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Chapter 1

The fictitious domain
method with L?-penalty

1.1 Introduction

The fictitious domain method is a powerful technique for solving partial dif-
ferential equations. It is based on a reformulation of the original problem in a
larger spatial domain, called the fictitious domain, with a simple shape. One
of the advantages of this approach is that we can avoid the time-consuming
construction of a boundary-fitted mesh. Thus, the fictitious domain is dis-
cretized by a simple-shaped mesh, independent of the original boundary.
Consequently, we can directly apply a large class of numerical methods, for
example, the finite element, finite volume, finite difference methods as well.
Furthermore, this approach will be useful to solve time-dependent moving-
boundary problems.

Actually, the fictitious domain reformulation combined with the finite
volume and finite difference methods are successfully applied in numerical
simulations for real-world problems, for example, a blood flow and fluid-
structure interactions in thoracic aorta ([40]) and a simulation of spilled
oil on coastal ecosystems ([39]). The aim of our work is to establish a
mathematical study of the penalty fictitious domain method which can be
applied to these time-dependent moving-boundary problems. As a primary
step towards this final end, herein we examine the error analysis for elliptic
problems.

In a previous work, Zhou and Saito [53], we studied a class of the fic-
titious domain methods with a penalty for elliptic problems with various
boundary conditions. Therein, we introduce a fictitious domain reformula-



tion by considering a discontinuous diffusion coefficient, which we call the
H'-penalty fictitious domain method or, simply, the H'-penalty method. As
is reported in [53], this reformulation and its finite element discretization
enjoy finite mathematical properties. However, it is rather difficult to apply
the finite volume and finite difference methods to the H'-penalty method
since the treatment of a discontinuous diffusion coefficient is not straightfor-
ward. Moreover, solutions of the H'-penalty problem are not smooth across
the original boundary that may cause some difficulties in actual computa-
tions.

In this chapter, we study another type of the fictitious domain method
by introducing a discontinuous reaction term, which we call the L?-penalty
fictitious domain method or, simply, the L?-penalty method. This method
can be directly discretized not only by the finite element but also finite
volume and finite difference methods. Moreover, the penalty solution has
the H? regularity in the whole fictitious domain.

In Section 1.2, we study the L?-penalty method by examining the H?
regularity and some estimates for solutions of the L?-penalty problem. Then,
we derive error estimates of H! and L? norms. In summary, we have (cf.
Theorem 1.2.1) the error estimates

1 1
lu = uellgr ) < Cet || fllr2), lu = uell2(y < Cez || fllL2q),

where u and u, denote the solutions of the original elliptic problem (1.2.1)
defined in a bounded domain Q C R? and its L?-penalty problem (1.2.19)
for a given f € L?(f), € is the penalty parameter with ¢ — 0. Moreover,
the Dirichlet boundary condition posed on the original boundary I" = 0f is
approximated in the sense that

1 1
Hue”H%(F) + \%Hueﬂm(m) < Cetl fllr2(q),

where D denotes the fictitious domain such that Q C D and Q; = D\Q.

Thanks to our regularity results and error estimates, the finite element
analysis becomes easy to treat. In Section 1.3, we derive the error estimates
of the finite element approximation of the L?-penalty problem. We have (cf.
Theorem 1.3.1)

1 1 1
IV (ue = ven) || 2Dy + %Ilue — uenll2(y) < Cllfllz2(0)(h2 + €7),

11
ue = uenllL2(0) < Cll fllL2() (h? + €i)?,



where wu.;, denotes the solution of the finite element approximation (1.3.1)
for the L2-penalty problem (1.2.19) with the mesh parameter h.
Consequently, we obtain (cf. Theorem 1.3.2)

lw = uenll o) < Ce +h2)HfHL2(Q)a lu = wenllz2(@) < C(e2 + 1) £l 2oy

||UehHH%(F) + \f”uehHL?(Ql) < C(h? + EZ)”fHLZ(Q)

From these results, we see that the optimal choice of € is € = h2, when h
fixed.

According to the fictitious domain method, we solve the discrete L?-
penalty problem (1.3.1) instead of the original problem of (1.2.1). Since
the domain §2 has smooth boundary, we provide an approximation scheme
for the computation of the inner-product (Uen,vn)0,. We find a polygon O

approximating to €, with max dist (x,99) = O(h?). For example, the € is
€

constructed by connecting the intersection points between 9€) and the mesh
for every triangle of the mesh. Then, instead of (1.3.1), we solve its approxi-
mation problem (1.3.6), and we have the error estimate (cf. Theorem 1.3.3)

. 11 1.3
|u — e nll ) < C(h? + et + e 2h2)||fl|L2(q)
HU—UehHL2 <C’(h—|—e2 + € 2h2+6 4h2 HfHLz Q)

which show the approximation scheme shares the same error order with the
error of finite element method for ¢ = h?; however, ¢ < h? would enlarge
€rrors.

The convergence of L2-penalty for elliptic and parabolic problems has
been proved in [31]; however, no error estimate has been found, neither the
finite element analysis. A similar penalty problem for the Navier-Stokes
equations is considered without any numerical results in [2]. Our error es-
timates in the H' norm maintain the sharpness of those for Navier-Stokes
problems in [2]. It should be kept in mind that our method of analysis pre-
sented here can also be applied to Stokes and Navier-Stokes problems with
little difficulty. Furthermore, the results presented in this paper are applied
to analysis of L? and H'-penalty fictitious domain methods for parabolic
problems in cylindrical and non-cylindrical domains in [49)].

Notation

Throughout this chapter, we follow the notation of [29]. Namely we use
standard Lebesgue and Sobolev spaces L?(w), H™(w) (m > 0) and H}(w),



where w denotes a domain in R2. We write as

(0,v)0 = (4,0)12(y) :/u(x)v(x) dzx;

1/2
lulow = uurm):( / () dx) ;
1/2

[Ulmw = Z ||aau||(%,w 3

|a|=m

lullme = (lullf1w + lul

)1/2

9

where a = (aq, @2) denotes a multi-index with |a| = a1 + a3 and set 9% =
(0/0x1)* (0] 0x2)*2.

We also use standard Lebesgue and Sobolev spaces L?(y) and H*(y)
(s > 0) defined on a part 7 of the boundary dw. The unit outer normal
vector to the boundary under consideration is always denoted by n. Finally,
we use the same letter C' to express a generic constant independent of the
penalty parameter € and the discretization parameter h.

1.2 The L?-penalty problem

Throughout this chapter, we assume that Q is a bounded domain in R? with
the C? boundary I' = 9Q. As a model problem, we consider the Poisson
equation with the homogeneous Dirichlet boundary condition,

—Au=finQ, uwu=0onTl, (1.2.1)

where f is a given function of L?(€2). The weak form reads as:

Find u € H}(Q) such that
(1.2.2)

(Vu, Vo)g = (f,v)q Yo € HY(Q).

1.2.1 The fictitious domain method with L2-penalty

We take a convex polygonal domain D C R?, which we call the fictitious
domain, such that Q C D and set Q1 = D\Q (see Figure 1.2.1). Then, the
fictitious domain formulation with the L? penalization for (1.2.2) is given as

Find u. € H}(D) such that
(1.2.3)

1
(Vue, Vo)p + ~(ue,v)a, = (f,0)p - Vo € Hy(D),



Figure 1.2.1: The original domain €2 and the fictitious domain D.

where
0<e<1 (1.2.4)

is the penalty parameter and f € L?(D) is any extension of f into D such
that

f=FfaeinQ |[fllop=<C|f
with a positive constant C' depending only on D and {2.

According to the Lax and Milgram’s theory, there exists a unique solution
ue of (1.2.3) for any € € (0, 1]. Substituting v = u, in (1.2.3) and then using
Schwarz, Poincaré and Young’s inequalities, we have

0,0

1
HVUGH%,Q + HVUeHg,QI + g”ueng,ﬂl

C* o 1 2 Lz 1 2
< 7||f||o,9 + §||Vu6||079 + f”f“o,@l + 2?””6”0’91'

This gives
1
[uellr,p + \%Hue!\o,ﬂl < Cl fllo.0- (1.2.5)
In particular, we have ||ucllo 0, < Cv/e.
Furthermore, the function u. solves the variational problem

~ 1
(VUE,VU)D = (f — elQlueﬂ)) Vv € H(%(D%
D



where 1, € L*°(D) denotes the characteristic function of Q; defined as

_J0 (zeQ)
lo, (z) = {1 (z e ). (1.2.6)

Hence, we can apply regularity results of elliptic problems in convex
domains (cf. [20, Theorem 3.2.1.2] for example) to obtain

u. € H*(D) (1.2.7)

and .
e < €7 =

1
<Cl1l+— . 1.2.8
S ( n ﬁ) 1los (1.2.8)

This estimate is meaningless for a sufficiently small ¢; However, we can
deduce better a priori bounds for |luc||2,o and, by using this, we can derive
some error estimate for wu..

1.2.2 The regularity and error estimates of the penalty prob-
lem

We present the main result of this section

Theorem 1.2.1. Let u. € H}(D) be the solution of (1.2.3). Then, we have
ue € H?(D) and

Jucllzo < Cllfllogq (1.2.9)
1
[ucll2,0, < Ce 1| fllog (1.2.10)
1
luclli,o, < Cet|fllog, (1.2.11)
3
tello, < Cet| flloo- (1.2.12)
Furthermore,
1
lu—ucle < €t fllog, (1.2.13)
1
lu —uclloo < €2 fllos (1.2.14)
1
lucllir < Cedlifllog, (1.2.15)

where u € H} () denotes the solution of (1.2.2).



Remark 1.2.1. In [31, Theorem I-4], it has already proved

lue — ull1,0 = 0, —0 as e—=0 (1.2.16)

1
%HUGHQQI
for f being the zero extension of f.

In the proof of Theorem 1.2.1, we use the following regularity result for
a linear elliptic equation. Although it seems not to be new, we give its proof
for readers’ convenience.

Lemma 1.2.1. For ¢ € L*(Q) and g € H'/?(T'), let w € H?*() be a
solution of

ow

—=gonl, w=0onadD.
on

1
—Aw+ —w = ¢ in Qy,
€
Then, we have

3
lwllog, < Clelldlloo, +etligls ),

[wllz.0, < C(llo

N

_1
0,0, +€ 2 HQH%,F)‘
In order to prove this, we need the following auxiliary lemma. .

Lemma 1.2.2. For g € H%(F) and n > 0, there exists v = v, € H?*(Qy)

such that,

@:gonf, v=0 on dD
on

with estimates

lolloe < Cn’llglls . wlie < Callglyp, ke < Cplllgll
Proof of Lemma 1.2.2. Tt suffices to consider the case (2 = ]Rf , since then
the general case is proved by the standard argument of using partition of
the unity and localization technique (see, for example, [47, §20]).

We suppose that ﬁ(f’) is the Fourier transform of a function h(z1,...,zx_1),
where ¢ = (&1,...,&n—1). Similarly, let () be the Fourier transform of
a function w(z) in variables (z1,...,xy_1), where & = (¢, zn). We ap-
ply the extension formula in [32, Theorem 5.2, Chapter 2] with a slightly
modification. Thus, we propose

0(¢, xn) = znexp (—(1+[€)n % an) 9(). (1.2.17)



Indeed, let |a| < 2, let us consider w, = 9% in Rf and set w, = 0 for
xny < 0. Let us denote o = (a1, ..., an, ), and a = (/, an). Hence 1wy (§)
is a finite sum of expressions like

aI(€)=a /0 e(IENEN) (¢ (1 4 |¢/ Yy 2) N Ik
exp (—(1+ €))% ) §(E ),

where a is a constant, j = 0,1. We have:

() (L [gDn—>)* v g(¢)

1(¢) = : =
N (N TR R0
and so
IHOR e =C [ €P (41Dl P
077_2||9||2%,p7 ay =2,
< CPlglli v =1,
C776”9||2%7Fa an =
This completes the proof. ]

Proof of Lemma 1.2.1. By Lemma 1.2.2 with = ei, there exis;us (VNS
H?(Q) such that 9¢/On = g on I', ¢ = 0 on 9D, |[¢]oa, < Ceilg|1p
27

and |[¢|2,0, < C’e*i||g||; - Setting u = w — v, we have
27

a—u:()onI‘, uw=0on 0dD.
on

Multiplying the both sides by u and integrating over €2y, we have

1 1
—Au+—u=¢+ AP+ =1 in Q,
€ €

1 1
IVulBo, + lulfe, < Ieloalulos, + (IWl20, + tIWlo: ) luos:

Hence,

N

HUHO,Ql = 6H¢H0791 + 6H¢H2,Ql + ||1/1
_1 3
oy +¢- CeHlglly o+ Cellgly -

0,

IN

This implies

3 3
lwllo.or < [¥llo.a: + €ll¢llon + Cetllglly r < €lldlloo, + Cetllglly -

10



On the other hand,

fuleo, < Co+au+tu| +Claly,
€ o, 2
< Clolog, + Clldlze, + C%W\o,ﬂl +Cllglly
< Cléllooy +CeHglly p+ Cllgls r-
which implies the desired estimate. O

Now we can state the following proof.

Proof of Theorem 1.2.1. First, we prove inequalities (1.2.10)—(1.2.15) by us-
ing (1.2.9).

Applying Green’s formula, we observe that (1.2.3) is equivalent to the
following problem:

—Auc=fin Q, ug=1ucg, onI', wu.=0ondD; (1.2.18)
At Y= Fma,, e 0wl (1.2.19)
€ on | on o

In view of the trace theorem, we have

’ Oue

on
Hence, we apply Lemma 1.2.1 to the problem (1.2.19) in order to obtain

< Clluellz.o < Cllflo.0-

1
5.0

§ ~

[uclloo, < Cled[|flloe + el fllo.0), (1.2.20)
_1 e

luellz0, < Cle7d [ flloq +[flloe) (1.2.21)

which imply (1.2.10) and (1.2.12), respectively.
We recall that in general we have (cf. [18, Theorem 7.27])

w10, < Clvlen, + 0 vlloo)

for any n > 0 and v € H?(Q). Setting n = e%, we deduce (1.2.11).
Estimates (1.2.13) and (1.2.15) are readily obtainable consequences of
(1.2.11) and trace theorems. Thus,

fue=ulhe < Cllue=ulyp = Cllucly

1
< Clluellro, < Cetl|flloq-

11



We proceed to derive (1.2.14). To this end, we introduce the adjoint
problems for (1.2.2) and (1.2.3) which are given as

Find up € Hj(Q) such that
) (1.2.22)
(VUF, VU)Q = (F, U)Q Yu € HO (Q)
and
Find up, € Hi(D) such that
(1.2.23)

1 ~
(VUFGVU)D + E(UFHU)Ql = (F7U)D Vv € HOI(D)7

for any F' € L?(Q), and the extension of ', F € L?(D), satisfying || F|jo,0, <
ClIF .

Apparently, we can obtain the a priori estimates and H! norm penal-
ization error estimate, like (1.2.21), (1.2.21) and (1.2.13), for the adjoint
problems (1.2.22) and (1.2.23). Thus we have

_1 ~
lurell2,0 < Cle” 1| Flloq + [[Flo0,); (1.2.24)
§ -~
[urelloo < Clet|[Fllogq + €l Fllog), (1.2.25)
1
lurelo — urll1o < Cet||Flloq- (1.2.26)

Denoting by @ and %g the zero extension of u and up, respectively, one
can show that

(Vue, Virp)p = (ar, f)p = (ur, f)o = (Vur, Vu)q
= (F,u)q = (F,@)p = (Vupe, Vi) p,

and hence

(V(upe 1), Vote — ) = (B~ ) — (e, w0

At this stage, we let F' = u. — @. Then,

- - _ 1
e = allg.0 + uellie, = (V(ure = @p), V(ue = @)p + —(wre u)oy

Combining those estimates, we get
1
[uelo — ullo,o < Cez| fllon- (1.2.27)

Thus, we have proved (1.2.14).

12



Now, we go back to the beginning of the proof; It remains to show (1.2.9).
To this end, let us consider the interface problem composed of (1.2.18) and
(1.2.19) and apply the standard method of tangential difference quotients;
See, for example, [20, Theorem 2.2.2.3], [33, Appendix] or [53, Theorem 3.1].

We take a set {Uj}é»v:l of open subsets in R? enjoying the following
properties. With U; and 1 < j < N, we associate a C? diffeomorphism
®;:U; — R? that satisfies

N
Qc U(I)j(Uj) CD,
j=1
Ujo = \I/j(q)j(Uj) N Q) = Ra_ N Uj, Ujl = \Ijj(q)j(U) le) = RQ— n Uj?

WheI‘E RZ = RZN{+xy > 0} and ¥; = <I>j_1. Further, we take {Gj}j»v:l C
C5°(€2) such that supp 6; C ®;(U;) and

N

Zej =1onQ and 6= mi<nNdist (supp 0;,0%;(U;)) > 0.

e 1<5<

We note that (6;uc)o®; € Hi(U;) for j = 1,2,..., N. We drop the subscript
j and write U = Uj, Ul = Ujla Uo = Ujo, P = (I)j, U = \I’j, and 0 = (9]' for
short.

Set u; = Qu, and ug = (Qu,) o P.

First, if U; = 0, then u; € H?(Q) and |lui|la.0 < C|lfllo.p- In what
follows, we consider the case Uy # () and U; # 0. Set D; = 9/0x;, (i = 1,2).
We observe that us € Hi (U) satisfies, for all v € HE(U),

2 2
1
g /aikDiUQDkvder E / ugv|D®|dx = (fa,v), (1.2.28)
U € k=171

ik=1

where fo = (0f + Vu,VO + V - (uVh)) o ®|D®| and
2
ag = (Y DigiDighy) 0 B|D| (i,k =1,2), ¥ = (¢1,1n).
=1

Let iz be the zero extension of us onto R? and let |h| < §/4. Substituting

v = Thh_l T";L_lﬂg € H}(U) into (1.2.28), where 7y, is the translation operator

13



with 7,¢(x) = ¢(x1 + h,12), ¢(z) € L?(R?), we have after some calculation
-1 \|P 1<

D (Tt 41y
h o i

2 T 1

h— 1.
< CZ Di( . u2>
=1

applying (1.2.16) or (1.2.5), we have Z?:l HDZ (%ﬂg) HU < Cfllo,o- On

0 ~
letting h | 0, we conclude D;Dius € L*(Up) and || D;D1uz|lou, < Cllflloq

fori=1,2.
Finally, we see that

2

D

i=1

2

Th—1_
u
h 2

0,U;

1 .
+ C-lla2l5p, +Clfal

2
0,U>

0,U

Diug = —(fa— Y Di(amDyuz) — DaagaDaug) — in Up.

1
422 k<3
This implies that D3us € L?(Up) and [Juz|2.0, < C|lfllo.c-

Summing up, we conclude that uc|o € H?*(Q) and |ull2,0 < C||fllo.-
This completes the proof of Theorem 1.2.1. ]

1.3 The finite element approximation to the L?-
penalty method

We introduce a shape-regular family of triangulations {7, },~0 to the convex
polygonal domain D, where h is the maximum diameter of the triangles of
Trn. That is, there exists a positive constant v4 such that

h

T<n (VT EVTh € {Thln),

T
where hr and pr, respectively, denote the diameters of circumscribe and
inscribe circles of T. Let V4(D) C H}(D) be the set of all continuous

piecewise-affine functions subordinate to 7;. A finite element approximation
for (1.2.3) reads as

Find uep, € V3 (D) such that

1 . (1.3.1)
(Vuen, Vop)p + g(uehavh)ﬂl = (f,on)p Vo, € Vi (D),

14



Thus, applying the fictitious domain method, we compute (1.3.1) instead of
(1.2.2). According to Theorem 1.2.1, the error satisfies

1
|u = uen 1.0 < [[u = ucll1,0 + [[ue — uenll1,p < Cer + OV (ue — uen)lo,p,
1
[ = tenlloo < [lu = uclloa + lue = uenlon < Ce + [lue = uenllo.0-
Hence, it suffices to examine u —u.p. First, we give the following lemma.

Lemma 1.3.1. Let ue and ue, be the solutions of (1.2.8) and (1.5.1), re-
spectively. Then, we have

1
IV (ue = ven)llo,p + —=lte — uenllo.o,
e

1
<C inf - — |lue — . (132
= nevm) (”V(“ wllon+ el ”h‘ml> 32

Proof. 1t is a consequence of the Galerkin orthogonality
1
(V(ue — ueh), Vvh)D + E(ue — ueh,vh) =0 Vvh S Vh(D)
O

Theorem 1.3.1. Suppose that u. and u, are the solutions of (1.2.3) and
(1.3.1), respectively. Then, we have

1 1 1
0,0 + \%HUC — tepllo0, < C(h2 +€3)[|fllo0, (1.3.3)

Hue — Ueh

||v(u6 - ueh)|

00 < C(h2 + e1)2||f]lo.0- (1.3.4)

Proof. We introduce some notations first. A generic (closed) triangle of 7y,
is denoted by K, and the set of all vertices of K is denoted by A(K) =
(W B VK. Set T = {K | KNT # 0} and T" = {K C QK NTr = (}.
The standard P1 Lagrange interpolation of v € H?(D) is denoted by Ijv.
We define vy, € V3, (D) by setting,

0 for v e A(K), K C Tr Uy,
on(v) =

uc(v) for all other vertices v.

substitute vy, into (1.3.2) and using the a priori estimates in Theorem 1.2.1,
we have ,
[ue = vnllo.or = lluclloe, < Cetlfllog

15



and

IV (ue = on)l[5 0

< O(IV(ue = Inw)llg o + IVuelg ovgr + 1Vonllg vz

< C(IV(ue = )5 + IV (w = w3 20 + IVuellg v + IV onllg or7)
< O (W |lull3q + hllucll3 o + Al o)

< Ch||flI§

where u € H%(Q) is the solution of (1.2.2). Therefore,
IV(ue —on)llp = IV(ue —vn)lga+ IV (ue = vn)llg 0,
IV (e = wn)ll5 0 + 1Vuellf 0,
1
< Ch|fl§a+ CezlIfllf o

which implies (1.3.3). See the proof of [53, Theorem 4.4] for the detailed
proof of this estimate; Especially, the estimate ||Vucllo o\ < Ch%HUEHZQ
follows from [53, Lemma 4.2] or [48, Lemma 2.1], and for the proof of

IVorllo,ovr < Ch ||u|/2,0, one can refer to the proof of [53, Theorem 4.4],
with aware of u = 0 on I'; which gives (1.3.3).

Then, setting F = 1o (ue — uep) and v = ue — ugp, in the adjoint problem
(1.2.23), where 1g = 1 in 2, and 1o = 0 in otherwise, applying (1.3.3) and
the prior estimates in Theorem 1.2.1, we have for any v, € Vj,(D)

IFlge = llue —uamlldo = (Vure, V(ue —ue))p + %(UFeaue — Ueh ),
= (Vupe —vp, V(te — uen))p + %(UFG — Vp, Ue — Ueh )y
< O(ei +h2)|[Fllogalet +h2)||f]log
+ Ok (et + )| Flloaet (e + kD)l flloo
which implies (1.3.4), and the proof is completed. O

Combining Theorems 1.2.1 and 1.3.1, we obtain the following estimates.

Theorem 1.3.2. Let that u and uep, be the solutions of (1.2.2) and (1.3.1),

respectively. Then, we have
1 1 1
IV(u = uen)lloo < C(h2 +€3)|[flloq,  [lu—uelloo < C(h+e2)|fllogq,
1 1 1
[[enl 1 p + %Ilueh\lo,m < C(h2 +€1)]|f]q-
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Due to the smooth boundary of €2, the inner-product (u.p,vs)q, can-
not be computed exactly. Therefore we need an approximation scheme for
computation of the problem (1.3.1).

As we mentioned in Introduction, we find a polygonal domain Q for O
such that the vertices of 9 are situated on 9§ and assume that there are
hi1 > 0 and cg > 0 such that

dist (2,Q) < coh®  (h € (0,hy)). (1.3.5)

We set € = D\6

Then, we consider

Find ey, € Vi (D) such that

R 1. _ (1.3.6)
(Vtten, Von)p + —(en, vh)g, = (f,on)p Yo € V(D).

