [19], we see that for any σ > d there exists a constant C such

that for all s, t ∈ (0,∞) and x, y ∈ X,∫
X

Dt,σ(x, z)Ds,σ(z, y)dµ(z) ≤ Cmax{(t−1s)d, (s−1t)d}Dt∨s,σ(x, y),

where t ∨ s := max{t, s}. However, for our purpose we need the following refinement:

Lemma 3.7. For any σ > 2d, there exists a constant C > 0 such that for all t, s > 0 and all

x, y ∈ X, ∫
X

Dt,σ(x, z)Ds,σ(z, y)dµ(z) ≤ CDt∨s,σ−2d(x, y). (3.10)

Proof. By symmetry, we only need to show (3.10) for t > s. To do this, we write∫
X

Dt,σ(x, z)Ds,σ(z, y)dµ(z) =

∫
D1

+

∫
D2

=: I1 + I2,

where D1 := {z ∈ X : ρ(z, y) < ρ(x, y)/2} and D2 := {z ∈ X : ρ(z, y) ≥ ρ(x, y)/2}. Observe

that ρ(x, y) ≤ 2ρ(x, z) for all z ∈ D1. This together with (2.3) yields that

∀z ∈ D1 : Dt,σ(x, z) . [V (x, t)V (z, t)]−1/2(1 + t−1ρ(x, z))−σ

. [V (x, t)V (y, t)]−1/2(1 + t−1ρ(z, y))d/2(1 + t−1ρ(x, z))−σ

. [V (x, t)V (y, t)]−1/2(1 + t−1ρ(x, y))−σ+d/2

= Dt,σ−d/2(x, y).

(3.11)

Also note that, by (2.3) and the elementary inequality 1 + t−1ρ(z, y) ≤ C(1 + t−1ρ(x, y))(1 +

t−1ρ(x, z)), and taking into account that σ > 2d, we have

∀z ∈ D2 : Dt,σ(x, z) . [V (x, t)V (z, t)]−1/2(1 + t−1ρ(x, z))−d/2

. [V (x, t)V (y, t)]−1/2(1 + t−1ρ(z, y))d/2(1 + t−1ρ(x, z))−d/2

. [V (x, t)V (y, t)]−1/2(1 + t−1ρ(x, y))d/2.

(3.12)
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From (3.11) and (3.9), it follows that

I1 . Dt,σ−d/2(x, y)

∫
D1

Ds,σ(z, y)dµ(y) . Dt,σ−d/2(x, y). (3.13)

To estimate I2, note that by (3.12) we have

I2 . [V (x, t)V (y, t)]−1/2(1 + t−1ρ(x, y))d/2
∫
Ω2

Ds,σ(z, y)dµ(y). (3.14)

Suppose first that ρ(x, y) ≤ t. In this case we have 1 + t−1ρ(x, y) ∼ 1, and hence by (3.9)

I2 . [V (x, t)V (y, t)]−1/2

∫
X

Ds,σ(z, y)dµ(y) . [V (x, t)V (y, t)]−1/2 ∼ Dt,σ(x, y).

If, instead, ρ(x, y) > t, then we decompose the set D2 into D2 =
∪∞
k=0Ek, where Ek := {z ∈

X : 2k−1ρ(x, y) ≤ ρ(z, y) < 2kρ(x, y)}. By using (2.2) and (2.3) we can estimate as follows:∫
D2

Ds,σ(z, y)dµ(z) . V (y, s)−1

∫
D2

(1 + s−1ρ(z, y))−σ+d/2dµ(z)

. V (y, s)−1sσ−d/2
∞∑
k=0

∫
Ek

ρ(z, y)−σ+d/2dµ(z)

≤ sσ−d/2
∞∑
k=0

[2k−1ρ(x, y)]−σ+d/2V (y, s)−1V (y, 2kρ(x, y))

≤ sσ−d/2
∞∑
k=0

[2k−1ρ(x, y)]−σ+d/2
(
2kρ(x, y)

s

)d
. tσ−3d/2ρ(x, y)−σ+3d/2

∼ (1 + t−1ρ(x, y))−σ+3d/2.

Here, for the last inequality we used that t−1ρ(x, y) ∼ 1+t−1ρ(x, y), which follows from ρ(x, y) >

t. Inserting the above estimate into (3.14) we obtain

I2 . Dt,σ−2d(x, y). (3.15)

Combining (3.13) and (3.15), we arrive at (3.10) and the proof is thus completed.

Lemma 3.8. Suppose that Φ,Ψ ∈ S(R≥0) and suppose further that

the function λ 7→ λ−MΨ(λ) belongs to S(R≥0),

where M ∈ N0. Then for any m ∈ N0 with m > max{2d, d + 1}, there exists a constant C > 0

such that for all j, ℓ ∈ N0 with j ≤ ℓ,∣∣KΦ(2−2jL )Ψ(2−2ℓL )(x, y)
∣∣

≤ C∥Φ∥(m+M)∥λ 7→ λ−MΨ(λ)∥(m)2
2(j−ℓ)MD2−j ,m−2d(x, y).

(3.16)

Proof. Note that∣∣KΦ(2−2jL )Ψ(2−2ℓL )(x, y)
∣∣

= 22(j−ℓ)M
∣∣K(2−2jL )MΦ(2−2jL )(2−2ℓL )−MΨ(2−2ℓL )(x, y)

∣∣
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≤ 22(j−ℓ)M
∫
X

∣∣K(2−2jL )MΦ(2−2jL )(x, z)
∣∣∣∣K(2−2ℓL )−MΨ(2−2ℓL )(z, y)

∣∣dµ(z).
By (2.14) we have∣∣K(2−2jL )MΦ(2−2jL )(x, z)

∣∣ ≤ C∥λ 7→ λMΦ(λ)∥(m)D2−j ,m(x, z) ≤ C∥Φ∥(m+M)D2−j ,m(x, z)

and ∣∣K(2−2ℓL )−MΨ(2−2ℓL )(z, y)
∣∣ ≤ C∥λ 7→ λ−MΨ(λ)∥(m)D2−ℓ,m(z, y).

These two estimates along with Lemma 3.7 yield (3.16).

Lemma 3.9. Suppose (Φ0,Φ) is a couple of functions in S(R≥0) satisfying (3.1). Then there

exists another couple (Ψ0,Ψ) of functions in S(R≥0) such that

suppΨ0 ∈ [0, 22ε], |Ψ0(λ)| ≥ c > 0 for λ ∈ [0, 23/2ε],

suppΨ ⊂ [2−2ε, 22ε], |Ψ(λ)| ≥ c > 0 for λ ∈ [2−3/2ε, 23/2ε],

and

Φ0(λ)Ψ0(λ) +

∞∑
j=1

Φ(2−2jλ)Ψ(2−2jλ) = 1 for all λ ∈ R≥0.

Proof. Choose nonnegative functions Θ,Υ ∈ S(R≥0) such that

suppΘ ⊂ [0, 22ε], Θ(λ) ≥ c > 0 for λ ∈ [0, 23/2ε],

suppΥ ⊂ [2−2ε, 22ε], Υ(λ) ≥ c > 0 for λ ∈ [2−3/2ε, 23/2ε].

Then we put

Ξ(λ) := Θ(λ)|Φ0(λ)|2 +
∞∑
j=1

Υ(2−2jλ)|Φ(2−2jλ)|2, λ ∈ R≥0. (3.17)

By (3.1) and by our choice of Θ,Υ, there exists a constant c′ > 0 such that

|Θ(λ)||Φ0(λ)|2 ≥ c′ for λ ∈ [0, 23/2ε],

|Υ(λ)||Φ(λ)|2 ≥ c′ for λ ∈ [2−3/2ε, 23/2ε].

Also note that for any λ ∈ [23/2ε,∞) there exists a positive integer j such that 2−2jλ ∈
[2−3/2ε, 23/2ε]. Hence the function Ξ is strictly positive on R≥0 with a strictly positive low-

er bound. Moreover, since for any λ ∈ R≥0 the number of those j for which Υ(2−2jλ) ̸= 0 is no

more than 2, i.e., the sum on the right-hand side of (3.17) is in fact a finite sum for any fixed

λ, we see that Ξ ∈ C∞(R>0), and for any k ∈ N0, limλ→0+ Ξ(k)(λ) exists and Ξ(k) is a bounded

function on R≥0.

Now define the functions Ψ0,Ψ : R≥0 → C respectively by

Ψ0(λ) :=
Θ(λ)Φ0(λ)

Ξ(λ)
and Ψ(λ) :=

Υ(λ)Φ(λ)

Ξ(λ)
.

Then it is straightforward to verify that Ψ0,Ψ satisfy the desired properties.

Lemma 3.10. Suppose Φ0,Φ are functions in S(R≥0) such that suppΦ0 and suppΦ are compact,

0 /∈ suppΦ, and

Φ0(λ) +
∞∑
j=1

Φ(2−2jλ) = 1 for all λ ∈ R≥0. (3.18)
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Then for any f ∈ S ′
L (X),

f = Φ0(L )f +

∞∑
j=1

Φ(2−2jL )f,

where the convergence of the sum is in the sense of S ′
L (X).

Proof. By duality, it suffices to show that for all ϕ ∈ SL (X),

ϕ = Φ0(L )ϕ+
∞∑
j=1

Φ(2−2jL )ϕ in SL (X).

To do this, we first show that the series
∑∞
j=1 Φ(2

−2jL )ϕ converges in the topology of SL (X).

Write, for each k,M ∈ N0 and j ∈ N,

L k
[
Φ(2−2jL )ϕ

]
= 2−2jM

[
(2−2jL )−MΦ(2−2jL )

]
L k+Mϕ.

Since Φ has compact support and 0 /∈ suppΦ, the function λ 7→ λ−MΨ(λ) belongs to S(R≥0)

for all M ∈ N0. Hence it follows from (2.14) that for any m ∈ N0 with m ≥ d+ 1, there exits a

constant C > 0 (depending on m) such that for all M ∈ N0, j ∈ N and a.e. x, y ∈ X,∣∣K(2−2jL )−MΦ(2−2jL )(x, y)
∣∣ ≤ C∥λ 7→ λ−MΦ(λ)∥(m)D2−j ,m(x, y),

Also, by the definition of SL (X), we have, for a.e. y ∈ X,

|L k+Mϕ(y)| ≤ Pk+M,m(ϕ)(1 + ρ(y, x0))
−m ≤ CPk+M,m(ϕ)V (x0, 1)D1,m−n/2(y, x0).

From these estimates and (3.10), it follows that for any m ∈ N0 with m ≥ ⌊3d⌋+ 2 (≥ 2d+ 1),

there exits a constant C > 0 (depending on m) such that for all k,M ∈ N0, j ∈ N and a.e.

x ∈ X,∣∣L k
[
Φ(2−2jL )ϕ

]
(x)
∣∣

≤ C2−2jM

∫
X

∣∣K(2−2jL )−MΦ(2−2jL )(x, y)
∣∣|L k+Mϕ(y)|dµ(y)

≤ C2−2jM∥λ 7→ λ−MΦ(λ)∥(m)Pk+M,m(ϕ)

∫
X

D2−j ,m(x, y)D1,m−d/2(y, x0)dµ(y)

≤ C2−2jM∥λ 7→ λ−MΦ(λ)∥(m)Pk+M,m(ϕ)D1,m−5d/2(x, x0)

≤ C2−2jM∥λ 7→ λ−MΦ(λ)∥(m)Pk+M,m(ϕ)(1 + ρ(x, x0))
−m+3d.

(3.19)

Replacing m by the integer m + ⌊3d⌋ + 2, and multiplying both sides by (1 + ρ(x, x0))
m, we

obtain that for all k,m ∈ N0,

Pk,m
(
Φ(2−2jL )ϕ

)
≤ C2−2jM∥λ 7→ λ−MΦ(λ)∥(m+⌊3d⌋+2)Pk+M,m+⌊3d⌋+2(ϕ). (3.20)

Hence, by choosing M ≥ 1, we have

∞∑
j=1

Pk,m
(
Φ(2−2jL )ϕ

)
≤ C∥λ 7→ λ−MΦ(λ)∥(m+⌊3d⌋+2)Pk+M,m+⌊3d⌋+2(ϕ).

This implies that the series
∑∞
j=1 Φ(2

−2jL )ϕ converges in the topology of SL (X). Hence (since

SL (X) is Fréchet space), there exists ψ ∈ SL (X) such that Ψ(L )ϕ+
∑∞
j=1 Φ(2

−2jL )ϕ converges

in the topology of SL (X) to ψ. On the other hand, by (3.18) and the spectral theorem (cf. [66,
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Theorem VII.2]), we have

Φ0(L )ϕ+

∞∑
j=1

Φ(2−2jL )ϕ = ϕ,

which holds in the sense of L2(X)-norm. Therefore, ψ = ϕ. This completes the proof.

Lemma 3.11. (see [68, Lemma 2]) Let 0 < p, q ≤ ∞ and δ > 0. Let {gj}∞j=0 be a sequence of

nonnegative measurable function on X and put

Gℓ(x) =
∞∑
j=0

2−|j−ℓ|δgj(x), x ∈ X, ℓ ∈ N0.

Then, there is a constant C depending only on p, q, δ such that∥∥{Gℓ}∞ℓ=0

∥∥
ℓq(ℓp)

≤ C
∥∥{gj}∞j=0

∥∥
ℓq(Lp)

,∥∥{Gℓ}∞ℓ=0

∥∥
Lp(ℓq)

≤ C
∥∥{gj}∞j=0

∥∥
Lp(ℓq)

.

Here, ℓq(Lp) and Lp(ℓq) are the spaces of all sequences {hj}∞j=0 of measurable functions on X

with the finite quasi-norms∥∥{hj}∞j=0

∥∥
ℓq(Lp)

:=
∥∥{∥hj∥Lp(X)}∞j=0

∥∥
ℓq
,∥∥{hj}∞j=0

∥∥
Lp(ℓq)

:=
∥∥∥∥{hj(·)}∞j=0

∥∥
ℓq

∥∥
Lp(X)

.

We now give the proof of Theorem 3.4.

Proof of Theorem 3.4. We follow the idea developed by Rychkov [68] and Ullrich [84]. Since

Φ0,Φ satisfy (3.1), by Lemma 3.9 there exist Ψ0,Ψ ∈ S(R≥0) such that

suppΨ0 ⊂ [0, 22ε], suppΨ ⊂ [2−2ε, 22ε],

and

Φ0(λ)Ψ0(λ) +
∞∑
j=1

Φ(2−2jλ)Ψ(2−2jλ) = 1, ∀λ ∈ R≥0.

Setting Φj(λ) := Φ(2−2jλ) and Ψj(λ) := Ψ(2−2jλ) for j ≥ 1, we can rewrite the above equality

as
∞∑
j=0

Φj(λ)Ψj(λ) = 1, ∀λ ∈ R≥0.

Replacing λ by 2−2ℓλ, we get that for all ℓ ∈ N0,

∞∑
j=0

Φj(2
−2ℓλ)Ψj(2

−2ℓλ) = 1, ∀λ ∈ R≥0.

The last inequality along with Lemma 3.10 yields that for all f ∈ S ′
L (X),

f =
∞∑
j=0

Φj(2
−2ℓL )Ψj(2

−2ℓL )f in S ′
L (X).

Hence, for ℓ ∈ N0, we have the pointwise representation

Φℓ(L )f(y) =

∞∑
j=0

Φℓ(L )Φj(2
−2ℓL )Ψj(2

−2ℓL )f(y), a.e. y ∈ X. (3.21)
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For j, ℓ ∈ N0, let us define

Λj,ℓ(λ) :=

{
Φ0(2

−2ℓλ) if j = 0 and ℓ ∈ N0,

Φℓ(λ) if j ∈ N and ℓ ∈ N0.

Observe that

Φℓ(λ)Φj(2
−2ℓλ) = Λj,ℓ(λ)Φj+ℓ(λ), j, ℓ ∈ N0.

Substituting this into (3.21), and using Lemma 2.6 (ii), we obtain the pointwise representation

(in what follows we omit the range of the integration if it is X)

Φℓ(L )f(y) =
∞∑
j=0

Λj,ℓ(L )Φj+ℓ(L )Ψj(2
−2ℓL )f(y)

=

∞∑
j=0

Ψj(2
−2ℓL )Λj,ℓ(L )Φj+ℓ(L )f(y)

=
∞∑
j=0

∫
KΨj(2−2ℓL )Λj,ℓ(L )(y, z)Φj+ℓ(L )f(z)dµ(z), a.e. y ∈ X.

(3.22)

Let N be any positive integer such that N ≥ 3d + 1. Since the function Ψ vanishes near the

origin, the function λ 7→ λ−NΨ(λ) belongs to S(R≥0). Hence by Lemma 3.8 there exists a

constant C > 0 (depending on N) such that∣∣KΨj(2−2ℓL )Λj,ℓ(L )(y, z)
∣∣

=


∣∣KΨ0(2−2ℓL )Φ0(2−2ℓL )(y, z)

∣∣ if j = 0 and ℓ ∈ N0∣∣KΨ(2−2jL )Φ0(L )(y, z)
∣∣ if j ∈ N and ℓ = 0∣∣KΨ(2−2(j+ℓ)L )Φ(2−2ℓL )(y, z)

∣∣ if j ∈ N and ℓ ∈ N

≤


C∥Φ0Ψ0∥(N)D2−ℓ,N (y, z) if j = 0 and ℓ ∈ N0

C∥Φ0∥(2N)∥λ 7→ λ−NΨ(λ)∥(N)2
−2jND1,N−2d(y, z) if j ∈ N and ℓ = 0

C∥Φ∥(2N)∥λ 7→ λ−NΨ(λ)∥(N)2
−2jND2−ℓ,N−2d(y, z) if j ∈ N and ℓ ∈ N

.

This shows that for all j, ℓ ∈ N0,∣∣KΨj(2−2ℓL )Λj,ℓ(L )(y, z)
∣∣ ≤ C2−2jND2−ℓ,N−2d(y, z),

where the last constant C depends on N,Φ0,Ψ0,Φ and Ψ, but is independent of ℓ ∈ N0 and

j ∈ N0. Inserting this into (3.22) and using (2.3), we obtain that for a.e. y ∈ X,

|Φℓ(L )f(y)| ≤ C
∞∑
j=0

2−2jN

∫
D2−ℓ,N−2d(y, z)|Φj+ℓ(L )f(z)|dµ(z)

≤ C

∞∑
j=0

2−2jN

∫
|Φj+ℓ(L )f(z)|

V (z, 2−ℓ)(1 + 2ℓd(y, z))N−5d/2
dµ(z).

(3.23)

Replacing ℓ by k+ℓ, and then multiplying on both sides with 2−2kN , we get that for all k, ℓ ∈ N0

and a.e. y ∈ X,

2−2kN |Φk+ℓ(L )f(y)|

≤ C
∞∑
j=0

2−2(j+k)N

∫
|Φj+k+ℓ(L )f(z)|

V (z, 2−(k+ℓ))(1 + 2k+ℓρ(y, z))N−5d/2
dµ(z)
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≤ C

∞∑
j=0

2−2(j+k)N

∫
|Φj+k+ℓ(L )f(z)|

V (z, 2−(j+k+ℓ))(1 + 2ℓρ(y, z))N−5d/2
dµ(z) (3.24)

= C
∞∑
j=k

2−2jN

∫
|Φj+ℓ(L )f(z)|

V (z, 2−(j+ℓ))(1 + 2ℓρ(y, z))N−5d/2
dµ(z)

≤ C
∞∑
j=0

2−2jN

∫
|Φj+ℓ(L )f(z)|

V (z, 2−(j+ℓ))(1 + 2ℓρ(y, z))N−5d/2
dµ(z), (3.25)

where N can be taken arbitrarily large. Now let us introduce the maximal type functions

Mℓ,Nf(x) := sup
k∈N0

ess sup
y∈X

2−2kN |Φk+ℓ(L )f(y)|
(1 + 2ℓρ(x, y))N−5d/2

, ℓ ∈ N0, N > 0, x ∈ X. (3.26)

Then it follows that for all r ∈ (0, 1], ℓ ∈ N0, N ≥ 3d+ 1 and all x ∈ X,

Mℓ,Nf(x)

≤ CN

∞∑
j=0

2−2jN

∫
ess sup
y∈X

|Φj+ℓ(L )f(z)|
V (z, 2−(j+ℓ))(1 + 2ℓρ(y, z))N−5d/2(1 + 2ℓρ(x, y))N−5d/2

dµ(z)

≤ CN

∞∑
j=0

2−2jN

∫
|Φj+ℓ(L )f(z)|

V (z, 2−(j+ℓ))(1 + 2ℓρ(x, z))N−5d/2
dµ(z)

≤ CN

∞∑
j=0

2−2jNr

(
2−2jN ess sup

y∈X

|Φj+ℓ(L )f(y)|
(1 + 2ℓρ(x, y))N−5d/2

)1−r

×
∫

|Φj+ℓ(L )f(z)|r

V (z, 2−(j+ℓ))(1 + 2ℓρ(x, z))(N−5d/2)r
dµ(z)

≤ CN

∞∑
j=0

2−2jNr[Mℓ,Nf(x)
]1−r

∫
|Φj+ℓ(L )f(z)|r

V (z, 2−(j+ℓ))(1 + 2ℓρ(x, z))(N−5d/2)r
dµ(z)

(3.27)

where, for the second inequality we used the elementary inequalities

(1 + 2ℓρ(x, z)) ≤ C(1 + 2ℓρ(x, y))(1 + 2ℓρ(y, z)) for all x, y, z ∈ X,

|Φj+ℓ(L )f(z)| ≤ |Φj+ℓ(L )f(z)|r(1 + 2ℓρ(x, z))(N−5d/2)(1−r)

×
(
ess sup
y∈X

|Φj+ℓ(L )f(y)|
(1 + 2ℓρ(x, y))N−5d/2

)1−r

for a.e. z ∈ X.

(3.28)

Hence, if Mℓ,Nf(x) <∞ we obtain from (3.27)

[
Mℓ,Nf(x)

]r ≤ CN

∞∑
j=0

2−2jNr

∫
|Φj+ℓ(L )f(z)|r

V (z, 2−(j+ℓ))(1 + 2ℓρ(x, z))(N−5d/2)r
dµ(z), (3.29)

where CN is a constant independent of x, f, ℓ. We claim that there exists Nf ∈ N0 such that

Mℓ,Nf(x) < ∞ for all ℓ ∈ N0 and N ≥ Nf . Indeed, by the definition of S ′
L (X), there exist

m0, k0 ∈ N0 and cf > 0 such that for a.e. y ∈ X,

|Φk+ℓ(L )f(y)| =
∣∣f(KΦk+ℓ(L )(y, ·)

)∣∣
≤ cfP∗

k0,m0

(
KΦk+ℓ(L )(y, ·)

)
= cf

∑
0≤j≤k0
0≤η≤m0

Pj,η
(
KΦk+ℓ(L )(y, ·)

)
= cf

∑
0≤j≤k0
0≤η≤m0

ess sup
z∈X

(1 + ρ(z, x0))
η
∣∣L j

(
KΦk+ℓ(L )(y, ·)

)
(z)
∣∣
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= cf
∑

0≤j≤k0
0≤η≤m0

ess sup
z∈X

(1 + ρ(z, x0))
η
∣∣KL jΦk+ℓ(L )(y, z)

∣∣
≤ cf

∑
0≤j≤k0

ess sup
z∈X

(1 + ρ(z, x0))
m0
∣∣KL jΦk+ℓ(L )(y, z)

∣∣

=


cf

∑
0≤j≤k0

ess sup
z∈X

(1 + ρ(z, x0))
m0
∣∣KL jΦ0(L )(y, z)

∣∣ if k + ℓ = 0

cf
∑

0≤j≤k0

ess sup
z∈X

(1 + ρ(z, x0))
m022(k+ℓ)j

∣∣K(2−2(k+ℓ)L )jΦ(2−2(k+ℓ)L )(y, z)
∣∣ if k + ℓ > 0

≤


cf,N ess sup

z∈X
(1 + ρ(z, x0))

m0D1,N (y, z) if k + ℓ = 0

cf,N ess sup
z∈X

(1 + ρ(z, x0))
m022(k+ℓ)k0D2−(k+ℓ),N (y, z) if k + ℓ > 0

≤


cf,N ess sup

z∈X
(1 + ρ(z, x0))

m0(1 + ρ(y, z))−N+ d
2 if k + ℓ = 0

cf,N ess sup
z∈X

(1 + ρ(z, x0))
m022(k+ℓ)k0 [V (x0, 2

−(k+ℓ))]−1(1 + 2k+ℓρ(y, z))−N+ d
2 if k + ℓ > 0

≤


cf,N ess sup

z∈X
(1 + ρ(z, x0))

m0(1 + ρ(y, z))−N+ d
2 if k + ℓ = 0

cf,N ess sup
z∈X

(1 + ρ(z, x0))
m022(k+ℓ)k02(k+ℓ)d(1 + 2k+ℓρ(y, z))−N+ d

2 if k + ℓ > 0
.

Here, for the last inequality we used the non-collapsing condition. Hence, assuming N >
max{m0 +

5d
2 , k0 +

d
2}, we estimate as follows:

Mℓ,Nf(x)

≤ sup
k∈N0

ess sup
y∈X

2−2kN |Φk+ℓ(L )f(y)|
(1 + 2ℓρ(x, y))N−5d/2

≤ cf,N sup
k∈N0

ess sup
y∈X

2−2kN

×


ess sup
z∈X

(1 + ρ(z, x0))
m0(1 + ρ(y, z))−N+ d

2 (1 + ρ(x, y))−N+ 5d
2 if k + ℓ = 0

ess sup
z∈X

(1 + ρ(z, x0))
m022(k+ℓ)k02(k+ℓ)d(1 + 2k+ℓρ(y, z))−N+ d

2 (1 + 2ℓρ(x, y))−N+ 5d
2 if k + ℓ > 0

≤ cf,N sup
k∈N0

2−2kN

{
(1 + ρ(x, x0))

m0 if k + ℓ = 0

22(k+ℓ)k02(k+ℓ)d(1 + ρ(x, x0))
m0 if k + ℓ > 0

< ∞.

This implies that if N > max {m0 + 5d/2, k0 + d/2, 3d+ 1} := Nf then Mℓ,Nf(x) < ∞ for all

ℓ ∈ N0 and all x ∈ X. Therefore (3.29) together with the obvious inequality |Φℓ(L )f(x)| ≤
Mℓ,Nf(x) (a.e. x ∈ X) yields that for all N > Nf and for a.e. x ∈ X,

|Φℓ(L )f(x)|r ≤ c
∞∑
j=0

2−2jNr

∫
|Φj+ℓ(L )f(z)|r

V (z, 2−(j+ℓ))(1 + 2ℓρ(x, z))(N−5d/2)r
dµ(z) (3.30)

with c = CN independent of x, f and ℓ. Observe that the sum in the right-hand side of (3.30)

decreases as N increases. Therefore, (3.30) is valid for all N ∈ N0 with

c = CN,f =

{
CNf if 0 ≤ N ≤ Nf

CN if N > Nf

depending on N and f . We want to obtain (3.30) with c independent of f . For this purpose,

we start from (3.30) which is valid for all N ∈ N but in which c = CN,f depends on N and

f , apply the same argument as used from (3.24) to (3.25), and switch to the maximal function

(3.26) with the aid of (3.28). Thus we get (3.29) with a constant depends on f . Untill now we
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have seen that if RHS(3.29) (= RHS(3.30))<∞ then Mℓ,Nf(x) <∞.

Fix arbitrary N ∈ N0 with N ≥ 3d + 1. To prove (3.30) we may assume RHS(3.30)< ∞, since

otherwise (3.30) is trivial. Hence, by the preceding remarks we have Mℓ,Nf(x) <∞. Therefore

from (3.27) we deduce (3.29) with the constant CN independent of f . Finally, form (3.29) and

the obvious inequality |Φℓ(L )f(x)| ≤Mℓ,Nf(x) (a.e. x ∈ X), we obtain (3.30).

Note that (3.30) also holds for r ∈ (1,∞). Indeed, it follows from (5.10) (with N replaced by

N + ⌊5d/2⌋+ ⌊2d⌋+ 3) that for a.e. x ∈ X,

|Φℓ(L )f(x)|

≤ CN

∞∑
j=0

2−2j(N+⌊5d/2⌋+⌊2d⌋+3)

∫
|Φj+ℓ(L )f(z)|

V (z, 2−ℓ)(1 + 2ℓρ(x, z))N+⌊2d⌋+2
dµ(z)

= CN

∞∑
j=0

2−2j(N+⌊5d/2⌋+⌊2d⌋+3)

∫
|Φj+ℓ(L )f(z)|

[V (z, 2−ℓ)]1/r(1 + 2ℓρ(x, z))N

× 1

[V (z, 2−ℓ)]1/r′(1 + 2ℓρ(x, z))⌊2d⌋+2
dµ(z)

≤ CN

∞∑
j=0

2−2j(N+⌊5d/2⌋+⌊2d⌋+3)

(∫
|Φj+ℓ(L )f(z)|r

V (z, 2−ℓ)(1 + 2ℓρ(x, z))Nr
dµ(z)

)1/r

×
(∫

1

V (z, 2−ℓ)(1 + 2ℓρ(x, z))(⌊2d⌋+2)r′
dµ(z)

)1/r′

≤ CN

∞∑
j=0

2−2jN

(∫
|Φj+ℓ(L )f(z)|r

V (z, 2−ℓ)(1 + 2ℓρ(x, z))Nr
dµ(z)

)1/r

2−2j(⌊5d/2⌋+⌊2d⌋+3)

≤ CN

 ∞∑
j=0

2−2jNr

∫
|Φj+ℓ(L )f(z)|r

V (z, 2−ℓ)(1 + 2ℓρ(x, z))Nr
dµ(z)

1/r ∞∑
j=1

2−2j(⌊⌊5d/2⌋+⌊2d⌋+3)r′

1/r′

≤ CN

 ∞∑
j=0

2−2jNr

∫
|Φj+ℓ(L )f(z)|r

V (z, 2−(j+ℓ))(1 + 2ℓρ(x, z))Nr
dµ(z)

1/r

≤ CN

 ∞∑
j=0

2−2jNr

∫
|Φj+ℓ(L )f(z)|r

V (z, 2−(j+ℓ))(1 + 2ℓρ(x, z))(N−5d/2)r
dµ(z)

1/r

,

where we applied Hölder’s inequality twice.

Now, choosing N ≥ a+5d/2 in (3.30), it follows that for all r ∈ (0,∞), all ℓ ∈ N0 and all x ∈ X,{
[Φℓ(L )]∗af(x)

}r
= ess sup

y∈X

|Φℓ(L )f(y)|r

(1 + 2ℓρ(x, y))ar

.
∞∑
j=0

2−2jNr

∫
ess sup
y∈X

|Φj+ℓ(L )f(z)|r

V (z, 2−(j+ℓ))(1 + 2ℓρ(y, z))(N−5d/2)r(1 + 2ℓρ(x, y))ar
dµ(z)

≤
∞∑
j=0

2−2jNr

∫
|Φj+ℓ(L )f(z)|r

V (z, 2−(j+ℓ))(1 + 2ℓρ(x, z))ar
dµ(z)

.
∞∑
j=0

2−2jNr2jd
∫

|Φj+ℓ(L )f(z)|r

V (z, 2−ℓ)(1 + 2ℓρ(x, z))ar
dµ(z).

(3.31)
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Here, for the second inequality we used (3.28) and for last inequality we applied (2.2). Since

a > 2d
p (resp. a > 2d

min(p,q) ), we may choose and fix r ∈ (0, p) (resp. r ∈ (0,min(p, q))) such that

ar > 2d. Then, by using (2.2) and (2.3) the last integral can be estimated as follows.∫
|Φj+ℓ(L )f(z)|r

V (z, 2−ℓ)(1 + 2ℓρ(x, z))ar
dµ(z) . 1

V (x, 2−ℓ)

∫
|Φj+ℓ(L )f(z)|r

(1 + 2ℓρ(x, z))ar−d
dµ(z)

=
1

V (x, 2−ℓ)

(∫
B(x,2−ℓ)

+
∞∑
k=1

∫
B(x,2k−ℓ)\B(x,2k−ℓ−1)

)
|Φj+ℓ(L )f(z)|r

(1 + 2ℓρ(x, z))ar−d
dµ(z)

. 1

V (x, 2−ℓ)

(∫
B(x,2−ℓ)

|Φj+ℓ(L )f(z)|rdµ(z) +
∞∑
k=1

2−k(ar−d)
∫
B(x,2k−ℓ)

|Φj+ℓ(L )f(z)|rdµ(z)

)

. 1

V (x, 2−ℓ)

∫
B(x,2−ℓ)

|Φj+ℓ(L )f(z)|rdµ(z)

+
∞∑
k=1

2−k(ar−2d) 1

V (x, 2k−ℓ)

∫
B(x,2k−ℓ)

|Φj+ℓ(L )f(z)|rdµ(z)

.MHL

(
|Φj+ℓ

(
L )f(z)|r

)
(x),

where MHL is the Hardy-Littlewood maximal operator defined by

MHLf(x) := sup
r>0

sup
y∈B(x,r)

1

V (y, r)

∫
B(y,r)

|f(z)|dµ(z), x ∈ X.

Substituting this into (3.31) gives that, for all ℓ ∈ N0 and all x ∈ X,

{
2−ℓs[Φℓ(L )]∗af(x)

}r . ∞∑
j=0

2−j(2Nr−sr−d)MHL

[(
2−(j+ℓ)s|Φj+ℓ(L )f |

)r]
(x)

=
∞∑
j=ℓ

2−(j−ℓ)(2Nr−sr−d)MHL

[(
2−js|Φj(L )f |

)r]
(x)

≤
∞∑
j=0

2−|j−ℓ|(2Nr−sr−d)MHL

[(
2−js|Φj(L )f |

)r]
(x).

If we apply Lemma 3.11 in spaces ℓq/r(Lp/r) and Lp/r(ℓq/r), we get∥∥{2ℓs[Φℓ(L )]∗af
}∞
ℓ=0

∥∥
ℓq(Lp)

≤ C
∥∥{Mr

[
2jsΦj(L )f

] }∞
j=0

∥∥
ℓq(Lp)

(3.32)

and ∥∥{2ℓs[Φℓ(L )]∗af
}∞
ℓ=0

∥∥
ℓq(Lp)

≤ C
∥∥{Mr

[
2jsΦj(L )f

] }∞
j=0

∥∥
ℓq(Lp)

. (3.33)

where we denoted Mr(g) :=
(
MHL(|g|r)

)1/r
.

The Fefferman-Stein vector-valued maximal inequalities on spaces of homogeneous type (cf. [39])

yields that

Mr : ℓ
q(Lp) → ℓq(Lp), r < p ≤ ∞, 0 < q ≤ ∞, (3.34)

Mr : L
p(ℓq) → Lp(ℓq), r < p <∞, r < q ≤ ∞. (3.35)

Since r ∈ (0, p) (resp. r ∈ (0,min(p, q))), by applying (3.34) (resp. (3.35)) to the right-hand

side of (3.32) (resp. (3.33)), we get the desired (3.4) (resp. (3.5)). The proof of Theorem 3.4 is

therefore completed.

We next turn to the proof of Theorem 3.5.
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Proof of Theorem 3.5. Since Φ0,Φ satisfy (3.1), by Lemma 3.9 there exists Ψ0,Ψ ∈ S(R≥0) such

that

suppΨ0 ⊂ [0, 22ε], suppΨ ⊂ [2−2ε, 22ε],

and

Ψ0(λ)Φ0(λ) +
∞∑
j=1

Ψ(2−2jλ)Φ(2−2jλ) = 1, ∀λ ∈ R≥0.

Setting Ψj(λ) := Ψ(2−2jλ) and Φj(λ) := Φ(2−2jλ) for j ≥ 1, we can rewrite the above equality

as
∞∑
j=0

Ψj(λ)Φj(λ) = 1, ∀λ ∈ R≥0.

Then it follows from Lemma 3.10 that for all f ∈ S ′
L (X),

f =

∞∑
j=0

Ψj(L )Φj(L )f in S ′
L (X).

Consequently, for ℓ ∈ N0 and a.e. y ∈ X,

Φ̃ℓ(L )f(y) =
∞∑
j=0

Φ̃ℓ(L )Ψj(L )Φj(L )f(y).

It follows that

|Φ̃ℓ(L )f(y)| ≤
∞∑
j=0

|Φ̃ℓ(L )Ψj(L )Φj(L )f(y)|

≤
∞∑
j=0

∫ ∣∣KΦ̃ℓ(L )Ψj(L )(y, z)
∣∣ |Φj(L )f(z)| dµ(z)

≤
∞∑
j=0

[Φj(L )]∗af(y)

∫
(1 + 2jρ(y, z))a

∣∣KΦ̃ℓ(L )Ψj(L )(y, z)
∣∣dµ(z)

=
∞∑
j=0

[Φj(L )]∗af(y)Ij,ℓ(y),

(3.36)

where we have set

Ij,ℓ(y) :=

∫
(1 + 2jρ(y, z))a

∣∣KΦ̃ℓ(L )Ψj(L )(y, z)
∣∣dµ(z).

