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Chapter 1

The fictitious domain
method with L2-penalty

1.1 Introduction

The fictitious domain method is a powerful technique for solving partial dif-
ferential equations. It is based on a reformulation of the original problem in a
larger spatial domain, called the fictitious domain, with a simple shape. One
of the advantages of this approach is that we can avoid the time-consuming
construction of a boundary-fitted mesh. Thus, the fictitious domain is dis-
cretized by a simple-shaped mesh, independent of the original boundary.
Consequently, we can directly apply a large class of numerical methods, for
example, the finite element, finite volume, finite difference methods as well.
Furthermore, this approach will be useful to solve time-dependent moving-
boundary problems.

Actually, the fictitious domain reformulation combined with the finite
volume and finite difference methods are successfully applied in numerical
simulations for real-world problems, for example, a blood flow and fluid-
structure interactions in thoracic aorta ([40]) and a simulation of spilled
oil on coastal ecosystems ([39]). The aim of our work is to establish a
mathematical study of the penalty fictitious domain method which can be
applied to these time-dependent moving-boundary problems. As a primary
step towards this final end, herein we examine the error analysis for elliptic
problems.

In a previous work, Zhou and Saito [53], we studied a class of the fic-
titious domain methods with a penalty for elliptic problems with various
boundary conditions. Therein, we introduce a fictitious domain reformula-
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tion by considering a discontinuous diffusion coefficient, which we call the
H1-penalty fictitious domain method or, simply, the H1-penalty method. As
is reported in [53], this reformulation and its finite element discretization
enjoy finite mathematical properties. However, it is rather difficult to apply
the finite volume and finite difference methods to the H1-penalty method
since the treatment of a discontinuous diffusion coefficient is not straightfor-
ward. Moreover, solutions of the H1-penalty problem are not smooth across
the original boundary that may cause some difficulties in actual computa-
tions.

In this chapter, we study another type of the fictitious domain method
by introducing a discontinuous reaction term, which we call the L2-penalty
fictitious domain method or, simply, the L2-penalty method. This method
can be directly discretized not only by the finite element but also finite
volume and finite difference methods. Moreover, the penalty solution has
the H2 regularity in the whole fictitious domain.

In Section 1.2, we study the L2-penalty method by examining the H2

regularity and some estimates for solutions of the L2-penalty problem. Then,
we derive error estimates of H1 and L2 norms. In summary, we have (cf.
Theorem 1.2.1) the error estimates

∥u− uϵ∥H1(Ω) ≤ Cϵ
1
4 ∥f∥L2(Ω), ∥u− uϵ∥L2(Ω) ≤ Cϵ

1
2 ∥f∥L2(Ω),

where u and uϵ denote the solutions of the original elliptic problem (1.2.1)
defined in a bounded domain Ω ⊂ R2 and its L2-penalty problem (1.2.19)
for a given f ∈ L2(Ω), ϵ is the penalty parameter with ϵ → 0. Moreover,
the Dirichlet boundary condition posed on the original boundary Γ = ∂Ω is
approximated in the sense that

∥uϵ∥
H

1
2 (Γ)

+
1√
ϵ
∥uϵ∥L2(Ω1) ≤ Cϵ

1
4 ∥f∥L2(Ω),

where D denotes the fictitious domain such that Ω ⊂ D and Ω1 = D\Ω.
Thanks to our regularity results and error estimates, the finite element

analysis becomes easy to treat. In Section 1.3, we derive the error estimates
of the finite element approximation of the L2-penalty problem. We have (cf.
Theorem 1.3.1)

∥∇(uϵ − uϵh)∥L2(D) +
1√
ϵ
∥uϵ − uϵh∥L2(Ω1) ≤ C∥f∥L2(Ω)(h

1
2 + ϵ

1
4 ),

∥uϵ − uϵh∥L2(Ω) ≤ C∥f∥L2(Ω)(h
1
2 + ϵ

1
4 )2,
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where uϵh denotes the solution of the finite element approximation (1.3.1)
for the L2-penalty problem (1.2.19) with the mesh parameter h.

Consequently, we obtain (cf. Theorem 1.3.2)

∥u− uϵh∥H1(Ω) ≤ C(ϵ
1
4 + h

1
2 )∥f∥L2(Ω), ∥u− uϵh∥L2(Ω) ≤ C(ϵ

1
2 + h)∥f∥L2(Ω),

∥uϵh∥
H

1
2 (Γ)

+
1√
ϵ
∥uϵh∥L2(Ω1) ≤ C(h

1
2 + ϵ

1
4 )∥f∥L2(Ω).

From these results, we see that the optimal choice of ϵ is ϵ = h2, when h
fixed.

According to the fictitious domain method, we solve the discrete L2-
penalty problem (1.3.1) instead of the original problem of (1.2.1). Since
the domain Ω has smooth boundary, we provide an approximation scheme
for the computation of the inner-product (uϵh, vh)Ω1 . We find a polygon Ω̂
approximating to Ω, with max

x∈∂Ω
dist (x, ∂Ω̂) = O(h2). For example, the Ω̂ is

constructed by connecting the intersection points between ∂Ω and the mesh
for every triangle of the mesh. Then, instead of (1.3.1), we solve its approxi-
mation problem (1.3.6), and we have the error estimate (cf. Theorem 1.3.3)

∥u− ûϵ,h∥H1(Ω) ≤ C(h
1
2 + ϵ

1
4 + ϵ−

1
2h

3
2 )∥f∥L2(Ω),

∥u− ûϵ,h∥L2(Ω) ≤ C(h+ ϵ
1
2 + ϵ−

1
2h2 + ϵ−

1
4h

3
2 )∥f∥L2(Ω),

which show the approximation scheme shares the same error order with the
error of finite element method for ϵ = h2; however, ϵ ≪ h2 would enlarge
errors.

The convergence of L2-penalty for elliptic and parabolic problems has
been proved in [31]; however, no error estimate has been found, neither the
finite element analysis. A similar penalty problem for the Navier-Stokes
equations is considered without any numerical results in [2]. Our error es-
timates in the H1 norm maintain the sharpness of those for Navier-Stokes
problems in [2]. It should be kept in mind that our method of analysis pre-
sented here can also be applied to Stokes and Navier-Stokes problems with
little difficulty. Furthermore, the results presented in this paper are applied
to analysis of L2 and H1-penalty fictitious domain methods for parabolic
problems in cylindrical and non-cylindrical domains in [49].

Notation

Throughout this chapter, we follow the notation of [29]. Namely we use
standard Lebesgue and Sobolev spaces L2(ω), Hm(ω) (m > 0) and H1

0 (ω),
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where ω denotes a domain in R2. We write as

(u, v)ω = (u, v)L2(ω) =

∫
ω
u(x)v(x) dx;

∥u∥0,ω = ∥u∥L2(ω) =

(∫
ω
|u(x)|2 dx

)1/2

;

|u|m,ω =

 ∑
|α|=m

∥∂αu∥20,ω

1/2

;

∥u∥m,ω =
(
∥u∥2m−1,ω + |u|2m,ω

)1/2
,

where α = (α1, α2) denotes a multi-index with |α| = α1 + α2 and set ∂α =
(∂/∂x1)

α1(∂/∂x2)
α2 .

We also use standard Lebesgue and Sobolev spaces L2(γ) and Hs(γ)
(s > 0) defined on a part γ of the boundary ∂ω. The unit outer normal
vector to the boundary under consideration is always denoted by n. Finally,
we use the same letter C to express a generic constant independent of the
penalty parameter ϵ and the discretization parameter h.

1.2 The L2-penalty problem

Throughout this chapter, we assume that Ω is a bounded domain in R2 with
the C2 boundary Γ = ∂Ω. As a model problem, we consider the Poisson
equation with the homogeneous Dirichlet boundary condition,

−∆u = f in Ω, u = 0 on Γ, (1.2.1)

where f is a given function of L2(Ω). The weak form reads as:{
Find u ∈ H1

0 (Ω) such that

(∇u,∇v)Ω = (f, v)Ω ∀v ∈ H1
0 (Ω).

(1.2.2)

1.2.1 The fictitious domain method with L2-penalty

We take a convex polygonal domain D ⊂ R2, which we call the fictitious
domain, such that Ω ⊂ D and set Ω1 = D\Ω (see Figure 1.2.1). Then, the
fictitious domain formulation with the L2 penalization for (1.2.2) is given asFind uϵ ∈ H1

0 (D) such that

(∇uϵ,∇v)D +
1

ϵ
(uϵ, v)Ω1 = (f̃ , v)D ∀v ∈ H1

0 (D),
(1.2.3)
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Ω

Ω

Γ

1

Figure 1.2.1: The original domain Ω and the fictitious domain D.

where
0 < ϵ ≤ 1 (1.2.4)

is the penalty parameter and f̃ ∈ L2(D) is any extension of f into D such
that

f̃ = f a.e. in Ω, ∥f̃∥0,D ≤ C∥f∥0,Ω
with a positive constant C depending only on D and Ω.

According to the Lax and Milgram’s theory, there exists a unique solution
uϵ of (1.2.3) for any ϵ ∈ (0, 1]. Substituting v = uϵ in (1.2.3) and then using
Schwarz, Poincaré and Young’s inequalities, we have

∥∇uϵ∥20,Ω + ∥∇uϵ∥20,Ω1
+

1

ϵ
∥uϵ∥20,Ω1

≤ C2

2
∥f∥20,Ω +

1

2
∥∇uϵ∥20,Ω +

1

2
ϵ∥f̃∥20,Ω1

+
1

2ϵ
∥uϵ∥20,Ω1

.

This gives

∥uϵ∥1,D +
1√
ϵ
∥uϵ∥0,Ω1 ≤ C∥f∥0,Ω. (1.2.5)

In particular, we have ∥uϵ∥0,Ω1 ≤ C
√
ϵ.

Furthermore, the function uϵ solves the variational problem

(∇uϵ,∇v)D =

(
f̃ − 1

ϵ
1Ω1uϵ, v

)
D

∀v ∈ H1
0 (D),
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where 1Ω1 ∈ L∞(D) denotes the characteristic function of Ω1 defined as

1Ω1(x) =

{
0 (x ∈ Ω)

1 (x ∈ Ω1).
(1.2.6)

Hence, we can apply regularity results of elliptic problems in convex
domains (cf. [20, Theorem 3.2.1.2] for example) to obtain

uϵ ∈ H2(D) (1.2.7)

and

∥uϵ∥2,D ≤ C

∥∥∥∥f̃ − 1

ϵ
χuϵ

∥∥∥∥
0,D

≤ C

(
1 +

1√
ϵ

)
∥f∥0,Ω. (1.2.8)

This estimate is meaningless for a sufficiently small ϵ; However, we can
deduce better a priori bounds for ∥uϵ∥2,Ω and, by using this, we can derive
some error estimate for uϵ.

1.2.2 The regularity and error estimates of the penalty prob-
lem

We present the main result of this section

Theorem 1.2.1. Let uϵ ∈ H1
0 (D) be the solution of (1.2.3). Then, we have

uϵ ∈ H2(D) and

∥uϵ∥2,Ω ≤ C∥f∥0,Ω, (1.2.9)

∥uϵ∥2,Ω1 ≤ Cϵ−
1
4 ∥f∥0,Ω, (1.2.10)

∥uϵ∥1,Ω1 ≤ Cϵ
1
4 ∥f∥0,Ω, (1.2.11)

∥uϵ∥0,Ω1 ≤ Cϵ
3
4 ∥f∥0,Ω. (1.2.12)

Furthermore,

∥u− uϵ∥1,Ω ≤ ϵ
1
4 ∥f∥0,Ω, (1.2.13)

∥u− uϵ∥0,Ω ≤ ϵ
1
2 ∥f∥0,Ω, (1.2.14)

∥uϵ∥ 1
2
,Γ ≤ Cϵ

1
4 ∥f∥0,Ω, (1.2.15)

where u ∈ H1
0 (Ω) denotes the solution of (1.2.2).
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Remark 1.2.1. In [31, Theorem I-4], it has already proved

∥uϵ − u∥1,Ω → 0,
1√
ϵ
∥uϵ∥0,Ω1 → 0 as ϵ→ 0 (1.2.16)

for f̃ being the zero extension of f .

In the proof of Theorem 1.2.1, we use the following regularity result for
a linear elliptic equation. Although it seems not to be new, we give its proof
for readers’ convenience.

Lemma 1.2.1. For ϕ ∈ L2(Ω1) and g ∈ H1/2(Γ), let w ∈ H2(Ω1) be a
solution of

−∆w +
1

ϵ
w = ϕ in Ω1,

∂w

∂n
= g on Γ, w = 0 on ∂D.

Then, we have

∥w∥0,Ω1 ≤ C(ϵ∥ϕ∥0,Ω1 + ϵ
3
4 ∥g∥ 1

2
,Γ),

∥w∥2,Ω1 ≤ C(∥ϕ∥0,Ω1 + ϵ−
1
4 ∥g∥ 1

2
,Γ).

In order to prove this, we need the following auxiliary lemma. .

Lemma 1.2.2. For g ∈ H
1
2 (Γ) and η > 0, there exists v = vη ∈ H2(Ω1)

such that,
∂v

∂n
= g on Γ, v = 0 on ∂D

with estimates

∥v∥0,Ω ≤ Cη3∥g∥ 1
2
,Γ, |v|1,Ω ≤ Cη∥g∥ 1

2
,Γ, |v|2,Ω ≤ Cη−1∥g∥ 1

2
,Γ.

Proof of Lemma 1.2.2. It suffices to consider the case Ω = RN
+ , since then

the general case is proved by the standard argument of using partition of
the unity and localization technique (see, for example, [47, §20]).

We suppose that ĥ(ξ′) is the Fourier transform of a function h(x1, . . . , xN−1),
where ξ′ = (ξ1, . . . , ξN−1). Similarly, let ŵ(ξ) be the Fourier transform of
a function w(x) in variables (x1, . . . , xN−1), where ξ = (ξ′, xN ). We ap-
ply the extension formula in [32, Theorem 5.2, Chapter 2] with a slightly
modification. Thus, we propose

v̂(ξ′, xN ) = xN exp
(
−(1 + |ξ′|)η−2, xN

)
ĝ(ξ′). (1.2.17)
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Indeed, let |α| ≤ 2, let us consider wα = ∂αv in RN
+ and set wα = 0 for

xN < 0. Let us denote α = (α1, . . . , αN , ), and α = (α′, αN ). Hence ŵα(ξ)
is a finite sum of expressions like

aI(ξ) = a

∫ ∞

0
e(−ixN ξN )(ξ′)α

′
((1 + |ξ′|)η−2)αN−jx1−j

N ·

exp
(
−(1 + |ξ′|)η−2, xN

)
ĝ(ξ′)dxN ,

where a is a constant, j = 0, 1. We have:

I(ξ) =
(ξ′)α

′
((1 + |ξ′|)η−2)αN−j ĝ(ξ′)

((1 + |ξ′|)η−2 + iξN )2−j
,

and so

∥I(ξ)∥20,RN = C

∫
RN−1

(ξ′)2α
′
((1 + |ξ′|)η−2)2αN−3|ĝ(ξ′)|2dξ′

≤


Cη−2∥g∥21

2
,Γ
, αN = 2,

Cη2∥g∥21
2
,Γ
, αN = 1,

Cη6∥g∥21
2
,Γ
, αN = 0.

This completes the proof.

Proof of Lemma 1.2.1. By Lemma 1.2.2 with η = ϵ
1
4 , there exists ψ ∈

H2(Ω) such that ∂ψ/∂n = g on Γ, ψ = 0 on ∂D, ∥ψ∥0,Ω1 ≤ Cϵ
3
4 ∥g∥ 1

2
,Γ

and ∥ψ∥2,Ω1 ≤ Cϵ−
1
4 ∥g∥ 1

2
,Γ. Setting u = w − ψ, we have

−∆u+
1

ϵ
u = ϕ+∆ψ +

1

ϵ
ψ in Ω1,

∂u

∂n
= 0 on Γ, u = 0 on ∂D.

Multiplying the both sides by u and integrating over Ω1, we have

∥∇u∥20,Ω1
+

1

ϵ
∥u∥20,Ω1

≤ ∥ϕ∥0,Ω1∥u∥0,Ω1 +

(
∥ψ∥2,Ω1 +

1

ϵ
∥ψ∥0,Ω1

)
∥u∥0,Ω1 .

Hence,

∥u∥0,Ω1 ≤ ϵ∥ϕ∥0,Ω1 + ϵ∥ψ∥2,Ω1 + ∥ψ∥0,Ω1

≤ ϵ∥ϕ∥0,Ω1 + ϵ · Cϵ−
1
4 ∥g∥ 1

2
,Γ + Cϵ

3
4 ∥g∥ 1

2
,Γ.

This implies

∥w∥0,Ω1 ≤ ∥ψ∥0,Ω1 + ϵ∥ϕ∥0,Ω1 + Cϵ
3
4 ∥g∥ 1

2
,Γ ≤ ϵ∥ϕ∥0,Ω1 + Cϵ

3
4 ∥g∥ 1

2
,Γ.
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On the other hand,

∥w∥2,Ω1 ≤ C

∥∥∥∥ϕ+∆ψ +
1

ϵ
ψ

∥∥∥∥
0,Ω1

+ C∥g∥ 1
2
,Γ

≤ C∥ϕ∥0,Ω1 + C∥ψ∥2,Ω1 + C
1

ϵ
∥ψ∥0,Ω1 + C∥g∥ 1

2
,Γ

≤ C∥ϕ∥0,Ω1 + Cϵ−
1
4 ∥g∥ 1

2
,Γ + C∥g∥ 1

2
,Γ,

which implies the desired estimate.

Now we can state the following proof.

Proof of Theorem 1.2.1. First, we prove inequalities (1.2.10)–(1.2.15) by us-
ing (1.2.9).

Applying Green’s formula, we observe that (1.2.3) is equivalent to the
following problem:

−∆uϵ = f in Ω, uϵ|Ω = uϵ|Ω1 on Γ, uϵ = 0 on ∂D; (1.2.18)

−∆uϵ +
1

ϵ
uϵ = f̃ in Ω1,

∂uϵ
∂n

∣∣∣∣
Ω

=
∂uϵ
∂n

∣∣∣∣
Ω1

on Γ. (1.2.19)

In view of the trace theorem, we have∥∥∥∥∂uϵ∂n

∥∥∥∥
1
2
,Γ

≤ C∥uϵ∥2,Ω ≤ C∥f∥0,Ω.

Hence, we apply Lemma 1.2.1 to the problem (1.2.19) in order to obtain

∥uϵ∥0,Ω1 ≤ C(ϵ
3
4 ∥f∥0,Ω + ϵ∥f̃∥0,Ω1), (1.2.20)

∥uϵ∥2,Ω1 ≤ C(ϵ−
1
4 ∥f∥0,Ω + ∥f̃∥0,Ω1) (1.2.21)

which imply (1.2.10) and (1.2.12), respectively.
We recall that in general we have (cf. [18, Theorem 7.27])

|v|1,Ω1 ≤ C(η|v|2,Ω1 + η−1∥v∥0,Ω)

for any η > 0 and v ∈ H2(Ω). Setting η = ϵ
1
2 , we deduce (1.2.11).

Estimates (1.2.13) and (1.2.15) are readily obtainable consequences of
(1.2.11) and trace theorems. Thus,

∥uϵ − u∥1,Ω ≤ C∥uϵ − u∥ 1
2
,Γ = C∥uϵ∥ 1

2
,Γ

≤ C∥uϵ∥1,Ω1 ≤ Cϵ
1
4 ∥f∥0,Ω.
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We proceed to derive (1.2.14). To this end, we introduce the adjoint
problems for (1.2.2) and (1.2.3) which are given as{

Find uF ∈ H1
0 (Ω) such that

(∇uF ,∇v)Ω = (F, v)Ω ∀v ∈ H1
0 (Ω)

(1.2.22)

and Find uFϵ ∈ H1
0 (D) such that

(∇uFϵ,∇v)D +
1

ϵ
(uFϵ, v)Ω1 = (F̃ , v)D ∀v ∈ H1

0 (D),
(1.2.23)

for any F ∈ L2(Ω), and the extension of F , F̃ ∈ L2(D), satisfying ∥F̃∥0,Ω1 ≤
C∥F∥0,Ω.