We have the error estimate of the approximation

Theorem 1.3.3. Let u and Gy be the solutions of (1.2.2) and (1.3.6),
respectively. Then, we have

R . 1 1 1.3
| — tepllio < C”ue,hH%I < C(h2 + €1 +€ 2h2)| flloq,
lu — @enllon < Clh+ € + € 2h% + ¢ 1h2)[|flog-

Remark 1.3.1. For ¢ = h% we have [|u — fiepll10 < Ch: = Ceéi and
[t — @i plloe < Ch = Cez.
Proof of Theorem 1.3.3. In view of Theorem 1.3.2, it suffices to prove
. _1,3
leh — tenllio < Ce 2h2|| flloq, (1.3.7)

. 1 _1.3
liten — uenllon < Cle 2h* + € 1h2)| flloq- (1.3.8)

Subtracting (1.3.1) from (1.3.6), we have

(V(uep = tiep),vn)p + %(Ue,h =l Vi), 0,
+ %(ue,havh)gl\()l - %(ae,hvvh)ﬂl\ﬂl =0. (1.3.9)
for any v, € V(D). We also have
ldenlloq, < CVelflog: luenllon, < CVellflogn
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which be obtained by substituting v = 4, and v = ucj, respectively, into
(1.3.6) into (1.3.1).
Since we assume that (1.3.5) hold true, we have
N Lo
||u57h||0,Ql\Q1 S Ch2 HU’E,hHO’QlﬁTF’
1
[onllo e, < Ch2llvnlly o, qr < Chllvall1,p,
1
luenllpona, < Ch2lltenllooint:

1
lonllg.ona, < Ch2vnllo.oinz < Chllvnllyp,

where Tp = {K € T | KNT # (0}, and these estimates can be found in [44].
Substituting v, = uep — U, into (1.3.9), and applying these estimates and
Poincaré’s inequality, we obtain that

. 1 .
l[wen — us,h”%,D + g“ue,h - ueﬁ”gﬁmgl

IN

. . 1 . .
(V(uen — ten) V(uen — tien))p + g(ue,h = ie,ps Ueh — Teh)g 0, ey

IN

1, . . 1 .
g”ue,huoﬁl\gl [te,n — “6,h||o,§zl\g1 + g”uﬁh”QQl\Ql [[te,n — ue,h”0791\91

1
< C*h%ﬁéhHue,h — epll1,D,

€
which gives (1.3.7). Setting f= Uep, — Uep in (1.3.1) and (1.3.6), applying
(1.3.7) we finally get (1.3.8). O

At this stage, we give numerical experiments to show that the L2-error
is bounded by (y/€ + h) and the H!'-norm error is bounded by (e% + h%),
which is according to our analysis on L?-penalization and finite element
error estimates. We consider the problem

—Au=1inQ, u=0onTl,

where Q = {(z,y) | 22+y? < 1} and the exact solution is u = — 1 (22+y?—1).
To implement the fictitious domain method, we set the domain D = {—1.2 <
x,y < 1.2}. We show a example of mesh (see Figure 1.3.1) and the numerical
solution (see Figure 1.3.2). We solve the problem (1.3.6). First, fixing
h = 0.01, we show the errors for different ¢, see Figure 1.3.3; then, setting
€ = 1079, we observe the errors dependents on different h, see Figure 1.3.4.
The logarithm is of base 10 for all the figures.
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Remark

This chapter is based on [35].
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Chapter 2

The penalty method to the

Stokes and Navier-Stokes

equations with slip boundary

condition

2.1 Introduction

Let us consider the Navier-Stokes equations with slip boundary condition.
Let Q C R, d = 2,3, be a bounded smooth domain, with 9Q = DUT,
DNT = 0 (see Figure 2.1.1). Given arbitrary 7" > 0, the Navier-Stokes

problem read as:

v —vAu+ (u-V)u+ Vp=f, in Q% (0,7),
V-u=0, in Q % (0,7),
u =0, on D x (0,7),
up, =0, 7r(u) =0, onI'x (0,7),
u(0,x) = up, on (,

where v > 0, u, = u - n, n is the unit outer normal vector to I', and 77 (u)
is the tangential component of traction vector on I' defined below. Here, we

set 7r(u) = 0 for simplicity. f and ug are given functions.
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For velocity u and pressure p, we set the stress tensor,

o(u,p) = (0i;(u,p)) = —pl + 2vE(u), (2.1.2a)
E(u) = %(Vu + Vaul), (2.1.2b)

where I denotes the identity. We set the traction vector together with its
normal and tangential components:

7(u,p) = o(u, p)n, (2.1.3a)
Tn(uap) = T(u>p) "N, TT(U) = T(uap) - Tn(U,p)TL- (213b)

Also, we set the normal and tangential component of velocity u:
Up = U N, UT = U — UpN.

The slip boundary condition u,, = 0 plays important roles in physical
fluid models (cf. [5, 41]). To solve the Stokes/Navier-Stokes equations with
the slip boundary condition by the finite element method is not as easy as
the case of non-slip boundary problems( e.g. Dirichlet boundary condition).
It is known that the variational crimes (cf. [3, 26]) may occur if the finite
element spaces or the implementation method are not chosen properly to
approximate the slip boundary condition.

To make a brief explanation about the variational crimes, we introduce
a polygon or polyhedral domain €2} (see Figure 2.1.2) to approximate the
smooth boundary domain €2, with a triangulation 7 to Q. 0Q, = DU,
D, NTy, = 0. We denote ny, as the unit outer normal vector to I'j,. Let us
consider the Pl-element in finite element method to velocity u, which is to
find a piecewise linear continuous function uy, defined on 7, to approximate
u. We see that

we Vi, = {v, € C() | vp|r € PL(T),VT € Tp,, v, = 0 on Dy},
where P;(T) is the set of polynomials of degree i on T'. If we set
th:{thVh|Uh.nh:00n1‘h}’

as the finite element space with slip boundary information. Since ny is
discontinuous on I'y, Vj,, coincides with V3, where

Vio = {vp € Vi | v, =0 on T'p }.
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Figure 2.1.1: Q, I" and D. Figure 2.1.2: Qp,, 0Q), =T U Dy,
and triangulation 7p.

Therefore, we cannot approximate uy|r = 0 by wup, - np|p, = 0 naively.
Several methods have been proposed to tackle this problem. For example,
Verfiirth (cf. [45, 46]) enforces the slip boundary condition in a weak sense:

/unu ds =0, VYueH YD),
r

where a discrete coupled inf-sup condition is required for the finite element
method. We have to mention that the discrete coupled inf-sup condition is
nontrivial to verify or even may not be satisfies for general finite element
spaces, for example, the P1/P1 element.

Let Qy, be the polygon/polyhedral domain approximating to the smooth
domain Q, with 9Q, = T', U Dy, Ty, N Dy, = () (see Figure 2.1.2). The
approach proposed in [41, 42, Tabata and Suzuki] is to use P1/P1 element
with stabilization, and implement the slip boundary condition as up(p) -
n(p) = 0, where uy, is the finite element solution, and p are the vertices on
I'j,. A similar method presented in [16] using P2/P1-element is to introduce
a homeomorphism Gy, : 0, — €2, and implement the slip boundary condition
as up(G(p)) - n(G(p)) = 0, where p are the vertices or the midpoints of edges
on I',, These two implementation methods avoid the variational crimes;
however, GG, and n are not easy to obtain in numerical computation for
complex domain Q. In FEM, it is more convenience to use ny (the unit
outer normal vector to I'y) than n. Also, we have to mention that it is
technical to implement up(p) - n(p) = 0 in finite element code.

Instead of enforcing u,|r = 0 into weak sense, or searching for the suit-
able implement method to avoid the variational crimes, an alternative way
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is to introduce a penalty term to approximate u,|r = 0. Here we present
the penalty problem to (2.1.3),

ul — vAue + (ue - Vue + Vpe = f, in Q, (2.1.4a)
V-u =0, in Q, (2.1.4D)
ulp =0, 7(ue,pe) + € tugn =0, on T, (2.1.4c)
ue(0, ) = uco, on . (2.1.4d)

where 0 < € < 1 is the penalty parameter, and u.y is some approximation
to ug. In view of (2.1.4c), the idea of penalty method is to approximate
up|r = 0 by a Robin boundary condition. In the variational form of (2.1.4),
the penalty term becomes 1 [1 uc,vnds (see (2.3.8)), where

veV={ve H(Q)?|v|p =0}

is the test function. For u. the solution of (2.1.4), it is apparently that
Uen, — 0 in L2(T) as € — 0, which approximate to u,|r = 0.

The penalty method has several advantages. The technical implementa-
tion of u,|r = 0 (cf. [42, 16]) to avoid the variational crimes is unnecessary.
In cost we need to compute the integration fl“h (up - np) (v - np)ds, where
up, vp, are the solution and test function for finite element approximation.
The integration on I', can be easily implemented by popular FEM soft-
wares (Freefem++, FeniCS, cf. [21, 30]), and here only n;, (instead of n) is
involved. The penalty method is well applicable to various types of finite
element spaces, such as P1/P1 and P1b/P1 (cf. [24]), P2/P1 (cf. [12, 14])
and so on.

In this chapter, we first consider the penalty method for the Stokes
equations with slip boundary condition (see Section 2.2). We prove the
error estimates (see Theorem 2.2.3)

|w = el i) + |p = Pell g1 (o) /m < Ce,

which has already been obtained in [14]; however, we give a different proof
based on the separation of p. € L?(Q):

Pe=1DPe+1le, pe € LA(Q), ke :/pgdx/m], (2.1.5)
Q

and we show

< Ce.

HTn(U,p) - eiluen + ZEHHfé(F) >
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Moreover, we show the regularity of the penalty problem (see Theo-
rem 2.2.4)
el zrm(y + IPellm—1(0) < CllfllHm—2(0),
under the C™~ smoothness assumption of 2, for any integer m > 2. Fur-
thermore, we obtain a new result of the error estimates (see Theorem 2.2.5)

|u — uellgm(qy < Ce, ¥m €N,

We then apply the finite element approximation to the penalty prob-
lem (2.2.9) with P1b/P1 element, and we proved the error estimates (see
Theorem 2.2.7 and 2.2.8). We show the best error estimates we obtain:

la— unllig, + 15— palle, < C(h+ Vet h2/e), ford=2,

lit = unllug, + 15— palle, < CVh+ Ve+h/ye), ford=3,

where h is the mesh size of triangulation.
In Section 2.3, we consider the penalty method to the Navier-Stokes
problem (2.1.1). For the slip boundary condition u,|r = 0, we have

1
/(u-V)u-udl‘:/un|u2\ ds =0,
Q 2 Jr

which implies the energy inequality of u:

T
Ty + [ IOl de < C.

Since ue,|r # 0, we have

1
/(uE-V)ue-u6 dr = /um|uz| ds # 0,
Q 2 Jr

and the energy inequality (or the well-posedness) of u, is not apparent. Our
first job is to prove the well-posedness of the penalty problem (2.1.4) (see
Theorem 2.3.1). We show the estimates of ue, p. are bounded independent
on the penalty coefficient ¢!,

Besides of the well-posedness, we derive the error estimates of the penalty
method (see Theorem 2.3.3):

" —uell 20, p2(0)2) + [ = uell oo 0.1 11 (0)2) < Ce

Section 2.4 is devoted to the penalty method for stationary Navier-Stokes
equations. We investigate the well-posedness of penalty problem, the error
estimates of penalty, and the finite element method for penalty problem.
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Notations

Throughout this chapter, we write || - ||+ as the norm of Sobolev spaces
H(Q) or HE(Q)?, and || - ||lyyes for WEP(Q) or WHFP(Q)L. Let w be some
open set of R? we denote (-,-), as the inner-product of L?(w), and we
write (-,-) for the case w = . Sometimes, we use L™(0,T; H*) instead of
L™(0,T; H*(Q)9) for short.

2.2 The penalty method to the Stokes problem

Let f € L?(Q). We consider the Stokes equations with slip boundary con-
dition:

—vAu+Vp=f in Q, (2.2.1a)
Vou=0 in Q, (2.2.1b)
up, =0, 7r(u)=0 on T, (2.2.1c)
u=20 on D. (2.2.1d)

Remark 2.2.1 ( cf. [37] ). Assume f € L?(2) and © is C3-smooth, then
there exists a unique solution (u,p) € H2(Q)? x (H'(Q)/R) to (2.2.1).

Function spaces.

V={veH Q) vp=0}, Vi={veV]|uvr =0} (2.2.2a)
Vei={veV|V-v=0}, VZI=V,NV°, (2.2.2b)
Q=L*Q), Q=1L3), (2.2.2¢)
M = HY(T). (2.2.2d)

We denote X' as the dual of Banach space X, for example M’ = H _%(F).
For any u,v,w € H'(Q)4, p€ Q,n € M and p € M’, we set

a(u,v) =2v(&(u), E(u)), (2.2.3a)
ay(u,v,w) = /Q(u V) - w dz, (2.2.3Db)
b(v,p) = —=(V -v,p), (2.2.3c)
c(p,m) = /F,un ds. (2.2.3d)
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Some properties of bilinear and trilinear forms.( cf. [8, 19, 45])

o Coercivity of a: there exists a > 0 such that

a(u,u) > allul|?y, YueV. (2.2.4)

e The inf-sup condition of b: there exists 8 > 0 such that

inf sp WP (2.2.5)

PELZ (N0} vemg @)\ (o} 1Vl m[Ipll L2

e The inf-sup condition of c: there exists 79 > 0 such that

inf sup _clson) > 0. (2.2.6)

rEMN\{0} yev\ {0} [Vl £ Nl ]l a7

The variational form of (2.2.1) reads as: find (u,p) € V;, x Q such that,

a(u,v) + b(v,p) = (f,v), YveV,, (2.2.7a)
b(u,q) =0, YqeQ. (2.2.7b)

Let 0 < € < 1, the penalty method for (2.2.1) reads as:

— Aue + Vpe = f in Q, (2.2.8a)

V-u.=0 in Q, (2.2.8b)
1

Tn(ueape) + —Uen = 07 TT(UE) = O on F, (228C)
€

ue =0 on D. (2.2.8d)

The variational form of (2.2.8) reads as: find (u.,pe) € V x @ such that

1
a(ue,v) + b(v, pe) + EC(UE"’ v) = (f,v), YvelV, (2.2.9a)
b(ue,q) =0, VqeQ. (2.2.9b)
Remark 2.2.2. p. ¢ Q For non-homogeneous slip boundary condition

un = g on I', we set the penalty term %c(um — g,vy) in (2.2.9a), or equiva-
lently, 7, (ue, pe) + 2 (ue, — g) = 0 in (2.2.8¢).

The following theorem gives the well-posedness of penalty problem (2.2.9),

also it shows the estimates of u,, p. are independent on e~ 1.
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Theorem 2.2.1. Given f € V', there exists a unique solution (ue,pe) €
V xQ to (2.2.9), with

[uell gt + [[pell L2 < Cllfllv-

Proof. From the coercivity of a (2.2.4), we conclude the existence of u. and
uellv < C|fllv+. Set pe = pe+le, where pe € Q and le = [, pe dz/|Q|. From
the inf-sup condition of b (2.2.5), we have ||pc||a < C| f|v. To estimate .,
we choose a trace lifting v € V satisfying v = [cn on I, and ||v||1.0 < CJl|.
Substituting this v into (2.2.9), in view of the fact [ ue, ds = 0, we have

T2 = ke [ vnde = ~b(o,k) = alue0) + Ho,50) -~ (F.0),
T
which implies

llel < Clluell g + [[Pell2 + 1 fllve) < Cll fllve.

2.2.1 The error estimates of H' norm

To show the error estimates of penalty method, we introduce the Largrange
multipliers A = —7,,(u, p) and A = Lue,, then (2.2.7) and (2.2.9) are rewrit-

€
ten into the following two equations, respectively.
(1) Find (u,p,A\) € V x Q x M’ such that,

a(u,v) + b(v,p) + c(A\,v,) = (f,v), YveV, (2.2.10a)
b(u,q) =0, VqeQ, (2.2.10Db)
c(un,n) =0, Vne M; (2.2.10¢)

(2) Find (ue, pe, A\e) € V x @ x M’ such that,

a(te,v) + b(v,pe) + c(Ae,vp) = (f,v), YveV, (2.2.11a)
b(ue,q) =0, VgeQ, (2.2.11b)
c(Uen,n) = €c(Ae,n), Vn € M. (2.2.11c)

We state the error estimates of penalty method.

Theorem 2.2.2. Let (u,p) and (ue,pe) be the solutions of (2.2.1) and
(2.2.8), respectively, then we have

s = el + Ip = fellz2 + VA = Adllzzry < evalM ey (22.12)
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Proof. Substituting v = u — u, into (2.2.10a)—(2.2.11a), we have
a(u — Ue, u — Ue) + (A — Aey Uy, — Uen) = 0.
Since u, = 0 and u¢, = €., we have
(N — Ay Up — Uep) = €c(A — A, A — Ae) — ec( A A — Ao).
From the coercivity of a (2.2.4), (2.2.13) and (2.2.14) we obtain
olu = el g+ A~ Al
e A= A) < SIA = AclFar) + 5 1A 2 r):
which implies
Ju — el g + Vel = Aell 2y < evVell Ml 2y
From the inf-sup condition of b (2.2.5) and
b(p — Pe;v) = —a(u — ue,v), Vv € (Hy(Q))%,

we have
P — Pell2 < Cllu — uel| g,

which gives (2.2.12).

(2.2.13)

(2.2.14)

(2.2.15)

(2.2.16)

(2.2.17)
O

Theorem 2.2.3. Let (u,p) and (ue,pe) be the solutions of (2.2.1) and

(2.2.8), respectively, then we have

[ —uell g+ P —Pell 2 + Vel = Ae +lell 2r) < Ce(llMl gy T1)- (2:218)

Proof. Subtracting (2.2.10a) from (2.2.11a), we have, for any v € V,

c(A =X +le,vn) = —a(u — ue,v) — b(v,p — Pe).

In view of the inf-sup condition of ¢ (2.2.6) and (2.2.17), it yields

A =Ae + Lellarr < Cllu = uel g

Noticing that [ ue, ds = 0, instead of (2.2.14), we derive

(2.2.19)

c(A=Ae, Up—Uep) = €C(A=AecFke, \=Aetke) —ec(Atke, \—Ae+Ee). (2.2.20)
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From the coercivity of a (2.2.4), (2.2.13) and (2.2.20), we obtain

oflu— UEH%ﬂ A=A+ le”%%r)

(2.2.21)
<eeA+ Lo, A — Ae + L) < e+ LellarllA = Ae + Lel s

From (2.2.21) and (2.2.19), we obtain
[ = el < Cel|A+ Lel|ar,

which implies (2.2.18) because [, is bounded independent of € (see Theo-
rem 2.2.1). O

Remark 2.2.3. From (2.2.19), we have [[A — Ae + le[| g-1/2(p) < Ce.

2.2.2 The error estimates of H™ norm

In view of

HuenHH%(F) = [|tten — unHH%(F) < Cllue — ullgr < Ce,
we have

7t Pl gy = €™ tenll 3 ) < €

which implies
ltell 2 + ||pell i < C.

In fact, we have the following regularity result for penalty problem (2.2.8).

Theorem 2.2.4. For arbitrary integer m > 0, let Q € C™F3, f € H™(Q)?,
then there exists a unique solution (uc,pe) € H™T2(Q)4 x H™L(Q) to
(2.2.8), with

[tell zrm+2 + [|pell prmsr < ClLf || m- (2.2.22)

Proof. For general domain 2 € C™*+2, the regularity in interior or near C' is
well known( cf. [18, 27]); that is e sms2() +pel s ) < C@) 1 fllamo)
where w C Q and dist(w,I") > > 0.

For the regularity near I', there exists a set of smooth sub-domain in R,
denoted as {U;} Y, satisfying I' € UN, U;.

We introduce a cut-off function #; € C*®°(R%) with suppf; C U;, and
consider the equations of (Gzzug, H?pe) in U; N Q.

There exists a C*+3-diffeomorphism( cf. [47]) ®; : U; — Qg := RZHF N
{z e RY,| |Z| < R}, where R | :={Z = (&, %4) € R* | & € R¥™,Zq > 0} is
the half-plane, and we also have ®; : T NU; — I; := {& | || < R, &4 = 0}.
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Then we consider the equation of (fie, pe) := ((62ue)o®;, (62pc)o®;) in do-
main @ g, to which we apply the famous Agmon-Douglis-Nirenberg’ method(
cf. [1]) and obtain ||D;Djtc||r2 < C(||fllr2 + luellgr), i=1,...,d—1; j =
1,...,d, where D;v = V,,v. Hence, we can conclude ||ﬂ€||H%(fi) < C| fll g*,
which implies ||uep|| sr < C||fllq. Following from well-known regularity re-
sult for Stokes equation by Cattabriga [13], it yields |ue|lzz + ||[pellm <
C|fllz2- For m > 1, (2.2.22) can be proved by induction method.

In above, we briefly sketch the strategy of proof. The key point is to
consider the equation in the half-plane via some transformations. We refer
the readers to [34, Saito, proof of Lemma 4.1] for detailed arguments on
those techniques. Here, to make the argument brief, we only prove the case
of k = 0 and the half-plane domain Q = ]Rg,-i‘ ={z = (2,2q) e R | 2’ €
Rd_l, xTq > 0}

Set Div = (v(x1, -+ ,@; + h,-- ,x4) — v(z))/h, h > 0. Substituting
v= D", Diu into (2.2.8),i=1,...,d — 1, we have, with I = {z | 24 = 0},

a(ue, D, Dy ue) +b(D", Dy ue, pe) + - / Uen D, Diue-nds = (f, D', D} ue).
r

Using the fact (w, D’ ,v) = (Djw,v), Yw,v € Hl(R§l7+), we get

(Djte: Dyud) + 1 [ |Djucnlds = (4,0, Djuc) < C 121D Dl

Since | D} v||z2 < C||V4,;v|| 2, from the coercivity of a (2.2.4), we have,
IDjuclgr + €2 Dytenll 2y < Clf g2y i=1,...d = 1.

Let A — 0, and we have

|DiDjuel 2 + € V2| Disten|| < C|fllg2y i=1,...,d—1; j=1,....,d.

By trace theorem and n = (0,...,0,1), we have
And we can conclude (uc, p.) € H2(Q)? x H(Q) and (2.2.22) for m = 0( cf.
[13]). O

Theorem 2.2.5. For any integer m > 0, assume f € H™(Q)? and Q has
C™*3 smoothness. Let (u,p) and (ue,pe) of H™F2(Q)4 x H™(Q) be the
solutions of (2.2.1) and (2.2.8), respectively, then we have,

ot = ell gz + 1p = Bellmer < CelA 5. (2.2.23)
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Proof. To make the argument brief, we only prove the case of m = 0(
m > 1 follows form induction method) and the half-plane domain =
Rg - For general domain, we can applied the transformation introduced in

Theorem 2.2.4. Substituting v = D', Dyp(u — uc), i = 1,...,d — 1, into
(2.2.10a)—(2.2.11a), we have

CL(’LL — Ue, D’ihD;/L(u - ué)) + C()‘ - )\E + le: DZ—hD;L(u - ue) ' 7’L) = 07
which yields,

a(D}(u — ue), D (u — ue)) 4+ ec(Di (A = Ae + 1), D (A = Ae + 1))
= ec(Di(A = A + 1), Di, (A + 10)).

Since [, is a constant, D};le = 0. Therefore, we have

o[ D (u = ue)l[F + ell DR (A = A 122 ry

) (2.2.24)
<Ce| Dy - A+ 1), F)nDhAum(F
Via inf-sup condition of b, and the equation
b(Dj,(p — Pe),v) = —a(Dj(u — uc),v), Vv € Hy(R] ),

we have || D}, (p — pe)|lz2 < C||Dj(u — ue)| g

Via inf-sup condition of ¢, and the equation

c(Di (A= Ae +10),v) = —a(D} (u — ue),v) — b(Di(p — pe),v),
we have ' '
IDLA = A+ 10,3 gy < CIDf (= )
In views of (2.2.24), we obtain
1D} = ulls < Cel DAy 0

then letting h — 0, we proved (2.2.23). O

2.2.3 Finite element approximation with penalty

A regular triangulation 7 is introduced to the smooth domain 2, where
h = maxgeT, diam(K). Qp = UKeThfa o, =T,UDy, Tpy,NDy =0 (see
Figure 2.1.2). The boundary mesh S} inherited from 7}, is also a regular
triangulation of I'y, in d — 1 dimension. ny, is the outer unit normal assigned
to I',. We assume D = Dy, for simplicity. Suppose I' is C2 smooth, then we
have
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(X)

I

Figure 2.2.1: 7 : ', = I

(1) maxyer dist(z,T) < Ch2.
(2) There exists a continuous bijective mapping
m: 'y =1 z— ().
Moreover, for any element S of Sy, we have 7,7~ € C%(S) and
||Dx| — 1|, ||Dx~ Y — 1| < Ch?, (2.2.25)
where |Dr| satisfies [ vds = th vom|Dn~|ds. And we also have

|np, —nox| < Ch. (2.2.26)

Finite element spaces:

We consider the P1/P1 and P1b/P1 finite element spaces.
Vi, = {on € C(W)? | |k € Pi(K), K € T, va|p, =0}, for P1

Vio = {vn € C()" | vlie € Pi(K) ® B(K), K € Tq, va|p, =0}, for P1b,
Qn = {vn € C(W)" | va|x € PI(K), K € Th},
Vio={vn € Vi lon=00onT3}, Qn=Qun LE (),
Ap = {vn - nyp | vy € Vi),
where Pj(K) is the set of polynomial of order [ in K, and B(K) stands for
the space spanned by the bubble function on K. We define the following
bilinear and trilinear forms:
ap(up,vy) = th 2vE (up)E(vy),  Yup,vp € Vi (2.2.27)
br(vp, pR) = — th YV - vpppdz, v, € Vi, ph € Qp, (2.2.28)
v =1 for P1/P1,

2.2.29
v =0 for P1b/P1. ( )

dh(ph7qh) = 7h2(Vph7VQh)th {
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Choice of ¢y,.
(1) Nonreduced-integration: For any \p, up € Ap.

ch(/\h,,uh) :—/ /\huhds. (2.2.30)
Iy

1 . .
[nlles, == cnlpn, pn)? is equivalent to [[unllr2(r,), for any p, € Ap.