To estimate Ij,ℓ(y) we consider two cases:

Case 1: j < ℓ. In this case, by the fact that the function λ 7→ λ−M Φ̃(λ) belongs to S(R≥0) and

by Lemma 3.8, we have ∣∣KΦ̃ℓ(L )Ψj(L )(y, z)
∣∣ . 22(j−ℓ)MD2−j ,N−2d(y, z),

where N can be taken arbitrarily large. Hence, choosing N > a+ 7d
2 , it follows that

Ij,ℓ(y) . 22(j−ℓ)M
∫

(1 + 2jρ(y, z))aD2−j ,N−2d(y, z)dµ(z)

= 22(j−ℓ)M
∫
D2−j ,N−a−2d(y, z)dµ(z)

. 22(j−ℓ)M ,

(3.37)
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where for the last inequality we applied (3.9).

Case 2: j ≥ ℓ. In this case, we use the fact that λ 7→ λ−M̃Ψ(λ) belongs to S(R≥0) for all

nonnegative integers M̃ (since Ψ vanishes near the origin) and by Lemma 3.8, we conclude that∣∣KΦ̃ℓ(L )Ψj(L )(y, z)
∣∣ . 22(ℓ−j)M̃D2−ℓ,N−2d(y, z),

where both M̃ and N can be taken arbitrarily large. Hence in this case we have

Ij,ℓ(y) . 22(ℓ−j)M̃
∫
(1 + 2jρ(y, z))aD2−ℓ,N−2d(y, z)dµ(z)

. 22(ℓ−j)(M̃− a
2 )

∫
(1 + 2ℓρ(y, z))aD2−ℓ,N−2d(y, z)dµ(z)

= 22(ℓ−j)(M̃− a
2 )

∫
D2−ℓ,N−a−2d(y, z)dµ(z)

. 22(ℓ−j)(M̃− a
2 )

(3.38)

where, for the last inequality we applied (3.9). Let us further observe that

[Φj(L )]∗af(y) ≤ [Φj(L )]∗af(x)(1 + 2jρ(x, y))a

≤ [Φj(L )]∗af(x)(1 + 2ℓρ(x, y))amax{1, 2(j−ℓ)a}.
(3.39)

Inserting (3.37)–(3.39) into (3.36) we get

2ℓs[Φ̃ℓ(L )]∗af(x) .
∞∑
j=0

2js[Φj(L )]∗af(x)2
(ℓ−j)smax(1, 2(j−ℓ)a)

{
22(j−ℓ)M if j ≤ ℓ,

22(ℓ−j)(M̃− a
2 ) ifj > ℓ.

=
∞∑
j=0

2js[Φj(L )]∗af(x)

{
22(j−ℓ)(M− s

2 ) if j < ℓ

22(ℓ−j)(M̃−a+ s
2 ) if j ≥ ℓ

.

Choosing M̃ > a+ |s|/2 and setting δ := min{M̃ − a+ s
2 ,M − s

2} > 0, we obtain

2ℓs[Φ̃ℓ(L )]∗af(x) .
∞∑
j=0

2−2|j−ℓ|δ{2js[Φj(L )]∗af(x)
}
.

Applying Lemma 3.11 gives the desired estimates (3.6) and (3.7). This completes the proof of

Theorem 3.5.

3.3 Basic properties

We have the following elementary properties for Besov and Triebel-Lizorkin spaces associated to

operators:

Proposition 3.12. Let s ∈ R, p ∈ (0,∞] and q ∈ (0,∞]. Then:

(i) SL (X) ⊂ Bs,Lp,q (X) ⊂ S ′
L (X) and the inclusion maps are continuous.

(ii) The space Bs,Lp,q (X) is a quasi-Banach space.

Proposition 3.13. Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞]. Then:

(i) SL (X) ⊂ F s,Lp,q (X) ⊂ S ′
L (X) and the inclusion maps are continuous.
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(ii) The space F s,Lp,q (X) is a quasi-Banach space.

We only prove Proposition 3.13. The proof of Proposition 3.12 is similar and we skip the details.

Before we start the proof of Proposition 3.13, we recall a result from [59]. For λ > 0, we set

Σλ =
{
f ∈ S ′

L (X) : Θ(L )f = f in S ′
L (X) for all Θ ∈ S(R≥0) with Θ ≡ 1 on [0, λ2]

}
.

Lemma 3.14. (see [59, Proposition 3.11]) Suppose 0 < p ≤ q ≤ ∞. Then there exists a constant

C > 0 such that for all g ∈ Σλ with λ ≥ 1

∥g∥Lq(X) ≤ Cλd(1/p−1/q)∥g∥Lp(X).

Proof. (Due to [59]) Let g ∈ Σλ, where λ ≥ 1. Set δ := λ−1 ≤ 1. Let Θ ∈ C∞
0 (R≥0) such that

Θ = 1 on [0, 1]. Then it follows from Lemma 2.1 that for any δ ∈ (0, 1] and σ > 0,

|KΘ(δ
√

L )(x, y)| . Dδ,σ+d/2(x, y) ≤ [V (x, δ)]−1

(
1 +

ρ(x, y)

δ

)−σ

. (3.40)

Suppose 1 < p <∞. Since g ∈ Σλ, we have, for a.e. x ∈ X,

g(x) = Θ(δ
√

L )g(x) =

∫
X

KΘ(δ
√

L )(x, y)g(y)dµ(y).

Hence, by using (3.40) with σ > (d + 1)/p′, Hölder’s inequality, (3.8) and the non-collapsing

condition, we obtain

|g(x)| ≤ ∥g∥Lp(X)

(∫
X

[V (x, δ)]−p
′
(
1 +

ρ(x, y)

δ

)−σp′

dµ(y)

)1/p′

. ∥g∥Lp(X)[V (x, δ)]−1/p.

(3.41)

Suppose now 0 < p ≤ 1. Then for a.e. x ∈ X,

|g(x)| ≤
∫
X

[V (x, δ)]−1

(
1 +

ρ(x, y)

δ

)−σ

|g(y)|p|g(y)|1−pdµ(y)

≤ ∥g∥1−pL∞(X)∥g∥
p
Lp(X)[V (x, δ)]−1.

(3.42)

(3.41) together with (3.42) and the non-collapsing condition yield that for all 0 < p <∞

∥g∥L∞(X) . ∥g∥Lp(X) sup
x∈X

[V (x, δ)]−1/p . ∥g∥Lp(X)δ
−d/p. (3.43)

So we have

∥g∥qLq(X) =

∫
X

|g(x)|q−p|g(x)|pdµ(x) ≤ ∥g∥q−pL∞(X)∥g∥
p
Lp(X) . ∥g∥q−pLp δ−d(q−p)/p∥g∥pLp(X),

and hence

∥g∥Lq(X) . δ−d(1/p−1/q)∥g∥Lp(X) = λd(1/p−1/q)∥g∥Lp(X).

This completes the proof.

Now we are ready to give the
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Proof of Proposition 3.13. (i) We first show that SL (X) ⊂ F s,Lp,q (X) and the inclusion map is

continuous. Indeed, let ϕ ∈ SL (X). Let (Φ0,Φ) ∈ AM (R≥0) where M,N are positive integers

such that M > s
2 and N ≥ d+1

p + ⌊3d⌋+ 2. Then from (3.19) we see that for all j ∈ N0 and a.e.

x ∈ X,

|Φj(L )ϕ(x)| . 2−2jMPM,N (ϕ)(1 + ρ(x, x0))
−(N−3d).

It follows that

∥ϕ∥F s,L
p,q (X) =

∥∥∥∥∥∥∥
 ∞∑
j=0

(
2js|Φj(L )ϕ|

)q1/q
∥∥∥∥∥∥∥
Lp(X)

. PM,N (ϕ)

 ∞∑
j=0

2−2jq(M− s
2 )

1/q (∫
(1 + ρ(x, x0))

−(N−3d)pdµ(x)

)1/p

. PM,N (ϕ),

where for the last inequality we used (3.8) and (N − 3d)p > d+ 1. This implies that SL (X) ⊂
F s,Lp,q (X) and the inclusion map is continuous.

Next we show that F s,Lp,q (X) ⊂ S ′
L (X). Let Φ0,Φ be functions in S(R≥0) such that

|Φ0(λ)| ≥ c > 0 for λ ∈ [0, 23/2], |Φ(λ)| ≥ c > 0 for λ ∈ [2−3/2, 23/2],

and

the function λ 7→ λ−MΦ(λ) belongs to S(R≥0),

where M is a sufficiently large positive integer which will be determined later. Then by Lemma

3.9 there exists Ψ0,Ψ ∈ S(R≥0) such that

suppΨ0 ⊂ [0, 22], |Ψ0(λ)| ≥ c′ > 0 for λ ∈ [0, 23/2],

suppΨ ⊂ [2−2, 22], |Ψ(λ)| ≥ c′ > 0 for λ ∈ [2−3/2, 23/2],

and

Φ0(λ)Ψ0(λ) +
∞∑
j=1

Φ(2−2jλ)Ψ(2−2jλ) = 1 for all λ ∈ R≥0.

Hence, using Lemma 3.10, for any f ∈ S ′
L (X)

f =

∞∑
j=0

Φj(L )Ψj(L )f in S ′
L (X),

where we have set Φj(·) := Φ(2−2j ·) and Ψj(·) := Ψ(2−2j ·) for j ≥ 1. It follows that

⟨f, ϕ⟩ =

⟨ ∞∑
j=0

Φj(L )Ψj(L )f, ϕ

⟩
=

∞∑
j=0

⟨Ψj(L )f,Φj(L )ϕ⟩ , ϕ ∈ SL (X). (3.44)

From (3.19) we see that for any sufficiently large positive integersM andN , there exits a constant

C > 0 (depending on N) such that for all j ≥ 1 and a.e. x ∈ X,∣∣Φj(L )ϕ(x)
∣∣ ≤ C2−2jM∥λ 7→ λ−MΦ(λ)∥(N)PM,N (ϕ)(1 + ρ(x, x0))

−N+3d. (3.45)

Now we are ready to estimate the inner product in (3.44). We consider two cases:
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Case 1: 1 < p <∞. Then applying Hölder’s inequality we get for j ∈ N0

|⟨Ψj(L )f,Φj(L )ϕ⟩| ≤
∫

2js|Ψj(L )f(x)|2−js|Φj(L )ϕ(X)|dµ(x)

≤
∥∥2jsΨj(L )f(x)

∥∥
Lp(X)

∥∥2−jsΦj(L )ϕ
∥∥
Lp′ (X)

≤ ∥f∥F s,L
p,q (X)

∥∥2−jsΦj(L )ϕ
∥∥
Lp′ (X)

.

(3.46)

Let us choose M > max{0,− s
2} and N > d

p′ + 4d. Then, using (3.45) and (3.8), we obtain for

j ≥ 1

∥∥2−jsΦj(L )ϕ
∥∥p′
Lp′ (X)

. 2−2jMp′2−jsp
′
[PM,N (ϕ)]p

′
∫

(1 + ρ(x, x0))
−(N−3d)p′dµ(x)

. 2−j(2M+s)p′ [PM,N (ϕ)]p
′
.

(3.47)

Analogously we have ∥∥Φ0(L )ϕ
∥∥p′
Lp′ (X)

. [P0,N (ϕ)]p
′
. (3.48)

Summing up (3.46)–(3.48), and taking into account (3.44), we obtain

|⟨f, ϕ⟩| . [PM,N (ϕ) + P0,N (ϕ)]∥f∥F s,L
p,q (X) ≤ P∗

M,N (ϕ)∥f∥F s,L
p,q (X).

Case 2: 0 < p ≤ 1. We have for ϕ ∈ SL (X) and j ≥ 1

|⟨Ψj(L )f,Φj(L )ϕ⟩| ≤ ∥Ψj(L )f∥L1(X)∥Φj(L )ϕ∥L∞(X).

Since Ψj(L )f ∈ Σ2j+1 for all j ∈ N0, Lemma 3.14 yields that for j ∈ N0

∥Ψj(L )f∥L1(X) . (2j+1)d(1/p−1)∥Ψj(L )f∥Lp(X) ≤ 2jd(1/p−1)∥f∥F s,L
p,q (X).

On the other hand by (3.45) we have for j ≥ 1 and a.e. x ∈ X∣∣Φj(L )ϕ(x)
∣∣ . 2−2jM∥λ 7→ λ−MΦ(λ)∥(N)PM,N (ϕ)(1 + ρ(x, x0))

−N+3d

. 2−2jMPM,N (ϕ).

For j = 0, we have the analogous estimate∣∣Φ0(L )ϕ(x)
∣∣ . P0,N (ϕ), a.e.x ∈ X.

Let us choose M > d(1/p − 1). Then summing up all these estimates and taking into account

(3.44), we obtain

|⟨f, ϕ⟩| . [PM,N (ϕ) + P0,N (ϕ)]∥f∥F s,L
p,q (X) ≤ P∗

M,N (ϕ)∥f∥F s,L
p,q (X),

as desired.

(ii) It is easy to see that F s,Lp,q (X) is a quasi-normed space. We prove the completeness. Let

{fℓ}∞ℓ=1 be a fundamental sequence in F s,Lp,q (X). Then the assertion (i) shows that {fℓ}∞ℓ=1 is

also a fundamental sequence in S ′
L (X). Since S ′

L (X) is Fréchet space (in particular, complete),

we can find a limit element f ∈ S ′
L (X). Let Φ0,Φ are functions in S(R≥0) such that

|Φ0(λ)| ≥ c > 0 for λ ∈ [0, 23/2], |Φ(λ)| ≥ c > 0 for λ ∈ [2−3/2, 23/2],

and

the function λ 7→ λ−MΦ(λ) belongs to S(R≥0),
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where M is a positive integer such that M > s/2. Then Φ(2−2jL )fℓ (resp. Φ0(L )fℓ) converges

to Φ(2−2jL )f (resp. Φ0(L )f) in S ′
L (X) and pointwise as ℓ → ∞. On the other hand, since{

Φ(2−2jL )fℓ
}∞
ℓ=1

(resp.
{
Φ0(L )fℓ

}∞
ℓ=1

) is a fundamental sequence in Lp(X), by Lemma 3.14

it is also a fundamental sequence in L∞(X). This shows that for j ∈ N0 the limiting element

of
{
Φj(L )fℓ

}∞
ℓ=1

in Lp(X) (which is the same as in L∞(X)) coincide with Φj(L )f . Now it

follows by standard arguments that f belongs to F s,Lp,q (X) and that fℓ converges in F
s,L
p,q (X) to

f . Hence, F s,Lp,q (X) is a complete space.

3.4 Continuous Littlewood-Paley characterization

The purpose of this section is to show the following continuous Littlewood-Paley characterization

of Bs,Lp,q (X) and F s,Lp,q (X):

Theorem 3.15. (i) Let s ∈ R, p ∈ (0,∞] and q ∈ (0,∞]. Let further (Φ0,Φ) ∈ AM (R≥0) for

some nonnegative integer M > s/2. Then for all f ∈ S ′
L (X),

∥f∥Bs,L
p,q (X) ∼ ∥Φ0(L )f∥Lp(X) +

(∫ 1

0

t−sq
∥∥Φ(t2L )f

∥∥q
Lp(X)

dt

t

)1/q

. (3.49)

(ii) Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞]. Let further (Φ0,Φ) ∈ AM (R≥0) for some nonnegative

integer M > s/2. Then for all f ∈ S ′
L (X),

∥f∥F s,L
p,q (X) ∼ ∥Φ0(L )f∥Lp(X) +

∥∥∥∥∥
(∫ 1

0

t−sq
∣∣Φ(t2L )f

∣∣q dt
t

)1/q
∥∥∥∥∥
Lp(X)

. (3.50)

Proof. We only give the proof of (ii) since the proof of (i) is similar. We first show that

∥Φ0(L )f∥Lp(X,dµ) +

∥∥∥∥∥
(∫ 1

0

t−sq
∣∣[Φ(t2L )]∗af

∣∣q dt
t

)1/q
∥∥∥∥∥
Lp(X)

∼ ∥Φ0(L )f∥Lp(X,dµ) +

∥∥∥∥∥
(∫ 1

0

t−sq
∣∣Φ(t2L )f

∣∣q dt
t

)1/q
∥∥∥∥∥
Lp(X)

,

(3.51)

where

[Φ(t2L )]∗af(x) := ess sup
y∈X

|Φ(t2L )f(y)|
(1 + t−1ρ(x, y))a

, x ∈ X.

Note that for any r > 0 and N ∈ N0, there exists a constant CN > 0 such that for all f ∈ SL (X),

ℓ ∈ N0, t ∈ [1, 2] and a.e. x ∈ X,

∣∣Φℓ(t2L )f(x)
∣∣r ≤ CN

∞∑
j=0

2−2jNr

∫
X

|Φj+ℓ
(
t2L

)
f(z)|r

V (z, 2−(j+ℓ))(1 + 2ℓρ(x, z))(N−5d/2)r
dµ(z). (3.52)

Indeed, this follows from the argument used in the proof of (3.30) with slight modification. The

estimate (3.52) implies immediately the following stronger estimate: for any a > 0 and N ∈ N
with N > a+ 5d/2,

∣∣[Φℓ(t2L )]∗af(x)
∣∣r ≤ CN

∞∑
j=0

2−2jNr

∫
X

|Φj+ℓ
(
t2L

)
f(z)|r

V (z, 2−(j+ℓ))(1 + 2ℓρ(x, z))ar
dµ(z),
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where

[Φℓ(t
2L )]∗af(x) := ess sup

y∈X

∣∣Φℓ(t2L )f(y)
∣∣

(1 + 2ℓt−1ρ(x, y))a
, x ∈ X.

Hence we have

(2−ℓt)−sr
∣∣[Φℓ(t2L )]∗af(x)

∣∣r ≤ CN

∞∑
j=0

2−2jNr2jsr
∫
X

(2−(j+ℓ)t)sr|Φj+ℓ
(
t2L

)
f(z)|r

V (z, 2−(j+ℓ))(1 + 2ℓρ(x, z))ar
dµ(z),

If we choose r < min{p, q}, we can apply the norm
( ∫ 2

1
|·|q/r dtt

)r/q
on both sides use Minkowski’s

inequality for integrals, which yields that for all ℓ ∈ N,(∫ 2

1

(2−ℓt)−sq
∣∣[Φℓ(t2L )]∗af(x)

∣∣q dt
t

)r/q
≤ C

∞∑
j=0

2−2jNr2jsr
∫
X

( ∫ 2

1
(2−(j+ℓ)t)−sq|Φj+ℓ(t2L )f(z)|q dtt

)r/q
V (z, 2−(j+ℓ))(1 + 2ℓρ(x, z))ar

dµ(z)

= C

∞∑
j=0

2−2jNr2jsr
∫
X

( ∫ 2

1
(2−(j+ℓ)t)−sq|Φ(2−2(j+ℓ)t2L )f(z)|q dtt

)r/q
V (z, 2−(j+ℓ))(1 + 2ℓρ(x, z))ar

dµ(z)

≤ C
∞∑
j=0

2−2jNr2jsr2jd
∫
X

( ∫ 2

1
(2−(j+ℓ)t)−sq|Φ(2−2(j+ℓ)t2L )f(z)|q dtt

)r/q
V (z, 2−ℓ)(1 + 2ℓρ(x, z))ar

dµ(z),

(3.53)

By using (2.2) and (2.3), we can estimate the last integral as follows:

∫
X

( ∫ 2

1
(2−(j+ℓ)t)−sq|Φ(2−2(j+ℓ)t2L )f(z)|q dtt

)r/q
V (z, 2−ℓ)(1 + 2ℓρ(x, z))ar

dµ(z)

≤ C

V (x, 2−ℓ)

∫
X

( ∫ 2

1
(2−(j+ℓ)t)−sq|Φ(2−2(j+ℓ)t2L )f(z)|q dtt

)r/q
(1 + 2ℓρ(x, z))ar−d

dµ(z)

=
C

V (x, 2−ℓ)

∫
B(x,2−ℓ)

( ∫ 2

1
(2−(j+ℓ)t)sq|Φ(2−2(j+ℓ)t2L )f(z)|q dtt

)r/q
(1 + 2ℓρ(x, z))ar−d

dµ(z)

+
∞∑
k=1

∫
B(x,2k−ℓ)\B(x,2k−ℓ−1)

( ∫ 2

1
(2−(j+ℓ)t)sq|Φ(2−2(j+ℓ)t2L )f(z)|q dtt

)r/q
(1 + 2ℓρ(x, z))ar−d

dµ(z)

≤ C

V (x, 2−ℓ)

∫
B(x,2−ℓ)

(∫ 2

1

(2−(j+ℓ)t)sq|Φ(2−2(j+ℓ)t2L )f(z)|q dt
t

)r/q
dµ(z)

+ C
∞∑
k=1

2−k(ar−2d)

V (x, 2k−ℓ)

∫
B(x,2k−ℓ)

(∫ 2

1

(2−(j+ℓ)t)sq|Φ(2−2(j+ℓ)t2L )f(z)|q dt
t

)r/q
dµ(z)

≤ CMHL

[(∫ 2

1

(2−(j+ℓ)t)sq|Φ(2−2(j+ℓ)t2L )f(·)|q dt
t

)r/q]
(x).

Substituting this into (3.53) gives that for all ℓ ∈ N,

(∫ 2

1

(2−ℓt)−sq
∣∣[Φ(2−2ℓt2L )]∗af(x)

∣∣q dt
t

)r/q
≤ C

∞∑
j=0

2−j(2Nr−sr−d)MHL

[(∫ 2

1

(2−(j+ℓ)t)sq|Φ(2−2(j+ℓ)t2L )f(·)|q dt
t

)r/q]
(x)

≤ C

∞∑
j=ℓ

2−(j−ℓ)(2Nr−sr−d)MHL

[(∫ 2

1

(2−jt)sq|Φ(2−2jt2L )f(·)|q dt
t

)r/q]
(x)
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≤ C
∞∑
j=1

2−|j−ℓ|(2Nr−sr−d)MHL

[(∫ 2

1

(2−jt)sq
∣∣Φ(2−2jt2L )f(·)

∣∣q dt
t

)r/q]
(x).

Applying Lemma 3.11 in the space Lp/r(ℓq/r) and the Fefferman-Stein vector-valued maximal

inequalities on spaces of homogeneous type (cf. [39]), we obtain∥∥∥∥∥
(∫ 1

0

t−sq
∣∣[Φ(t2L )]∗af

∣∣q dt
t

)1/q
∥∥∥∥∥
Lp(X)

=

∥∥∥∥∥
{(∫ 2

1

(2−ℓt)−sq
∣∣[Φ(2−2ℓt2L )]∗af

∣∣q dt
t

)r/q}∞

ℓ=1

∥∥∥∥∥
1/r

Lp/r(ℓq/r)

≤ C

∥∥∥∥∥∥
{
MHL

[(∫ 2

1

(2−jt)sq|Φ(2−2jt2L )f(·)|q dt
t

)r/q]}∞

j=1

∥∥∥∥∥∥
1/r

Lp/r(ℓq/r)

≤ C

∥∥∥∥∥∥
{(∫ 2

1

(2−jt)sq
∣∣Φ(2−2jt2L )f

∣∣q dt
t

)r/q}∞

j=1

∥∥∥∥∥∥
1/r

Lp/r(ℓq/r)

= C

∥∥∥∥∥
(∫ 1

0

t−sq
∣∣Φ(t2L )f

∣∣q dt
t

)1/q
∥∥∥∥∥
Lp(X)

.

This yields the direction “.” in (3.51). The inverse direction “&” in (3.51) is obvious. Hence

(3.51) is established.

Combining (3.51) and Theorem 3.4 we see that, to prove (3.50) it suffices to show∥∥∥∥∥∥∥
 ∞∑
j=0

∣∣2jsΦj(L )f
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

. ∥Φ0(L )f∥Lp(X) +

∥∥∥∥∥
(∫ 1

0

t−sq
∣∣[Φ(t2L )]∗af

∣∣q dt
t

)1/q
∥∥∥∥∥
Lp(X)

(3.54)

and

∥Φ0(L )f∥Lp(X) +

∥∥∥∥∥
(∫ 1

0

t−sq
∣∣Φ(t2L )f

∣∣q dt
t

)1/q
∥∥∥∥∥
Lp(X)

.

∥∥∥∥∥∥∥
 ∞∑
j=0

∣∣2js[Φj(L )]∗af
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

.

(3.55)

We only give the proof (3.54) since the proof of (3.55) is similar.

Since Φ0,Φ satisfy (3.1), by Lemma 3.9 there exists Ψ0,Ψ ∈ S(R≥0) such that

suppΨ0 ⊂ [0, 22ε], suppΨ ⊂ [2−2ε, 22ε],

and

Ψ0(λ)Φ0(λ) +
∞∑
j=1

Ψ(2−2jλ)Φ(2−2jλ) = 1, λ ∈ R≥0.
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Setting Ψj(λ) := Ψ(2−2jλ) and Φj(λ) := Φ(2−2jλ) for j ≥ 1, we can rewrite the above equality

as
∞∑
j=0

Ψj(λ)Φj(λ) = 1, λ ∈ R≥0.

Hence for all t ∈ [1, 2],
∞∑
j=0

Ψj(t
2λ)Φj(t

2λ) = 1, λ ∈ R≥0.

Then it follows from Lemma 3.10 that for all f ∈ S ′
L (X),

f =
∞∑
j=0

Ψj(t
2L )Φj(t

2L )f in S ′
L (X).

Consequently, for ℓ ∈ N0 and t ∈ [1, 2], we have the pointwise representation

Φℓ(L )f(y) =

∞∑
j=0

Φℓ(L )Ψj(t
2L )Φj(t

2L )f(y), a.e. y ∈ X.

It follows that for a.e. y ∈ X,

|Φℓ(L )f(y)| ≤
∞∑
j=0

|Φℓ(L )Ψj(t
2L )Φj(t

2L )f(y)|

≤
∞∑
j=0

∫ ∣∣KΦℓ(L )Ψj(t2L )(y, z)
∣∣ ∣∣Φj(t2L )f(z)

∣∣ dµ(z)
≤

∞∑
j=0

[Φj(t
2L )]∗af(y)

∫
(1 + 2jρ(y, z))a

∣∣KΦℓ(L )Ψj(t2L )(y, z)
∣∣dµ(z)

=
∞∑
j=0

[Φj(t
2L )]∗af(y)Ij,ℓ,t(y),

(3.56)

where we have set

Ij,ℓ,t(y) :=

∫
(1 + 2jρ(y, z))a

∣∣KΦℓ(L )Ψj(t2L )(y, z)
∣∣dµ(z).

Similarly to the proof of Theorem 3.5, we have

Ij,ℓ,t ≤

{
22(j−ℓ)M if j < ℓ

22(ℓ−j)(M̃− a
2 ) if j ≥ ℓ

,

where the constant C is independent of j, ℓ ∈ N0 and t ∈ [1, 2]. The constant M̃ above can be

taken arbitrarily large. Inserting this into (3.56) we get that for all ℓ ∈ N,

∣∣2ℓsΦℓ(L )f(y)
∣∣ . ∞∑

j=0

2js[Φj(t
2L )]∗af(y)2

(ℓ−j)s

{
22(j−ℓ)M if j < ℓ

22(ℓ−j)(M̃− a
2 ) if j ≥ ℓ.

=
∞∑
j=0

2js[Φj(t
2L )]∗af(y)

{
22(j−ℓ)(M− s

2 ) if j < ℓ

22(ℓ−j)(M̃− a
2+

s
2 ) if j ≥ ℓ

.
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Choosing S > a/2 + |s|/2 and setting δ := min
{
M̃ − a

2 + s
2 ,M − s

2

}
, we obtain

∣∣2ℓsΦℓ(L )f(y)
∣∣ . ∞∑

j=0

2−2|j−ℓ|δ∣∣2js[Φj(t2L )]∗af(y)
∣∣.

This estimate holds uniformly for t ∈ [1, 2]. Applying Lemma 3.11 yields∥∥∥∥∥∥
( ∞∑
ℓ=1

∣∣2ℓsΦℓ(L )f
∣∣q)1/q

∥∥∥∥∥∥
Lp(X)

.

∥∥∥∥∥∥∥
 ∞∑
j=1

∫ 2

1

∣∣2js[Φj(t2L )]∗af
∣∣q dt
t

1/q
∥∥∥∥∥∥∥
Lp(X)

=

∥∥∥∥∥
(∫ 1

0

t−sq
∣∣[Φ(t2L )]∗af

∣∣q dt
t

)1/q
∥∥∥∥∥
Lp(X)

,

which gives the desired estimate (3.54).

As a corollary of Theorem 3.15, we have the following heat kernel characterization of Bs,Lp,q (X)

and F s,Lp,q (X):

Corollary 3.16. (i) Let s ∈ R, p ∈ (0,∞], q ∈ (0,∞] and M be a nonnegative integer strictly

larger that s/2. Then for all f ∈ S ′
L (X),

∥f∥Bs,L
p,q (X) ∼ ∥e−L f∥Lp(X) +

(∫ 1

0

t−sq
∥∥(t2L )Me−t

2L f
∥∥q
Lp(X)

dt

t

)1/q

.

(ii) Let s ∈ R, p ∈ (0,∞), q ∈ (0,∞] and M be a nonnegative integer strictly larger than s/2.

Then for all f ∈ S ′
L (X),

∥f∥F s,L
p,q (X) ∼ ∥e−L f∥Lp(X) +

∥∥∥∥∥
(∫ 1

0

t−sq
∣∣(t2L )Me−t

2L f
∣∣q dt
t

)1/q
∥∥∥∥∥
Lp(X)

.

Proof. Let Φ0, Φ be functions on R≥0 given respectively by

Φ0(λ) := e−λ, Φ(λ) := λMe−λ, λ ∈ R≥0.

Clearly (Φ0,Φ) ∈ AM (R≥0). Hence the conclusions follow from Theorem 3.15.



Chapter 4

Further properties and

characterizations of B
s,L
p,q (X) and

F
s,L
p,q (X)

Throughout this chapter, we assume that the metric measure space (X, ρ, µ) satisfies the doubling

condition (2.1), the reverse doubling condition (2.4), and the non-collapsing condition (2.6), and

assume that L is a non-negative self-adjoint operator on L2(X) whose heat kernel pt(x, y)

satisfies the pointwise Gaussian upper bound (2.8). We do not assume the Hölder continuity for

pt(x, y) in the variables x and y.

4.1 Atomic decomposition

In this section, we generalize the atomic decomposition of classical Besov and Triebel-Lizorkin

spaces on Rn to our operator setting. To do this, we need the following analogue of the grid of

Euclidean dyadic cubes on a metric measure space with doubling measure.

Lemma 4.1. ([15, Theorem 11]) There exists a collection {Qkα : k ∈ Z, α ∈ Ik} of open subsets

of X, where Ik is some index set (possibly finite), and constants δ ∈ (0, 1) and A1, A2 > 0, such

that

(i) µ
(
X\ ∪α∈Ik Qkα

)
= 0 for each fixed k and Qkα ∩Qkβ = ∅ if α ̸= β;

(ii) for any α, β, k, ℓ with ℓ ≥ k, either Qℓβ ⊂ Qkα or Qℓβ ∩Qkα = ∅;

(iii) for each (k, α) and ℓ < k, there exists a unique β such that Qkα ⊂ Qℓβ;

(iv) diam(Qkα) ≤ A1δ
k, where diam(Qkα) := sup{ρ(x, y) : x, y ∈ Qkα};

(v) each Qkα contains some ball B(zkα, A2δ
k), where zkα ∈ X.

The set Qkα can be thought of as a dyadic cube on X with diameter roughly δk and centered at

zkα. We denote by D the family of all dyadic cubes on X. For k ∈ Z, we set Dk = {Qkα : α ∈ Ik},
so that D = ∪k∈ZDk. For any dyadic cube Q = Qkα, we denote by zQ := zkα the “center” of Q.

In the sequel, we assume without loss of generality that δ = 1/2. If this is not the case, we need

to replace 2j in the definition of Bs,Lp,q (X) and F s,Lp,q (X) by δ−j and make some other necessary

changes.

38
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Definition 4.2. Let K,S ∈ N0, and let Q be a dyadic cube in Dk, with k ∈ N0.

(A) In the case k ∈ N, a function aQ ∈ L2(X) is said to be a (K,S)-atom for Q if aQ satisfies

the following conditions for m ∈ {K,−S}.

(i) aQ ∈ D(Lm);

(ii) supp(LmaQ) ⊂ B(zQ, (A1 + 1)2−k);

(iii) ess sup
x∈X

|LmaQ(x)| ≤ 22km[µ(Q)]−1/2.

(B) In the case k = 0, a function aQ is said to be a (K,S)-atom for Q if it satisfies (i)–(iii) for

m ∈ {K, 0}.

Following [35] and [59], we define the sequences bsp,q and fsp,q:

Definition 4.3. (i) Let s ∈ R, p ∈ (0,∞] and q ∈ (0,∞]. The sequence space bsp,q consists of

all sequences w = {wQ}Q∈∪k∈N0Dk
of complex scalars such that

∥w∥bsp,q :=

 ∞∑
k=0

2ksq

 ∑
Q∈Dk

(
|wQ|[µ(Q)]1/p−1/2

)pq/p


1/q

<∞.

(ii) Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞]. The sequence space fsp,q consists of all sequences

w = {wQ}Q∈∪k∈N0Dk
of complex scalars such that

∥w∥fs
p,q

:=

∥∥∥∥∥∥∥
 ∞∑
k=0

2ksq
∑
Q∈Dk

(
|wQ|[µ(Q)]−1/2χQ

)q1/q
∥∥∥∥∥∥∥
Lp(X)

<∞.

Here, χQ is the characteristic function of Q.

The atomic decomposition of Bs,Lp,q (X) and F s,Lp,q (X) is stated in the following two theorems:

Theorem 4.4. Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞). Let K,S ∈ N0 such that K > s
2 and

S > d
2p − s

2 . Then there is a constant C > 0 such that for every sequence {aQ}Q∈∪k∈N0Dk
of

(K,S)-atoms and every sequence w = {wQ}Q∈∪k∈N0Dk
of complex scalars,∥∥∥∥∥∥

∞∑
k=0

∑
Q∈Dk

wQaQ

∥∥∥∥∥∥
Bs,L

p,q (X)

≤ C∥w∥bsp,q . (4.1)

Conversely, there is a constant C ′ > 0 such that given any distribution f ∈ Bs,Lp,q (X) and

any K,S ∈ N0, there exist a sequence {aQ}Q∈∪k∈N0Dk
of (K,S)-atoms and a sequence w =

{wQ}Q∈∪k∈N0Dk
of complex scalars such that

f =
∞∑
k=0

∑
Q∈Dk

wQaQ,

where the sum converges in S ′
L (X), and moreover,

∥w∥bsp,q ≤ C ′∥f∥Bs,L
p,q (X). (4.2)
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Theorem 4.5. Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞). Let K,S ∈ N0 such that K > s
2 and

S > d
2min{p,q} − s

2 . Then there is a constant C > 0 such that for every sequence {aQ}Q∈∪k∈N0Dk

of (K,S)-atoms and every sequence w = {wQ}Q∈∪k∈N0Dk
of complex scalars,∥∥∥∥∥∥

∞∑
k=0

∑
Q∈Dk

wQaQ

∥∥∥∥∥∥
F s,L

p,q (X)

≤ C∥w∥fs
p,q
. (4.3)

Conversely, there is a constant C ′ > 0 such that given any distribution f ∈ F s,Lp,q (X) and

any K,S ∈ N0, there exist a sequence {aQ}Q∈∪k∈N0Dk
of (K,S)-atoms and a sequence w =

{wQ}Q∈∪k∈N0Dk
of complex scalars such that

f =

∞∑
k=0

∑
Q∈Dk

wQaQ,

where the sum converges in S ′
L (X), and moreover,

∥w∥fs
p,q

≤ C ′∥f∥F s,L
p,q (X). (4.4)

We shall only give the proof of Theorem 4.5. The proof of Theorem 4.4 is similar and we omit

the details. We need some lemmas.

Lemma 4.6. Suppose K,S ∈ N0, Q is a dyadic cube in Dk with k ∈ N0, and aQ is a (K,S)-

atom for Q. Suppose further that Φ0,Φ ∈ S(R≥0) such that λ−max{K,S}Φ(λ) ∈ S(R≥0). Then

for arbitrarily large positive integer N , the following estimate holds:

|Φj(L )aQ(x)| ≤

{
CN22(j−k)S [µ(Q)]1/2D2−j ,N (x, zQ) if 0 ≤ j ≤ k

CN22(k−j)K [µ(Q)]1/2D2−k,N (x, zQ) if j ≥ k
,

where CN is a constant depending on N , and Φj(·) := Φ(2−2j ·) for j ≥ 1.

