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FUKAYA CATEGORIES AND BLOW-UPS

FUMIHIKO SANDA

Abstract. In this paper we study the Lagrangian Floer theory
of Kähler manifolds and their blow-ups. We present a method
to describe the quantum cohomology from the Lagrangian Floer
theory. As an example we determine the quantum cohomology of
a blow-up from its corresponding potential function.

1. Introduction

1.1. Backgrounds. The motivation of this paper comes from Homo-
logical Mirror Symmetry conjecture(HMS) proposed by Kontsevich
[16]. Although this conjecture was initially stated as a duality be-
tween Calabi-Yau manifolds, it was extended to Fano manifolds and
manifolds of general type [15]. For these manifolds it is known that the
mirror counterparts are given by so-called Landau-Ginzburg models,
that is, complex manifolds with holomorphic functions(potential func-
tions). For a Landau Ginzburg model corresponding to X, we have two
different types of categories; one is the category of D-branes of Lan-
dau Ginzburg A-models and the other is that of Landau Ginzburg
B-models. The HMS relates these two categories, respectively, to
the bounded derived category of coherent sheaves DbCoh(X) and the
derived Fukaya category DπFuk(X). The categories of D-branes of
Landau-Ginzburg A-models are called Fukaya-Seidel categories in math-
ematics, whose objects consist of Lefschetz thimbles [21]. It is expected
that Fukaya-Seidel categories admit semi-orthogonal decompositions
whose summands correspond to the connected components of the crit-
ical loci of the potential functions. On the other hand, the categories
of D-branes of Landau-Ginzburg B-models are categories of singular-
ities due to Orlov[19]. These categories admit orthogonal decompo-
sitions whose summands correspond to the connected components of
the critical loci of the potential functions. Here observing that both
two categories admit (semi-)orthogonal decompositions described by
the critical loci of the same potential functions , it is natural to expect
that there exists some correspondence between semi-orthogonal decom-
positions of Fukaya-Seidel categories and orthogonal decompositions of
categories of singularities. By considering mirror symmetry, we can
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also expect that there exists some correspondence between orthogonal
decompositions of Fukaya categories and semi-orthogonal decomposi-
tions of categories of coherent sheaves [15]. To state our observation
above more concretely, let us consider the geometry of blow-ups. Let
X be a smooth projective variety and C be a smooth subvariety of
X. Assume, for simplicity, codimension of C is two. We denote by
XC the blow-up of X along C. Then by the theorem of Orlov [18] we
have DbCoh(XC) = ⟨DbCoh(C), DbCoh(X)⟩. This theorem suggests
that the derived Fukaya category DπFuk(X) admits some correspond-
ing orthogonal decomposition. Moreover, by taking Hochschild coho-
mology of DπFuk(X), we expect that Quantum cohomology QH∗(X)
decomposes into corresponding factors.

1.2. Results. The relationship between counting of holomorphic disks
of Lagrangian torus fibrations and the corresponding Landau-Ginzburg
models was first studied by Cho-Oh [4]. They proved that for toric Fano
manifolds, the generating functions of counting of holomorphic disks
give the potential functions of the Landau-Ginzburg mirrors. Recently,
Abouzaid, Auroux, and Katzarkov constructed Lagrangian torus fi-
brations on blow-ups of toric manifolds and computed the potential
functions of the Landau-Ginzburg mirrors[1].

In this paper, we slightly generalize the construction of Abouzaid-
Auroux-Katzarkov and obtain some evidences of the above observation
in the following two statements.

Let V be a compact toric Kähler manifold and H be a submanifold
of V with some positivity condition. We put

X = V × Pr−1,

and

C = H ×
r︷ ︸︸ ︷

[0 : · · · : 0 : 1] ⊂ X.

Our first statement is that the potential function of XC is a bulk de-
formed potential of X (Theorem 4.2, Theorem 4.8). We refer to Sub-
section 4.2 for a more precise statement. This statement implies that
the bulk deformed derived Fukaya category of X is contained in the
derived Fukaya category of XC .

As an example of the above geometry, we consider the case where
V = P2, r = 2. Our second statement is the following.

Theorem 1.1. (Theorem 5.15) When H is a smooth curve of degree
three, then the quantum cohomology ring of XC is described as follows:

QH∗(XC ; Λ) =

6︷ ︸︸ ︷
Λ× · · · × Λ×H∗(C; Λ).
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2. Notations and Preliminaries

2.1. Notations. We denote by Λ the universal Novikov field over C.
Namely,

Λ =

{
∞∑
i=1

aiT
λi

∣∣∣∣∣ai ∈ C λi ∈ R lim
i→∞

λi = ∞

}
.

This is an algebraically closed valuation field. We denote by Λ0 the
valuation ring of Λ and by Λ+ the maximal ideal of Λ0. Let N ∼= Zn be
a free lattice of rank n, and let M be the dual lattice of N . We write
the scalar extensions by

NR = N ⊗ R, MR =M ⊗ R.
Let P be a smooth polytope in MR, i.e., P is a polytope which defines
a smooth toric Kähler manifold. We denote by Σ the normal fan of P.
P may be given from Σ by

P = {u ∈MR|⟨u, vi⟩+ ci ≥ 0 (1 ≤ i ≤ m)},
where {v1, . . . , vm} is the set of all primitive generators of one dimen-
sional cones in Σ and c1, . . . , cm are some constants. We denote by

Λ⟨⟨y, y−1⟩⟩
◦
P
0

the ring of formal Laurent series convergent on
◦
P (see [7, Definition

1.2.1]). We have the surjective ring homomorphism

ψ : Λ0[[Z1, . . . Zm]] → Λ⟨⟨y, y−1⟩⟩
◦
P
0

which sends Zi to T
ciyvi , where we identify the lattice of monomials

with N, i.e., C[y, y−1] = C[N ]. We put

Λ⟨⟨y, y−1⟩⟩
◦
P
+ = ψ(Λ+[[Z1, . . . Zm]]).