(2) Reduced-integration: For any Ap, up € Ay,

cn(pnsmn) = D |slpn(ms)mn(ms), ms =

{ midpoint of s if d = 2,
seSy

barycenter of s if d = 3.

(2.2.31)
lenlle, = ch(,uh,,uh)% is a semi-norm of Ap( there exists u, # 0 but
cn(pns pin) = 0).

Coercivity and inf-sup conditions.
e Coercivity of ay:

ah(vh,vh) > alHUhH%ﬁ(Qh)’ ar >0, Yo, € V. (2.2.32)

e inf-sup condition of by, 51,61 > 0:

inf sup bn(0h, Pr) > B4, for P1b/P1. (2.2.33)

PreQn\{0} vi EVio\{0} th||H1(Q)thHL2(Qh)

b Uh, P o
sup bnlon, pr) > Billenllzz,) — YOIV DRl L2(0))
oneVio\{0} 1Vnll 1) (2.2.34)

Vpn € Qp, for P1/P1.

e inf-sup condition of ¢j, defined by (2.2.30):

f Up, - MR
. r
inf s h

up
€A} o evi\ o [[onllE ) lien ll e

> 1 > 0. (2.2.35)
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Finite element penalty scheme.

The finite element approximation to penalty problem (2.2.9) reads as: find
(up,pr) € Vi, x @Qp, such that,

1 N
an(un, vn) + bp(vn, pr) + Ech(uh Ny, p ) = (fyon)e,,  Yon € Xp,
(2.2.36a)
bn(un, qn) = dn(Phs qn)s  Vqn € Mp, (2.2.36b)

where f is some extension of f onto © = QU Q, with HfHLQ(Q) <C|fllp2-
In the following we only discuss the P1b/P1 element approximation (y =
0, byp(up,qn) = 0), since the analysis method and results of P1/P1 with

stabilization (by,(up,qn) = h*(Vpn, Vqn)) are very similar to the case of
P1b/P1.

Well-posedness and a priori estimate

Theorem 2.2.6. There exists a unique solution (up,pp) € Vi X Qp to
(2.2.36) with cp, defined by both (2.2.30) and (2.2.31), and the solution sat-
isfies

wnll i) + B0l 2y + €2 un - mnlle, < Cllfllze,y  (2:2.37)

where py, = Py + ln, Pr € Qn, In = Jo, prdz/|Qu], and

~ h
| < C (HfHL?(Qh) + llunll gy + lunlling,) + 6) ' (2.2.38)

Proof. The existence and uniqueness of solution (up,pp) and (2.2.37) follow
from the coercivity of ap, the inf-sup conditions of b,. Here, we only check
the estimate (2.2.38) of Ij,. In views of (2.2.36b) of v = 0, we obtain, for ¢,
defined by both (2.2.30) and (2.2.31),

cp(up - np, 1) = / up, - npds = Z Is|(up - np)(ms) = —bp(up, 1) = 0.
T SES,
(2.2.39)
Since ny, is discontinuous on I'j,, we cannot choose the trace lifting v, € V},
with v, = lpny, on T. Let {P;}Y, be the set of the vertices of polygon or
polyhedral domain €, ( nodes of I'y), I'; = {s € S, | P; € 5}( faces/edges
contain the vertex P;), we then define a v, € X}, satisfying

1
op(P;) = lhlj# > nnls),  Nonllman) < Cla,

i sel’;
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where Ffﬁ equals to the number of faces s in I';, and ny(s) is the value of ny,
on s. Since I' has C® smoothness, we have |v, — Ipny| < Ch on I'y. Then,
substituting this vy, into (2.2.36a), it yields,

. 1
lh/ vp, - np, = —bp(vn, In) = ap(un, vy) + bp(vn, Pr) + Ech(uh N, Up - Np,).
Iy

In view of (2.2.39), we have

1 Iy 1
ECh(Uh “Mp, Up M) = - ch(up - np, 1) +Ech(uh “np, (v — lpny) - np).
———

=0

Therefore, we have

HIVIE lh/ Iyny - np, = lh/ (Innp, — vp + vp) - np,
Ty T'n
= lh/ (Ipnp — vp) - np + ap(un, vp) + bp(vn, Pn)
Ly

+ %ch(uh “np, (vp — lpng) - np),
which implies (2.2.38) since |vp, — lpng| < Ch on T'y,. d
Extension operators and skin domain estimates
We denote the skin domain QAQ, = (Q\Qz) U (Q,\Q), Q:=QUQ,.
Lemma 2.2.1 ( cf. [29]). There exists an extension operator
PeH™Q)HMRYHY), (0<meN0), v Pv=:7
such that,
15 ]| g7 (rety < Cmllvll gy, 0 <k <m, Yoe H™Q)"

Moreover, if V -v = 0, then we can take the extension v satisfying V-v =10
in R%,

Lemma 2.2.2 ( cf. [44, 48, 53]). Under the assumption maxger dist(z, ') <
Ch?, we have

15[l zr a0 < Chllollig), 0<k<m-—1, VYveH™Q)"
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Lemma 2.2.3 ( cf. [44]). There exists an extension operator P, € L(V),, H*(Q)),
such that, Yvy, € Vp,

[Pnonll ey < Cllivall o)

1
[1Phonll e any,) < Ch2llonllgnry, ), k= 0,1,
1Phonll 2y < Chllvnll aren),

where Kr, :={K € T, | KNI}, # 0}.

Lagrange interpolation and projection operators

We employ the Lagrange interpolation operator I, and projection operator
Pr2(cf. [19, 46]). o
Ih C(Qh) —>Vh, 1)0—>Ih1),

[v = Invll Loy + hllv = Invllwiee,) < CR2[0llyap@y Yo € WHP(Q).
P2 HY(Q) = Vi, v Ppaov,
(U — PL2U7Uh)L2(Qh) =0, VYo, eV,

v — Pr2v| 1200,y < Chlv]|g1,)-

Consistency error estimates

Lemma 2.2.4 (cf. [24]). Let 7 € C*(T}), then we have, for anyv € HY(Q),

(1) llvemlrar,) < CllvllLzm)-

(ii) | Jpvds = [y, vonds| < Ch||v] 32, -
(iii) o = vomll2r,) < Chlvll g1 gy

Proof. The proof has been derived in [24]. Here, we present a brief proof for
the convenience of readers. (i) is obvious. (ii) follows from the properties of
T (2.2.25),

/vds —/ vomds = / vor(|Drnt —1)ds < ChQHUHLQ(Fh).
T 'y Iy,

(iii) is from [45]( (5.1), Verfiirth). O
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Lemma 2.2.5 (cf. [24]). Assume X € L*(T')(resp. Wh(T)) for ¢, defined
by (2.2.30) (resp. (2.2.31)), and let X = X o, then we have

le(vp, A) — ep(v - np, V)| < Ch||v||H1(Q), Vo e HY(Q)® (2.2.40)

Proof. For ¢}, defined by (2.2.30), we have, from (2.2.26) and (iii) of Lemma 2.2.4,

lc(vn, A) — cn(v - np, N)| = |e(vn, A) — / v - npds|
IV

/FUnA_/Fh@nA)M

/ (tpA) o —v-(nA) o+ v - (RA) o — v - nyA
IV

<

_l’_

<ChJoll g 3y Il 2o, -

For ¢, defined by (2.2.31), we have

/ v-npAds — cp(v - np, 5\)

Iy

<y /v mnlA = Mma)lds < Chlloll e Al .
SESy s

O]

Proposition 2.2.1. Let (u,p) and (up, pp) be solutions of (2.2.1) and (2.2.36),
respectively. Set X = —7,(u,p), A\p = %uh -np. We assume f € L*(Q), and
(u,p) € HX(Q)? x HY(Q), and the same assumption of Lemma 2.2.5. For
any v, € Vi, we set the consistency error

E(vp) =an (@t — un,vp) + by (vr, B — pr) + ca(vp - mas A — Ap),

where (i, p) is the extension( Lemma 2.2.1) of (u,p) onto Q = QUQ,. Then,
we have
IB(on)] < Chllen i a (2.2.41)

Proof. We denote
ay(u,v) :=2v(€(u),E(V))w,

bw(’U, Q) = —(V : UyQ)cw

for some subset w of €.
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From (2.2.7) and (2.2.36), we have

E(vp) = — ag\q, (u, Phon) + ag,\o(T, vp)
— bo\q,, (Phvn, w) + bo,\o(vh, @) + (f, Phvn)ave, — (f;vn)ae

— ¢(Prop - ny A) + ep(vp - gy A).

(2.2.41) follows from Lemma 2.2.2, 2.2.3 and 2.2.5. O

2.2.4 Error estimates: nonreduced-integration scheme

Theorem 2.2.7. ¢, is defined by (2.2.30). Let (u,p) and (up,pn) be solu-
tions of (2.2.1) and (2.2.36), respectively. Assuming f € L*(Q), (u,p) €
H?(Q)4 x HY(Q), we have

1% = wnll @) + 15— Prll 2@y < C(Vh + Ve +h/Ve). (2.2.42)

Proof. Set v, = Inti. Since ||[i—up || g1(q,) < la—vnll g, + lun—vul g1 (0,
and ||@ — vpl[g1(q,) < C’hHﬂHHQ(Q), we only need to show the estimate of

l|un — ’UhHHl(Qh)-

at|lup — Uh||%{1(9h) < ap(up — vp, up — vn) (2.2.43)

= ap(vp — U, vp — up) + ap(l — up, vp — up)-
ap (@ — up, vy — up)
=E(vn —up) — bp(vn — up, p — pn) — cn((vp — up) - np, A — Ap).
In the following, we are aim to prove
ah(ﬂ — Up, Vp — uh) < Ch”’l)h — uhHHl(Qh)

€ ~ 5 h2 19 (2244)
= 2= Al + € +ellMlzary,),

which implies (2.2.42).

From Proposition 2.2.1, we have |E (v, —up)| < Chllvp—usl g1(q,)- Since
we can replace p by p+1 for any constant I, we set p satisfies p—pyp, € L%(Qh)
and ¢, = Pr2p, qn — pp € Qp. With bn(up,qn) =0 and V - @ = 0, we have

— bp(vn — up, p — pn)
=bp (@ — v, b — qn) + bn(@ — v, qn — Pr) + bn(un, P — qn)
=bp (% — v, qn — pr) — bn(vn — un, p — qn)
<Chlall gz llan = pullz2(e,) + CRIBN g1 @y llon — unll i (ay)-
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Since q, — pn € Qh, by inf-sup condition of by, we obtain
lan = pullz2(,) < Chlll g2qy + 1Pl g1 ay) + Cllvn — unll (e,

Therefore, we have |by(vy, — un, p — pp)| < Ch? + Chllvp, — un p1(q,). We
are left to estimate —cp,((vy — up) - np, P An). In views of \j = %uh “np,

—en((vn —un) - npy A — M) = —ecn(X — Ay X — Ap) + ecu(0 A — \p)
+en (@ —vp) - npy A — M) — cn (@ np, A — Ap)
~ ~ 6 ~
< —€llA = >\h||%2(rh) + €||)\||%2(rh) + 1”)\ - >\h||%2(rh)

L. 2 L . 2 €113 2
+ ;H(U —vn) -l 72(r,) + EHU “nallzer,) + §||)\ = Mllz2(r,)-
(2.2.45)
Since |[(@ —vn) - |2,y < Cllt = vnll g1 gy < Chllal y2(q) and

|@-nplLer,) < @ (np—nom)+(d—uom)non|pz2r,) < Ch, (. un|r =0)

it yields
3 €3 2 h? e
—cn((vn —un) - 1w, A = An) < =2 IA = Anllpzr,) + O +ellMllzzr, ),

Combining those inequalities, we proved (2.2.44). From (2.2.43), (2.2.44),
we conclude (2.2.42). O

2.2.5 Error estimates: reduced-integration scheme

Lemma 2.2.6 ( cf. [24]). Let u € W*>(Q) with u,|r = 0. For any s € Sy,
u 15 the extension of u according to Lemma 2.2.1, then we have
(i) For d = 2, there ewists ™ such that |n o w(ms) — ny(ms)| < Ch?%;

moreover
|(Th@ - 1) ()| < CR2 (]| 2,00 (3

(ii) For d =3, if i € W>>(Q) satisfies V-4 =0, and @i, =0 on I, then
we have |(Ipa - np)(ms)| < ChHﬂHWQ,OO(Q).

Proof. (i) For d = 2, since I has C® smoothness, there exists 7 : [, — T
satisfying |n o m(ms) — np(ms)| < Ch? is obvious. In view of @, = 0 on T,

we have
|(Int - np)(ms)|
<|(In - ) (
+ | Ipa(ms) - nom(ms) — (i) o m(my)|

Sch2”anl,oo(Q) =+ Ch2||ﬂHW27°°(Q)'

ms) — Inta(ms) - nom(msg)|
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(ii) It follows from (2.2.26) and the fact @, =0 on I. O

Theorem 2.2.8. Let (u,p) and (up,pr) be the unique solutions of (2.2.1)
and (2.2.36), respectively. We assume f € L?(Q), (u,p) € W2>(Q)4 x
Wh(Q). We also assume (u,p), the extension of (u,p), satisfies (i)(ii) of
Lemma 2.2.6, then we have

@ —unll gy +1P=prll2@,) < Clh+Veth?/Ve),  ford =2, (2.2.46)

Hﬁ—uhHHl(Qh)+H]5—thL2(Qh) < C(\/E—I-\E—i-h/ﬁ), for d=3. (2.2.47)

Proof. In views of the proof of Theorem 2.2.7, the only difference here is the
estimate of —cp((vp, — up) - np, A — Ap) in (2.2.45). We have, noticing that
vy = Ipu,

— cn((vn —up) -1y A — Ap) + ecn(A — Ay A — Ap)
=ech(MA — M) — cn(vp - i, A — Ap) (2.2.48)
€7 < 1,
<- §\|)\ = MllZ, + CellAZ, + CEHIW | 7o (-
The error estimates (2.2.46) and (2.2.47) follow from Lemma 2.2.6. O

Remark 2.2.4. For d = 2, from the error estimates (2.2.42) and (2.2.46),
we conclude the optimal choices of € and h:

(1) Nonreduced-integration scheme: € ~ h, and the error estimate is

O(Vh);
(2) Reduced-integration scheme: € ~ h?, and the error estimate is O(h).

And we notice that for nonreduced-integration, if ¢ < h, then the scheme
is not convergence. For d = 3, we choose ¢ ~ h, and the error estimate is

O(Vh).
2.2.6 Numerical examples
Let Q = {(z,y) | 1 < 2% + 92 < 4}, with
D={(z,y)|2*+y* =1}, T'={(x,y)|2*+y*=1}.
We consider the Stokes problem in € with solution:

u= (2 +y* - 1)(y,—z)", p=umy.
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Figure 2.2.2: Q and mesh Figure 2.2.3: u

We see that u|p = 0 and u,|r = 0, for n = (z,y)” on I'. Here, 77(u) =
H +# 0, therefore, we have to add fr Huvr ds to the RHS of the variational
form (2.2.7), and make some corresponding changes to the penalty problem
(2.2.9), and the finite element schemes.

We show some figures of mesh (see Figure 2.2.2) and solutions. Fig-
ure 2.2.3 is the exact solution wu.

Figure 2.2.4 is the numerical solution of reduced-integration scheme, with
e = 0.1

Figure 2.2.5 is the numerical solution of non-reduced-integration scheme,
with € = 0.1h.

Figure 2.2.6 is the numerical solution of non-reduced-integration scheme,
with € = 0.01h2, which fails to approximate the exact solution.

We show the error estimates results for both reduced and non-reduced-
integration scheme.

Figure 2.2.7 shows the errors of [|uy, —ul| 2, ||up—ullgr and [|pp —pl| L2k,
when € = 0.1h. We observe the O(h) convergence of u in H'-norm.

Figure 2.2.8 shows the errors of [[uy, —ul| 2, ||up—ullgr and [|pp —pl| L2/,
when € = 0.1h2. And it fails to converge.

Figure 2.2.9 shows the errors of [[uy, —ul| 2, ||up—ullgr and [|pp —pl| L2/,
when € = 0.1h. We see the error of u, —u in H'-norm is bounded by O(h).

Figure 2.2.10 shows the errors of [[up, —u| 2, ||up—ul| g1 and ||pp—pl| L2/,
when € = 0.1h2. We observe the error estimates ||u — uy|/z2 < Ch? and
llu — up|| g1 < Ch.

43



Figure 2.2.6: wuy: nonreduced, €

0.01h2

log(Error) of u,p

0.1
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nonreduced-integration: € = 0.1h.
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log h

Figure 2.2.7: nonreduced, ¢ = 0.1h
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Figure 2.2.5: wujp: nonreduced

nonreduced-integration: € = 0.1h2.
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Figure 2.2.8: nonreduced, € = 0.1h?



Reduced-order-integration: € = 0.1h2.
Reduced-order-integration: € = 0.1h.

0.1 T
0.1}

0.01 ¢

log(Error) of u,p
log(Error) of u,p

0.01 b 0.001 L

.
0.1 log h
logh

Figure 2.2.10: reduced-order, ¢ =

Fi 2.2.9: reduced-ord =0.1h
igure reduced-order, € 0172

2.3 The penalty method to the non-stationary Navier-
Stokes problem

Variational form of (2.1.1).
Find (u(t), p(t)) € Vi x Q, with «/(t) € L2(Q)?, for any ¢ € (0,T), such that,

(v, v) + a(u,v) + a1 (u, u,v) + b(v,p) = (f,v), Vv €V, (2.3.1a)

b(u,q) =0, Vqc¢€ Q, (2.3.1b)

u(0,x) = ug. (2.3.1c)
Assumptions.

(A) The initial value ug and f satisfies,
(i) £ H'O,T;L2(2)%);
(ii) up € H2(2)? N V.7, such that we have the compatibility condition

a(ug,v) = —v(Aug,v), YveV,. (2.3.2)
Lemma 2.3.1 (The well-posedness of (2.3.1)). Under the assumptions (A)
and 09 is of C3-class, when d = 2, for any T € (0, 00), there exists a unique

solution (u,p) to (2.5.1) satisfying

[ull oo o,7;12) + 141 oo 0,15 22(02)2) + 14 | 20,7500y < O, (2.3.3)
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1PNl Lo (0,1522(0)) < C (2.3.4)

where C depends on Q, f and ug. When d = 3, the conclusion holds for a
small time interval (0,T").

Lemma 2.3.2 (The regularity of (2.3.1)). Let (u,p) be the solution of (2.3.1)
satisfies Lemma 2.8.1. Assume 09 is of C™ 2 class, m, s are integers, with
25 < m, and ug, f) = 0°f/0t°, satisfy

w € H"()4nve, & e L20,T7; H" 2~ 1(Q)).
We also assume the compatibility condition

U(k)’D =0, U(k)|r =0, TT(u(k))\r =0, k=0,...,s. (2.3.5)

n

Then we have
1 L2y rm 2001ty + [0 || oo 0 ryrm—20()ty < C (2:3.6)

1P| L2 (0.7 25y < C. (2.3.7)

The well-posedness and regularity of Navier-Stokes problem with Dirich-
let boundary condition are well known (cf. [7, 22, 43]). With a similar
argument to the case of the Dirichlet boundary condition, one can prove
Lemma 2.3.1 and Lemma 2.3.2. We write the weak form of penalty problem
(2.1.4). Find (ue(t),pe(t)) € V x Q, with u’(t) € L?(Q)%, for all t € (0,7T)
such that

1
(ul,v) + alue, v) + a1 (ue, ue,v) + b(v, pe) + gc(uen, vp)

(2.3.8a)

=(fv), WwevV,
b(ue,q) =0, Vg€ Q, (2.3.8b)
ue(0, ) = ueo, (2.3.8¢)

2.3.1 The well-posedness of penalty problem
Assumption.

(A'ii) The initial value ucg satisfies uqp € VCNH?(Q)?, and the compatibility
condition

1
a(tep,v) + —c(uep - n,vp) = —v(Auep,v), Yo € V7, (2.3.9)
€

which also implies [[uco - nf|2r) < Cv/e.
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Theorem 2.3.1 (The well-posedness and regularity of (2.3.8)). We assume
(Ai)(A'ii), and 0Q is of C? class, then we have, when d = 2, for any
T € (0,00), there exists a unique solution (ue,pe) to (2.2.9) for sufficiently
small €, which satisfies

el o 0,0 venm2) + [uell Lo 0.1:2) + el 20,00 < C, (2.3.10)

[Pell Lo 0,1;22) < C, (2.3.11)

where C' depends on €, f and ueg.
When d = 3, the same conclusion holds for a small time interval (0,T").

We introduce the variational equation without pe.
Find uc(t) € V7, with u.(t) € L2(Q)?, for all t € (0,T) such that
(u/e7 U) + CL(UG, U) + al(uea Ue, U) + gc(uenu Un)

:(f7v)7 VUEVU’
ue(0, ) = ueo, (2.3.12b)

(2.3.12a)

We see that u, of (2.3.8) satisfies (2.3.12).

Proposition 2.3.1 (The existence of p¢). Let ue be the solution of (2.3.12)
with (2.3.8), then there exists a unique p, such that (ue, pc) is the solution
of (2.3.8) and p. satisfies (2.3.4).

Proof. From the inf-sup condition of b (2.2.5), there exists a unique p, € Q
such that

_b(vaﬁe) = (u/e7 U) + a(ue, U) + ay (u€7 Ue, 'U) + b(U,ﬁe)

2.3.13
~(f), Ve B (2:3:19)
and p. satisfies, for any t € (0,7) (for d = 3, T is replaced by T"),

1)z < Cllue(t) + (ue - Vue)(t) = fF ()l -1 + [ue®)][ ), (2.3.14)

where H=1(Q)4 = (H}(Q)%)*.

Next, we find some function [(t) € R, such that pe = pe + [ is the
solution to (2.3.8). To do so, we choose any ¢ € V with ¢,|r = 1, and
define [, by

T = l€/1“¢nd8 = —b(op, 1)
= - b(gb’ﬁe) + (u/57 Cb) + (I(Ue, ¢) + al(u67u67 ¢) - (f> ¢)7

(2.3.15)
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then (uc, pe+1¢) satisfies (2.3.8). From (2.3.13), we see that the [, determined
by (2.3.15) is unique (independent on the choice of ¢).

To show the boundedness of ., we substitute v = w € V into (2.3.8)
with wy|r = len and ||w|| 1 < C|l¢|, and we have

10| = le/rwnds = —b(w,l,)

= —b(w, pe) + (ul, w) + alue, w) + a1 (e, ue, w) — (f,w),

(2.3.16)

which implies, for all ¢ € (0,7),
()] < C(lIpe(t) 2 +lue () + (ue- Vue) () = f ()l -1+ [[ue(®) | 1) (2-3.17)

We complete the proof. O

1

Proposition 2.3.2 (The uniqueness of u.). If there exist two solutions u,

and u? to (2.8.12) with (2.3.3), then ul = u?

€ -

Proof. Tt follows from the standard argument (cf. [23, Proposition 3.1],[43]).
Ul

Proof of Theorem 2.3.1. We only need to show the existence of solution wu,
to (2.3.12) with (2.3.3). The existence of p. and the uniqueness of solution
follow from Proposition 2.3.1 and 2.3.2.