Proof. If k ∈ N, then the conditions (i)–(iii) in Definition 5.13 and the fact that µ(Q) ∼
V (zQ, 2

−k) together with (2.3) yield that for arbitrarily large positive integer N

|LmaQ(x)|

. 22km[µ(Q)]−1/2(1 + 2kρ(x, zQ))
−N

∼ 22km[V (x, 2−k)]1/2[V (x, 2−k)V (zQ, 2
−k)]−1/2(1 + 2kρ(x, zQ))

−N

. 22km[V (zQ, 2
−k)]1/2[V (x, 2−k)V (zQ, 2

−k)]−1/2(1 + 2kρ(x, zQ))
−N+ d

2

∼ 22km[µ(Q)]1/2D2−k,N−(d/2)(x, zQ),

(4.5)

which holds for m ∈ {K,−S}. If k = 0 then (4.5) holds for m ∈ {K, 0}. To estimate Φj(L )aQ
we consider the following two cases:

Case 1: k = 0. In this case we consider the following two subcases:

Subcase 1.1: k = 0 and j = 0. By Lemma 2.3, (4.5) with m = 0, and Lemma 3.7, we have

∣∣Φj(L )aQ(x)
∣∣ ≤ ∫ ∣∣KΦ0(L )(x, y)

∣∣|aQ(y)|dµ(y)
. [µ(Q)]1/2

∫
D1,N (x, y)D1,N−(d/2)(y, zQ)dµ(y)

. [µ(Q)]1/2D1,N−(5d/2)(x, zQ).
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Subcase 1.2: k = 0 and j ∈ N. We use the fact that λ 7→ λ−KΦ(λ) belongs to S(R≥0) and

apply Lemma 2.3, (4.5) with m = K, and Lemma 3.7, to get∣∣Φj(L )aQ(x)
∣∣ = 2−2jK

∣∣(2−2jL )−KΦj(L )(LKaQ)(x)
∣∣

≤ 2−2jK

∫ ∣∣K(2−2jL )−KΦj(L )(x, y)
∣∣∣∣LKaQ(y)

∣∣dµ(y)
. 2−2jK [µ(Q)]1/2

∫
D2−j ,N (x, y)D1,N−(d/2)(y, zQ)dµ(y)

. 2−2jK [µ(Q)]1/2D1,N−(5d/2)(x, zQ).

Case 2: k ∈ N. In this case we consider the following three subcases:

Subcase 2.1: k ∈ N and j = 0. By Lemma 2.3, (4.5) with m = −S, and Lemma 3.7, we have∣∣Φ0(L )aQ(x)
∣∣ = ∣∣L SΦ0(L )(L −SaQ)(x)

∣∣
≤
∫ ∣∣KL SΦ0(L )(x, y)

∣∣∣∣L −SaQ(y)
∣∣dµ(y)

. 2−2kS [µ(Q)]1/2
∫
D1,N (x, y)D2−k,N−(d/2)(y, zQ)dµ(y)

. 2−2kS [µ(Q)]1/2D1,N−(5d/2)(x, zQ).

Subcase 2.2: k ∈ N, j ∈ N and j ≤ k. By Lemma 2.3, (4.5) with m = −S, and Lemma 3.7, we

have ∣∣Φj(L )aQ(x)
∣∣ = 22jS

∣∣(2−2jL )SΦj(L )(L −SaQ)(x)
∣∣

≤ 22jS
∫ ∣∣K(2−2jL )SΦj(L )(x, y)

∣∣∣∣L −SaQ(y)
∣∣dµ(y)

. 22(j−k)S [µ(Q)]1/2
∫
D2−j ,N (x, y)D2−k,N−(d/2)(y, zQ)dµ(y)

. 22(j−k)S [µ(Q)]1/2D2−j ,N−(5d/2)(x, zQ).

Subcase 2.3: k ∈ N, j ∈ N and j > k. We use the fact λ 7→ λ−KΦ(λ) belongs to S(R≥0) and

apply Lemma 2.3, (4.5) with m = K, and Lemma 3.7, to get∣∣Φj(L )aQ(x)
∣∣ = 2−2jK

∣∣(2−2jL )−KΦj(L )(LKaQ)(x)
∣∣

≤ 2−2jK

∫ ∣∣K(2−2jL )−KΦj(L )(x, y)
∣∣∣∣LKaQ(y)

∣∣dµ(y)
. 22(k−j)K [µ(Q)]1/2

∫
D2−j ,N (x, y)D2−k,N−(d/2)(y, zQ)dµ(y)

. 22(k−j)K [µ(Q)]1/2D2−k,N−(5d/2)(x, zQ).

Combining all the above cases yields the desired estimate.

Lemma 4.7. Let M ∈ N (resp. M = 0). There exists Ψ ∈ S(R≥0) (resp. Ψ0 ∈ S(R≥0)) such

that the following conditions hold:

(i) The function λ 7→ λ−MΨ(λ) belongs to S(R≥0)

(resp. the function λ 7→ Ψ0(λ)) belongs to S(R≥0)).

(ii) |Ψ(λ)| ≥ c > 0 on {2−3/2ε ≤ λ ≤ 23/2ε} for some ε > 0

(resp. |Ψ0(λ)| ≥ c > 0 on {0 ≤ λ ≤ 23/2ε} for some ε > 0).
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(iii) For all integers m ≥ −M (resp. m ≥ 0) and for all j ∈ Z,

suppK(2−2jL )mΨ(2−2jL ) ⊂
{
(x, y) ∈ X ×X : ρ(x, y) < 2−j

}(
resp. suppK(2−2jL )mΨ0(2−2jL ) ⊂

{
(x, y) ∈ X ×X : ρ(x, y) < 2−j

})
,

where K(2−2jL )mΨ(2−2jL ) (resp. K(2−2jL )mΨ0(2−2jL )) is the integral kernel of the operator

(2−2jL )mΨ(2−2jL ) (resp. (2−2jL )mΨ0(2
−2jL )).

(iv) For every integer m ≥ −M (resp. m ≥ 0), there exists a constant C = C(m) (depending on

m) such that for all j ∈ Z and for a.e. (x, y) ∈ X ×X,

|K(2−2jL )mΨ(2−2jL )(x, y)| ≤C[V2−j (x)]−1(
resp. |K(2−2jL )mΨ0(2−2jL )(x, y)| ≤ C[V2−j (x)]−1

)
,

Proof. LetM ∈ N (resp. M = 0). Let Θ ∈ S(R≥0) be a even function such that
∫∞
−∞ Θ(λ)dλ ̸= 0

and suppΘ ⊂ (−τ, τ) where τ > 0 is sufficiently small. Set Γ(ξ) := Θ̂(ξ) for ξ ∈ R, and then put

Υ(ξ) := Γ(
√
ξ) for ξ ∈ R≥0. Finally, let us set Ψ(λ) := λMΥ(λ) (resp. Ψ0(λ) := Υ(λ)), λ ∈ R≥0.

Since Γ is an even Schwartz function on R, we have Υ ∈ S(R≥0), i.e., λ
−MΨ(λ) ∈ S(R≥0) (resp.

Ψ0 ∈ S(R≥0)). Also, since Υ(0) = Γ(0) = Θ̂(0) = 1
2π

∫∞
−∞ Θ(λ)dλ ̸= 0, we see that if ε > 0

is sufficiently small then |Ψ(λ)| ≥ c > 0 on {2−3/2ε ≤ λ ≤ 23/2ε} (resp. |Ψ0(λ)| ≥ c > 0 on

{0 ≤ λ ≤ 23/2ε}). Thus we have verified (i) and (ii). The conditions (iii) and (iv) follow from

[17, Lemma 3.1] (see also [36, Lemma 2.3] and [79, Lemma 2]).

Now we are ready to prove Theorem 4.5.

Proof of Theorem 4.5. Let K,S ∈ N0 such that K > s
2 and S > d

2min{p,q} − s
2 . Let (Φ0,Φ) ∈

AM (R≥0) with M ≥ max{K,S}. Then by Lemma 4.6 and (2.3), we have, for a.e. x ∈ X,

2js

∣∣∣∣∣∣Φj(L )

 ∞∑
k=0

∑
Q∈Dk

wQaQ

 (x)

∣∣∣∣∣∣
≤ 2js

∞∑
k=0

∑
Q∈Dk

|wQ|
∣∣Φ(2−2jL )aQ(x)

∣∣
≤ 2js

 j∑
k=0

∑
Q∈Dk

22(k−j)K |wQ|[µ(Q)]1/2D2−k,N (x, zQ)


+ 2js

 ∞∑
k=j+1

∑
Q∈Dk

22(j−k)S |wQ|[µ(Q)]1/2D2−j ,N (x, zQ)


=

j∑
k=0

22(k−j)K2(j−k)s
∑
Q∈Dk

2ks|wQ|[µ(Q)]1/2D2−k,N (x, zQ)

+
∞∑

k=j+1

22(j−k)S2(j−k)s
∑
Q∈Dk

2ks|wQ|[µ(Q)]1/2D2−j ,N (x, zQ)

.
j∑

k=0

22(k−j)K2(j−k)s
∑
Q∈Dk

2ks|wQ|[µ(Q)]−1/2(1 + 2kρ(x, zQ))
−N+ d

2

+
∞∑

k=j+1

22(j−k)S2(j−k)s
∑
Q∈Dk

2ks|wQ|[µ(Q)]−1/2(1 + 2jρ(x, zQ))
−N+ d

2 ,

(4.6)
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where N can be taken arbitrarily large.

Now let us set

S0 :=
{
Q ⊂ Dk : ρ(zQ, x) < A12

−(j∧k)},
Sm :=

{
Q ∈ Dk : A12

m−12−(j∧k) ≤ ρ(zQ, x) < A12
m2−(j∧k)}, m ∈ N,

Bm :=
{
z ∈ X : ρ(z, x) < A12

m+12−(j∧k)}, m ∈ N0,

where the notation j ∧ k denotes min{j, k}, and A1 is a constant as in Lemma 4.1. Observe

that Q ∈ Sm ⇒ Q ⊂ Bm. Choose and fix 0 < r < min{p, q} such that 2S + s − d
r > 0. This is

possible since S > d
2min{p,q} − s

2 . Then take N > d
2 + d

r . We note that∑
Q∈Dk

2ks|wQ|[µ(Q)]−1/2(1 + 2j∧kρ(x, zQ))
−N+ d

2

.
∞∑
m=0

2−m(N− d
2 )
∑
Q∈Sm

2ks|wQ|[µ(Q)]−1/2

≤
∞∑
m=0

2−m(N− d
2 )

 ∑
Q∈Sm

2ksr|wQ|r[µ(Q)]−r/2

1/r

=
∞∑
m=0

2−m(N− d
2 )

∫
X

∑
Q∈Sm

2ksr|wQ|r[µ(Q)]−r/2[µ(Q)]−1χQ(z)dµ(z)

1/r

=
∞∑
m=0

2−m(N− d
2 )

∫
X

 ∑
Q∈Sm

2ks|wQ|[µ(Q)]−1/2[µ(Q)]−1/rχQ(z)

r dµ(z)
1/r

.
∞∑
m=0

2−m(N− d
2 )

 1

µ(Bm)

∫
Bm

 ∑
Q∈Sm

2ks|wQ|[µ(Q)]−1/2

(
µ(Bm)

µ(Q)

)1/r

χQ(z)

r dµ(z)
1/r

.
∞∑
m=0

2−m(N− d
2 )+(m+k−j∧k) d

r

 1

µ(Bm)

∫
Bm

 ∑
Q∈Sm

2ks|wQ|[µ(Q)]−1/2χQ(z)

r dµ(z)
1/r

. 2(k−j∧k)
d
r

MHL

 ∑
Q∈Dk

2ks|wQ|[µ(Q)]−1/2χQ

r (x)


1/r

∞∑
m=0

2−m(N− d
2−

d
r )

. 2(k−j∧k)
d
r

MHL

 ∑
Q∈Dk

2ks|wQ|[µ(Q)]−1/2χQ

r (x)


1/r

,

where we used that

∀ Q ∈ Sm :
µ(Bm)

µ(Q)
≤
µ
(
B(zQ, A12

m+22−(j∧k))
)

µ(B(zQ, A22−k))
. 2(m+k−j∧k)d,

and A1, A2 are constants as in Lemma 4.1. Inserting this into (4.6) gives that for a.e. x ∈ X

2js

∣∣∣∣∣∣Φj(L )

 ∞∑
k=0

∑
Q∈Dk

wQaQ

 (x)

∣∣∣∣∣∣
.

j∑
k=0

2(k−j)(2K−s)

MHL

 ∑
Q∈Dk

2ks|wQ|[µ(Q)]−1/2χQ

r (x)


1/r
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+

∞∑
k=j+1

2(j−k)(2S+s−
d
r )

MHL

 ∑
Q∈Dk

2ks|wQ|[µ(Q)]−1/2χQ

r (x)


1/r

=
∞∑
k=0

γ(k − j)

MHL

 ∑
Q∈Dk

(
2ks|wQ|[µ(Q)]−1/2χQ

)r (x)


1/r

,

where the map γ : Z → R is defined by

γ(ℓ) :=

{
2ℓ(2K−s) if ℓ ≤ 0,

2−ℓ(2S+s−
d
r ) if ℓ ≥ 1.

From this estimate it follows that∥∥∥∥∥∥
∞∑
k=0

∑
Q∈Dk

wQaQ

∥∥∥∥∥∥
F s,L

p,q (X)

.

∥∥∥∥∥∥∥


∞∑
j=0

 ∞∑
k=0

γ(j − k)

{
MHL

( ∑
Q∈Dk

(
2ks|wQ|[µ(Q)]−1/2χQ

)r)}1/r
q

1/q
∥∥∥∥∥∥∥
Lp(X)

.

(4.7)

If q ≤ 1, the expression inside the Lp norm in the right-hand side of (4.7) can be estimated as

follows: 
∞∑
j=0

 ∞∑
k=0

γ(j − k)

{
MHL

( ∑
Q∈Dk

(
2ks|wQ|[µ(Q)]−1/2χQ

)r)}1/r
q

1/q

≤


∞∑
j=0

∞∑
k=0

γ(j − k)q
{
MHL

( ∑
Q∈Dk

(
2ks|wQ|[µ(Q)]−1/2χQ

)r)}q/r
1/q

=


∞∑
k=0

( ∞∑
j=0

γ(j − k)q
){

MHL

( ∑
Q∈Dk

(
2ks|wQ|[µ(Q)]−1/2χQ

)r)}q/r
1/q

.


∞∑
k=0

{
MHL

( ∑
Q∈Dk

(
2ks|wQ|[µ(Q)]−1/2χQ

)r)}q/r
1/q

.

If q > 1, the expression inside the Lp norm in the right-hand side of (4.7) can be estimated as

follows:
∞∑
j=0

 ∞∑
k=0

γ(j − k)

{
MHL

( ∑
Q∈Dk

(
2ks|wQ|[µ(Q)]−1/2χQ

)r)}1/r
q

1/q

=


∞∑
j=0

 ∞∑
k=0

γ(j − k)1/q
′
γ(j − k)1/q

{
MHL

( ∑
Q∈Dk

(
2ks|wQ|[µ(Q)]−1/2χQ

)r)}1/r
q

1/q

≤


∞∑
j=0

[ ∞∑
k=0

γ(j − k)

]q/q′  ∞∑
k=0

{
γ(j − k)MHL

( ∑
Q∈Dk

(
2ks|wQ|[µ(Q)]−1/2χQ

)r)}q/r
1/q
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≤


∞∑
j=0

 ∞∑
k=0

γ(j − k)

{
MHL

( ∑
Q∈Dk

(
2ks|wQ|[µ(Q)]−1/2χQ

)r)}q/r
1/q

=


∞∑
k=0

( ∞∑
j=0

γ(j − k)

){
MHL

( ∑
Q∈Dk

(
2ks|wQ|[µ(Q)]−1/2χQ

)r)}q/r
1/q

.


∞∑
k=0

{
MHL

( ∑
Q∈Dk

(
2ks|wQ|[µ(Q)]−1/2χQ

)r)}q/r
1/q

.

Combining these, we conclude that∥∥∥∥∥∥
∞∑
k=0

∑
Q∈Dk

wQaQ

∥∥∥∥∥∥
F s,L

p,q (X)

.

∥∥∥∥∥∥∥


∞∑
k=0

{
MHL

( ∑
Q∈Dk

(
2ks|wQ|[µ(Q)]−1/2χQ

)r)}q/r
1/q
∥∥∥∥∥∥∥
Lp(X)

=

∥∥∥∥∥∥∥


∞∑
k=0

{
MHL

( ∑
Q∈Dk

(
2ks|wQ|[µ(Q)]−1/2χQ

)r)}q/r
r/q
∥∥∥∥∥∥∥
1/r

Lp/r(X)

.

∥∥∥∥∥∥∥


∞∑
k=0

{ ∑
Q∈Dk

(
2ks|wQ|[µ(Q)]−1/2χQ

)r}q/r
r/q
∥∥∥∥∥∥∥
1/r

Lp/r(X)

=

∥∥∥∥∥∥∥


∞∑
k=0

∑
Q∈Dk

(
2ks|wQ|[µ(Q)]−1/2χQ

)q
1/q
∥∥∥∥∥∥∥
Lp(X)

= ∥w∥fs
p,q
,

where we used the Fefferman-Stein vector valued maximal inequality on spaces of homogeneous

type (see [39]). This verifies (4.3).

We now turn to the converse of the statement. Let K,S ∈ N0. We choose Ψ ∈ S(R≥0) (resp.

Ψ0 ∈ S(R≥0)) such that Ψ (resp. Ψ0) satisfies (i)–(iv) in Lemma 4.7 withM ≥ S (resp. M = 0).

In particular, the couple (Ψ0,Ψ) satisfies

|Ψ0(λ)| ≥ c > 0 on {0 ≤ λ ≤ 23/2ε} and |Ψ(λ)| ≥ c > 0 on {2−3/2ε ≤ λ ≤ 23/2ε}

for some ε > 0. Hence, by Lemma 3.9 it is possible to find Φ0,Φ ∈ S(R≥0) such that

suppΦ0 ⊂ [0, 23/2ε], |Φ0(λ)| ≥ c′ > 0 on {0 ≤ λ ≤ 23/2ε},

suppΦ ⊂ [2−3/2ε, 23/2ε], |Φ(λ)| ≥ c′ > 0 on {2−3/2ε ≤ λ ≤ 23/2ε},

and
∞∑
j=0

Ψj(λ)Φj(λ) = 1 for all λ ∈ R≥0, (4.8)

where we have set Ψj(·) := Ψ(2−2j ·) and Φj(·) := Φ(2−2j ·) for j ≥ 1. Clearly (Φ0,Φ) ∈ AM (R≥0)

for all M ∈ N0. Hence (Φ0,Φ) can be used to define F s,Lp,q (X). From (4.8) and Lemma 3.10, it

follows that for all f ∈ S ′
L (X),

f =

∞∑
j=0

Ψj(L )Φj(L )f in S ′
L (X). (4.9)
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If Q ∈ D0, we set

w̃Q := [µ(Q)]1/2
(
ess sup
y∈Q

∣∣Φ0(L )f(y)
∣∣)( max

m∈{K,0}
ess sup
x∈X

∫
Q

∣∣KL mΨ0(L )(x, y)
∣∣dµ(y))

ãQ :=
1

w̃Q

∫
Q

KΨ0(L )(x, y)Φ0(L )f(y)dµ(y),

while if Q ∈ Dj with j ≥ 1, we set

w̃Q := [µ(Q)]1/2
(
ess sup
y∈Q

∣∣Φj(L )f(y)
∣∣)( max

m∈{K,−S}
ess sup
x∈X

∫
Q

∣∣K(2−2jL )mΨj(L )(x, y)
∣∣dy)

ãQ :=
1

w̃Q

∫
Q

KΨj(L )(x, y)Φj(L )f(y)dµ(y).

Then it follows from (4.9) that

f =
∞∑
j=0

∫
X

KΨj(L )(x, y)Φj(L )f(y)dµ(y)

=
∞∑
j=0

∑
Q∈Dj

∫
Q

KΨj(L )(x, y)Φj(L )f(y)dµ(y)

=
∞∑
j=0

∑
Q∈Dj

w̃QãQ,

where the sum converges in S ′
L (X).

Since ãQ can be expressed as ãQ = 1
w̃Q

Ψj(L )
[(
Φj(L )f

)
χQ
]
, and since Ψ (resp. Ψ0) satisfies

the condition (i) in Lemma 4.7 with M ≥ S (resp. M = 0), we have ãQ ∈ D(LK) ∩D(L −S)

(resp. ãQ ∈ D(LK)) whenever Q ∈ Dj with j ≥ 1 (resp. j = 0). Moreover, if Q ∈ Dj with

j ≥ 1 (resp. j = 0), then

LmãQ =
1

w̃Q
LmΨj(L )

[(
Φj(L )f

)
χQ
]

=
22jm

w̃Q

∫
Q

K(2−2jL )mΨj(L )(x, y)Φj(L )f(y)dµ(y)

holds for m ∈ {K,−S} (resp. m ∈ {K, 0}). Hence, by using the conditions (i)–(iv) in Lemma

4.7 it is straightforward to verify that for any Q ∈ ∪j∈N0Dj , ãQ is a (K,S)-atom multiplied by

a constant independent of Q.

Now, for any Q ∈ ∪j∈N0Dj , we set wQ := Cw̃Q and aQ := C−1ãQ, where C > 0 is a sufficiently

large constant independent of Q. Then aQ is a (K,S)-atom, and moreover,

f =
∞∑
j=0

∑
Q∈Dj

wQaQ,

where the sum converges in S ′
L (X).

It remains to verify (4.4). Indeed, by our choice of Ψ0 and Ψ and by the conditions (iii) and (iv)

in Lemma 4.7, we have

suppK(2−2jL )mΨj(L ) ⊂
{
(x, y) ∈ X ×X : ρ(x, y) < 2−j

}
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and ∣∣K(2−2jL )mΨj(L )(x, y)
∣∣ ≤ C[V (x, 2−j)]−1, a.e. (x, y) ∈ X ×X,

both of which are valid for m ∈ {K,−S} (resp. m ∈ {K, 0}) if j ≥ 1 (resp. j = 0). In the last

inequality C is a positive constant independent of j ∈ N0. Hence, for every j ∈ N0 and Q ∈ Dj ,

we have

|wQ| . [µ(Q)]1/2
(
ess sup
y∈Q

∣∣Φj(L )f(y)
∣∣) ess sup

ρ(x,zQ)≤(A1+1)2−j

∫
Q

[V (x, 2−j)]−1dµ(y)

. [µ(Q)]1/2
(
ess sup
y∈Q

|Φj(L )f(y)|
)
,

where we applied (2.2) and (2.3), and A1 is the constant as in Lemma 4.1.

We now choose a > 2d
min(p,q) , and note that

∑
Q∈Dj

(
2js|wQ|[µ(Q)]−1/2χQ(x)

)q
.
∑
Q∈Dj

(
ess sup
y∈Q

2js|Φj(L )f(y)|χQ(x)
)q

. ess sup
y∈B(x,2A12−j)

[
2js|Φj(L )f(y)|

]q . [ess sup
y∈X

2js|Φj(L )f(y)|
(1 + 2jρ(x, y))a

]q
= 2js[Φj(L )]∗af(x),

which along with Theorem 3.4 and the fact (Φ0,Φ) ∈ AM (R≥0) for all M ∈ N0 yields that

∥w∥fs
p,q

. ∥f∥F s,L
p,q (X).

The proof of Theorem 4.5 is thus completed.

Corollary 4.8. Suppose s ∈ R, p ∈ (0,∞) and q ∈ (0,∞). Then SL (X) is dense in F s,Lp,q (X)

and is dense in F s,Lp,q (X).

Proof. We only deal with the case of Triebel-Lizorkin spaces since the case of Besov spaces is the

same. From Proposition 3.12 and Proposition 3.13, we see that SL (X) is a subset of Bs,Lp,q (X)

and of F s,Lp,q (X) for s ∈ R, p ∈ (0,∞) and q ∈ (0,∞). Let f ∈ F s,Lp,q (X). Let ε > 0. Since

sequences w = {wQ}Q∈∪k∈N0Dk
with finite support (i.e., only finitely many scalars wQ is not zero)

is dense in fsp,q (see for example [8]), by the atomic decomposition there exists g ∈ F s,Lp,q (X) such

that ∥f − g∥F s,L
p,q (X) < ε, and for any k ∈ N0,

suppL kg is a bounded set, and ess sup
x∈X

|L kg(x)| ≤ C(k), (4.10)

where C(k) is a constant depending on k.

Next, let Φ0,Φ be functions in S(R≥0) such that

suppΦ0 ∈ [0, 22], |Φ0(λ)| ≥ c > 0 for λ ∈ [0, 23/2],

suppΦ ⊂ [2−2, 22], |Φ(λ)| ≥ c > 0 for λ ∈ [2−3/2, 23/2],

and
∞∑
j=0

Φj(λ) = 1 for all λ ∈ R≥0,

where we have set Φj(·) := Φ(2−2j ·) for j ≥ 1. Set gN :=
∑N
j=0 Φj(L )g, N ∈ N. We claim that

gN ∈ SL (X) for all N ∈ N. To see this, we fix j, and let k,m be arbitrary nonnegative integers.
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By (4.10) we have

|g(y)| . (1 + ρ(y, x0))
−(m+3d) ∼ [V (x0, 1)]

−1(1 + ρ(y, x0))
−(m+3d) . D1,m+5d/2(y, x0).

Also, using Lemma 2.3 we have

|KL kΦj(L )(x, y)| . D1,m+5d/2(x, y)

It then follows from Lemma 3.7 that for a.e. x ∈ X,

|L kΦj(L )g(x)| ≤
∫
X

|KL kΦj(L )(x, y)||g(y)|dµ(y)

.
∫
X

D1,m+5d/2(x, y)D1,m+5d/2(y, x0)dµ(y)

. D1,m+d/2(x, x0) . (1 + ρ(x, x0))
−m.

This shows that Pk,m
(
Φj(L )g

)
<∞, and hence gN ∈ SL (X) for all N ∈ N.

On the other hand, the argument in Step 5 of the proof of [83, Theorem 2.3.3] shows that gN
approximates f in F s,Lp,q (X), as N → ∞. Hence there is a sufficiently large integer N0 such that

∥g − gN0∥F s,L
p,q (X) < ε.

Summing up all of these we see that gN0 ∈ SL (X) and

∥f − gN0∥F s,L
p,q (X) ≤ ∥f − g∥F s,L

p,q (X) + ∥g − gN0∥F s,L
p,q (X) ≤ 2ε.

This shows that SL (X) is dense in F s,Lp,q (X).

4.2 Complex interpolation

Let A = {z ∈ C|0 < Re z < 1} be a strip in the complex plane. Its closure {z ∈ C|0 ≤ Re z ≤ 1}
is denoted by A. We say that f is an S ′

L (X)-analytic function in A if the following properties

are satisfied:

(i) For every fixed z ∈ A we have f(z) ∈ S ′
L (X).

(ii) For every Φ ∈ S(R≥0) with compact support in R≥0 and for almost every fixed x ∈ X, the

function z 7→ Φ(L )(f(z))(x) is a uniformly continuous and bounded in A,

(iii) For every Φ ∈ S(R≥0) with compact support in R≥0 and for almost every fixed x ∈ X, the

function z 7→ Φ(L )(f(z))(x) is analytic in A.

Following [83], we introduce the following two definitions:

Definition 4.9. Let −∞ < s0 <∞, −∞ < s1 <∞, 0 < q0 ≤ ∞ and 0 < q1 ≤ ∞.

(i) If 0 < p0 ≤ ∞ and 0 < p1 ≤ ∞, we define F
(
Bs0,Lp0,q0 (X), Bs1,Lp1,q1 (X)

)
to be the space of all

S ′
L (X)-analytic functions f in A such that

∥f∥
F (B

s0,L
p0,q0

(X),B
s1,L
p1,q1

(X))
:= max

ℓ∈{0,1}
sup
t∈R

∥f(ℓ+ it)∥
B

sℓ,L
pℓ,qℓ

(X)
<∞.
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(ii) If 0 < p0 < ∞ and 0 < p1 < ∞, we define F
(
F s0,Lp0,q0 (X), F s1,Lp1,q1 (X)

)
to be the space of all

S ′
L (X)-analytic functions f in A such that

∥f∥
F (F

s0,L
p0,q0

(X),F
s1,L
p1,q1

(X))
:= max

ℓ∈{0,1}
sup
t∈R

∥f(ℓ+ it)∥
F

sℓ,L
pℓ,qℓ

(X)
<∞.

Definition 4.10. Let −∞ < s0 <∞, −∞ < s1 <∞, 0 < q0 ≤ ∞, 0 < q1 ≤ ∞ and 0 < θ < 1.

(i) If 0 < p0 ≤ ∞ and 0 < p1 ≤ ∞, we define(
Bs0,Lp0,q0 (X), Bs1,Lp1,q1 (X)

)
θ

:=
{
g ∈ S ′

L (X)
∣∣∃f ∈ F

(
Bs0,Lp0,q0 (X), Bs1,Lp1,q1 (X)

)
with g = f(θ)

}
.

(4.11)

and

∥g∥
(B

s0,L
p0,q0

(X),B
s1,L
p1,q1

(X))θ
:= inf ∥f∥

F (B
s0,L
p0,q0

(X),B
s1,L
p1,q1

(X))
,

where the infimum is taken over all admissible functions f in the sense of (4.11).

(ii) If 0 < p0 <∞ and 0 < p1 <∞, we define(
F s0,Lp0,q0 (X), F s1,Lp1,q1 (X)

)
θ

:=
{
g ∈ S ′

L (X)
∣∣∃f ∈ F

(
F s0,Lp0,q0 (X), F s1,Lp1,q1 (X)

)
with g = f(θ)

}
.

(4.12)

and

∥g∥
(F

s0,L
p0,q0

(X),F
s1,L
p1,q1

(X))θ
:= inf ∥f∥

F (F
s0,L
p0,q0

(X),F
s1,L
p1,q1

(X))
,

where the infimum is taken over all admissible functions f in the sense of (4.12).

Lemma 4.11. ([83, Lemma 2.4.6/2]) Let A = {z|0 < Re z < 1}, A = {z|0 ≤ Re z ≤ 1} and

0 < r <∞. Then there exists two functions µ0(θ, t) and µ1(θ, t) in (0, 1)× R such that

|g(z)|r ≤
(

1

1− θ

∫
R
|g(it)|rµ0(θ, t)dt

)1−θ (
1

θ

∫
R
|g(1 + it)|rµ1(θ, t)dt

)θ
(4.13)

where θ = Re z for any analytic function g(z) in A which is uniformly continuous and bounded

in A. Furthermore, if 0 < θ < 1 then

1

1− θ

∫
R
µ0(θ, t)dt =

1

θ

∫
R
µ1(θ, t)dt = 1. (4.14)

The main result of this section is the following theorem:

Theorem 4.12. Let −∞ < s0 < ∞, −∞ < s1 < ∞, 0 < p0 < ∞, 0 < p1 < ∞, 0 < q0 < ∞,

0 < q1 < ∞ and 0 < θ < 1. If s, p, q are given by s = (1 − θ)s0 + θs1, 1/p = (1 − θ)/p0 + θ/p1
and 1/q = (1− θ)/q0 + θ/q1, then(

Bs0,Lp0,q0 (X), Bs1,Lp1,q1 (X)
)
θ
= Bs,Lp,q (X), (4.15)(

F s0,Lp0,q0 (X), F s1,Lp1,q1 (X)
)
θ
= F s,Lp,q (X), (4.16)

and the corresponding quasi-norms are equivalent.

Proof. We only prove (4.16) since the proof of (4.15) is similar.

Step 1. We follow the method of [83] to prove that(
F s0,Lp0,q0 (X), F s1,Lp1,q1 (X)

)
θ
⊂ F s,Lp,q (X). (4.17)
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Let f ∈ F
(
F s0,Lp0,q0 (X), F s1,Lp1,q1 (X)

)
. Let Φ0,Φ be functions in S(R≥0) satisfying that

suppΦ0 ⊂ [0, 22], |Ψ0(λ)| ≥ c > 0 for λ ∈ [0, 23/2],

suppΦ ⊂ [2−2, 22], |Φ(λ)| ≥ c > 0 for λ ∈ [2−3/2, 23/2].

For k ≥ 1, we set Φk(·) := Φ(2−2k·). Also, for k ∈ N0, we put gk(x, z) = Φk(L )(f(z))(x). Let

0 < r < min{p0, q0, p1, q1}. Then

∥f(θ)∥F s,L
p,q (X) =

∫
X

( ∞∑
k=0

∣∣2ksgk(x, θ)∣∣q)
p
q

dx

 1
p

=

∫
X

( ∞∑
k=0

(∣∣2ksgk(x, θ)∣∣r) q
r

) r
q ·

p
r

dx

 r
p ·

1
r

.

(4.18)

Let µ0(θ, t) and µ1(θ, t) be as in Lemma 4.11. Then we set

ak(x) =
1

1− θ

∫
R
|gk(x, it)|rµ0(θ, t)dt (4.19)

and

bk(x) =
1

θ

∫
R
|gk(x, 1 + it)|rµ1(θ, t)dt. (4.20)

Applying (4.13) in Lemma 4.11 with 2ksgk(x, z) instead of g(z) (where x ∈ X is fixed), Hölder’s

inequality and [83, Lemma 1, p. 68], we have[ ∞∑
k=0

(∣∣2ksgk(x, θ)∣∣r) q
r

] r
q

≤

[ ∞∑
k=0

(
2ksra1−θk (x)bθk(x)

) q
r

] r
q

≤

( ∞∑
k=0

2ks0q0a
q0
r

k (x)

) r
q0

(1−θ)( ∞∑
k=0

2ks1q1b
q1
r

k (x)

) r
q1
θ

=
∥∥{2ks0rak(x)}∞k=0

∥∥1−θ
ℓq0/r

∥∥{2ks1rbk(x)}∞k=0

∥∥θ
ℓq1/r .

(4.21)

From (4.19) and Minkowski’s inequality it follows that

∥∥{2ks0rak(x)}∞k=0

∥∥
ℓq0/r ≤ 1

1− θ

∫
R

∥∥{∣∣2ks0gk(x, it)∣∣r}∞k=0

∥∥
ℓq0/rµ0(θ, t)dt

=
1

1− θ

∫
R

( ∞∑
k=0

2ks0q0 |gk(x, it)|q0
) 1

q0
r

µ0(θ, t)dt.

Also,

∥∥{2ks1rbk(x)}∞k=0

∥∥
ℓq1/r ≤ 1

θ

∫
R

( ∞∑
k=0

2ks1q1 |gk(x, 1 + it)|q1
) 1

q1
r

µ1(θ, t)dt.

Inserting these two estimates and (4.21) into (4.18) gives

∥f(θ)∥F s,L
p,q (X) ≤

∫
X

 1

1− θ

∫
R

( ∞∑
k=0

2ks0q0 |gk(x, it)|q0
) 1

q0
r

µ0(θ, t)dt

(1−θ) p
r
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×

1

θ

∫
R

( ∞∑
k=0

2ks1q1 |gk(x, 1 + it)|q1
) 1

q1
r

µ1(θ, t)dt

θ p
r

dx


r
p ·

1
r

.

Hence, applying Holder’s inequality we have

∥f(θ)∥F s,L
p,q (X)

≤

∫
X

 1

1− θ

∫
R

( ∞∑
k=0

2ks0q0 |gk(x, it)|q0
) 1

q0
r

µ0(θ, t)dt


p0
r

dx


r
p0

· 1−θ
r

×

∫
X

1

θ

∫
R

( ∞∑
k=0

2ks1q1 |gk(x, 1 + it)|q1
) 1

q1
r

µ1(θ, t)dt


p1
r

dx


r
p1

· θr

.

(4.22)

Since ∥ · ∥Lp0/r(X) and ∥ · ∥Lp1/r(X) are norms, by the Minkowski’s inequality we can estimate

(4.22) from above by

∥f(θ)∥F s,L
p,q (X) ≤

 1

1− θ

∫
R

∫
X

( ∞∑
k=0

2ks0q0 |gk(x, it)|q0
) r

q0
· p0r

dx


r
p0

µ0(θ, t)dt


1−θ
r

×

1

θ

∫
R

∫
X

( ∞∑
k=0

2ks1q1 |gk(x, 1 + it)|q1
) r

q1
· p1r

dx


r
p1

µ1(θ, t)dt


θ
r

.

In view of Lemma 4.11, this yields

∥f(θ)∥F s,L
p,q (X) ≤

[
sup
t∈R

∥∥{2ks0gk(·, it)}∞k=0

∥∥1−θ
LP0 (ℓq0 )

] [
sup
t∈R

∥∥{2ks1gk(·, 1− it)}∞k=0

∥∥θ
Lp1 (ℓq1 )

]
≤ ∥f(z)∥

F (F
s0,L
p0,q0

(X),F
s1,L
p1,q1

(X))
.

Hence (4.17) is established.

Step 2. We prove that

F s,Lp,q (X) ⊂
(
F s0,Lp0,q0 (X), F s1,Lp1,q1 (X)

)
θ
. (4.23)

In this step we follow the idea of Noi and Sawano [64]. Let g ∈ F s,Lp,q (X). Then by Theorem 4.5

g admits a decomposition

g =
∞∑
k=0

∑
α∈Ik

λk,αak,α, (4.24)

where each ak,α is an atom for the dyadic cube Qkα, each λk,α is a scalar, the sum converges in

S ′
L (X), and ∥∥∥∥∥∥

( ∞∑
k=0

∑
α∈Ik

(
2ks|λk,α|[µ(Qkα)]−1/2χQk

α

)q)1/q
∥∥∥∥∥∥
Lp(X)

. ∥g∥F s,L
p,q (X).