Apparently, we can obtain the a priori estimates and H1 norm penal-
ization error estimate, like (1.2.21), (1.2.21) and (1.2.13), for the adjoint
problems (1.2.22) and (1.2.23). Thus we have

∥uFϵ∥2,Ω ≤ C(ϵ−
1
4 ∥F∥0,Ω + ∥F̃∥0,Ω1), (1.2.24)

∥uFϵ∥0,Ω ≤ C(ϵ
3
4 ∥F∥0,Ω + ϵ∥F̃∥0,Ω1), (1.2.25)

∥uFϵ|Ω − uF ∥1,Ω ≤ Cϵ
1
4 ∥F∥0,Ω. (1.2.26)

Denoting by ũ and ũF the zero extension of u and uF , respectively, one
can show that

(∇uϵ,∇ũF )D = (ũF , f̃)D = (uF , f)Ω = (∇uF ,∇u)Ω
= (F, u)Ω = (F̃ , ũ)D = (∇uFϵ,∇ũ)D,

and hence

(∇(uFϵ − ũF ),∇(uϵ − ũ))D = (F̃ , uϵ − ũ)D − 1

ϵ
(uFϵ, uϵ)Ω1 .

At this stage, we let F̃ = uϵ − ũ. Then,

∥uϵ − ũ∥20,Ω + ∥uϵ∥20,Ω1
= (∇(uFϵ − ũF ),∇(uϵ − ũ))D +

1

ϵ
(uFϵ, uϵ)Ω1 .

Combining those estimates, we get

∥uϵ|Ω − u∥0,Ω ≤ Cϵ
1
2 ∥f∥0,Ω. (1.2.27)

Thus, we have proved (1.2.14).
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Now, we go back to the beginning of the proof; It remains to show (1.2.9).
To this end, let us consider the interface problem composed of (1.2.18) and
(1.2.19) and apply the standard method of tangential difference quotients;
See, for example, [20, Theorem 2.2.2.3], [33, Appendix] or [53, Theorem 3.1].

We take a set {Uj}Nj=1 of open subsets in R2 enjoying the following

properties. With Uj and 1 ≤ j ≤ N , we associate a C2 diffeomorphism
Φj : Uj → R2 that satisfies

Ω ⊂
N∪
j=1

Φj(Uj) ⊂ D,

Uj0 = Ψj(Φj(Uj) ∩ Ω) = R2
+ ∩ Uj , Uj1 = Ψj(Φj(U) ∩ Ω1) = R2

− ∩ Uj ,

where R2
± = R2 ∩ {±x2 > 0} and Ψj = Φ−1

j . Further, we take {θj}Nj=1 ⊂
C∞
0 (Ω) such that supp θj ⊂ Φj(Uj) and

N∑
j=1

θj = 1 on Ω and δ = min
1≤j≤N

dist (supp θj , ∂Φj(Uj)) > 0.

We note that (θjuϵ)◦Φj ∈ H1
0 (Uj) for j = 1, 2, . . . , N . We drop the subscript

j and write U = Uj , U1 = Uj1, U0 = Uj0, Φ = Φj , Ψ = Ψj , and θ = θj for
short.

Set u1 = θuϵ and u2 = (θuϵ) ◦ Φ.
First, if U1 = ∅, then u1 ∈ H2(Ω) and ∥u1∥2,Ω ≤ C∥f̃∥0,D. In what

follows, we consider the case U0 ̸= ∅ and U1 ̸= ∅. Set Di = ∂/∂xi, (i = 1, 2).
We observe that u2 ∈ H1

0 (U) satisfies, for all v ∈ H1
0 (U),

2∑
i,k=1

∫
U
aikDiu2Dkvdx+

1

ϵ

2∑
i,k=1

∫
U1

u2v|DΦ|dx = (f2, v), (1.2.28)

where f2 = (θf̃ +∇uϵ∇θ +∇ · (uϵ∇θ)) ◦ Φ|DΦ| and

aik = (

2∑
l=1

DlψiDlψk) ◦ Φ|DΦ| (i, k = 1, 2), Ψ = (ψ1, ψ2).

Let ũ2 be the zero extension of u2 onto R2 and let |h| ≤ δ/4. Substituting
v = τh−1

h
τ−h−1

h ũ2 ∈ H1
0 (U) into (1.2.28), where τh is the translation operator
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with τhϕ(x) = ϕ(x1 + h, x2), ϕ(x) ∈ L2(R2), we have after some calculation

2∑
i=1

∥∥∥∥Di

(
τh − 1

h
ũ2

)∥∥∥∥2
0,U

+
1

ϵ

2∑
i=1

∥∥∥∥τh − 1

h
ũ2

∥∥∥∥2
0,U1

≤ C
2∑

i=1

∥∥∥∥Di

(
τh − 1

h
ũ2

)∥∥∥∥
0,U

+ C
1

ϵ
∥ũ2∥20,U1

+ C∥f2∥20,U ,

applying (1.2.16) or (1.2.5), we have
∑2

i=1

∥∥∥Di

(
τh−1
h ũ2

) ∥∥∥
U0

≤ C∥f∥0,Ω. On

letting h ↓ 0, we conclude DiD1u2 ∈ L2(U0) and ∥DiD1u2∥0,U0 ≤ C∥f̃∥0,Ω
for i = 1, 2.

Finally, we see that

D2
2u2 =

1

a22
(f2 −

∑
k+l≤3

Dl(aklDku2)−D2a22D2u2) in U0.

This implies that D2
2u2 ∈ L2(U0) and ∥u2∥2,U0 ≤ C∥f̃∥0,Ω.

Summing up, we conclude that uϵ|Ω ∈ H2(Ω) and ∥u∥2,Ω ≤ C∥f∥0,Ω.
This completes the proof of Theorem 1.2.1.

1.3 The finite element approximation to the L2-
penalty method

We introduce a shape-regular family of triangulations {Th}h>0 to the convex
polygonal domain D, where h is the maximum diameter of the triangles of
Th. That is, there exists a positive constant ν1 such that

hT
ρT

≤ ν1 (∀T ∈ ∀Th ∈ {Th}h),

where hT and ρT , respectively, denote the diameters of circumscribe and
inscribe circles of T . Let Vh(D) ⊂ H1

0 (D) be the set of all continuous
piecewise-affine functions subordinate to Th. A finite element approximation
for (1.2.3) reads asFind uϵh ∈ Vh(D) such that

(∇uϵh,∇vh)D +
1

ϵ
(uϵh, vh)Ω1 = (f̃ , vh)D ∀vh ∈ Vh(D),

(1.3.1)
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Thus, applying the fictitious domain method, we compute (1.3.1) instead of
(1.2.2). According to Theorem 1.2.1, the error satisfies

∥u− uϵh∥1,Ω ≤ ∥u− uϵ∥1,Ω + ∥uϵ − uϵh∥1,D ≤ Cϵ
1
4 + C∥∇(uϵ − uϵh)∥0,D,

∥u− uϵh∥0,Ω ≤ ∥u− uϵ∥0,Ω1 + ∥uϵ − uϵh∥0,Ω ≤ Cϵ
1
2 + ∥uϵ − uϵh∥0,Ω.

Hence, it suffices to examine uϵ−uϵh. First, we give the following lemma.

Lemma 1.3.1. Let uϵ and uϵh be the solutions of (1.2.3) and (1.3.1), re-
spectively. Then, we have

∥∇(uϵ − uϵh)∥0,D +
1√
ϵ
∥uϵ − uϵh∥0,Ω1

≤ C inf
vh∈Vh(D)

(
∥∇(uϵ − vh)∥0,D +

1√
ϵ
∥uϵ − vh∥0,Ω1

)
. (1.3.2)

Proof. It is a consequence of the Galerkin orthogonality

(∇(uϵ − uϵh),∇vh)D +
1

ϵ
(uϵ − uϵh, vh) = 0 ∀vh ∈ Vh(D).

Theorem 1.3.1. Suppose that uϵ and uϵh are the solutions of (1.2.3) and
(1.3.1), respectively. Then, we have

∥∇(uϵ − uϵh)∥0,D +
1√
ϵ
∥uϵ − uϵh∥0,Ω1 ≤ C(h

1
2 + ϵ

1
4 )∥f∥0,Ω, (1.3.3)

∥uϵ − uϵh∥0,Ω ≤ C(h
1
2 + ϵ

1
4 )2∥f∥0,Ω. (1.3.4)

Proof. We introduce some notations first. A generic (closed) triangle of Th
is denoted by K, and the set of all vertices of K is denoted by Λ(K) =
(νK1 , ν

K
2 , ν

K
3 ). Set TΓ = {K | K ∩ Γ ̸= ∅} and T ′ = {K ⊂ Ω|K ∩ TΓ = ∅}.

The standard P1 Lagrange interpolation of v ∈ H2(D) is denoted by Ihv.
We define vh ∈ Vh(D) by setting,

vh(ν) =

{
0 for ν ∈ Λ(K),K ⊂ TΓ ∪ Ω1,

uϵ(ν) for all other vertices ν.

substitute vh into (1.3.2) and using the a priori estimates in Theorem 1.2.1,
we have

∥uϵ − vh∥0,Ω1 = ∥uϵ∥0,Ω1 ≤ Cϵ
3
4 ∥f∥0,Ω
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and

∥∇(uϵ − vh)∥20,Ω
≤ C(∥∇(uϵ − Ihu)∥20,T ′ + ∥∇uϵ∥20,Ω\T ′ + ∥∇vh∥20,Ω\T ′)

≤ C(∥∇(uϵ − u)∥20,T ′ + ∥∇(u− Ihu)∥20,T ′ + ∥∇uϵ∥20,Ω\T ′ + ∥∇vh∥20,Ω\T ′)

≤ C
(
h2∥u∥22,Ω + h∥uϵ∥22,Ω + h∥u∥22,Ω

)
≤ Ch∥f∥20,Ω,

where u ∈ H2(Ω) is the solution of (1.2.2). Therefore,

∥∇(uϵ − vh)∥20,D = ∥∇(uϵ − vh)∥20,Ω + ∥∇(uϵ − vh)∥20,Ω1

= ∥∇(uϵ − vh)∥20,Ω + ∥∇uϵ∥20,Ω1

≤ Ch∥f∥20,Ω + Cϵ
1
2 ∥f∥20,Ω,

which implies (1.3.3). See the proof of [53, Theorem 4.4] for the detailed

proof of this estimate; Especially, the estimate ∥∇uϵ∥0,Ω\T ′ ≤ Ch
1
2 ∥uϵ∥2,Ω

follows from [53, Lemma 4.2] or [48, Lemma 2.1], and for the proof of

∥∇vh∥0,Ω\T ′ ≤ Ch
1
2 ∥u∥2,Ω, one can refer to the proof of [53, Theorem 4.4],

with aware of u = 0 on Γ, which gives (1.3.3).
Then, setting F̃ = 1Ω(uϵ − uϵh) and v = uϵ − uϵh in the adjoint problem

(1.2.23), where 1Ω = 1 in Ω, and 1Ω = 0 in otherwise, applying (1.3.3) and
the prior estimates in Theorem 1.2.1, we have for any vh ∈ Vh(D)

∥F∥20,Ω = ∥uϵ − uϵh∥20,Ω = (∇uFϵ,∇(uϵ − uϵh))D +
1

ϵ
(uFϵ, uϵ − uϵh)Ω1

= (∇uFϵ − vh,∇(uϵ − uϵh))D +
1

ϵ
(uFϵ − vh, uϵ − uϵh)Ω1

≤ C(ϵ
1
4 + h

1
2 )∥F∥0,Ω(ϵ

1
4 + h

1
2 )∥f∥0,Ω

+ C
1

ϵ
ϵ
1
2 (ϵ

1
4 + h

1
2 )∥F∥0,Ωϵ

1
2 (ϵ

1
4 + h

1
2 )∥f∥0,Ω,

which implies (1.3.4), and the proof is completed.

Combining Theorems 1.2.1 and 1.3.1, we obtain the following estimates.

Theorem 1.3.2. Let that u and uϵh be the solutions of (1.2.2) and (1.3.1),
respectively. Then, we have

∥∇(u− uϵh)∥0,Ω ≤ C(h
1
2 + ϵ

1
4 )∥f∥0,Ω, ∥u− uϵh∥0,Ω ≤ C(h+ ϵ

1
2 )∥f∥0,Ω,

∥uϵh∥ 1
2
,Γ +

1√
ϵ
∥uϵh∥0,Ω1 ≤ C(h

1
2 + ϵ

1
4 )∥f∥Ω.
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Due to the smooth boundary of Ω, the inner-product (uϵ,h, vh)Ω1 can-
not be computed exactly. Therefore we need an approximation scheme for
computation of the problem (1.3.1).

As we mentioned in Introduction, we find a polygonal domain Ω̂ for Ω
such that the vertices of ∂Ω̂ are situated on ∂Ω and assume that there are
h1 > 0 and c0 > 0 such that

dist (Ω, Ω̂) ≤ c0h
2 (h ∈ (0, h1)). (1.3.5)

We set Ω̂1 = D\Ω̂.
Then, we considerFind ûϵh ∈ Vh(D) such that

(∇ûϵh,∇vh)D +
1

ϵ
(ûϵh, vh)Ω̂1

= (f̃ , vh)D ∀vh ∈ Vh(D).
(1.3.6)

We have the error estimate of the approximation

Theorem 1.3.3. Let u and ûϵ,h be the solutions of (1.2.2) and (1.3.6),
respectively. Then, we have

∥u− ûϵ,h∥1,Ω ≤ C∥ûϵ,h∥ 1
2
,Γ ≤ C(h

1
2 + ϵ

1
4 + ϵ−

1
2h

3
2 )∥f∥0,Ω,

∥u− ûϵ,h∥0,Ω ≤ C(h+ ϵ
1
2 + ϵ−

1
2h2 + ϵ−

1
4h

3
2 )∥f∥0,Ω.

Remark 1.3.1. For ϵ = h2, we have ∥u − ûϵ,h∥1,Ω ≤ Ch
1
2 = Cϵ

1
4 and

∥u− ûϵ,h∥0,Ω ≤ Ch = Cϵ
1
2 .

Proof of Theorem 1.3.3. In view of Theorem 1.3.2, it suffices to prove

∥ûϵ,h − uϵ,h∥1,Ω ≤ Cϵ−
1
2h

3
2 ∥f∥0,Ω, (1.3.7)

∥ûϵ,h − uϵ,h∥0,Ω ≤ C(ϵ−
1
2h2 + ϵ−

1
4h

3
2 )∥f∥0,Ω. (1.3.8)

Subtracting (1.3.1) from (1.3.6), we have

(∇(uϵ,h − ûϵ,h), vh)D +
1

ϵ
(uϵ,h − ûϵ,h, vh)Ω1∩Ω̂1

+
1

ϵ
(uϵ,h, vh)Ω1\Ω̂1

− 1

ϵ
(ûϵ,h, vh)Ω̂1\Ω1

= 0. (1.3.9)

for any vh ∈ Vh(D). We also have

∥ûϵ,h∥0,Ω̂1
≤ C

√
ϵ∥f∥0,Ω, ∥uϵ,h∥0,Ω1 ≤ C

√
ϵ∥f∥0,Ω
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which be obtained by substituting v = ûϵ,h and v = uϵ,h, respectively, into
(1.3.6) into (1.3.1).

Since we assume that (1.3.5) hold true, we have

∥ûϵ,h∥0,Ω̂1\Ω1
≤ Ch

1
2 ∥ûϵ,h∥0,Ω̂1∩TΓ

,

∥vh∥0,Ω̂1\Ω1
≤ Ch

1
2 ∥vh∥0,Ω̂1∩TΓ

≤ Ch∥vh∥1,D,

∥uϵ,h∥0,Ω1\Ω̂1
≤ Ch

1
2 ∥ûϵ,h∥0,Ω1∩TΓ

,

∥vh∥0,Ω1\Ω̂1
≤ Ch

1
2 ∥vh∥0,Ω1∩TΓ

≤ Ch∥vh∥1,D,

where TΓ = {K ∈ T | K ∩Γ ̸= ∅}, and these estimates can be found in [44].
Substituting vh = uϵ,h − ûϵ,h into (1.3.9), and applying these estimates and
Poincaré’s inequality, we obtain that

∥uϵ,h − ûϵ,h∥21,D +
1

ϵ
∥uϵ,h − ûϵ,h∥20,Ω1∩Ω̂1

≤ (∇(uϵ,h − ûϵ,h),∇(uϵ,h − ûϵ,h))D +
1

ϵ
(uϵ,h − ûϵ,h, uϵ,h − ûϵ,h)0,Ω1∩Ω̂1

≤ 1

ϵ
∥ûϵ,h∥0,Ω̂1\Ω1

∥uϵ,h − ûϵ,h∥0,Ω̂1\Ω1
+

1

ϵ
∥uϵ,h∥0,Ω1\Ω̂1

∥uϵ,h − ûϵ,h∥0,Ω1\Ω̂1

≤ C
1

ϵ
h

1
2 ϵ

1
2h∥uϵ,h − ûϵ,h∥1,D,

which gives (1.3.7). Setting f̃ = uϵ,h − ûϵ,h in (1.3.1) and (1.3.6), applying
(1.3.7) we finally get (1.3.8).

At this stage, we give numerical experiments to show that the L2-error
is bounded by (

√
ϵ + h) and the H1-norm error is bounded by (ϵ

1
4 + h

1
2 ),

which is according to our analysis on L2-penalization and finite element
error estimates. We consider the problem

−∆u = 1 in Ω, u = 0 on Γ,

where Ω = {(x, y) | x2+y2 < 1} and the exact solution is u = −1
4(x

2+y2−1).
To implement the fictitious domain method, we set the domainD = {−1.2 <
x, y < 1.2}. We show a example of mesh (see Figure 1.3.1) and the numerical
solution (see Figure 1.3.2). We solve the problem (1.3.6). First, fixing
h = 0.01, we show the errors for different ϵ, see Figure 1.3.3; then, setting
ϵ = 10−6, we observe the errors dependents on different h, see Figure 1.3.4.
The logarithm is of base 10 for all the figures.
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Figure 1.3.1: Ω, D and mesh
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Figure 1.3.2: ûϵ,h
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Remark

This chapter is based on [35].
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Chapter 2

The penalty method to the
Stokes and Navier-Stokes
equations with slip boundary
condition

2.1 Introduction

Let us consider the Navier-Stokes equations with slip boundary condition.
Let Ω ⊂ Rd, d = 2, 3, be a bounded smooth domain, with ∂Ω = D ∪ Γ,
D ∩ Γ = ∅ (see Figure 2.1.1). Given arbitrary T > 0, the Navier-Stokes
problem read as:

u′ − ν∆u+ (u · ∇)u+∇p = f, in Ω× (0, T ), (2.1.1a)

∇ · u = 0, in Ω× (0, T ), (2.1.1b)

u = 0, on D × (0, T ), (2.1.1c)

un = 0, τT (u) = 0, on Γ× (0, T ), (2.1.1d)

u(0, x) = u0, on Ω, (2.1.1e)

where ν > 0, un = u · n, n is the unit outer normal vector to Γ, and τT (u)
is the tangential component of traction vector on Γ defined below. Here, we
set τT (u) = 0 for simplicity. f and u0 are given functions.
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For velocity u and pressure p, we set the stress tensor,

σ(u, p) = (σi,j(u, p)) = −pI + 2νE(u), (2.1.2a)

E(u) = 1

2
(∇u+∇uT ), (2.1.2b)

where I denotes the identity. We set the traction vector together with its
normal and tangential components:

τ(u, p) = σ(u, p)n, (2.1.3a)

τn(u, p) = τ(u, p) · n, τT (u) = τ(u, p)− τn(u, p)n. (2.1.3b)

Also, we set the normal and tangential component of velocity u:

un = u · n, uT = u− unn.