A formal Laurent power series f ∈ Λ⟨⟨y, y−1⟩⟩
◦
P
0 is said to be gapped

if f is G-gapped for a discrete submonoid G of R≥0(see [7, Definition
1.2.5] for the definition of G-gapped elements). We denote by

Aut(Λ⟨⟨y, y−1⟩⟩
◦
P
0 )
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the set of gapped coordinate changes on
◦
P (see [7, Definition2.5.1]).

2.2. Potential functions of Kähler manifolds. In this subsection,
we recall some statements about the so-called potential functions and
Floer cohomology of intersections of Lagrangian submanifolds (see [6]
for the definition of Floer cohomology and [10] for the construction of
cyclic filtered A∞ algebras and their canonical models.)

Let (X,ω) be a compact Kähler manifold equipped with a Kähler
form ω, and L ⊂ X be a compact oriented spin Lagrangian submani-
fold. We assume the following conditions.

Conditon 2.1. Every rational curve has non-negative Chern number.

Conditon 2.2. Every holomorphic disk bounded by L has positive
Maslov number.

For β ∈ H2(X,L;Z), we denote by MX
k;ℓ(L, β) the moduli space

of the genus zero stable bordered holomorphic maps with the im-
age in class β with k boundary marked points and also ℓ interior
marked points. By Conditons 2.1 and 2.2, if the Maslov number of
β ∈ H2(X,L;Z) is two, then MX

1;0(L, β) has an oriented Kuranishi
structure without boundary.

Definition 2.3. We define nβ by the following formula.

nβ = deg[ev1 : MX
1;0(L, β) → L],

where ev1 is the evaluation map of the boundary marked point.

Remark 2.4. To define the degree of evaluation map, we need perturb
MX

1;0(L, β) by choosing a continuous family of multisections. However,
by Conditions 2.1 and 2.2, if perturbation is sufficiently small, nβ is
independent of the choice of perturbation.

Definition 2.5. We call

WX
L (b) =

∑
µ(X,L)(β)=2

nβT
ω(β)
2π e⟨∂β,b⟩

the potential function of (X,L), where b is an element of H1(L; Λ0).

Remark 2.6. By Conditions 2.1 and 2.2, WX
L (b) is equal to the ob-

struction mcan,b
0 of the canonical model of the Floer complex.

We denote by Crit(WX
L ) the set of critical points ofWX

L . Let e1, . . . en
be an integral basis of H1(L;Q), where n = dimH1(L,Q). We put yi =
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e⟨ei,b⟩. Then we can considerWX
L as an element of Λ0[[y1, y

−1
1 , . . . , yn, y

−1
n ]].

b ∈ Crit(WX
L ) is said to be non-degenerate if

det

[
∂2WX

L

∂yi∂yj

]i,j=n

i,j=1

(b) ̸= 0.

We use a forgetful-map-compatible Kuranishi structure to define a
gapped filtered A∞ structure on H∗(L; Λ). Hence b ∈ H1(L; Λ0) is
a weak Maurer-Cartan element of L. Therefore we can define Floer
cohomology HF ∗((L, b); Λ) for b ∈ H1(L; Λ0).

Lemma 2.7. Assume L ∼= T n, n-dimensional torus with n = dimCX.
Then,

(1) HF ∗((L, b); Λ) ̸= 0 if and only if b ∈ Crit(WX
L ).

(2) If HF ∗((L, b); Λ) ̸= 0, then

HF ∗((L, b); Λ) ∼= H∗(L; Λ)

as a Z/2Z graded vector space.

(3) If b ∈ Crit(WX
L ) is non-degenerate, then

HF ∗((L, b); Λ) ∼= Cℓn

as a Z/2Z graded algebra, where Cℓn is the Clifford algebra of
dim 2n over Λ.

Proof. The proof is the same as [7, Section 3.6]. □

Remark 2.8. Since Cℓn is intrinsically formal([22, Corollary 6.4]),

HF ∗((L, b); Λ) ∼= Cℓn

as a Z/2Z graded A∞ algebra.

Lemma 2.9. Suppose that L is diffeomorphic to n-dimensional torus
T n. Let b1 and b2 be non-degenerate critical points of WX

L with b1 ̸=
b2,W

X
L (b1) = WX

L (b2). Then HF
∗((L, b1), (L, b2); Λ) = 0.

Proof. The Floer differential on H∗(L; Λ) is not equal to 0 since b1 ̸=
b2. Thus we obtain dimHF ∗((L, b1), (L, b2); Λ) < 2n. Since b1 and b2
are non-degenerate critical points, HF ∗((L, b1), (L, b2); Λ) has a Z/2Z
graded Clifford bimodule structure. By an argument similar to Theo-
rem [11, 2.11], we see that the dimensions of finite dimensional Z/2Z
graded irreducible Clifford representations are 2n. Hence the claim fol-
lows. □
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3. Geometry of blow-ups

3.1. Constructions. Let F1, . . . , Fk be holomorphic vector bundles on
X with hermitian metrics and si be a holomorphic section of Fi. We
denote by Ci ⊂ X the zero set of si. We assume C1 . . . Ck intersect
transversely. We put C =

∪k
i=1Ci. We consider the following set.