We apply the Galerkin’s approximation method. There exists a linear
base {wy}32; to V7 with w; = ueo, such that U5y_;span{wy}}, is dense
in V9. For m € N,, we consider the Galerkin’s approximation problem
to (2.3.12): find wem = Y poq ck(t)wg, with ¢ (t) € C*([0,T]), such that
Uem (0) = uep, and

1
(ulema wk) + a(“emv wk) + al(uema Uem, wk) + EC(Uemna wkn) (2.3.18)
:(fvwk)7 szla"'7m7
where Uemn = Uem - 1 and wy, = wi - n. We see that
1
al(uemauemvuem) = 5 / Uemn‘uedeS < ClHuemnHLz(F)HuemH%{l'
I

Multiplying (2.3.18) with ¢ (¢) and taking the summation of k, it yields,

1d
2 dt

1
g”uemn”%?(l‘) < (f, tem)-
(2.3.19)

||U€mH%2 + (o — Cl”u6mnHL2(F))”u€m||12L12 +
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Since |[uemn(0)|[2(ry = lluco - 1l 22y < C/e, for sufficiently small e, there
exists a maximum time 77 > 0, such that

o — cl||uemn|]L2(p) > 04/2, YVt € [0, Tl]. (2.3.20)
From (2.3.19) and (2.3.20), we have
Huem||2Loo(o,T1;L2) + HuemHQLQ(O,Tl;VU) + 671||u€mnH%2(0,T1;L2(F)) <C. (2.321)

Differentiating (2.3.18) with respect to ¢, multiplying it with ¢ (¢) and
taking the summation of k, we get

1d 1
Hu/em”%2 + (Oé - ClHuem’VlHLQ(F))HuIemHjQ‘Il + ;Hu/emnH%Q(F)

9 dt (2.3.22)
< ( /au/em) - al(u/emauemau,em)'
From the compatibility condition (2.3.9), we see that
em(0),ul,, (0)) = (vAue, ug,, (0
(uem( ) uem( )) (V UeD uem( )/) , (2323)
—a (u€07 Ue0, uem(o)) - (f(0)7 uem(o))7
which shows
(0122 < Clllucolli + IF Oz + uco - Vuollzz). (23.24)

(1) Let us consider the case of d = 2. From (2.3.22) and Sobolev’s
inequality, we have, for arbitrary ng > 0,

Ld

2dt

<ULz el 22 + Crig e 1 em 1 7 2,

1
eIz + (o = et l[uemnll L2y = m0) [l + = l1ttrn 172y

(2.3.25)
which implies
Hu/em”%oo(O,Tl;LQ) + Hu/em”%z(O,Tl;V”) + 671”uémnH%Q(O,TuLQ(F)) <C. (2326)
Multiplying (2.3.18) with ¢} (t) and taking summation of k, it yields
11d
———c
e€2dt
<IN 2wl 22 + Cllugn, | et e o

1d
||u/emH%2 + 5%01(“67717 Uem) + (uemna uemn)

(2.3.27)

From (2.3.26) and (2.3.27), we conclude

e Z20.23:22) + temlZoo o 13070y + € ltemnllZo o,1,:2(ry) < C- (2:3.28)
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Therefore, ||tuemn(T1)||r < Cv/€, and for sufficiently small ¢, there exists
a time Ty > T7, such that o — ¢1|temnl||r = «/2 for all ¢t € [0, T5]. With the
same argument from (2.3.20) with 77 replaced by Tb, we show the solution
Uem €xists in time interval (0, 75] satisfying (2.3.21), (2.3.26) and (2.3.28)
with 77 replaced by 1.

By induction method, we continue this process with a sufficiently small
€ to reach a time T}, > T', such that u, exists in [0, T;], and satisfies (2.3.21),
(2.3.26) and (2.3.28) with 77 replaced by 7.

Hence, there exists a subsequence {uepy, oo, such that, as m — oo,

Uem — Ue, weakly™ in L>(0,T;V7),
ul, — ul, weakly* in L0, T; L*(Q)%), weakly in L?(0,T;V?),
and ue is the solution of (2.3.8) with
[uell oo (0,75v5) + luell oo (0,7522)n L2 01390y < C,

Follows form the same argument of [43, Theorem 3.6], we can obtain

||uEHL°°(O,T;H2) < Ca

which complete the proof of case d = 2.
(2) When d = 3, the argument before (2.3.25) is the same. From (2.3.22)
and Sobolev’s inequality, we have, for arbitrary ng > 0,

1d
5 g7 Heml72 + (@ = erluemnll 2y = mollwemllr) e 1 7
(2.3.29)

1 _
t lemalzay < 122z + Cng* luam | e 72-
For sufficiently small 1y and e, there exists 77 > 0 such that
a = c1|luemnllL2y — nolltem |l > /2, Vit € [0, T7]. (2.3.30)

From (2.3.29) and (2.3.30), we obtain (2.3.26), and furthermore (2.3.28),
with T3 replaced by 77. With a similar argument to the case of d = 2 from
(2.3.28), we conclude the existence of u, in (0,7”], where 7" is the maximum
time such that supe(o 17y [[ue(t)|| g1 < oo. O

Remark 2.3.1. When d = 3, the solution u. exists locally in time. For
sufficiently small initial value u.y and f, one can prove the existence of
solution u, in (0, 00).
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2.3.2 The error estimates of penalty

We show the error estimates of u. — u. )
Recalling that I(t) = ﬁ Jo pe(t)dz, and pe(t) = pe(t) —I(t) € Q, we set

A= —Tp(u,p)|r, Ae = e_lum\p —1e(t).
We shall study the estimates of
eu(t) = u(t) —uc(t), ep(t) =p(t) — pe(t),

ex(t) = A(t) = Ad(t).

We assume the error of initial value

lew(0)[| 2 = |luo — ueol| g2 < Ce. (2.3.31)

Error estimates at ¢t =0

Subtracting (2.3.8) from (2.3.1) at ¢t = 0 yields,
P (0) — ul(0)) = vPA(up — ueo) — P(uo - Vug — teo - Vueo),
which implies, from the assumption (2.3.31),
€40} 12 < Clluo — weoll g2 < Ce. (23.32)
Then, from the inf-sup conditions (2.2.5), (2.2.6), and

(€:,(0),v) + a(ey(0),v) + b(v, e,(0)) + c(ex(0), vy)

2.3.33
+ a1(ew(0), uo, v) + a1(ueo, €4 (0),v) =0, v EV, ( )

we have
lep(0)l L2 < C(llen(0)l 2 + llew(0)[| 1) < Ce, (2.3.34)
lex(0)ll-172 < Clle(0)ll 22 + lew(0) [ g1 + llep(0)llz2) < Ce. (2.3.35)
Substituting v = e,,(0) into (2.3.33), it yields,
ellex(0) 7y = ec(ex(0), A + L) — (€,,(0), eu(0))

— a(eu(0), €4 (0) — a1(e(0), up, €4(0)) + a1 (1o, €u(0), €4(0))
<Cellex(0)ll z-172 + llen, (0)l z2llew(0) |2 + Cllew(0)][71 < Cé?,

which shows
lex(0)lI72(ry < Ce. (2.3.36)
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Theorem 2.3.2. Let (u,p) and (ue,pe) be the unique solutions to (2.3.1)
and (2.8.8), respectively. Under the assumption that

mn(u,p) € L*(0,T; L*(T)), w. € L*0,T;V), I € L*((0,T)),

we have
||euH%oo(0’t;L2) + ||€1LH%2(0¢;H1) < Ce. (2.3.37)

Under the assumption that
(W', p') € L*(0,T; LX), ' ug € L*(0,T;V), 1. € L*((0,T)),

we have
lewlZooqo.2) + l€ullF2(0 11y < Ce. (2.3.38)

To state the proof, we rewrite (2.3.1) and (2.3.8) into the following. forms
Find (u(t),p(t), \(t)) € V x Q x M', with «'(t) € L?(Q)?, for any t €
(0,T), such that,

(v, v) + a(u,v) + a1(u, u,0) + b(v,p) + ¢(A, vn) = (f,v), VeV,

(2.3.39)
b(u,q) =0, VYgeQ, (2.3.39b)
c(up,u) =0, Vue M, (2.3.39c¢)
u(0, ) = ug. (2.3.39d)

Find (ue(t),pe(t), Ae(t)) € V x Q x M', with u.(t) € L*(Q)¢, for all
t € (0,T) such that

(ul,v) + a(te, v) + a1 (Ue, e, v) + b(v, Pe) + c(Ae, vp)

= (f,v), WYweV, (2.3.40a)
tlucg) =0, VoeQ, (2.3.40D)
(ten, 1) = ec(Ae +1e(t). ) Vpu € M, (2.3.400)
uel0,) = o (2.3.40d)

Proof of Theorem 2.3.2. Subtracting (2.3.39) from (2.3.40) yields, for all v €
v,

(er,, v)+a(ew, v)+b(v, ep)+ai(u, ey, v)+ai(eqy, ue, v)+clex,vy) = 0. (2.3.41)
In view of u,|r = 0 and fF Uends = 0, we have ey, - n|p = —ue, and

clex,ey-n) =c(A— € L en, —Uep) = €| — e_lumH%z(F) —ec(\— € en, A).
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Substituting v = e, to (2.3.41), we obtain, for any 79 > 0,
1d
2 dt
<ecN — € Luen, \) — ay(eq, te, €4)

||€uH%2 + Ol||6u|!§{1 + €l[A — E_IUGHH%%F)

<noellA = € uen[Zaqy + Cng ellM sy + molleallZ + Cng®leallZalucl,
(2.3.42)
which gives (2.3.37).
Differentiating (2.3.41) with respect to ¢ and substituting v = € (t), we
have

d -
N3+ el + el = e Mal e o
<C(|lu' 7 + luclFo)llewlzn + CellN 72y + Clluell llenlze-
From (2.3.32), (2.3.37) and (2.3.43), we conclude (2.3.38). O

Theorem 2.3.3. Let (u,p) and (ue,pe) be the unique solutions to (2.3.1)
and (2.3.8), repectivelty. Assume

(u,p), (ue, pe) € H'(0,T; H*(Q)%) x H'(0,T; H'(2)),

we have,
lewll2o,mr2) + lleull Lo o,6v) < Cé, (2.3.44)

||epHL2(o,T;L2) + ”e/\HLQ(O,T;M*) < Ce. (2.3.45)

Proof of Theorem 2.3.3. From the assumption, we see that
Ae HY(0,T; HY(T)), 1€ HY((0,T)).
From (2.3.41), we have, for all ¢t € (0,7, and for any v € HZ(Q)4,

b(v7 ep(t)) = —(62(75), U) - a(eu(t)7 U) —a (u(t)a eu(t)7 U) —a (eu(t)7 ue(t)7 7))‘

(2.3.46)

Applying the inf-sup condition (2.2.5) to (2.3.46), it gives
lep®) 22 < Clllen(®)llzz + llew(®) ). (2.3.47)

Applying the inf-sup condition (2.2.6) to (2.3.41), we have
le(llars < Clllew®)llzz + llew®llm + llep(t)]22)- (2.3.48)
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We see that
1d

“Qdt
Substituting v = €/,(¢) into (2.3.41), it yields

clexs e,) = lexllZry — eclen, N + 1) (2.3.49)

1d 1d
lehliZ2 + 5 aleus ea) + €5 el

2 dt
<ec(ex, N + 1) — a1(u, ey, €),) — ai(ey, ue,el,)

<Cellexllar (NNl grrzry + 1) + Clleull el e

(2.3.50)

From (2.3.47), (2.3.48), and ale,(t)[|3; < a(eu(t), eu(t)), we get

d d
leullzz + Zalew eu) + e lleallfay < Caleu(®), eu(t)) + C*. (2:3.51)

d
From (2.3.31) and (2.3.36), we see that (2.3.51) implies (2.3.44). (2.3.45)
follows directly from (2.3.47) and (2.3.48). O

2.4 The penalty method to the stationary Navier-
Stokes problem

We consider the stationary Navier-Stokes problem (NS) with slip boundary
condition.

—vAu+ (u-V)u+ Vp=f, in €, (2.4.1a)
V-u=0, in Q, (2.4.1b)
up, =0, 71p(u) =0, on T, (2.4.1c)
u=0 on D. (2.4.1d)

In this section, we consider two penalty problem to (NS) (also (2.4.1)). The
well-posedness, regularity and error estimates of the penalty problems are
investigated.

2.4.1 The penalty problems (NS,) and (NS/)

First, we give the variational forms of (NS) (also (2.4.1)) and the penalty
problem (INS.) (also (2.4.2)).
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The variational forms of (NS) and (NS,)
We write the the penalty problem (INS.):

— vAue + (ue - V)ue + Vpe = f, in Q, (2.4.2a)

V-u =0, in Q, (2.4.2b)
1

Tn(Uey Pe) + —Uen =0,  7r(ue) =0, onT, (2.4.2¢)
€

ue =0 on D. (2.4.2d)

The variational form of (2.4.1) reads as: find (u,p) € V,, X Q such that

a(u,v) + a1 (u,u,v) + blv,p) = (f,v), Vv € V,, (2.4.3a)

b(u,q) =0, VYgqeQ. (2.4.3b)

Remark 2.4.1 (cf. [19]). For f =0, (2.4.3) admits a unique solution u = 0.

For any f € V' and f # 0, there exists a solution (u,p) € V,, x @ for (2.4.3),
with

lullgr < [ fllve/e lpllze < ClIf (v (2.4.4)

If o® > || f||y, then the solution is unique.

The variational form of (2.4.2) reads as: find (u,pe) € V x @ such that

1
a(ue,v) + a1 (ue, ue,v) + b(v,pe) + — / Uenpds = (f,v), Yv eV,
eJr
(2.4.5a)
blue,q) =0, VqeQ. (2.4.5Db)

The penalty problem (NS/)

We also consider the penalty problem with skew symmetric term, denoted
as (NS.): find (uc,pe) € V x @ such that,

1 1
CL(UG, 1)) + *[al(uea Ue, U) —ai (ue’ v, Ue)] + - / UenVnds
Iy

2 € (2.4.6a)
+b(v,pe) = (fiv), YweV,
b(ue,q) =0, VgeQ. (2.4.6b)
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The strong form of (2.4.6) reads as:

— vAue + (ue - V)ue + Vpe = f, in Q, (2.4.7a)

V-ue=0, in Q, (2.4.7b)
1 1

T(ueape) + —Uenn — iuenue =0, on I (2.4.70)
€

ue =0 on D. (2.4.7d)

Remark 2.4.2. If we replace u,|r = 0 in (NS) with the non-homogeneous
boundary condition u,|r = g # 0, we have to replace the penalty term
Tn(Ue + pe) + € uen, = 0 of (NS,) with 7, (ue + pe) + € H(ten, — g) = 0.
Correspondently, we have to replace the penalty term % fF UenVp, ds in (2.4.5)
with % fr(um — g)v, ds. In this case, the skew-symmetric term

%[al(u,u, v) — ay(u,v,u)] = ay(u,u,v) — ;/Fg(u -v) ds,

Therefore, instead of (2.4.6), we have to consider the penalty problem

1 1
a(ue,v) + i[al(ue,ug, v) — a1 (te, v, ue)] + 3 / g(ue - v)
I

+ b(U,Pe) + e_lc(uen -9, vn) = (fa ’U), Vv e V.
Correspondently, we replace (2.4.7¢) with 7(uc, pe) + L (ten — g)n — 5 (Uen —
g)ue = 0.
2.4.2 The well-posedness of (NS,) and (NS/)
For (NS.) (also (2.4.5)), we consider the equation without p., denoted as
(NS?): find u. € V7 such that,

1
a(ue,v) + a1 (Ue, ue,v) + — / Uennds = (f,v), Yve V. (2.4.8)
eJr

For (NS!) (also (2.4.6)), we consider the equation without p, denoted
as (NS.?): find u, € V7 such that,

1 1
a(uea U) + 5[@1 (u57 Ue, 'U) - al(um v, Us)] + E / UenUnds
I

= (f,v), WYweV.

(2.4.9)

Remark 2.4.3. Let (ue, pe) be the solution of (2.4.5) (resp. (2.4.6)), then
u, satisfies (2.4.8) (resp. (2.4.9)).
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Proposition 2.4.1. Let uc be the solution of (2.4.8) (resp. (2.4.9)), then
there exists a unique pe associated to ue, such that (ue,pe) satisfies (2.4.5)
(resp. (2.4.6)), with

Ipellzz < CQlluellr + luellzn + [1Fllv).

Proof. (1) First, let us prove the case of (2.4.8). In view of the inf-sup
condition of b (3.2.7), for any u. € V, there exists a unique p, € @) such that

a(te,v) + a1 (ue, ue,v) + b(v, pe) = (f,v), v e HH(Q), (2.4.10)

and we have

D b(v, pe)
Bllpellz < sup < Cllluellm + II(ue - V)ucllFr + 1 flv)-

veri@ifoy 10l
For arbitrary ¢ € C°°(T) with [, ¢y, ds = 1, we set

1

ke = —
L]

(a(u6> d)) + al(uea Ue, ’U) + b(d)vﬁﬁ) - 6_1c(uen7 ¢n> - (f> (Z))) :
(2.4.11)
One can verify that k. is independent of ¢, and (ue, pe) with p. = pe + k.
satisfies (2.4.5).
Substituting v = ¢ into (2.4.5), where ¢ € V with ¢|r = ken and
lvl| 1 < C|ke|, we have

G PIE = e [ o ds = ~blo. )
I
= a(uev 90) + al(uevuev QO) + b(%ﬁe) + E_lc(uenv SDn) - (fvv)a
which implies
kel < C(lluellgr + [1(ue - V)uellvr + [ fllv)-

(2) For the case of (2.4.9), we have there exists a unique p. € Q such
that

ey 0) 301 (e e, 0) = 01 (e, 0,0)) + (o, ) = (fr0), v € HE(Q),

(2.4.12)
and we have

Bllpellze < Cllluellmr + Iue - Vuellvr + lluellpslluells + [1f]lv)-
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For arbitrary ¢ € C°°(T) with [, ¢y, ds = 1, setting

IT|ke =a(ue, @) + %[al(ue, Ue, V) — a1 (e, v, uc)]
+ (¢, e) — € eluen, dn) — (f, ),

one can verify that k. is the constant independent of ¢, with

(2.4.13)

kel < C(lluellmr + [[(ue - V)uellvs + [luell pslluell o + [1fllv)
and (ue, pe) with pe = pe + k. satisfies (2.4.6). O
From Solbolev’s embedding theorem and trace theorem:

lollzsry < Cullol gy ollg g < Collolm, Vo eV, d=2,3,

we set the constant ¢; > 0 such that

1
r(w,0,0) = 5 [ wnlol? ds < erllwnl oy ol Vo € Vo0 e V.
(2.4.14)

Proposition 2.4.2. (1) For arbitrary n (0 < n < 1), when € is sufficiently
small, there exists a solution u. € V7 of (NS.?) (also (2.4.8)), with

luell g < Iflve (X +m)/ e, Ntenll L2y < v2e(T+n)/allfllv..  (2.4.15)

Moreover, if || f||v: is sufficiently small (equivalently, o or v is large enough)
such that

1+n 2¢(1+1n)

[1fllv+ >0,

then ue is unique in {v € V | [|v]|gn < || fllv:(1+n)/a}.
(2) There exists a solution u. € V7 of (NS.L?) (also (2.4.9)), with

[uellr < | fllve /e Nuenllr2ry < Ve/allfllv. (2.4.16)

Moreover, if || f|lv: is sufficiently small such that a— |la1||| f||v/ /e > 0, then
the solution u. is unique.

a— |la]] I fllv: —a

Proof. The proof is similar to the standard argument (cf. [19, Chapter
IV, Theorem 1.2]). We construct the approximate solutions by Galerkin’s
method. Since V7 is separable, there exists a sequence {w;}?°; C V7 such
that, for any m > 1, wi,...,wy,, are linearly independent, and UY>_, V;, is
dense in V7, where V;;, = span{w;}!" ;.
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Let us first prove (2). For any m > 1, we consider the Galerkin’s ap-
proximate problem, denoted as (NS%,'): find uey, € Vi, such that

1 1

a(tem, w;) + i[al(uem, Uem, Wi) — a1 (Uem, Wi, Uem )] + Ec(uemna Win,)

= (f,w;), Vi=1,...,m,
(2.4.17)
where Uepmn = Uem * Ny Win = W; * N.
We define the mapping ®,, : Vi, = Vi

(P (v), wi) =av, wi) + Fla1 (v, v, wi) - a1(v, wi, v)]
+ %C(Umwm) — (f,w;).

We have

(@ (0),0) = alv,0) + € Jval 2y = (,0)

> (allollm = I lvOllolla + € HvallFe -

Hence, (®,,(v),v) > 0 for all v € V,, with ||v||z1 = ||f|lv//a. Applying the
Browser’s fixed point theorem (cf. [19, Chapter IV, Theorem 1.1]), there
exists a solution wuey, of (NSZ,'), with [[uey|lgt < ||f|lv//a. Then there
exists a subsequence of {uey,}5°_;, which we also denoted as {uem}oo_q,
satisfies

U, — Ue, weakly in V9, ey — e in LQ(Q),

as m — oco. Passing the limit m — oo of (2.4.17), we see that u. = @, is the
solution of (NS.?).
For any solution u, of (NS?’), substituting v = u. into (2.4.6), we have
2 -1 2 ~1
O‘HUEHHl +e€ Huen”L2(F) Sa(ueaue) +e€ C(“en;“en)
=(f,ue) <[fllvrlluell e,
which implies (2.4.16).

We then consider the uniqueness of solution. Assume there exist two
solutions u. and U, of (NS?’). Setting w = u. — U, we see that

1
a(w,v) + §[a1(U€,w,v) — a1 (U, v, w)]
1 1
+ —[a1(w, ue, v) — a1 (w, v, ue)] + gc(wn,vn) =0, VYvelV.

2
(2.4.18)
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Substituting v = w into (2.4.18), we have

_ 1
0= a(wv w) +e 1”wnH%2(F) + §[a1(wa ueaw) - al(wa w, ue)]
> allwlfp + e HwnllZamy = lallllwlF el m-
If a > |la1||||fllv:/e > |la1]|||wel| g1, then w = 0. We finish the proof of (2).

Next, we prove (1). Similar to the argument above, we have the Galerkin’s
approximate problem, denoted as (NS?,): find uc,, € V;, such that

a(”emv wz) + ap (uem7 Uem wz) + E_lc(uemn’ wzn)

2.4.19
:(fuwi)y Vizl,,,,’m’ ( )

and the associate mapping ®,, : V,,, = V!
(‘I)m(’l)), wl) - a(v, wZ) + al(’U, v, wZ) + 6_10(1)717 wm) - (fa wz)

In view of (2.4.14), we have

2
cie

1
a1(v,v,0) < etllonllzzy ol < o llvallZay + 2ol

applying which we can obtain

2
cie

(@(v),0) 2 (allo]m — L

1
ol = L lvollwllz + o5 ol (24:20)

For any n > 0 (n < 1), and for any v € V,,, with |[v||;1 = %, if

2na’d
e < : (2.4.21)
A+ )3T
we have
cie, s
(@ollir — TNl — 1) > 0.
Hence, there exists a solution ey, of (NS%,,), with ||uen |7 < %

Substituting w; = ey, in (2.4.19), it yields

2
CT€ 1
(CM - ; HuemHijl)”uemH%{I + ZHUEWWH%Q(F) S HfHV/uﬂ’VLHHl-
. 3 1
In view of € < MW and [[tem || g1 < %, we have
C%EH > an (6% <0
a— —||u oO—— = —

2 o= 1+7n 1417 )
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which implies
[temnll L2y < v/2e(L+mn) /| fllv:

After passing the limit m — oo, we have ue¢, — ue weakly in V7, with
el g < S Sy 2y < V/26(T+ m) /el fllve, and ue s a solution
of (NS?). We proved (2.4.16). Now, for u, the solution of

We then consider the uniqueness of u.. Assume u. and U, are two solu-
tions of (NS?) satisfying (2.4.15). Setting w = u, — U, we see that

1
a(w,v) + a1 (Ue,w,v) + a1 (w, e, v) + —c(wp,v,) =0, Yo e V. (2.4.22)
€

Substituting v = w into (2.4.22), we have

0= CL(U), w) + 6_1”wn‘|%2(F) + al(UE’w,U) + al(wvuevv)

> (a = ctl|Uenllz2ey) llwllFpn + € Hlwallze ) = llanllllwllF luellsn-

Since u. and Ue satisfy (2.4.15), if a > w +c @Hﬂ\w,
then w = 0. We finish the proof of (1). O

From Proposition 2.4.2 and 2.4.1, we conclude the theorem of the well-
posedness of (NS,) and (NS.).

Theorem 2.4.1. (1) For arbitrary small positive number n, there exists a
solution (ue,pe) € V x Q of (NS,) (also (2.4.5)) for sufficiently small € (see
(2.4.21) ), satsifying

[ fllv/ (L +mn) —1/2

el g <
a

[wenll2(ry + [[Pell2 < C. (2.4.23)

where C' is dependent on n, || f|lyv: and a. Moreover, if

1+ 2¢(1+ 1
1l — eny) 2L
8] «

[1fllv+ >0,

a — [laq

then (ue, pe) is unique in {v € V| [[v]| g < [|f]lv(1 +n)/a} x Q.
(2) There exists a solution (ue,pe) € V x Q of (NS.) (also (2.4.6)), with

el < 1flve/as €2 uenl 2y + llpell 2 < C. (2.4.24)

Moreover, if a — |la1|||| fllv:/a > 0, then the solution u. is unique.
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Remark 2.4.4. In Theorem 2.4.1, we show that all solutions of (NS.)
satisfies the estimate ||uc||g1 < ||f]lv’/c; however, we cannot conclude all

solutions of (NS,) satisfies ||uc||g1 < A+l fllyr

(03
ue is unique in {v € V | ||v]|mn < %

solutions in with |[uc|[g1 > (L + )| fllv//c.

Even when the solution

}, there may still exists other

The following proposition is to discuss the solutions of (NS,).