For x ∈ X and z ∈ A, we define

ρ1(z) :=
qs

q0
(1− z) +

qs

q1
z − s0(1− z)− s1z,
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ρ2(z) :=
q

q0
(1− z) +

q

q1
z,

ρ3(z) :=

(
p

qp0
− 1

q0

)
(1− z) +

(
p

qp1
− 1

q1

)
z.

In addition, for k ∈ N0 and α ∈ Ik, we define the holomorphic function Λk,α by

Λk,α(z) =

 1

µ(Qkα)

∫
Qk

α

2k
ρ1(z)

K |λk,α|
ρ2(z)

K [µ(Qkα)]
− ρ2(z)

2K

 k∑
j=0

∑
β∈Ij

Rj,β
qχQj

α
(y)


ρ3(z)

K

dµ(y)


K

,

where K is a large integer, and Rk,α := 2ks|λk,α|[µ(Qkα)]−1/2. Abbreviate
k∑
j=0

∑
β∈Ij

Rj,β
qχQj

β
(y)

to Sk(y). Then we have, for ℓ = 0, 1,

|2ksℓΛk,α(ℓ+ it)|

=

∣∣∣∣∣ 1

µ(Qkα)

∫
Qk

α

2
k
K [sℓ−s0+ℓ(s0−s1)+i(s0−s1)t]Rk,α

ρ2(ℓ+it)
K Sk(y)

ρ3(ℓ+it)
K dµ(y)

∣∣∣∣∣
K

.
{

1

µ(Qkα)

∫
Qk

α

∣∣∣2 k
K [sℓ−s0+ℓ(s0−s1)+i(s0−s1)t]Rk,α

ρ2(ℓ+it)
K Sk(y)

ρ3(ℓ+it)
K

∣∣∣ dµ(y)}K

=

{
1

µ(Qkα)

∫
Qk

α

Rk,α
q

Kqℓ Sk(y)
ρ3(ℓ)
K dµ(y)

}K

=

{
1

µ(Qkα)

∫
Qk

α

Rk,α
q

Kqℓ Sk(y)
ρ3(ℓ)
K χQk

α
(y)dµ(y)

}K
.

Hence, if x ∈ Qkα, we have

|2ksℓΛk,α(ℓ+ it)| .
[
MHL

(
Rk,α

q
Kqℓ Sk

ρ3(ℓ)
K χQk

α

)
(x)
]K

≤

MHL

∑
β∈Ik

Rk,β
q

Kqℓ Sk
ρ3(ℓ)
K χQk

β

 (x)

K .
Consequently, we obtain for all x ∈ X

∑
α∈Ik

|2ksℓΛk,α(ℓ+ it)|χQk
α
(x) .

MHL

∑
β∈Ik

Rk,β
q

Kqℓ Sk
ρ3(ℓ)
K χQk

β

 (x)

K .
This estimate along with the Fefferman-Stein vector-valued inequality on spaces of homogeneous

type (see [39]) yields that for ℓ = 0, 1,∥∥∥∥∥∥
{ ∞∑
k=0

(
2ksℓ

∑
α∈Ik

|Λk,α(ℓ+ it)|χQk
α

)qℓ}1/qℓ
∥∥∥∥∥∥
Lpℓ

.

∥∥∥∥∥∥∥∥


∞∑
k=0

MHL

∑
β∈Ik

Rk,β
q

Kqℓ Sk
ρ3(ℓ)
K χQk

β

Kqℓ


1/qℓ
∥∥∥∥∥∥∥∥
Lpℓ
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.

∥∥∥∥∥∥∥∥


∞∑
k=0

∑
β∈Ik

Rk,β
q

Kqℓ Sk
ρ3(ℓ)
K χQk

β

Kqℓ


1/qℓ
∥∥∥∥∥∥∥∥
Lpℓ

=

∥∥∥∥∥∥∥∥∥


∞∑
k=0

∑
β∈Ik

Rk,β
q

Kqℓ

 k∑
j=0

∑
γ∈Ij

Rj,γ
qχQj

γ


ρ3(ℓ)
K

χQk
β


Kqℓ


1/qℓ
∥∥∥∥∥∥∥∥∥
Lpℓ

=

∥∥∥∥∥∥∥∥


∞∑
k=0

∑
β∈Ik

Rk,β
q

 k∑
j=0

∑
γ∈Ij

Rqj,γχQj
γ

ρ3(ℓ)qℓ

χQk
β


1/qℓ
∥∥∥∥∥∥∥∥
Lpℓ

=

∥∥∥∥∥∥∥∥∥


∞∑
k=0

∑
β∈Ik

Rj,β
q

 k∑
j=0

∑
γ∈Ik

Rqj,γχQj
γ


(

p
qpℓ

− 1
qℓ

)
qℓ

χQk
β


1/qℓ
∥∥∥∥∥∥∥∥∥
Lpℓ

.

By [83, p. 68, Lemma 1] (see also [64, Lemma 2.17]),

∞∑
k=0

∑
β∈Ik

Rj,β
q

 k∑
j=0

∑
γ∈Ij

Rqj,γχQj
γ


(

p
qpℓ

− 1
qℓ

)
qℓ

χQk
β
.

 ∞∑
k=0

∑
β∈Ik

Rqk,βχQk
β


pqℓ
qpℓ

.

Hence ∥∥∥∥∥∥
{ ∞∑
k=0

(
2ksℓ

∑
α∈Ik

|Λk,α(ℓ+ it)|χQk
α

)qℓ}1/qℓ
∥∥∥∥∥∥
Lpℓ

.

∥∥∥∥∥∥∥
 ∞∑
k=0

∑
β∈Ik

Rqk,βχQk
β


p

qpℓ

∥∥∥∥∥∥∥
Lpℓ

=

∥∥∥∥∥∥∥
 ∞∑
k=0

∑
β∈Ik

(
2ks|λk,β |[µ(Qkβ)]−1/2χQk

β

)q 1
q

∥∥∥∥∥∥∥
p
pℓ

Lp

. ∥f∥p/pℓ
F s,L

p,q (X)
.

(4.25)

Now we define

f(z, x) =

∞∑
k=0

∑
α∈Ik

Λk,α(z)ak,α(x).

Then by (4.24), (4.25) and a homogeneity argument we have

f(θ) = g

and

max
ℓ∈{0,1}

sup
t∈R

∥f(ℓ+ it)∥
F

sℓ,L
pℓ,qℓ

(X)
. ∥g∥F s,L

p,q (X).

This exactly says that

∥g∥
(F

s0,L
p0,q0

(X),F
s1,L
p1,q1

(X))θ
. ∥g∥F s,L

p,q (X).

Hence (4.23) is verified and the proof of the theorem is completed.
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4.3 Lifting property

The purpose of this section is to prove the following result:

Theorem 4.13. Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞). Then:

(i) For any σ ∈ R, (I + L )σ is an isomorphism of Bs,Lp,q (X) to Bs−2σ,L
p,q (X).

(ii) For any σ ∈ R, (I + L )σ is an isomorphism of F s,Lp,q (X) to F s−2σ,L
p,q (X).

To prove this theorem we need some lemmas.

Lemma 4.14. Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞). Then:

(i) For any σ ∈ R, Dom
(
(I + L )σ

)
∩Bs,Lp,q (X) is dense in Bs,Lp,q (X).

(ii) For any σ ∈ R, Dom
(
(I + L )σ

)
∩ F s,Lp,q (X) is dense in F s,Lp,q (X).

Proof. From Corollary 4.8 we see that SL (X) is dense in F s,Lp,q (X). Hence it suffices to show

that SL (X) ⊂ Dom
(
(I +L )σ

)
for any σ ∈ R. Note that the latter is trivial for the case σ ≤ 0,

since in this case we have Dom
(
(I + L )σ

)
= L2(X). Assume now σ > 0. Let m = ⌊σ⌋ + 1,

and set Φ(λ) = (1 + λ)σ(1 + λm)−1, λ ∈ R≥0. Then (1 + λ)σ = Φ(λ)(1 + λm). Hence by [67,

Theorem 13.24 (b)] Φ(L )(1 + Lm) ⊂ (1 + L )σ. In particular,

Dom
(
Φ(L )(1 + Lm)

)
⊂ Dom

(
(1 + L )σ

)
. (4.26)

On the other hand, since Φ ∈ L∞(R≥0), we have Dom
(
Φ(L )

)
= L2(X) and hence

Dom
(
Φ(L )(I + Lm)

)
=
{
f ∈ L2(X)

∣∣f ∈ Dom
(
I + Lm

)
, (I + Lm)f ∈ Dom

(
Φ(L )

)}
= Dom(I + Lm).

Combining this with (4.26) we get Dom
(
I +Lm

)
⊂ Dom

(
(I +L )σ

)
. It follows that SL (X) ⊂

Dom
(
(I + L )σ

)
. This completes the proof.

Lemma 4.15. Let Φ0,Φ be functions in S(R≥0) such that

suppΦ0 ∈ [0, 22], |Φ0(λ)| ≥ c > 0 for λ ∈ [0, 23/2],

suppΦ ⊂ [2−2, 22], |Φ(λ)| ≥ c > 0 for λ ∈ [2−3/2, 23/2],

and
∞∑
k=0

Φk(λ) = 1 for all λ ∈ R≥0, (4.27)

where we have set Φk(·) := Φ(2−2k·) for k ≥ 1. Let Ψ⃗ = {Ψk}∞k=0 be a system of functions in

S(R≥0) having compact supports such that

0 /∈ suppΨk for all k ≥ 1.

Let s ∈ R, p ∈ (0,∞), q ∈ (0,∞), and let L be a positive number such that L > 3d
2 + 3d

min{p,q} +
|s|
2 + 2. Then there exists a positive number C such that for all f ∈ S ′

L (X),( ∞∑
k=0

2ksq
∥∥Ψk(L )f

∥∥q
Lp(X)

)1/q

≤ C(Ψ⃗)

( ∞∑
k=0

2ksq
∥∥Φk(L )f

∥∥q
Lp(X)

)1/q
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and ∥∥∥∥∥∥
( ∞∑
k=0

2ksq
∣∣Ψk(L )f

∣∣q)1/q
∥∥∥∥∥∥
Lp(X)

≤ C(Ψ⃗)

∥∥∥∥∥∥
( ∞∑
k=0

2ksq
∣∣Φk(L )f

∣∣q)1/q
∥∥∥∥∥∥
Lp(X)

,

where

C(Ψ⃗) := sup
λ∈[0,∞)
0≤ν≤L

(1 + λ)L
∣∣∣∣dνΨ0

dλν
(λ)

∣∣∣∣+ sup
λ∈(0,∞)
0≤ν≤L
k=1,2,···

(λL + λ−L)

∣∣∣∣dν [Ψk(22k·)]dλν
(λ)

∣∣∣∣ .

Proof. Let Θ0,Θ be functions in S(R≥0) such that

suppΘ0 ⊂ [0, 24], Θ0(λ) = 1 for λ ∈ suppΦ0

suppΘ ⊂ [2−4, 24], Θ(λ) = 1 for λ ∈ suppΦ.

Set Θk(λ) := Θ(2−2kλ) for k ≥ 1. By (4.27) and Lemma 3.10, for any S ′
L (X)

f =
∞∑
ℓ=0

Φℓ(L )f in S ′
L (X).

Hence for all k ∈ N0 and a.e. y ∈ X,

Ψk(L )f(y) =
∞∑
ℓ=0

Ψk(L )Θℓ(L )Φℓ(L )f(y).

It follows that

|Ψk(L )f(y)| ≤
∞∑
ℓ=0

∫ ∣∣KΨk(L )Θℓ(L )(z, y)
∣∣|Φℓ(L )f(z)|dµ(z)

≤ [Φℓ(L )]∗af(y)

∫
(1 + 2ℓρ(y, z))a

∣∣KΨk(L )Θℓ(L )(z, y)
∣∣dµ(z)

= [Φℓ(L )]∗af(y)Ik,ℓ(y)

≤ [Φℓ(L )]∗af(x)(1 + 2ℓρ(x, y))aIk,ℓ(y),

where we have set

Ik,ℓ(y) :=

∫
(1 + 2ℓρ(y, z))a

∣∣KΨk(L )Θℓ(L )(z, y)
∣∣dµ(z).

Hence for all k ∈ N0 and all x ∈ X,

2ks[Ψk(L )]∗af(x) .
∞∑
ℓ=0

2(k−ℓ)s2ℓs[Φℓ(L )]∗af(x) sup
y∈X

(1 + 2ℓρ(x, y))a

(1 + 2kρ(x, y))a
Ik,ℓ(y)

≤
∞∑
ℓ=0

2(k−ℓ)s2ℓs[Φℓ(L )]∗af(x)max{1, 2(ℓ−k)a} sup
y∈X

Ik,ℓ(y),

(4.28)

where we used the inequality

1 + 2ℓρ(x, y)

1 + 2kρ(x, y)
≤ max{1, 2ℓ−k}.
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We now estimate supy∈X Ik,ℓ(y). Let a be a positive number such that a > 2d
min{p,q} , and let N

be a positive integer such that N > 3d
2 + a and 2L − 2N − |s| − a > 0. This is possible since

L > 3d
2 + 3d

min{p,q} + |s|
2 + 2. To estimate Ik,ℓ(y) we consider the following cases:

Case 1: k ∈ {1, 2, · · · } and ℓ ∈ {1, 2, · · · }. Let Υ(λ) := Θ(λ)Ψk(2
ℓλ), λ ∈ R≥0. Then by Lemma

2.3, for all sufficiently large positive integer N we have∣∣KΘ(2−ℓL )Ψk(L )(y, z)
∣∣ = ∣∣KΥ(2−ℓL )(y, z)

∣∣ . ∥Υ∥(N)D2−ℓ,N (y, z).

It follows that

Ik,ℓ(y) =

∫
(1 + 2ℓρ(y, z))a

∣∣KΘℓ(L )Ψk(L )(z, y)
∣∣dµ(z)

. ∥Υ∥(N)

∫
D2−ℓ,N−a(y, z)dµ(z)

. ∥Υ∥(N)

= sup
0≤ν≤N

sup
λ∈R≥0

(1 + λ)N+d+1
∣∣Υ(ν)(λ)

∣∣
≤ sup

0≤ν≤N
sup
λ∈R≥0

(1 + λ)N+d+1
∑

ν1+ν2=ν

Cν1ν

∣∣∣∣dν1Θdλν1
(λ)

∣∣∣∣ ∣∣∣∣dν2 [Ψk(22ℓ·)]dλν2
(λ)

∣∣∣∣
= sup

0≤ν≤N
sup
λ∈R≥0

(1 + λ)N+d+1
∑

ν1+ν2=ν

22(ℓ−k)ν2
∣∣∣∣dν1Θdλν1

(λ)

∣∣∣∣ ∣∣∣∣dν2 [Ψk(22k·)]dλν2
(22(ℓ−k)λ)

∣∣∣∣
. C(Ψ⃗) sup

0≤ν≤N
sup
λ∈R≥0

(1 + λ)N+d+1
∑

ν1+ν2=ν

22(ℓ−k)ν2
∣∣∣∣dν1Θdλν1

(λ)

∣∣∣∣ (|22(ℓ−k)λ|L + |22(ℓ−k)λ|−L
)−1

. C(Ψ⃗)22|ℓ−k|N2−2|ℓ−k|L

= C(Ψ⃗)2−2|ℓ−k|(L−N).

Case 2: k = 0 and ℓ ∈ {1, 2, · · · }. Similarly to Case 1 we have

I0,ℓ(y) ≤ sup
0≤ν≤N

sup
λ∈R≥0

(1 + λ)N+d+1
∑

ν1+ν2=ν

Cν1ν

∣∣∣∣dν1Θdλν1
(λ)

∣∣∣∣ ∣∣∣∣dν2 [Ψ0(2
2ℓ·)]

dλν2
(λ)

∣∣∣∣
= sup

0≤ν≤N
sup
λ∈R≥0

(1 + λ)N+d+1
∑

ν1+ν2=ν

22ℓν2
∣∣∣∣dν1Θdλν1

(λ)

∣∣∣∣ ∣∣∣∣dν2Ψ0

dλν2
(22ℓλ)

∣∣∣∣
. C(Ψ⃗) sup

0≤ν≤N
sup
λ∈R≥0

(1 + λ)N+d+1
∑

ν1+ν2=ν

22ℓν2
∣∣∣∣dν1Θdλν1

(λ)

∣∣∣∣ (1 + 22ℓλ
)−L

. C(Ψ⃗)22ℓN2−2ℓL

= C(Ψ⃗)2−2ℓ(L−N).

Case 3: k ∈ {1, 2, · · · } and ℓ = 0. By Lemma 2.3 we can estimate as follows:

Ik,0(y) =

∫
(1 + ρ(y, z))a

∣∣KΘ0(L )Ψk(L )(z, y)
∣∣dµ(z)

. ∥Θ0Ψk∥(N)

∫
D1,N−a(y, z)|dµ(z)

. ∥Θ0Ψk∥(N)

= sup
0≤ν≤N

sup
λ∈R≥0

(1 + λ)N+d+1

∣∣∣∣dν(Θ0Ψk)

dλµ
(λ)

∣∣∣∣
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≤ sup
0≤ν≤N

sup
λ∈R≥0

(1 + λ)N+d+1
∑

ν1+ν2=ν

Cν1ν

∣∣∣∣dν1Θ0

dλν1
(λ)

∣∣∣∣ ∣∣∣∣dν2Ψkdλν2
(λ)

∣∣∣∣
= sup

0≤ν≤N
sup
λ∈R≥0

(1 + λ)N+d+1
∑

ν1+ν2=ν

Cν1ν

∣∣∣∣dν1Θ0

dλν1
(λ)

∣∣∣∣ ∣∣∣∣dν2Ψk(22k·)dλν2
(2−2kλ)

∣∣∣∣ 2−2kν2

. C(Ψ⃗) sup
0≤ν≤N

sup
λ∈R>0

(1 + λ)N+d+1
∑

ν1+ν2=ν

Cν1ν

∣∣∣∣dν1Θ0

dλν1
(λ)

∣∣∣∣ (|2−2kλ|L + |2−2kλ|−L
)−1

2−2kν2

. C(Ψ⃗) sup
0≤ν≤N

sup
λ∈R>0

(1 + λ)N+d+1
∑

ν1+ν2=ν

Cν1ν

∣∣∣∣dν1Θ0

dλν1
(λ)

∣∣∣∣ 2−2kLλL2−2kν2

. C(Ψ⃗)2−2kL.

Case 4: k = ℓ = 0. Again by Lemma 2.3 we have

I0,0(y) =

∫
(1 + ρ(y, z))a

∣∣KΘ0(L )Ψ0(L )(y, z)
∣∣dµ(z)

. ∥Θ0Ψ0∥(N)

∫
D1,N−a(y, z)dµ(z)

. ∥Θ0Ψ0∥(N)

= sup
0≤ν≤N

sup
λ∈R≥0

(1 + λ)N+d+1|∂νλ(Θ0Ψ0)(λ)|

. C(Ψ⃗).

Summing up all these cases, we obtain that

ess sup
y∈X

Ik,ℓ(y) . C(Ψ⃗)2−2|ℓ−k|(L−N).

This along with (4.28) yields that for all k ∈ N0 and all x ∈ X,

2ks[Ψk(L )]∗af(x) .
∞∑
ℓ=0

2(k−ℓ)s2ℓs[Φℓ(L )]∗af(x)max{1, 2(ℓ−k)a}2−2|ℓ−k|(L−N)

. 2−|ℓ−k|(2L−2N−|s|−a)2ℓs[Φℓ(L )]∗af(x).

From this, Lemma 3.11, and Theorem 3.5, it follows that( ∞∑
k=0

2ksq
∥∥Ψk(L )f

∥∥q
Lp(X)

)1/q

≤

( ∞∑
ℓ=0

2ℓsq
∥∥[Ψℓ(L )]∗af

∥∥q
Lp(X)

)1/q

.
( ∞∑
ℓ=0

2ℓsq
∥∥[Φℓ(L )]∗af

∥∥q
Lp(X)

)1/q

.
( ∞∑
ℓ=0

2ℓsq
∥∥Φℓ(L )f

∥∥q
Lp(X)

)1/q

and ∥∥∥∥∥∥
( ∞∑
k=0

2ksq
∣∣Ψk(L )f

∣∣q)1/q
∥∥∥∥∥∥
Lp(X)

≤

∥∥∥∥∥∥
( ∞∑
k=0

2ksq
∣∣[Ψk(L )]∗af

∣∣q)1/q
∥∥∥∥∥∥
Lp(X)

.

∥∥∥∥∥∥
( ∞∑
k=0

2ksq
∣∣[Φk(L )]∗af

∣∣q)1/q
∥∥∥∥∥∥
Lp(X)

.

∥∥∥∥∥∥
( ∞∑
k=0

2ksq
∣∣Φk(L )f

∣∣q)1/q
∥∥∥∥∥∥
Lp(X)

.

This completes the proof of Lemma 4.15.
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Proof of Theorem 4.13. First we prove that (I + L )σ is a bounded mapping from F s,Lp,q (X) to

F s−2σ,L
p,q (X). Let Φ0,Φ be functions in S(R≥0) such that

suppΦ0 ∈ [0, 22], |Φ0(λ)| ≥ c > 0 for λ ∈ [0, 23/2],

suppΦ ⊂ [2−2, 22], |Φ(λ)| ≥ c > 0 for λ ∈ [2−3/2, 23/2].

Set Φk(λ) := Φ(2−2kλ) for k ≥ 1. Define a system Ψ⃗ = {Ψ}∞=0 of functions in S(R≥0) by

Ψk(λ) :=2−2kσΦk(λ)(1 + λ)σ, k ∈ N0.

It is easy to see that C(Ψ⃗) <∞. Then by Lemma 4.15 we have that for all f ∈ Dom((I+L )σ)∩
F s,Lp,q (X)

∥(I + L )σf∥F s−2σ,L
p,q (X) =

∥∥∥∥∥∥
( ∞∑
k=0

2k(s−2σ)q
∣∣Φk(L )(I + L )σf

∣∣q)1/q
∥∥∥∥∥∥
Lp(X)

=

∥∥∥∥∥∥
( ∞∑
k=0

2ksq
∣∣Ψk(L )f

∣∣q)1/q
∥∥∥∥∥∥
Lp(X)

.

∥∥∥∥∥∥
( ∞∑
k=0

2ksq
∣∣Φk(L )f

∣∣q)1/q
∥∥∥∥∥∥
Lp(X)

= ∥f∥F s,L
p,q (X).

(4.29)

Since Dom
(
I + L

)σ
) ∩ F s,Lp,q (X) is dense in F s,Lp,q (X), (I + L )σ) extends to a bounded linear

operator from F s,Lp,q (X) to F s−2σ,L
p,q (X). We denote this extension by Tσ. By the same argument,

(I + L )−σ extends to a bounded linear operator T−σ from F s−2σ,L
p,q (X) to F s,Lp,q (X).

Next we show that for any σ ∈ R, the mapping Tσ : F s,Lp,q (X) → F s−2σ,L
p,q (X) is injective.

Indeed, assume f ∈ F s,Lp,q (X) such that Tσf is the zero element of F s−2σ,L
p,q (X). By Lemma

4.14 we can find a sequence fℓ in Dom
(
(I +L )σ

)
∩F s,Lp,q (X) which converges in F s,Lp,q (X) to f .

Then by the boundedness of (I+L )σ, (I+L )σfℓ converges in F
s−2σ,L
p,q (X) to the zero element.

Since (I + L )σfℓ ∈ Dom
(
(I + L )−σ

)
∩ F s−2σ,L

p,q (X) and fℓ = (I + L )−σ((I + L )σfℓ), the

boundedness of (I + L )−σ yields that fℓ converges in F
s,L
p,q (X) to the zero element. Therefore,

f is the zero element in F s,Lp,q (X). This proves that Tσ : F s,Lp,q (X) → F s−2σ,L
p,q (X) is injective.

Now we show that Tσ : F s,Lp,q (X) → F s−2σ,L
p,q (X) is surjective. Indeed, given f ∈ F s−2σ,L

p,q (X),

we let fℓ be a sequence in Dom
(
(I + L )−σ

)
∩ F s−2σ,L

p,q (X) which converges in F s−2σ,L
p,q (X) to

f . Then the boundedness of (I +L )−σ yields that (I +L )−σfℓ converges in F
s,L
p,q (X). Denote

this limit by g. We claim that Tσg = f . Indeed, since fℓ = (I + L )σ((I + L )−σfℓ), it follows

from the boundedness of (I + L )σ that fℓ converges to Tσg in F s,Lp,q (X). Hence Tσg = f in

F s−2σ,L
p,q (X). This proves that Tσ is surjective.

The above arguments also show that both T−σ ◦ Tσ and Tσ ◦ T−σ are identity operators on

F s,Lp,q (X). Furthermore, by an easy density argument we see that (4.29) holds for all f ∈
F s,Lp,q (X), provided that (I+L )σ in (4.29) is replaced by Tσ. Thus, Tσ : F s,Lp,q (X) → F s−2σ,L

p,q (X)

is an isomorphism, and ∥Tσf∥F s−2σ,L
p,q (X) is an equivalent quasi-norm of F s,Lp,q (X).

4.4 Embedding theorem

The purpose of this section is to prove the following result:
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Theorem 4.16. (i) Let 0 < p0 ≤ p1 < ∞, 0 < q ≤ ∞ and −∞ < s1 ≤ s0 < ∞. Then we have

the continuous embedding

Bs0,Lp0,q (X) ⊂ Bs1,Lp1,q (X) if s0 − d/p0 = s1 − d/p1

(ii) Let 0 < p0 < p1 < ∞, 0 < q ≤ ∞, 0 < r ≤ ∞ and −∞ < s1 < s0 < ∞. Then we have the

continuous embedding

F s0,Lp0,q (X) ⊂ F s1,Lp1,r (X) if s0 − d/p0 = s1 − d/p1

Proof. We only prove the assertion (ii) since the proof of (i) is similar. We follow Jawerth [54].

By the lifting property (Theorem 4.13), we may assume s0 = 0. Moreover, we may assume

q = ∞ and 0 < r < 1. Let f ∈ F 0,L
p0,∞(X) with ∥f∥F 0,L

p0,∞(X) = 1. Let Φ0,Φ be functions in

S(R≥0) such that

suppΦ0 ∈ [0, 22], |Φ0(λ)| ≥ c > 0 for λ ∈ [0, 23/2],

suppΦ ⊂ [2−2, 22], |Φ(λ)| ≥ c > 0 for λ ∈ [2−3/2, 23/2],

Set Φj(λ) := Φ(2−2jλ) for j ≥ 1. Since Φj(L )f ∈ Σ2j+1 for all j ∈ N0, by Lemma 3.14 we have

that for p ∈ (0,∞) and j ∈ N0,

∥Φj(L )f∥L∞(X) . 2jd/p∥Φj(L )∥Lp(X) ≤ 2jd/p∥f∥F 0,L
p,∞ (X) = 2jd/p.

It follows that, for any fixed integer N ∈ N0 and for a.e. x ∈ X, N∑
j=0

2jsr
∣∣Φj(L )f(x)

∣∣r1/r

≤ C

 N∑
j=0

2jsr2jdr/p

1/r

≤ C2dN/p1 , (4.30)

where C is a constant independent of N . On the other hand, since s1 < 0, we have that for a.e.

x ∈ X,  ∞∑
j=N

2js1r|Φj(L )f(x)|r
1/r

≤ C2s1N sup
j∈N0

|Φj(L )f(x)|. (4.31)

We write

∥f∥p1
Ḟ

s1
p1,r

= p1

∫ ∞

0

tp1−1

∣∣∣∣∣∣∣
x :

 ∞∑
j=0

2js1r|Φj(L )f(x)|r
1/r

> t


∣∣∣∣∣∣∣ dt. (4.32)

Let us split the range of the integration in (4.32) into (0, (2C)1/r) and ((2C)1/r,∞), where C is

the same constant as in (4.30). By (4.31) with N = 0, we have

∫ (2C)1/r

0

tp1−1

∣∣∣∣∣∣∣
x :

 ∞∑
j=0

2js1r|Φj(L )f(x)|r
1/r

> t


∣∣∣∣∣∣∣ dt

≤ c

∫ c′(2C)1/r

0

tp0−1

∣∣∣∣{x : sup
j∈N0

|Φj(L )f(x)| > t

}∣∣∣∣ dt
≤ c′′∥f∥F 0,L

p0,∞(X) = c′′.

(4.33)
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If t > (2C)1/r, we choose N in (4.30) to be the largest non-negative integer such that C2Nd/p1 ≤
t/2. Now (4.30) coupled with (4.31) yield that∣∣∣∣∣∣∣

x :

 ∞∑
j=0

2js1r|Φj(L )f(x)|r
1/r

> t


∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣
x :

 ∞∑
j=N

2js1r|Φj(L )f(x)|r
1/r

>
t

2


∣∣∣∣∣∣∣

≤
∣∣∣∣{x : sup

j∈N0

|Φj(L )f(x)| > ct2−Ns1
}∣∣∣∣ .

Since t2−Ns1 ∼ t1−s1p1/d ∼ tp1/p0 , it follows from the above estimate that

∫ ∞

(2C)1/r
tp1−1

∣∣∣∣∣∣∣
x :

 ∞∑
j=0

2js1r|Φj(L )f(x)|r
1/r

> t


∣∣∣∣∣∣∣ dt

≤
∫ ∞

c(2C)1/r
tp1−1

∣∣∣∣{x : sup
j∈N0

|Φj(L )f(x)| > tp1/p0
}∣∣∣∣ dt

≤ c′
∫ ∞

0

tp0−1

∣∣∣∣{x : sup
j∈N0

|Φj(L )f(x)| > t

}∣∣∣∣ dt
≤ c′′∥f∥F 0,L

p0,∞(X) = c′′.

(4.34)

Combining (4.32), (4.33) and (4.34) we get

∥f∥p1
F

s1,L
p1,r (X)

≤ c∥f∥p1
F 0,L

p0,∞(X)
, (4.35)

which holds for all f ∈ F 0,L
p0,∞(X) with ∥f∥F 0,L

p0,∞(X) = 1. By a homogeneity argument, we further

see that (4.35) holds for all f ∈ F 0,L
p0,∞(X). The proof of the theorem is completed.

4.5 The identification F 0,L
p,q (X) = Lp(X) for 1 < p < ∞

Our aim in this section is to show the following theorem:

Theorem 4.17. Let p ∈ (1,∞). Then F 0,L
p,2 (X) = Lp(X) with equivalent norms.

The identification F 0,L
p,2 (X) = Lp(X) is proved in [59, Thorem 7.8] under the additional as-

sumption that the heat kernel of L satisfies the Hölder continuity estimate. To see that

F 0,L
p,2 (X) = Lp(X) remains valid for those operators L whose heat kernel only satisfy pointwise

Gaussian upper bound, we need the following lemma:

Lemma 4.18. (see [23, Theorem 3.1]) Suppose F ∈ Ck(R≥0) for some k ≥ ⌊d/2⌋+ 1, and

sup
λ∈R≥0

|λνF (ν)(λ)| <∞ for any ν ∈ {0, 1, · · · , k}.

Then the operator F (L ) is bounded on Lp(X) for 1 < p <∞.

Proof of Theorem 4.17. The proof if the same as the proof of [59, Theorem 7.8] except that one

needs to replace [59, Theorem 7.9] used in the proof of [59, Theorem 7.8] by Lemma 4.17 stated

above.



Chapter 5

Homogeneous function spaces

associated to operators

Throughout this chapter, we assume that the metric measure space (X, ρ, µ) satisfies the doubling

condition (2.1), the reverse doubling condition (2.4), and the non-collapsing condition (2.6), and

assume that L is a non-negative self-adjoint operator on L2(X) whose heat kernel pt(x, y)

satisfies the pointwise Gaussian upper bound (2.8) for t ∈ (0,∞). We assume in addition that

µ(X) = ∞. We do not assume the Hölder continuity for pt(x, y) in the variables x and y.

5.1 Spaces of test functions and distributions

To treat homogeneous Besov and Triebel-Lizorkin spaces associated to operators, we need to

use appropriate spaces of test functions and distributions which are different from those used to

treat inhomogeneous function spaces.

Definition 5.1. The test function space S∞,L (X) is defined as the collection of all functions

ϕ ∈ ∩k∈ZD(L k) such that

Pk,m(ϕ) := ess sup
x∈X

(1 + ρ(x, x0))
m|L kϕ(x)| <∞

for all k ∈ Z and all m ∈ N0, where x0 ∈ X is arbitrary fixed point on X.

Obviously, the definition of S∞,L (X) is independent of the choice of x0. So we fix x0 once and

for all. For our purpose it is convenient to introduce the following directed family of norms: For

k,m ∈ N0 and ϕ ∈ S∞,L (X), we define

P∗
k,m(ϕ) :=

∑
−k≤j≤k
0≤ℓ≤m

Pj,ℓ(ϕ).

The space S ′
∞,L (X) is defined as the collection of all continuous linear functionals on S∞,L (X).

The action of f ∈ S ′
∞,L (X) on ϕ ∈ S∞,L (X) will be denoted by (f, ϕ) := f(ϕ). However,

sometimes we will work with the sesquilinear version ⟨f, ϕ⟩ = (f, ϕ̄).

Proposition 5.2. S∞,L (X) is a Fréchet space.

61
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Proof. To prove that S∞,L (X) is a Fréchet space we only have to establish the completeness of

S∞,L (X). Let {ϕj}∞j=1 be a Cauchy sequence in S∞,L (X), i.e. Pk,m(ϕj − ϕℓ) → 0 as j, ℓ→ ∞
all k ∈ Z and m ∈ N0. Choose m ∈ N0 so that m ≥ (d+ 1)/2. Then clearly for any k ∈ Z,

∥L kϕj − L kϕℓ∥L2(X) ≤ Pk,m(ϕj − ϕℓ)

∫
X

(1 + ρ(x, x0))
−d−1dµ(x)

. V (x0, 1)Pk,m(ϕj − ϕℓ),

where we used (3.8). Therefore, ∥L kϕj−L kϕℓ∥L2(X) → 0 as j, ℓ→ ∞ and by the completeness

of L2(X) there exists ψk ∈ L2(X) such that ∥L kϕj − ψk∥L2(X) → 0 as j → ∞. Write ϕ := ψ0.

From ∥ϕj − ϕ∥L2(X) → 0, ∥L kϕj − ψk∥L2(X) → 0, and the fact that L k being a self-adjoint

operator is closed [66] it follows that ϕ ∈ D(L k) and

∥L kϕj − L kϕ∥L2(X) → 0 as j → ∞ for all k ∈ Z. (5.1)

On the other hand, ∥L kϕj − ψk∥L∞(X) → 0 as j, ℓ→ ∞, and from the completeness of L∞(X)

the sequence {L kϕj}∞j=1 converges in L∞(X). This and (5.1) yield

∥L kϕj − L kϕ∥L∞(X) → 0 as j → ∞ for all k ∈ Z.

In turn, this along with Pk,m(ϕj − ϕℓ) → 0 as j, ℓ → ∞ implies Pk,m(ϕj − ϕ) → 0 as j → ∞
which confirms the completeness of S∞,L (X).

Proposition 5.3. Suppose Φ is a function in S(R≥0) such that for all M ∈ N, the functions

λ 7→ λ−MΦ(λ) belong to S(R≥0). Then:

(i) For almost every fixed y ∈ X, KΦ(L )(·, y) belongs to S∞,L (X).

(ii) For almost every fixed x ∈ X, KΦ(L )(x, ·) belongs to S∞,L (X).

Proof. From (5.14) in [59] we see that for almost every fixed y ∈ X and for any k ∈ Z,

L k
[
KΦ(L )(·, y)

]
= KL kΦ(L )(·, y).

Hence, if m is an integer with m ≥ d+ 1, we have by Lemma 2.3∣∣L k
[
KΦ(L )(·, y)

]
(x)
∣∣ = ∣∣KL kΦ(L )(x, y)

∣∣ . ∥λ 7→ λkΦ(λ)∥(m)D1,m(x, y)

. ∥λ 7→ λkΦ(λ)∥(m)[V (y, 1)]−1(1 + d(x, y))−m+ d
2 , for a.e. x ∈ X.

This shows that KΦ(L )(·, y) ∈ S∞,L (X). Since KΦ(L )(x, ·) = KΦ(L )(·, x), we also have

KΦ(L )(x, ·) ∈ S∞,L (X) for almost every fixed x ∈ X.

If f ∈ S ′
∞,L (X) and if Φ is a function in S(R≥0) such that for all M ∈ N the functions

λ 7→ λ−MΦ(λ) belong to S(R≥0), then (thanks to Proposition 5.3) it is natural to define

Φ(L )f(x) :=
(
f,KΦ(L )(x, ·)

)
, for a.e. x ∈ X.

This extends the domain of Φ(L ) from L2(X) to S ′
∞,L (X).