XC =

{
(x, [v1], . . . , [vk]) ∈ P(F1)×

X
. . .×

X
P(Fk)

∣∣∣∣si(x) ∈ Cvi (i = 1, . . . k)

}
Since C1, . . . , Ck intersect transversally, we can describe XC as an it-
erated blow-up along smooth submanifolds. Hence XC is a smooth
complex manifold. We denote by π the blow-down map from XC to X.
We put

Ei = π−1(Ci), E =
k∪

i=1

Ei.

These are exceptional divisors of XC . We choose a tubular neighbor-
hood U of C and a smooth cut-off function χ supported in U with
χ = 1 near C.

Lemma 3.1. Let ϵ1, . . . ϵk ∈ R be sufficiently small constants. We
define a two form ωϵ on XC by

π∗ω +
√
−1∂∂̄(χ

k∑
i=1

ϵi log |si|),

where |si| is the norm of si with respect to the hermitian metric. Then
ωϵ is a Kähler form on XC .

Proof. Since ϵ1, . . . ϵk are sufficiently small, ωϵ is non-degenerate on
X \ E. On E,

√
−1∂∂̄(χ

k∑
i=1

ϵi log |si|)

is non-degenerate and also π∗ω is positive. Hence, ωϵ is non-degenerate
on E, too. □

Recall that L ⊂ X is a compact oriented spin Lagrangian submani-
fold. From now on, we assume the following condition.

Conditon 3.2. L is contained in X \ U.

Then we can consider L as a compact oriented spin Lagrangian sub-
manifold in XC . The divisor Ei ⊂ XC \L defines the relative cohomol-
ogy class

[Ei] ∈ H2(XC , L;Z).



FUKAYA CATEGORIES AND BLOW-UPS 7

We denote by µ(X,L) the Maslov class of (X,L). The next lemma com-
pute the relative cohomology group and the Maslov class of (XC , L).

Lemma 3.3. (1) H2(XC , L;Z) = π∗H2(X,L;Z)⊕
k⊕

i=1

Z[Ei].

(2) µ(XC ,L) = π∗µ(X,L) − 2
k∑

i=1

(rkFi − 1)[Ei], if X has a meromor-

phic volume form with pole along some normal crossing divi-
sors which intersect transversely with C, and L is a special
Lagrangian submanifoldsd with respect to this meromorphic
volume form.

Proof. (1) By the Mayer-Vietoris sequence and the Leray-Hirsch theo-
rem, we obtain

H1(XC ;Z) = π∗H1(X;Z),

H2(XC ;Z) = π∗H2(X;Z)⊕
k⊕

i=1

Z[Ei].

We consider the following diagram

H1(X;Z)

π∗

��

// H1(L;Z)

id
��

// H2(X,L;Z)

π∗

��

// H2(X;Z)

π∗

��

// H2(L;Z)

id
��

H1(XC ;Z) // H1(L;Z) // H2(XC , L;Z) // H2(XC ;Z) // H2(L;Z).

Then we have

H2(XC , L;Z) = π∗H2(X,L;Z)⊕
k⊕

i=1

Z[Ei]

by the snake lemma([14]).
(2) By assumption, the pole of the meromorphic volume form defines

the Maslov class µ(X,L). The pole of the lift of this meromorphic volume
form defines the Maslov class µ(XC ,L). Since

−KXC
∼= (−π∗KX)⊗

k⊗
i=1

O(−Ei)
⊗(rkFi−1),

we have the desired formula. □

Proposition 3.4. Assume Fi =

rkFi⊕
j=1

Li,j and si = ⊕rkFi
j=1 si,j, where Li,j

is a nef line bundle on X and si,j is a holomorphic section of Li,j.
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Suppose that

c1(TX)(C)−
k∑

i=1

(rkFi − 1) max
1≤j≤rkFi

c1(Li,j)(C) ≥ 0

for every rational curve C ⊂ X, then XC satisfies Condition 2.1.

Proof. For I ⊂ {1, . . . , k}, we put CI =
∩
i∈I

Ci. We define XI by

XI =

{
(x,

∏
i∈I

[vi]) ∈
∏
i∈I

P(Fi)

∣∣∣∣∣si(x) ∈ Cvi for i ∈ I

}
.

We denote by πI the blow-down map from XC to XI . We prove

c1(TXC)(f) ≥ 0

for an arbitrary holomorphic map f from P1 to XC . Put fI = πI ◦ f .
We can assume

Imf∅ ⊂ CI , Imf∅ ̸⊂
∪
i/∈I

Ci

for some I.
We first consider the case of k = 1 and Imf∅ ⊈ C1. PutDi,j = s−1

i,j (0).
There exists J ⊊ {1, . . . , rkF1} such that

Imf∅ ⊂
∩
j∈J

D1,j, Imf∅ ̸⊂
∪
j /∈J

D1,j.

Then we see that
c1(TXC)(f) = c1(TX)(f∅)− (rkF1 − 1)[E1](f)

≥ c1(TX)(f∅)− (rkF1 − 1)min
j /∈J

c1(L1,j)(f∅)

≥ c1(TX)(f∅)− (rkF1 − 1) max
1≤j≤rkF1

ci(L1,j)(f∅).

By an inductive argument, we have

c1(TXC)(f) ≥ c1(TXI)(fI)−
∑
i/∈I

(rkFi − 1) max
1≤j≤(rkFi)

c1(Li,j)(f∅).

We next prove

c1(TXI)(fI) ≥ c1(TX|CI
)(f∅)−

∑
i∈I

(rkFi − 1) max
1≤j≤(rkFi)

c1(Li,j)(f∅).