Proposition 2.4.3. We consider the problem (NS.). For arbitrary positive
small n, let € satisfy (2.4.21), and

< 8a’
E< ——.
27| v

Then there exist two positive roots a < b of the cubic equation

cie 3 £ 1l
V() =0, with¥(z):=—g 2" +z—"—"—. (2.4.25)
« [0

Moreover, we have
(i) there exists a solution ue with ||ucl|gr < a;
(i1) there is no solution ue with a < ||uel|lg1 < b;

(iii) there may exists a solution ue with ||ue||g1 > b,

v o Ol (20, 2
a T o 3c2e =~ \ e

where

Proof. (i) is proved in Theorem 2.4.1. Let u. be any solution of (INS,).
Substituting v = u, into (NS) (also 2.4.5), it yields, similar to the derivation
of (2.4.20),

€Cq 1
(ollucllm = = lluellz = v lluelm + 5 lluenlZary

<a(ue, ue) + a1 (e, te, ue) + € Fe(Uen, Uen) — (f, ue)
:O’

which implies af|uel|gr — 5 ||uel|30 — || fllv: < 0. Taking ||uel/gn = =, it is

equivalent to consider the inequality

U(z) <0, forzx>0.
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2
. ’ _1_ 3cje oy . _ [ 2a _ 20
Since ¥'(z) = 1—51, there are two critical points 1 = \/3?%5’ T2 =4/ 32

of U(z). Under the assumption e < , we have

8a3
273 fllv

[ 8a  |[fllv
W(z2) = 276%6_ o >0,

which implies there exist two positive roots a,b (a < b) of (2.4.25). And see
that

®(x) <0 for x € [0,a]U[b,oo], ®(x) <0 for x € (a,b),

which proves (i)(ii)(iii). As ¥(a) =0, ¥(0) = — ”f(ll‘/’ < 0, we have
2
LWl _ e,
o 2a

Under the assumption (2.4.21), we have ‘P(%) > 0, which implies
a < Ly
- (0%

U (b) = 0 gives b(1 —bQ%) = Ll 0, from which we obtain b < , /22,

« Cci€

Since ¥(x2) > 0, we have b > x5. The proof is completed. O

2.4.3 The iteration methods for (NS!) and (NS,)

According to (iii) of Proposition 2.4.3, even when (NS,) has a unique solu-
tionin {v e V | ||v|| g < %}, there may still exists other solution in
{v eV ||v]|g > Ce 12}, Tt seems (NS.) is more reliable to approximate
(NS) than (NS.). However, when we apply the iteration methods to solve
(NS!) and (NS,) in numerical computation, the convergence behavior of
them are not so much different.

We consider two iteration methods to both (NS.) and (NS.).

Let (u2,p?) be the solution of the penalty Stokes problem (S.), with

1/ llv
«

[ul]l10 < s @z ey < Vel fllv (2.4.26)

We set (u?,p?) € V x Q as the initial value of iteration.
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Iteration method (i) for (NS,)
For k =1,2,..., Myaz, find (u¥,p¥) € V x Q such that,

1
aut,0) +ar (a1l 0) 4 0w ph) + s [ b ds = (f0), Vo,
r

(2.4.27a)
b(ug,q) =0, VqeQ, (2.4.27b)
if [|uf — uF~1|1.q <o, then stop the iteration, (2.4.27¢c)

where Mp,q, is the maximum iteration number, 79 is the error of iteration,
and o := a — c1v/€|| ||y > 0 (with sufficiently small €).

Lemma 2.4.1. For sufficiently small € such that o/ := o — c11/€|| f||y > 0,
we have

fllv
b < IVt ) < VElAI, vEZ1 (2428)

Furthermore, if (a/)? > |lax |||l fllv:, then u¥ — u, in V.

Proof. Substituting v = u! into (2.4.1) for k = 1, with (2.4.26), and o/ :=
a — cive|| fllv > 0, it yields

1/ [lv
luelle < v lunll 2y < Vel fllve-

(2.4.28) follows from the induction method. (2.4.28) implies the existence
of a subsequence {u!"},,>0 such that u* — u. weakly in V' as m — oo.
Next, we show the convergence u* — u. in V.

Setting w* = u¥ — uF~!, we have
1
a(wkH,v)+a1(uf,wk+1,v)+a / Wy, ds = —ay (W, uf, v), Yo eVve.
r
Substituting v = w**!, we obtain

k+1

U = eallugall 2y lw™ i + (@)™ Hlwp ™7 )

allw
< — ar(w®, uf, W) < Janlug || lJw® | g o™
which gives
laxlll[f1lv
o[ e < POV b

If o/ > ||ay|||| f|lv7, then ||w*| g2 — 0 as k — oo, which implies u* — u, in
V. O
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Iteration method (i) for (NS.)
For k =1,2,..., Myas, find (u¥,p¥) € V x Q such that,

1 1
k k=1, k k- k k
a(ug,v) + Sla(ug ™ ug,v) — an(ud v, ug)] + /Fufnv” s (2.4.29a)

2 €
b(ug,q) =0, Vg€ Q, (2.4.20b)
if [|uf — w711 < o, then stop the iteration. (2.4.29¢)

Lemma 2.4.2. Let {uF};>1 be the solution of (2.4.29), we have
[utle < Ifllvi/a,  lubllzzey < Vel fllv, Ve > 1. (2.4.30)

Furthermore, if a2 > ||lai||||f|lv, then uf — uc in V.

Proof. Substituting v = u¥ into (2.4.29), it yields (2.4.30), which implies
the existence of a subsequence {u}"},,>0 such that u* — u. weakly in V" as
m — oo.

Setting w* = u

B

k—1
¢ —wu’"", we have

1 1
a(warl’,U) + 5[‘11 (U§7wk+1,’v) - al(ufvvvwk+1)] + - / waJrlUndS
eJr
1
= _i[al(wkaulg?v) - al(wk,v,u’:)], Yv e V.
k+1

Substituting v = w"T", we obtain

k —1y, .k
af|w +1||%{1 te 1”“%“”%2@)

k k k+1)

=—a(w", ul,w k+1HH1,

k k
< llaa[[llw | e 1w | o [
which implies ||w |5 < %Hw‘kﬂm And we conclude if a? >
lla |||l fllv:, then u¥ — uc in V as k — oo. O

Remark 2.4.5. In view of Lemma 2.4.1, the convergence condition o/? >
lla1|||| f|lv is similar to the assumption of unique solution in (1) of The-
orem 2.4.1. According to Lemma 2.4.2, the convergence condition o? >
lla1]||| f|lv+ is the same condition to prove the unique solution in (2) of The-
orem 2.4.1.
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Iteration method (ii) for (NS,)

We consider the Newton’s method. For k = 1,2,..., Myqz, find (6u”, dp*) €
V x @ such that,

a(6u®,v) + a; (6uF, uk L)+ ay (uF=1, 60, v) + b(v, p*)

e ! ( ", Un) (f ) ( - 17”)_a1(u§717ufilﬂv)
fe(uf !

— b(v,pt1) — ‘N, Uy), Yv € Vg,

(2.4.31a)
b(dug,q) =0, Vg€ M, (2.4.31b)
ub = b=t ouk, pb = pFt 4 opt, (2.4.31c)
if ||6u¥|| < o, then stop the iteration. (2.4.31d)

Via calculation, we have, for each k,

a(6uf v) + a1 (6uf w1 v) + ag (Wb SuF v) + eLe(Ouk, vy)

T (2.4.32
= — a1 (6uFt 6uF ), Ve eve, ( )

where a1 (6u®, 0u®,v) := a1 (u?,u?,v). Substituting v = Ju’ into (2.4.32), i
yields

k— k— k
(o= a1 — exll ey ) I3+ 160

=g

k— k
<lax [[116u¢™ 7 190 | 1.

If . > & > 0, for all £ > 1, then we obtain
k [lax]] k—
I6ufl < okt 3,

which shows the second order convergence of the Newton’s method. How-
ever, we have to admit that there is no explicit choice of u? and ¢, such that
the convergence condition ap > & > 0 is satisfied. All we know is that if €
is sufficiently small the initial value u? is sufficiently close to wu., then the

Newton’s method converges.
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Iteration method (ii) for (NS!)
For k =1,2,..., Myaz, find (6u¥, 6p*) € V x Q such that,

—_

a(éuk7 U) + §[a1(5uk7 usila ’U) —ai (5uk7 v, ulzil)] + b(U, 5pk)
(

(2.4.33a)
b(ouF,q) =0, VYqe M, (2.4.33b)
uf = ul:_l + ou”, pf = pf_l + 8pF, (2.4.33¢)
if ||6u®| < no, then stop the iteration. (2.4.33d)

Via calculation, we have, for each k,
1 _ _
a((su]:7 U) + 5[(11(57/:7 u’eC 17 U) - al((sufv v, uI: 1)]
1
+ g lan(uf " 0wk 0) — ar (v, 0uh)] + e e(Gugy, ) (24.34)
1
=— §[a1(5uk_1, SuFt v) — a1 (6uF 1 v, 6uF Y], Yo e VO,

where a; (0uF~1, 6uF =1 v)—aq (0uF 1, v, uF 1) == ay (u?, u?, v)—ay (u?, v, u?).

Substituting v = du¥ into (2.4.34), it yields
k-1 k2, Lisok o2
(= Naall s = e ) 1903 + < l10ub ey

=:ay

<Jlanllll w7 |0ug |1

If € is sufficiently small the initial value u? is sufficiently close to u. such

that a, > & > 0, for all £ > 1, then we obtain
k a1l k—
1ouell < == ]|0uc i

The method convergence at second order.
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2.4.4 Error estimates of (NS/)

Let f € L*(Q), we assume there exists a unique solution (u,p) € H?(Q) x
H(Q) of (2.4.1).

Theorem 2.4.2. Let u and u, be the solutions of (2.4.1) and (2.4.6), re-
spectively. Assume 7,(u,p) € L*(T), and « is sufficiently large( or || f||y+ is
small enough) such that o > ||la||||f|lv+, then we have

lw — el g+ lp = Pell 2 + VellX = Acll L2y < CVellTn(w, p)ll 21y, (2.4.35)
where pe = Pe + ke, pe € Q, and ke = ﬁ Jo pedzz.

Proof. Introducing the Lagrange multiplier A\ = —7,(u,p) and A\, = %um,
we rewrite the variational equations (2.4.3) and (2.4.6) into
(1) find (u,p,\) € V x Q x M’ such that,

a(u,v) + a1 (u, u,v) + b(v,p) + c(A\,v,) = (f,v), YveV, (2.4.36a)
b(u,q) =0, VqeQ, (2.4.36b)
c(Un,p) =0, Yue M; (2.4.36¢)
(2) find (ue,pe, Ac) € V x Q x M’ such that,

1 1
CL(UE, U) + 5041 (uea Ue, U) - 5“1 (Ue, v, Ue)

(2.4.37a)

+ b(vape) + C(Aﬁ Un) = (f7 U), Vv eV,
b(ue,q) =0, VqeaQ, (2.4.37b)
(Uen, 1) = €c(Ae, 1), Y € M. (2.4.37c)

Substituting v = u — u, into (2.4.36a)—(2.4.37a), we have

1
a(u — Ue, u — Ue) + Z[al(u—ue,ujtue,u — Ue)

—a1(u — Ue,u — U, u + Uue) | + (A — A, Uy — Uepn) = 0.
Noticing u, = 0 and u, = €\, we derive

(N = Ae, Up, — Uen) = —€c(X — Aey Ae)

2.4.38
=ec(A — A, A = Ae) — ec(A — A, A). ( )

It is proved in Remark 2.4.1, Theorem 2.4.1, that u and wu. satisfy
[l g, [[uell g < ([ fllve /e (2.4.39)
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Therefore, we have

(o = flarllll flle/a)llu = ueli o + ec(A = A A = Ao)

€ € (2.4.40)
<eeh = Ao, A) < SIA = Aoy + 5 1M1 Z2ry:
Under the assumption a? > ||a1|||f||q, we obtain,
[u = uell g1 + Vel = Aell 2y < OVl 2y
Using inf-sup condition of b (3.2.7) and (2.4.39), we conclude
1P = Pellr2 < Cllue — ull - (2.4.41)
The proof is completed. O

Theorem 2.4.3. Let 7,(u,p) € H/?(T'), and with the same assumption of
Theorem 2.4.2, then we have

lu = el g + [|p = Pellr2 < Celllm(w, Pl graey + 1fllp2). (2.4.42)
Proof. Instead of using (2.4.38), we derive

(N = Ay Up — Uepn) = (A — e + key U — Uen) = —€c(A — e + ke, Ae)
=ec(A — e + ke, A — Ae + ko) —ec(N — Ae + ke, A+ ke),

(2.4.43)
and obtain
(@ =l s ellu = el +eeh A+ kX=X 4k o
<ec(A = Ae + ke, A+ ke) < €||A = Ae + kellar || A + kel ar- o
If we show
IN = Ae + kellar < Cllu — uel| g1, (2.4.45)

then with the assumption A € HY/2(I') = M, we can derive the error esti-
mate

lu — uell g < Ce(||M\||a + ko), (2.4.46)

where k. is bounded independent of ¢( Theorem 2.4.1). ||p — pe|l;2 < Ce
follows from (2.4.41) and (2.4.46). Therefore, we are only left to prove
(2.4.45). Since

— (A= Ae + ke, vp)
3 1
=a(u — ue,v) + b(v,p — pe) + E[al(u — Ue, U, V)
+ a1 (Ue, U — Ue,v) + a1 (Ue — u, v, ue) + a1 (u, v, ue — u)]

SCA A+ flullg + lJuell g ) (Nw = well e + [lp = Pell 2) 0] g1
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From (2.4.39), (2.4.41) and the inf-sup condition of ¢ (3.2.8), we obtain
(2.4.45). O

Remark 2.4.6. In above, we show the error estimates of penalty scheme
(2.4.6). For penalty scheme (2.4.5), under the assumption that wu. with

lluell1,0 < % and o? > w, then we can obtain the same error
estimates as (2.4.35) and (2.4.42).

2.4.5 The finite element method to (NS/)

Finite element penalty scheme.

We adopt the same notation of Section 2.2.3. For simplicity, we only consider
the P1b/P1 approximation. Setting

aip(un, v, wp) = / (up, - Vop)wy, dz,  Yup, vy, wp, € Vi
Qp,

the finite element approximation to penalty problem (2.4.6) reads as: find
(up,pr) € Vi x Qp such that,

1

ap(up, vy) + §[a1h(uh, Uh, V) — a1p(Up, v, up)]

1 -
+ bn(vn, pn) + Ech(uh “np,vh ) = (f,un)a,,  Yun € Xp,
(2.4.47a)
ba(un,qn) =0, Van € My, (2.4.47b)

Theorem 2.4.4. There exists a solution (up,pp) € Vi, X Qp, to (2.2.36) with
cn, defined by both (2.2.30) and (2.2.31), and the solution satisfies

lunll i,y + 1Bl 2 + Vellun - mnlle, < CllFl2@,): (2.4.48)
where p, = pn + kn, Br € Qn, kn = [o, Padr/|Qn], and

€

~ h
lkn| < C (Hfllm(szh) + llunll gy + lunll e, + ) : (2.4.49)

Moreover, if a3 > Hal}LHHf”L2(Qh)7 then the solution is unique.
Proof. The proof is similar to that of Theorem 2.2.6. 0

With a similar argument to Proposition 2.2.1, we have the consistency
error estimates of the stationary Navier-Stokes equations.
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Proposition 2.4.4. Let (u,p) and (up, pp) be solutions of (2.4.1) and (2.4.47),
respectively. Set X = —7,(u,p), A\p = %uh -np. We assume f € L*(Q), and
(u,p) € HX(Q)? x HY(Q), and the same assumption of Lemma 2.2.5. For
any vp, € Vi, we set the consistency error

_ 1. ) )
E(vn) :=ap(@ = up, o) + Slaa(@ — up, @, vp) + awp(un, @ — un, vp)

— a1 (% — up, v, ) — a1 (U, vy, U — up)]

+ b (s B — p) + cn(Vh A — Ap),

where (i, p) is the extension( Lemma 2.2.1) of (u,p) onto Q = QUQ,. Then,
we have

|E(vr)| < Chllvnl g1(,)- (2.4.50)
Error estimates

Theorem 2.4.5. ¢, is defined by (2.2.30). Let (u,p) and (up,pp) be the
unique solutions of (2.4.1) and (2.4.47), respectively. Assuming f € L2(9),
(w.p) € HA(Q) x H(), and o3 > lara] | F12(0,). we have

1% — wnll @) + 15— Pl 2@y < C(VR+ Ve +h/Ve). (2.4.51)

Theorem 2.4.6. Let (u,p) and (up, pp) be solutions of (2.4.1) and (2.4.47),
respectively. We assume f € L*(Q), (u,p) € W>®(Q)? x WH>(Q), and
a? > HathHfHLa(Qh). We also assume (u,p), the extension of (u,p), satisfy
the condition of Lemma 2.2.6, then we have

@ —unll @) +1P=Prll2@,) < Clh+vVe+h?/Ve),  ford =2, (2.4.52)

la—unl g1 0y HIF—Prll 20,y < C(VRAVE+h/VE),  for d =3. (2.4.53)
We skip the detailed proof of Theorem 2.4.5 and 2.4.6, which are similar
to the argument of Theorem 2.2.7 and 2.2.8, respectively.
The numerical experiment

Set Q = {(x,y) € R? | 22 + y? < 1}. We consider the equation (2.4.1) with
exact solution u = (1023y?, —1022y3)7, p = 1022y

lull e ~ 1.1, Jul|gp ~ 6.88.

Here 77(u) # 0, therefore we add [ 77(u)vrds to the RHS of variational
forms (2.4.5),(2.4.6), and th 7r(u)vprds to (2.2.36).
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Newton’s method is applied to solve the nonlinear equation( see Sect.
3.2.1(ii)). We test two penalty schemes (2.4.5),(2.4.6) for P1b/P1 ele-
ments. We compare two implement methods of penalty term(nonreduced-
integration scheme (2.2.30) and reduced-integration scheme (2.2.31)), with
different choices of € and h( € ~ h and € ~ h?).

From Figure 2.4.1 and 2.4.2, the numerical experiments show the H'
norm error ||u—up||1,0, is O(h) for both fine and reduced-integration schemes(
(2.2.30) and (2.2.31)). Moreover, the L? norm error |[u — uyllo, seems
to be O(h?) for reduced-integration scheme with € ~ h%2. However, the
nonreduced-integration fails when € ~ h%( or ¢ < h), which coincides with
our error estimates( Theorem 2.4.5). (The numerical experiments are im-
plemented with software FeniCS).

Notice: In Figure 2.4.2, line € ~ h2, || -|| ;2 overlaps with line y = 2x; and
line € ~ h2,|| - || g1 overlaps with line € ~ h, || - || 1.
Remark

This chapter is based on [24, 50, 51]
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Error H“H"u_”"H of fine-integration scheme.
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Figure 2.4.1: penalty scheme (2.4.6): nonreduced-integration (2.2.30)

Error ”“"m““ of lower-order-integration scheme.
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Figure 2.4.2: penalty scheme (2.4.6): reduced-integration (2.2.31)
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Chapter 3

The Stokes/Navier-Stokes
equations with a unilateral
boundary condition of
Signorini’s type and its
penalty method

3.1 Introduction

In this chapter, we consider the Navier-Stokes equations with a unilateral
boundary condition of Signorini’s type (the inequality boundary condition),
and show the application of penalty method to the inequality boundary
condition.

Our motivation lies to propose a suitable outflow boundary condition
for the Navier-Stokes equations modeling the blood flow in arteries. The
outflow boundary condition plays very important role to the solutions gov-
erning the blood flow in the large arteries (cf. [17]). Usually, the prescribed
constant pressure, traction or velocity are applied to the outflow boundary
condition. In many realistic cases, the pressure, traction or velocity on the
outflow boundary cannot be prescribed, due to the unknown flow distri-
bution in the modeled domain. In numerical simulation, the free-traction
outflow boundary condition is frequently used, which requires no addition
implementation of the outflow boundary condition in computation. How-
ever, the energy inequality of velocity is not satisfied under the free-traction
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boundary condition, which may cause the outflow instabilities or “blow-up”
of solution in numerical simulation.

We introduce the model problem. Let Q ¢ R% d = 2,3 be a bounded
domain. The boundary 02 is composed of S (inflow boundary), C' (the wall)
and I' (outflow boundary) (see Figure 3.1.1); those S, C' and I" are assumed
to be smooth surfaces. In particular, S and I' are smooth domains in R%~1,
That is, S and I' are line segments (d = 2) and flat surfaces (d = 3). Then,
for t € (0,T], T > 0, we consider the Navier-Stokes equations in €2,

u+ (u-Vu=V-o(u,p)+ f, inQ, (3.1.1a)
V-u=0, inQ, (3.1.1b)
ulg = b, (3.1.1c)
ule =0, (3.1.1d)
u(x,0) = up, on Q, (3.1.1e)

where o(u,p) is the stress tensor defined by (2.1.2). Force f and initial
velocity ug are given functions. On the wall C' we impose the homogeneous
Dirichlet boundary condition (3.1.1d). On the inflow boundary S, we give
the Dirichlet boundary condition u|s = b(t, ), where we assume

B(t) ::—/Sbn ds >0, Vtel0,T),

and ug = b(0) on S, up =0 on C.

Figure 3.1.1: Q, S, I and C.

If we impose the free-traction boundary condition

7(u,p) =0 onT,
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where 7(u,p) is traction vector defined by (2.1.3), then we cannot obtain
the energy inequality such as

T
)+ [ 8@t <

Here C is some constant dependent on some norms of f, ug and b.

To tackle this problem, various types of artificial outflow boundary con-
dition are proposed. In [7, Chapter VII], [10, 11], the authors introduce and
analysis the nonlinear boundary condition

1
7(u,p) = —§[un]_(u —g)+7(9,m) on T,
where [w]+ = max{0, +w} and (g, 7) is some reference flow defined below by
(3.2.2). Under this boundary condition, one can show the energy inequality.
In [4, Y. Bazilevs et al.], a regularized traction vector

7(u,p) = 7(u,p) — plun]-u

is introduced, and they consider the resistance boundary condition

Tn(u,p) + R/ Up ds+po =0, 7r(u,p)=0onT.
r
This boundary condition also satisfies the energy inequality.

These approaches are verified to be important for the overall stability
of the computations. However, a certain relation between u and 7(u,p) on
I' is assumed in order to ensure the energy inequality. Here, we propose
another approach. We pose the following unilateral boundary condition of
Signorini’s type:

up 2 0,
{ Tn(u,p) >0, upm(u,p) =0, 7r(u) =0 on I'. (3.1.2)

(3.1.2) guarantees the energy inequality to the Navier-Stokes problems (3.1.1).
In this chapter, we study the well-posedness of (3.1.1) under the outflow

boundary condition (3.1.2) (cf. Theorem 3.3.1, Proposition 3.3.1, 3.3.2.).

Since the Signorini’s boundary condition leads to a variational inequality

for weak form, which is not easy to solve by numerical method. For that

purpose, we introduce the penalty method to approximate the variational

inequality by variational equation. The well-posedness of penalty problem

is also been investigated (cf. Theorem 3.4.1, Proposition 3.4.1, 3.4.2.).
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To apply this model problem in numerical simulation, we have to study
the error estimates of penalty method and the finite element method to
the model problem. As a first step, we consider a simple case of stationary
Stokes equations with Signorini’s boundary condition (3.1.2). In Section 3.6,
We examine not only the well-posedness of Stokes problem and its penalty
problem, but also we obtain the error estimates of penalty method.

3.2 The energy inequality and the variational in-
equality

Reference flow.

To describe the energy inequality, we take a reference flow (g, 7).
In view of 3(t) = — [4bu(t) ds > 0, for any t € [0,T7], there exists some
go(x) € C3°(I")™, with

/go-nd5:1, go-n > 0. (3.2.1)
r

We set the reference flow (g, ) such that, for all ¢ € [0, 77,

—V-o(g,7)=0, V-g=0, inQ, (3.2.2a)
g=bonS, g=0onC, g=go(x)3(t)onTl. (3.2.2b)

And we find (u,p) of the form
u=U+gy, p=P+m.
Assume ug = g(0) on 9, then we have Uy = ug — g € H}(Q)L Tt is
equivalent to consider the problem of (U, P), denoted as (NS). For all
t € (0,7), (U, P) satisfies

Ui+ (U+g) VWU (U-V)g—V-o(U,P)=F, inQ, (323a

V-U=0, inQQ, (3.2.3b
U=0, onSuUCcC, (3.2.3¢
Uo+9, >0, 7U+g,P+m)>0, onl, (3.2.3d

Un+9gn)m(U +9g,P+7)=0, 7p(U)=—-1r(g9), onT, (3.2.3¢
U(z,0) =Upy, on . (

where F = f — g, — (9 : V)Qa Up = ug — 9(0)-
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Theorem 3.2.1 (Energy inequality). If (U, P) is a smooth solution of
(3.2.8), then we have

T
sup U822 +2y/ IEW)|2, di < C. (3.2.4)
0<t<T 0

The proof of Theorem 3.2.1 is presented later. Let us set some function
spaces and bilinear forms, and write the variational form of (NS). The
following settings are slightly different to Chapter. 2.