Lemma 5.4. Let {E(λ) : λ ≥ 0} be spectral resolution of L . Then the spectral measure of {0}
is zero, i.e., the point λ = 0 may be neglected in the spectral resolution.
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Proof. Assume by contradiction that E({0}) ̸= 0, then there exists g ∈ L2(X) such that f :=

E({0})g is not the zero element in L2(X). Since E({0}) is a an orthogonal projection,

E({0})f = E({0})E({0})g = E({0})g = f.

It follows that

e−tL f =

∫ ∞

0

e−tλdE(λ)f =

∫ ∞

0

e−tλdE(λ)E({0})f =

∫
{0}

e−tλdE(λ)f = E({0})f = f,

which implies

∥f∥L∞(X) = ∥e−tL f∥L∞(X) ≤ sup
x∈X

∫
X

|pt(x, y)||f(y)|dµ(y)

≤ sup
x∈X

∥f∥L2(X)

(∫
X

|pt(x, y)|2dµ(y)
)1/2

. sup
x∈X

∥f∥L2(X,dµ)

(∫
X

1

[V (x,
√
t)]2

(
1 +

d(x, y)√
t

)−N

dµ(y)

)1/2

. sup
x∈X

∥f∥L2(X,dµ)

[V (x,
√
t)]1/2

=
∥f∥L2(X)

infx∈X [V (x,
√
t)]1/2

. t−κ/4∥f∥L2(X) → 0 as t→ ∞,

where we used the reverse-doubling and the non-collapsing conditions. Hence f = 0 in L2(X),

which leads to a contradiction. Therefore we must have E({0}) = 0.

The following Calderón reproducing formula is a homogeneous counterpart of Lemma 3.10. It

plays an important role in establishing homogeneous Besov and Tribel-Lizorkin spaces associated

to L .

Proposition 5.5. Suppose Φ ∈ S(R≥0), Φ vanishes near the origin, and

∞∑
j=−∞

Φ(2−2jλ) = 1 for all λ ∈ R>0. (5.2)

Then for any f ∈ S ′
∞,L (X),

f =

∞∑
j=−∞

Φ(2−2jL )f in S ′
∞,L (X).

Proof. By duality, it suffices to show that for all ϕ ∈ S∞,L (X),

ϕ =
∞∑

j=−∞
Φ(2−2jL )ϕ in S∞,L (X).

To do this, we first show that the sum
∞∑

j=−∞
Φ(2−2jL )ϕ converges in the topology of S∞,L (X).

For this purpose we write

∞∑
j=−∞

Pk,m
(
Φ(2−2jL )ϕ

)
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=
0∑

j=−∞
Pk,m

(
Φ(2−2jL )ϕ

)
+

∞∑
j=1

Pk,m
(
Φ(2−2jL )ϕ

)
=

0∑
j=−∞

ess sup
x∈X

(1 + ρ(x, x0))
m
∣∣L kΦ(2−2jL )ϕ(x)

∣∣
+

∞∑
j=1

ess sup
x∈X

(1 + ρ(x, x0))
m
∣∣L kΦ(2−2jL )ϕ(x)

∣∣
=

0∑
j=−∞

22j(m+1) ess sup
x∈X

(1 + ρ(x, x0))
m
∣∣(2−2jL )m+1Φ(2−2jL )(L k−m−1ϕ)(x)

∣∣
+

∞∑
j=1

2−2j ess sup
x∈X

(1 + ρ(x, x0))
m
∣∣(2−2jL )−1Φ(2−2jL )(L k+1ϕ)(x)

∣∣.
Note that if j ≤ 0 then by Lemma 2.3 and Lemma 3.7∣∣(2−2jL )m+1Φ(2−2jL )(L k−m−1ϕ)(x)

∣∣
≤
∫
X

∣∣K(2−2jL )m+1Φ(2−2jL )(x, y)
∣∣(L k−m−1ϕ)(y)dµ(y)

.
∫
X

D2−j ,m+5d/2(x, y)D1,m+5d/2(y, x0)dµ(y)

. D2−j ,m+d/2(x, x0) . [V (x0, 2
−j)]−1(1 + 2jρ(x, x0))

−m

. 2−jm(1 + ρ(x, x0))
−m, for a.e. x ∈ X,

while if j ≥ 1 then ∣∣(2−2jL )−1Φ(2−2jL )(L k+1ϕ)(x)
∣∣

≤
∫
X

∣∣K(2−2jL )−1Φ(2−2jL )(x, y)
∣∣|L k+1ϕ(y)|dµ(y)

.
∫
X

D2j ,m+5d/2(x, y)D1,m+5d/2(y, x0)dµ(y)

. D1,m+d/2(x, x0) . (1 + ρ(x, x0))
−m, for a.e. x ∈ X.

Hence

∞∑
j=−∞

Pk,m
(
Φ(2−2jL )ϕ

)
.

0∑
j=−∞

2j(m+2) +
∞∑
j=1

2−2j <∞,

which yields that sum
∞∑

j=−∞
Φ(2−2jL )ϕ converges in the topology of S∞,L (X). By the com-

pleteness of S∞,L (X), there exists ψ ∈ S∞,L (X) such that

∞∑
j=−∞

Φ(2−2jL )ϕ = ψ in S∞,L (X).

On the other hand, by (5.2) and the spectral theorem (cf. [66, Theorem VII.2]) and Lemma 5.4,

we have
∞∑

j=−∞
Φ(2−2jL )ϕ = ϕ in L2(X).

Therefore, ψ = ϕ in S∞,L (X). This completes the proof.
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5.2 Definition of Ḃs,L
p,q (X) and Ḟ s,L

p,q (X)

We now introduce homogeneous Besov and Triebel-Lizorkin spaces associated with L :

Definition 5.6. Let Φ ∈ S(R≥0) such that

suppΦ ⊂ [2−2, 22] and |Φ(λ)| ≥ c > 0 for λ ∈ [2−3/2, 23/2]. (5.3)

Set Φj(λ) := Φ(2−2jλ) for j ∈ Z.

(i) If s ∈ R, p ∈ (0,∞] and q ∈ (0,∞], we define the homogeneous Besov space Ḃs,Lp,q (X) as the

collection of all distributions f ∈ S ′
∞,L (X) such that

∥f∥Ḃs,L
p,q (X) :=

 ∞∑
j=−∞

∥∥2jsΦj(L )f
∥∥q
Lp(X)

1/q

<∞.

(ii) If s ∈ R, p ∈ (0,∞) and q ∈ (0,∞], we define the homogeneous Triebel-Lizorkin space

Ḟ s,Lp,q (X) as the collection of all distributions f ∈ S ′
∞,L (X) such that

∥f∥Ḟ s,L
p,q (X) :=

∥∥∥∥∥∥∥
 ∞∑
j=−∞

∣∣2jsΦj(L )f
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

<∞.

Given a function Φ ∈ S(R≥0) satisfying (5.3), a distribution f ∈ S ′
∞,L (X), and a positive

number a, we define a system of Peetre type maximal functions by

[Φj(L )]∗af(x) := ess sup
y∈X

|Φj(L )f(y)|
(1 + 2jρ(x, y))a

, x ∈ X, j ∈ Z,

where Φj(·) := Φ(2−2j ·) for j ∈ Z.

The following two theorems are homogeneous counterparts of Theorem 3.4 and Theorem 3.5

respectively. Their proofs are analogous to those of Theorem 3.4 and Theorem 3.5 respectively

and are thus skipped.

Theorem 5.7. Let Φ be a function in S(R≥0) satisfying (5.3). Set Φj(λ) := Φ(2−2jλ) for j ∈ Z.

(i) If s ∈ R, p ∈ (0,∞], q ∈ (0,∞] and a > 2d
p , then for all f ∈ S ′

∞,L (X),

 ∞∑
j=−∞

∥∥2js[Φj(L )]∗af
∥∥q
Lp(X)

1/q

∼

 ∞∑
j=−∞

∥∥2jsΦj(L )f
∥∥q
Lp(X)

1/q

.

(ii) If s ∈ R, p ∈ (0,∞), q ∈ (0,∞] and a > 2d
min{p,q} , then for all f ∈ S ′

∞,L (X),∥∥∥∥∥∥∥
 ∞∑
j=−∞

∣∣2js[Φj(L )]∗af
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

∼

∥∥∥∥∥∥∥
 ∞∑
j=−∞

∣∣2jsΦj(L )f
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

.

Theorem 5.8. Let Φ, Φ̃ be functions in S(R≥0) both of which satisfy (5.3). Set Φj(λ) :=

Φ(2−2jλ) and Φ̃j(λ) := Φ̃(2−2jλ) for j ∈ Z.
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(i) If s ∈ R, p ∈ (0,∞], q ∈ (0,∞] and a > 0, then for all f ∈ S ′
∞,L (X),

 ∞∑
j=−∞

∥∥2js[Φ̃j(L )]∗af
∥∥q
Lp(X)

1/q

∼

 ∞∑
j=−∞

∥∥2js[Φj(L )]∗af
∥∥q
Lp(X)

1/q

.

(ii)If s ∈ R, p ∈ (0,∞), q ∈ (0,∞] and a > 0, then for all f ∈ S ′
∞,L (X),∥∥∥∥∥∥∥

 ∞∑
j=−∞

∣∣2js[Φ̃j(L )]∗af
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

∼

∥∥∥∥∥∥∥
 ∞∑
j=−∞

∣∣2js[Φj(L )]∗af
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

.

Combining Theorem 5.7 and 5.8, we get the following corollary:

Corollary 5.9. The definition of Bs,Lp,q (X) and F s,Lp,q (X) are independent of the choice of Φ, as

long as Φ ∈ S(R≥0) and Φ satisfies (5.3).

5.3 Properties and characterizations

In this section we list some properties and characterizations of Ḃs,Lp,q (X) and Ḟ s,Lp,q (X). All the

statements can be proved similarly as their inhomogeneous versions given in Chapter 3. Thus

we will skip all the proofs.

Proposition 5.10. Let s ∈ R, p ∈ (0,∞] and q ∈ (0,∞].

(i) S∞,L (X) ⊂ Ḃs,Lp,q (X) ⊂ S ′
∞,L (X) and the inclusion maps are continuous.

(ii) The space Ḃs,Lp,q (X) is a quasi-Banach space.

Proposition 5.11. Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞].

(i) S∞,L (X) ⊂ Ḟ s,Lp,q (X) ⊂ S ′
∞,L (X) and the inclusion maps are continuous.

(ii) The space Ḟ s,Lp,q (X) is a quasi-Banach space.

Theorem 5.12. Let Φ be a function in S(R≥0) satisfying (5.3).

(i) If s ∈ R, p ∈ (0,∞] and q ∈ (0,∞], then

∥f∥Ḃs,L
p,q (X) ∼

(∫ ∞

0

t−sq
∥∥Φ(t2L )f

∥∥q
Lp(X)

dt

t

)1/q

.

(ii) If s ∈ R, p ∈ (0,∞) and q ∈ (0,∞], then

∥f∥Ḟ s,L
p,q (X) ∼

∥∥∥∥∥
(∫ ∞

0

t−sq
∣∣Φ(t2L )f

∣∣q dt
t

)1/q
∥∥∥∥∥
Lp(X)

.

Definition 5.13. Let K,S ∈ N0, and let Q be a dyadic cube in Dk, with k ∈ Z. A function

aQ ∈ L2(X) is said to be a (homogeneous) (K,S)-atom for Q if aQ satisfies the following

conditions for m ∈ {K,−S}.

(i) aQ ∈ D(Lm);
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(ii) supp(LmaQ) ⊂ B(zQ, (A1 + 1)2−k);

(iii) ess sup
x∈X

|LmaQ(x)| ≤ 22km[µ(Q)]−1/2.

Following [35], we define the sequences ḃsp,q and ḟsp,q:

Definition 5.14. (i) Let s ∈ R, p ∈ (0,∞] and q ∈ (0,∞]. The sequence space ḃsp,q consists of

all sequences w = {wQ}Q∈∪k∈ZDk
of complex scalars such that

∥w∥ḃsp,q :=

 ∞∑
k=−∞

2ksq

 ∑
Q∈Dk

(
|wQ|[µ(Q)]1/p−1/2

)pq/p


1/q

<∞.

(ii) Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞]. The sequence space ḟsp,q consists of all sequences

w = {wQ}Q∈∪k∈ZDk
of complex scalars such that

∥w∥ḟs
p,q

:=

∥∥∥∥∥∥∥
 ∞∑
k=−∞

2ksq
∑
Q∈Dk

(
|wQ|[µ(Q)]−1/2χQ

)q1/q
∥∥∥∥∥∥∥
Lp(X)

<∞.

Here, χQ is the characteristic function of Q.

The atomic decomposition of Ḃs,Lp,q (X) and Ḟ s,Lp,q (X) is stated in the following two theorems:

Theorem 5.15. Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞). Let K,S ∈ N0 such that K > s
2 and

S > d
2p − s

2 . Then there is a constant C > 0 such that for every sequence {aQ}Q∈∪k∈ZDk
of

(K,S)-atoms and every sequence w = {wQ}Q∈∪k∈ZDk
of complex scalars,∥∥∥∥∥∥

∞∑
k=−∞

∑
Q∈Dk

wQaQ

∥∥∥∥∥∥
Ḃs,L

p,q (X)

≤ C∥w∥ḃsp,q .

Conversely, there is a constant C ′ such that given any distribution f ∈ Ḃs,Lp,q (X) and any K,S ∈
N0, there exist a sequence {aQ}Q∈∪k∈ZDk

of (K,S)-atoms and a sequence w = {wQ}Q∈∪k∈ZDk
of

complex scalars such that

f =

∞∑
k=−∞

∑
Q∈Dk

wQaQ,

where the sum converges in S ′
∞,L (X), and moreover,

∥w∥ḃsp,q ≤ C ′∥f∥Ḃs,L
p,q (X).

Theorem 5.16. Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞). Let K,S ∈ N0 such that K > s
2 and

S > d
2min{p,q} − s

2 . Then there is a constant C > 0 such that for every sequence {aQ}Q∈∪k∈ZDk

of (K,S)-atoms and every sequence w = {wQ}Q∈∪k∈ZDk
of complex scalars,∥∥∥∥∥∥

∞∑
k=−∞

∑
Q∈Dk

wQaQ

∥∥∥∥∥∥
Ḟ s,L

p,q (X)

≤ C∥w∥ḟs
p,q
.

Conversely, there is a constant C ′ such that given any distribution f ∈ F s,Lp,q (X) and any K,S ∈
N0, there exist a sequence {aQ}Q∈∪k∈ZDk

of (K,S)-atoms and a sequence w = {wQ}Q∈∪k∈ZDk
of
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complex scalars such that

f =
∞∑

k=−∞

∑
Q∈Dk

wQaQ,

where the sum converges in S ′
∞,L (X), and moreover,

∥w∥ḟs
p,q

≤ C ′∥f∥Ḟ s,L
p,q (X).

Using atomic decomposition, one can prove the following result:

Proposition 5.17. Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞). Then S∞,L (X) is dense in Ḃs,Lp,q (X)

and is dense in Ḟ s,Lp,q (X).

The complex interpolation property of Ḃs,Lp,q (X) and Ḟ s,Lp,q (X) is stated as follows:

Theorem 5.18. Let −∞ < s0 < ∞, −∞ < s1 < ∞, 0 < p0 < ∞, 0 < p1 < ∞, 0 < q0 < ∞,

0 < q1 < ∞ and 0 < θ < 1. If s, p, q are given by s = (1 − θ)s0 + θs1, 1/p = (1 − θ)/p0 + θ/p1
and 1/q = (1− θ)/q0 + θ/q1, then(

Ḃs0,Lp0,q0 (X), Ḃs1,Lp1,q1 (X)
)
θ
= Ḃs,Lp,q (X),(

Ḟ s0,Lp0,q0 (X), Ḟ s1,Lp1,q1 (X)
)
θ
= Ḟ s,Lp,q (X),

and the corresponding quasi-norms are equivalent.

We have the following lifting property:

Theorem 5.19. Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞). Then:

(i) For any σ ∈ R, L σ is an isomorphism of Ḃs,Lp,q (X) to Ḃs−2σ,L
p,q (X).

(ii) For any σ ∈ R, L σ is an isomorphism of Ḟ s,Lp,q (X) to Ḟ s−2σ,L
p,q (X).

We also have the following embedding theorem:

Theorem 5.20. (i) Let 0 < p0 ≤ p1 < ∞, 0 < q ≤ ∞ and −∞ < s1 ≤ s0 < ∞. Then we have

the continuous embedding

Ḃs0,Lp0,q (X) ⊂ Ḃs1,Lp1,q (X) if s0 − d/p0 = s1 − d/p1.

(ii) Let 0 < p0 < p1 < ∞, 0 < q ≤ ∞, 0 < r ≤ ∞ and −∞ < s1 < s0 < ∞. Then we have the

continuous embedding

Ḟ s0,Lp0,q (X) ⊂ Ḟ s1,Lp1,r (X) if s0 − d/p0 = s1 − d/p1.

Moreover, we have the following useful result:

Theorem 5.21. Let s ∈ R and q ∈ (0,∞], and let M be a nonnegative integer such that

M > s/2. Let Ψ be a function in S(R≥0) such that

|Ψ(λ)| ≥ c > 0 on {2−3/2ε ≤ λ ≤ 23/2ε} (5.4)

for some ε > 0, and

the function λ 7→ λ−MΨ(λ) belongs to S(R≥0). (5.5)
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Set Ψj(λ) := Ψ(2−2jλ) for j ∈ Z. Then the following statements are valid:

(i) If p ∈ (0,∞] and a > 2d
p , then for all f ∈ L2(X),

∥f∥Ḃs,L
p,q (X) ∼

 ∞∑
j=−∞

∥∥2js[Ψj(L )]∗af
∥∥q
Lp(X)

1/q

∼

 ∞∑
j=−∞

∥∥2jsΨj(L )f
∥∥q
Lp(X)

1/q

∼
(∫ ∞

0

t−sq
∥∥[Ψ(t2L )]∗af

∥∥q
Lp(X)

dt

t

)1/q

∼
(∫ ∞

0

t−sq
∥∥Ψ(t2L )f

∥∥q
Lp(X)

dt

t

)1/q

.

(ii) If p ∈ (0,∞) and a > 2d
min{p,q} , then for all f ∈ L2(X),

∥f∥Ḟ s,L
p,q (X) ∼

∥∥∥∥∥∥∥
 ∞∑
j=−∞

∣∣2js[Ψj(L )]∗af
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

∼

∥∥∥∥∥∥∥
 ∞∑
j=−∞

∣∣2jsΨj(L )f
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

∼

∥∥∥∥∥
(∫ ∞

0

t−sq
∣∣[Ψ(t2L )]∗af

∣∣q dt
t

)1/q
∥∥∥∥∥
Lp(X)

∼

∥∥∥∥∥
(∫ ∞

0

t−sq
∣∣Ψ(t2L )f

∣∣q dt
t

)1/q
∥∥∥∥∥
Lp(X)

.

The above theorem along with the fact that L2(X)∩ Ḃs,Lp,q (X) (resp. L2(X)∩ Ḟ s,Lp,q (X)) is dense

in Ḃs,Lp,q (X) (resp. Ḟ s,Lp,q (X)) (cf. Proposition 5.17) yields the following

Corollary 5.22. Let s ∈ R and q ∈ (0,∞], and let Ψ be the same as in Theorem 5.21.

(i) If p ∈ (0,∞], then Ḃs,Lp,q (X) is isometric to the completion of the spacef ∈ L2(X) :

 ∞∑
j=−∞

∥∥2jsΨj(L )f
∥∥q
Lp(X)

1/q

<∞


in the quasi-norm

∥f∥∗
Ḃs,L

p,q (X)
:=

 ∞∑
j=−∞

∥∥2jsΨj(L )f
∥∥q
Lp(X)

1/q

.

(ii) If p ∈ (0,∞), then Ḟ s,Lp,q (X) is isometric to the completion of the spacef ∈ L2(X) :

∥∥∥∥∥∥∥
 ∞∑
j=−∞

∣∣2jsΨj(L )f
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

<∞


in the quasi-norm

∥f∥∗
Ḟ s,L

p,q (X)
:=

∥∥∥∥∥∥∥
 ∞∑
j=−∞

∣∣2jsΨj(L )f
∣∣q1/q

∥∥∥∥∥∥∥
Lp(X)

.

5.4 Area integral characterization of Ḟ 0,L
p,2 (X) for 0 < p < ∞

Recently, Hardy spaces Hp
L (X) on a metric measure space X associated to a non-negative self-

adjoint operator L satisfying Davies-Gaffney estimates were studied by Hofmann et al. [46] and
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by Jiang and Yang [56]. Since the pointwise Gaussian upper bound estimate (2.8) implies the

Davies-Gaffney estimate (see e.g. [59, Proposition 2.7]), the theory developed in [46] and [56]

can be applied to the setting of the present paper. Let us recall from [46] and [56] the definition

of Hp
L (X). Set

H2(X) := R(L ) = {L u ∈ L2(X) : u ∈ D(L )}.

Then L2(X) = H2(X) ⊕N (L ), where N (L ) stands for the null space of L . For 0 < p < ∞,

the Hardy space Hp
L (X) is defined as the completion of{

f ∈ H2(X) : SL (f) ∈ Lp(X)
}

in the quasi-norm

∥f∥Hp
L (X) := ∥SL (f)∥Lp(X),

where SL f is the Lusin area integral defined by

SL (f)(x) :=

(∫∫
Γ(x)

|t2L e−t
2L f(y)|2 dµ(y)

V (x, t)

dt

t

)1/2

,

with Γ(x) := {(y, t) ∈ X × (0,∞) : ρ(y, x) < t}. Since the heat kernel of L obeys the Gaussian

upper bound, by a result in [4] we know that Hp
L (X) = Lp(X) for all p ∈ (1,∞).

It is worth pointing out that, under the assumption that µ(X) = ∞, one has H2(X) = L2(X).

Indeed, from Lemma 5.4 we see that 0 is not an eigenvalue of L , i.e., N (L ) = {0}. This along
with L2(X) = H2(X)⊕N (L ) yields that H2(X) = L2(X).

The aim of this section is to show the following theorem:

Theorem 5.23. Let p ∈ (0,∞). Then Ḟ 0,L
p,2 (X) = Hp

L (X) with equivalent quasi-norms.

For the proof of this theorem we need some preparation. For f ∈ L2(X), a > 0, t > 0 and

x ∈ X, we define

G∗
a,L (f)(x) :=

(∫ ∞

0

∫
X

|t2L e−t
2L f(y)|2

(1 + t−1ρ(x, y))2a
dµ(y)

V (x, t)

dt

t

)1/2

.

and

M∗
a,L (f)(x, t) := ess sup

y∈X

|t2L e−t
2L f(y)|

(1 + t−1ρ(x, y))a
.

Lemma 5.24. Let 0 < p < ∞ and let a > d/min{p, 2}. Then there is a constant C > 0 such

that for all f ∈ L2(X),

∥G∗
a,L (f)∥Lp(X) ≤ C∥SL (f)∥Lp(X).

Proof. For the proof, we refer the reader to [13, Theorem 3.5]. See also [36, Lemma 3.1].

Lemma 5.25. Let 0 < p < ∞ and a > 0. Then there exists a constant C > 0 such that for all

f ∈ L2(X),

∥SL (f)∥Lp(X) ≤ C

∥∥∥∥∥
(∫ ∞

0

[
M∗
a,L (f)(·, t)

]2 dt
t

)1/2
∥∥∥∥∥
Lp(X)

.

Proof. Note that for all a > 0, t > 0, and x ∈ X, we have

1

V (x, t)

∫
B(x,t)

|t2L e−t
2L f(y)|2dµ(y)
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≤ ess sup
y∈B(x,t)

|t2L e−t
2L f(y)|2 ≤ 22a ess sup

y∈B(x,t)

|t2L e−t
2L f(y)|2

(1 + t−1ρ(x, y))2a

≤ 22a ess sup
y∈X

|t2L e−t
2L f(y)|2

(1 + t−1ρ(x, y))2a
= 22a

[
M∗
a,L (f)(x, t)

]2
.

Applying the norm
∫∞
0

| · |dtt on both sides, we get

[
SL (f)(x)

]2 ≤ 22a
∫ ∞

0

[
M∗
a,L (f)(x, t)

]2 dt
t
.

This yields the desired estimate.

Lemma 5.26. For any r > 0, a > 0 and N ∈ N0 with N > a+ 5d/2, there is a constant C > 0

such that for all f ∈ L2(X), ℓ ∈ Z, t ∈ [1, 2] and a.e. x ∈ X,

[
M∗
a,L (f)(x, 2−ℓt)

]r ≤ C

∞∑
j=−∞

2−2jNr

∫
X

|Ψ
(
2−2(j+ℓ)t2L

)
f(z)|r

V (z, 2−ℓ)(1 + 2ℓρ(x, z))ar
dµ(z), (5.6)

where Ψ is a function in S(R≥0) defined by Ψ(λ) := λe−λ, λ ∈ R≥0.

Proof. We follow the ideas of [68] and [84]. Clearly, |Ψ(λ)| > 0 on {1/4 < λ < 4}. Let us fix

an arbitrary Γ ∈ S(R≥0) with the property that |Γ(λ)| > 0 on {0 ≤ λ < 4}. Then there exist

Φ,Θ ∈ S(R≥0) such that suppΦ ∈ [0, 4], suppΘ ⊂ [1/4, 4], and

Φ(λ)Γ(λ) +
∞∑
j=1

Θ(2−2jλ)Ψ(2−2jλ) = 1, ∀λ ∈ R≥0.

By replacing λ with 2−2ℓt2λ, we get for all ℓ ∈ Z, t ∈ [1, 2], and λ ∈ R≥0,

Φ(2−2ℓt2λ)Γ(2−2ℓt2λ) +
∞∑
j=1

Θ(2−2j2−2ℓt2λ)Ψ(2−2j2−2ℓt2λ) = 1.

It then follows from the spectral theorem that for any f ∈ L2(X, dµ),

f = Φ(2−2ℓt2L )Γ(2−2ℓt2L )f +
∞∑
j=1

Θ(2−2(j+ℓ)t2L )Ψ(2−2(j+ℓ)t2L )f

holds in L2(X)-norm. Hence, for a.e. y ∈ X, we have

Ψ(2−2ℓt2L )f(y) = Φ(2−2ℓt2L )Γ(2−2ℓt2L )Ψ(2−2ℓt2L )f(y)

+
∞∑
j=1

Ψ(2−2ℓt2L )Θ(2−2(j+ℓ)t2L )Ψ(2−2(j+ℓ)t2L )f(y)

=

∫
X

KΦ(2−2ℓt2L )Γ(2−2ℓt2L )(y, z)Ψ(2−2ℓt2L )f(z)dµ(z)

+
∞∑
j=1

∫
X

KΨ(2−2ℓt2L )Θ(2−2(j+ℓ)t2L )(y, z)Ψ(2−2(j+ℓ)t2L )f(z)dµ(z).

(5.7)

Let m be an integer such that m ≥ {d + 1, 5d/2 + a}. Since Θ vanishes near the origin, the

function λ 7→ λ−NΘ(λ) belongs to S(R≥0). Hence by Lemma 3.8 there exists a constant C > 0
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(depending on N and m) such that for all ℓ ∈ Z, j ∈ {1, 2, · · · }, and t ∈ [1, 2],∣∣KΨ(2−2ℓt2L )Θ(2−2(j+ℓ)t2L )(y, z)
∣∣

≤ C∥Ψ(t2·)∥(m+N)∥λ 7→ (t2λ)−NΘ(t2λ)∥(m)2
−2jND2−ℓ,m−2d(y, z).

Obviously, for fixed N and m, there is a constant C depending on Ψ,Θ,m and N such that

sup
t∈[1,2]

∥Ψ(t2·)∥(m+N)∥λ 7→ (t2λ)−NΘ(t2λ)∥(m) ≤ C.

Hence ∣∣KΨ(2−2ℓt2L )Θ(2−2(j+ℓ)t2L )(y, z)
∣∣ ≤ C2−2jND2−ℓ,m−2d(y, z), (5.8)

where the constant C depends on Ψ,Θ,m and N , but is independent of ℓ ∈ Z, j ∈ {1, 2, · · · }
and t ∈ [1, 2]. Analogously we have∣∣KΦ(2−2ℓt2L )Γ(2−2ℓt2L )(y, z)

∣∣ ≤ CD2−ℓ,m−2d(y, z). (5.9)

Inserting (5.8) and (5.9) into (5.7) and using (2.3), we get

|Ψ(2−2ℓt2L )f(y)| ≤ C
∞∑
j=0

2−2jN

∫
X

D2−ℓ,m−2d(y, z)|Ψ(2−2(j+ℓ)t2L )f(z)|dµ(z)

≤ C
∞∑
j=0

2−2jN

∫
X

|Ψ(2−2(j+ℓ)t2L )f(z)|
V (z, 2−ℓ)(1 + 2ℓρ(y, z))m−5d/2

dµ(z)

≤ C

∞∑
j=ℓ

2−2(j−ℓ)N
∫
X

|Ψ(2−2jt2L )f(z)|
V (z, 2−ℓ)(1 + 2ℓρ(y, z))a

dµ(z).

(5.10)

Let r ∈ (0, 1]. If we divide both sides of (5.10) by (1 + 2ℓt−1ρ(x, y))a, in the left-hand side take

the essential supremum over y ∈ X, in the right-hand use the following inequalities:

(1 + 2ℓt−1ρ(x, y)) ∼(1 + 2ℓρ(x, y)),

(1 + 2ℓρ(x, y))(1 + 2ℓρ(y,z)) ≥ (1 + 2ℓρ(x, z)),

|Ψ(2−2jt2L )f(z)| ≤ |Ψ(2−2jt2L )f(z)|r
[
M∗
a,L (f)(x, 2−jt)

]1−r
(1 + 2jt−1ρ(x, z))a(1−r),

(1 + 2jt−1ρ(x, z))a(1−r)

(1 + 2ℓρ(x, z))a
≤ C

2(j−ℓ)a

(1 + 2jρ(x, z))ar
,

we obtain, for all f ∈ L2(X, dµ), all ℓ ∈ Z, all t ∈ [1, 2], and a.e. x ∈ X, the estimate

M∗
a,L (f)(x, 2−ℓt)

≤ C
∞∑
j=ℓ

2−2(j−ℓ)(N−a/2)
∫
X

|Ψ(2−2jt2L )f(z)|r

V (z, 2−j)(1 + 2jρ(x, z))ar
dµ(z)

[
M∗
a,L (f)(x, 2−jt)

]1−r
.

Hence, replacing N with N + ⌊a/2⌋+ ⌊d/2r⌋+ 2, and using [68, Lemma 3], we get

[
M∗
a,L (f)(x, 2−ℓt)

]r ≤ C
∞∑
j=ℓ

2−2(j−ℓ)(N+⌊d/2r⌋+1)r

∫
X

|Ψ(2−2jt2L )f(z)|r

V (z, 2−j)(1 + 2jρ(x, z))ar
dµ(z)

= C

∞∑
j=0

2−2j(N+⌊d/2r⌋+1)r

∫
X

|Ψ(2−2(j+ℓ)t2L )f(z)|r

V (z, 2−(j+ℓ))(1 + 2j+ℓρ(x, z))ar
dµ(z)

≤ C
∞∑
j=0

2−2j(N+⌊d/2r⌋+1)r2jd
∫
X

|Ψ(2−2(j+ℓ)t2L )f(z)|r

V (z, 2−ℓ)(1 + 2ℓρ(x, z))ar
dµ(z)
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≤ C

∞∑
j=0

2−2jN

∫
X

|Ψ(2−2(j+ℓ)t2L )f(z)|r

V (z, 2−ℓ)(1 + 2ℓρ(x, z))ar
dµ(z).

This finishes the proof of (5.6) in the case 0 < r ≤ 1.

The proof of (5.6) for r > 1 is much easier. Indeed, from (5.10) (with N + 1 instead of N , and

with a+ (2d+ 1)/r′ instead of a, where 1/r + 1/r′ = 1) it follows that

|Ψ(2−2ℓt2L )f(y)| ≤ C
∞∑
j=0

2−2j(N+1)

∫
X

|Ψ(2−2(j+ℓ)t2L )f(z)|
V (z, 2−ℓ)(1 + 2ℓρ(y, z))a+(2d+1)/r′

dµ(z)

≤ C

∞∑
j=0

2−2j(N+1)

(∫
X

|Ψ(2−2(j+ℓ)t2L )f(z)|r

V (z, 2−ℓ)(1 + 2ℓρ(y, z))ar
dµ(z)

)1/r

×
(∫

1

V (z, 2−ℓ)(1 + 2ℓρ(y, z))(2d+1)
dµ(z)

)1/r′

≤ C

 ∞∑
j=0

2−2jNr

∫
|Ψ(2−(j+ℓ)t2L )f(z)|r

V (z, 2−ℓ)(1 + 2ℓρ(y, z))ar
dµ(z)

1/r ∞∑
j=0

2−2jr′

1/r′

,

where we used (3.8) and also applied Hölder’s inequality for the integrals and the sums. Dividing

both sides by (1 + 2ℓt−1ρ(x, y))a, and using that

(1 + 2ℓt−1ρ(x, y))ar(1 + 2ℓρ(y, z))ar & (1 + 2ℓρ(x, z))ar,

we get the desired estimate.

Lemma 5.27. Let 0 < p <∞ and a > 2d/min{p, 2}. Then for all f ∈ L2(X),∥∥∥∥∥
(∫ ∞

0

[
M∗
a,L (f)(·, t)

]2 dt
t

)1/2
∥∥∥∥∥
Lp(X)

∼ ∥f∥Ḟ 0,L
p,2 (X).

Proof. Let Ψ(λ) := λe−λ, λ ∈ R≥0. Then Ψ satisfies (5.4) and (5.5) with M = 1, and for all

f ∈ L2(X), t > 0 and x ∈ X, we have [Ψ(t2L )f ]∗af(x) = M∗
a,L (f)(x, t). Hence the desired

conclusion follows from Theorem 5.21.

Lemma 5.28. For any a > 0, there is a constant C > 0 such that for all f ∈ L2(X) and

t ∈ [1, 2], ∥∥∥∥∥
(∫ ∞

0

[
M∗
a+d/2,L (f)(·, t)

]2 dt
t

)1/2
∥∥∥∥∥
Lp(X)

≤ C∥G∗
a,L (f)∥Lp(X).

Proof. Let Ψ be the same as in Lemma 5.26. From Lemma 5.26 with r = 2, we see that for any

a > 0 and any N ∈ N0 with N > a+5d/2, there is a constant C > 0 such that for all f ∈ L2(X),

ℓ ∈ Z, and t ∈ [1, 2],[
M∗
σ+d/2,L (f)(x, 2−ℓt)

]2
≤ C

∞∑
j=0

2−4jN

∫
X

|Ψ
(
2−2(j+ℓ)t2L

)
f(z)|2

V (z, 2−ℓt)(1 + 2ℓt−1ρ(x, z))2a+d
dµ(z)

≤ C

∞∑
j=ℓ

2−4(j−ℓ)N
∫
X

|Ψ
(
2−2jt2L

)
f(z)|2

V (z, 2−jt)(1 + 2ℓt−1ρ(x, z))2a+d
dµ(z)
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≤ C

∞∑
j=−∞

2−4|j−ℓ|(N−a/2−d/4)
∫
X

|Ψ
(
2−2jt2L

)
f(z)|2

(1 + 2jt−1ρ(x, z))2a
dµ(z)

V (x, 2−jt)
,

where for the last inequality we used (2.3) and the following inequality:

(1 + 2jt−1ρ(x, z))2a+d ≤ 2(j−ℓ)(2a+d)(1 + 2ℓt−1ρ(x, z))2a+d, ∀j ≥ ℓ.

Taking the norm
∫ 2

1
| · |dtt on both sides, we get∫ 2

1

[
M∗
a+d/2,L (f)(x, 2−ℓt)

]2 dt
t

.
∞∑

j=−∞
2−4|j−ℓ|(M−a/2−d/4)

∫ 2

1

∫
X

|Ψ
(
2−2jt2L

)
f(z)|2

(1 + 2jt−1ρ(x, z))2a
dµ(z)

V (x, 2−jt)

dt

t
.

Choose M such that M > a/2 + d/4. Then applying Lemma 3.11 in Lp/2(ℓ1) we obtain∥∥∥∥∥
(∫ ∞

0

[
M∗
a+d/2,L (f)(·, t)

]2 dt
t

)1/2
∥∥∥∥∥
Lp

=

∥∥∥∥∥
{∫ 2

1

[
M∗
a+d/2,L (f)(·, 2−ℓt)

]2 dt
t

}∞

ℓ=−∞

∥∥∥∥∥
1/2

Lp/2(ℓ1)

.

∥∥∥∥∥∥
{∫ 2

1

∫
X

|Ψ
(
2−2jt2L

)
f(z)|2

(1 + 2jt−1ρ(·, z))2a
dµ(z)

V (·, 2−jt)
dt

t

}∞

j=−∞

∥∥∥∥∥∥
1/2

Lp/2(ℓ1)

=
∥∥G∗

a,L (f)
∥∥
Lp .

This completes the proof.