By abuse of notation, we continue to write Ei (i ∈ I) for the exceptional
divisors of XI . We put

EI =
∩
i∈I

Ei.
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This is a subset of XI . We can describe EI as the fiber product∏
i∈I

PCI
(Fi).

We observe ImfI ⊂ EI . We denote by Hi the hyperplane class of
PCI

(Fi).
Then, we have

c1(TXI |EI
)(fI) = c1(TEI)(fI)−

∑
i∈I

Hi(fI)

= c1(TCI)(f∅) +
∑
i∈I

c1(Fi)(f∅) +
∑
i∈I

(rkFi − 1)Hi(fI)

= c1(TX|CI
)(f∅) +

∑
i∈I

(rkFi − 1)Hi(fI)

= c1(TX|CI
)(f∅)−

∑
i∈I

(rkFi − 1) max
1≤j≤rkFi

c1(Li,j)(f∅)

+
∑
i∈I

(rkFi − 1) max
1≤j≤rkFi

(c1(Li,j)(f∅) +Hi(fI)),

where we use

c1(TEI)(f∅) = c1(TCI)(f∅) +
∑
i∈I

c1(Fi)(f∅) +
∑
i∈I

(rkFi)Hi(fI).

Since
max

1≤j≤rkFi

(c1(Li,j)(f∅) +Hi(fI)) ≥ 0,

we have

c1(TXI)(fI) ≥ c1(TX|CI
)(f∅)−

∑
i∈I

(rkFi − 1) max
1≤j≤(rkFi)

c1(Li,j)(f∅).

From these statements, we have

c1(TXC)(f) ≥ c1(TX)(f∅)−
k∑

i=1

(rkFi − 1) max
1≤j≤(rkFi)

c1(Li,j)(f∅)

≥ 0.

This is the desired inequality. □
3.2. The potential function of (XC , L). In this subsection, we study
the potential function of (XC , L). We assume (XC , L) satisfies Condi-
tions 2.1 and 2.2.

Definition 3.5. β ∈ H2(X,L;Z) is said to be simple if µ(X,L)(β) = 2
and the domain of each element of MX

1;0(L, β) is a disk (no bubble

components). We denote byH2(X,L;Z)simp the set of simple homology
classes.
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For β ∈ H2(X,L;Z), we denote by β̂ the element of H2(XC , L;Z)
with π∗(β̂) = β and [Ei](β̂) = 0.

Lemma 3.6. If µ(X,L)(β) = 2, then

MXC
1;0 (L, β̂)

∼= MX
1;0(L, β)

as an oriented Kuranishi manifold.

Proof. For f ∈ MXC
1;0 (L, β̂), π ◦ f is a stable disk in X with Maslov

number two. Since XC and L satisfy Conditions 2.1 and 2.2, both
holomorphic disks in X bounded by L with Maslov number two and
holomorphic spheres in X with Chern number zero are contained in
X \ C or C. Since L ∩ C = ∅, we must have Im(π ◦ f) ⊂ X \ C. The
claim follows from this. □

We define byWEx(b) the part of the potential functionWXC
L (b) given

by ∑
β∈H2(XC ,L;Z)

([E1](β),...,[Ek](β)) ̸=(0,...,0)

nβT
ωϵ(β)
2π e⟨∂β,b⟩.

Proposition 3.7.

WXC
L (b) = WX

L (b) +WEx(b)

Proof. This follows immediately from Lemma 3.6. □

4. Main theorem

4.1. Statements. To state the main theorem, we need some defini-
tions. We recall that (X,ω) is a compact Kähler manifold equipped
with a Kähler form ω and L is a compact oriented spin Lagrangian
submanifold. For δ ∈ R≤0, we put

P δ
L =

{
u ∈ H1(L;R)

∣∣∣∣⟨u, ∂β⟩+ ω(β)

2π
≥ δ for β ∈ H2(X,L;Z)simp

}
.

Definition 4.1. (1) β ∈ H2(X,L;Z)simp is said to be fake if

⟨u, ∂β⟩+ ω(β)

2π
> δ + η

for all η > 0 and u ∈ P δ+η
L .

(2) β ∈ H2(X,L;Z)simp is said to be essential if β is not fake.

We denote by H2(X,L;Z)ess the set of essential classes. For

v ∈ ∂H2(X,L;Z)ess ⊂ H1(L;Z),
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we put

nv =
∑

β∈H2(X,L;Z)ess
∂β=v

nβ,

and

ωv = ω(β),

where β is an element of H2(X,L;Z)ess with ∂β = v. Note that it is
easy to check that if

β1, β2 ∈ H2(X,L;Z)ess and ∂β1 = ∂β2,

then

ω(β1) = ω(β2).

Hence ωv is well defined.
The next statement is the main theorem of this paper.

Theorem 4.2. Assume the following conditions for X,C,L, and δ.

(1) P δ
L is a smooth polytope in the sense of toric geometry.

(2) {β ∈ H2(X,L;Z)ess} is a finite set.
(3) For β ∈ H2(X,L;Z)ess, ∂β is a primitive element in H1(L,Z).
(4) For v ∈ ∂H2(X,L;Z)ess, nv ̸= 0.

(5) T−δWX
L is a gapped element of Λ⟨⟨y, y−1⟩⟩

◦
P

δ

L
0 .

(6) T−δWEx is a gapped element of Λ⟨⟨y, y−1⟩⟩
◦
P

δ

L
+ .