The slip boundary condition un = 0 plays important roles in physical
fluid models (cf. [5, 41]). To solve the Stokes/Navier-Stokes equations with
the slip boundary condition by the finite element method is not as easy as
the case of non-slip boundary problems( e.g. Dirichlet boundary condition).
It is known that the variational crimes (cf. [3, 26]) may occur if the finite
element spaces or the implementation method are not chosen properly to
approximate the slip boundary condition.

To make a brief explanation about the variational crimes, we introduce
a polygon or polyhedral domain Ωh (see Figure 2.1.2) to approximate the
smooth boundary domain Ω, with a triangulation Th to Ωh. ∂Ωh = Dh∪Γh,
Dh ∩ Γh = ∅. We denote nh as the unit outer normal vector to Γh. Let us
consider the P1-element in finite element method to velocity u, which is to
find a piecewise linear continuous function uh defined on Th to approximate
u. We see that

u ∈ Vh = {vh ∈ C(Ωh)
d | vh|T ∈ P1(T ),∀T ∈ Th, vh = 0 on Dh},

where Pi(T ) is the set of polynomials of degree i on T . If we set

Vhn = {vh ∈ Vh | vh · nh = 0 on Γh},

as the finite element space with slip boundary information. Since nh is
discontinuous on Γh, Vhn coincides with Vh0, where

Vh0 = {vh ∈ Vh | vh = 0 on Γh}.
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Γ
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Figure 2.1.1: Ω, Γ and D.

Ωh
Γh

nh

Dh

Figure 2.1.2: Ωh, ∂Ωh = Γh∪Dh

and triangulation Th.

Therefore, we cannot approximate un|Γ = 0 by uh · nh|Γh
= 0 naively.

Several methods have been proposed to tackle this problem. For example,
Verfürth (cf. [45, 46]) enforces the slip boundary condition in a weak sense:∫

Γ
unµ ds = 0, ∀µ ∈ H−1/2(Γ),

where a discrete coupled inf-sup condition is required for the finite element
method. We have to mention that the discrete coupled inf-sup condition is
nontrivial to verify or even may not be satisfies for general finite element
spaces, for example, the P1/P1 element.

Let Ωh be the polygon/polyhedral domain approximating to the smooth
domain Ω, with ∂Ωh = Γh ∪ Dh, Γh ∩ Dh = ∅ (see Figure 2.1.2). The
approach proposed in [41, 42, Tabata and Suzuki] is to use P1/P1 element
with stabilization, and implement the slip boundary condition as uh(p) ·
n(p) = 0, where uh is the finite element solution, and p are the vertices on
Γh. A similar method presented in [16] using P2/P1-element is to introduce
a homeomorphism Gh : Ωh → Ω, and implement the slip boundary condition
as uh(G(p)) ·n(G(p)) = 0, where p are the vertices or the midpoints of edges
on Γh, These two implementation methods avoid the variational crimes;
however, Gh and n are not easy to obtain in numerical computation for
complex domain Ω. In FEM, it is more convenience to use nh (the unit
outer normal vector to Γh) than n. Also, we have to mention that it is
technical to implement uh(p) · n(p) = 0 in finite element code.

Instead of enforcing un|Γ = 0 into weak sense, or searching for the suit-
able implement method to avoid the variational crimes, an alternative way
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is to introduce a penalty term to approximate un|Γ = 0. Here we present
the penalty problem to (2.1.3),

u′ϵ − ν∆uϵ + (uϵ · ∇)uϵ +∇pϵ = f, in Ω, (2.1.4a)

∇ · uϵ = 0, in Ω, (2.1.4b)

uϵ|D = 0, τ(uϵ, pϵ) + ϵ−1uϵnn = 0, on Γ, (2.1.4c)

uϵ(0, x) = uϵ0, on Ω. (2.1.4d)

where 0 < ϵ ≪ 1 is the penalty parameter, and uϵ0 is some approximation
to u0. In view of (2.1.4c), the idea of penalty method is to approximate
un|Γ = 0 by a Robin boundary condition. In the variational form of (2.1.4),
the penalty term becomes 1

ϵ

∫
Γ uϵnvnds (see (2.3.8)), where

v ∈ V ≡ {v ∈ H1(Ω)d | v|D = 0}

is the test function. For uϵ the solution of (2.1.4), it is apparently that
uϵn → 0 in L2(Γ) as ϵ→ 0, which approximate to un|Γ = 0.

The penalty method has several advantages. The technical implementa-
tion of un|Γ = 0 (cf. [42, 16]) to avoid the variational crimes is unnecessary.
In cost we need to compute the integration

∫
Γh
(uh · nh)(vh · nh)ds, where

uh, vh are the solution and test function for finite element approximation.
The integration on Γh can be easily implemented by popular FEM soft-
wares (Freefem++, FeniCS, cf. [21, 30]), and here only nh (instead of n) is
involved. The penalty method is well applicable to various types of finite
element spaces, such as P1/P1 and P1b/P1 (cf. [24]), P2/P1 (cf. [12, 14])
and so on.

In this chapter, we first consider the penalty method for the Stokes
equations with slip boundary condition (see Section 2.2). We prove the
error estimates (see Theorem 2.2.3)

∥u− uϵ∥H1(Ω) + ∥p− pϵ∥H1(Ω)/R ≤ Cϵ,

which has already been obtained in [14]; however, we give a different proof
based on the separation of pϵ ∈ L2(Ω):

pϵ = p̊ϵ + lϵ, p̊ϵ ∈ L2
0(Ω), kϵ =

∫
Ω
pϵdx/|Ω|, (2.1.5)

and we show
∥τn(u, p)− ϵ−1uϵn + lϵ∥

H− 1
2 (Γ)

≤ Cϵ.
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Moreover, we show the regularity of the penalty problem (see Theo-
rem 2.2.4)

∥uϵ∥Hm(Ω) + ∥pϵ∥Hm−1(Ω) ≤ C∥f∥Hm−2(Ω),

under the Cm− smoothness assumption of Ω, for any integer m ≥ 2. Fur-
thermore, we obtain a new result of the error estimates (see Theorem 2.2.5)

∥u− uϵ∥Hm(Ω) ≤ Cϵ, ∀m ∈ N.

We then apply the finite element approximation to the penalty prob-
lem (2.2.9) with P1b/P1 element, and we proved the error estimates (see
Theorem 2.2.7 and 2.2.8). We show the best error estimates we obtain:

∥ũ− uh∥1,Ωh
+ ∥p̃− ph∥Ωh

≤ C(h+
√
ϵ+ h2/

√
ϵ), for d = 2,

∥ũ− uh∥1,Ωh
+ ∥p̃− ph∥Ωh

≤ C(
√
h+

√
ϵ+ h/

√
ϵ), for d = 3,

where h is the mesh size of triangulation.
In Section 2.3, we consider the penalty method to the Navier-Stokes

problem (2.1.1). For the slip boundary condition un|Γ = 0, we have∫
Ω
(u · ∇)u · u dx =

1

2

∫
Γ
un|u2| ds = 0,

which implies the energy inequality of u:

∥u(T )∥2L2(Ω)d +

∫ T

0
∥u(t)∥H1(Ω)d dt ≤ C.

Since uϵn|Γ ̸= 0, we have∫
Ω
(uϵ · ∇)uϵ · uϵ dx =

1

2

∫
Γ
uϵn|u2ϵ | ds ̸= 0,

and the energy inequality (or the well-posedness) of uϵ is not apparent. Our
first job is to prove the well-posedness of the penalty problem (2.1.4) (see
Theorem 2.3.1). We show the estimates of uϵ, pϵ are bounded independent
on the penalty coefficient ϵ−1.

Besides of the well-posedness, we derive the error estimates of the penalty
method (see Theorem 2.3.3):

∥u′ − u′ϵ∥L2(0,T ;L2(Ω)d) + ∥u− uϵ∥L∞(0,T ;H1(Ω)d) ≤ Cϵ.

Section 2.4 is devoted to the penalty method for stationary Navier-Stokes
equations. We investigate the well-posedness of penalty problem, the error
estimates of penalty, and the finite element method for penalty problem.
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Notations

Throughout this chapter, we write ∥ · ∥Hk as the norm of Sobolev spaces
Hk(Ω) or Hk(Ω)d, and ∥ · ∥Wk,p for W k,p(Ω) or W k,p(Ω)d. Let ω be some
open set of Rd, we denote (·, ·)ω as the inner-product of L2(ω), and we
write (·, ·) for the case ω = Ω. Sometimes, we use Lm(0, T ;Hk) instead of
Lm(0, T ;Hk(Ω)d) for short.

2.2 The penalty method to the Stokes problem

Let f ∈ L2(Ω). We consider the Stokes equations with slip boundary con-
dition:

− ν∆u+∇p = f in Ω, (2.2.1a)

∇ · u = 0 in Ω, (2.2.1b)

un = 0, τT (u) = 0 on Γ, (2.2.1c)

u = 0 on D. (2.2.1d)

Remark 2.2.1 ( cf. [37] ). Assume f ∈ L2(Ω) and Ω is C3-smooth, then
there exists a unique solution (u, p) ∈ H2(Ω)d × (H1(Ω)/R) to (2.2.1).

Function spaces.

V = {v ∈ H1(Ω)d | v|D = 0}, Vn = {v ∈ V | vn|Γ = 0}, (2.2.2a)

V σ = {v ∈ V | ∇ · v = 0}, V σ
n = Vn ∩ V σ, (2.2.2b)

Q = L2(Ω), Q̊ = L2
0(Ω), (2.2.2c)

M = H1/2(Γ). (2.2.2d)

We denote X ′ as the dual of Banach space X, for example M ′ = H− 1
2 (Γ).

For any u, v, w ∈ H1(Ω)d, p ∈ Q, η ∈M and µ ∈M ′, we set

a(u, v) = 2ν(E(u), E(u)), (2.2.3a)

a1(u, v, w) =

∫
Ω
(u · ∇) · w dx, (2.2.3b)

b(v, p) = −(∇ · v, p), (2.2.3c)

c(µ, η) =

∫
Γ
µη ds. (2.2.3d)
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Some properties of bilinear and trilinear forms.( cf. [8, 19, 45])

• Coercivity of a: there exists α > 0 such that

a(u, u) ≥ α∥u∥2H1 , ∀u ∈ V. (2.2.4)

• The inf-sup condition of b: there exists β > 0 such that

inf
p∈L2

0(Ω)\{0}
sup

v∈H1
0 (Ω)d\{0}

b(v, p)

∥v∥H1∥p∥L2

≥ β. (2.2.5)

• The inf-sup condition of c: there exists γ0 > 0 such that

inf
µ∈M ′\{0}

sup
v∈V \{0}

c(µ, vn)

∥v∥H1∥µ∥M ′
≥ γ0. (2.2.6)

The variational form of (2.2.1) reads as: find (u, p) ∈ Vn × Q̊ such that,

a(u, v) + b(v, p) = (f, v), ∀v ∈ Vn, (2.2.7a)

b(u, q) = 0, ∀q ∈ Q̊. (2.2.7b)

Let 0 < ϵ≪ 1, the penalty method for (2.2.1) reads as:

−∆uϵ +∇pϵ = f in Ω, (2.2.8a)

∇ · uϵ = 0 in Ω, (2.2.8b)

τn(uϵ, pϵ) +
1

ϵ
uϵn = 0, τT (uϵ) = 0 on Γ, (2.2.8c)

uϵ = 0 on D. (2.2.8d)

The variational form of (2.2.8) reads as: find (uϵ, pϵ) ∈ V ×Q such that

a(uϵ, v) + b(v, pϵ) +
1

ϵ
c(uϵn, vn) = (f, v), ∀v ∈ V, (2.2.9a)

b(uϵ, q) = 0, ∀q ∈ Q. (2.2.9b)

Remark 2.2.2. pϵ /∈ Q̊. For non-homogeneous slip boundary condition
un = g on Γ, we set the penalty term 1

ϵ c(uϵn − g, vn) in (2.2.9a), or equiva-
lently, τn(uϵ, pϵ) +

1
ϵ (uϵn − g) = 0 in (2.2.8c).

The following theorem gives the well-posedness of penalty problem (2.2.9),
also it shows the estimates of uϵ, pϵ are independent on ϵ−1.
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Theorem 2.2.1. Given f ∈ V ′, there exists a unique solution (uϵ, pϵ) ∈
V ×Q to (2.2.9), with

∥uϵ∥H1 + ∥pϵ∥L2 ≤ C∥f∥V ′ .

Proof. From the coercivity of a (2.2.4), we conclude the existence of uϵ and
∥uϵ∥V ≤ C∥f∥V ∗ . Set pϵ = p̊ϵ+lϵ, where p̊ϵ ∈ Q̊ and lϵ =

∫
Ω pϵ dx/|Ω|. From

the inf-sup condition of b (2.2.5), we have ∥p̊ϵ∥Ω ≤ C∥f∥V ′ . To estimate lϵ,
we choose a trace lifting v ∈ V satisfying v = lϵn on Γ, and ∥v∥1,Ω ≤ C|lϵ|.
Substituting this v into (2.2.9), in view of the fact

∫
Γ uϵn ds = 0, we have

|Γ|l2ϵ = kϵ

∫
Γ
vndx = −b(v, kϵ) = a(uϵ, v) + b(v, p̊ϵ)− (f, v),

which implies

|lϵ| ≤ C(∥uϵ∥H1 + ∥p̊ϵ∥L2 + ∥f∥V ′) ≤ C∥f∥V ′ .

2.2.1 The error estimates of H1 norm

To show the error estimates of penalty method, we introduce the Largrange
multipliers λ = −τn(u, p) and λϵ = 1

ϵuϵn, then (2.2.7) and (2.2.9) are rewrit-
ten into the following two equations, respectively.

(1) Find (u, p, λ) ∈ V ×Q×M ′ such that,

a(u, v) + b(v, p) + c(λ, vn) = (f, v), ∀v ∈ V, (2.2.10a)

b(u, q) = 0, ∀q ∈ Q, (2.2.10b)

c(un, η) = 0, ∀η ∈M ; (2.2.10c)

(2) Find (uϵ, pϵ, λϵ) ∈ V ×Q×M ′ such that,

a(uϵ, v) + b(v, pϵ) + c(λϵ, vn) = (f, v), ∀v ∈ V, (2.2.11a)

b(uϵ, q) = 0, ∀q ∈ Q, (2.2.11b)

c(uϵn, η) = ϵc(λϵ, η), ∀η ∈M. (2.2.11c)

We state the error estimates of penalty method.

Theorem 2.2.2. Let (u, p) and (uϵ, pϵ) be the solutions of (2.2.1) and
(2.2.8), respectively, then we have

∥u− uϵ∥H1 + ∥p− p̊ϵ∥L2 +
√
ϵ∥λ− λϵ∥L2(Γ) ≤ c

√
ϵ∥λ∥L2(Γ). (2.2.12)
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Proof. Substituting v = u− uϵ into (2.2.10a)−(2.2.11a), we have

a(u− uϵ, u− uϵ) + c(λ− λϵ, un − uϵn) = 0. (2.2.13)

Since un = 0 and uϵn = ϵλϵ, we have

c(λ− λϵ, un − uϵn) = ϵc(λ− λϵ, λ− λϵ)− ϵc(λ, λ− λϵ). (2.2.14)

From the coercivity of a (2.2.4), (2.2.13) and (2.2.14) we obtain

α∥u− uϵ∥21,Ω + ϵ∥λ− λϵ∥2L2(Γ)

≤ϵc(λ, λ− λϵ) ≤
ϵ

2
∥λ− λϵ∥2L2(Γ) +

ϵ

2
∥λ∥2L2(Γ),

which implies

∥u− uϵ∥H1 +
√
ϵ∥λ− λϵ∥L2(Γ) ≤ c

√
ϵ∥λ∥L2(Γ). (2.2.15)

From the inf-sup condition of b (2.2.5) and

b(p− p̊ϵ, v) = −a(u− uϵ, v), ∀v ∈ (H1
0 (Ω))

d, (2.2.16)

we have
∥p− p̊ϵ∥L2 ≤ C∥u− uϵ∥H1 , (2.2.17)

which gives (2.2.12).

Theorem 2.2.3. Let (u, p) and (uϵ, pϵ) be the solutions of (2.2.1) and
(2.2.8), respectively, then we have

∥u−uϵ∥H1 +∥p− p̊ϵ∥L2 +
√
ϵ∥λ−λϵ+ lϵ∥L2(Γ) ≤ Cϵ(∥λ∥

H
1
2 (Γ)

+1). (2.2.18)

Proof. Subtracting (2.2.10a) from (2.2.11a), we have, for any v ∈ V ,

c(λ− λϵ + lϵ, vn) = −a(u− uϵ, v)− b(v, p− p̊ϵ).

In view of the inf-sup condition of c (2.2.6) and (2.2.17), it yields

∥λ− λϵ + lϵ∥M ′ ≤ C∥u− uϵ∥H1 (2.2.19)

Noticing that
∫
Γ uϵn ds = 0, instead of (2.2.14), we derive

c(λ−λϵ, un−uϵn) = ϵc(λ−λϵ+kϵ, λ−λϵ+kϵ)−ϵc(λ+kϵ, λ−λϵ+kϵ). (2.2.20)
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From the coercivity of a (2.2.4), (2.2.13) and (2.2.20), we obtain

α∥u− uϵ∥2H1 + ϵ∥λ− λϵ + lϵ∥2L2(Γ)

≤ϵc(λ+ lϵ, λ− λϵ + lϵ) ≤ ϵ∥λ+ lϵ∥M∥λ− λϵ + lϵ∥M ′ .
(2.2.21)

From (2.2.21) and (2.2.19), we obtain

∥u− uϵ∥H1 ≤ Cϵ∥λ+ lϵ∥M ,

which implies (2.2.18) because lϵ is bounded independent of ϵ (see Theo-
rem 2.2.1).

Remark 2.2.3. From (2.2.19), we have ∥λ− λϵ + lϵ∥H−1/2(Γ) ≤ Cϵ.

2.2.2 The error estimates of Hm norm

In view of

∥uϵn∥
H

1
2 (Γ)

= ∥uϵn − un∥
H

1
2 (Γ)

≤ C∥uϵ − u∥H1 ≤ Cϵ,

we have
∥τn(uϵ, pϵ)∥

H
1
2 (Γ)

= ∥ϵ−1uϵn∥
H

1
2 (Γ)

≤ C,

which implies
∥uϵ∥H2 + ∥pϵ∥H1 ≤ C.

In fact, we have the following regularity result for penalty problem (2.2.8).

Theorem 2.2.4. For arbitrary integer m ≥ 0, let Ω ∈ Cm+3, f ∈ Hm(Ω)d,
then there exists a unique solution (uϵ, pϵ) ∈ Hm+2(Ω)d × Hm+1(Ω) to
(2.2.8), with

∥uϵ∥Hm+2 + ∥pϵ∥Hm+1 ≤ C∥f∥Hm . (2.2.22)

Proof. For general domain Ω ∈ Cm+2, the regularity in interior or near C is
well known( cf. [13, 27]); that is ∥uϵ∥Hm+2(ω)+∥pϵ∥Hm+1(ω) ≤ C(ω)∥f∥Hm(ω),
where ω ⊂ Ω and dist(ω,Γ) ≥ δ > 0.

For the regularity near Γ, there exists a set of smooth sub-domain in Rd,
denoted as {Ui}Ni=1, satisfying Γ ⊂ ∪N

i=1Ui.
We introduce a cut-off function θi ∈ C∞(Rd) with suppθi ⊂ Ui, and

consider the equations of (θ2i uϵ, θ
2
i pϵ) in Ui ∩ Ω.