Function spaces.

e V={vecH Q)| v=00nCNS}, Vo=Vn{v|V-v=0}.

Vo=Hy(Q)?, V7 =Vn{v|V-v=0}

K={wveV|v+g,>00onTl}, K°=Kn{v|V-v=0}.

Q=1I%Q), Q=I3Q) :={veqQ] [,vdr =0}

Y Hz(T) i#TNC =0,
" \HE(T) TAT 40

We denot? X' as the dual space of Banach space X. For example,
M’ = H 2(I).

Bilinear and trilinear forms.

a(u,v) = 21//95(u) EW) dz, Vu,v € HY(Q)?, (3.2.5a)
ar (u, v, w) = /Q(u Vow dz, Yu,v,w e H(Q)4, (3.2.5Db)
b(v,p) = — / (V-v)pdz, Yve H(Q) peL*Q), (3.2.5¢)
[A,n] = the guality paring between M and M’, (3.2.5d)
[[\,n]] = the duality paring between M9 and (M?)', (3.2.5e)
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Korn’s inequality and inf-sup conditions.( cf. [7, 27, 43])
(1) Korn’s inequality: there exists a constant a > 0, such that,

a(v,v) > al|v||}, YweV. (3.2.6)

(2) inf-sup conditions: there exists constants 1,72 > 0, such that,

inf sup _blv.a) >, (3.2.7)

1€\ {0} vevo\{oy [Vl llgll 22

[navn]
sup ————— > 0. 3.2.8
w0 SR Tl nllar (3.28)

Lemma 3.2.1. For all u,v,w € H'(Q)?, we have, when d = 2,

a1 (u, v, w)| < Cllul| pa[vll g lw]| s

L1 1 1 (3.2.9)
< Cllullgllwll Zalloll aellwl 72wl 71
When d = 3, we have,
a1 (u, v, w) < Cllul[ps]|o]l g lwll Lo
1 1 (3.2.10)
< COllull pellull Falloll g lwll e
Moreover, for all u,v € V7, d = 2,3, we have,
ay(u,v,v) = 1/un|v|2 ds

2 Jr (3.2.11)

A

< lunllz2yllolizs < eallunllpayllollF-

Proof. 1t follows form Sobolev’s embedding theorem and the trace theorem.
O

Remark 3.2.1. Applying Young’s inequality and Lemma 3.2.1, for any
no > 0, when d = 2, we have,

a0, 0] < Ozl ol -
< ol + Oyl o]

When d = 3,

1 3
Jax(u, 0,10)| < Cllul Zallul o] (3.215)

< mollulifp + Cng* lulzn vl
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3.2.1 The re-definition of traction vectors

For (U, P) € V x @, we cannot define 7(U, P) as a function on I'. However,
if (U, P) is smooth and satisfies (3.2.3a), it also satisfies

/T(U, P)-vdl' = (U,v) + a(U,v) + a1 (U + g, U, v)
r
+a1(U,g,v) + b(v, P) — (F,v) (Vv eV), (3.2.14)

where 7(U, p) is understood as a usual function on T
Based on this identity, we re-define the traction vector 7(U, P) as a
functional over M? for (U, P) € V x Q. We recall the following result (cf.

[20] for M = HY*(T') and [29] for M = HY/2(T)).

Lemma 3.2.2. There exists an extension operator E : M% — V such that
En=mnonT and |En|v < C|nllpa for all np € M?. Conversely, for any
w €V, we have n = w|r € M and || ya < C|lw|lv-

As a consequence, we obtain an extension operator E, : M — V; for
any n € M,

(Enn)n = )(Enn)T =0 onT, ||En77||V < CHUHM
Now we propose the re-definition of 7(U, P) as follows:
[[m(U, P), ]| = (U, wy) + a(U, wy) + a1 (U + g, U, wy)
+a1(U, g, wy) + b(wy, P) — (Fywy)  (ne M?), (3.2.15)

where w, = En € V. Actually, the right-hand side of (3.2.15) does not
depend on the way of extension; Hence, this definition is well-defined. Sim-
ilarly, we re-define as

[[rr(U),n]] = (thn) +a(U, wn) +a1(U +g,U, wn) +a1(U, g, wn)
+b(wy, P) — (F,w,)  (n€ M? with n, =0; w, = En) (3.2.16)

and

[ (U, P),n] = (U, wy) + a(U,wy) + a1(U + g, U, wy)
+a1(U, g, wy) + b(wy, P) — (F,wy) (me M; wy,=Epn). (3.2.17)

Then, we deduce an expression

[r(U, P),nl] = [ma(U, P),ny] + [[rr(U),mr)]  (me MY).  (3.2.18)
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On the other hand, we will assume that 7(g,7) € H*(0,T; L?(I")9) (see,
(A1) below) so that we have

(g, 7),m]] = /F r(g,m) ndl (€ M.

3.2.2 Variational form of (NS).

(NSE): For a.e. t € (0,7, find (U(t), P(t)) € V x Q, with U; € V, such
that

(Ut,v) +CL(U, U) +CL1(U+g, va) + al(Uagvv)

+b(v, P) = (F,v) Yo € Vi, (3:2.19a)
b(U,q) =0, VqeQ, (3.2.19D)
U=0, on(SUC), (3.2.19¢)
Un+gn =0, onl, (3.2.19d)
[70(U +g,P+m),m] >0, ¥YneM, n>0, (3.2.19¢)
[70(U + g, P+ 1), (Up + gn)] = 0, (3.2.19f)
[rr(U) + 7r(9),n]] =0, Vne M, (3.2.19g)
U(z,0) =Upy, on . (3.2.19h)

Proof of Theorem 3.2.1(Energy inequality). Suppose that (U, P) is a smooth
solution of (3.2.19), multiplying U to (3.2.3a), it yields

1d

3O+ 20 [[E)Fd+ [ (U+9)- 90 Vs

(3.2.20)
:—/(U~V)g-Udm~|—/F-Ud:r.
Q Q

Applying Lemma 3.2.1 and Remark 3.2.1, we have, for any 1 > 0,

(Vo ie < I+ O WU, for d =2
PR =llU 20 C + ng 2 gl U2, for d =3
Q nol|U |7 no Nl |U172,  for :

/Q (B - Ulde < CIF ]|y lU L < mollU 12 + Coig 1 F g1 -

In view of U, + g, > 0 on I', and

1
[+ vyw v =5 [ W+ gjuias >0,
Q T
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from (3.2.20), we see that, for any 79 > 0,

1d
5 g 1T @ L2 + 2 IEW)IT = 2n0 U

< { CUO_IHUH%ZHQHJ%Il + 0770_1HF||?H1(Q)61)/7 for d = 2, (3'2'21)
B 07753”9“%11 HUH%? + 07761|!F||?H1(Q)d)/, for d = 3.

From Korn’s inequality,
/ EU)[2de > a|[U|%:,  for some a > 0,
Q

and for sufficiently small 79, such that
va — 219 > 0,
applying Gronwall’s inequality to (3.2.21), it yields (3.2.4). O

(NSE) can be written into a variational inequality, denoted as (INSI).
(NSI): For a.e. t € (0,T), find (U(t), P(t)) € K x Q, with U; € V, such
that
(Up,v=U)+a(U,v—U) 4+ a1 (U+ g, U,v—U) 4+ ar1(U,g,v—U)
—|—b(’U - va) > (F7U - U) - [[T(g,ﬂ),’U - UH Vv e K>

(3.2.22a)
b(U,q) =0, VYgeQ, (3.2.22b)
U(z,0) =Up, on S (3.2.22¢)

Definition 3.2.1. We say that (U, P) is a solution of (NSE) if and only if
UecL>®0,T;V), U €L*0,T;V)NL>®0,T;L?,

P e L=(0,T;Q),
and (U, P) satisfies (3.2.19).

Definition 3.2.2. We say that (U, P) is a solution of (NSI) if and only if
UeL®0,T;K), U €L*0,T;V)nL®0,T;L?),

P e L>™0,T;Q),
and (U, P) satisfies (3.2.22).
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Theorem 3.2.2. (NSE) is equivalent to (NSI). Thus, a solution of (NSE)
solves (NSI) and the converse is also true.

Proof. First, letting (U, P) be a solution of (NSE), we show (U, P) satisfies
(NSI). Let v € K be arbitrary. Since v — U € V', we see from (3.2.15)

(Up,v—U)+a(Uv—-U)+a1(U+g,Uv—U)~+a1(U,g,v—U)
+b(v—U,P)—|[[7(U,P),v—-Ul]] = (F,o—"U).

Thus,

(Ug,v—=U)+alUv—-U)+a1(U+g,Uv—-U)+a1(U,g,v—U)
+b(v—U,P)—[[7(UP)+71(g,m),v—U]| = (F,v—U).

Since v, + gn > 0 a.e. I', by using (3.2.18), (3.2.19¢) and (3.2.19f)

[7(U, P) + 7(g,7),v = U]]
(70 (U, P) + (g, ), vn — Un] + ([0 (U) + 71(9), vr — Url]
= [TH(U> P) + Tn(gaﬂ)avn +gn] - [TH(U7 P) + Tn(gaﬂ-)a Un +gn] 2 O

Hence, (U, P) solves (NSI).

Conversely, letting (U, P) be a solution to (NSI), we show (U, P) satisfies
(NSE).

For any ¢ € Vjp, substituting v = U + ¢ € K into (3.2.22a), we immedi-
ately obtain (3.2.19a).

Let ¢ € V with ¢, = 0 on I' be arbitrary. Substitutingv=U ¢ € K
into (3.2.22a), we have

(Ut ¢) + a(U, ) + ar1(U + 9, U, ) + a1 (U, g, ¢)
+0(p, P) = (F, ) = [[rr(9), rll.
This, together with (3.2.16), implies (3.2.19g). Let w € V with w, > 0on T’
be arbitrary. Substituting v = w+ U € K into (3.2.22a), we have (3.2.19¢).
Finally, substituting v = —g € K and v = 2U + g € K into (3.2.22a), we
deduce
(Ut,U'i‘Q) +Q(U,U+g) +a1(U+ng7U+g) +CL1(U,Q,U+Q)

+b(U +g,P)=(F,U+g) — [r(g,m),U + g]. (3.2.23)

This, together with (3.2.15), gives (3.2.19f).
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3.3 The well-posedness of (NSI)

We are concerned with the class of solutions of Ladyzhenskaya type( cf.
[27]), that is to find (u,p) satsifying,

uwe L®0,T;V%), wus e L*0,T;V)NL>®0,T; L*(Q)9),
p e L>X(0,T;Q).
Assumptions.
(A1) fe HN0,T; L*(Q)7), 7(g,m)|r € H'(0,T; L*(I)9).
(A2) g € H2(0,T; L>(Q)4) N L>(0,T;V°). ¢ € L*(0,T;V°).
(A3) gn>00nT, [ gnds=— [gb, ds=B(t) > By > 0. B(t) € C*0,T).
(A4) Uy € VZ N H2(Q)?, satisfying

—(vAUy,v) = a(Uy,v) +/F7'(g,7r)(0)v ds, YveV. (3.3.1)

Remark 3.3.1. (Al), (A2) = F € H'(0,T; L*(Q)9).

Theorem 3.3.1. Under the assumptions (A1)-(A4), when d = 2, there
exists a unique solution (U, P) to (3.2.22) for any T € (0,00), that is

UeL®0,T;V%), U € L*0,T;V°)NL®0,T;L*(Q)%),  (3.3.2)
P e L>0,T;Q). (3.3.3)
When d = 3, the same conclusion holds for a smaller time interval (O,f].
(NSI?): For a.e. t € (0,7), find U € K?, with U; € V7, such that

(Ut,v—=U)+aUv—-U)+a1(U+g¢,U,v—U)+a1(U,g,v—U)
Z(F,’U—U)—[T(g,ﬂ),v—U] VUGKU7
U(z,0)=Up, on Q. (3.3.4b)

(3.3.4a)

Proposition 3.3.1 (Existence of P). Let U be the solution to (3.3.4) sat-
isfying (3.3.2), then there exists a unique P € L>(0,T;Q), such that (U, P)
is the solution to (3.2.22).
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Proof. (Existence) Let ¢ € Vo NV be arbitrary. Substitution v =¢ + U €
K7 into (3.3.4) yields

(Uta¢) +(L(U, ¢) +(11(U+g,U, ¢) +a1(U,g,¢) = (F7 QS)

Then, there exists a unique P € Q (cf. [36, Lemma IV.1.4.3]) such that, for
a.e. t € (0,7),

(U/7 ¢) + a(U) (;5) + al(U + g, U’ ¢) + al(U7g7 ¢) + b(U, ﬁ) = (F7 ¢) v¢ € ‘/0
(3.3.5)
and

1Pllz2 < CUU N2Vl H I F Nl 2+ (U+9)-VU | 2 +|U-V gl 12). (3.3.6)

We will show that there exists k € L°°(0,T') such that (U, P + k) solves
(NS-E).

First, by virtue of (3.3.5), (3.2.19a) is satisfied for P = P + k with any
ke L>(0,T).

Recall that (3.2.18) and (3.3.4a) give

[[7r(U),vr — Ur]] + [Tn(U,IoD + k), v — Up)
> —[[rr(g),vr — Ur]] — [tn(g,7),vn — U] Yo € K°. (3.3.7)

Let ¢ € C§°(T') be a function such that supp 1 C I' and 1), = 0. Then,
since fr ¥y, dI' = 0, there is a function w € V' such that w|p =, V-w =0
and [|w|ly < C||¢)]|pa. Substituting v = U + w € K7 into (3.3.7), we have

lrr(U), ¥rl] = [7r(9), ¥r]-

By the density, this implies (3.2.19g). Moreover, since (3.3.7) is valid for an
arbitrary k € L*°(0,T), we have

(70 (U, P) + (9, ), 0n + gn] > [ (U, P) + 70(g, 1), Up + gu] Vv € K°.
(3.3.8)
At this stage, we set

= () = ;[an + g, Pt m),Un+ gl (33.9)

and take k = ~.
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Then, noting [ Uy, dI' = 0 by V-U = 0 in Q and U|suc = 0, we can
calculate as

[Tn(U7 p + ’Y) =+ Tn(9777)7 Un + gn] = [Tn(Ua ﬁ) + Tn(QﬂT% Un + gn] - '7/ Gn dl’
r
= [Tn(Ua ﬁ) + Tn(g,ﬂ'), Un + gn] -8
which implies (3.2.19¢).
For the time being, we admit
v = inf [m,(U + g, P + 7), 7], (3.3.10)
ney

where

Yz{neMWZQn¢0,/ndF=1}
r
For £ € M with £ > 0 and & # 0, we have, by setting m = [.£ dT" # 0,

(U, P+9) +79,7),€] = [m(U, P)+7(g,7),&] — ym

= m[Tn(Ua Ij)) —i—Tn(g,ﬂ'),f/m] -
> my—ym=0.

Hence, we get (3.2.19).

It remains to verify (3.3.10). Let n € Y be arbitrary and set 7 = fn—gy, €
M. Since fFﬁ dl’ = 0, there exists © € V7 such that o,|r = 7. Then, the
function v satisfies that 0,,4+¢, = 817 > 0on I'. Thus, ¥ € K?. Consequently,
we have by (3.3.8)

[Tn(U,ﬁ))+Tn(g77r);77] = |:Tn U P +7'n g,T™ )7n+gn:|

v

;WWPH%M,H%+M=%

which yields (3.3.10).

(Regularity) According to the expression (3.3.9) and the definition (3.2.17),
we deduce, for a.e. t € (0,7),

|’7| < Cla
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where C1 = C4(t) denotes a positive function in L>°(0,7") which depends
only on ||Ul], U1, [|F]] and ||g|[1. This, together with (3.3.6), gives P €
L%(0,T5Q).

(Uniqueness) Suppose that there is another pressure P’. Since P and k are
unique, we have

P+ K =P, /-c’z_sl2| P dx = k.
Q

Hence, P = P'. O

Proposition 3.3.2 (Uniqueness). If (U, P1) and (Us, P2) are two strong
solutions to (3.2.22), then (U1, P1) = (Us, P).

Proof. From Proposition 3.3.1, we know that P is uniquely determined by
U; therefore, we only need to show the uniqueness of U.

Suppose Uy, Uz are two strong solutions to (3.2.22). Let w = Uy — Us.
From (3.2.22), we have

(U1, Uy — Uh) + a(Uy, Uy — Uy) + a1 (Ur + g, Uy, Uy — Uy)

+a1(U1,9,Us — Uy) > (F,Uy — Uy) — [7(g,m), Uz — Uy, (3:3.11)
(U3, Ur — Us) + a(Us, Uy — Us) + a1 (Us + g, Us, Uy — Uz) (3.3.12)
+ a1 (Ua, g, Uy — Us) > (F, Uy — Us) — [1(g,m),U; — Us).
From (3.3.11) and (3.3.11), we obtain
(W', w) + a(w,w) + a1 (Us + g, w,w) < —ay(w, Uy + g, w). (3.3.13)

In view of Korn’s inequality (3.2.6), Lemma 3.2.1, Remark 3.2.1 and

1
a1 (Uz + g, w,w) = 2/(U2-n+gn) ]w\Q ds >0,
F‘—v—’zo

we have
1
§Hw(t)H%2 + allw®)| 7

_ [ mllwlin + O 10+ gl el ford=2, (31
= Umollwlliy + O [0 + gl wlfe, — for d =3,

Let no be sufficiently small such that, « — 179 > «/2, then from Gronwall’s
inequality, we have, for all ¢ € (0,77,

t
lw(®)]I7 +a/0 lw(D)F < CeCrotlttali=oa|lw(0)|7..  (3.3.15)

Since w(0) = U;(0) — Uz(0) = 0, we conclude Uy = Us. O
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3.4 Penalty method

We introduce a penalty problem to (NS), denoted as (NS). Let 0 < € < 1.
(NS,) reads as: for a.e. t € (0,7, find (U, P.) € V x @, with U/ € V, such
that,

UA Uc+g-VVUc+ (U -V)g -V -0(U,P.)=F, in{ (3.4.1a)
V.U.=0, in, (3.4.1b)
U=0, onSUC, (3.4.1¢c)
(U + g, P+ 7) = %[Um bl m(U) = —rr(g), onT (3.4.1d)
Ue(x,0) = ug — g(0), on Q, (3.4.1e)
where [v]- = v — [v]4, [v]+ = max{0,v}. We write the variational form of

(NS,), denoted as (NSE).
(NS(E): For a.e. t € (0,7T), find (U, P.) € V x Q, with U/ € V, such
that

(U5,7U) + a(Ue>U) + al(Ue + 9, Ue,’U) + al(Ueag7U) + b(U, Pe)

1 (3.4.2a)
- - /[Uen + gn]-vp ds = (F,v) — / (g, m)v Yv eV,
€Jr r
b(Ue,q) =0, VYqeQ, (3.4.2b)
Ue(x,0) = Uy, on Q. (3.4.2¢)

Well-posedness of penalty problem

Theorem 3.4.1. Under the assumptions (A1)-(A4), when d = 2, there
exists a unique strong solution (Ue, P.) to (3.4.2) for any T € (0,00), that
18
U € L®(0,T;V°), Ul e L*(0,T;V°)NL®0,T; L*(Q)%),  (3.4.3)
P. € L®(0,T; Q). (3.4.4)
When d = 3, the same conclusion holds for a smaller time interval (0,T"].

(NS.E?): For ae. t € (0,7), find U, € V7, with U/ € V7, t € (0,T),
such that

(U!,v) + a(Ue,v) + a1 (Ue + g, Ue,v) + a1 (U, g,v)

1
- /[Um + gn]-vn ds = (F,v) — / T(g,m)v YveV,
r r

Ue(x,0) = Uy, on €. (3.4.5Db)

(3.4.5a)
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Lemma 3.4.1. Let U, be the strong solution to (3.4.5), that is Ue satisfies
(3.4.3), then we have

Ve + g0y < OVE. (3.46)
Proof. Substituting v = U, into (3.4.5), it yields

1
- /[Um + gn)-Uep ds = (F,Ue) — / 7(g,m)Ue ds — (UL, Ue)
I r
- a(Uea Ue) + al(Ue +9,Ue, Ue) + al(Ueaga Ue)'

(3.4.7)

Since g, > 0, we see that
1
LHS = _6/[Uen + gn]f(Uen + gn — gn) ds
r
1 ) 1
= — | [[Uen + gnl-I" ds+ = | [Uen + gn]-gn ds
€Jr €Jr
1 2
2 g”[Ucn + gn]—”L2(F)'
In view of U, satisfies (3.4.3), the RHS of (3.4.7) is bounded. And we have
€ M [Uen + gn]fH%Z(F) <C.

O]

Proposition 3.4.1 (Existence of P.). Let U, be the strong solution to (3.4.5)
satisfying (3.4.3), then there exists a unique P. € L*(0,T;Q), such that
(Ue, P,) is the solution to (3.4.2).

Proof. From (3.4.5), there exists a unique P.eqQ (cf. [36, Lemma IV.1.4.3])
such that

(Uela U) + (I(UE, U) + al(Ue + 9, Ue,v) + al(Uaga’U)
+b(v,P)=(F,v) YveV, (3.4.8)
and
1Pl 2 < CUU 2 + Ul g + 1(Ue + 9) - VUl 2 + |Ue - Vgl 2 + || F | 2)-

We write C1 = C4(t) to express a positive function in L°°(0,7") which de-
pends only on ||U!||z2, ||Uell g, | Fllz2 and ||g|| 1. Thus, we have

1P| 2 < Ch. (3.4.9)
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We will show that there is k. € L°°(0, 00) such that (U, P.) with P, =
P, + k. is a solution of (NS.-E).
Recalling (3.2.17) and using (3.4.5a), we have

[Tn(Uea Pe)yvn] = (Ue,tv U) + a(U€’ U) + a’l(U€ +9, Ue’v)
+a1<Ue7gav) + b(U,PE) - (F,U)

= 1/[Uen + gn]—’Un - [[Tn(g,ﬂ),vn]] (U c V0'7 'UT|F _ 0)
r

Hence,

(70 (Ue, Po) 4+ 70 (g, 7) — € (U, Pe),vp],m] =0 (n € M%), (3.4.10)

M":{neM\/FndF:O}.
Z={¢608°(F>|/F¢=1}

and take (and fix below) ¢ € Z. Then, for any v € V, /) = v, — a¢ with
o = [ vy dT belongs to My. Therefore, by (3.4.10),

where

Now we introduce

(70 (Ue, Pe) + T0(g, ) — E_I[Uen + gnl—, U]
= [mUe Pe) + n(g,m) — 6_1[U€n + gnl—, vn — ag)]
+70(Ue, Pe) + Tn(g,m) — 671[U€n + gnl-, @]
= a[r (U, P) + mu(g,7) — € HUen + gn]—, & (vevV).

Now, since

[0 (U, Pe) 4 7u(9, ) — € [Uen + gnl -, 0]
= [T (U, PE) + (g, ) — E_I[Uen + gn)—, B — ke,

choosing
ke = [Tn(Um ﬁe) + Tn(ga 77) - 6_1[Uen + gn]fa d)] (3411)
we obtain

(70 (Ue, P) + 709, 7) — € [Uen + gn]—,vn] =0 (v eEV);
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which, together with (3.2.17), implies (3.4.2a).

It should be checked that k. defined as (3.4.11) actually independent of
¢ € Z and it represents a function only of t. We let ¢, ¢’ € Z with ¢ # ¢'.
Then n = ¢ — ¢ € M?. Hence, by (3.4.10),

[Tn(Ue, Pe) + (g, ) — E_I[Uen + gn) -, 9]
= [Ta(Ue, Pe) + (g, ) — Eil[Uen + gn]-» ¢/],

which means that k. does not depend on the choice of ¢ € Z.
Finally, in view of (3.4.11), (3.2.17) and (3.4.6), we get

|ke| < Ch.
Combining this with (3.4.9), we conclude P. € L*°(0,T;Q). O

Proposition 3.4.2 (Uniqueness). If (Ue, Pe1) and (Ue, Pe2) are two strong
solutions to (3.4.2), then (Ua, Paq) = (Ueg,Peg).