Then, for a small constant η ∈ R>0 such that P δ+η
L is combinatorially

equivalent to P δ
L, there exists

b ∈ H∗(XP δ+η
L

; Λ0)

and

φ ∈ Aut(Λ⟨⟨y, y−1⟩⟩
◦
P

δ+η

L
0 )

which satisfy

T−δ−ηWXC
L = W

X
P
δ+η
L

b ◦ φ,
where XP δ+η

L
is the symplectic toric manifold defined by the smooth

polytope P δ+η
L , and W

X
P
δ+η
L

b is the bulk deformed potential function of
XP δ+η

L
with a bulk parameter b(cf.[8]).

Proof. By the lemma below, if β ∈ H2(X,L;Z)simp is fake, then

T
ω(β)
2π

−δ−ηy∂β
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is contained in Λ⟨⟨y, y−1⟩⟩
◦
P

δ+η

L
+ .Assume that β /∈ H2(X,L;Z)simp, µ(X,L)(β) =

2, and MX
1;0(L, β) ̸= ∅. Then β decomposes into a simple class β′ and

an effective class α with the Chern number zero. Hence we have

T
ω(β)
2π

−δ−ηy∂β ∈ Λ⟨⟨y, y−1⟩⟩
◦
P

δ+η

L
+ .

By Assumptions (1) and (6), we have

T−δ−ηWEx ∈ Λ⟨⟨y, y−1⟩⟩
◦
P

δ+η

L
+ .

Then it follows that

T−δ−ηWXC
L ≡

∑
v∈∂H2(X,L;Z)ess

nvT
ωv
2π

−δ−ηyv (mod Λ⟨⟨y, y−1⟩⟩
◦
P

δ+η

L
+ ).

Now the existence of b and the automorphism φ follow by the versality
theorem([7, Theorem2.8.1]). □
Lemma 4.3. Assume Conditions (1)–(6) in Theorem 4.2 hold. Sup-
pose that ω ∈ R and α ∈ H1(L;Z) satisfies the inequality

⟨α, u⟩+ ω > δ + η

for all u ∈ P δ+η
L . Then

T ω−δ−ηyα ∈ Λ⟨⟨y, y−1⟩⟩
◦
P

δ+η

L
+ .

Proof. We denote by Σδ+η
L the normal fan of P δ+η

L . Since P δ+η
L is

a smooth polytope, there exists σ ∈ Σδ+η
L such that α ∈ σ. Let

{v1, . . . , vl} be the set of all primitive generators of σ. We write

α =
∑l

i=1 αivi, where αi ∈ Z≥0. Choose uσ ∈ P δ+η
L such that

⟨uσ, vi⟩+
ωvi

2π
= δ + η

for i = 1, . . . , l. By the morphism

ψ : Λ0[[Z1, . . . , Zm]] → Λ⟨⟨y, y−1⟩⟩
◦
P

δ+η

L
0 ,

T ω−
∑l

i=1(
ωvi
2π

−δ−η)αi−δ−ηZα1
1 . . . Zαl

l is send to T ω−δ−ηyα. By assumption,
we have

⟨α, uσ⟩+ ω > δ + η.

Thus we have

ω −
l∑

i=1

(
ωvi

2π
− δ − η)αi − δ − η > 0,

which proves the lemma. □
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Remark 4.4. If X is a toric manifold and L is a torus orbit, then
Conditions (2), (3), (4) of Theorem4.2 are satisfied(cf.[4]). Moreover if
δ is sufficiently small, then Condition (1) is also satisfied.

The next lemma is useful to check Condition (6) of Theorem 4.2.

Lemma 4.5. Assume that WEx ∈ Λ⟨⟨y, y−1⟩⟩
◦
P

δ

L
0 . If β ∈ H2(X,L;Z)

with MX
1;0(L, β) ̸= ∅ is described as a sum of simple homology classes,

and if ϵ1, . . . , ϵk and δ satisfy

δ > max
1≤i≤k

{ϵi},

then

WEx ∈ Λ⟨⟨y, y−1⟩⟩
◦
P

δ

L
+ .

Proof. Let β̃ be an element of H2(XC , L;Z) with MXC
1;0 (L, β̃) ̸= ∅ and

µ(XC ,L)(β̃) = 2. Since β̃ decomposes into a relative homology class of
some holomorphic disk and an effective class with Chern number zero,
we can assume β̃ is a relative homology class of some holomorphic disk.
We put β = π∗β̃ and ai = [Ei](β̃). Then we have

µ(X,L)(β)

2
≥ 1 + a1 + · · ·+ ak,

and
ωϵ(β̃) = ω(β)− 2πa1ϵ1 − · · · − 2πakϵk.

By assumption, we can write

β =

µ(X,L)(β)

2∑
i=1

βi,

where βi is an element of H2(X,L;Z)simp. For u ∈ P δ
L, we have

⟨∂β, u⟩+ ωϵ(β̃)

2π
− δ =

µ(X,L)(β)

2∑
i=1

(
⟨∂βi, u⟩+

ω(βi)

2π
− δ

)
+
µ(X,L)(β)

2
δ − δ −

k∑
i=1

aiϵi

>

µ(X,L)(β)

2∑
i=1

(
⟨∂βi, u⟩+

ω(βi)

2π
− δ

)
+

k∑
i=1

ai(δ − ϵi)

> 0.

Thus

T
ωϵ(β̃)
2π y∂β ∈ Λ⟨⟨y, y−1⟩⟩

◦
P

δ

L
+ .

□
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Remark 4.6. If X is a toric manifold and L is a torus orbit, then the
assumptions of above lemma are satisfied.