There exists a Ck+3-diffeomorphism( cf. [47]) Φi : Ui → QR := Rd
d,+ ∩

{x̃ ∈ Rd, | |x̃| < R}, where Rd
d,+ := {x̃ = (x̃′, x̃d) ∈ Rd | x̃′ ∈ Rd−1, x̃d > 0} is

the half-plane, and we also have Φi : Γ ∩ Ui → Γ̃i := {x̃ | |x̃| < R, x̃d = 0}.
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Then we consider the equation of (ũϵ, p̃ϵ) := ((θ2i uϵ)◦Φi, (θ
2
i pϵ)◦Φi) in do-

main QR, to which we apply the famous Agmon-Douglis-Nirenberg’ method(
cf. [1]) and obtain ∥DiDj ũϵ∥L2 ≤ C(∥f∥L2 + ∥uϵ∥H1), i = 1, . . . , d− 1; j =
1, . . . , d, where Div = ∇xiv. Hence, we can conclude ∥ũϵ∥

H
3
2 (Γ̃i)

≤ C∥f∥Hk ,

which implies ∥uϵn∥ 3
2
,Γ ≤ C∥f∥Ω. Following from well-known regularity re-

sult for Stokes equation by Cattabriga [13], it yields ∥uϵ∥H2 + ∥pϵ∥H1 ≤
C∥f∥L2 . For m ≥ 1, (2.2.22) can be proved by induction method.

In above, we briefly sketch the strategy of proof. The key point is to
consider the equation in the half-plane via some transformations. We refer
the readers to [34, Saito, proof of Lemma 4.1] for detailed arguments on
those techniques. Here, to make the argument brief, we only prove the case
of k = 0 and the half-plane domain Ω = Rd

d,+ := {x = (x′, xd) ∈ Rd | x′ ∈
Rd−1, xd > 0}.

Set Di
hv = (v(x1, · · · , xi + h, · · · , xd) − v(x))/h, h > 0. Substituting

v = Di
−hD

i
huϵ into (2.2.8), i = 1, . . . , d− 1, we have, with Γ = {x | xd = 0},

a(uϵ, D
i
−hD

i
huϵ)+b(D

i
−hD

i
huϵ, pϵ)+

1

ϵ

∫
Γ
uϵnD

i
−hD

i
huϵ ·nds = (f,Di

−hD
i
huϵ).

Using the fact (w,Di
−hv) = (Di

hw, v), ∀w, v ∈ H1(Rd
d,+), we get

a(Di
huϵ, D

i
huϵ) +

1

ϵ

∫
Γ
|Di

huϵn|2ds = (f,Di
−hD

i
huϵ) ≤ C∥f∥L2∥Di

−hD
i
huϵ∥L2 .

Since ∥Di
hv∥L2 ≤ C∥∇xiv∥L2 , from the coercivity of a (2.2.4), we have,

∥Di
huϵ∥H1 + ϵ−1/2∥Di

huϵn∥L2(Γ) ≤ C∥f∥L2 , i = 1, . . . , d− 1.

Let h→ 0, and we have

∥DiDjuϵ∥L2 + ϵ−1/2∥Diuϵn∥ ≤ C∥f∥L2 , i = 1, . . . , d− 1; j = 1, . . . , d.

By trace theorem and n = (0, . . . , 0, 1), we have

∥uϵn∥
H

3
2 (Γ)

≤ C∥f∥L2 .

And we can conclude (uϵ, pϵ) ∈ H2(Ω)d ×H1(Ω) and (2.2.22) for m = 0( cf.
[13]).

Theorem 2.2.5. For any integer m ≥ 0, assume f ∈ Hm(Ω)d and Ω has
Cm+3 smoothness. Let (u, p) and (uϵ, pϵ) of Hm+2(Ω)d × Hm+1(Ω) be the
solutions of (2.2.1) and (2.2.8), respectively, then we have,

∥u− uϵ∥Hm+2 + ∥p− p̊ϵ∥Hm+1 ≤ Cϵ∥λ∥
Hm+3

2
. (2.2.23)
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Proof. To make the argument brief, we only prove the case of m = 0(
m ≥ 1 follows form induction method) and the half-plane domain Ω =
Rd
d,+. For general domain, we can applied the transformation introduced in

Theorem 2.2.4. Substituting v = Di
−hDh(u − uϵ), i = 1, . . . , d − 1, into

(2.2.10a)−(2.2.11a), we have

a(u− uϵ, D
i
−hD

i
h(u− uϵ)) + c(λ− λϵ + lϵ, D

i
−hD

i
h(u− uϵ) · n) = 0,

which yields,

a(Di
h(u− uϵ), D

i
h(u− uϵ)) + ϵc(Di

h(λ− λϵ + lϵ), D
i
h(λ− λϵ + lϵ))

= ϵc(Di
h(λ− λϵ + lϵ), D

i
h(λ+ lϵ)).

Since lϵ is a constant, Di
hlϵ = 0. Therefore, we have

α∥Di
h(u− uϵ)∥2H1 + ϵ∥Di

h(λ− λϵ)∥2L2(Γ)

≤Cϵ∥Di
h(λ− λϵ + lϵ)∥

H− 1
2 (Γ)

∥Di
hλ∥H 1

2 (Γ)
.

(2.2.24)

Via inf-sup condition of b, and the equation

b(Di
h(p− p̊ϵ), v) = −a(Di

h(u− uϵ), v), ∀v ∈ H1
0 (Rd

d,+),

we have ∥Di
h(p− p̊ϵ)∥L2 ≤ C∥Di

h(u− uϵ)∥H1 .
Via inf-sup condition of c, and the equation

c(Di
h(λ− λϵ + lϵ), v) = −a(Di

h(u− uϵ), v)− b(Di(p− p̊ϵ), v),

we have
∥Di

h(λ− λϵ + lϵ)∥
H− 1

2 (Γ)
≤ C∥Di

h(u− uϵ)∥H1 .

In views of (2.2.24), we obtain

∥Di
h(u− uϵ)∥H1 ≤ Cϵ∥Di

hλ∥H 1
2 (Γ)

,

then letting h→ 0, we proved (2.2.23).

2.2.3 Finite element approximation with penalty

A regular triangulation Th is introduced to the smooth domain Ω, where
h = maxK∈Th diam(K). Ωh = ∪K∈ThK, ∂Ωh = Γh ∪Dh, Γh ∩Dh = ∅ (see
Figure 2.1.2). The boundary mesh Sh inherited from Th is also a regular
triangulation of Γh in d− 1 dimension. nh is the outer unit normal assigned
to Γh. We assume D = Dh for simplicity. Suppose Γ is C3 smooth, then we
have
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x

π(x)

Γ

Γh

Figure 2.2.1: π : Γh → Γ.

(1) maxx∈Γ dist(x,Γh) ≤ Ch2.

(2) There exists a continuous bijective mapping

π : Γh → Γ; x 7→ π(x).

Moreover, for any element S of Sh, we have π, π−1 ∈ C2(S) and

||Dπ| − 1|, ||Dπ−1| − 1| ≤ Ch2, (2.2.25)

where |Dπ| satisfies
∫
Γ vds =

∫
Γh
v ◦ π|Dπ−1|ds. And we also have

|nh − n ◦ π| ≤ Ch. (2.2.26)

Finite element spaces:

We consider the P1/P1 and P1b/P1 finite element spaces.

Vh = {vh ∈ C(Ωh)
d | vh|K ∈ P1(K), K ∈ Th, vh|Dh

= 0}, for P1

Vh = {vh ∈ C(Ωh)
d | vh|K ∈ P1(K)⊕B(K), K ∈ Th, vh|Dh

= 0}, for P1b,
Qh = {vh ∈ C(Ωh)

d | vh|K ∈ P1(K), K ∈ Th},
Vh0 = {vh ∈ Vh | vh = 0 on Γh}, Q̊h = Qh ∩ L2

0(Ωh),

Λh = {vh · nh | vh ∈ Vh},
where Pl(K) is the set of polynomial of order l in K, and B(K) stands for
the space spanned by the bubble function on K. We define the following
bilinear and trilinear forms:

ah(uh, vh) =
∫
Ωh

2νE(uh)E(vh), ∀uh, vh ∈ Vh; (2.2.27)

bh(vh, ph) = −
∫
Ωh

∇ · vhphdx, ∀vh ∈ Vh, ph ∈ Qh, (2.2.28)

dh(ph, qh) = γh2(∇ph,∇qh)Ωh
,

{
γ = 1 for P1/P1,

γ = 0 for P1b/P1.
(2.2.29)
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Choice of ch.

(1) Nonreduced-integration: For any λh, µh ∈ Λh.

ch(λh, µh) :=

∫
Γh

λhµhds. (2.2.30)

∥µh∥ch := ch(µh, µh)
1
2 is equivalent to ∥µh∥L2(Γh), for any µh ∈ Λh.

(2) Reduced-integration: For any λh, µh ∈ Λh,

ch(µh, ηh) =
∑
s∈Sh

|s|µh(ms)ηh(ms), ms =

{
midpoint of s if d = 2,

barycenter of s if d = 3.

(2.2.31)

∥µh∥ch = ch(µh, µh)
1
2 is a semi-norm of Λh( there exists µh ̸= 0 but

ch(µh, µh) = 0).

Coercivity and inf-sup conditions.

• Coercivity of ah:

ah(vh, vh) ≥ α1∥vh∥2H1(Ωh)
, α1 > 0, ∀vh ∈ Vh. (2.2.32)

• inf-sup condition of bh, β1, β̃1 > 0:

inf
ph∈Q̊h\{0}

sup
vh∈Vh0\{0}

bh(vh, ph)

∥vh∥H1(Ω)∥ph∥L2(Ωh)
≥ β1, for P1b/P1. (2.2.33)

sup
vh∈Vh0\{0}

bh(vh, ph)

∥vh∥H1(Ω)
≥ β̃1∥ph∥L2(Ωh) − γCh∥∇ph∥L2(Ωh),

∀ph ∈ Q̊h, for P1/P1.

(2.2.34)

• inf-sup condition of ch defined by (2.2.30):

inf
µh∈Λh\{0}

sup
vh∈Vh\{0}

∫
Γh
vh · nhµh

∥vh∥H1(Ωh)∥µh∥M ′
≥ γ1 > 0. (2.2.35)
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Finite element penalty scheme.

The finite element approximation to penalty problem (2.2.9) reads as: find
(uh, ph) ∈ Vh ×Qh such that,

ah(uh, vh) + bh(vh, ph) +
1

ϵ
ch(uh · nh, vh · nh) = (f̃ , vh)Ωh

, ∀vh ∈ Xh,

(2.2.36a)

bh(uh, qh) = dh(ph, qh), ∀qh ∈Mh, (2.2.36b)

where f̃ is some extension of f onto Ω̃ = Ω ∪ Ωh with ∥f̃∥L2(Ω̃) ≤ C∥f∥L2 .

In the following we only discuss the P1b/P1 element approximation (γ =
0, bh(uh, qh) = 0), since the analysis method and results of P1/P1 with
stabilization (bh(uh, qh) = h2(∇ph,∇qh)) are very similar to the case of
P1b/P1.

Well-posedness and a priori estimate

Theorem 2.2.6. There exists a unique solution (uh, ph) ∈ Vh × Qh to
(2.2.36) with ch defined by both (2.2.30) and (2.2.31), and the solution sat-
isfies

∥uh∥H1(Ωh) + ∥p̊h∥L2(Ωh) + ϵ−1/2∥uh · nh∥ch ≤ C∥f̃∥L2(Ωh), (2.2.37)

where ph = p̊h + lh, p̊h ∈ Q̊h, lh =
∫
Ωh
phdx/|Ωh|, and

|lh| ≤ C

(
∥f̃∥L2(Ωh) + ∥uh∥H1(Ωh) + ∥uh∥2H1(Ωh)

+
h

ϵ

)
. (2.2.38)

Proof. The existence and uniqueness of solution (uh, p̊h) and (2.2.37) follow
from the coercivity of ah, the inf-sup conditions of bh. Here, we only check
the estimate (2.2.38) of lh. In views of (2.2.36b) of γ = 0, we obtain, for ch
defined by both (2.2.30) and (2.2.31),

ch(uh · nh, 1) =
∫
Γh

uh · nhds =
∑
s∈Sh

|s|(uh · nh)(ms) = −bh(uh, 1) = 0.

(2.2.39)
Since nh is discontinuous on Γh, we cannot choose the trace lifting vh ∈ Vh
with vh = lhnh on Γ. Let {Pi}Ni=1 be the set of the vertices of polygon or
polyhedral domain Ωh( nodes of Γh), Γi = {s ∈ Sh | Pi ∈ s}( faces/edges
contain the vertex Pi), we then define a vh ∈ Xh satisfying

vh(Pi) = lh
1

Γ#
i

∑
s∈Γi

nh(s), ∥vh∥H1(Ωh) ≤ Clh,
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where Γ#
i equals to the number of faces s in Γi, and nh(s) is the value of nh

on s. Since Γ has C3 smoothness, we have |vh − lhnh| ≤ Ch on Γh. Then,
substituting this vh into (2.2.36a), it yields,

lh

∫
Γh

vh · nh = −bh(vh, lh) = ah(uh, vh) + bh(vh, p̊h) +
1

ϵ
ch(uh · nh, vh · nh).

In view of (2.2.39), we have

1

ϵ
ch(uh · nh, vh · nh) =

lh
ϵ
ch(uh · nh, 1)︸ ︷︷ ︸

=0

+
1

ϵ
ch(uh · nh, (vh − lhnh) · nh).

Therefore, we have

l2h|Γh| = lh

∫
Γh

lhnh · nh = lh

∫
Γh

(lhnh − vh + vh) · nh

= lh

∫
Γh

(lhnh − vh) · nh + ah(uh, vh) + bh(vh, p̊h)

+
1

ϵ
ch(uh · nh, (vh − lhnh) · nh),

which implies (2.2.38) since |vh − lhnh| ≤ Ch on Γh.

Extension operators and skin domain estimates

We denote the skin domain Ω△Ωh = (Ω\Ωh) ∪ (Ωh\Ω), Ω̃ := Ω ∪ Ωh.

Lemma 2.2.1 ( cf. [29]). There exists an extension operator

P ∈ L(Hm(Ω)d,Hm(Rd)d), (0 ≤ m ∈ N0), v 7→ Pv =: ṽ

such that,

∥ṽ∥Hk(Rd) ≤ Cm∥v∥Hk(Ω), 0 ≤ k ≤ m, ∀v ∈ Hm(Ω)d.

Moreover, if ∇ · v = 0, then we can take the extension ṽ satisfying ∇ · v = 0
in Rd.

Lemma 2.2.2 ( cf. [44, 48, 53]). Under the assumption maxx∈Γ dist(x,Γh) ≤
Ch2, we have

∥ṽ∥Hk(Ω△Ωh)
≤ Ch∥v∥Hk+1(Ω), 0 ≤ k ≤ m− 1, ∀v ∈ Hm(Ω)d.
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Lemma 2.2.3 ( cf. [44]). There exists an extension operator Ph ∈ L(Vh,H1(Ω̃)),
such that, ∀vh ∈ Vh,

∥Phvh∥H1(Ω̃) ≤ C∥vh∥H1(Ωh),

∥Phvh∥Hk(Ω∆Ωh)
≤ Ch

1
2 ∥vh∥Hk(KΓh

), k = 0, 1,

∥Phvh∥L2(Ω̃) ≤ Ch∥vh∥H1(Ωh),

where KΓh
:= {K ∈ Th | K ∩ Γh ̸= ∅}.

Lagrange interpolation and projection operators

We employ the Lagrange interpolation operator Ih and projection operator
PL2(cf. [19, 46]).

Ih : C(Ωh) → Vh, v 7→ Ihv,

∥v − Ihv∥Lp(Ωh) + h∥v − Ihv∥W 1,p(Ωh) ≤ Ch2∥v∥W 2,p(Ω̃), ∀v ∈W 2,p(Ωh).

PL2 : H1(Ωh) → Vh, v 7→ PL2v,

(v − PL2v, vh)L2(Ωh) = 0, ∀vh ∈ Vh,

∥v − PL2v∥L2(Ωh) ≤ Ch∥v∥H1(Ωh).

Consistency error estimates

Lemma 2.2.4 ( cf. [24]). Let π ∈ C2(Γh), then we have, for any v ∈ H1(Ω̃),

(i) ∥v ◦ π∥L2(Γh) ≤ C∥v∥L2(Γ).

(ii) |
∫
Γ vds−

∫
Γh
v ◦ πds| ≤ Ch2∥v∥2L2(Γh)

.

(iii) ∥v − v ◦ π∥L2(Γh) ≤ Ch∥v∥H1(Ω̃).

Proof. The proof has been derived in [24]. Here, we present a brief proof for
the convenience of readers. (i) is obvious. (ii) follows from the properties of
π (2.2.25),∫

Γ
vds−

∫
Γh

v ◦ πds =
∫
Γh

v ◦ π(|Dπ−1| − 1)ds ≤ Ch2∥v∥L2(Γh).

(iii) is from [45]( (5.1), Verfürth).
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Lemma 2.2.5 ( cf. [24]). Assume λ ∈ L2(Γ)(resp. W 1,∞(Γ)) for ch defined
by (2.2.30) (resp. (2.2.31)), and let λ̃ = λ ◦ π, then we have

|c(vn, λ)− ch(v · nh, λ̃)| ≤ Ch∥v∥H1(Ω̃), ∀v ∈ H1(Ω̃)d. (2.2.40)

Proof. For ch defined by (2.2.30), we have, from (2.2.26) and (iii) of Lemma 2.2.4,

|c(vn, λ)− ch(v · nh, λ̃)| = |c(vn, λ)−
∫
Γh

v · nhλ̃ds|

≤
∣∣∣∣∫

Γ
vnλ−

∫
Γh

(vnλ) ◦ π
∣∣∣∣

+

∣∣∣∣∫
Γh

(vnλ) ◦ π − v · (nλ) ◦ π + v · (nλ) ◦ π − v · nhλ̃
∣∣∣∣

≤Ch∥v∥H1(Ω̃)∥λ∥L2(Γh).

For ch defined by (2.2.31), we have∣∣∣∣∫
Γh

v · nhλ̃ds− ch(v · nh, λ̃)
∣∣∣∣

≤
∑
s∈Sh

∫
s
v · nh|λ̃− λ̃(ms)|ds ≤ Ch∥v∥H1(Ω̃)∥λ∥W 1,∞(Γ).

Proposition 2.2.1. Let (u, p) and (uh, ph) be solutions of (2.2.1) and (2.2.36),
respectively. Set λ = −τn(u, p), λh = 1

ϵuh · nh. We assume f ∈ L2(Ω), and
(u, p) ∈ H2(Ω)d × H1(Ω), and the same assumption of Lemma 2.2.5. For
any vh ∈ Vh, we set the consistency error

E(vh) :=ah(ũ− uh, vh) + bh(vh, p̃− ph) + ch(vh · nh, λ̃− λh),

where (ũ, p̃) is the extension( Lemma 2.2.1) of (u, p) onto Ω̃ = Ω∪Ωh. Then,
we have

|E(vh)| ≤ Ch∥vh∥H1(Ωh). (2.2.41)

Proof. We denote
aω(u, v) := 2ν(E(u), E(v))ω,

bω(v, q) = −(∇ · v, q)ω,

for some subset ω of Ω̃.

39



From (2.2.7) and (2.2.36), we have

E(vh) =− aΩ\Ωh
(u, Phvh) + aΩh\Ω(ũ, vh)

− bΩ\Ωh
(Phvh, u) + bΩh\Ω(vh, ũ) + (f, Phvh)Ω\Ωh

− (f̃ , vh)Ωh\Ω

− c(Phvh · n, λ) + ch(vh · nh, λ̃).

(2.2.41) follows from Lemma 2.2.2, 2.2.3 and 2.2.5.

2.2.4 Error estimates: nonreduced-integration scheme

Theorem 2.2.7. ch is defined by (2.2.30). Let (u, p) and (uh, ph) be solu-
tions of (2.2.1) and (2.2.36), respectively. Assuming f ∈ L2(Ω), (u, p) ∈
H2(Ω)d ×H1(Ω), we have

∥ũ− uh∥H1(Ωh) + ∥p̃− ph∥L2(Ωh) ≤ C(
√
h+

√
ϵ+ h/

√
ϵ). (2.2.42)

Proof. Set vh = Ihũ. Since ∥ũ−uh∥H1(Ωh) ≤ ∥ũ−vh∥H1(Ωh)+∥uh−vh∥H1(Ωh)

and ∥ũ − vh∥H1(Ωh) ≤ Ch∥ũ∥H2(Ω̃), we only need to show the estimate of

∥uh − vh∥H1(Ωh).