Proof. Since P is uniquely determined by U, from Proposition 3.4.1, we
show Uy = Ue. Let w = U}l — U, from (3.4.2), we have, for any v € V,

(w',v) + a(w,v) + a1(Ua + g,Uc1,v) — a1(Uez + g, Uea, v)

1
+ai(w,g,v) — - /([Ud ‘n+ gn)— — [Ue2 - n+ gn]—)v, ds = 0.
r

(3.4.12)
Substituting v = w into (3.4.12), it yields

, 1
(W', w) + a(w,w) — p /F([Ud ‘1t gnl = [Uex - n 4 gn] - Jwn ds (3.4.13)

+ a1(Ue2 + g, w,w) = —a1(w,Uq + g,w).
We show that

_/([Ud ‘A4 gnl- — [Ue - n+ gn]-)wy, ds

r

- /([Ud n—l—gn] _[UEQ'n+gn]—)(Uel'n+gn—(U62'n+gn)) ds
/| e+ gnl- — [Ua - n+ gn]-|* ds

/([Uel n +gn] [U62 -n+ gn]-‘r + [Uel -n+ gn]-‘r[UE? n +gn]—) ds
N

(3.4.14)
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a(wa w) + al(Ue2 +g,w, w)

1
ZoszH%p + 3 /F(U€2 ‘n +gn)\w|2 ds
(3.4.15)

2
>(a—cq||[Ue - n + gn]_HLQ(F))HwHip. (" Lemma 3.2.1.)

1
o+ [ nt gl ~ Ut gl Ol ds

In view of Lemma 3.4.1, we have ||[Ue2 -7+ gn]- | 12(ry < Ce. For sufficiently
small €, such that a —c1||[[Uea - n+ gn] - || L2(r) > /2, following from (3.4.13),
(3.4.14), and (3.4.15), we have, for arbitrary ng > 0,

1d
2dt

2 —1 2 2 _
< nollw||zn + Cng ~|Uea + g3 |wl] 72, for d =2,
~ | nollwllF + Cn P Ua + g3 llw]32, for d = 3.

(6]
lwlZ: + 5wl g < —a1(w, Ua + g, w)
2
(3.4.16)

Setting n = a/4, from (3.4.16) and Gronwall’s inequality, it yields, for any
te (0,7,

t
IMW@+AHW%SCf“W“WWWM@Mw

Since w(0) = Ue1(0) — Ue2(0) = 0, we conclude Uy = Ues. O

3.5 The completion the proof of Theorem 3.3.1
and 3.4.1

Let (U, P) be the solution to (3.2.3), we set

oY p_ L LT i

f
Bt)’ B(t)’ Bt)’ t

-_ 9
EONRION
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(U, P) satisfies, for all ¢t € (0,T),

7+ PO 4 say@ +9) 0T + 80T V)3

B(t) (3.5.1a)
-V-o(U,P)=F, inQ,
V-U=0, in, (3.5.1b)
U=0, onSUC, (3.5.1c)
Up+Gn >0, 7U+gP+7)>0onT, (3.5.1d)
(Un +30)m(U+3§,P+7)=0, 7(U)=—7mr(3), onT, (3.5.1e)
U(x,0)=U, on . (3.5.1f)

where Up = 55, and F = f — g = 5l - B(t)(5- V)5 = F/B(2).
To study the well-posedness of U, it is equivalent to consider U of (3.5.1).
Setting ) . }
K={weV|v+g.>0onT}, K =KnV°

We give the variational inequality of U.
(NSI ). For a.e. t € (0,T), find U € K7, with U; € V7, such that

O, (G Y S N S
(U'v U)+5(t)(U’ U)+a(U,v—U)

+ B®ar (T + 3,00~ 0) + Bt)ar (T, 5,0 — 1) (8:5.22)
>(F,v—U) - [r(§,7),v—-U] YveK°,
U(x,0)=0U, on . (3.5.2b)

We write the penalty problem to (Nﬁa), denoted as (Nﬁ:)
(NS.E ). For a.e. t € (0,7), find U? € V?, with U; € V7, t € (0,T),
such that

(00) + 20 0) + ol 0) + SO, + 5. )
+ B0 (00 g0) ~ + [ o+ )00 ds (3.5.32)
~ 6 F
=(F,v) —[r(g,7),v] YveV,
U(z,0) = U, on . (3.5.3b)

We see that, for U, the solution to (NS.E?), U, = U./B(t). We consider
the well-posedness of (3.5.3). We shall apply the Galerkin’s approximation
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method to construct the smooth approximation solutions (we need C? with
1
respect to t). However, for arbitrary w(z ) g(z) € Hy ('), with g(x) > 0,

Jpw(z)ds = 0, It is not obvious that [i.[c(t)w(z) + g(x)]—w(x)ds is C* with
respect to t. Therefore, we introduce a regularization of [-]-. For any ¢ with

0<0<1, we set

0, for s > 0,
= (3.5.4)
Vs2+62—-46, fors<O.
We have ps(s) € CH(R), and
0, for s > 0,
a - 0, . for s > 0, ig . .
dsP = for s <0. ds2?"¥ T

\/ﬁ’ < 0. m, for s < 0.
(3.5.5)
Then we introduce the regularization problem to the penalty problem (1@0),
denoted as (lqéjﬂ;)
(NS.E;) For a.e. t € [0,T], find Us(t) € VO, with U’s(t) € V7, such
that

(T25:0) + S ) + 05,0 + B0 (Vs +5. 0 0)
+5( ) ( 65agv ) ! /pcs(Ue(Sn +§n)vn ar (356&)
~ 6 F
:(F,’U) - [[T(gaﬁ')fuﬂ Vv € VJ:
Ues(z,0) = Uy, on Q. (3.5.6b)

—~—0
Here, we propose the regularization problem (NS.E;s) to study the well-
—_—~~— 0O —~—CO
posedness of penalty problem (NS.E ). We have to mention that (NS.Ej)
i
is more valuable for practical use than (NS.E ), because to exactly compute

the integration such as [p[c(t)w(z) + g(x)]-w(x)ds is not easy. And we
recommend to use the regularization in numerical computation.

We show the well-posedness of (1@?) To do so, we construct ap-
proximate solutions by Galerkin’s method. Let {wy}72; C V7 be the linear
independent elements. w; = Uy and Upe_span{wy };r, is dense in V7. We
write the Galerkin’s approximation problems for m € N.

(1<T_S\jﬂgm). Find Ugspm = S5, cesh(t)wy, where ¢, € C2([0,T]), such
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that, Ue5n(0) = Up, and for all k =1,...,m,
B'(t)
B
t)al sm + 3, eémawk) +ﬁ( ) (Ueémungk) (357)

( ~e/(5m7 wk) + (Ueéma Ueém) + a(U€5m7 wk)

Pé eémn + gn)wkn dl’ = (F, ’LU].;) - [[T(gv 7~T), wk]]a
I

where Ugsin(0) = Uo, Uesimn = Uem + 1, and wy,, = wy, - .

Remark 3.5.1 (The existence of ce € C’Q).~ To make the argument rig-
orous, we have to replace F' and 7(g,7) by F, and 7(Gm,Tm) in (3.5.7),
respectively, where

Fr € CH[0,T1; LX), 7(Gim, ) € CH([0,T); L ()Y,
and as m — oo
Fp — Fin HY[0,T); L2(Q)Y),  7(Gm, 7Tm) — 7(§, ) in HL([0, T]; L*(T)%).

Since C'([0, T) is dense in H'((0,T)), the existence of such Fy,, and 7 (g, 7m)
is obvious. Hence, to make the notation simple, let us admit that

F=Fyn, 7(37%) =7(Gm: 7m)

n (3.5.7), which does not effect the argument in this section. Now, we see
that (3.5.7) can be written into the system of ordinary equations:

BinClsm (1) = G(t, cesm(t)),

where B,,, € R™*™,
T
Cesm = (Ce5la .. Ceém) 5

and G(t, cesm) is C1 with respect to t and cesm, because ps(s) is Ct with
respect to s, and F,7(g,7) are C* with respect to t. Therefore, we conclude
the existence of ces, € C2([0,T]) for k=1,...,m

Lemma 3.5.1. Let (A1)-(A4) be valid, § < Ce and € be sufficiently small.

(1) When d =2, for any T € (0,00), there exists a unique solution Udspm
to (8.5.7), such that

||Ueém‘|%oo(o7T;L2(Q) + HUe(SmH%ﬁ(OTVo) <C, (3.5.8&)
HUeJmH%OO(OTVU) +e 1”[ edmn gn]*HLOO (0,T;L2(T)) < C7 (3'5'8b)

U §mHLoo 0.1;L2(Q)d) T 1T 6m”L2(0Tfo) <C. (3.5.8¢)
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(2) When d = 3, the same conclusion holds for a small time interval (0, T]

Proof. Multiplying (3.5.7) with ¢ (t) and taking the summation of k, it
yields

1g ()
||U56m||L2+ B()

+ 5( ) ( eom T 95 Ue5’m7 Usém) + ﬂ( ) ( eoms 9 Usém) (3'5'9)
- 1/p6(065mn + gn)ﬁdmn ds < (F7 Uem) - [[T(g, 7T)7 Uem]]-
€Jr

||U66mHL2 + a||U66mHH1

We see that
B p5(Ue5mn + gn)UE‘sm" = PE(ﬁeémn + gn)(ﬁeémn + Gn — gn) (3 5 10)
=05 ([Uesmn + Gn]-) [Uesmn + Gn)— + ps(Uesmn + Gn)gn > 0.
7 ~ T 7 _ B(t) 7 ~ i 2
/B(t)al(U65m + 9, Uecsim, Ue6m) = T F(Ueémn + gn)|Ue6m| dr
Y [ - t) [~ L
r r

> — Cil|[Uesmn + Gul-ll 2y | Uesm - (- Lemma 3.2.1.)
(3.5.11)
Applying Lemma 3.2.1 and Remark 3.2.1, we have, for arbitrary 79 > 0,

’/8( ) eémagaUaSm)’
< "70||Ue5mHH1 +C7701”g||H1HU55mHL27 for d = 25 (3‘5'12)
WOHUeémHHl +C7703H9HH1HUe5mHL27 for d = 3.

(F, Uesm) — [[7(, 7), Uesm]]| < n0l|Uesml| 32 +C770_1(HFH%2+HT(§7ﬁ)’\%%r))-
(3.5.13)
From (3.5.9) to (3.5.13), we obtain

1 1 5 ~ -
||U€m||L2 + a||U55m||H1 + - [p6(U65mn +gn) [Ue6mn +gn]f]

SC?? HIFZ2 + Im(g, 7 )IILz ) + Cro llUemll7 2,

(3.5.14)

where & := o — 219 — 1| [Uesmn + gnl-|lz2(ry, Chog = Cmy "al%: + Cs for
d =2, Cyy g = Oy ®|3llt + Cp for d =3, and Cp = maxepo,ry 50
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Let ng = «/8. Since 0’65mn(0)+gn( ) = Uo+Gn > 0, we have Il 6(;mn(())—i—
Gn(0)]-llz2(ry = 0. Let T} be the maximum time such that, for all ¢ € [0, T3],

e |[Tesmn + Gn -l 220y < /4, (3.5.15)

a=a-—2n —all Egmn%—gn],HLz > /2, Vte|0,Ty].
Applying Gronwall’s inequality to (3.5.14), we obtain, for any t € [0, T}],
~ t ~
GOl + 0 [ 1Tesm(oly

1 / t / 05 ([Uesimn(8) + Gn)—) [Uesmn(8) + Gn]—dT

(||F||L2 (0,£L2(Q)4) + HT(Q» )HL2(0,5L2(F)d) + HUOHL?)

(3.5.16)

which proves

||U6(§mH%oo (0,T1;L2(Q)4 + ”U66mH%2(07T1;V‘7)

T ]
+ e_l/ /,06 e5mn "|' gn] )[Uegmn(s) + gn],dl‘dt < C.
(3.5.17)
(3.5.17) implies

h € mn ‘|‘gn] |3
/ /\/ eéjm ]_)2+52d1“dt
o / " / ps([Tesmn (5) + ] ) [Tesn (5) + ] _dTdt

T 52 i
/ / 5 )[Ue5mn(3) + Qn]_dfdt
eémn( ) —|—§n]_)2+52

<C+C <C (- (5<Ce)
(3.5.18)
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Differentiating (3.5.7) with respect to t, it yields

o BN - B'@) 7
@) + (15 ) s + 55
+6 (t) ( e6m+gaU65m7wk) +B(t)a1( e5m+g7 Ueémvwk)

)

+5(t)a1( €5m+gaU55m7/wk)+6( (I]_( E5m)guwk))
+ﬂ() ( eém?g7wk)+ﬁ() (Ue(smangk)

- 1/(p5<065mn +§n))/wkn ds = (Flawk) - [[T(glvﬂ'/)?wk]]'
€Jr

(3.5.19)
Multiplying (3.5.19) with ¢, (t) and taking the summation of k, we get

( esmy W ) + a(U65m7 wk)

2dt” 6mHL2 —|—O¢” 5mHH1 +B( ) ( edm +g?U66m7U6/6m)

1 B _ -
B g /(pé(UaSmn + gn)),Uelémn ds
I

(BON 5 B
< (B( )) (UeémaUeém) 6( ) || e6m||L2

t

- ﬂ ( ) ( sm T+ 3, Ueéma Ueém) - ﬁ(t)al(ﬁéém + gl’ 0667117 Uel5m)
( )a ( eoms 9, Ue5m) - ﬁ(t)al(ﬁé(;m, 9, Uelém)

— B(t)ar (Uesm, 7', Ulsm) + (F', Ulsy) = [[7(3 7)), Ulginl)-

The same to (3.5.11), we have

(3.5.20)
B(t)al(ﬁeém‘i'g» Uelémv f]elém) > CIH[ 66mn+gn}*”L2 H 5m||H1 (3'5'21)
From (3.2.2b), we see that § = go(z) on I, and g, = 0 on I'. Therefore,

- /(pJ(Ue(Smn + gn)), ~e/(5m71 dr’
I

= /(pé(Ue6mn + gn)) (Ueémn + gn)l dr (3522)

65 + - ~
/ mn gn] 2’<U65mn +gn)/‘2 dr’ Z 0.
\/ esmn gn + o

In view of (3.5.17), we have, for all ¢ € [0,T7],

BON 7 B, -~
‘(5(@) (Ueom Ugm) + (t) 1 6m||L2 <C||, 5m||L2+C. (3.5.23)

98



The same to (3.5.13), for arbitrary ny > 0,

(F/ E5m) - [[T(gl ﬁ-/)? ~el5m]]

Y - (3.5.24)
<ol Usm | Fr1 + Cong (LE 172 + 173, 7)1 2ry)-

(1) First, let us consider the case of d = 2. Applying Lemma 3.2.1,
Remark 3.2.1 and (3.5.17), we have, for arbitrary ny > 0,

18 ®0ar(Tesimn + 3, Vet Ulsm)| < Cll0csm + 1Tl 105l

1/2H 1/2

1/2
<Cl|Tesm + G152 NTesm + Gl N T sl |0 || 1T s 3

(o

<770|| 6m||H1 + 077 6m||L2||U66m +g||H1 + HUE(SmHHl)

(3.5.25)
8001 T + 5 U Uigm)| < C1om + a1l

<CN Tl 2211 Tesmll 111 1Tl | 11
1/2 1/2 1/2 1/2
+ CINF NG 1N Ot T 12N Tl | 107

<nol| Tls 121 + Cny UL |22 | Tl 201
—1/3 i
+ Cn P sl 2215 120+ 1T sl 20),
(3.5.26)
,Bl(t)al(ﬁeémagv Ue/ m)‘
‘ ’ (3.5.27)

el

<ol Ugsmll7n + C Ulsmll 2|1 Uetmlzn + 13130).

‘/B(t)al(ﬁelémaga ﬁelém)‘ < 770” 5mHH1 + 0770 1” 6m||L2||g||H17 (3528)

‘5 a1(Ueom, §', Uls )’

<0|Ulsmlz + CO 3 (1 Utsm I 72 1 UesmlI s + 11 770)-
From (3.5.20) 0 (3.5.29), we obtain

(3.5.29)

th” 6m||Q+a|| 6mHIQ
<C1312n + 1712 + 1 Tesmll2) [Tl 22 (3.5.30)
+ Cs(|Fl22 + 7@ )3 2qr) + Co 13 12+ 1 Tesial ),

where G := a — 66 — C1 || [Ucsmn + Gn)—Ilz2(m)
Let § = a/12. From (3.5.15), we see that

o = 6no — Cl”[ esmn + gn]—”L? >af2, Vte [O7T1]'
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Applying Gronwall’s inequality to (3.5.30), it yields,

50|32, (3.5.31)

105 l|% 0 (0,73;2(2)d) T tes 5m||L2 om;vey SO+ 1oz

To show the boundedness of ||U’s, (0|3, we multiply c.,,(t) to (3.5.7), add
the resulting equations, and make ¢ = 0, then it yields

m(O)IF2 + (U, Uls (0)) — [[7(3, 7)(0), Ut (0)]]

m\H

/ 05(00 + 30(0)) 05,0 (0) ds
r (3.5.32)

/—\
o~

( eém( )) 5( )a1<U0+g( )70070é6m<0))

t)
— B(t)a1(Uo, §(0), Uls,, (0)) + (E(0), Uy (0)).

Since [Uo + gn(0)]- = 0 and (A4)(3.3.1), we have

i) < 1a(T0, UL (00)] + (AT Ul (0))
(G, 00D + |01 (T + 5(0). Do, T (0))

(0
+ |11 (00.3(0). Ul (0)| + | (F(0). U5 (0)| (35.3)

+

<C (HUolle + 100l 22 + 1T + (0) | o< | Tl 111
HIToll 2= 13(0) [ 11 + HF(O)Hm) 1U6m (O)l 22,

which shows [|U’5, (0)||z2 < C. Furthermore, from (3.5.32), we prove

H 6m||Loo(0 T1;L2(02)4) + H 6mHL2 (0,Ty;Ve)

T
- 6 mn + n ~ _
e6mn n
(3.5.34)

Multiplying ¢, (t) to (3.5.7) and taking the summation w.r.t k, it gives

1d - - 1 N o
H 5mHL2 + - (Ueém; Ue&m) - - / p&(Ue(Smn + gn)Uéémn dar
2 d €Jr
/81( ) 7 7! 7 ~ T 7/
(U65m7 eém) - ﬁ(t)al(UaSm + 9, Ue5ma Ugém)

B()
- 5(t)a1(ﬁ65ma f]a Uslém) + (F? Uelém) + [7-(97 71') Eém] :RHS.
(3.5.35)
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Since ¢ = 0 on I', we have

T B B
- / / p&(Uﬁsmn + gn) elémn dr'dt
0 r

T . -
- / / pé(Ue(Smn + gn)(Ue&rm + gn)/ drdt

. ) (3.5.36)

/ / 7 P6 e5mn + gn)(Uetsmn + gn))
Ty
/ / Ty )06 eémn + gn)) (Ueémn + gn)drdt = Il + I2-
In view of (Uesmn + Gn)(0) > 0, we get
Il :[Pd(ﬁedmn + gn)(Tl)v [Ueémn(Tl) + gn(TI)]*] -0

= edmn Tl + gn Tl 2 +/ ﬁeémn Tl + gn Tl —

=N [Uesmn(T1) + Ga(T0)) - 172y F[ (T1) + gn(T1)] (3.5.37)

) (p5(066mn + gn)(TI) - [Ueémn(Tl) + gn(Tl)}—)dF
>[|[Uesmn(T1) + Gn(TO)- 72y = C8 (- Ips(s) = [s]-| < ).

eémn + gn ’2 + 52

. 1/2
- (/ | / Db £ 9= |G + 5 >'2)
B \/ Uesmn + Gn)-|? + 62 (3.5.38)

( /Tl / [Uesmn + Gin) > )1/2
\/ -2 4 62

Uesmn + gn

Th
emn+ n i ~
Y= / / NG smn + G-\ (¢7.5.0 & Gy |dTdt

<C+C <C (. (3.5.18),(3.5.34)).

In view of (3.5.17) and (3.5.34), we have

RHS < C(|gl7p + 1 Uemllz) 1 Uem | 71

g P - (3.5.39)
+ ClUenlln + 1Uemlzn + 1 F Nz + [17(g, T 72)-

From (3.5.35), (3.5.36)-(3.5.38), (3.5.39), and recalling that we assume ¢ <
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Ce, we have, for all ¢ € [0,T1],

[ 102060 s + 00 @). O )+ 1[Cosn®)+ 300

3 5 .
<O [ 10am@s + € + €2 4 05 < CalGiam, Tan) + .
0

(3.5.40)
Applying Gronwall’s inequality to (3.5.40), it yields,

||066m||%00(07T1;V0) + G_IH [Ueémn + f]n]— H%"O(O,Tl;L2(F)) S C (3541)
In view of (3.5.41), for sufficiently small e,
||[ﬁe(5mn + gn]*HLZ(F) < C’\/E <1, Vte [07 Tl]

Hence, there exists Tp > T, such that (3.5.15) is satisfied for all ¢ € [0, T5].
Furthermore, we can replace 77 in (3.5.17), (3.5.34) and (3.5.41) by T5.
Once again, for sufficiently small e,

|[Uesmn + Gul-ll 2y < CVe< 1, vt e[0,Ts].

There exists T3 > Ty, such that (3.5.15) is satisfied for all ¢t € [0,73]. We
can continue this process for sufficiently small e, till we reach some T} > T,
for any T' € (0,00), and (3.5.17), (3.5.34) and (3.5.41) are satisfied with T}
replaced by Tj. Hence, we proved (3.5.8) when d = 2.

(2) When d = 3, the discussion before (3.5.25) and the observation for
|TU75,.(0)]|2( see (3.5.33)) are the same to the case of d = 2. The esti-
mates from (3.5.35) to (3.5.41) can also be applied to the case of d = 3.

What changes from the case d = 2 is the estimates of || 65m”L°<>(0 hL2(@)d)’
1

|| 5m||L2 0, T V)
In place of (3.5.25)-(3.5.29), we derive, for arbitrary 7y > 0,

B/(t)al(ﬁdm + ga ﬁe5m> Ué(im) < CHU€5m + gHL6 HUG(SmHHl H 6mHL3

1/2 1/2
<C|\esim + 3l i 1 Teomll a1 | Tl | 251 D sl ot

—1/3 2/3 4/3 2/3
<o 1T sl 1T esml 2 + Cp 21T s 25 T e + G| 2N Ui |2
—1/3
<770H 6mHH1”U65mHH1 +C77 / H 6m”L2”U65mHH1
+ Cng PN T s + 31121,
(3.5.42)
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|81l + 7 Oesims Utgn) | < Cl10%a1n + 312511 Dol 11102l

<10 | Ulsin | 711 (1 Uesmll 11 + | Uctm | 1) + Cig * | Ut 72 | Ut |

—1/3 —1/3
+ Oy VT s oo 1 Tesml 2 + Cig 21181121,
(3.5.43)

| (a1 (Ocsms G Otgn)| < moll 0l 13152 + O 1Ty, (3:5.44)
B Teom, 7 Uzw\ < 0ll Ul 321 Dol + O 13- (3.5.46)

Hence, in place of (3.5.30), we obtain

th” §mHL2+aH 5mHH1

_1 eémn+gn] ) ~ \/2
U€ mn+ n dr
[ e e T+ .

<C(lglzn + g7 + HUeémHHl)H comll72
+ C5(IF 172 + 117G W) 72(ry) + Colg 17 + [ Tesmll 770,

where
@ = o= 2050 = 40 [ Uesmlliys =m0/l Uemllzzt = CrllTeamn + G-Il ey

We choose 1y satisfying 2n9 + 4170||ﬁo|]§{1 + 10l Toll i < a/12. Let Ty be
the maximum value of ¢ such that 219+ 4no|| U (¢) 13,1 + nol|Uo(8) |1 < /4.
Let T} = min(Tl,Tl), then we have, for all t € [O,Clo’l],

Q= a—2n —4170‘|U55mH§q1 *UOHUeémHHl *C1||[Ue(5mn +§n]f”L2(F) > O‘/Q'

Applying Gronwall’s inequality to (3.5.47), we obtain

H (5m”Loo(0 fl (L2(Q)4) + H 5mHL2 0T1 V)

" - (3.5.48)
_1/ / \/ eﬁmn_:‘ gn] + = |(Ue5mn +§n),’2dth < C.
edmn gn

Therefore, we show (3.5.8) holds for a small time interval [0,7] when d =
3. O
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Lemma 3.5.2. Under the assumptions of Lemma 3.5.1, when d = 2, for any

T € (0,00) and sufficiently small €, there exists a solution U to (NS E5)
such that

HUeéHLOO (0,T;V7) + 6_1/2”[066 + §n]_||Loo (0,T;L2(I)) < C, (3.5.49&)
1Tzl Lo o.132200) + 105 L2050y < C. (3.5.49Db)

When d = 3, the same conclusion holds for a smaller time interval (0,T).