4.2. Examples. The construction of this subsection slightly generalize
that of [1]. Let (V, ωV ) be a compact toric Kähler manifold of complex
dimension n defined by a fan

ΣV ⊂ NR

and a polytope

P = {u ∈MR | ⟨vi, u⟩+ λ(vi) ≥ 0 ∀1 ≤ i ≤ m} ,

where {v1, . . . , vm} is the set of all primitive generators of one dimen-
sional cones of ΣV and λ is a strictly convex function on ΣV . We denote

by L(u) the torus orbit of V corresponding to u ∈
◦
P . We equip L(u)

with the standard spin structure(cf.[4, Section9]). We choose a small
δ > 0 such that P δ is combinatorially equivalent to P , where

P δ = {u ∈MR | ⟨vi, u⟩+ λ(vi) ≥ δ ∀1 ≤ i ≤ m} .

Let L1, . . .Lk be nef line bundles on V defined, respectively, by integral
convex functions ρ1, . . . , ρk on ΣV . Denote by Ai ⊂ M the set of all
integral points of the section polytope of Li. Consider integral convex
functions σi on Conv(Ai), which determine regular triangulations of
Conv(Ai). Then we define the sections si,τi of Li by

si,τi =
∑
α∈Ai

cατ
σi(α)
i sα,

where cα ∈ C∗ and τi ∈ R>0 are arbitrary constants, and sα are the
sections of Li corresponding to α. We put

Hi,τi = s−1
i,τi

(0) ⊂ V

and choose a tubular neighborhood UV of Hi,τi . Assume σi attains
unique minimum value at some point of Ai. By [17, Corollary6.4],
we can choose τi and UV such that the moment map image of UV is
contained in P \ P δ. We consider the following product

X = V × Pr1−1 × · · · × Prk−1

with the natural projections pV and pi (i = 1 ≤ i ≤ k) to each fac-
tor. We equip Pri−1 with the standard Fubini-Study Kähler form with
moment polytope

∆i =

{
(u1, . . . , uri−1) ∈ Rri−1

∣∣∣∣ 0 ≤ u1, . . . , 0 ≤ uri−1

u1 + · · ·+ uri−1 ≤ ai

}
,
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where ai ∈ R (1 ≤ i ≤ k) are arbitrary constants with ai > riδ. Then
X is equipped with the product Kähler form. For i = 1, . . . , k, put

Fi = p∗iOPri−1(1)⊕(ri−1) ⊕ p∗VLi,

and

si,j =

{
p∗i zi,j (1 ≤ j ≤ ri − 1)

p∗V si,τi (j = ri)

where zi,1, . . . , zi,ri are the homogeneous coordinates on Pri−1. Then
we have

Ci = s−1
i (0) ∼= Hi,τi ,

where
si = ⊕ri

j=1si,j.

We assume that C1, . . . , Ck intersect transversally inX. Then C1, . . . Ck

define our geometry XC of the blow-up π : XC → X defined in Section
3.

Let us choose a tubular neighborhood Ui of [0 : · · · : 0 : 1] ∈ Pri−1

such that the moment map image of Ui is contained in ∆δ
i . Put

U = UV × U1 × · · · × Uk.

We assume that ωϵ = ω outside of U and ϵi < δ.

Proposition 4.7. Assume that

c1(TV )−
k∑

i=1

(ri − 1)c1(Li) ≥ 0.

Then

(1) XC satisfies Condition 2.1.
(2) Suppose that

(u, u1, . . . , uk) ∈ P δ ×∆δ
1 × · · · ×∆δ

k.

Then (XC , L(u, u1, . . . , uk)) satisfies Condition 2.2, where
L(u, u1, . . . , uk) is the torus orbit of X corresponding to
(u, u1, . . . , uk).

Proof. (1) This follows immediately from Proposition 3.4.
(2) Let

f : (D, ∂D) → (XC , L(u, u1, . . . , uk))

be a non-constant holomorphic disk. By assumption, we obtain

L(u, u1, . . . uk) ⊂ XC \ E.
Thus f−1(Ei) ⊂ D is isolated. Let p be a point of f−1(Ei) ⊂ D
with multiplicity m(p). Then pi ◦ f passes through [0 : · · · : 0 : 1] with
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multiplicity m(p). The contribution of this point to the Maslov number
of pi ◦ f is at least (ri − 1)m(p). Hence we have

µ(XC ,L(u,u1,...uk))(f) ≥ µ(V,L(u))(pV ◦ f).

Therefore we see that µ(XC ,L(u,u1,...uk))(f) ≥ 2 if pV ◦f is a non-constant
map. On the other hand, if pV ◦ f is a constant map, then we have

Im(f) ⊂ XC \ E,

and hence

µ(XC ,L(u,u1,...uk))(f) = µ(X,L(u,u1,...uk))(f) ≥ 2.

This completes the proof. □

Theorem 4.8. Assume the positivity as in Proposition 4.7. Then
(XC , L(u, u1, . . . , uk)) satisfies the conditions (1)–(6) of Theorem 4.2.

Proof. (XC , L(u, u1, . . . , uk)) satisfies Conditions (1)–(4) of Theorem
4.2, since X is toric. By Proposition 4.7, (XC , L(u, u1, . . . , uk)) satisfies
Condition 2.2 for all

(u, u1, . . . uk) ∈ P δ ×∆δ
1 × · · · ×∆δ

k.

Hence we have

WXC

L(u,u1,...,uk)
∈ Λ⟨⟨y, y−1⟩⟩

◦
P

δ

L
0 .

Similarly, we have

WX
L(u,u1,...uk)

∈ Λ⟨⟨y, y−1⟩⟩
◦
P

δ

L
0 .

From this we obtain

WEx
L(u,u1,...uk)

∈ Λ⟨⟨y, y−1⟩⟩
◦
P

δ

L
0 .