α1∥uh − vh∥2H1(Ωh)
≤ ah(uh − vh, uh − vh)

= ah(vh − ũ, vh − uh) + ah(ũ− uh, vh − uh).
(2.2.43)

ah(ũ− uh, vh − uh)

=E(vh − uh)− bh(vh − uh, p̃− ph)− ch((vh − uh) · nh, λ̃− λh).

In the following, we are aim to prove

ah(ũ− uh, vh − uh) ≤ Ch∥vh − uh∥H1(Ωh)

− ϵ

4
∥λ̃− λh∥2L2(Γh)

+ C
h2

ϵ
+ ϵ∥λ̃∥2L2(Γh)

,
(2.2.44)

which implies (2.2.42).
From Proposition 2.2.1, we have |E(vh−uh)| ≤ Ch∥vh−uh∥H1(Ωh). Since

we can replace p by p+ l for any constant l, we set p̃ satisfies p̃−ph ∈ L2
0(Ωh)

and qh = PL2 p̃, qh − ph ∈ Q̊h. With bh(uh, qh) = 0 and ∇ · ũ = 0, we have

− bh(vh − uh, p̃− ph)

=bh(ũ− vh, p̃− qh) + bh(ũ− vh, qh − ph) + bh(uh, p̃− qh)

=bh(ũ− vh, qh − ph)− bh(vh − uh, p̃− qh)

≤Ch∥ũ∥H2(Ω̃)∥qh − ph∥L2(Ωh) + Ch∥p̃∥H1(Ω̃)∥vh − uh∥H1(Ωh).
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Since qh − ph ∈ Q̊h, by inf-sup condition of bh, we obtain

∥qh − ph∥L2(Ωh) ≤ Ch(∥ũ∥H2(Ω̃) + ∥p̃∥H1(Ω̃)) + C∥vh − uh∥H1(Ωh).

Therefore, we have |bh(vh − uh, p̃ − ph)| ≤ Ch2 + Ch∥vh − uh∥H1(Ωh). We

are left to estimate −ch((vh − uh) · nh, λ̃− λh). In views of λh = 1
ϵuh · nh,

− ch((vh − uh) · nh, λ̃− λh) = −ϵch(λ̃− λh, λ̃− λh) + ϵch(λ̃, λ̃− λh)

+ ch((ũ− vh) · nh, λ̃− λh)− ch(ũ · nh, λ̃− λh)

≤ −ϵ∥λ̃− λh∥2L2(Γh)
+ ϵ∥λ̃∥2L2(Γh)

+
ϵ

4
∥λ̃− λh∥2L2(Γh)

+
1

ϵ
∥(ũ− vh) · nh∥2L2(Γh)

+
1

ϵ
∥ũ · nh∥2L2(Γh)

+
ϵ

2
∥λ̃− λh∥2L2(Γh)

.

(2.2.45)
Since ∥(ũ− vh) · nh∥L2(Γh) ≤ C∥ũ− vh∥H1(Ω̃) ≤ Ch∥ũ∥H2(Ω̃) and

∥ũ ·nh∥L2(Γh) ≤ ∥ũ ·(nh−n◦π)+(ũ−u◦π)n◦π∥L2(Γh) ≤ Ch, (∵ un|Γ = 0)

it yields

−ch((vh − uh) · nh, λ̃− λh) ≤ − ϵ
4
∥λ̃− λh∥2L2(Γh)

+ C
h2

ϵ
+ ϵ∥λ̃∥2L2(Γh)

,

Combining those inequalities, we proved (2.2.44). From (2.2.43), (2.2.44),
we conclude (2.2.42).

2.2.5 Error estimates: reduced-integration scheme

Lemma 2.2.6 ( cf. [24]). Let u ∈W 2,∞(Ω) with un|Γ = 0. For any s ∈ Sh,
ũ is the extension of u according to Lemma 2.2.1, then we have

(i) For d = 2, there exists π such that |n ◦ π(ms) − nh(ms)| ≤ Ch2;
moreover

|(Ihũ · nh)(ms)| ≤ Ch2∥ũ∥W 2,∞(Ω̃).

(ii) For d = 3, if ũ ∈ W 2,∞(Ω̃) satisfies ∇ · ũ = 0, and ũn = 0 on Γ, then
we have |(Ihũ · nh)(ms)| ≤ Ch∥ũ∥W 2,∞(Ω̃).

Proof. (i) For d = 2, since Γ has C3 smoothness, there exists π : Γh → Γ
satisfying |n ◦ π(ms) − nh(ms)| ≤ Ch2 is obvious. In view of ũn = 0 on Γ,
we have

|(Ihũ · nh)(ms)|
≤|(Ihũ · nh)(ms)− Ihũ(ms) · n ◦ π(ms)|

+ |Ihũ(ms) · n ◦ π(ms)− (ũn) ◦ π(ms)|
≤Ch2∥ũ∥W 1,∞(Ω̃) + Ch2∥ũ∥W 2,∞(Ω̃).
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(ii) It follows from (2.2.26) and the fact ũn = 0 on Γ.

Theorem 2.2.8. Let (u, p) and (uh, ph) be the unique solutions of (2.2.1)
and (2.2.36), respectively. We assume f ∈ L2(Ω), (u, p) ∈ W 2,∞(Ω)d ×
W 1,∞(Ω). We also assume (ũ, p̃), the extension of (u, p), satisfies (i)(ii) of
Lemma 2.2.6, then we have

∥ũ−uh∥H1(Ωh)+∥p̃−ph∥L2(Ωh) ≤ C(h+
√
ϵ+h2/

√
ϵ), for d = 2, (2.2.46)

∥ũ−uh∥H1(Ωh)+∥p̃−ph∥L2(Ωh) ≤ C(
√
h+

√
ϵ+h/

√
ϵ), for d = 3. (2.2.47)

Proof. In views of the proof of Theorem 2.2.7, the only difference here is the
estimate of −ch((vh − uh) · nh, λ̃ − λh) in (2.2.45). We have, noticing that
vh = Ihũ,

− ch((vh − uh) · nh, λ̃− λh) + ϵch(λ̃− λh, λ̃− λh)

=ϵch(λ̃, λ̃− λh)− ch(vh · nh, λ̃− λh)

≤− ϵ

2
∥λ̃− λh∥2ch + Cϵ∥λ̃∥2ch + C

1

ϵ
∥Ihũ · nh∥2L∞(Γh)

.

(2.2.48)

The error estimates (2.2.46) and (2.2.47) follow from Lemma 2.2.6.

Remark 2.2.4. For d = 2, from the error estimates (2.2.42) and (2.2.46),
we conclude the optimal choices of ϵ and h:

(1) Nonreduced-integration scheme: ϵ ≃ h, and the error estimate is
O(

√
h);

(2) Reduced-integration scheme: ϵ ≃ h2, and the error estimate is O(h).

And we notice that for nonreduced-integration, if ϵ ≪ h, then the scheme
is not convergence. For d = 3, we choose ϵ ≃ h, and the error estimate is
O(

√
h).

2.2.6 Numerical examples

Let Ω = {(x, y) | 1 < x2 + y2 < 4}, with

D = {(x, y) | x2 + y2 = 1}, Γ = {(x, y) | x2 + y2 = 1}.

We consider the Stokes problem in Ω with solution:

u = (x2 + y2 − 1)(y,−x)T , p = xy.
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Figure 2.2.2: Ω and mesh Figure 2.2.3: u

We see that u|D = 0 and un|Γ = 0, for n = (x, y)T on Γ. Here, τT (u) =
H ̸= 0, therefore, we have to add

∫
ΓHvT ds to the RHS of the variational

form (2.2.7), and make some corresponding changes to the penalty problem
(2.2.9), and the finite element schemes.

We show some figures of mesh (see Figure 2.2.2) and solutions. Fig-
ure 2.2.3 is the exact solution u.

Figure 2.2.4 is the numerical solution of reduced-integration scheme, with
ϵ = 0.1h2.

Figure 2.2.5 is the numerical solution of non-reduced-integration scheme,
with ϵ = 0.1h.

Figure 2.2.6 is the numerical solution of non-reduced-integration scheme,
with ϵ = 0.01h2, which fails to approximate the exact solution.

We show the error estimates results for both reduced and non-reduced-
integration scheme.

Figure 2.2.7 shows the errors of ∥uh−u∥L2 , ∥uh−u∥H1 and ∥ph−p∥L2/R,
when ϵ = 0.1h. We observe the O(h) convergence of u in H1-norm.

Figure 2.2.8 shows the errors of ∥uh−u∥L2 , ∥uh−u∥H1 and ∥ph−p∥L2/R,
when ϵ = 0.1h2. And it fails to converge.

Figure 2.2.9 shows the errors of ∥uh−u∥L2 , ∥uh−u∥H1 and ∥ph−p∥L2/R,
when ϵ = 0.1h. We see the error of uh − u in H1-norm is bounded by O(h).

Figure 2.2.10 shows the errors of ∥uh−u∥L2 , ∥uh−u∥H1 and ∥ph−p∥L2/R,
when ϵ = 0.1h2. We observe the error estimates ∥u − uh∥L2 ≤ Ch2 and
∥u− uh∥H1 ≤ Ch.

43



Figure 2.2.4: uh: reduced Figure 2.2.5: uh: nonreduced

Figure 2.2.6: uh: nonreduced, ϵ =
0.01h2
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Figure 2.2.7: nonreduced, ϵ = 0.1h
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Figure 2.2.10: reduced-order, ϵ =
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2.3 The penalty method to the non-stationary Navier-
Stokes problem

Variational form of (2.1.1).

Find (u(t), p(t)) ∈ Vn× Q̊, with u′(t) ∈ L2(Ω)d, for any t ∈ (0, T ), such that,

(u′, v) + a(u, v) + a1(u, u, v) + b(v, p) = (f, v), ∀v ∈ Vn, (2.3.1a)

b(u, q) = 0, ∀q ∈ Q̊, (2.3.1b)

u(0, x) = u0. (2.3.1c)

Assumptions.

(A) The initial value u0 and f satisfies,

(i) f ∈ H1(0, T ;L2(Ω)d);

(ii) u0 ∈ H2(Ω)d ∩ V σ
n , such that we have the compatibility condition

a(u0, v) = −ν(∆u0, v), ∀v ∈ V σ
n . (2.3.2)

Lemma 2.3.1 (The well-posedness of (2.3.1)). Under the assumptions (A)
and ∂Ω is of C3-class, when d = 2, for any T ∈ (0,∞), there exists a unique
solution (u, p) to (2.3.1) satisfying

∥u∥L∞(0,T ;H2) + ∥u′∥L∞(0,T ;L2(Ω)d) + ∥u′∥L2(0,T ;V σ
n ) ≤ C, (2.3.3)
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∥p∥L∞(0,T ;L2
0(Ω)) ≤ C, (2.3.4)

where C depends on Ω, f and u0. When d = 3, the conclusion holds for a
small time interval (0, T ′).

Lemma 2.3.2 (The regularity of (2.3.1)). Let (u, p) be the solution of (2.3.1)
satisfies Lemma 2.3.1. Assume ∂Ω is of Cm+2 class, m, s are integers, with
2s ≤ m, and u0, f

(s) = ∂sf/∂ts, satisfy

u0 ∈ Hm(Ω)d ∩ V σ
n , f (s) ∈ L2(0, T ;Hm−2s−1(Ω)d).

We also assume the compatibility condition

u(k)|D = 0, u(k)n |Γ = 0, τT (u
(k))|Γ = 0, k = 0, . . . , s. (2.3.5)

Then we have

∥u(s)∥L2(0,T ;Hm−2s+1(Ω)d) + ∥u(s)∥L∞(0,T ;Hm−2s(Ω)d) ≤ C, (2.3.6)

∥p(s)∥L2(0,T ;Hm−2s) ≤ C. (2.3.7)

The well-posedness and regularity of Navier-Stokes problem with Dirich-
let boundary condition are well known (cf. [7, 22, 43]). With a similar
argument to the case of the Dirichlet boundary condition, one can prove
Lemma 2.3.1 and Lemma 2.3.2. We write the weak form of penalty problem
(2.1.4). Find (uϵ(t), pϵ(t)) ∈ V × Q, with u′ϵ(t) ∈ L2(Ω)d, for all t ∈ (0, T )
such that

(u′ϵ, v) + a(uϵ, v) + a1(uϵ, uϵ, v) + b(v, pϵ) +
1

ϵ
c(uϵn, vn)

= (f, v), ∀v ∈ V,
(2.3.8a)

b(uϵ, q) = 0, ∀q ∈ Q, (2.3.8b)

uϵ(0, x) = uϵ0, (2.3.8c)

2.3.1 The well-posedness of penalty problem

Assumption.

(A′ii) The initial value uϵ0 satisfies uϵ0 ∈ V σ∩H2(Ω)d, and the compatibility
condition

a(uϵ0, v) +
1

ϵ
c(uϵ0 · n, vn) = −ν(∆uϵ0, v), ∀v ∈ V σ, (2.3.9)

which also implies ∥uϵ0 · n∥L2(Γ) ≤ C
√
ϵ.
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Theorem 2.3.1 (The well-posedness and regularity of (2.3.8)). We assume
(Ai)(A′ii), and ∂Ω is of C2 class, then we have, when d = 2, for any
T ∈ (0,∞), there exists a unique solution (uϵ, pϵ) to (2.2.9) for sufficiently
small ϵ, which satisfies

∥uϵ∥L∞(0,T ;V σ∩H2) + ∥u′ϵ∥L∞(0,T ;L2) + ∥u′ϵ∥L2(0,T ;V σ) ≤ C, (2.3.10)

∥pϵ∥L∞(0,T ;L2) ≤ C, (2.3.11)

where C depends on Ω, f and uϵ0.
When d = 3, the same conclusion holds for a small time interval (0, T ′).

We introduce the variational equation without pϵ.
Find uϵ(t) ∈ V σ, with u′ϵ(t) ∈ L2(Ω)d, for all t ∈ (0, T ) such that

(u′ϵ, v) + a(uϵ, v) + a1(uϵ, uϵ, v) +
1

ϵ
c(uϵn, vn)

= (f, v), ∀v ∈ V σ,
(2.3.12a)

uϵ(0, x) = uϵ0, (2.3.12b)

We see that uϵ of (2.3.8) satisfies (2.3.12).

Proposition 2.3.1 (The existence of pϵ). Let uϵ be the solution of (2.3.12)
with (2.3.3), then there exists a unique pϵ, such that (uϵ, pϵ) is the solution
of (2.3.8) and pϵ satisfies (2.3.4).

Proof. From the inf-sup condition of b (2.2.5), there exists a unique p̊ϵ ∈ Q̊
such that

−b(v, p̊ϵ) = (u′ϵ, v) + a(uϵ, v) + a1(uϵ, uϵ, v) + b(v, p̊ϵ)

− (f, v), ∀v ∈ H1
0 (Ω)

d,
(2.3.13)

and p̊ϵ satisfies, for any t ∈ (0, T ) (for d = 3, T is replaced by T ′),

∥p̊ϵ(t)∥L2 ≤ C(∥u′ϵ(t) + (uϵ · ∇uϵ)(t)− f(t)∥H−1 + ∥uϵ(t)∥H1), (2.3.14)

where H−1(Ω)d = (H1
0 (Ω)

d)∗.
Next, we find some function lϵ(t) ∈ R, such that pϵ = p̊ϵ + lϵ is the

solution to (2.3.8). To do so, we choose any ϕ ∈ V with ϕn|Γ = 1, and
define lϵ by

lϵ|Γ| = lϵ

∫
Γ
ϕnds = −b(ϕ, lϵ)

=− b(ϕ, p̊ϵ) + (u′ϵ, ϕ) + a(uϵ, ϕ) + a1(uϵ, uϵ, ϕ)− (f, ϕ),

(2.3.15)
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then (uϵ, p̊ϵ+lϵ) satisfies (2.3.8). From (2.3.13), we see that the lϵ determined
by (2.3.15) is unique (independent on the choice of ϕ).

To show the boundedness of lϵ, we substitute v = w ∈ V into (2.3.8)
with wn|Γ = lϵn and ∥w∥H1 ≤ C|lϵ|, and we have

|lϵ|2|Γ| = lϵ

∫
Γ
wnds = −b(w, lϵ)

=− b(w, p̊ϵ) + (u′ϵ, w) + a(uϵ, w) + a1(uϵ, uϵ, w)− (f, w),

(2.3.16)

which implies, for all t ∈ (0, T ),

|lϵ(t)| ≤ C(∥p̊ϵ(t)∥L2+∥u′ϵ(t)+(uϵ ·∇uϵ)(t)−f(t)∥H−1+∥uϵ(t)∥H1). (2.3.17)

We complete the proof.

Proposition 2.3.2 (The uniqueness of uϵ). If there exist two solutions u1ϵ
and u2ϵ to (2.3.12) with (2.3.3), then u1ϵ = u2ϵ .

Proof. It follows from the standard argument (cf. [23, Proposition 3.1],[43]).

Proof of Theorem 2.3.1. We only need to show the existence of solution uϵ
to (2.3.12) with (2.3.3). The existence of pϵ and the uniqueness of solution
follow from Proposition 2.3.1 and 2.3.2.

We apply the Galerkin’s approximation method. There exists a linear
base {wk}∞k=1 to V σ with w1 = uϵ0, such that ∪∞

m=1span{wk}mk=1 is dense
in V σ. For m ∈ N+, we consider the Galerkin’s approximation problem
to (2.3.12): find uϵm =

∑m
k=1 ck(t)wk, with ck(t) ∈ C2([0, T ]), such that

uϵm(0) = uϵ0, and

(u′ϵm, wk) + a(uϵm, wk) + a1(uϵm, uϵm, wk) +
1

ϵ
c(uϵmn, wkn)

= (f, wk), ∀k = 1, . . . ,m,
(2.3.18)

where uϵmn = uϵm · n and wkn = wk · n. We see that

a1(uϵm, uϵm, uϵm) =
1

2

∫
Γ
uϵmn|uϵm|2ds ≤ c1∥uϵmn∥L2(Γ)∥uϵm∥2H1 .

Multiplying (2.3.18) with ck(t) and taking the summation of k, it yields,

1

2

d

dt
∥uϵm∥2L2 + (α− c1∥uϵmn∥L2(Γ))∥uϵm∥2H2 +

1

ϵ
∥uϵmn∥2L2(Γ) ≤ (f, uϵm).

(2.3.19)
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Since ∥uϵmn(0)∥L2(Γ) = ∥uϵ0 · n∥L2(Γ) ≤ C
√
ϵ, for sufficiently small ϵ, there

exists a maximum time T1 > 0, such that

α− c1∥uϵmn∥L2(Γ) ≥ α/2, ∀t ∈ [0, T1]. (2.3.20)

From (2.3.19) and (2.3.20), we have

∥uϵm∥2L∞(0,T1;L2) + ∥uϵm∥2L2(0,T1;V σ) + ϵ−1∥uϵmn∥2L2(0,T1;L2(Γ)) ≤ C. (2.3.21)

Differentiating (2.3.18) with respect to t, multiplying it with c′k(t) and
taking the summation of k, we get

1

2

d

dt
∥u′ϵm∥2L2 + (α− c1∥uϵmn∥L2(Γ))∥u′ϵm∥2H1 +

1

ϵ
∥u′ϵmn∥2L2(Γ)

≤ (f ′, u′ϵm)− a1(u
′
ϵm, uϵm, u

′
ϵm).