We are now ready to give the

Proof of Theorem 5.23. Let 0 < p <∞. Fix a > d/min{p, 2} and a′ > 2d/min{p, 2}. Then, by
Theorem 5.21, Lemma 5.28, Lemmas 5.24, Lemma 5.25, and Lemma 5.27, we have that for all

f ∈ L2(X),

∥f∥Ḟ 0,L
p,2 (X) ∼

∥∥∥∥∥
(∫ ∞

0

|t2L e−t
2L f |2 dt

t

)1/2
∥∥∥∥∥
Lp(X)

≤

∥∥∥∥∥
(∫ ∞

0

[
M∗
a+d/2,L (f)(·, t)

]2 dt
t

)1/2
∥∥∥∥∥
Lp(X)

. ∥G∗
a,L (f)∥Lp(X) . ∥SL (f)∥Lp(X)

.
∥∥∥∥∥
(∫ ∞

0

[
M∗
a′,L (f)(·, t)

]2 dt
t

)1/2
∥∥∥∥∥
Lp(X)

∼ ∥f∥Ḟ 0,L
p,2 (X).

Hence ∥f∥Ḟ 0,L
p,2 (X) ∼ ∥SL (f)∥Lp(X) for all f ∈ L2(X). Since L2(X) ∩ Ḟ 0,L

p,2 (X) is dense in

Ḟ 0,L
p,2 (X), and L2(X) ∩Hp

L (X) is dense in Hp
L (X), we have Ḟ 0,L

p,2 (X) = Hp
L (X).

5.5 Identification of Ḟ 0,L
p,2 (X) with atomic Hardy spaces

Hp,q,M
L (X)

Hofmann et al. [46] and Jiang and Yang [56] established the (p, 2,M)-atomic decomposition for

the Hardy spaces Ḟ 0,L
p,2 (X), 0 < p ≤ 1, by following the tent space approach of Coifman et al.
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[16]. The purpose of this section is to present a (p, q,M)-atomic decomposition of Ḟ 0,L
p,2 (X),

0 < p ≤ 1. Our approach is different from that of [46] and [56]. To achieve our goal, we shall

apply the Peetre maximal function characterization of Ḟ 0,L
p,2 (X). The main idea of this section

comes from [14], [34] and [21].

Let us start by the following definition:

Definition 5.29. For any distribution f ∈ S ′
L (X) and any k ∈ N0, we define L kf to be a

distribution in S ′
L (X) given by

⟨L kf, ϕ⟩ = ⟨f,L kϕ⟩, ∀ϕ ∈ SL (X),

and we call L kf a distribution derivative of f in the sense of S ′
L (X). Also, we say that a

distribution f ∈ S ′
L (X) coincides with a measurable function h : X → C, if for every ϕ ∈ SL (X)

the function hϕ lies in L1(X) and

(f, ϕ) =

∫
X

h(x)ϕ(x)dµ(x).

If a distribution f ∈ S ′
L (X) coincides with some measurable function h, we shall consider the

pointwise value of f , given naturally by

f(x) := h(x), x ∈ X.

If a distribution f ∈ S ′
L (X) coincides with some function h ∈ Lq(X), we will write f ∈ Lq(X),

and also set

∥f∥Lq(X) := ∥h∥Lq(X).

Now we introduce the notion of (p, q,M)-atoms associated to L .

Definition 5.30. Let p ∈ (0, 1], q ∈ (1,∞] and M ∈ N. A distribution a ∈ S ′
L (X) is called a

(p, q,M)-atom if there exist a distribution b ∈ S ′
L (X) and a ball B = B(xB , rB) such that:

(i) a = LMb, where LMb is the distribution derivative of b in the sense of S ′
L (X);

(ii) for every m ∈ {0, 1, · · · ,M}, Lmb coincides with a measurable function on X;

(iii) for every m ∈ {0, 1, · · · ,M}, suppLmb ⊂ B;

(iv) for every m ∈ {0, 1, · · · ,M}, ∥Lmb∥Lq(X) ≤ r
2(M−m)
B [V (xB , rB)]

1/q−1/p.

We say that f =
∑∞
j=0 γjaj is a (p, q,M)-atomic decomposition (of f ∈ S ′

L (X)) if {γj}∞j=0 is

a sequence of complex scalars with
∑∞
j=0 |γj |p < ∞, each aj is a (p, q,M)-atoms, and the sum

converges in S ′
L (X). Set

Hp,q,M
L (X) =

{
f ∈ S ′

L (X) : f admits a (p, q,M)-atomic decomposition
}

with the quasi-norm given by

∥f∥Hp,q,M
L (X) = inf


 ∞∑
j=1

|γi|p
1/p

: f =
∞∑
j=1

γjaj is a (p, q,M)-atomic decomposition

 .

The goal of this section is to prove following theorem:
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Theorem 5.31. Suppose p ∈ (0, 1], q ∈ (1,∞), M ∈ N and M ≥ ⌊ d2p − ς
2⌋ + 1, where ς is the

same constant as in (2.5). Then

Ḟ 0,L
p,2 (X) = Hp,q,M

L (X)

with equivalent quasi-norms.

Remark 5.32. If q1 < q2, then every (p, q2,M)-atom is also a (p, q1,M)-atom. Consequently,

Hp,q2,M
L (X) ⊂ Hp,q1,M

L (X), and the inclusion map is continuous.

Lemma 5.33. Suppose Φ is a function in S(R≥0) satisfying (5.3), and q ∈ (1,∞). Then there

exists a constant C > 0 such that

∥f∥Ḟ 0,L
q,2 (X) ≤ C∥f∥Lq(X,dµ). (5.11)

Proof. This follows immediately from the fact that Ḟ 0,L
q,2 (X) = Lq(X) for all q ∈ (1,∞), which

is proved in [4]. Here we give a different proof. First note that (5.11) is valid for q = 2. To see

this, we set

Θ(λ) :=
∞∑

j=−∞
Φ(2−2jλ)Φ(2−2jλ), λ ∈ R≥0.

Since Φ satisfies (5.3), we have |Φ(λ)| . λN for λ ∈ (0, 1), and |Φ(λ)| . λ−N for λ ∈ (1,∞),

where N can be taken to be arbitrarily large. Using these, it is easy to show that Θ ∈ L∞(R≥0).

Hence it follows from the spectral theory that for any f ∈ L2(X),

∥f∥Ḟ 0,L
q,2 (X) ∼

∫
X

∞∑
j=−∞

|Φ(2−2jL )f(x)|2dµ(x) =

⟨ ∞∑
j=−∞

Φ(2−2jL )Φ(2−2jL )f, f

⟩

≤

∥∥∥∥∥∥
∞∑

j=−∞
Φ(2−2jL )Φ(2−2jL )f

∥∥∥∥∥∥
L2(X)

∥f∥L2(X)

= ∥Θ(L )f∥L2(X)∥f∥L2(X) ≤ ∥Θ∥L∞(R≥0)∥f∥
2
L2(X) . ∥f∥2L2(X).

In order to show that (5.11) is valid for all q ∈ (1,∞), by vector-valued singular integral operator

theory it suffices to verify that∥∥{KΦ(2−2jL )(x, y)
}∞
j=−∞

∥∥
ℓ2

. 1

V (x, ρ(x, y))
for all distinct x, y ∈ X,

and that for some θ > 0

∥∥{KΦ(2−2jL )(x, y)−KΦ(2−2jL )(x, y
′)
}∞
j=−∞

∥∥
ℓ2

.
(
ρ(y, y′)

ρ(x, y)

)θ
1

V (x, ρ(x, y))

whenever ρ(y, y′) ≤ 1
2ρ(x, y). But these can be verified in a standard manner by using (2.14)

and (2.15). We omit the details here.

Now we are ready to give the

Proof of Theorem 5.31. We first show that Hp,q,M
L (X) ⊂ Ḟ 0,L

p,2 (X) and the inclusion map is

continuous. To do this, it suffices to show that there is a constant C such that for all (p, q,M)-

atoms a,

∥a∥Ḟ 0,L
p,2 (X) ≤ C.
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Let a be a (p, q,M)-atom related to the ball B = B(xB , rB), and Ψ be a function in AM (R≥0)

satisfying (i)–(iv) in Lemma 4.7. We write

∥a∥Ḟ 0,L
p,2 (X) ∼

∫
B(xB ,2rB)

 ∞∑
j=−∞

|Ψ(2−2jL )a(y)|2
p/2

dµ(y)

+

∫
X\B(xB ,2rB)

 ∞∑
j=−∞

|Ψ(2−2jL )a(y)|2
p/2

dµ(y) =: I1 + I2.

Applying Hölder’s inequality, Lemma 5.33 and (2.1), we get

I1 ≤ ∥a∥p
Ḟ 0,L

q,2 (X)
[V (xB , 2rB)]

1−p/q . ∥a∥pLq(X)[V (xB , rB)]
1−p/q . 1.

To estimate I2, note that if y ∈ X\B(xB, 2rB), z ∈ B(xB, rB), and ρ(y, z) ≤ 2−j , then (by the

triangle inequality) rB ≤ ρ(y, z) ≤ 2−j . Thus,

ρ(y, xB) ≤ ρ(y, z) + ρ(z, xB) ≤ 2−j + rB ≤ 2−j+1.

Hence, for y ∈ X\B(xB, 2rB), by the support property and size property of

K(2−2jL )MΨ(2−2jL )(x, y), Hölder’s inequality, and (2.5), we have

∞∑
j=−∞

|Ψ(2−2jL )a(y)|2

=
∑

j≤− log2[ρ(y,xB)]+1

∣∣∣∣∣
∫
B(xB ,rB)

a(z)KΨ(2−2jL )(y, z)dµ(z)

∣∣∣∣∣
2

=
∑

j≤− log2[ρ(y,xB)]+1

24jM

∣∣∣∣∣
∫
B(xB ,xB)

b(z)K(2−2jL )MΨ(2−2jL )(y, z)dµ(z)

∣∣∣∣∣
2

.
∑

j≤− log2[ρ(y,xB)]+1

24jM [V (y, 2−j)]−2

(∫
B(xB ,rB)

|b(z)|dµ(z)

)2

.
∑

j≤− log2[ρ(y,xB)]+1

24jM [V (y, 2−j)]−2∥b∥2Lq(X)[V (xB , rB)]
2/q′

.
∑

j≤− log2[ρ(y,xB)]+1

24jM [V (y, 2−j)]−2r4MB [V (xB, rB)]
2/q−2/p[V (xB, rB)]

2/q′

.
∑

j≤− log2[ρ(y,xB)]+1

24jM [V (xB , rB)]
−222jςr2ςB r

4M
B [V (xB , rB)]

2−2/p

= r4M+2ς
B [V (xB , rB)]

−2/p
∑

j≤− log2[ρ(y,rB)]+1

2j(4M+2ς)

. r4M+2ς
B [V (xB , rB)]

−2/p[ρ(y, xB)]
−(4M+2ς).

It follows that

I2 ≤ r
p(4M+2ς)/2
B [V (xB , rB)]

−1

∫
X\B(x,2rB)

[ρ(y, xB)]
−p(4M+2ς)/2dµ(y)

= r
p(4M+2ς)/2
B [V (xB , rB)]

−1
∞∑
k=0

∫
B(xB ,2k+2rB)\B(xB ,2k+1rB)

[ρ(y, xB)]
−p(4M+2ς)/2dµ(y)
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. r
p(4M+2ς)/2
B [V (xB , rB)]

−1
∞∑
k=0

V (xB , 2
k+2rB)(2

k+1rB)
−p(4M+2ς)/2

. [V (xB , rB)]
−1

∞∑
k=0

V (xB , rB)2
kd2−kp(4M+2ς)/2

. 1.

Here, for the last inequality we used that M > d
2p −

ς
2 .

Next we turn to the proof of Ḟ 0,L
p,2 (X) ⊂ Hp,q,M

L (X). Since L2(X) ∩ Ḟ 0,L
p,2 (X) is dense in

Ḟ 0,L
p,2 (X) (cf. Proposition 5.17), it suffices to show that any f ∈ L2(X) ∩ Ḟ 0,L

p,2 (X) admits a

(p, q,M)-atomic decomposition.

Choose a function Ψ ∈ AM+1(R≥0) satisfying the conditions (i)–(iv) in Lemma 4.7 in which M

is replaced by M + 1. Then there exists a function Φ ∈ S(R≥0) such that suppΦ ⊂ [2−2ε, 22ε],

|Φ(λ)| > 0 for λ ∈ [2−3/2ε, 23/2ε] for some ε > 0, and

∞∑
j=−∞

Ψ(2−2jλ)Φ(2−2jλ) = 1, ∀λ ∈ R>0.

Hence it follows by the spectral theorem (cf. [66, Theorem VII.2]) and Lemma 5.4 that for all

f ∈ L2(X) ∩ Ḟ 0,L
p,2 (X),

f =
∞∑

j=−∞
Ψ(2−2jL )Φ(2−2jL )f, (5.12)

where the sum converges in L2(X) and hence, in the topology of S ′
L (X). Now define

η(x) =

 ∞∑
j=−∞

∣∣[Φ(2−2jL )]∗af(x)
∣∣21/2

,

where a > 2d/p. For every k ∈ Z, set

Ωk =
{
x ∈ X : η(x) > 2k

}
and

Ω̃k =

{
x ∈ X :M(χΩk

)(x) >
Ad2

2 · 3dAd1

}
,

where A1, A2 are positive numbers same as in Lemma 4.1. Note that by the Hardy-Littlewood

maximal theorem

µ(Ω̃k) ≤ Cµ(Ωk).

For every k ∈ Z, we also set

Rk =
{
Q ∈ D : µ(Q ∩ Ωk) > µ(Q)/2, µ(Q ∩ Ωk+1) ≤ µ(Q)/2

}
,

and denote

Rmax
k =

{
Q ∈ Rk : there is no Q′ ∈ Rk such that Q′ ⊃ Q

}
.

For each Q ∈ D , we set

FQ(x) = Ψ(2−2jQL )
[
χQΦ(2

−2jL )f
]
(x) =

∫
Q

KΨ(2−2jQL )(x, y)Φ(2
−2jQL )f(y)dµ(y).
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Then by (5.12) we have

f =

∞∑
j=−∞

∑
Q∈Dj

FQ =
∑
Q∈D

FQ, (5.13)

the sum converging in S ′
L (X). Since

D =
∞∪

k=−∞

Rk =
∞∪

k=−∞

∪
Qmax

k ∈Rmax
k

∪
Q∈Rk

Q⊂Qmax
k

Q,

we can rewrite (5.13) as

f =

∞∑
k=−∞

∑
Qmax

k ∈Rmax
k

∑
Q∈Rk

Q⊂Qmax
k

FQ =

∞∑
k=−∞

∑
Qmax

k ∈Rmax
k

γQmax
k

· aQmax
k

,

where

γQmax
k

:= C̃
[
µ
(
Bmax
k

)]1/p−1/q


∫
X

 ∑
Q∈Rk

Q⊂Qmax
k

χQ(x)|Φ(2−2jQL )f(x)|2


q/2

dµ(x)


1/q

,

aQmax
k

:=
1

γQmax
k

∑
Q∈Rk

Q⊂Qmax
k

FQ,

and the ball Bmax
k is defined by

Bmax
k = B

(
xBmax

k
, rBmax

k

)
:= B

(
zQmax

k
, (A1 + 1)2

−jQmax
k

)
.

Here, zQmax
k

denote the “center” of the dyadic cube Qmax
k . We claim that, if the constant C̃ is

suitably chosen, then aQmax
k

is a (p, q,M)-atom. To see this, set

bQmax
k

(x) =
1

γQmax
k

∑
Q∈Rk

Q⊂Qmax
k

2−2MjQ(2−2jQL )−MΨ(2−2jQL )
[
χQΦ(2

−2jQL )f
]
(x)

=
1

γQmax
k

∑
Q∈Rk

Q⊂Qmax
k

2−2MjQ

∫
Q

K(2−2jQL )−MΨ(2−2jQL )(x, y)Φ(2
−2jQL )f(y)dµ(y).

Note that bQmax
k

is well-defined since Ψ ∈ AM+1(R≥0). Observe that aQmax
k

= LMbQmax
k

in

S ′
L (X). For every integer m ∈ {0, 1, · · · ,M}, the distribution derivative LmbQmax

k
coincides

with the function

LmbQmax
k

(x) =
1

γQmax
k

∑
Q∈Rk

Q⊂Qmax
k

2−2(M−m)jQ

∫
Q

K(2−2jQL )m−MΨ(2−2jQL )(x, y)Φ(2
−2jQL )f(y)dµ(y).

From Lemma 4.1 and the support property of the kernel K(2−2jQL )m−MΨ(2−2jQL )(·, ·) it follows
that

suppLmbQmax
k

⊂ Bmax
k , ∀m ∈ {0, 1, · · · ,M}.
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To see the size condition of LmbQmax
k

, note that by Hölder’s inequality, for any h ∈ Lq
′
(X)

satisfying ∥h∥Lq′ (X) ≤ 1 we have∣∣∣∣∫
X

LmbQmax
k

(x)h(x)dµ(x)

∣∣∣∣
=

1

γQmax
k

∣∣∣∣∣∣∣∣
∫
X


∑

Q∈Rk
Q⊂Qmax

k

2−2(M−m)jQ(2−2jQL )m−MΨ(2−2jQL )
[
χQΦ(2

−2jQL )f
]
(x)

h(x)dµ(x)

∣∣∣∣∣∣∣∣
=

1

γQmax
k

∣∣∣∣∣∣∣∣
∑

Q∈Rk
Q⊂Qmax

k

2−2(M−m)jQ

∫
X

{
(2−2jQL )m−MΨ(2−2jQL )

[
χQΦ(2

−2jQL )f
]
(x)
}
h(x)dµ(x)

∣∣∣∣∣∣∣∣
=

1

γQmax
k

∣∣∣∣∣∣∣∣
∑

Q∈Rk
Q⊂Qmax

k

2−2(M−m)jQ

∫
X

[
χQΦ(2

−2jQL )f
]
(x)
[
χQ(2−2jQL )m−MΨ(2−2jQL )h

]
(x)µ(x)

∣∣∣∣∣∣∣∣
≤ 1

γQmax
k

2
−2(M−m)jQmax

k

∫
X

 ∑
Q∈Rk

Q⊂Qmax
k

χQ(x)
∣∣Φ(2−2jQL )f(x)

∣∣2


1/2

×

 ∑
Q∈Rk

Q⊂Qmax
k

χQ(x)
∣∣(2−2jQL )m−MΨ(2−2jQL )h(x)

∣∣2


1/2

dµ(x)

≤ 1

γQmax
k

2
−2(M−m)jQmax

k


∫
X

 ∑
Q∈Rk

Q⊂Qmax
k

χQ(x)
∣∣Φ(2−2jQL )f(x)

∣∣2

q/2

dµ(x)


1/q

×


∫
X

 ∑
Q∈Rk

Q⊂Qmax
k

χQ(x)
∣∣(2−2jQL )m−MΨ(2−2jQL )h(x)

∣∣2

q′/2

dµ(x)


1/q′

≤ 1

γQmax
k

2
−2(M−m)jQmax

k


∫
X

 ∑
Q∈Rk

Q⊂Qmax
k

χQ(x)
∣∣Φ(2−2jQL )f(x)

∣∣2

q/2

dµ(x)


1/q

×


∫
X

 ∞∑
j=−∞

∣∣(2−2jL )m−MΨ(2−2jL )h(x)
∣∣2q′/2

dµ(x)


1/q′

≤ C̃(A1 + 1)−2(M−m)r
2(M−m)
Bmax

k

[
µ
(
Bmax
k

)]1/q−1/p∥gΘ,L (h)∥Lq′ (X)

≤ r
2(M−m)
Bmax

k

[
µ
(
Bmax
k

)]1/q−1/p
,
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where we have set Θ(λ) := λm−MΨ(λ) and C := (A1 + 1)2(M−m)∥gΘ,L ∥−1
Lq′ (X)→Lq′ (X)

, with

gΘ,L the Littlewood-Paley function defined by

gΘ,L f(x) :=

 ∞∑
j=−∞

|Ψ(2−2jL )f(x)|2
1/2

.

Here, the Lq
′
(X)-boundedness of the operator gΘ,L follows from Lemma 5.33 and the fact that

Θ ∈ A1(R≥0). Therefore, each aQmax
k

is a (p, q,M)-atom related to the ball Bmax
k .

Now we claim that

∫
X

 ∑
Q∈Rk

χQ(x)|Φ(2−2jQL )f(x)|2
q/2

dµ(x) . 2qkµ(Ωk). (5.14)

Assume this for a moment. Then Hölder’s inequality applied to the sum yields

∞∑
k=−∞

∑
Qmax

k ∈Rmax
k

|γQmax
k

|p ∼
∞∑

k=−∞

∑
Qmax

k ∈Rmax
k

[
µ
(
Bmax
k

)]1−p/q

×


∫
X

 ∑
Q∈Rk

Q⊂Qmax
k

χQ(x)|Φ(2−2jQL )f(x)|2


q/2

dµ(x)


p/q

.
∞∑

k=−∞

 ∑
Qmax

k ∈Rmax
k

µ
(
Qmax
k

)1−p/q

×

 ∑
Qmax

k ∈Rmax
k

∫
X

 ∑
Q∈Rk

Q⊂Qmax
k

χQ(x)|Φ(2−2jQL )f(x)|2


q/2

dµ(x)


p/q

=
∞∑

k=−∞

 ∑
Qmax

k ∈Rmax
k

µ
(
Qmax
k

)1−p/q

×

∫
X

 ∑
Q∈Rk

χQ(x)|Φ(2−2jQL )f(x)|2
q/2

dµ(x)


p/q

.
∞∑

k=−∞

 ∑
Qmax

k ∈Rmax
k

µ
(
Qmax
k ∩ Ωk

)1−p/q [
2qkµ(Ωk)

]p/q
.

∞∑
k=−∞

[
µ(Ωk)

]1−p/q[
2qkµ(Ωk)

]p/q
≤

∞∑
k=−∞

2kpµ(Ωk)

≤ ∥η∥pLp(X)

∼ ∥f∥p
Ḟ 0,L

p,2 (X)
.

Here, for the last line we used the Peetre maximal function characterization of Ḟ 0,L
p,2 (X).
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It thus remains to show (5.14). Note that∪
Q∈Rk

Q ⊂ Ω̃k. (5.15)

Indeed, for any Q ∈ Rk and for any x ∈ Q, by Lemma 4.1 and (2.2) we have

MHL(χΩk
)(x) ≥ 1

µ
(
B(x, 2A12−jQ)

) ∫
B(x,2A12

−jQ )

χΩk
(y)dµ(y)

≥ 1

µ
(
B(zQ, 3A12−jQ)

) ∫
B(zQ,A12

−jQ )

χΩk
(y)dµ(y)

≥ µ(Q ∩ Ωk)

(3A1A
−1
2 )dµ(Q)

≥ Ad2
2 · 3dAd1

.

Hence Q ⊂ Ω̃k. We also note that for all Q ∈ Rk and all x ∈ Q the following inequality holds:

MHL

(
χQ∩Ω̃k\Ωk+1

)
(x) & 1 ≥ χQ(x). (5.16)

Indeed, by the fact that Q ⊂ Ω̃k we have

MHL

(
χQ∩Ω̃k\Ωk+1

)
(x) & 1

µ(Q)

∫
Q

χQ∩Ω̃k\Ωk+1
(y)dµ(y) ≥

µ(Q)− µ(Q)
2

µ(Q)
∼ 1 ≥ χQ(x).

From (5.15), (5.16), the Fefferman-Stein vector-valued inequality (cf. [39]), and the fact that

µ(Ω̃k) ≤ Cµ(Ωk), it follows that

∫
X

 ∑
Q∈Rk

χQ(x)|Φ(2−2jQL )f(x)|2
q/2

dµ(x)

.
∫
X

 ∑
Q∈Rk

sup
w∈Q

|Φ(2−2jQL )f(w)|2
[
MHL(χQ∩Ω̃k\Ωk+1

)(x)
]2q/2

dµ(x)

.
∫
X

 ∑
Q∈Rk

sup
w∈Q

|Φ(2−2jQL )f(w)|2χQ∩Ω̃k\Ωk+1
(x)

q/2

dµ(x)

=

∫
Ω̃k\Ωk+1

 ∑
Q∈Rk

sup
w∈Q

|Φ(2−2jQL )f(w)|2χQ(x)

q/2

dµ(x)

≤
∫
Ω̃k\Ωk+1

 ∞∑
j=−∞

∑
Q∈Dj

sup
w∈Q

|Φ(2−2jQL )f(w)|2χQ(x)

q/2

dµ(x)

.
∫
Ω̃k\Ωk+1

 ∞∑
j=−∞

∣∣[Φ(2−2jL )
]∗
σ
f(x)

∣∣2q/2

dµ(x)

. 2qkµ(Ωk).

This verifies (5.14) and completes the proof of Theorem 5.31.



Chapter 6

Applications to stratified Lie

groups

6.1 Preliminaries on stratified Lie groups

In this section we briefly review the basic notions concerning stratified Lie groups and their

associated sub-Laplacians. For more details we refer the reader to the monograph by Folland

and Stein [34]. A Lie group G is called a stratified Lie group if it is connected and simply

connected, and its Lie algebra g may be decomposed as a direct sum g = V1 ⊕ · · · ⊕ Vm, with

[V1, Vk] = Vk+1 for 1 ≤ k ≤ m − 1 and [V1, Vm] = 0. Such a group G is clearly nilpotent, and

thus it may be identified with g (as a manifold) via the exponential map exp : g → G. Examples

of stratified Lie groups include Euclidean spaces Rn and the Heisenberg group Hn.

The algebra g is equipped with a family of dilations {δt : t > 0} which are the algebra automor-

phisms defined by

δt

( m∑
j=1

Xj

)
=

m∑
j=1

tjXj (Xj ∈ Vj).

Under our identification of G with g, δt may also be viewed as a map G → G. We generally

write tx instead of δt(x), for x ∈ G. We shall denote by

κ =
m∑
j=1

j[dim(Vj)]

the homogeneous dimension of G.

A homogeneous norm on G is a continuous function x 7→ |x| from G to R≥0 smooth away from 0

(the group identity), vanishing only at 0, and satisfying |x−1| = |x| and |tx| = t|x| for all x ∈ G

and t > 0. Homogeneous norms on G always exist and any two of them are equivalent. We

assume G is provided with a fixed homogeneous norm. It satisfies a triangle inequality: there

exists a constant γ ≥ 1 such that |xy| ≤ γ(|x| + |y|) for all x, y ∈ G. If x ∈ G and r > 0 we

define the ball of radius r about x by B(x, r) = {y ∈ G : |y−1x| < r}. The Lebesgue measure

on g induces a bi-invariant Haar measure dx on G. We fix the normalization of Haar measure

by requiring that the measure of B(0, 1) be 1. We shall denote the measure of any measurable

E ⊂ G by |E|. Clearly we have |δt(E)| = tκ|E|. Obviously, (G, | · |, dx) satisfies the doubling,

reverse doubling, and non-collapsing conditions. All integrals on G are with respect to (the

83
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normalization of) Haar measure. Convolution is defined by

f ∗ g(x) =
∫
f(y)g(y−1x)dy =

∫
f(xy−1)g(y)dy.

We consider g as the Lie algebra of all left-invariant vector fields on G, and let X1, · · · , Xn be a

basis of g, obtained as a union of bases of the Vj ’s. In particular, X1, · · · , Xν , with ν = dim(V1),

is a basis of V1. We denote by Y1, · · · , Yn the corresponding basis for right-invariant vector fields,

i.e.

Yjf(x) =
d

dt
f(exp(tXj)x)|t=0.

If I = (i1, · · · , in) ∈ Nn is a multi-index we set XI = Xi1
1 · · ·Xin

n and Y I = Y i11 · · ·Y inn .

Moreover, we set

|I| =
n∑
k=1

ik and d(I) =

n∑
k=1

dkik,

where the integers d1 ≤ · · · ≤ dn are given according to that Xk ∈ Vdk . Then XI (resp. Y I)

is a left-invariant (resp. right-invariant) differential operator, homogeneous of degree d(I), with

respect to the dilations δt, t > 0.

A complex-valued function P on G is called a polynomial on G if P ◦ exp is a polynomial on

g. Let ξ1, · · · , ξn be the basis for the linear forms on g dual to the basis X1, · · · , Xn for g, and

set ηj = ξj ◦ exp−1. From our definition of polynomials on G, η1, · · · , ηn are generators of the

algebra of polynomials on G. Thus, every polynomial on G can be written uniquely as

P =
∑
I

aIη
I , aI ∈ C, (6.1)

where all but finitely many of the coiefficients vanish, and ηI = ηi1 · · · ηin . A polynomial of the

type (6.1) is called of homogeneous degree L, where L ∈ N0, if d(I) ≤ L holds for all multi-indices

I with aI ̸= 0. We let P denote the space of all polynomials on G, and let PL denote the space

of polynomials on G of homogeneous degree L. Obviously, the definition of PL is independent

of the choice of the basis X1, · · · , Xn, as long as this basis is obtained as a union of bases of the

Vj ’s. Also note that PL is invariant under left and right translations (see [34, Proposition 1.25]).

A function f : G→ C is said to have vanishing moments of order L, if

∀P ∈ PL−1 :

∫
G

f(x)P (x)dx = 0,

with the absolute convergence of the integral.

The Schwartz class on G is defined by

S(G) :=
{
ϕ ∈ C∞(G) : P

∂|I|ϕ

∂ηi1 · · · ∂ηin
∈ L∞(G), ∀I ∈ Nn0 , ∀P ∈ P

}
;

that is, ϕ ∈ S(G) if and only if ϕ ◦ exp is a Schwartz function on g ≡ Rn. In view of [34,

Proposition 1.25] and the remarks following it, we can replace ∂|I|

∂ηi1 ···∂ηin by XI or Y I in this

definition without changing anything. S(G) is a Fréchet space whose topology is defined by any

of a number of families of norms. In the present thesis, for our purpose it will be convenient to

use the following family of norms: if N ∈ N0, we define

∥ϕ∥(N) := sup
|I|≤N,x∈G

(1 + |x|)κ+N+d(I)|XIϕ(x)|.
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The dual space S ′(G) of S(G) is the space of tempered distributions on G. If f ∈ S ′(G) and

ϕ ∈ S(G) we shall denote the evaluation of f on ϕ by (f, ϕ).

We use the notation S∞(G) to denote the space of all Schwartz functions on G with vanishing

moments of all orders. S∞(G) is a subspace of S(G), with the relative topology. Since S∞(G)

is the intersection of null spaces of a family of tempered distributions, it is a closed subspace. It

is shown in [32] that the dual space S ′
∞(G) can be canonically identified with the factor space

S ′(G)/P.

For a basis X = {X1, · · · , Xn} of g chosen as above, we define the sub-Laplacian ∆X :=

−
∑ν
j=1X

2
j , where ν = dim(V1). When restricted to smooth functions with compact support, ∆X

is non-negative and essentially self-adjoint. Its closure has domain {u ∈ L2(G) : ∆Xu ∈ L2(G)},
where ∆Xu is taken in the sense of distributions. We denote this extension still by the symbol

∆X. By the spectral theorem, ∆X admits a spectral resolution

∆X =

∫ ∞

0

λdE(λ),

where dE(λ) is the projection measure. If Φ is a bounded Borel measurable function on R≥0,

the operator

Φ(∆X) =

∫ ∞

0

Φ(λ)dE(λ)

is bounded on L2(G), and commutes with left translations. Thus, by the Schwartz kernel theo-

rem, there exists a tempered distribution KΦ(∆X) on G such that

Φ(∆X)f = f ∗KΦ(X), ∀f ∈ S(G).

An important fact proved by Hulanicki [53] is as in the following lemma.

Lemma 6.1. If Φ ∈ S(R≥0) then the distribution kernel KΦ(∆X) of Φ(∆X) coincides with a

function in S(G).

For any function h on G and t > 0, we define the L1-normalized dilation of h by

Dth(x) = tκh(tx).

Note that 2-homogeneity of ∆X implies that the convolution kernel of the operator Φ(t2∆X)

coincides with Dt−1ϕ, for all t > 0.

For any function f on G, we define f̃(x) = f(x−1). Then we have f ∗ g = ˜̃g ∗ f̃ .

6.2 Besov and Triebel-Lizorkin spaces on stratified groups

Let X = {X1, · · · , Xn} be a basis of g, chosen as above, i.e., X1, · · · , Xn is a union of bases of

the Vj ’s. Let ∆X be the sub-Laplacian associated to X. It is well-known that the semigroup

semigroup Pt = e−t∆X consists of convolution operators with (heat) kernel pt(x) satisfying the

following Gaussian upper bound: for all x ∈ G and t > 0,

|pt(x)| ≤ Ct−κ/2e−|x|2/(ct),

where C and c are positive constants. See for instance [86, Theorem IV.4.2]. Let Bs,∆X
p,q (G),

Ḃs,∆X
p,q (G), F s,∆X

p,q (G) and Ḟ s,∆X
p,q (G) be (inhomogeneous and homogeneous) Besov and Triebel-

Lizorkin spaces on G associated to ∆X, defined according to the general theory established in

Chapter 3 and Chapter 5. More precisely, these spaces are defined as follows:
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Definition 6.2. (i) Let s ∈ R, p ∈ (0,∞] and q ∈ (0,∞]. Let (Φ0,Φ) ∈ AM (R≥0) for some

nonnegative integer M > s/2. Set Φj(λ) := Φ(2−2jλ) for j ≥ 1. We define the Besov space

Bs,∆X
p,q (G) as the collection of all distributions f ∈ S ′

∆X
(G) such that

∥f∥
B

s,∆X
p,q (G)

:=

 ∞∑
j=0

∥∥2jsΦj(∆X)f
∥∥q
Lp(G)

1/q

<∞.

(ii) Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞]. Let (Φ0,Φ) ∈ AM (R≥0) for some nonnegative integer

M > s/2. Set Φj(λ) := Φ(2−2jλ) for j ≥ 1. We define the Triebel-Lizorkin space F s,∆X
p,q (G) as

the collection of all distributions f ∈ S ′
∆X

(G) such that

∥f∥
F

s,∆X
p,q (G)

:=

∥∥∥∥∥∥∥
 ∞∑
j=0

∣∣2jsΦj(∆X)f
∣∣q1/q

∥∥∥∥∥∥∥
Lp(G)

<∞.

Definition 6.3. Let Φ ∈ S(R≥0) such that

suppΦ ⊂ [2−2, 22] and |Φ(λ)| ≥ c > 0 for λ ∈ [2−3/2, 23/2]. (6.2)

Set Φj(λ) := Φ(2−2jλ) for j ∈ Z.

(i) If s ∈ R, p ∈ (0,∞] and q ∈ (0,∞], we define the homogeneous Besov space Ḃs,∆X
p,q (G) as the

collection of all distributions f ∈ S ′
∞,∆X

(X) such that

∥f∥
Ḃ

s,∆X
p,q (G)

:=

 ∞∑
j=−∞

∥∥2jsΦj(∆X)f
∥∥q
Lp(G)

1/q

<∞.

(ii) If s ∈ R, p ∈ (0,∞) and q ∈ (0,∞], we define the homogeneous Triebel-Lizorkin space

Ḟ s,∆X
p,q (G) as the collection of all distributions f ∈ S ′

∞,∆X
(G) such that

∥f∥
Ḟ

s,∆X
p,q (G)

:=

∥∥∥∥∥∥∥
 ∞∑
j=−∞

∣∣2jsΦj(∆X)f
∣∣q1/q

∥∥∥∥∥∥∥
Lp(G)

<∞.

Lemma 6.4. Suppose M ∈ N and Φ is a function in S(R≥0) such that the function λ 7→
λ−MΦ(λ) belongs to S(R≥0). Then the convolution kernel of Φ(∆X) is a function in S(G)
having vanishing moments of order 2M . In particular, if Φ ∈ S(R≥0) vanishes near the origin,

then the convolution kernel of Φ(∆X) has all vanishing moments.

Proof. Let P ∈ P2M−1. Then the function h(x) := ∆M
X P (x) satisfies h(tx) = (∆M

X P )(tx) =

t−2M∆M
X
(
P (t·)

)
(x) = t−2M∆M

X
(
t2M−1P

)
(x) = t−1(∆M

X P )(x) = t−1h(x), which along with the

fact that P ∈ C∞(G) implies that h ≡ 0. Denoting by ϕ the convolution kernel of Φ(∆X) and

by ψ be the convolution kernel of ∆−M
X Φ(∆X), then ϕ = ∆M

X ψ, and hence∫
G

ϕ(x)P (x)dx =

∫
G

(∆M
X ψ)(x)P (x)dx =

∫
G

ψ(x)(∆M
X P )(x)dx = 0.

This shows that ϕ has vanishing moments of order 2M .
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Lemma 6.5. Suppose L is a positive integer and ϕ, ψ are functions on G satisfying that

|ϕ(x)| ≤ C
1

(1 + |x|)κ+L
for all x ∈ G,∫

G

ϕ(x)P (x)dx = 0, for all P ∈ PL−1, and

|Y Iψ(x)| ≤ C
1

(1 + |x|)κ+L+d(I)
for all x ∈ G and 0 ≤ d(I) ≤ L.