By Lemma 4.5, we conclude that (XC , L(u, u1, . . . , uk)) satisfies Con-
ditions (5) and (6) of Theorem 4.2. □

Remark 4.9. This theorem implies that the derived Fukaya category
of (X,ω) deformed by some bulk parameter is embedded in the derived
Fukaya category of (XC , ωϵ).

In the next section, we consider the special case of this example.
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5. Quantum cohomology from Fukaya categories

5.1. Some properties of quantum Gysin maps. In this subsec-
tion, we consider a general compact symplectic manifold (X,ω) of real
dimension 2n and compact oriented spin Lagrangian submanifolds with
weak Maurer-Cartan elements (Li, bi) (i = 1, 2). We assume that Floer
cohomology HF ∗((L1, b1), (L2, b2); Λ) is well-defined. We take a basis
eI of

HF ∗((L1, b1), (L2, b2); Λ).

and denote by eI the dual basis of eI . By using the natural duality, we
consider eI as an element of

HF ∗((L2, b2), (L1, b1); Λ).

.

Definition 5.1. (see[7]) Let xi be an element of HF ∗((Li, bi); Λ). We
define a map

Z : HF ∗((L1, b1); Λ) → HF ∗((L2, b2); Λ)

by the following property

⟨Z(x1), x2⟩PDL2
=

∑
I

±⟨m2(e
I , x1),m2(eI , x2)⟩,

where m2 is the product of Floer cohomology and ⟨, ⟩PDL2
is the pair-

ing on HF ∗((L2, b2); Λ) induced by the natural pairing on the set of
differential forms on L2. See Proposition 3.10.17 of [7] for the sign± in
the case where (L1, b1) is equal to (L2, b2).

Remark 5.2. Since we do not need precise definition of the sign, we
do not fix it.

We denote by QH∗((X,ω); Λ) the small quantum cohomology ring
of (X,ω) defined over Λ. Let

i(Li,bi)∗ : HF
∗((Li, bi); Λ) → QH∗+n((X,ω); Λ)

be the quantum Gysin map(see [6], [7]) and ⋆ be the small quantum
product of (X,ω).

Assumption 5.3. We assume the following equality.

i(L1,b1)∗(x1) ⋆ i(L2,b2)∗(x2) = i(L2,b2)∗(m2(Z(x1), x2)),

where m2 is the product of HF ∗((L2, b2); Λ).
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Remark 5.4. It is expected that there is a ring morphism

i∗(L,b) : QH
∗((X,ω); Λ) → HF ∗((L, b); Λ)

(See [9, Section 17] for the construction of this map). With this
i∗(L,b), HF

∗((L, b); Λ) is a QH∗((X,ω); Λ) module. The quantum Gysin
map i(L,b)∗ is expected to preserves this module structure. Assumption
5.3 should follow from this property of the quantum Gysin map i(L,b)∗
and the standard annulus argument(see [7] for toric cases, [12] for exact
cases, and [22] for monotone cases).

Remark 5.5. The definition of i(L,b)∗ contains an issue about the cyclic
symmetry, which should be settled in the line of [10].

Corollary 5.6. If

HF ∗((L1, b1), (L2, b2); Λ) = 0,

then
i(L1,b1)∗(x1) ⋆ i(L2,b2)∗(x2) = 0.

Proof. This follows immediately from Assumption 5.3. □
We use the next lemma to construct an idempotent ofQH∗((X,ω); Λ).

Lemma 5.7. Suppose that (X,L) satisfies Conditions 2.1 and 2.2. Let
b ∈ H1(L; Λ) be a critical point of WX

L (b). If L ∼= T n, then we have

Z([pt]) = det

[
yiyj

∂2WX
L

∂yi∂yj

]i,j=n

i,j=1

(b).

Proof. The proof is the same as [7] □
We assume the following formula.

Assumption 5.8. Assume that (X,L) satisfy Conditions 2.1 and 2.2.
Then for x ∈ HF ∗((L, b); Λ),

c1(TX) ⋆ i(L,b)∗(x) = WX
L (b)i(L,b)∗(x).

Remark 5.9. It is expected that i(L,b)∗ and i∗(L,b) satisfy the following

equation(see [7, Theorem 3.3.8] for toric cases).

⟨i(L,b)∗(x), y⟩PDX
= ⟨x, i∗(L,b)(y)⟩PDL

Assumption 5.8 follows from this equality and [9, Theorem 23.13].

Corollary 5.10. Assume that (X,Li) (i=1,2) satisfy Conditions 2.1
and 2.2. If

WX
L1
(b1) ̸=WX

L2
(b2)

then
i(L1,b1)(x1) ⋆ i(L2,b2)(x2) = 0
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5.2. An example of computation of quantum cohomology of
blow ups. In this subsection, we consider an example of the geometry
π : XC → X given in Subsection 4.2, i.e., when V = P2, k = 1, r1 = 2,
and F1 = OP2×P1(3, 0)⊕OP2×P1(0, 1). In this case, the set of the integral
points of the section polytope of F1 is

{(a, b, c) ∈ Z× Z× Z|−1 ≤ a, −1 ≤ b, a+ b ≤ 1, −1 ≤ c ≤ 1} .
We assume that the integral convex function σ1 attains the unique
minimal value at {0}. Assume also that the moment polytope of (X,ω)
is

∆a × [0, b],

where

∆a =
{
(u1, u2) ∈ R2

∣∣u1 ≥ 0, u2 ≥ 0, 0 ≤ u1 + u2 ≤ a
}
.