(2.3.22)

From the compatibility condition (2.3.9), we see that

(u′ϵm(0), u′ϵm(0)) = (ν∆uϵ0, u
′
ϵm(0))

− a1(uϵ0, uϵ0, u
′
ϵm(0))− (f(0), u′ϵm(0)),

(2.3.23)

which shows

∥u′ϵm(0)∥L2 ≤ C(∥uϵ0∥H2 + ∥f(0)∥L2 + ∥uϵ0 · ∇uϵ0∥L2). (2.3.24)

(1) Let us consider the case of d = 2. From (2.3.22) and Sobolev’s
inequality, we have, for arbitrary η0 > 0,

1

2

d

dt
∥u′ϵm∥2L2 + (α− c1∥uϵmn∥L2(Γ) − η0)∥u′ϵm∥2H1 +

1

ϵ
∥u′ϵmn∥2L2(Γ)

≤∥f ′∥L2∥u′ϵm∥L2 + Cη−1
0 ∥uϵm∥2H1∥u′ϵm∥2L2 ,

(2.3.25)
which implies

∥u′ϵm∥2L∞(0,T1;L2) + ∥u′ϵm∥2L2(0,T1;V σ) + ϵ−1∥u′ϵmn∥2L2(0,T1;L2(Γ)) ≤ C. (2.3.26)

Multiplying (2.3.18) with c′k(t) and taking summation of k, it yields

∥u′ϵm∥2L2 +
1

2

d

dt
a(uϵm, uϵm) +

1

ϵ

1

2

d

dt
c(uϵmn, uϵmn)

≤∥f ′∥L2∥u′ϵm∥L2 + C∥u′ϵm∥H1∥uϵm∥2H1 .
(2.3.27)

From (2.3.26) and (2.3.27), we conclude

∥u′ϵm∥2L2(0,T1;L2)+∥uϵm∥2L∞(0,T1;V σ)+ ϵ
−1∥uϵmn∥2L∞(0,T1;L2(Γ)) ≤ C. (2.3.28)
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Therefore, ∥uϵmn(T1)∥Γ ≤ C
√
ϵ, and for sufficiently small ϵ, there exists

a time T2 > T1, such that α− c1∥uϵmn∥Γ ≥ α/2 for all t ∈ [0, T2]. With the
same argument from (2.3.20) with T1 replaced by T2, we show the solution
uϵm exists in time interval (0, T2] satisfying (2.3.21), (2.3.26) and (2.3.28)
with T1 replaced by T2.

By induction method, we continue this process with a sufficiently small
ϵ to reach a time Tk ≥ T , such that uϵ exists in [0, Tk], and satisfies (2.3.21),
(2.3.26) and (2.3.28) with T1 replaced by Tk.

Hence, there exists a subsequence {uϵm}∞m=1 such that, as m→ ∞,

uϵm → uϵ, weakly* in L∞(0, T ;V σ),

u′ϵm → u′ϵ, weakly* in L∞(0, T ;L2(Ω)d), weakly in L2(0, T ;V σ),

and uϵ is the solution of (2.3.8) with

∥uϵ∥L∞(0,T ;V σ) + ∥u′ϵ∥L∞(0,T ;L2)∩L2(0,T ;V σ) ≤ C,

Follows form the same argument of [43, Theorem 3.6], we can obtain

∥uϵ∥L∞(0,T ;H2) ≤ C,

which complete the proof of case d = 2.
(2) When d = 3, the argument before (2.3.25) is the same. From (2.3.22)

and Sobolev’s inequality, we have, for arbitrary η0 > 0,

1

2

d

dt
∥u′ϵm∥2L2 + (α− c1∥uϵmn∥L2(Γ) − η0∥uϵm∥H1)∥u′ϵm∥2H1

+
1

ϵ
∥u′ϵmn∥2L2(Γ) ≤ ∥f ′∥L2∥u′ϵm∥L2 + Cη−3

0 ∥uϵm∥H1∥u′ϵm∥2L2 .

(2.3.29)

For sufficiently small η0 and ϵ, there exists T ′
1 > 0 such that

α− c1∥uϵmn∥L2(Γ) − η0∥uϵm∥H1 ≥ α/2, ∀t ∈ [0, T ′
1]. (2.3.30)

From (2.3.29) and (2.3.30), we obtain (2.3.26), and furthermore (2.3.28),
with T1 replaced by T ′

1. With a similar argument to the case of d = 2 from
(2.3.28), we conclude the existence of uϵ in (0, T ′], where T ′ is the maximum
time such that supt∈(0,T ′) ∥uϵ(t)∥H1 <∞.

Remark 2.3.1. When d = 3, the solution uϵ exists locally in time. For
sufficiently small initial value uϵ0 and f , one can prove the existence of
solution uϵ in (0,∞).
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2.3.2 The error estimates of penalty

We show the error estimates of uϵ − u.
Recalling that lϵ(t) =

1
|Ω|

∫
Ω pϵ(t)dx, and p̊ϵ(t) = pϵ(t)− lϵ(t) ∈ Q̊, we set

λ = −τn(u, p)|Γ, λϵ = ϵ−1uϵn|Γ − lϵ(t).

We shall study the estimates of

eu(t) = u(t)− uϵ(t), ep(t) = p(t)− p̊ϵ(t),

eλ(t) = λ(t)− λϵ(t).

We assume the error of initial value

∥eu(0)∥H2 = ∥u0 − uϵ0∥H2 ≤ Cϵ. (2.3.31)

Error estimates at t = 0

Subtracting (2.3.8) from (2.3.1) at t = 0 yields,

P(u′(0)− u′ϵ(0)) = νP∆(u0 − uϵ0)− P(u0 · ∇u0 − uϵ0 · ∇uϵ0),

which implies, from the assumption (2.3.31),

∥e′u(0)∥L2 ≤ C∥u0 − uϵ0∥H2 ≤ Cϵ. (2.3.32)

Then, from the inf-sup conditions (2.2.5), (2.2.6), and

(e′u(0), v) + a(eu(0), v) + b(v, ep(0)) + c(eλ(0), vn)

+ a1(eu(0), u0, v) + a1(uϵ0, eu(0), v) = 0, v ∈ V,
(2.3.33)

we have

∥ep(0)∥L2 ≤ C(∥e′u(0)∥L2 + ∥eu(0)∥H1) ≤ Cϵ, (2.3.34)

∥eλ(0)∥H−1/2 ≤ C(∥e′u(0)∥L2 + ∥eu(0)∥H1 + ∥ep(0)∥L2) ≤ Cϵ. (2.3.35)

Substituting v = eu(0) into (2.3.33), it yields,

ϵ∥eλ(0)∥2L2(Γ) = ϵc(eλ(0), λ+ lϵ)− (e′u(0), eu(0))

− a(eu(0), eu(0))− a1(eu(0), u0, eu(0)) + a1(uϵ0, eu(0), eu(0))

≤Cϵ∥eλ(0)∥H−1/2 + ∥e′u(0)∥L2∥eu(0)∥L2 + C∥eu(0)∥2H1 ≤ Cϵ2,

which shows
∥eλ(0)∥2L2(Γ) ≤ Cϵ. (2.3.36)
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Theorem 2.3.2. Let (u, p) and (uϵ, pϵ) be the unique solutions to (2.3.1)
and (2.3.8), respectively. Under the assumption that

τn(u, p) ∈ L2(0, T ;L2(Γ)), uϵ ∈ L4(0, T ;V ), lϵ ∈ L2((0, T )),

we have
∥eu∥2L∞(0,t;L2) + ∥eu∥2L2(0,t;H1) ≤ Cϵ. (2.3.37)

Under the assumption that

τn(u
′, p′) ∈ L2(0, T ;L2(Γ)), u′, u′ϵ ∈ L2(0, T ;V ), l′ϵ ∈ L2((0, T )),

we have
∥e′u∥2L∞(0,t;L2) + ∥e′u∥2L2(0,t;H1) ≤ Cϵ. (2.3.38)

To state the proof, we rewrite (2.3.1) and (2.3.8) into the following. forms
Find (u(t), p(t), λ(t)) ∈ V × Q̊ ×M ′, with u′(t) ∈ L2(Ω)d, for any t ∈

(0, T ), such that,

(u′, v) + a(u, v) + a1(u, u, v) + b(v, p) + c(λ, vn) = (f, v), ∀v ∈ V,
(2.3.39a)

b(u, q) = 0, ∀q ∈ Q̊, (2.3.39b)

c(un, µ) = 0, ∀µ ∈M, (2.3.39c)

u(0, x) = u0. (2.3.39d)

Find (uϵ(t), pϵ(t), λϵ(t)) ∈ V × Q × M ′, with u′ϵ(t) ∈ L2(Ω)d, for all
t ∈ (0, T ) such that

(u′ϵ, v) + a(uϵ, v) + a1(uϵ, uϵ, v) + b(v, p̊ϵ) + c(λϵ, vn)

= (f, v), ∀v ∈ V,
(2.3.40a)

b(uϵ, q) = 0, ∀q ∈ Q, (2.3.40b)

c(uϵn, µ) = ϵc(λϵ + lϵ(t), µ) ∀µ ∈M, (2.3.40c)

uϵ(0, x) = uϵ0. (2.3.40d)

Proof of Theorem 2.3.2. Subtracting (2.3.39) from (2.3.40) yields, for all v ∈
V ,

(e′u, v)+a(eu, v)+b(v, ep)+a1(u, eu, v)+a1(eu, uϵ, v)+c(eλ, vn) = 0. (2.3.41)

In view of un|Γ = 0 and
∫
Γ uϵnds = 0, we have en · n|Γ = −uϵn and

c(eλ, eu · n) = c(λ− ϵ−1uϵn,−uϵn) = ϵ∥λ− ϵ−1uϵn∥2L2(Γ) − ϵc(λ− ϵ−1uϵn, λ).
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Substituting v = eu to (2.3.41), we obtain, for any η0 > 0,

1

2

d

dt
∥eu∥2L2 + α∥eu∥2H1 + ϵ∥λ− ϵ−1uϵn∥2L2(Γ)

≤ϵc(λ− ϵ−1uϵn, λ)− a1(eu, uϵ, eu)

≤η0ϵ∥λ− ϵ−1uϵn∥2L2(Γ) + Cη−1
0 ϵ∥λ∥2L2(Γ) + η0∥eu∥2H1 + Cη−3

0 ∥eu∥2L2∥uϵ∥4H1 ,

(2.3.42)
which gives (2.3.37).

Differentiating (2.3.41) with respect to t and substituting v = e′λ(t), we
have

d

dt
∥e′u∥2L2 + α∥e′u∥2H1 + ϵ∥λ′ − ϵ−1u′ϵn∥2L2(Γ)

≤C(∥u′∥2H1 + ∥u′ϵ∥2H1)∥eu∥2H1 + Cϵ∥λ′∥2L2(Γ) + C∥uϵ∥4H1∥e′u∥2L2 .
(2.3.43)

From (2.3.32), (2.3.37) and (2.3.43), we conclude (2.3.38).

Theorem 2.3.3. Let (u, p) and (uϵ, pϵ) be the unique solutions to (2.3.1)
and (2.3.8), repectivelty. Assume

(u, p), (uϵ, pϵ) ∈ H1(0, T ;H2(Ω)d)×H1(0, T ;H1(Ω)),

we have,
∥e′u∥L2(0,T ;L2) + ∥eu∥L∞(0,t;V ) ≤ Cϵ, (2.3.44)

∥ep∥L2(0,T ;L2) + ∥eλ∥L2(0,T ;M∗) ≤ Cϵ. (2.3.45)

Proof of Theorem 2.3.3. From the assumption, we see that

λ ∈ H1(0, T ;H1/2(Γ)), lϵ ∈ H1((0, T )).

From (2.3.41), we have, for all t ∈ (0, T ), and for any v ∈ H1
0 (Ω)

d,

b(v, ep(t)) = −(e′u(t), v)− a(eu(t), v)− a1(u(t), eu(t), v)− a1(eu(t), uϵ(t), v).
(2.3.46)

Applying the inf-sup condition (2.2.5) to (2.3.46), it gives

∥ep(t)∥L2 ≤ C(∥e′u(t)∥L2 + ∥eu(t)∥H1). (2.3.47)

Applying the inf-sup condition (2.2.6) to (2.3.41), we have

∥eλ(t)∥M∗ ≤ C(∥e′u(t)∥L2 + ∥eu(t)∥H1 + ∥ep(t)∥L2). (2.3.48)
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We see that

c(eλ, e
′
u) = ϵ

1

2

d

dt
∥eλ∥2L2(Γ) − ϵc(eλ, λ

′ + l′ϵ). (2.3.49)

Substituting v = e′u(t) into (2.3.41), it yields

∥e′u∥2L2 +
1

2

d

dt
a(eu, eu) + ϵ

1

2

d

dt
∥eλ∥2Γ

≤ϵc(eλ, λ′ + l′ϵ)− a1(u, eu, e
′
u)− a1(eu, uϵ, e

′
u)

≤Cϵ∥eλ∥M ′(∥λ′∥H1/2(Γ) + |l′ϵ|) + C∥eu∥H1∥e′u∥L2 .

(2.3.50)

From (2.3.47), (2.3.48), and α∥eu(t)∥2H1 ≤ a(eu(t), eu(t)), we get

∥e′u∥2L2 +
d

dt
a(eu, eu) + ϵ

d

dt
∥eλ∥2L2(Γ) ≤ Ca(eu(t), eu(t)) + Cϵ2. (2.3.51)

From (2.3.31) and (2.3.36), we see that (2.3.51) implies (2.3.44). (2.3.45)
follows directly from (2.3.47) and (2.3.48).

2.4 The penalty method to the stationary Navier-
Stokes problem

We consider the stationary Navier-Stokes problem (NS) with slip boundary
condition.

− ν∆u+ (u · ∇)u+∇p = f, in Ω, (2.4.1a)

∇ · u = 0, in Ω, (2.4.1b)

un = 0, τT (u) = 0, on Γ, (2.4.1c)

u = 0 on D. (2.4.1d)

In this section, we consider two penalty problem to (NS) (also (2.4.1)). The
well-posedness, regularity and error estimates of the penalty problems are
investigated.

2.4.1 The penalty problems (NSϵ) and (NS′
ϵ)

First, we give the variational forms of (NS) (also (2.4.1)) and the penalty
problem (NSϵ) (also (2.4.2)).
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The variational forms of (NS) and (NSϵ)

We write the the penalty problem (NSϵ):

− ν∆uϵ + (uϵ · ∇)uϵ +∇pϵ = f, in Ω, (2.4.2a)

∇ · uϵ = 0, in Ω, (2.4.2b)

τn(uϵ, pϵ) +
1

ϵ
uϵn = 0, τT (uϵ) = 0, on Γ, (2.4.2c)

uϵ = 0 on D. (2.4.2d)

The variational form of (2.4.1) reads as: find (u, p) ∈ Vn × Q̊ such that

a(u, v) + a1(u, u, v) + b(v, p) = (f, v), ∀v ∈ Vn, (2.4.3a)

b(u, q) = 0, ∀q ∈ Q̊. (2.4.3b)

Remark 2.4.1 (cf. [19]). For f = 0, (2.4.3) admits a unique solution u = 0.
For any f ∈ V ′ and f ̸= 0, there exists a solution (u, p) ∈ Vn× Q̊ for (2.4.3),
with

∥u∥H1 ≤ ∥f∥V ′/α, ∥p∥L2 ≤ C∥f∥V ′ . (2.4.4)

If α2 > ∥f∥V ′ , then the solution is unique.

The variational form of (2.4.2) reads as: find (uϵ, pϵ) ∈ V ×Q such that

a(uϵ, v) + a1(uϵ, uϵ, v) + b(v, pϵ) +
1

ϵ

∫
Γ
uϵnvnds = (f, v), ∀v ∈ V,

(2.4.5a)

b(uϵ, q) = 0, ∀q ∈ Q. (2.4.5b)

The penalty problem (NS′
ϵ)

We also consider the penalty problem with skew symmetric term, denoted
as (NS′

ϵ): find (uϵ, pϵ) ∈ V ×Q such that,

a(uϵ, v) +
1

2
[a1(uϵ, uϵ, v)− a1(uϵ, v, uϵ)] +

1

ϵ

∫
Γ
uϵnvnds

+ b(v, pϵ) = (f, v), ∀v ∈ V,

(2.4.6a)

b(uϵ, q) = 0, ∀q ∈ Q. (2.4.6b)
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The strong form of (2.4.6) reads as:

− ν∆uϵ + (uϵ · ∇)uϵ +∇pϵ = f, in Ω, (2.4.7a)

∇ · uϵ = 0, in Ω, (2.4.7b)

τ(uϵ, pϵ) +
1

ϵ
uϵnn− 1

2
uϵnuϵ = 0, on Γ, (2.4.7c)

uϵ = 0 on D. (2.4.7d)

Remark 2.4.2. If we replace un|Γ = 0 in (NS) with the non-homogeneous
boundary condition un|Γ = g ̸= 0, we have to replace the penalty term
τn(uϵ + pϵ) + ϵ−1uϵn = 0 of (NSϵ) with τn(uϵ + pϵ) + ϵ−1(uϵn − g) = 0.
Correspondently, we have to replace the penalty term 1

ϵ

∫
Γ uϵnvn ds in (2.4.5)

with 1
ϵ

∫
Γ(uϵn − g)vn ds. In this case, the skew-symmetric term

1

2
[a1(u, u, v)− a1(u, v, u)] = a1(u, u, v)−

1

2

∫
Γ
g(u · v) ds,

Therefore, instead of (2.4.6), we have to consider the penalty problem

a(uϵ, v) +
1

2
[a1(uϵ, uϵ, v)− a1(uϵ, v, uϵ)] +

1

2

∫
Γ
g(uϵ · v)

+ b(v, pϵ) + ϵ−1c(uϵn − g, vn) = (f, v), ∀v ∈ V.

Correspondently, we replace (2.4.7c) with τ(uϵ, pϵ) +
1
ϵ (uϵn − g)n− 1

2(uϵn −
g)uϵ = 0.

2.4.2 The well-posedness of (NSϵ) and (NS′
ϵ)

For (NSϵ) (also (2.4.5)), we consider the equation without pϵ, denoted as
(NSσ

ϵ ): find uϵ ∈ V σ such that,

a(uϵ, v) + a1(uϵ, uϵ, v) +
1

ϵ

∫
Γ
uϵnvnds = (f, v), ∀v ∈ V σ. (2.4.8)

For (NS′
ϵ) (also (2.4.6)), we consider the equation without pϵ, denoted

as (NS′
ϵ
σ): find uϵ ∈ V σ such that,

a(uϵ, v) +
1

2
[a1(uϵ, uϵ, v)− a1(uϵ, v, uϵ)] +

1

ϵ

∫
Γ
uϵnvnds

= (f, v), ∀v ∈ V σ.

(2.4.9)

Remark 2.4.3. Let (uϵ, pϵ) be the solution of (2.4.5) (resp. (2.4.6)), then
uϵ satisfies (2.4.8) (resp. (2.4.9)).
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Proposition 2.4.1. Let uϵ be the solution of (2.4.8) (resp. (2.4.9)), then
there exists a unique pϵ associated to uϵ, such that (uϵ, pϵ) satisfies (2.4.5)
(resp. (2.4.6)), with

∥pϵ∥L2 ≤ C(∥uϵ∥H1 + ∥uϵ∥2H1 + ∥f∥V ′).

Proof. (1) First, let us prove the case of (2.4.8). In view of the inf-sup
condition of b (3.2.7), for any uϵ ∈ V , there exists a unique p̊ϵ ∈ Q̊ such that

a(uϵ, v) + a1(uϵ, uϵ, v) + b(v, p̊ϵ) = (f, v), v ∈ H1
0 (Ω)

d, (2.4.10)

and we have

β∥p̊ϵ∥L2 ≤ sup
v∈H1

0 (Ω)d\{0}

b(v, p̊ϵ)

∥v∥H1

≤ C(∥uϵ∥H1 + ∥(uϵ · ∇)uϵ∥2V ′ + ∥f∥V ′).

For arbitrary ϕ ∈ C∞(Γ) with
∫
Γ ϕn ds = 1, we set

kϵ =
1

|Γ|
(
a(uϵ, ϕ) + a1(uϵ, uϵ, v) + b(ϕ, p̊ϵ)− ϵ−1c(uϵn, ϕn)− (f, ϕ)

)
.