Proof. The proof below is valid for both d = 2, 3, except that when d = 3, we

have to replace T' by T. As a consequence of Proposition 3.5.1, there exists

some U.s and a subsequence of {Uedm}m 1, such that Ug € L°°(0 V),
/s € L>®(0,T; L*(Q)%) N L?(0,T; Vo), and as m — oo,

Uesm — Us.s, weakly* in L°(0,T;V°), (3.5.50a)
[Uesm + gn]— = [Ues + gn]— weakly* in L>(0,T; L*(T)), (3.5.50b)
Uls, — Uls, weakly* in L0, T; L*(Q)%), (3.5.50c)
Ul — Uls, weakly in L?(0,T;V°). (3.5.50d)

We show U is the solution to (3.5.6). Multiplying (3.5.7) with any ¢ €
C§°(0,T), and integrating over (0,7, it yields, for all k =1,2,...,m,

T /
/O ¢(t) {( ~eléma wk) + Bﬁ((;))(ﬁeéma Ue5m) + a(Ueéma wk)
+B(t)a1(0e§m + §, Ue5ma wk) + B(t)al(UaSma §7 wk)

_1/Frh05(ﬁe5mn + Gn) Wiy ds — (F,wy) + [[T(é,ﬁ)jfwk“} dt = 0.

€
(3.5.51)
It follows from [6, 43] that the embedding

{w|we L*0,T;V), w € L*0,T; L>(Q)%)} — L*(0,T; L*(Q)9)

is compact. Hence Uy, — Ues strongly in L2(0, T; L*(Q)9). Since the trace
mapping H'(0,7;V) — L%(0,T; L*(I')%) is compact, we have

Uesmn — Uesn, strongly in L2(0,T; L*(T)).

Therefore, Uespmn — Uesn a.e. on I'. ps(-) is continuous, so that ps(Uemn +
n) = 1hos(Uesn, + gn) a.e. on I
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Let m — oo, we obtain, for all k € N,

T /
[ o {( 75 we) + ég))wea,wk) T (U, wp)

+8(t)a1(Ues + G, Ues, wi) + B(t)ar(Ues, g, wi) (3.5.52)

—1 /Fpg(Uasn + n)Wgp ds — (ﬁ',wk) + [[T(g,ﬁ),wk]]} dt = 0.

€

Since USY_ span{wy }7, is dense in V7, we can replace the test function
wy, of (3.5.52) by any v € V?. And we proved U = U, is the solution to
(3.5.6) satisfying (3.5.49). O

Lemma 3.5.3. Under the assumptions of Lemma 3.5.2, when d = 2, for any

T € (0,00) and sufficiently small €, there exists a solution U, to (NS€EU),
such that

1Uell Lo (0.1v7) + e 2|0, + Gn) Lo (0,m;22(r)) < C; (3.5.53a)
U oo 0,122y + 1UEN 20,10y < O (3.5.53D)

When d = 3, the same conclusion holds for a smaller time interval (O,C/O’).

Proof. The proof below is vahd for both d = 2,3, except that when d = 3,
we have to replace T by T. As a consequence of Proposition 3.5.2, there
exists some U, and a subsequence of {UE(; }22,, with lim;_,o §; = 0 such that
U. € L>(0,T;V), U € L>(0,T; L*>(2)%) N L?(0,T; Vo), and as i — oo,
0; — 0,

Ues, — Ue, weakly* in L>(0,T;V?), (3.5.54a)
05, (Ues, + gn) — [Ue + gn]— weakly* in L°(0,T; L*(T)), (3.5.54b)
U’5 — U!, weakly* in L°°(0,T; L*(Q)%), (3.5.54c)

’s, — U!, weakly in L*(0,T; V7). (3.5.54d)

It is not difficult to verify that U. is the solution to (3.5.3). And we proved
U. = U, is the solution to (3.5.3) satisfying (3.5.53). O

Proposition 3.5.1. Under the assumptions of Proposition 3.5.1, when d =
-~ —~—0
2, for any T € (0,00), there exists a solution U to (NSI ), such that

||UHL°°(0,T;V0) <C, (3.5.55a)
1U" || oo 0,722y + 10 220,10y < C- (3.5.55b)

When d = 3, the same conclusion holds for a smaller time interval (0,10“).
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Proof. The proof is valid for both d = 2, 3, except we replace T' by T for the
case d = 3.

In view of Proposition 3.5.3, we have, for sufficiently small e, || U, | o 0,7v%)>
||UE’\|L00(O7T;L2(Q)¢1) and ||UE’HL2(07T;VU) are bounded independent of ¢, and
1[Ue + n]— Lo (0,1;22(r)) < CVe ) )

There exists a subsequence ¢; — 0, and U such that U € L*(0,7;V7),
U' € L>=(0,T; L2(Q))) N L*(0,T; Vo), and as € — 0,

U — U, weakly* in L®(0,T;V?), weakly in L2(0,T;V°), (3.5.56a)
[Uen + Gn]— — 0, weakly* in L>(0,T; L*(T")), (3.5.56b)
U - U, weakly* in L=(0,T; L*(Q)?), (3.5.56¢)
U' - U', weakly in L*(0,T;V°). (3.5.56d)
The same to the proof of Proposition 3.5.3, we have
U — U, strongly in L*(0,T; L*(Q)?), (3.5.57a)
Uep — U, strongly in L2(0,T; L()?), (3.5.57b)
[Ue 4 Gn)— = [Un + Gu]— a.e. on T (3.5.57¢)
Hence, [Up, + gn]— =0 a.e. on T, U € K, and
T T
/ a(U,U)dt < lime_m/ a(Ue, U, )dt.
0 0
For arbitrary v € K¢, from (3.5.3), we have,
/
. . 1)~ . . .
(Uelvv - Ue) + //88((1;)) (U€7U - UE) + a(Ue7U - Ue)
+ B(t)a1(Ue, §,v — Ue) + B(t)ar (Ue + §, Ue,v — U
f( Jar(Ue, g, v )+ B(t)ax( g, Ue,v ) (3.5.58)
- /{Uen + gn]f(vn - Uen)ds
€Jr
- (F)U - U€) - [[T(gaﬁ-)av - UGH = 07
U(x,0) =0Ty, onQ. (3.5.58D)
In view of
- [Um + Gn]—(vn — ﬁen) = _[ﬁen + Gn)—[Vn + Gn — (Uen + Gn)]
== [Uen + gnl—(vn + Gn) — [[Uen + @1]—’2 (3.5.59)

<0 (Vv e K),
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we have, for all t € [0, 77,

+B(t)ay(Ue, §,v — U) + Bt)ay (U + §, Ue, v — U,) (3.5.60)
Tt >0

Therefore, taking the lower limit lim__,, to (3.5.60), we obtian

[ A0 0= 00+ F O30T~ 0) +al0.0 - D)
+8(t)ar(U,§,v —U) + B(t)ar (U + §,U,v — ) (3.5.61)

(Fyv=0) = [Ir(G.7),0 = O]} = 0,

Follows from Lebesgue differentiation theorem( cf. [15]), we have U = U is
the solution to (3.5.2) for a.e. t € [0,T7. O

Since U = UB(t) and U, = U.B(t), in view of Proposition 3.5.1 and 3.5.3,
we obtain the well-posedness of U and Uk,.

Proposition 3.5.2. Under the assumptions (A1)(A2)(A3)(A4), when d =
2, for any T € (0,00), there exists a solution U to (NSI?), such that

1U| 0,77y < C, (3.5.62a)
1U" | Lo 0,712 0002y + 1U” 1 200,700y < O (3.5.62D)

When d = 3, the same conclusion holds for a smaller time interval (O,’lo’).

Proposition 3.5.3. Under the assumptions (A1)(A2)(A3)(A4), when d =
2, for any T € (0,00) and sufficiently small €, there exists a solution U, to
(NS.E?), such that

Ul oo (0,750 + € 2 (|[Ue + In) Lo (0,m;2(r)) < C; (3.5.63a)
U oo 0,122y + 1UEl| 20,170y < O (3.5.63b)

When d = 3, the same conclusion holds for a smaller time interval (0,70“).

Proof of Theorem 3.3.1. It follows from Proposition 3.5.2, 3.3.1 and 3.3.2.
O

Proof of Theorem 8.4.1. It follows from Proposition 3.5.3, 3.4.1, and 3.4.2.
O
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3.6 The Stokes problem with a unilateral bound-
ary condition of Signorini’s type
From now on, we consider the Stokes equations with unilateral boundary

condition of Signorini’s type.
Find a velocity u and a pressure p such that

—vAu+Vp=f, V-u=0, in Q, (3.6.1a)
u="b, on S, (3.6.1b)
u=0, on C, (3.6.1¢)
up >0, 7o(u,p) >0, on T, (3.6.1d)
UnTn(u,p) =0, 77r(u) =0, on I (3.6.1e)

Remark 3.6.1. The Signorini’s problem has been considered in [25] with
a traction boundary condition on a portion of I', i.e. there exists I'g C T,
ITo| > 0, such that, 7(u,p) = H(z) on I'g, which leads to an essentially
different argument.

We set the reference flow (g, ) satisfying
V-o(g,m) =0, V-g=0, inQ,

glc =0, g|s=0.

B::/an:—/sbnzo.

We assume that f € L2(Q)? and 7(g,7) € M'.

Setting (U, P) = (u—g,p—m), our target problem becomes the following
equations.

(S) Find a velocity U and a pressure P such that

And we assume that

—vAU+VP=f, V- -U=0, in Q, (3.6.2a)
U=0 on SUC, (3.6.2b)
Un+9gn >0, 7,(U,P)+1,(9,m) >0, on I’ (3.6.2¢)
(Un, + gn)(mn (U, P) + 1(g,m)) = 0, on I’ (3.6.2d)
mr(U) 4+ 7mr(9) =0 on I’ (3.6.2¢)
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Weak formulation of (S).

We interpret (S) as follows.
(S")Find (u,p) € V x Q s.t.

alU, ) + b(P, ) = /Q frode (Vg e HYQ)Y),
b(q,U) =0 (Vg € Q),

Un + dn Z 0 a.e. on F,

[T (U, P) + 7n(g,7),m] > 0 (Yne M, n>0),

[70(U, P) + (g, 7), Up + gn] =0 (Yne M, n>0),

[[rr(U) + 71(9),m]] = 0 (v € M?, n, =0).

Formulation by a variational inequality

(VI) Find (U,P) € K x @ s.t.

a(Uyv—=U)+blv—-U,p) > (F,vo-U) (Vv € K),
b(q,U) =0 (Vg € @),

where F : V — V' is defined as
<F,’U> = <F7 U>V’,V = /Qf ‘v dr — [[T(gvﬂ-)vv”‘

Theorem 3.6.1. (VI) & () .

Proof. The argument is similar to Theorem 3.2.2.

(3.6.4a)
(3.6.4b)

(3.6.5)

O]

Theorem 3.6.2. There exists a unique solution (U, P) € K x Q of (VI).

Proof. Since a is a coercive bilinear form in V7 x V7 by Korn’s inequality,
we can apply Stampacchia’s theorem (cf. [9, Theorem 5.6]) to conclude that

there exists a unique U € K7 satisfying
a(Uv—=U) > (F,v—-"U) (Vv e K7).

Taking v =U + ¢ with ¢ € H&U(Q) in (3.6.6), we deduce

a(U, p) = /Q frpde, (Ve HAQNVO).
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Hence, according to the inf-sup condition of b, there exists P e L(9Q)
satisfying

(]B,V'v):a(U,v)—/ f-vdx (Vv € HY(Q)D).
Q
Thus we obtain (U, P) € K x L3(Q) satisfying
a(U,v) + b(P,v) = / f-vdx (Vv € HE(Q)?). (3.6.8)
Q

Setting

n 7A hrw n n
lEinf[Tn(u,ﬁ)—i-hn,n]:[T (1 P) + P, U + g

inf z , (3.6.9)

where
Y—{WEMMZO, n#0, /77—1}-
r
With a similar argument to the proof of Theorem 3.3.1, it is not difficult to
verify that (U, P) is the solution of (VI) where P = P +1 O
3.6.1 Penalty method for the Stokes problem
We introduce p: V — V' by setting

(p(U),v) = — /F[Un + gn]-vy ds, (3.6.10)

where [w]+ = max{0, w} and w = [w]4+ — [w]_.

Lemma 3.6.1. (i) p is a bounded, monotone and hemicontinuous opera-
tor from V to V'.

(ii) K ={veV|p) =0}
Proof. We show (i).

1. (boundness) By using the trace theorem, we have

(p(U),0) < /F [Un + gn]—[vn] ds
< Un + gnl-llzz@yllvnll L2
< (IUnllz2@y + lgnllL2@) lvnll 2(r)
< (1UIlv +llgnll 2y llvllv
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for U,v € V. Hence,
(@)l < llullv + llgnllL2qr)-

2. (monotonicity) For U, v, we have

(p(U) — (o)1 — v) = (p(U), U — v) — {p(v), U — v)
—— [+ gl W = v + [ o+ g0 U = )~
N T

T /F([Un + gnl— = [vn + gn] =) (Un + gn — (vn + gn))

:/F([Un + gn]— - [Un + gn]—)(Un + 9n — (vn + gn))

:H[Un + gn]— - [Un + gn]—Hiz(F)

- /F (Wn + gn) — [n + 6] ) ([Un + gl — [0 + gal)

Z/F[Umtgn][vn+gn]++/r[vn+gn][Un+gn]+

>0.

3. (hemicontinuity) Let U,v,w € U and consider a real-valued function

n(A) = (p(U + \v),w) = /[Un + Avp|—wy, (A €R).

r

This is a continuous function, since the function [-]_ is continuous.

(ii) It is obvious.

Penalty problem of (S)
Let 0 < € < 1. We give the penalty problem to (S).
(S¢) Find (U, P.) € V x @ such that

(U, ) + b(Py ) + %@(UE),v) —(Fv) (e,
b(Q7 Ue) =0 (Vq S Q)

(S?) Find U € V7 such that

a(Uesv) + 2(p(U),0) = (Fov) (Vv € V),

€
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Theorem 3.6.3. There exists a unique solution U, of (S7) and it satisfies

1Uellv < CUFNv + llgnlla), (3.6.13)

Ipwllae = sup el

< Ce(IFNlvr + llgnllae).  (3.6.14)
e Inllm

Theorem 3.6.4. There exists a unique solution (U, U.) of (Se).

Proof of Theorem 3.6.3

We will make use of

Lemma 3.6.2 (Theorem 2.1 of [28]). Let X be a separable reflexive Banach
space and let T : X — X' be a (possibly nonlinear) operator satisfying the
following conditions:

1. (boundness) There exist C,C',m > 0 s.t. ||Tul|x < C|lu||'} +C" for
allu e X;

2. (monotonicity) (Tu — Tv,u —v) >0 for all u,v € X;

3. (hemicontinuity) For any u,v,w € X, the function A\ — (A(u + Av), w)
18 continuous on R;

(T'u, u)

[[ullx

4. (coerciveness) — 00 as ||ul|x — oc.

Then, for any ¢ € X', there exists a unique u € X such that Tu = .
Furthermore, if T is strictly monotone:

(Tu —Tv,u—v) >0 (Yu,v € X,u#v),
then the solution is unique.

Proof of Theorems 3.6.3. We consider a nonlinear operator A, : V — V' by
setting
1
Aev = Av + —p(v) (veV),
€
where A : V. — V' is a linear operator defined as (Au,v) = a(u,v) for

u,v € V. We verify that the restriction Ac|yo of A, satisfies the conditions
in Lemma 3.6.2. Below we write A, = A¢|y-, and we use Lemma 3.6.1 (i).
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1. (boundness)
1
[{Aew, v} < [(Au,v)| + =[(p(u), v)|
1
< lall - lulivlollv + = (lullv + llgall L2y l[vll

for u,v € V. Hence,
1 1 -
[Acullvey < [[Aeullv < {llal + = ) llulv + =llgallzz@y  (w € V).

2. (strictly monotonicity) By virtue of Korn’s inequality,

(Acu — Acv,u —v) = (Acu,u — v) — (Acv,u — v)

=(Au,u —v) + %(p(u),u —v) — (Av,u —v) — %(p(v),u — )

= (A=), u =)+~ (pla) — p(e), u =)

1
=a(u —v,u—v) + —(p(v) = p(v),u ~v)
1
=Cx||u — ]| — —{p(u—v),u—w)
>0
for u,v € V, u # v.

3. (hemicontinuity) Let u,v,w € V and consider a real-valued function
1
nA) = (Ac(u + W), w) = alu + v, w) + E(p(u + \v),w) (A ER).

This is a continuous function, since a(-,w) is continuous and p(-) is
hemicontinuous.
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4. (Coerciveness) For u € V, we have
(0.0 = = [ [+ gl ds
== [ fun + g0l o+ 9u)s = [+ 90l = [l + l3)-) ar

- /[un +gn]*[gn]* ds
r

> — |[[un + gn]—HL2(F)H[gn]—||L2(F)

Y

> — |Jun + gnll2m)llgnll L2y
> — (lullv + lgnllz2 ) lgnll Loy
(3.6.15)
Hence,
(Au+ Lp(u), u) (lullv + lgnllz2(r))
> Cilullv ~ O gall 2y

llullv
This gives

(Au + ¢p(u), u)
lullv

— o0 as |ully — oo

As a consequence, we can apply Lemma 3.6.2 to conclude that there exists
a unique u. € V7 satisfying Acue = Fy, where Fy € (V) is the restriction
of F € V'. Thus, we have proved a unique existence of the solution u, € V7
of (S?).

Next, we derive (3.6.13) and (3.6.14). To this end, we recall 3 = [ gn >
0. First, we set

n:gn_ﬁ¢7

where ¢ € Cg°(I') is a function satisfying ¢ > 0 and [¢ = 1 and below

we fix it. We have n € M and fr n = 0. Hence, there exists an extension

w € Vp of n satisfying ||w|lv < C|nl|lar < Cllgnllamr and wy|r = n.
Substituting v = U, + w € Vj into (3.6.11), we have

a(UeaUe + ’LU) - 1/F[Uen +gn]—(Uen + gn — ﬁ(b) = <F7 Ue +w>

€

Noticing that
Uen + 9n — /8¢ S Uen + dn,
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which guarantees

1 1
- /[Uen + gn]—(Uen + gn — 5@ > 7H[U€n + 9n — 6¢]—H%2(F) = 0.
T €

€

Hence we have
a(Ue,Uc +w) < (F,U, + w).

From this, we can deduce
[Uellv < CIF[(vey + llgnllar) < CUIFIlv: + lgnllar)

and
IUen + gn = Bl 2@y < CVE(IFllvr + llgnlln)-
Further, equation (3.6.11) implies

(p(Ue),v) = e(F,v) — ea(Ue,v) (Vv e V),

so we have (o(UL). 0)
P , U
lpUo)lpr = sup ===
veVp, v#£0 ||U||V
F,v) —a(U
e (E)-alUe
veVp, v#£0 HUHV
< Ce([[Fllv + [[uellv)-
This completes the proof. O

Proof of Theorem 3.6.4. From Theorem 3.6.3, we know that there exists a
unique solution U, € Vj oof (S?). Then, by the standard theory, there exists
the associating pressure P. €= L3(f) of the velocity Uy;

a(Ue,v) + b(P.,v) = / f-v (v e HE ().
Q
For any ¢ € Cg°(I') with [ ¢ =1, we set

le = /(Tn(Uea Pe) + Tu(g,m) — 6_1[Uen]—)(;5 ds. (3.6.16)
I

We see that [, is a constant independent of ¢. It is not difficult to verify
that (U, P;) is a solution of (S.), where

P.=P +1.
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3.6.2 Error estimate of penalty method

Theorem 3.6.5. Let (U, P) and (U, P.) be the unique solutions of (S) and
(S¢), respectively. Then, we have

1T = Uelly +|1P = Pellg < CVellru(U, P)ar, (3.6.17)
where P and ]56 are defined by

. . 1 1
P=P—1, P =P —1I, l:/P, lE:/PE. (3.6.18)
€2 Jo €] Ja
Proof. Recall (U, P) satisfies for any v € V,
a(U,0) + WP,) = [V P) 4 Talgsm)val = [ frvdo— [ s(gmv ds
Q r
Together with (3.6.11), it implies that for all v € V,
a(U — Ue,v) +b(P — P.,v)

- /F(Tn(U, P)+1,(g9,m) — e_l[Um + gn]-)vn ds, (3.6.19)

and for any v € V7,

(U — Us,v) = /F (70U, P) 4 70(g, %) — € M [Usn + gul_)om ds.  (3.6.20)

Now we take v = U — U, € V7 and obtain
a(U—-U,U—-U) = [1(U,P) + 7,(9,7) — € [Uen + gn]—, Up — Uen]
= [Tn(Ua P) + Tn(ga 7T)7 Un - U€n] _fil[Uen + gn]—a Un - Uen] .

=1 =1Is

We calculate as
I = [7(U, P) + n(9,7), Up + gn] =m0 (U, P) + 7n(9,7), Uesn + gn)
=0
= — (U, P) + m(g, ), [Ue,n + gnl+ — [Ue,n + gn)-]
<€l (U, P) + 7(g, ), € [Uen + gn) -],

and
I = _[671[Ufn + gn]—v Un + gn] + [Eil[Uen + gn]—7 Uen + gn]

1
<- /[Uen+gn][Uen+gn]ds
T

€

¢ [ (€ WUen + 0] ds
I
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As a result, we get,

U = UaU = U) < [ (1a(U, P) + (g 1) Uon + 90l ds
g (3.6.21)
— e/(el[UEn + gn]-)? ds,
T
which implies
|U = Uclly < CVel|ma(U, P) 4 7(g, ™)l 12(r)-

We proceed to the pressure part. We have

a(U = U, v) +b(P — P.,v)= a(U - Ug,v) +b(P — P.,v)
= 0 (Vve Hy(Q)%.

We apply the inf-sup condition of b, and conclude
1P = Pl < CIU = Ully < CVellra(U, P) + 7(g, )l 2(r)
which completes the proof. O

Theorem 3.6.6. Let (U, P) and (Ue, Pe) be the unique solutions of (S) and
(Se), respectively. Further, assume that

gn € C(T), Ta(g,m) € HY2(D), (3.6.22)
UU.e HX Q)¢ P,P.c H(Q), (3.6.23)
|Un = Uenllpoory = 0 as el 0. (3.6.24)

Then, we have as € | 0
U= Ucllv +||P = Pellg < Ce||m(U, P) + 1n(g, ™) || 01 (3.6.25)

Remark 3.6.2. If T N C = 0 (say, ' is a smooth closed surface), we can
deduce

UU.e H} Q) P,P.e H(Q), |U-Udlg2z+I||P— Pl — 0 (e0).

by the standard manner using local coordinates and difference quotients (cf.
[34] etc.). Thus, (3.6.23) and (3.6.24) actually take place if data are smooth.
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Proof of Theorem 3.6.6. Set
Ae = (U, P) + 7,(g, ) — e_l[um + gn)—.
Recall that (cf. Proof of Theorem 3.6.5)
a(U — Ug,v) + b(P — P.,v) = [Ae, 0] (Vv e V). (3.6.26)
This implies
a(U—=U,v)+bP—Pv) =N —l+1,v)] (WweV), (3.6.27)

From the inf-sup condition of b, we have

o o 1 —b(P — PZ, v
1P-Plg < + sp - Fov)
B2 vemiya  llvllv
1 U-U.
< — sup (U = U, )] < C|U = Ue|ly. (3.6.28)
B2 vemiye  lvllv

On the other hand, by the inf-sup condition of c,

)\e - l lev n
e 141y < sup et levnl
veV HUHV
< swp la(U — Uc,v)| + |b(P — P, v)|
vev [v]lv
< Cllu—uely (3.6.29)

Thanks to (3.6.23), we have
(U, P) + (g, 7) € M = HY*(T),  Ulp,U.Jr € C(T)% (3.6.30)

Since Up, + g, > 0 a.e. on I' and fF gn > 0 (and U,, g, are continuous),
there exists a subset (with the positive area) w C I' such that U, + g, > 0
on w. According to (3.6.2d), 7,(U, P) + 7,(g,7) = 0 on w. Then, in view of
(3.6.24), there exist €1 > 0 and w’ C w with |w’| > 0 such that U, + g, > 0
on ' if € € (0,¢;]. Consequently, € ! [Ue, + gn]- = 0 on w’. Hence, A\ = 0
on w'.

At this stage, we take n € C*°(T") such that supp n C &', n > 0 on o’
and [.n =1, and the extension of 7 into V is denoted by v, = E,n € V.

Substituting v = v, into (3.6.27), we have

Ae =1 +1en)| < ’a(U_U67vn)’+|b(ﬁ)_ﬁeav)|
< CIU =Uecllv +C||P = Pellq < CIlU = Uellv,
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where C denotes a positive constant depending on 7. On the other hand,

‘)\e_l‘i‘le‘ = /(/\e_l‘i‘le)n‘

- /w/(le—l)n’
_ <ze—Z>/w,n]:ue—Z|.

‘le - l’ < CHU - Ue”V~
This, together with (3.6.29), gives
H)‘6HM’ < ”)‘e -1+ Z6HM’ + ‘ke - k’
< C|U =Udly. (3.6.31)

Recall that, from (3.6.21), we deduce

allU = Uiy < el Aellag I7a(u, p) + 7alg, 7). (3.6.32)
Applying (3.6.29) to (3.6.32), it yields

al|lU = Uy < eCllU = Udlly |7(U, P) + (g, ™)l a1

Hence,

which completes the proof. O

Remark

The chapter is based on [52, 38|
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