The complex torus C∗ acts on the P1 factor of X = P2×P1 and extend
to the blow-up XC . We can assume that ωϵ is invariant under this
action. The next proposition describes the potential function of the
torus orbit L(u1, u2, u3).

Proposition 5.11. Suppose that If (u1, u2, u3) ∈ ∆δ
a × [δ, b− δ], then

WXC

L(u1,u2,u3)
= (1+T−ϵ+u3z)(T u1x+T u2y+

T a−u1−u2

xy
)+(1+c)T u3z+

T b−u3

z
,

where c ∈ Λ+ is the contribution of holomorphic spheres with c1 = 0.

Proof. Holomorphic disks with Maslov number two contained in the
blow-up of P2 × (P1 \ {∞}) are classified by [1]. The contribution of
these disks to WXC

L(u1,u2,u3)
is

(1 + T−ϵ+u3z)(T u1x+ T u2y +
T a−u1−u2

xy
) + T u3z.

Let f be a holomorphic disk with Maslov number two which intersects
with P2 × {∞}. By the same argument of Proposition 4.7, we obtain

Im(f) ⊂ P2 × (P1 \ {0}).
Hence we see that pV ◦ f is a constant map and p1 ◦ f is the northern
half of P1. The contribution of these disks to WXC

L is

T b−u3

z
.

Let g be a holomorphic map from P1 to XC with Chern number zero.
By an argument similar to Proposition 4.7, p1 ◦ g is a constant map.
If the image of this map is not equal to {0} ⊂ P1, then this image is
contained in XC \ E and the Chern number of this map is positive.
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Hence Im(g) is contained in the proper transform of P2 × {0}. The
constant c ∈ Λ+ in the coefficient of T u3z is the contribution from
these holomorphic spheres. □

We do not use explicit formula of the constant c. However, we have

Conjecture 5.12. Let KC∗

P2 be a canonical bundle of P2 with C∗ action
by the scalar multiplication. We denote by

⟨ , . . . , ⟩
KC∗

P2
0,ℓ,d

the genus-zero equivariant Gromov-Witten invariants twisted by the
equivariant Euler class of KC∗

P2 , where ℓ is a number of marked points
and d is an element of the set of effective classes Heff

2 (P2,Z) ∼= Z≥0.
Then,

c =
∞∑
d=1

−
⟨

[pt]

λ+ ψ

⟩KC∗
P2

0,1,d

∣∣∣∣
λ=0

T (a−3ϵ)d,

where λ is an equivariant parameter.

Remark 5.13. (1) By using the Quantum-Lefschetz theorem for
concave bundles ([5]), we can explicitly compute the right hand
side of the above equation.

(2) We expect that we can prove the above formula by using Chan’s
capping argument ([3]) and the virtual localization technique([13]).

We put x̃ = T u1x, ỹ = T u2y, z̃ = T u3z. We also put

WXC = (1 + T−ϵz̃)(x̃+ ỹ +
T a

x̃ỹ
) + (1 + c)z̃ +

T b

z̃
.

The following statements are corollary of Proposition 5.11.

Corollary 5.14. WXC has six non-degenerate isolated critical points
such that the tropicalization of these points are (a

3
, a
3
, b
2
).

Proof. We can check directly. □

Theorem 5.15. QH∗((XC , ωϵ); Λ) ∼=
6︷ ︸︸ ︷

Λ× · · · × Λ×H∗(C,Λ) as a ring.

Proof. By using Assumption 5.3, Lemma 5.7, and Corollary 5.14, we
can construct idempotents e1, . . . e6. Put

e7 = 1− e1 − · · · − e6

and
QH∗

i = QH∗((XC , ωϵ); Λ)ei.

We first prove that QHodd
i = 0 for i = 1, . . . , 6. Let α be an element

of QHodd
i (1 ≤ i ≤ 6). Then we have c1(TXC) ⋆ α = λiα, where λi is
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the critical value of WXC corresponding to ei. By direct computation,
we see that the valuation of λi is min{a

3
, b
2
}. If α ̸= 0, we can choose

β ∈ QHodd((XC , ωϵ); Λ) with ⟨α, β⟩PDXC
= 1. Then we see that

λi =
∑

d∈Heff
2 (XC)

⟨c1(TXC), α, β⟩0,3,dT
ωϵ(d)
2π ,

where Heff
2 (XC) is the set of effective class of XC . By degree counting,

if ⟨c1(TXC), α, β⟩0,3,d ̸= 0, then c1(TXC)(d) = 1. Hence the valuation
of λi is contained in{

ωϵ(d)

2π
| d ∈ Heff

2 (XC), c1(d) = 1

}
.

By classification of holomorphic spheres with Chern number one (see
proof of Proposition 3.4), we have{
ωϵ(d)

2π
| d ∈ Heff

2 (XC), c1(d) = 1

}
= {b− ϵ}∩{ϵ+ k(a− 3ϵ) | k ≥ 0} .

This contradicts val(λi) = min{a
3
, b
2
}. So we have α = 0 and QHodd

i = 0
for i = 1, . . . , 6.

Since dimQHeven((XC , ωϵ); Λ) = 8 and dimQHodd((XC , ωϵ); Λ) = 2,
it follows that QH∗

7
∼= H∗(C,Λ) and QH∗

i
∼= Λ for i = 1, . . . , 6 as rings.

□
Remark 5.16. We expect that for an idempotent of QH∗((X,ω); Λ),
we can construct a direct summand of the derived Fukaya category
of (X,ω)(see[2],[20]). Moreover we expect that if this idempotent is
constructed by a non-degenerate critical point, then the object of the
derived Fukaya category corresponding to this point split generates the
summand of the derived Fukaya category(see[20]) .
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