(2.4.11)
One can verify that kϵ is independent of ϕ, and (uϵ, pϵ) with pϵ = p̊ϵ + kϵ
satisfies (2.4.5).

Substituting v = φ into (2.4.5), where φ ∈ V with φ|Γ = kϵn and
∥v∥H1 ≤ C|kϵ|, we have

|kϵ|2|Γ| = kϵ

∫
Γ
φn ds = −b(φ, kϵ)

= a(uϵ, φ) + a1(uϵ, uϵ, φ) + b(φ, p̊ϵ) + ϵ−1c(uϵn, φn)− (f, v),

which implies

|kϵ| ≤ C(∥uϵ∥H1 + ∥(uϵ · ∇)uϵ∥V ′ + ∥f∥V ′).

(2) For the case of (2.4.9), we have there exists a unique p̊ϵ ∈ Q̊ such
that

a(uϵ, v) +
1

2
[a1(uϵ, uϵ, v)− a1(uϵ, v, uϵ)] + b(v, p̊ϵ) = (f, v), v ∈ H1

0 (Ω)
d,

(2.4.12)
and we have

β∥p̊ϵ∥L2 ≤ C(∥uϵ∥H1 + ∥(uϵ · ∇)uϵ∥V ′ + ∥uϵ∥L3∥uϵ∥L6 + ∥f∥V ′).
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For arbitrary ϕ ∈ C∞(Γ) with
∫
Γ ϕn ds = 1, setting

|Γ|kϵ =a(uϵ, ϕ) +
1

2
[a1(uϵ, uϵ, v)− a1(uϵ, v, uϵ)]

+ b(ϕ, p̊ϵ)− ϵ−1c(uϵn, ϕn)− (f, ϕ),
(2.4.13)

one can verify that kϵ is the constant independent of ϕ, with

|kϵ| ≤ C(∥uϵ∥H1 + ∥(uϵ · ∇)uϵ∥V ′ + ∥uϵ∥L3∥uϵ∥L6 + ∥f∥V ′)

and (uϵ, pϵ) with pϵ = p̊ϵ + kϵ satisfies (2.4.6).

From Solbolev’s embedding theorem and trace theorem:

∥v∥L4(Γ) ≤ C1∥v∥
H

1
2 (Γ)

, ∥v∥
H

1
2 (Γ)

≤ C2∥v∥H1 , ∀v ∈ V, d = 2, 3,

we set the constant c1 > 0 such that

a1(w, v, v) =
1

2

∫
Γ
wn|v|2 ds ≤ c1∥wn∥L2(Γ)∥v∥2H1 , ∀w ∈ V σ, v ∈ V.

(2.4.14)

Proposition 2.4.2. (1) For arbitrary η (0 < η ≪ 1), when ϵ is sufficiently
small, there exists a solution uϵ ∈ V σ of (NSϵ

σ) (also (2.4.8)), with

∥uϵ∥H1 ≤ ∥f∥V ′(1 + η)/α, ∥uϵn∥L2(Γ) ≤
√

2ϵ(1 + η)/α∥f∥V ′ . (2.4.15)

Moreover, if ∥f∥V ′ is sufficiently small (equivalently, α or ν is large enough)
such that

α− ∥a1∥
1 + η

α
∥f∥V ′ − c1

√
2ϵ(1 + η)

α
∥f∥V ′ > 0,

then uϵ is unique in {v ∈ V | ∥v∥H1 ≤ ∥f∥V ′(1 + η)/α}.
(2) There exists a solution uϵ ∈ V σ of (NS′

ϵ
σ) (also (2.4.9)), with

∥uϵ∥H1 ≤ ∥f∥V ′/α, ∥uϵn∥L2(Γ) ≤
√
ϵ/α∥f∥V ′ . (2.4.16)

Moreover, if ∥f∥V ′ is sufficiently small such that α−∥a1∥∥f∥V ′/α > 0, then
the solution uϵ is unique.

Proof. The proof is similar to the standard argument (cf. [19, Chapter
IV, Theorem 1.2]). We construct the approximate solutions by Galerkin’s
method. Since V σ is separable, there exists a sequence {wi}∞i=1 ⊂ V σ such
that, for any m ≥ 1, w1, . . . , wm are linearly independent, and ∪∞

m=1Vm is
dense in V σ, where Vm = span{wi}mi=1.
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Let us first prove (2). For any m ≥ 1, we consider the Galerkin’s ap-
proximate problem, denoted as (NSσ

ϵm
′): find uϵm ∈ Vm such that

a(uϵm, wi) +
1

2
[a1(uϵm, uϵm, wi)− a1(uϵm, wi, uϵm)] +

1

ϵ
c(uϵmn, win)

= (f, wi), ∀i = 1, . . . ,m,
(2.4.17)

where uϵmn = uϵm · n, win = wi · n.
We define the mapping Φm : Vm → Vm:

(Φm(v), wi) =a(v, wi) +
1

2
[a1(v, v, wi)− a1(v, wi, v)]

+
1

ϵ
c(vn, win)− (f, wi).

We have

(Φm(v), v) = a(v, v) + ϵ−1∥vn∥2L2(Γ) − (f, v)

≥ (α∥v∥H1 − ∥f∥V ′)∥v∥H1 + ϵ−1∥vn∥2L2(Γ).

Hence, (Φm(v), v) ≥ 0 for all v ∈ Vm with ∥v∥H1 = ∥f∥V ′/α. Applying the
Browser’s fixed point theorem (cf. [19, Chapter IV, Theorem 1.1]), there
exists a solution uϵm of (NSσ

ϵm
′), with ∥uϵm∥H1 ≤ ∥f∥V ′/α. Then there

exists a subsequence of {uϵm}∞m=1, which we also denoted as {uϵm}∞m=1,
satisfies

uϵm → ūϵ, weakly in V σ, uϵm → ūϵ in L
2(Ω),

as m→ ∞. Passing the limit m→ ∞ of (2.4.17), we see that uϵ = ūϵ is the
solution of (NS′

ϵ
σ).

For any solution uϵ of (NSσ
ϵ
′), substituting v = uϵ into (2.4.6), we have

α∥uϵ∥2H1 + ϵ−1∥uϵn∥2L2(Γ) ≤a(uϵ, uϵ) + ϵ−1c(uϵn, uϵn)

=(f, uϵ) ≤ ∥f∥V ′∥uϵ∥H1 ,

which implies (2.4.16).
We then consider the uniqueness of solution. Assume there exist two

solutions uϵ and Uϵ of (NSσ
ϵ
′). Setting w = uϵ − Uϵ, we see that

a(w, v) +
1

2
[a1(Uϵ, w, v)− a1(Uϵ, v, w)]

+
1

2
[a1(w, uϵ, v)− a1(w, v, uϵ)] +

1

ϵ
c(wn, vn) = 0, ∀v ∈ V σ.

(2.4.18)
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Substituting v = w into (2.4.18), we have

0 = a(w,w) + ϵ−1∥wn∥2L2(Γ) +
1

2
[a1(w, uϵ, w)− a1(w,w, uϵ)]

≥ α∥w∥2H1 + ϵ−1∥wn∥2L2(Γ) − ∥a1∥∥w∥2H1∥uϵ∥H1 .

If α > ∥a1∥∥f∥V ′/α ≥ ∥a1∥∥uϵ∥H1 , then w = 0. We finish the proof of (2).
Next, we prove (1). Similar to the argument above, we have the Galerkin’s

approximate problem, denoted as (NSσ
ϵm): find uϵm ∈ Vm such that

a(uϵm, wi) + a1(uϵm, uϵm, wi) + ϵ−1c(uϵmn, win)

= (f, wi), ∀i = 1, . . . ,m,
(2.4.19)

and the associate mapping Φm : Vm → Vm:

(Φm(v), wi) = a(v, wi) + a1(v, v, wi) + ϵ−1c(vn, win)− (f, wi).

In view of (2.4.14), we have

a1(v, v, v) ≤ c1∥vn∥L2(Γ)∥v∥2H1 ≤ 1

2ϵ
∥vn∥2L2(Γ) +

c21ϵ

2
∥v∥4H1 ,

applying which we can obtain

(Φm(v), v) ≥ (α∥v∥H1 −
c21ϵ

2
∥v∥3H1 − ∥f∥V ′)∥v∥H1 +

1

2ϵ
∥vn∥2L2(Γ). (2.4.20)

For any η > 0 (η ≪ 1), and for any v ∈ Vm with ∥v∥H1 =
(1+η)∥f∥V ′

α , if

ϵ ≤ 2ηα3

c21(1 + η)3∥f∥2V ′
, (2.4.21)

we have

(α∥v∥H1 −
c21ϵ

2
∥v∥3H1 − ∥f∥V ′) ≥ 0.

Hence, there exists a solution uϵm of (NSσ
ϵm), with ∥uϵm∥H1 ≤ (1+η)∥f∥V ′

α .
Substituting wi = uϵm in (2.4.19), it yields

(α− c21ϵ

2
∥uϵm∥2H1)∥uϵm∥2H1 +

1

2ϵ
∥uϵmn∥2L2(Γ) ≤ ∥f∥V ′uϵm∥H1 .

In view of ϵ ≤ 2ηα3

c21(1+η)3∥f∥2
V ′

and ∥uϵm∥H1 ≤ (1+η)∥f∥V ′
α , we have

α− c21ϵ

2
∥uϵm ≥ α− αη

1 + η
=

α

1 + η
> 0,
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which implies
∥uϵmn∥L2(Γ) ≤

√
2ϵ(1 + η)/α∥f∥V ′ .

After passing the limit m → ∞, we have uϵm → uϵ weakly in V σ, with

∥uϵ∥H1 ≤ (1+η)∥f∥V ′
α , ∥uϵn∥L2(Γ) ≤

√
2ϵ(1 + η)/α∥f∥V ′ , and uϵ is a solution

of (NSσ
ϵ ). We proved (2.4.16). Now, for uϵ the solution of

We then consider the uniqueness of uϵ. Assume uϵ and Uϵ are two solu-
tions of (NSσ

ϵ ) satisfying (2.4.15). Setting w = uϵ − Uϵ, we see that

a(w, v) + a1(Uϵ, w, v) + a1(w, uϵ, v) +
1

ϵ
c(wn, vn) = 0, ∀v ∈ V σ. (2.4.22)

Substituting v = w into (2.4.22), we have

0 = a(w,w) + ϵ−1∥wn∥2L2(Γ) + a1(Uϵ, w, v) + a1(w, uϵ, v)

≥ (α− c1∥Uϵn∥L2(Γ))∥w∥2H1 + ϵ−1∥wn∥2L2(Γ) − ∥a1∥∥w∥2H1∥uϵ∥H1 .

Since uϵ and Uϵ satisfy (2.4.15), if α >
∥a1∥(1+η)∥f∥V ′

α + c1

√
2ϵ(1+η)

α ∥f∥V ′ ,

then w = 0. We finish the proof of (1).

From Proposition 2.4.2 and 2.4.1, we conclude the theorem of the well-
posedness of (NSϵ) and (NS′

ϵ).

Theorem 2.4.1. (1) For arbitrary small positive number η, there exists a
solution (uϵ, pϵ) ∈ V ×Q of (NSϵ) (also (2.4.5)) for sufficiently small ϵ (see
(2.4.21)), satsifying

∥uϵ∥H1 ≤ ∥f∥V ′(1 + η)

α
, ϵ−1/2∥uϵn∥L2(Γ) + ∥pϵ∥L2 ≤ C. (2.4.23)

where C is dependent on η, ∥f∥V ′ and α. Moreover, if

α− ∥a1∥
1 + η

α
∥f∥V ′ − c1

√
2ϵ(1 + η)

α
∥f∥V ′ > 0,

then (uϵ, pϵ) is unique in {v ∈ V | ∥v∥H1 ≤ ∥f∥V ′(1 + η)/α} ×Q.
(2) There exists a solution (uϵ, pϵ) ∈ V ×Q of (NS′

ϵ) (also (2.4.6)), with

∥uϵ∥H1 ≤ ∥f∥V ′/α, ϵ−1/2∥uϵn∥L2(Γ) + ∥pϵ∥L2 ≤ C. (2.4.24)

Moreover, if α− ∥a1∥∥f∥V ′/α > 0, then the solution uϵ is unique.
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Remark 2.4.4. In Theorem 2.4.1, we show that all solutions of (NS′
ϵ)

satisfies the estimate ∥uϵ∥H1 ≤ ∥f∥V ′/α; however, we cannot conclude all

solutions of (NSϵ) satisfies ∥uϵ∥H1 ≤ (1+η)∥f∥V ′
α . Even when the solution

uϵ is unique in {v ∈ V | ∥v∥H1 ≤ (1+η)∥f∥V ′
α }, there may still exists other

solutions in with ∥uϵ∥H1 > (1 + η)∥f∥V ′/α.

The following proposition is to discuss the solutions of (NSϵ).

Proposition 2.4.3. We consider the problem (NSϵ). For arbitrary positive
small η, let ϵ satisfy (2.4.21), and

ϵ <
8α3

27c21∥f∥V ′
.

Then there exist two positive roots a < b of the cubic equation

Ψ(x) = 0, with Ψ(x) := −c
2
1ϵ

2α
x3 + x− ∥f∥V ′

α
. (2.4.25)

Moreover, we have

(i) there exists a solution uϵ with ∥uϵ∥H1 ≤ a;

(ii) there is no solution uϵ with a < ∥uϵ∥H1 < b;

(iii) there may exists a solution uϵ with ∥uϵ∥H1 ≥ b,

where
∥f∥V ′

α
≤ a ≤ (1 + η)∥f∥V ′

α
,

√
2α

3c21ϵ
≤ b ≤

√
2α

c21ϵ
.

Proof. (i) is proved in Theorem 2.4.1. Let uϵ be any solution of (NSϵ).
Substituting v = uϵ into (NSϵ) (also 2.4.5), it yields, similar to the derivation
of (2.4.20),

(α∥uϵ∥H1 −
ϵc1
2
∥uϵ∥3H1 − ∥f∥V ′)∥uϵ∥H1 +

1

2ϵ
∥uϵn∥2L2(Γ)

≤a(uϵ, uϵ) + a1(uϵ, uϵ, uϵ) + ϵ−1c(uϵn, uϵn)− (f, uϵ)

=0,

which implies α∥uϵ∥H1 − ϵc1
2 ∥uϵ∥3H1 − ∥f∥V ′ ≤ 0. Taking ∥uϵ∥H1 = x, it is

equivalent to consider the inequality

Ψ(x) ≤ 0, for x ≥ 0.
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Since Ψ′(x) = 1− 3c21ϵ
2α , there are two critical points x1 = −

√
2α
3c21ϵ

, x2 =
√

2α
3c21ϵ

of Ψ(x). Under the assumption ϵ < 8α3

27c21∥f∥V ′
, we have

Ψ(x2) =

√
8α

27c21ϵ
− ∥f∥V ′

α
> 0,

which implies there exist two positive roots a, b (a < b) of (2.4.25). And see
that

Φ(x) ≤ 0 for x ∈ [0, a] ∪ [b,∞], Φ(x) ≤ 0 for x ∈ (a, b),

which proves (i)(ii)(iii). As Ψ(a) = 0, Ψ(0) = −∥f∥V ′
α ≤ 0, we have

a− ∥f∥V ′

α
=
c21ϵ

2α
a3 ≥ 0.

Under the assumption (2.4.21), we have Ψ(
(1+η)∥f∥V ′

α ) ≥ 0, which implies

a ≤ (1+η)∥f∥V ′
α .

Ψ(b) = 0 gives b(1− b2 c
2
1ϵ
2α ) =

∥f∥V ′
α > 0, from which we obtain b ≤

√
2α
c21ϵ

.

Since Ψ(x2) > 0, we have b ≥ x2. The proof is completed.

2.4.3 The iteration methods for (NS′
ϵ) and (NSϵ)

According to (iii) of Proposition 2.4.3, even when (NSϵ) has a unique solu-

tion in {v ∈ V | ∥v∥H1 ≤ (1+η)∥f∥V ′
α }, there may still exists other solution in

{v ∈ V | ∥v∥H1 > Cϵ−1/2}. It seems (NS′
ϵ) is more reliable to approximate

(NS) than (NSϵ). However, when we apply the iteration methods to solve
(NS′

ϵ) and (NSϵ) in numerical computation, the convergence behavior of
them are not so much different.

We consider two iteration methods to both (NSϵ) and (NS′
ϵ).

Let (u0ϵ , p
0
ϵ ) be the solution of the penalty Stokes problem (Sϵ), with

∥u0ϵ∥1,Ω ≤ ∥f∥V ′

α
, ∥u0ϵn∥L2(Γ) ≤

√
ϵ∥f∥V ′ . (2.4.26)

We set (u0ϵ , p
0
ϵ ) ∈ V ×Q as the initial value of iteration.

63



Iteration method (i) for (NSϵ)

For k = 1, 2, . . . ,Mmax, find (ukϵ , p
k
ϵ ) ∈ V ×Q such that,

a(ukϵ , v) + a1(u
k−1
ϵ , ukϵ , v) + b(v, pkϵ ) +

1

ϵα′

∫
Γ
ukϵnvn ds = (f, v), ∀v ∈ V,

(2.4.27a)

b(ukϵ , q) = 0, ∀q ∈ Q, (2.4.27b)

if ∥ukϵ − uk−1
ϵ ∥1,Ω ≤ η0, then stop the iteration, (2.4.27c)

where Mmax is the maximum iteration number, η0 is the error of iteration,
and α′ := α− c1

√
ϵ∥f∥V ′ > 0 (with sufficiently small ϵ).

Lemma 2.4.1. For sufficiently small ϵ such that α′ := α− c1
√
ϵ∥f∥V ′ > 0,

we have

∥ukϵ ∥1,Ω ≤ ∥f∥V ′

α′ , ∥ukϵn∥L2(Γ) ≤
√
ϵ∥f∥V ′ , ∀k ≥ 1. (2.4.28)

Furthermore, if (α′)2 > ∥a1∥∥f∥V ′, then ukϵ → uϵ in V .

Proof. Substituting v = u1ϵ into (2.4.1) for k = 1, with (2.4.26), and α′ :=
α− c1

√
ϵ∥f∥V ′ > 0, it yields

∥u1ϵ∥1,Ω ≤ ∥f∥V ′

α′ , ∥u1ϵn∥L2(Γ) ≤
√
ϵ∥f∥V ′ .

(2.4.28) follows from the induction method. (2.4.28) implies the existence
of a subsequence {umϵ }m≥0 such that umϵ → uϵ weakly in V as m→ ∞.

Next, we show the convergence ukϵ → uϵ in V .
Setting wk = ukϵ − uk−1

ϵ , we have

a(wk+1, v)+a1(u
k
ϵ , w

k+1, v)+
1

α′ϵ

∫
Γ
wk+1
n vnds = −a1(wk, ukϵ , v), ∀v ∈ V σ.

Substituting v = wk+1, we obtain

α∥wk+1∥2H1 − c1∥ukϵn∥L2(Γ)∥wk+1∥H1 + (α′ϵ)−1∥wk+1
n ∥2L2(Γ)

≤− a1(w
k, ukϵ , w

k+1) ≤ ∥a1∥∥ukϵ ∥H1∥wk∥H1∥wk+1∥H1 ,

which gives

α′∥wk+1∥H1 ≤ ∥a1∥∥f∥V ′

α′ ∥wk∥H1 .