Then for any ε ∈ (0, 1), there is a constant C > 0 such that for all j, j′ ∈ Z with j ≥ j′,

|ϕj ∗ ψj′(x)| . 2−(j−j′)(L−ε) 2j
′κ

(1 + 2j′ |x|)κ+L
.

where ϕj(x) := (D2jϕ)(x) = 2jκϕ(2jx) and ψj′(x) := (D2j′ψ)(x) = 2j
′κψ(2j

′
x).

Proof. Let y 7→ PL−1
x,ψj′

(y) be the right Taylor polynomial of ψj′ at the point x. By the vanishing

moments of ϕ we have

|ϕj ∗ ψj′(x)| =
∣∣∣∣∫
G

ϕj(y)
[
ψj′(y

−1x)− PL−1
x,ψj′

(y−1)
]
dy

∣∣∣∣
≤
∫
|y|≤ 2−j′+|x|

2γb

|ϕj(y)|
∣∣ψj′(y−1x)− PL−1

x,ψj′
(y−1)

∣∣dy
+

∫
|y|> 2−j′+|x|

2γb

|ϕj(y)||ψj′(y−1x)|dy

+

∫
|y|> 2−j′+|x|

2γb

|ϕj(y)||PL−1
x,ψj′

(y−1)|dy

=:I1 + I2 + I3.

By the stratified mean value theorem (cf. [34, p. 33]),

I1 .
∫
|y|≤ 2−j′+|x|

2γb

|ϕj(y)||y|L sup
|y′|≤b|y|,d(I)=L

|(Y Iψj′)(y′x)|dy

=

∫
|y|≤ 2−j′+|x|

2γb

|ϕj(y)||y|L sup
|y′|≤b|y|,d(I)=L

2j
′(κ+L)

∣∣(Y Iψ)(2j′(y′x))∣∣dy
.
∫
|y|≤ 2−j′+|x|

2γb

|ϕj(y)||y|L sup
|y′|≤b|y|,d(I)=L

2j
′(κ+L)

(1 + 2j′ |y′x|)κ+L+l
dy

.
∫
|y|≤ 2−j′+|x|

2γb

2−jL|y|L

(2−j + |y|)κ+L
sup

|y′|≤b|y|

2−j
′

(2−j′ + |y′x|)κ+L+1
dy

.
∫
|y|≤ 2−j′+|x|

2γb

2−jL|y|L

(2−j + |y|)κ+L
2−j

′

(2−j′ + |x|)κ+L+1
dy

=
2−j

′

(2−j′ + |x|)κ+L

∫
|y|≤ 2−j′+|x|

2γb

2−jL

(2−j + |y|)κ+L
|y|L

2−j′ + |x|
dy

≤ 2−j
′

(2−j′ + |x|)κ+L

∫
|y|≤ 2−j′+|x|

2γb

2−jL

(2−j + |y|)κ+1

|y|
2−j′ + |x|

dy

. 2−j
′

(2−j′ + |x|)κ+L

∫
|y|≤ 2−j′+|x|

2γb

2−jL

(2−j + |y|)κ+1

(
|y|

2−j′ + |x|

)1−ε

dy

≤ 2−j
′

(2−j′ + |x|)κ+L

∫
|y|≤ 2−j′+|x|

2γb

2−jL

(2−j + |y|)κ+1

(
2−j + |y|
2−j′ + |x|

)1−ε

dy
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=
2−j

′

(2−j′ + |x|)κ+L

∫
|y|≤ 2−j′+|x|

2γb

2−jL

(2−j + |y|)κ+ε
1

(2−j′ + |x|)1−ε
dy

≤ 2−j
′
2j

′(1−ε)

(2−j′ + |x|)κ+L

∫
|y|≤ 2−j′+|x|

2γb

2−jL

(2−j + |y|)κ+ε
dy

=
2−j

′
2j

′(1−ε)2−j(L−ε)

(2−j′ + |x|)κ+L

∫
|y|≤ 2−j′+|x|

2γb

2−jε

(2−j + |y|)κ+ε
dy

≤ 2−j
′
2j

′(1−ε)2−j(L−ε)

(2−j′ + |x|)κ+L

∫
G

1

(1 + |y|)κ+ε
dy

. 2−j
′ε2−j(L−ε)

(2−j′ + |x|)κ+L
= 2−(j−j′)(L−ε) 2j

′κ

(1 + 2j′ |x|)κ+L
,

where we used the fact that if |y| ≤ 2−j′+|x|
2γb and |y′| ≤ b|y|, then 2−j

′
+ |y′x| & 2−j

′
+ |x|.

For the estimation of I2, we have

I2 .
∫
|y|> 2−j′+|x|

2γb

2−jL

(2−j + |y|)κ+L
2−j

′L

(2−j′ + |y−1x|)κ+L
dy

≤
∫
|y|> 2−j′+|x|

2γb

2−jL

(2−j′ + |x|)κ+L
2−j

′L

(2−j′ + |y−1x|)κ+L
dy

. 2−jL

(2−j′ + |x|)κ+L

∫
G

2−j
′L

(2−j′ + |y−1x|)κ+L
dy

=
2−jL

(2−j′ + |x|)κ+L

∫
G

1

(1 + |y|)κ+L
dy

. 2−jL

(2−j′ + |x|)κ+L
= 2−(j−j′)L 2j

′κ

(1 + 2j′ |x|)κ+L
.

To estimate I3, we note that by [6, Proposition 20.3.14] PL−1
x,ψj′

is of the form

Px,ψj (y) = ψj(x) +
L−1∑
ℓ=1

ℓ∑
k=1

∑
1≤i1,··· ,ik≤n
di1+···+dik=ℓ

ηi1(y) · · · ηik(y)
k!

Yi1 · · ·Yikψj(x),

where the integers dik are given by dik := {β : Xik ∈ Vβ}. Hence

I3 .
∫
|y|> 2−j′+|x|

2γb

2−jL

(2−j + |y|)κ+L

 ∑
0≤ℓ≤L−1

2j
′(κ+ℓ)|y|ℓ

(1 + |2j′x|)κ+L+ℓ

 dy

≤
∑

0≤ℓ≤L−1

2−jL2j
′(κ+ℓ)

(1 + |2j′x|)κ+L+ℓ

∫
|y|> 2−j′+|x|

2γb

|y|ℓ

(2−j + |y|)κ+L
dy

≤
∑

0≤ℓ≤L−1

2−jL2j
′(κ+ℓ)

(1 + |2j′x|)κ+L+ℓ

∫
|y|> 2−j′+|x|

2γb

1

(2−j + |y|)κ+L−ℓ
dy

=
∑

0≤ℓ≤L−1

2−jL2j
′(κ+ℓ)2j

′(L−ℓ−ε)

(1 + |2j′x|)κ+L+ℓ

∫
|y|> 2−j′+|x|

2γb

2−j
′(L−ℓ−ε)

(2−j + |y|)κ+L−ℓ
dy

≤
∑

0≤ℓ≤L−1

2−jL2j
′(κ+ℓ)2j

′(L−ℓ−ε)

(1 + |2j′x|)κ+L+ℓ

∫
|y|> 2−j′+|x|

2γb

|y|(L−ℓ−ε)

(2−j + |y|)κ+L−ℓ
dy
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≤
∑

0≤ℓ≤L−1

2−jL2j
′(κ+ℓ)2j

′(L−ℓ−ε)

(1 + |2j′x|)κ+L+ℓ

∫
|y|> 2−j′+|x|

2γb

1

(2−j + |y|)κ+ε
dy

=
∑

0≤ℓ≤L−1

2−jL2j
′(κ+ℓ)2j

′(L−ℓ−ε)2jε

(1 + |2j′x|)κ+L+ℓ

∫
|y|> 2−j′+|x|

2γb

2−jε

(2−j + |y|)κ+ε
dy

≤
∑

0≤ℓ≤L−1

2−jL2j
′(κ+ℓ)2j

′(L−ℓ−ε)2jε

(1 + |2j′x|)κ+L+ℓ

∫
G

2jκ

(1 + |2jy|)κ+ε
dy

.
∑

0≤ℓ≤L−1

2−jL2j
′(κ+ℓ)2j

′(L−ℓ−ε)2jε

(1 + |2j′x|)κ+L+ℓ
≤

∑
0≤ℓ≤L−1

2−(j−j′)(L−ε)

(1 + 2j′ |x|)κ+L+ℓ

. 2−(j−j′)(L−ε) 2j
′κ

(1 + 2j′ |x|)κ+L
.

This finishes the proof.

Proposition 6.6. Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞). Then:

(i) S(G) is a dense subspace of Bs,∆X
p,q (G) and is a dense subspace of F s,∆X

p,q (G).

(ii) S∞(G) is a dense subspace of Ḃs,∆X
p,q (G) and is a dense subspace of Ḟ s,∆X

p,q (G).

Proof. We only prove that S∞(G) is a dense subspace of Ḟ s,∆X
p,q (G), since other statements can

be proved similarly.

We first show that S∞(G) ⊂ Ḟ s,∆X
p,q (G). Let g ∈ S∞(G) and let Φ be a function in S(R≥0)

satisfying (6.2). Let ϕ ∈ S(G) be the convolution kernel of Φ(∆X). Choose an integer L such

that

L > max
{
(κ+ 1)/p− κ, (κ+ 1)/p− κ− s,−s, 0

}
.

Then there exists sufficiently small ε > 0 such that

L− ε > max
{
(κ+ 1)/p− κ− s,−s, 0

}
.

Since both g and ϕ are Schwartz functions with all moments vanishing, it follows from Lemma

6.5 that

∀j ≤ 0 : 2js|Φ(2−2j∆X)g(x)| = |g ∗ ϕj(x)| . 2js2j(L−ε)
2jκ

(1 + 2j |x|)κ+L

≤ 2js2j(L−ε)
2jκ

(1 + 2j |x|)(κ+1)/p
. 2j[L−ε+κ−(κ+1)/p+s] 1

(1 + |x|)(κ+1)/p

and

∀j > 0 : 2js|Φ(2−2j∆X)g(x)| = 2js|g ∗ ϕj(x)| = 2js|ϕ̃j ∗ g̃(x−1)|

. 2−j(L−ε+s)
1

(1 + |x|)κ+L
≤ 2−j(L−ε+s)

1

(1 + |x|)(κ+1)/p
.

Hence, if we set

δ := min
{
L− ε+ κ− (κ+ 1)/p+ s, L− ε+ s

}
> 0,
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then

∥g∥
Ḟ

s,∆X
p,q (G)

=

∥∥∥∥∥∥∥
 ∞∑
j=−∞

(
2−js|Φ(2−2j∆X)f |

)q1/q
∥∥∥∥∥∥∥
Lp(G)

≤ Cg

 ∞∑
j=−∞

2−|j|δq

1/q (∫
G

1

(1 + |x|)κ+1
dx

)1/p

≤ Cg.

This shows that every function in S∞(G) belongs to Ḟ s,∆X
p,q (G).

Next we show that if s ∈ R, p ∈ (0,∞) and q ∈ (0,∞) then S∞(G) is dense in Ḟ s,∆X
p,q (G).

From the proof of Corollary 4.8 we see that it suffices to show that if Φ is a function in S(R≥0)

vanishing near the origin and if g is a bounded (not necessarily continuous) function on G with

compact support, then Φ(∆X)g ∈ S∞(G). For any I ∈ Nn0 ,

XI
(
Φ(∆X)g

)
(x) = XI(g ∗ ϕ)(x) = g ∗ (XIϕ)(x),

where ϕ ∈ S(G) is the convolution kernel of Φ(∆X). Since g is bounded function with compact

support, for arbitrarily large positive integer N we have |g(x)| ≤ (1 + |x|)−N . Hence

|XI
(
Φ(∆X)g

)
(x)| ≤

∫
G

|ϕ(y)||g(y−1x)|dy ≤
∫
G

1

(1 + |y|)N
1

(1 + |y−1x|)N
dy

=

∫
|y|≤|x|/(2γ)

+

∫
|y|>|x|/(2γ)

=: I1 + I2.

Note that if |y| ≤ |x|/(2γ) then |y−1x| ≥ |x|/γ − |y| ≥ |x|/(2γ). Hence

I1 . 1

(1 + |x|)N

∫
|y|≤|x|/(2γ)

1

(1 + |y|)N
dy . 1

(1 + |x|)N
.

For I2, we have

I2 . 1

(1 + |x|)N

∫
|y|>|x|/(2γ)

1

(1 + |y−1x|)N
dy . 1

(1 + |x|)N
.

Therefore, |XI
(
Φ(∆X)g

)
(x)| . (1 + |x|)−N , which shows that Φ(∆X)g ∈ S∞(G). It remains

to show that Φ(∆X)g have vanishing moments of arbitrary order. Let L be any non-negative

integer, and let P ∈ PL. We have∫
G

Φ(∆X)g(x)P (x)dx =

∫
G

∆
−(L+1)
X Φ(∆X)g(x)∆

L+1
X P (x)dx = 0.

This completes the proof.

The following theorem shows that Besov and Triebel-Lizorkin spaces on G are independent of

the choice of the sub-Laplacian.

Theorem 6.7. Suppose X = {X1, · · · , Xn} and X̃ = {X̃1, · · · , X̃n} are two bases of g, both of

which are obtained as unions of the bases of the Vj’s.

(i) If s ∈ R, p ∈ (0,∞] and q ∈ (0,∞], then

Bs,∆X
p,q (G) = B

s,∆X̃
p,q (G) and Ḃs,∆X

p,q (G) = Ḃ
s,∆X̃
p,q (G).
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(ii) If s ∈ R, p ∈ (0,∞) and q ∈ (0,∞), then

F s,∆X
p,q (G) = F

s,∆X̃
p,q (G) and Ḟ s,∆X

p,q (G) = Ḟ
s,∆X̃
p,q (G).

Proof. We only show that Ḟ s,∆X
p,q (G) = Ḟ

s,∆X̃
p,q (G) since the proofs of other statements are similar.

By Proposition 6.6, L2(G) ∩ Ḟ s,∆X
p,q (G) is dense in Ḟ s,∆X

p,q (G) and L2(G) ∩ Ḟ s,∆X̃
p,q (G) is dense in

Ḟ s,∆X
p,q (G). Hence it suffices to show that for all f ∈ L2(G),

∥f∥
Ḟ

s,∆X
p,q (G)

∼ ∥f∥
Ḟ

s,∆
X̃

p,q (G)
. (6.3)

Now let f ∈ L2(G). Let Φ be a function in S(R≥0) satisfying (6.2). Then there exists Ψ ∈ S(R≥0)

such that suppΨ ∈ [2−2, 22] and

∞∑
j=−∞

Ψ(2−2jλ)Φ(2−2jλ) = 1 for all λ ∈ R>0.

From this, the spectral theorem (cf. [66, Theorem VII.2]) and Lemma 5.4 it follows that

f =
∞∑

j=−∞
Ψ(2−2j∆X)Φ(2

−2j∆X)f,

where the sum converges in L2(G). Hence we have the pointwise representation

Φ(2−2ℓ∆X̃)f(y) =
∞∑

j=−∞
Φ(2−2ℓ∆X̃)Ψ(2−2j∆X)Φ(2

−2j∆X)f(y), y ∈ G.

Let ϕ (resp. ϕ̃) be the convolution kernel of Φ(∆X) (resp. Φ(∆X̃)). Let ϕj(x) := 2jκϕ(2jx) (resp.

ϕ̃j(x) = 2jκϕ̃(2jx)) for j ∈ Z. Then for all ℓ ∈ Z and y ∈ G,

f ∗ ϕ̃ℓ(y) =
∞∑

j=−∞
f ∗ ϕj ∗ ψj ∗ ϕ̃ℓ(y).

It follows that

|f ∗ ϕ̃ℓ(y)| ≤
∞∑

j=−∞

∫
|f ∗ ϕj(z)||ψj ∗ ϕ̃ℓ(z−1y)|dz

≤
∞∑

j=−∞
[Φ(2−2j∆X)]

∗
af(y)

∫
G

(1 + 2j |z|)a|ψj ∗ ϕ̃ℓ(z)|dz

=
∞∑

j=−∞
[Φ(2−2j∆X)]

∗
af(y)Ij,ℓ,

(6.4)

where we have set

Ij,ℓ :=

∫
G

(1 + 2j |z|)a|ψj ∗ ϕ̃ℓ(z)|dz.

Since both ψ(1) and ϕ(2) are Schwartz functions with vanishing moments of all orders, it follows

from Lemma 3.1 that

Ij,ℓ .
∫
G

(1 + 2j |z|)a2−|j−ℓ|(L−ε)2(j∧ℓ)κ(1 + 2j∧ℓ|z|)−(κ+L)dz

.
∫
G

2−|j−ℓ|(L−ε−a)2(j∧ℓ)κ(1 + 2j∧ℓ|z|)−(κ+L−a)dz
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. 2−|j−ℓ|(L−ε−a),

where the positive integer L is taken sufficiently large. Let us further observe that

[Φ(2−2j∆X)]
∗
af(y) ≤ [Φ(2−2j∆X)]

∗
af(x)(1 + 2j |y−1x|)a

. [Φ(2−2j∆X)]
∗
af(x)(1 + 2ℓ|y−1x|)amax{1, 2(j−ℓ)a}.

Putting these estimates into (6.4), multiplying both sides by 2ℓs, dividing both sides by (1 +

2ℓ|y−1x|)a and then taking the supremum over y ∈ G, we obtain

2ℓs[Φ(2−2ℓ∆X̃)]
∗
af(x) .

∞∑
j=−∞

2−|j−ℓ|(L−ε−2a−|s|)2js[Φ(2−2j∆X)]
∗
af(x).

Take a > 2a
min{p,q} , L > 2a+ |s| and take ε sufficiently small such that L− ε− 2a−|s| > 0. Then

it follows from Lemma 3.11 that∥∥∥∥∥∥
( ∞∑
ℓ=−∞

∣∣2js[Φ(2−2ℓ∆X̃)]
∗
af
∣∣q)1/q

∥∥∥∥∥∥
Lp(G)

.

∥∥∥∥∥∥∥
 ∞∑
j=−∞

∣∣2js[Φ(2−2j∆X)]
∗
af
∣∣q1/q

∥∥∥∥∥∥∥
Lp(G)

. (6.5)

By symmetry, the inverse inequality of (6.5) is also valid. This along with Theorem 5.7 yields

(6.3).

Remark 6.8. From Theorem 6.7 we see that the spaces Bs,∆X
p,q (G), Ḃs,∆X

p,q (G), F s,∆X
p,q (G) and

Ḟ s,∆X
p,q (G) are independent of the choice of the sub-Laplacian ∆X. Hence in what follows we will

not specify the choice of ∆X and write Bsp,q(G), Ḃ
s
p,q(G), F

s
p,q(G) and Ḟ

s
p,q(G) in short.

6.3 Ḃs
p,q(G)- and Ḟ s

p,q(G)-boundedness of convolution opera-

tors

In this section we study boundedness of convolution operators on homogeneous Besov and

Triebel-Lizorkin spaces on stratified Lie groups. Following [75, §5.3 in Chapter XIII], we in-

troduce a class of singular convolution kernels as follows.

Definition 6.9. Let r be a positive integer. A kernel of order r is a distribution K ∈ S ′(G)

with the following properties:

(i) K coincides with a Cr function K(x) away from the group identity 0 and enjoys the regularity

condition:

|XIK(x)| ≤ CI |x|−κ−d(I) for |I| ≤ r and x ̸= 0. (6.6)

(ii) K satisfies the cancellation condition: For all normalized bump function ϕ and all R > 0, we

have

|⟨K,ϕR⟩| ≤ C, (6.7)

where ϕR(x) = ϕ(Rx), and C is a constant independent of ϕ and R. Here, by a normalized

bump function we mean a function ϕ supported in {|x| < 1} and satisfying∣∣XIϕ(x)
∣∣ ≤ 1, ∀ |I| ≤ N, ∀ x ∈ G,

for some fixed positive integer N .

A convolution operator T with kernel of order r is called a singular integral operator of order r.
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Remark 6.10. Using [34, Proposition 1.29], it is easy to verify that (6.6) is equivalent to the

following condition:

|Y IK(x)| ≤ CI |x|−κ−d(I), for |I| ≤ r and x ̸= 0.

Examples of such kernels include the class of distributions which are homogeneous of degree −κ
(see Folland [34, p. 11] for definition) and agree with C∞ functions away from 0. Indeed, assume

K ∈ S ′(G) is such a distribution, then it is easy to verify that K satisfies the regularity condition

(i) in Definition 4.1; moreover, from [34, Proposition 6.13] we see that K is a principle value

distribution such that
∫
ε<|x|<LK(x)dx = 0 for all 0 < ε < L <∞. Hence, for every normalized

bump function ϕ, by the homogeneity of K we have

|⟨K,ϕR⟩| = |⟨K,ϕ⟩| =

∣∣∣∣∣ limε→0

∫
ε<|x|<2

K(x)[ϕ(x)− ϕ(0)]dx

∣∣∣∣∣
≤
∫
|x|<2

|K(x)||ϕ(x)− ϕ(0)|dx.

Using stratified mean value theorem (cf. [34, Theorem 1.41]) and (6.6)–(6.7), it is easy to verify

that the last integral converges absolutely and is bounded by a constant independent of ϕ and

R. Hence K satisfies the condition (ii) in Definition 6.9.

Now we state the main result of this section.

Theorem 6.11. Let s ∈ R, 0 < p <∞ and 0 < q <∞, and let r be a positive integer such that

r > κ
min{p,q} + |s|. Suppose T is a singular integral operator of order r. Then T extends to a

bounded operator on Ḃsp,q(G) and on Ḟ sp,q(G).

If K ∈ S ′(G) and t > 0, we define DtK as the tempered distribution given by

⟨DtK,ϕ⟩ = ⟨K,ϕ(t−1·)⟩, ϕ ∈ S(G).

For the proof of Theorem 6.11, we will need the following lemma, in which b is the same positive

constant as in [34, Corollary 1.44].

Lemma 6.12. Let r be a positive integer. Suppose K is a kernel of order r, and ϕ is a smooth

function supported in B(0, 1/(100γbr)) with vanishing moments of order r. Then, there exists a

constant C > 0 such that for all j ∈ Z and x ∈ G, we have

|(D2jK) ∗ ϕ(x)| ≤ C(1 + |x|)−κ−r (6.8)

and

|ϕ ∗ (D2jK)(x)| ≤ C(1 + |x|)−κ−r. (6.9)

Moreover, both ϕ ∗ (D2jK) and (D2jK) ∗ ϕ have vanishing moments of the same order as ϕ.

Proof. Recall that the convolution of ϕ ∈ S(G) with K ∈ S ′(G) is defined by ϕ ∗ K(x) :=

⟨K, (xϕ)∼⟩, where xϕ is the function given by xϕ(z) = ϕ(xz), and as before f̃(x) := f(x−1) for

any function f : G→ C. From [34, p. 38] we see that ϕ ∗ (D2jK) are C∞ functions, j ∈ Z. We

claim that for every x with |x| ≤ 1
2γ , the function z 7→ (xϕ)∼(z) is a normalized bump function

multiplied with a constant independent of x. Indeed, using the quasi-triangle inequality satisfied

by the homogeneous norm it is easy to verify that the function z 7→ (xϕ)∼(z) is supported in
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B(0, 1); moreover, since |x| ≤ 1
2γ and since (by [34, Proposition 1.29])

Y I =
∑

|J|≤|I|
d(J)≥d(I)

PI,JX
J ,

where PI,J are polynomials of homogeneous degree d(J)− d(I), we have

|XI [(xϕ)∼](z)| = |Y I(xϕ)(z−1)| .
∑

|J|≤|I|
d(J)≥d(I)

|PI,J(z−1)||XJ (xϕ)(z−1)|

=
∑

|J|≤|I|
d(J)≥d(I)

|PI,J(z−1)||(XJϕ)(xz−1)| ≤ CI .

Here CI is a constant depending on I but not on x. Hence the claim is true. Thus, by the

condition (ii) in Definition 6.9, there exits a constant C > 0 such that for all j ∈ Z and all x

with |x| ≤ 1
2γ ,∣∣ϕ ∗ (D2jK)(x)

∣∣ = ∣∣ϕ ∗ (D2jK)(x)
∣∣ = ∣∣(D2jK, (

xϕ)∼
)∣∣ = ∣∣(K, (xϕ)∼(2−j ·))| ≤ C. (6.10)

Let now |x| > 1
2γ . Let y ∈ suppϕ. Denote by P r−1

x,D2jK
the right Taylor polynomial of D2jK at

x of homogeneous degree r − 1 (see [34, pp. 26-27]). Then by the right-invariant version of [34,

Corollary 1.44], we have∣∣(D2jK)(y−1x)− P r−1
x,D2jK

(y−1)
∣∣ ≤ C|y|r sup

|z|≤br|y|
d(I)=r

|Y I(D2jK)(zx)|. (6.11)

Observe that for y ∈ suppϕ and |z| ≤ br|y| we have zx ∈ G\{0}. Thus, for all I with d(I) = r

and all z with |z| ≤ br|y|, by using (6.6) (with K replaced by D2jK) we have∣∣Y I(D2jK)(zx)
∣∣ = 2jr

∣∣(Y IK)(2j(zx))
∣∣ . 2j(κ+r)|2j(zx)|−κ−r . |zx|−κ−r

Inserting this into (6.11) we obtain∣∣(D2jK)(y−1x)− P r−1
x,D2jK

(y−1)| ≤ C|y|r sup
|z|≤br|y|

|zx|−κ−r. (6.12)

Notice that for |x| ≥ 1
2γ , y ∈ suppϕ and |z| ≤ br−|I||y|, we have |zx| ∼ |x|. Thus, by using the

vanishing moments of ϕ and (6.12), we have

∣∣ϕ ∗ (D2jK)(x)
∣∣ = ∣∣∣∣∫ ϕ(y)(D2jK)(y−1x)dy

∣∣∣∣
≤
∫

|ϕ(y)|
∣∣(D2jK)(y−1x)− P r−1

x,D2jK
(y−1)

∣∣dy
. sup

|z|≤br|y|

∫
|zx|−κ−r|y|r|ϕ(y)|dy

. |x|−κ−r
∫

|y|r|ϕ(y)|dy

. |x|−κ−r.

(6.13)

Combining (6.10) and (6.13), we get (6.8).

The estimate (6.9) follows from (6.8), the fact (D2jK)∗ϕ(x) = ϕ̃∗ (D2j K̃)(x−1), and Y IK̃(x) =

(−1)|I|(XIK)(x−1) (cf. [34, p. 44]).
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It is straightforward to verify that both ϕ ∗ (D2jK) and (D2jK) ∗ ϕ have vanishing moments of

the same order as ϕ. The proof of Lemma 6.12 is therefore completed.

Lemma 6.13. Suppose Φ ∈ S(R≥0), Φ vanishes near the origin, and

∞∑
j=−∞

Φ(2−2jλ) = 1 for all λ ∈ R>0. (6.14)

Then for any ψ ∈ S∞(G),

ψ =
∞∑

j=−∞
Φ(2−2j∆X)ψ,

where the sum converges in S∞(G).

Proof. We first show that S(G) ∗ S∞(G) ⊂ S∞(G). For any P ∈ P and f ∈ S∞(G), by the

unimodularity of G we have ⟨P, f̃⟩ = ⟨P̃ , f⟩ = 0. Hence for any g ∈ S(G) and f ∈ S∞(G), we

have for all polynomials P on G that

⟨g ∗ f, P ⟩ = ⟨g, P ∗ f̃⟩ = ⟨g, 0⟩ = 0.

This shows that g ∗ f ∈ S∞(G).

We next show that the sum

∞∑
j=−∞

Φ(2−2j∆X)ϕ converges in the topology of S∞(G). To do this,

let ϕ be the convolution kernel of Φ(∆X) and let ϕj = D2jϕ, j ∈ Z. For any given nonnegative

integer N , we let N ′ be another integer such that N ′ > N + 2mN . Since both ψ and ϕ are

Schwartz functions with all moments vanishing, it follows by Lemma 6.5 that

∥Φ(2−2j∆X)ψ∥(N) = ∥ψ ∗ ϕj∥(N)

= sup
|I|≤N

(1 + |x|)κ+N+d(I)
∣∣XI

[
ψ ∗ (D2jϕ)

]
(x)
∣∣

= sup
|I|≤N

(1 + |x|)κ+N+d(I)2jd(I)
∣∣ψ ∗

[
D2j (X

Iϕ)
]
(x)
∣∣

. sup
|I|≤N

(1 + |x|)κ+N+d(I)2jd(I)∥ψ∥(N ′)∥XIϕ∥(N ′)2
−|j|N ′ 2(j∧0)κ

(1 + 2(j∧0)|x|)κ+N ′

≤ (1 + |x|)κ+N+mN2|j|mN∥ψ∥(N ′)∥ϕ∥(N ′+N)2
−|j|N ′ 2(j∧0)κ

(1 + 2(j∧0)|x|)κ+N+mN

≤ (1 + |x|)κ+N+mN2|j|mN∥ψ∥(N ′)∥ϕ∥(N ′+N)2
−|j|N ′

2|j|(N+mN) 1

(1 + |x|)κ+N+mN

= ∥ψ∥(N ′)∥ϕ∥(N ′+N)2
−|j|(N ′−N−2mN).

This implies that
∞∑

j=−∞
Φ(2−2j∆X)ϕ converges the topology of S∞(G). Hence (since S∞(G) is

complete) there exists η ∈ S∞(G) such that

∞∑
j=−∞

Φ(2−2j∆X)ϕ converges in the topology of

S∞(G) to η. On the other hand, by (6.14), the spectral theorem (cf. [66, Theorem VII.2]) and

Lemma 5.4, we have

ψ =

∞∑
j=−∞

Φ(2−2j∆X)ψ,

where the sum converges in L2 norm. Therefore, η = ψ, which completes the proof.
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The proof of Theorem 6.11 also relies on the existence of smooth functions with compact support

and having vanishing moments of arbitrarily high order.

Lemma 6.14. Given any nonnegative integer M and any positive number δ, there exists a

function Φ ∈ S(R≥0) satisfying the following conditions:

(i) |Ψ(λ)| ≥ c > 0 on {2−3/2ε ≤ λ ≤ 23/2ε} for some ε > 0.

(ii) The function λ 7→ λ−MΨ(λ) belongs to S(R≥0).

(iii) The convolution kernel of Φ(∆X), denoted by ϕ, is supported in the ball {|x| < δ}.

Proof. From the appendix of [38] we see that there exists Θ ∈ S(R≥0) such that Θ(0) = 1

and Θ has compact support. Now let us define Φ(λ) = (t−2λ)MΘ(t−2λ), λ ∈ R≥0, where t

is a positive number. Clearly Φ satisfies (ii). Since Θ(0) = 1, (i) is also satisfied. Let ϕ and

θ be the convolution kernels of Φ(∆X) and Θ(∆X), respectively. Then ϕ(x) = Dt(∆
M
X θ)(x) =

tκ(∆k
Xθ)(tx). Hence, if we take t sufficiently large, then (iii) is true.

We are now ready to give the

Proof of Theorem 6.11. Choose a function Φ ∈ S(R≥0) which satisfies conditions (i)–(iii) in

Lemma 6.14 with L = r and δ = 1/(100γbr). The condition (i) guarantees the existence of a

function Ψ ∈ S(R≥0) such that

suppΨ ⊂ [2−2ε, 22ε], |Ψ(λ)| ≥ c > 0 on [2−3/2ε, 23/2ε],

and
∞∑

j=−∞
Ψ(2−2jλ)Φ(2−2jλ) = 1, ∀λ ∈ R>0. (6.15)

Since (by Lemma 6.6) S∞(G) is a dense subspace of Ḃsp,q(G) and of Ḟ sp,q(G), we only need to

show that for all f ∈ S∞(G),

∥f ∗K∥Ḃs
p,q(G) ≤ C∥f∥Ḃs

p,q(G) and ∥f ∗K∥Ḟ s
p,q(G) ≤ C∥f∥Ḟ s

p,q(G). (6.16)

Let f ∈ S∞(G) ⊂ L2(G). By (6.15), the spectral theorem (cf. [66, Theorem VII.2]) and Lemma

6.13, we have

f =

∞∑
j=−∞

Φ(2−2j∆X)Ψ(2−2j∆X)f,

where the sum converges in the topology of S∞(G). If we denote by ϕ and ψ the convolution

kernels of Φ(∆X) and Ψ(∆X) respectively, then

f =

∞∑
j=−∞

f ∗ ψj ∗ ϕj ,

where the sum converges in the topology of S(G). This yields that

f ∗K =
∞∑

j=−∞
f ∗ ψj ∗ ϕj ∗K,
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where the sum converges in the topology of S ′(G). Hence for any ℓ ∈ Z we have the pointwise

representation

f ∗K ∗ ϕℓ(x) =
∞∑

j=−∞
f ∗ ψj ∗ ϕj ∗K ∗ ϕℓ(x), x ∈ G. (6.17)

To estimate |ϕj ∗K ∗ ϕℓ|, we write

ψj ∗K ∗ ψℓ = (D2jϕ) ∗K ∗ (D2ℓϕ)

=

{
D2j [ϕ ∗ (D2−jK)] ∗ (D2ℓϕ) if j ≥ ℓ,

(D2jϕ) ∗D2ℓ [(D2−ℓK) ∗ ϕ] if j < ℓ.

For j ≥ ℓ, we can use the size conditions and moment conditions on ψ(1) ∗ (D2−jK) (obtained

in Lemma 6.12) and the smooth conditions on ϕ, while for j > ℓ we can use the size conditions

and moment conditions on (D2−ℓK) ∗ ϕ and the smooth conditions on ϕ. Thus by Lemma 6.5

we conclude that

|ϕj ∗K ∗ ϕℓ(y)| .
{
2−(j−ℓ)(r−ε) 2ℓκ

(1+2ℓ|y|)κ+r if j ≥ ℓ

2−(ℓ−j)(r−ε) 2jκ

(1+2j |y|)κ+r if j < ℓ

= 2−|j−ℓ|(r−ε) 2(j∧ℓ)κ

(1 + 2j∧ℓ|y|)κ+r
,

where ε > 0 can be taken arbitrarily small. This and (6.17) yields that

|f ∗K ∗ ϕℓ(x)|

≤
∞∑

j=−∞

∫
|f ∗ ψj(z)||ϕj ∗K ∗ ϕℓ(z−1x)|dz

.
∞∑

j=−∞
2−|j−ℓ|(r−ε)

∫
2(j∧ℓ)κ|f ∗ ψj(z)|

(1 + 2j∧ℓ|z−1x|)κ+r
dz

.
∞∑

j=−∞
2−|j−ℓ|(r−ε) max{2(j−ℓ)a, 1}

[
sup
z∈G

|f ∗ ψj(z)|
(1 + 2j |z−1x|)a

] ∫
2(j∧ℓ)κ

(1 + 2j∧ℓ|z−1x|)κ+r−a
dz,

where for the last inequality we used that

(1 + 2j |z−1x|)a . max{2(j−ℓ)a, 1}(1 + 2j∧ℓ|z−1x|)a.

It follows that

2ℓs|f ∗K ∗ ϕℓ(x)|

.
∞∑

j=−∞
2−|j−ℓ|(r−ε) max{2(j−ℓ)a, 1}2(j−ℓ)s2js[Ψ(2−2j∆X)]

∗
af(x)

∫
2(j∧ℓ)κ

(1 + 2j∧ℓ|z−1x|)κ+r−a
dz

≤
∞∑

j=−∞
2−|j−ℓ|(r−ε−a−|s|)2js[Ψ(2−2j∆X)]

∗
af(x)

∫
2(j∧ℓ)κ

(1 + 2j∧ℓ|z−1x|)κ+r−a
dz.

By the hypothesis we can choose a and ε such that a > κ/min{p, q} and r − ε − a − |s| > 0.

Then it follows from Lemma 3.11 that( ∞∑
ℓ=−∞

2ℓsq
∥∥f ∗K ∗ ϕℓ

∥∥q
Lp(X)

)1/q

.
( ∞∑
ℓ=−∞

2ℓsq
∥∥[Ψ(2−2j∆X)]

∗
af
∥∥q
Lp(X)

)1/q

,
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∥∥∥∥∥∥
( ∞∑
ℓ=−∞

2ℓsq
∣∣f ∗K ∗ ϕℓ

∣∣q)1/q
∥∥∥∥∥∥
Lp(G)

.

∥∥∥∥∥∥∥
 ∞∑
j=−∞

2jsq
∣∣[Ψ(2−2j∆X)]

∗
af
∣∣q1/q

∥∥∥∥∥∥∥
Lp(G)

.

This together with Theorem 5.21 yields (6.16) and completes the proof of Theorem 6.11.

Corollary 6.15. Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞), and let k be a nonnegative integer. Then

for all f ∈ S ′
∞(G) ≡ S ′(G)/P, we have

∥f∥Ḃs
p,q(G) ∼

∑
d(I)=k

∥XIf∥Ḃs−k
p,q (G), (6.18)

∥f∥Ḟ s
p,q(G) ∼

∑
d(I)=k

∥XIf∥Ḟ s−k
p,q (G). (6.19)

Proof. We only show (6.19) since the proof of (6.18) is analogous. Note that by the Poincaré-

Birkhoff-Witt theorem (cf. [7, I.2.7]), the operators XI form a basis of the algebra of the

left-invariant differential operators on G. By this fact and the stratification of G, it suffices to

show that

∥f∥Ḟ s
p,q(G) ∼

ν∑
j=1

∥Xjf∥Ḟ s−1
p,q (G). (6.20)

To this end, we first note that when restricted to Schwartz functions, each Xj∆
−1/2
X is a con-

volution operator whose distribution kernel is homogeneous of degree −κ and coincides with a

smooth function in G\{0}. This follows from the fact that the operator ∆
−1/2
X is a convolution

operator whose distribution kernel is homogeneous of degree −κ+1 and coincides with a smooth

function in G\{0} (see [33, Proposition 3.17]). Hence, by Theorem 6.11, each Xj∆
−1/2
X extends

to a bounded operator on Ḃsp,q(G) and on Ḟ sp,q(G). From this and the lifting property (Theorem

5.19), we deduce that

∥Xjf∥Ḟ s−1
p,q (G) = ∥(Xj∆

−1/2
X )∆

1/2
X f∥Ḟα−1

p,q (G) . ∥∆1/2
X f∥Ḟ s−1

p,q (G) ∼ ∥f∥Ḟ s
p,q(G).

Hence
∑ν
j=1 ∥Xjf∥Ḟ s−1

p,q (G) . ∥f∥Ḟ s
p,q(G). To see the converse, we need to use [33, Lemma 4.12],

which asserts that there exist tempered distributions K1, · · · ,Kν which are homogeneous of

degree −κ+ 1 and coincide with smooth functions in G\{0} such that f =
∑ν
j=1(Xjf) ∗Kj for

all f ∈ S(G). By this result and Theorem 5.19, we have, at least for f of the form f = Φ(∆X)g

where Φ ∈ S(R≥0) vanishes near the origin and g is bounded on G with compact support (the

space of such functions f is dense in Ḟ sp,q(G)),

∥f∥Ḟ s
p,q(G) =

∥∥∆X(∆
−1/2
X f)

∥∥
Ḟ s−1

p,q (G)
=
∥∥∆X(f ∗R1)

∥∥
Ḟ s−1

p,q (G)

=

∥∥∥∥∥∥∆X

 ν∑
j=1

(Xjf) ∗Kj ∗R1

∥∥∥∥∥∥
Ḟ s−1

p,q (G)

=

∥∥∥∥∥∥
ν∑
j=1

(Xjf) ∗∆X(Kj ∗R1)

∥∥∥∥∥∥
Ḟ s−1

p,q (G)

,
(6.21)

where R1 is the convolution kernel of the operator ∆
−1/2
X . As is shown in [33, p. 190], each

∆X(Kj ∗R1) is a distribution homogeneous of degree −κ and coinciding with a smooth function

away from 0. Hence it follows by Theorem 6.11 that∥∥(Xjf) ∗∆X(Kj ∗R1)
∥∥
Ḟ s−1

p,q (G)
. ∥Xjf∥Ḟ s−1

p,q (G).

Inserting this into (6.21), we obtain ∥f∥Ḟ s
p,q(G) .

∑ν
j=1 ∥Xjf∥Ḟ s−1

p,q (G). Thus (6.20) is established

and the proof is completed.



Chapter 7

Maximal characterization of

F
0,∆
p,2 (X) on Riemannian manifolds

7.1 The maximal Hardy spaces Hp
max,L (X)

Throughout this section, we assume that the metric measure space (X, ρ, µ) satisfies the doubling

condition (2.1), the reverse doubling condition (2.4), and the non-collapsing condition (2.6), and

assume that L is a non-negative self-adjoint operator on L2(X) whose heat kernel pt(x, y)

satisfies the Gaussian upper bound (2.8) and the Hölder continuity (2.9) for t ∈ (0,∞).

The purpose of this section is to establish the maximal Hardy spaces associated to L . We first

introduce the radial, non-tangential and grand maximal functions associated to L :

Definition 7.1. For f ∈ S ′
L (X), Φ ∈ S(R≥0), N ∈ N0, and x ∈ X, define

M0
Φ,L f(x) := sup

t>0
|Φ(t2L )f(x)|, MΦ,L f(x) := sup

t>0
sup

ρ(y,x)<t

|Φ(t2L )f(y)|,

and

MN,L f(x) := sup
∥Φ∥(N)≤1

MΦ,L f(x),

where ∥Φ∥(N) is defined by (2.10).

We now introduce Hardy spaces associated to L by means of grand maximal functions:

Definition 7.2. For p ∈ (0, 1], we define the Hardy space Hp
L (X) associated to L as

Hp
max,L (X) := {f ∈ S ′

L (X) :MNp,L f ∈ Lp(X)}

with the quasi-norm given by

∥f∥Hp
max,L (X) := ∥MNp,L f∥Lp(X),

where

Np := ⌊2d/p⌋+ ⌊3d/2⌋+ 4. (7.1)

The following theorem, which says that Hp
max,L (X) are equivalently characterized by radial and

non-tangential maximal functions, is the main result of the present section.

99
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Theorem 7.3. Suppose Φ ∈ S(R≥0), Φ(0) ̸= 0, and 0 < p ≤ 1. Then for any f ∈ S ′
L (X) the

following conditions are equivalent:

(i) f ∈ Hp
max,L (X).

(ii) MΦ,L f ∈ Lp(X).

(iii) M0
Φ,L f ∈ Lp(X).

Moreover, the following quasi-norm equivalence is valid:

∥MNp,L f∥Lp(X) ∼ ∥MΦ,L f∥Lp(X) ∼ ∥M0
Φ,L f∥Lp(X).

For the proof of Theorem 7.3 we need a sequence of lemmas.

Lemma 7.4. Suppose Φ ∈ S(R≥0) and Φ(0) = 1. Then for any Ψ ∈ S(R≥0) and N ∈ N0, there

exist a family {Θ(s)}0≤s≤1 of functions in S(R≥0) and a constant C > 0 such that:

(i) Ψ(λ) =

∫ 1

0

Θ(s)(λ)Φ(s
2λ)ds for all λ ∈ R≥0.

(ii)

∫
X

(
1 +

ρ(x, y)

t

)N ∣∣KΘ(s)(t2L )(x, y)
∣∣dµ(y) ≤ CsN∥Ψ∥(2N+⌊3d/2⌋+3) for all t > 0 and x ∈ X.

Proof. We follow [34, Theorem 4.9]. Fix N ∈ N0. Let {Ω(s)}0≤s≤1 be the unique family of

functions in S(R≥0) such that

∂N+1
s

[
Φ(s2λ)N+2

]
= Φ(s2λ)Ω(s)(λ), ∀s ∈ [0, 1], ∀λ ∈ R≥0. (7.2)

Notice that Ω(s) has the expression

Ω(s)(λ) =
∑

j1+···+jN+1=N+1

Cj1,··· ,jk∂
j1
s

[
Φ(s2λ)

]
· · · ∂jks

[
Φ(s2λ)

]
, (7.3)

where each Cj1,··· ,jk is a non-negative integer. Choose Ξ ∈ C∞([0, 1]) such that

Ξ(s) = sN/N ! for all s ∈ [0, 1/2],

0 ≤ Ξ(s) ≤ sN/N ! for all s ∈ [1/2, 1],

∂jsΞ(1) = 0 for all j ∈ {0, 1, · · · , N + 1}.

Then we set

Θ(s)(λ) = (−1)N+1Ξ(s)Ω(s)(λ)Ψ(λ)−
[
∂N+1
s Ξ(s)

]
Φ(s2λ)N+1Ψ(λ), λ ∈ R+. (7.4)

Clearly, Θ(s) ∈ S(R≥0) for every s ∈ [0, 1]. We claim that (i) and (ii) hold for this choice of Θ(s).

First we verify (i). Consider the integral

I(λ) = (−1)N+1

∫ 1

0

Ξ(s)
{
∂N+1
s

[
Φ(s2λ)N+2

]}
Ψ(λ)ds, λ ∈ R+. (7.5)

Integrating by parts N + 1 times and noting that the boundary terms in the first N integration

by parts vanish, we obtain

I(λ) = −
[
∂Ns Ξ(s)

]
Φ(s2λ)N+2Ψ(λ)

∣∣1
s=0

+

∫ 1

0

[
∂N+1
s Ξ(s)

]
Φ(s2λ)N+2Ψ(λ)ds



Chapter 7 Maximal characterization of F 0,∆
p,2 (X) on Riemannian manifolds 101

= Ψ(λ) +

∫ 1

0

[
∂N+1
s Ξ(s)

]
Φ(s2λ)N+2Ψ(λ)ds,

where we used that Φ(0) = 1. Hence by (7.5), (7.2) and (7.4) we have

Ψ(λ) = I(λ)−
∫ 1

0

[
∂N+1
s Ξ(s)

]
Φ(s2λ)N+2Ψ(λ)ds =

∫ 1

0

Θ(s)(λ)Φ(s
2λ)ds.

Next we verify (ii). Since Ξ(s) equals a constant for s ∈ [0, 1/2], we have |∂N+1
s Ξ(s)| ≤ CsN for

all s ∈ [0, 1]. From this fact, (7.3) and (7.4), it is not difficult to see that for every m ∈ N0,

∥Θ(s)∥(m) ≤ CsN∥Ψ∥(m+N+1), (7.6)

where the constant C depends on Φ and m, but is independent of s ∈ [0, 1] and Ψ. Take

m = N + ⌊3d/2⌋+ 2 (≥ d+ 1). Then it follows from (2.14), (7.6) and (3.9) that∫
X

(
1 +

ρ(x, y)

t

)N ∣∣KΘ(s)(t2L )(x, y)
∣∣dµ(y)

≤ C∥Θ(s)∥(m)

∫
X

(
1 +

ρ(x, y)

t

)N
Dt,m(x, y)dµ(y)

= C∥Θ(s)∥(m)

∫
X

Dt,,m−N (x, y)dµ(y)

≤ CsN∥Ψ∥(m+N+1) = CsN∥Ψ∥(2N+⌊3d/2⌋+3).

This verifies (ii) and completes the proof.

Lemma 7.5. Suppose Φ ∈ S(R≥0) and Φ(0) = 1. Then for any N ∈ N0 there exists a constant

C > 0 such that for all f ∈ S ′
L (X) and x ∈ X,

M2N+⌊3d/2⌋+3,L f(x) ≤ CTNΦ,L f(x), (7.7)

where

TNΦ,L f(x) = sup
y∈X,t>0

|Φ(t2L )f(y)|
(
1 +

ρ(x, y)

t

)−N

. (7.8)

Proof. For any given Ψ ∈ S(R≥0), write Ψ(·) =
∫ 1

0
Θ(s)(·)Φ(s2·)ds as in Lemma 7.4. Then for

all f ∈ S ′
L (X), t ∈ (0,∞), and y ∈ X, we have

Ψ(t2L )f(y) =

∫ 1

0

Θ(s)(t
2L )Φ(s2t2L )f(y)ds

=

∫ 1

0

∫
X

Φ(s2t2L )f(z)KΘ(s)(t2L )(y, z)dµ(z)ds.

It follows that

|Ψ(t2L )f(y)| ≤
∫ 1

0

∫
X

|Φ(s2t2L )f(z)||KΘ(s)(t2L )(y, z)|dµ(z)ds

≤ TNΦ,L f(x)

∫ 1

0

∫
X

(
1 +

ρ(x, z)

st

)N
|KΘ(s)(t2L )(y, z)|dµ(z)ds

≤ TNΦ,L f(x)

∫ 1

0

∫
X

s−N
(
1 +

ρ(x, y) + ρ(y, z)

t

)N ∣∣KΘ(s)(t2L )(y, z)
∣∣dµ(z)ds.
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Note that if y ∈ B(x, t) then 1+ ρ(x,y)+ρ(y,z)
t < 2

(
1+ ρ(y,z)

t

)
. Hence by Lemma 7.4 (ii), we have

MΨ,L f(x) ≤ 2NTNΦ,L f(x)

∫ 1

0

∫
X

s−N
(
1 +

ρ(y, z)

t

)N
|KΘ(s)(t2L )(y, z)|dµ(z)ds

≤ C∥Ψ∥(2N+⌊3d/2⌋+3)T
N
Φ,L f(x),

which yields the desired inequality (7.7).

Lemma 7.6. For any Φ ∈ S(R≥0), p ∈ (0, 1], and N ∈ N0 with N > d/p, there exists a constant

C > 1 such that for all f ∈ S ′
L (X),

C−1∥MΦ,L f∥Lp(X) ≤ ∥TNΦ,L f∥Lp(X) ≤ C∥MΦ,L f∥Lp(X),

where TNΦ,L f is defined by (7.8).

Proof. Obviously, MΦ,L f(x) ≤ 2NTNΦ,L f(x) for every x ∈ X, so the first inequality holds as

long as C > 2N . To see the second inequality, set q = d/N , so that q < p. Observe that

|Φ(t2L )f(y)| ≤MΦ,L f(z) whenever z ∈ B(y, t).

From this and (2.2) it follows that

|Φ(t2L )f(y)|q ≤ 1

V (y, t)

∫
B(y,t)

[
MΦ,L f(z)

]q
dµ(z)

≤ V (x, t+ ρ(x, y))

V (y, t)

1

V (x, t+ d(x, y))

∫
B(x,t+ρ(x,y))

[
MΦ,L f(z)

]q
dµ(z)

.
(
1 +

ρ(x, y)

t

)n
MHL

([
MΦ,L f(·)

]q)
(x),

where MHL is the Hardy-Littlewood maximal operator. Since N = d/q this says that for all

x ∈ X [
TNΦ,L f(x)

]q .MHL

([
MΦ,L f(·)

]q)
(x).

Then, since p/q > 1, the Hardy-Littlewood maximal theorem yields∫
X

[
TNΦ,L f(x)

]p
dµ(x) .

∫
X

{
MHL

([
MΦ,L f(·)

]q)
(x)
}p/q

dµ(x) .
∫
X

[
MΦ,L f(x)

]p
dµ(x).

This completes the proof.

For our purpose we introduce two auxiliary maximal type functions: for f ∈ S ′
L (X), Φ ∈ S(R≥0),

K ∈ N0, N ∈ N0 and ε ∈ (0, 1], we set

MεK
Φ,L f(x) = sup

0<t<1/ε

sup
y∈B(x,t)

|Φ(t2L )f(y)|
(

t

t+ ε

)K
(1 + ερ(y, x0))

−K ,

T εNKΦ,L f(x) = sup
0<t<1/ε

sup
y∈X

|Φ(t2L )f(y)|
(
1 +

ρ(x, y)

t

)−N (
t

t+ ε

)K
(1 + ερ(y, x0))

−K .

Lemma 7.7. For any Φ ∈ S(R≥0), p ∈ (0, 1], and N ∈ N0 with N > d/p, there exists C > 0

such that for all f ∈ S ′
L (X), ε ∈ (0, 1] and K ∈ N0,

∥T εNKΦ,L f∥Lp(X) ≤ C∥MεK
Φ,L f∥Lp(X).

Proof. The proof is the same as that of Lemma 7.6 and is thus skipped.
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Lemma 7.8. For any Φ ∈ SL (X), p ∈ (0, 1], and f ∈ S ′
L (X), there exists K ∈ N0 such that

MεK
Φ,L f ∈ Lp(X) ∩ L∞(X) for 0 < ε ≤ 1.

Proof. By the definition of S ′
L (X) there exist k0,m0 ∈ N0 such that

|Φ(t2L )f(y)| =
∣∣(f,KΦ(t2L )(y, ·)

)∣∣ ≤ CP∗
k0,m0

(
KΦ(t2L )(y, ·)

)
. (7.9)

Let M ∈ N0 such that M ≥ max{m0 + d/2, d+ 1}. Then by (2.16) and (2.3), we have

P∗
k0,m0

(
KΦ(t2L )(y, ·)

)
=

∑
0≤k≤k0
0≤m≤m0

sup
z∈X

(1 + ρ(z, x0))
m
∣∣L k

[
KΦ(t2L )(y, ·)

]
(z)
∣∣

≤ C
∑

0≤k≤k0

sup
z∈X

(1 + ρ(z, x0))
m0t−2k∥Φ∥(k+M)Dt,M (y, z)

≤ C
∑

0≤k≤k0

sup
z∈X

t−2k(1 + ρ(z, x0))
m0

V (z, t)

(
1 +

ρ(y, z)

t

)−M+d/2

≤ C
∑

0≤k≤k0

sup
z∈X

t−2k(1 + ρ(z, x0))
m0

V (z, t)

(
1 +

ρ(y, z)

t

)−m0

.

(7.10)

Note that if t ∈ (0, 1], then by (2.7) and the triangle inequality for the distance ρ we have

∑
0≤k≤k0

sup
z∈X

t−2k(1 + ρ(z, x0))
m0

V (z, t)

(
1 +

ρ(y, z)

t

)−m0

≤ C sup
z∈X

t−(2k0+d)

(
1 +

ρ(z, x0)

t

)m0
(
1 +

ρ(y, z)

t

)−m0

≤ Ct−(2k0+d)

(
1 +

ρ(y, x0)

t

)m0

≤ Ct−(2k0+d+m0)(1 + ρ(y, x0))
m0 .

(7.11)

If t ∈ (1, 1/ε], then from (2.5) and the triangle inequality for the distance d it follows that

∑
0≤k≤k0

sup
z∈X

t−2k(1 + ρ(z, x0))
m0

V (z, t)

(
1 +

ρ(y, z)

t

)−m0

≤ Ct−ς(1 + ρ(z, x0))
m0

(
1 +

ρ(y, z)

t

)−m0

≤ Ctm0−ς
(
1 +

ρ(z, x0)

t

)m0
(
1 +

ρ(y, z)

t

)−m0

≤ Ctm0−ς
(
1 +

ρ(y, x0)

t

)m0

≤ Ctm0−ς(1 + ρ(y, x0))
m0 .

(7.12)

Also note that if t ∈ (0, 1] and K ≥ 2k0 + d+m0 then(
t

t+ ε

)K
t−(2k0+d+m0) ≤

(
1

t+ ε

)2k0+d+m0

≤ ε−(2k0+d+m0), (7.13)
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while if t ∈ (1, 1/ε) then for any K ∈ N0(
t

t+ ε

)K
tm0−ς ≤ t|m0−ς| ≤ ε−|m0−ς|, (7.14)

We now choose K ∈ N0 such that K ≥ max{2k0 + d+m0, m0 + d/p}. Then from (7.9)–(7.14)

it follows that for any fixed ε ∈ (0, 1] and for all t ∈ (0, 1/ε]

|Φ(t2L )f(y)|
(

t

t+ ε

)K
(1 + ερ(y, x0))

−K ≤ |Φ(t2L )f(y)|
(

t

t+ ε

)K
ε−K(1 + ρ(y, x0))

−K

≤ C(1 + ρ(y, x0))
−K+m0 ,

where the constant C depends on ε. Hence

MεK
Φ,L f(x) ≤ C sup

0<t<1/ε

sup
y∈B(x,t)

(1 + ρ(y, x0))
−K+m0

≤ C sup
0<t<1/ε

sup
y∈B(x,t)

(1 + ρ(x, x0))
−K+m0(1 + ρ(x, y))K−m0

≤ C(1 + ρ(x, x0))
−(K−m0),

where the constant C depends on ε. Since p(K −m0) > d, it follows by (3.8) that MεK
L ,Φf ∈

Lp(X) ∩ L∞(X).

We also need the following auxiliary function: if f ∈ S ′
L (X), Φ ∈ S(R≥0), K ∈ N0, N ∈ N0,

and 0 < ε ≤ 1, we set

M̃εK
Φ,L f(x) = sup

0<t<1/ε

sup
y∈B(x,t)

(
sup

z∈B(y,t)

tα|Φ(t2L )f(z)− Φ(t2L )f(y)|
ρ(z, y)α

)(
t

t+ ε

)K
(1+ερ(y, x0))

−K ,

where α > 0 is the same constant as in (2.9).

Lemma 7.9. Suppose Φ ∈ S(R≥0) with Φ(0) = 1. Then for any N ∈ N0 and K ∈ N0 there

exists C > 0 such that for all f ∈ S ′
L (X), ε ∈ (0, 1], and x ∈ X,

M̃εK
Φ,L f(x) ≤ CT εNKΦ,L f(x).

Proof. Fix K,N ∈ N0. By Lemma 7.4 and its proof, we can write

Φ(·) =
∫ 1

0

Θ(s)(·)Φ(s2·)fds, (7.15)

where {Θ(s)}0≤s≤1 is a family of functions in S(R≥0) with the following property: for anym ∈ N0

there exists a constant C (depending on Φ,m,N and K) such that

∥Θ(s)∥(m) ≤ CsN+K for all s ∈ [0, 1]. (7.16)

From (7.15) it follows that for all f ∈ S ′
L (X) and t ∈ (0,∞)

Φ(t2L )f =

∫ 1

0

Θ(s)(t
2L )Φ(s2t2L )fds, (7.17)

which holds pointwisely and also in the sense of distributions in S ′
L (X). We fixm ∈ N0 such that

m ≥ 3d/2 +N +K + 1, and fix arbitrary x ∈ X. Let t ∈ (0, 1/ε), y ∈ B(x, t), and z ∈ B(y, t).
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By (7.16) and (2.15), we have

|KΘ(s)(t2L )(z, w)−KΘ(s)(t2L )(y, w)| ≤ CsN+K

(
ρ(z, y)

t

)α
Dt,m(y, w). (7.18)

By this kernel estimate, (7.17), and (3.9), we can estimate as follows:

tα|Φ(t2L )f(z)− Φ(t2L )f(y)|
ρ(z, y)α

=
tα

ρ(z, y)α

∣∣∣∣∫
X

Φ(s2t2L )f(w)KΘ(s)(t2L )(z, w)dµ(w)−
∫
X

Φ(s2t2L )f(w)KΘ(s)(t2L )(y, w)dµ(w)

∣∣∣∣
≤
∫ 1

0

∫
X

tα
∣∣Φ(s2t2L )f(w)

∣∣ ∣∣∣KΘ(s)(t2L )(z, w)−KΘ(s)(t2L )(y, w)
∣∣∣

ρ(z, y)α
dµ(w)ds

.
∫ 1

0

∫
X

∣∣Φ(s2t2L )f(w)
∣∣ sN+KDt,m(y, w)dµ(w)ds

. T εNKΦ,L f(x)

∫ 1

0

∫
X

sN+K

(
1 +

ρ(x,w)

st

)N (
st

st+ ε

)−K

(1 + ερ(w, x0))
KDt,m(y, w)dµ(w)ds

. T εNKΦ,L f(x)

(
t

t+ ε

)−K ∫
X

(
1 +

ρ(x,w)

t

)N
(1 + ερ(w, x0))

KDt,m(y, w)dµ(w)

. T εNKΦ,L f(x)

(
t

t+ ε

)−K ∫
X

(
1 +

ρ(x, y)

t

)N (
1 +

ρ(y, w)

t

)N
(1 + ερ(w, x0))

KDt,m(y, w)dµ(w)

. T εNKΦ,L f(x)

(
t

t+ ε

)−K ∫
X

(1 + ερ(y, x0))
K(1 + ερ(y, w))KDt,m−N (y, w)dµ(w)

. T εNKΦ,L f(x)

(
t

t+ ε

)−K

(1 + ερ(y, x0))
K

∫
X

Dt,m−N−K(y, w)dµ(w)

. T εNKΦ,L f(x)

(
t

t+ ε

)−K

(1 + ερ(y, x0))
K ,

where for the last inequality we used (3.9) and that m−N −K > 3d/2. From this the desired

inequality follows immediately.

Now we are ready to give the proof the the main theorem.

Proof of Theorem 7.3. Clearly, (i) ⇒ (ii) ⇒ (iii) and

∥M0
Φ,L f∥Lp(X) ≤ ∥MΦ,L f∥Lp(X) ≤ ∥Φ∥(Np)∥MNp,L f∥Lp(X)

for all f ∈ S ′
L (X). In addition, Lemma 7.5 and Lemma 7.6 yield that (ii)⇒ (i) and ∥MNp,L f∥Lp(X) .

∥MΦ,L f∥Lp(X). Hence, it remains to show that (iii)⇒ (ii) and ∥MΦ,L f∥Lp(X) . ∥M0
Φ,L f∥Lp(X).

Suppose now f ∈ S ′
L (X) such that M0

Φ,L f ∈ Lp(X). By Lemma 7.8, we can choose K so large

that MεK
Φ,L f ∈ Lp(X) ∩ L∞(X) for 0 < ε ≤ 1. Then by Lemma 7.7 and Lemma 7.9, we have

M̃εK
Φ,L f ∈ Lp(X) and ∥M̃εK

Φ,L f∥Lp(X) ≤ C1∥MεK
Φ,L f∥Lp(X), where C1 is independent of ε ∈ (0, 1].

For given ε ∈ (0, 1] we set

Ωε = {x ∈ X : M̃εK
Φ,L f(x) ≤ C2M

εK
Φ,L f(x)},

where C2 = 21/pC1. Note that∫
X

[
MεK

Φ,L f(x)
]p
dµ(x) ≤ 2

∫
Ωε

[
MεK

Φ,L f(x)
]p
dµ(x). (7.19)
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Indeed, this follows from∫
Ωc

ε

[
MεK

Φ,L f(x)
]p
dµ(x) ≤ C−p

2

∫
Ωc

ε

[
M̃εK

Φ,L f(x)
]p
dµ(x) ≤ (C1/C2)

p

∫
X

[
MεK

Φ,L f(x)
]p
dµ(x)

and (C1/C2)
p = 1/2.

We claim that for 0 < r < p there exists C3 > 0, independent of ε, such that

MεK
Φ,L f(x) ≤ C3

{
MHL

([
M0

Φ,L f(·)
]r)

(x)
}1/r

for all x ∈ Ωε. (7.20)

Once this claim is established, the required inequality ∥MΦ,L f∥Lp(X) . ∥M0
Φ,L f∥Lp(X) will

follow from the Hardy-Littlewood maximal theorem and the monotone convergence theorem

(see, for instance, [75, Chapter 3] and [34, Chapter 4] for details).

Let us now prove the claim. Fix any x ∈ Ωε. By the definition of MεK
Φ,L f(x), there exist y ∈ X

and t > 0 such that ρ(y, x) < t < 1/ε and

|Φ(t2L )f(y)|
(

t

t+ ε

)K
(1 + ερ(y, x0))

−K ≥ 1

2
MεK

Φ,L f(x). (7.21)

We fix such y and t. Then by the definitions of M̃εK
Φ,L f and Ωε, we have

sup
z∈B(y,t)

tα|Φ(t2L )f(z)− Φ(t2L )f(y)|
ρ(z, y)α

≤
(

t

t+ ε

)−K

(1 + ερ(y, x0))
KM̃εK

L ,Φf(x)

≤ C2

(
t

t+ ε

)−K

(1 + ερ(y, x0))
KMεK

Φ,L f(x)

≤ C3|Φ(t2L )f(y)|,

(7.22)

where C3 = 2C2. Let C4 ≥ max(1, (2C3)
1/α). Then we note that

|Φ(t2L )f(z)| ≥ 1

2
|Φ(t2L )f(y)| for all z ∈ B(y, t/C4). (7.23)

Indeed, since d(z, y) < t/C4 < t, it follows from (7.22) that

|Φ(t2L )f(z)− Φ(t2L )f(y)| ≤ C3
ρ(z, y)α

tα
|Φ(t2L )f(y)|

≤ C3C
−α
4 |Φ(t2L )f(y)| ≤ 1

2
|Φ(t2L )f(y)|,

which yields (7.23). Now (7.23) together with (7.21) gives that

|Φ(t2L )f(z)| ≥ 1

4
MεK

Φ,L f(x) for all z ∈ B(y, t/C4).

Also, since C4 ≥ 1 and ρ(y, x) < t, we have B(y, t/C4) ⊂ B(x, 2t). Therefore,

MHL

([
M0

L ,Φf(·)
]r)

(x) ≥ 1

V (x, 2t)

∫
B(x,2t)

[
M0

Φ,L f(z)
]r
dµ(z)

≥ 1

V (x, 2t)

∫
B(x,2t)

|Φ(t2L )f(z)|rdµ(z)

≥ V (y, t/C4)

V (x, 2t)

1

V (y, t/C4)

∫
B(y,t/C4)

|Φ(t2L )f(z)|rdµ(z)
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&
[
MεK

Φ,L f(x)
]r
.

This establishes the claim and finishes the proof of Theorem 7.3.

7.2 The identification Ḟ 0,∆
p,2 (X) = Hp

max,∆(X) on Riemannian

manifolds

In this section, we consider the particular case that X is a Riemannian manifold. To be more

precise, let X be a complete Riemannian manifold with C∞-smooth Riemannian metric gjk.

Let d be the geodesic distance, µ the Riemannian measure, and ∇ the Riemannian gradient on

X. Denote by | · | the length in the tangent space. Let ∆ be the Laplace-Beltrami operator,

that is the positive self-adjoint operator on L2(X, dµ) defined by the formal integration by parts

⟨∆f, f⟩ = ∥|∇f |∥L2(X,dµ). Denote by pt(x, y) the heat kernel of X.

We assume that the Riemannian manifold X satisfies the doubling condition (2.1), the reverse

doubling condition (2.4), and the non-collapsing condition (2.6). Furthermore, we assume that

pt(x, y) satisfies the Gaussian upper bound (2.8) and the Hölder continuity (2.9). In addition, as-

sume that µ(X) = ∞. It is well-known complete, non-compact, connected Riemannian manifolds

with non-negative Ricci curvature satisfy all of these assumptions.

The purpose of this subsection is to prove the following result:

Theorem 7.10. Let p ∈ (0, 1]. Then Ḟ 0,∆
p,2 (X) = Hp

max,∆(X) with equivalent quasi-norms.

To prove Theorem 7.10 we need some preparation. Let D(X) and D′(X), respectively, denote the

space of complex-valued smooth functions with compact support and the space of distributions,

with the usual local convex topologies (cf. Schwartz [72]).

Lemma 7.11. (i) D(X) ⊂ S∆(X) and the inclusion map is continuous.

(ii) S ′
∆(X) ⊂ D′(X) and the inclusion map is continuous.

(iii) The domain D(∆) of ∆ consists of all functions f in L2(X, dµ) such that the distribution

derivative ∆f in the sense of D′(X) can be identified with a function in L2(X, dµ).

Proof. (i) is obvious, and (ii) follows from (i) by duality. For the proof of (iii), we refer the

reader to [77, Lemma 2.1].

Lemma 7.12. Let f ∈ S ′
∆(X). Set

u(x, t) := e−t
2∆f(x) = ⟨f,Ke−t2∆(x, ·)⟩, x ∈ X, t ∈ (0,∞).

Then F (·, t) ∈ C∞(X) with t fixed.

Proof. We fix t > 0. For any integer ℓ ≥ 2, let ∆ℓu(·, t) denote the distribution derivative of

u(·, t) in the sense of S ′
∆(X) (and hence also in the sense of D′(X), by Lemma 7.11 (ii)). Then

∆ℓu(·, t) coincides with the function

gℓ(x) := ⟨f,K∆ℓe−t2∆(x, ·)⟩ = t−2ℓ⟨f,KΦ(t2∆)(x, ·)⟩, x ∈ X, (7.24)

where Φ is a function in S(R≥0) defined by Φ(λ) = λℓe−λ. By using (2.15) it is not hard to show

that gℓ is continuous on X. In particular, gℓ ∈ L2
loc(X, dµ). Hence it follows from the interior
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regular theorem (cf. [61]) that gℓ−1 belongs to the local Sobolev space H2
loc(X). Applying the

same theorem repeatedly, we obtain that F (·, t) ∈ H2ℓ
loc(X). Since ℓ can be taken arbitrarily

large, we have F (·, t) ∈ H∞
loc(X) ⊂ C∞(X).

Now we are ready to give the

Proof of Theorem 7.10. First we show that Ḟ 0,∆
p,2 (X) ⊂ Hp

max,∆(X). To do this, let Φ0(λ) = e−λ,

λ ∈ R≥0. Clearly, Φ0 ∈ S(R≥0) and Φ0(0) ̸= 0. Hence by Theorem 7.3 we know that Hp
max,∆(X)

is the space of all f ∈ S ′
∆(X) such that ∥MΦ0,L f∥Lp(X,dµ) < ∞. Let M be a sufficiently large

positive integer. By Theorem 5.31, any f ∈ Ḟ 0,L
p,2 (X) can be decomposed as f =

∑∞
j=0 γjaj ,

where each aj is a (p, 2,M)-atom, ∥{γj}∞j=0∥ℓp . ∥f∥Ḟ 0,L
p,2 (X), and the sum converges in S ′

L (X).

Therefore, in order to show that Ḟ 0,∆
p,2 (X) ⊂ Hp

max,∆(X), it suffices to prove that there exists a

constant C > 0 such that for all (p, 2,M)-atoms a, ∥MΦ0,L f∥Lp(X,dµ) ≤ C. For the proof of the

latter, we refer the reader to [46, Theorem 7.4 (i)] (for the case p = 1) and to [55, p. 266] (for

the case p ∈ (0, 1]).

Next we show that Hp
max,∆(X) ⊂ Ḟ 0,∆

p,2 (X). To do this, let Φ and Ψ be two functions in S(R≥0)

defined respectively by

Φ(λ) := e−λ, Ψ(λ) := λe−λ, λ ∈ R≥0.

For f ∈ S ′
∆(X) and x ∈ X, we define

f∗(x) :=MΦf(x) +MΨf(x) = sup
(y,t)∈Γ(x)

(
|e−t

2∆f(y)|+ |t2∆e−t
2∆f(y)|

)
,

where Γ(x) := {(y, t) ∈ X × (0,∞) : ρ(y, x) < t}. By Theorem 7.3, we have

∥MNp,L f∥Lp(X,dµ) . ∥MΦ,L f∥Lp(X,dµ) ≤ ∥f∗∥Lp(X,dµ)

≤
(
∥Φ∥(Np) + ∥Ψ∥(Np)

)
∥MNp,L f∥Lp(X,dµ).

Hence

∥f∥Hp
max,∆(X) ∼ ∥f∗∥Lp(X,dµ). (7.25)

For β > 0, f ∈ S ′
∆(X), and x ∈ X, we define

Sβ(f)(x) :=

(∫∫
Γβ(x)

|Ψ(t2∆)|2 dy

V (x, t)

dt

t

)1/2

=

(∫∫
Γβ(x)

|t2∆e−t
2∆f(y)|2 dy

V (x, t)

dt

t

)1/2

,

where Γβ(x) := {(y, t) ∈ X × (0,∞) : ρ(y, x) < βt}. As in the classical setting, for any fixed

β > 0 we have

∥Sβ(f)∥Lp(X,dµ) ∼ ∥S1(f)∥Lp(X,dµ). (7.26)

See [16, Proposition 4]. For any β > 0 and f ∈ S ′
L (X), we set

S̃β(f)(x) =

(∫∫
Γβ(x)

|t∇u(y, t)|2 dy

V (x, t)

dt

t

)1/2

,

where u(y, t) := e−t
2∆f(y). The argument of [47, Lemma 5.4] (see also (6.2) in [47]) yields that

∥Sβ(f)∥Lp(X,dµ) . ∥S̃β(f)∥Lp(X,dµ). (7.27)
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Combing (7.25), (7.26), (7.27) and the area integral characterization of Ḟ 0,∆
p,q (X) (Theorem 5.23),

we see that, in order to prove Hp
max,∆(X) ⊂ Ḟ 0,∆

p,q (X), it suffices to show that for some β > 0

∥S̃β(f)∥Lp(X,dµ) . ∥f∗∥Lp(X,dµ). (7.28)

To this end, for β > 0, 0 < ε < R <∞, f ∈ S ′
∆(X), and x ∈ X, we set

S̃ε,Rβ (f)(x) :=

(∫∫
Γε,R
β (x)

|t∇u(y, t)|2 dy

V (x, t)

dt

t

)1/2

,

where

Γε,Rβ (x) := {(y, t) ∈M × (ε,R) : y ∈ B(x, βt)} = {(y, t) ∈ Γβ(x) : ε < t < R}.

The argument of [5, Lemma 7.6] with slight modification yields the following “good λ” inequality:

there exists a constant C > 0 such that for all 0 < γ < 1, λ > 0, 0 < ε < R <∞, and f ∈ S ′
∆(X),

µ

({
x ∈ X : S̃ε,R1/20f(x) > 2λ, f∗(x) ≤ γλ

})
≤ Cγ2µ

({
x ∈ X : S̃ε,R1/2f(x) > λ

})
.

This key inequality, along with the fact that ∥S̃ε,R1/2 (f)∥Lp(X,dµ) . ∥S̃ε,R1/20(f)∥Lp(X,dµ) (cf. [16,

Proposition 4]), yields that ∥S̃ε,R1/20(f)∥Lp(X,dµ) . ∥f∗∥Lp(X,dµ). Letting ε → 0 and R → ∞, by

the Fatou lemma we get (7.28) with β = 1/20. The proof is thus completed.
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[70] L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, Int. Math. Res. Not.

IMRN 1992, no. 2, 27–38.

[71] L. Saloff-Coste, Parabolic Harnack inequality for divergence form second order differential

operators, Potential Anal. 4 (1995) 429–467.
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