If α′2 > ∥a1∥∥f∥V ′ , then ∥wk∥H1 → 0 as k → ∞, which implies ukϵ → uϵ in
V .
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Iteration method (i) for (NS′
ϵ)

For k = 1, 2, . . . ,Mmax, find (ukϵ , p
k
ϵ ) ∈ V ×Q such that,

a(ukϵ , v) +
1

2
[a1(u

k−1
ϵ , ukϵ , v)− a1(u

k−1
ϵ , v, ukϵ )] +

1

ϵ

∫
Γ
ukϵnvn ds

+ b(v, pkϵ ) = (f, v), ∀v ∈ V,

(2.4.29a)

b(ukϵ , q) = 0, ∀q ∈ Q, (2.4.29b)

if ∥ukϵ − uk−1
ϵ ∥1,Ω ≤ η0, then stop the iteration. (2.4.29c)

Lemma 2.4.2. Let {ukϵ }k≥1 be the solution of (2.4.29), we have

∥ukϵ ∥1,Ω ≤ ∥f∥V ′/α, ∥ukϵn∥L2(Γ) ≤
√
ϵ∥f∥V ′ , ∀k ≥ 1. (2.4.30)

Furthermore, if α2 > ∥a1∥∥f∥V ′, then ukϵ → uϵ in V .

Proof. Substituting v = ukϵ into (2.4.29), it yields (2.4.30), which implies
the existence of a subsequence {umϵ }m≥0 such that umϵ → uϵ weakly in V as
m→ ∞.

Setting wk = ukϵ − uk−1
ϵ , we have

a(wk+1, v) +
1

2
[a1(u

k
ϵ , w

k+1, v)− a1(u
k
ϵ , v, w

k+1)] +
1

ϵ

∫
Γ
wk+1
n vnds

= −1

2
[a1(w

k, ukϵ , v)− a1(w
k, v, ukϵ )], ∀v ∈ V σ.

Substituting v = wk+1, we obtain

α∥wk+1∥2H1 + ϵ−1∥wk+1
n ∥2L2(Γ)

=− a1(w
k, ukϵ , w

k+1) ≤ ∥a1∥∥ukϵ ∥H1∥wk∥H1∥wk+1∥H1 ,

which implies ∥wk+1∥H1 ≤ ∥a1∥∥f∥V ′
α2 ∥wk∥H1 . And we conclude if α2 >

∥a1∥∥f∥V ′ , then ukϵ → uϵ in V as k → ∞.

Remark 2.4.5. In view of Lemma 2.4.1, the convergence condition α′2 >
∥a1∥∥f∥V ′ is similar to the assumption of unique solution in (1) of The-
orem 2.4.1. According to Lemma 2.4.2, the convergence condition α2 >
∥a1∥∥f∥V ′ is the same condition to prove the unique solution in (2) of The-
orem 2.4.1.
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Iteration method (ii) for (NSϵ)

We consider the Newton’s method. For k = 1, 2, . . . ,Mmax, find (δuk, δpk) ∈
V ×Q such that,

a(δuk, v) + a1(δu
k, uk−1

ϵ , v) + a1(u
k−1
ϵ , δuk, v) + b(v, δpk)

+ ϵ−1c(δuk · n, vn) = (f, v)− a(uk−1
ϵ , v)− a1(u

k−1
ϵ , uk−1

ϵ , v)

− b(v, pk−1
ϵ )− ϵ−1c(uk−1

ϵ · n, vn), ∀v ∈ Vσ,

(2.4.31a)

b(δukϵ , q) = 0, ∀q ∈M, (2.4.31b)

ukϵ = uk−1
ϵ + δuk, pkϵ = pk−1

ϵ + δpk, (2.4.31c)

if ∥δuk∥ ≤ η0, then stop the iteration. (2.4.31d)

Via calculation, we have, for each k,

a(δukϵ , v) + a1(δu
k
ϵ , u

k−1
ϵ , v) + a1(u

k−1
ϵ , δuk, v) + ϵ−1c(δukϵn, vn)

=− a1(δu
k−1, δuk−1, v), ∀v ∈ V σ,

(2.4.32)

where a1(δu
0, δu0, v) := a1(u

0
ϵ , u

0
ϵ , v). Substituting v = δukϵ into (2.4.32), it

yields (
α− ∥a1∥∥uk−1

ϵ ∥H1 − c1∥uk−1
ϵn ∥L2(Γ)

)
︸ ︷︷ ︸

=:αk

∥δukϵ ∥2H1 +
1

ϵ
∥δukϵn∥2L2(Γ)

≤∥a1∥∥δuk−1
ϵ ∥2H1∥δukϵ ∥H1 .

If αk ≥ α̃ > 0, for all k ≥ 1, then we obtain

∥δukϵ ∥H1 ≤ ∥a1∥
α̃

∥δuk−1
ϵ ∥2H1 ,

which shows the second order convergence of the Newton’s method. How-
ever, we have to admit that there is no explicit choice of u0ϵ and ϵ, such that
the convergence condition αk ≥ α̃ > 0 is satisfied. All we know is that if ϵ
is sufficiently small the initial value u0ϵ is sufficiently close to uϵ, then the
Newton’s method converges.
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Iteration method (ii) for (NS′
ϵ)

For k = 1, 2, . . . ,Mmax, find (δuk, δpk) ∈ V ×Q such that,

a(δuk, v) +
1

2
[a1(δu

k, uk−1
ϵ , v)− a1(δu

k, v, uk−1
ϵ )] + b(v, δpk)

+
1

2
[a1(u

k−1
ϵ , δuk, v)− a1(u

k−1
ϵ , v, δuk)] + ϵ−1c(δuk · n, vn)

=(f, v)− a(uk−1
ϵ , v)− 1

2
[a1(u

k−1
ϵ , uk−1

ϵ , v)− a1(u
k−1
ϵ , v, uk−1

ϵ )]

− b(v, pk−1
ϵ )− ϵ−1c(uk−1

ϵ · n, vn), ∀v ∈ Vσ,

(2.4.33a)

b(δukϵ , q) = 0, ∀q ∈M, (2.4.33b)

ukϵ = uk−1
ϵ + δuk, pkϵ = pk−1

ϵ + δpk, (2.4.33c)

if ∥δuk∥ ≤ η0, then stop the iteration. (2.4.33d)

Via calculation, we have, for each k,

a(δukϵ , v) +
1

2
[a1(δu

k
ϵ , u

k−1
ϵ , v)− a1(δu

k
ϵ , v, u

k−1
ϵ )]

+
1

2
[a1(u

k−1
ϵ , δuk, v)− a1(u

k−1
ϵ , v, δuk)] + ϵ−1c(δukϵn, vn)

=− 1

2
[a1(δu

k−1, δuk−1, v)− a1(δu
k−1, v, δuk−1)], ∀v ∈ V σ,

(2.4.34)

where a1(δu
k−1, δuk−1, v)−a1(δuk−1, v, δuk−1) := a1(u

0
ϵ , u

0
ϵ , v)−a1(u0ϵ , v, u0ϵ ).

Substituting v = δukϵ into (2.4.34), it yields(
α− ∥a1∥∥uk−1

ϵ ∥H1

)
︸ ︷︷ ︸

=:αk

∥δukϵ ∥2H1 +
1

ϵ
∥δukϵn∥2L2(Γ)

≤∥a1∥∥δuk−1
ϵ ∥2H1∥δukϵ ∥H1 .

If ϵ is sufficiently small the initial value u0ϵ is sufficiently close to uϵ such
that αk ≥ α̃ > 0, for all k ≥ 1, then we obtain

∥δukϵ ∥H1 ≤ ∥a1∥
α̃

∥δuk−1
ϵ ∥2H1 .

The method convergence at second order.
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2.4.4 Error estimates of (NS′
ϵ)

Let f ∈ L2(Ω), we assume there exists a unique solution (u, p) ∈ H2(Ω) ×
H1(Ω) of (2.4.1).

Theorem 2.4.2. Let u and uϵ be the solutions of (2.4.1) and (2.4.6), re-
spectively. Assume τn(u, p) ∈ L2(Γ), and α is sufficiently large( or ∥f∥V ′ is
small enough) such that α2 > ∥a1∥∥f∥V ′, then we have

∥u− uϵ∥H1 + ∥p− p̊ϵ∥L2 +
√
ϵ∥λ− λϵ∥L2(Γ) ≤ C

√
ϵ∥τn(u, p)∥L2(Γ), (2.4.35)

where pϵ = p̊ϵ + kϵ, p̊ϵ ∈ Q̊, and kϵ =
1
|Ω|

∫
Ω pϵdx.

Proof. Introducing the Lagrange multiplier λ = −τn(u, p) and λϵ = 1
ϵuϵn,

we rewrite the variational equations (2.4.3) and (2.4.6) into
(1) find (u, p, λ) ∈ V ×Q×M ′ such that,

a(u, v) + a1(u, u, v) + b(v, p) + c(λ, vn) = (f, v), ∀v ∈ V, (2.4.36a)

b(u, q) = 0, ∀q ∈ Q, (2.4.36b)

c(un, µ) = 0, ∀µ ∈M ; (2.4.36c)

(2) find (uϵ, pϵ, λϵ) ∈ V ×Q×M ′ such that,

a(uϵ, v) +
1

2
a1(uϵ, uϵ, v)−

1

2
a1(uϵ, v, uϵ)

+ b(v, pϵ) + c(λϵ, vn) = (f, v), ∀v ∈ V,
(2.4.37a)

b(uϵ, q) = 0, ∀q ∈ Q, (2.4.37b)

c(uϵn, µ) = ϵc(λϵ, µ), ∀µ ∈M. (2.4.37c)

Substituting v = u− uϵ into (2.4.36a)−(2.4.37a), we have

a(u− uϵ, u− uϵ) +
1

4
[a1(u− uϵ, u+ uϵ, u− uϵ)

− a1(u− uϵ, u− uϵ, u+ uϵ)] + c(λ− λϵ, un − uϵn) = 0.

Noticing un = 0 and uϵn = ϵλϵ, we derive

c(λ− λϵ, un − uϵn) = −ϵc(λ− λϵ, λϵ)

=ϵc(λ− λϵ, λ− λϵ)− ϵc(λ− λϵ, λ).
(2.4.38)

It is proved in Remark 2.4.1, Theorem 2.4.1, that u and uϵ satisfy

∥u∥H1 , ∥uϵ∥H1 ≤ ∥f∥V ′/α. (2.4.39)
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Therefore, we have

(α− ∥a1∥∥f∥Ω/α)∥u− uϵ∥21,Ω + ϵc(λ− λϵ, λ− λϵ)

≤ϵc(λ− λϵ, λ) ≤
ϵ

2
∥λ− λϵ∥2L2(Γ) +

ϵ

2
∥λ∥2L2(Γ).

(2.4.40)

Under the assumption α2 > ∥a1∥∥f∥Ω, we obtain,

∥u− uϵ∥H1 +
√
ϵ∥λ− λϵ∥L2(Γ) ≤ C

√
ϵ∥λ∥L2(Γ).

Using inf-sup condition of b (3.2.7) and (2.4.39), we conclude

∥p− p̊ϵ∥L2 ≤ C∥uϵ − u∥H1 . (2.4.41)

The proof is completed.

Theorem 2.4.3. Let τn(u, p) ∈ H1/2(Γ), and with the same assumption of
Theorem 2.4.2, then we have

∥u− uϵ∥H1 + ∥p− p̊ϵ∥L2 ≤ Cϵ(∥τn(u, p)∥H1/2(Γ) + ∥f∥L2). (2.4.42)

Proof. Instead of using (2.4.38), we derive

c(λ− λϵ, un − uϵn) = c(λ− λϵ + kϵ, un − uϵn) = −ϵc(λ− λϵ + kϵ, λϵ)

=ϵc(λ− λϵ + kϵ, λ− λϵ + kϵ)− ϵc(λ− λϵ + kϵ, λ+ kϵ),
(2.4.43)

and obtain

(α− ∥a1∥∥f∥V ′/α)∥u− uϵ∥2H1 + ϵc(λ− λϵ + kϵ, λ− λϵ + kϵ)

≤ϵc(λ− λϵ + kϵ, λ+ kϵ) ≤ ϵ∥λ− λϵ + kϵ∥M ′∥λ+ kϵ∥M .
(2.4.44)

If we show
∥λ− λϵ + kϵ∥M ′ ≤ C∥u− uϵ∥H1 , (2.4.45)

then with the assumption λ ∈ H1/2(Γ) = M , we can derive the error esti-
mate

∥u− uϵ∥H1 ≤ Cϵ(∥λ∥Λ + kϵ), (2.4.46)

where kϵ is bounded independent of ϵ( Theorem 2.4.1). ∥p − p̊ϵ∥L2 ≤ Cϵ
follows from (2.4.41) and (2.4.46). Therefore, we are only left to prove
(2.4.45). Since

− c(λ− λϵ + kϵ, vn)

=a(u− uϵ, v) + b(v, p− p̊ϵ) +
1

2
[a1(u− uϵ, u, v)

+ a1(uϵ, u− uϵ, v) + a1(uϵ − u, v, uϵ) + a1(u, v, uϵ − u)]

≤C(1 + ∥u∥H1 + ∥uϵ∥H1)(∥u− uϵ∥H1 + ∥p− p̊ϵ∥L2)∥v∥H1 .
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From (2.4.39), (2.4.41) and the inf-sup condition of c (3.2.8), we obtain
(2.4.45).

Remark 2.4.6. In above, we show the error estimates of penalty scheme
(2.4.6). For penalty scheme (2.4.5), under the assumption that uϵ with

∥uϵ∥1,Ω ≤ 3∥f∥Ω
2α and α2 > 3∥a1∥∥f∥Ω

2 , then we can obtain the same error
estimates as (2.4.35) and (2.4.42).

2.4.5 The finite element method to (NS′
ϵ)

Finite element penalty scheme.

We adopt the same notation of Section 2.2.3. For simplicity, we only consider
the P1b/P1 approximation. Setting

a1h(uh, vh, wh) =

∫
Ωh

(uh · ∇vh)wh dx, ∀uh, vh, wh ∈ Vh.

the finite element approximation to penalty problem (2.4.6) reads as: find
(uh, ph) ∈ Vh ×Qh such that,

ah(uh, vh) +
1

2
[a1h(uh, uh, vh)− a1h(uh, v, uh)]

+ bh(vh, ph) +
1

ϵ
ch(uh · nh, vh · nh) = (f̃ , vh)Ωh

, ∀vh ∈ Xh,

(2.4.47a)

bh(uh, qh) = 0, ∀qh ∈Mh, (2.4.47b)

Theorem 2.4.4. There exists a solution (uh, ph) ∈ Vh×Qh to (2.2.36) with
ch defined by both (2.2.30) and (2.2.31), and the solution satisfies

∥uh∥H1(Ωh) + ∥p̊h∥L2(Ωh) +
√
ϵ∥uh · nh∥ch ≤ C∥f̃∥L2(Ωh), (2.4.48)

where ph = p̊h + kh, p̊h ∈ Q̊h, kh =
∫
Ωh
phdx/|Ωh|, and

|kh| ≤ C

(
∥f̃∥L2(Ωh) + ∥uh∥H1(Ωh) + ∥uh∥2H1(Ωh)

+
h

ϵ

)
. (2.4.49)

Moreover, if α2
1 > ∥a1h∥∥f̃∥L2(Ωh), then the solution is unique.

Proof. The proof is similar to that of Theorem 2.2.6.

With a similar argument to Proposition 2.2.1, we have the consistency
error estimates of the stationary Navier-Stokes equations.
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Proposition 2.4.4. Let (u, p) and (uh, ph) be solutions of (2.4.1) and (2.4.47),
respectively. Set λ = −τn(u, p), λh = 1

ϵuh · nh. We assume f ∈ L2(Ω), and
(u, p) ∈ H2(Ω)d × H1(Ω), and the same assumption of Lemma 2.2.5. For
any vh ∈ Vh, we set the consistency error

E(vh) :=ah(ũ− uh, vh) +
1

2
[a1h(ũ− uh, ũ, vh) + a1h(uh, ũ− uh, vh)

− a1h(ũ− uh, vh, ũ)− a1h(ũ, vh, ũ− uh)]

+ bh(vh, p̃− ph) + ch(vh · nh, λ̃− λh),

where (ũ, p̃) is the extension( Lemma 2.2.1) of (u, p) onto Ω̃ = Ω∪Ωh. Then,
we have

|E(vh)| ≤ Ch∥vh∥H1(Ωh). (2.4.50)

Error estimates

Theorem 2.4.5. ch is defined by (2.2.30). Let (u, p) and (uh, ph) be the
unique solutions of (2.4.1) and (2.4.47), respectively. Assuming f ∈ L2(Ω),
(u, p) ∈ H2(Ω)d ×H1(Ω), and α2

1 > ∥a1h∥∥f̃∥L2(Ωh), we have

∥ũ− uh∥H1(Ωh) + ∥p̃− ph∥L2(Ωh) ≤ C(
√
h+

√
ϵ+ h/

√
ϵ). (2.4.51)

Theorem 2.4.6. Let (u, p) and (uh, ph) be solutions of (2.4.1) and (2.4.47),
respectively. We assume f ∈ L2(Ω), (u, p) ∈ W 2,∞(Ω)d × W 1,∞(Ω), and
α2
1 > ∥a1h∥∥f̃∥L2(Ωh). We also assume (ũ, p̃), the extension of (u, p), satisfy

the condition of Lemma 2.2.6, then we have

∥ũ−uh∥H1(Ωh)+∥p̃−ph∥L2(Ωh) ≤ C(h+
√
ϵ+h2/

√
ϵ), for d = 2, (2.4.52)

∥ũ−uh∥H1(Ωh)+∥p̃−ph∥L2(Ωh) ≤ C(
√
h+

√
ϵ+h/

√
ϵ), for d = 3. (2.4.53)

We skip the detailed proof of Theorem 2.4.5 and 2.4.6, which are similar
to the argument of Theorem 2.2.7 and 2.2.8, respectively.

The numerical experiment

Set Ω = {(x, y) ∈ R2 | x2 + y2 < 1}. We consider the equation (2.4.1) with
exact solution u = (10x3y2,−10x2y3)T , p = 10x2y2.

∥u∥L2 ≃ 1.11, ∥u∥H1 ≃ 6.88.

Here τT (u) ̸= 0, therefore we add
∫
Γ τT (u)vTds to the RHS of variational

forms (2.4.5),(2.4.6), and
∫
Γh
τT (u)vhTds to (2.2.36).
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Newton’s method is applied to solve the nonlinear equation( see Sect.
3.2.1(ii)). We test two penalty schemes (2.4.5),(2.4.6) for P1b/P1 ele-
ments. We compare two implement methods of penalty term(nonreduced-
integration scheme (2.2.30) and reduced-integration scheme (2.2.31)), with
different choices of ϵ and h( ϵ ≃ h and ϵ ≃ h2).

From Figure 2.4.1 and 2.4.2, the numerical experiments show the H1

norm error ∥u−uh∥1,Ωh
isO(h) for both fine and reduced-integration schemes(

(2.2.30) and (2.2.31)). Moreover, the L2 norm error ∥u − uh∥Ωh
seems

to be O(h2) for reduced-integration scheme with ϵ ≃ h2. However, the
nonreduced-integration fails when ϵ ≃ h2( or ϵ ≪ h), which coincides with
our error estimates( Theorem 2.4.5). (The numerical experiments are im-
plemented with software FeniCS).

Notice: In Figure 2.4.2, line ϵ ∼ h2, ∥ · ∥L2 overlaps with line y = 2x; and
line ϵ ∼ h2, ∥ · ∥H1 overlaps with line ϵ ∼ h, ∥ · ∥H1 .

Remark

This chapter is based on [24, 50, 51]
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Chapter 3

The Stokes/Navier-Stokes
equations with a unilateral
boundary condition of
Signorini’s type and its
penalty method

3.1 Introduction

In this chapter, we consider the Navier-Stokes equations with a unilateral
boundary condition of Signorini’s type (the inequality boundary condition),
and show the application of penalty method to the inequality boundary
condition.

Our motivation lies to propose a suitable outflow boundary condition
for the Navier-Stokes equations modeling the blood flow in arteries. The
outflow boundary condition plays very important role to the solutions gov-
erning the blood flow in the large arteries (cf. [17]). Usually, the prescribed
constant pressure, traction or velocity are applied to the outflow boundary
condition. In many realistic cases, the pressure, traction or velocity on the
outflow boundary cannot be prescribed, due to the unknown flow distri-
bution in the modeled domain. In numerical simulation, the free-traction
outflow boundary condition is frequently used, which requires no addition
implementation of the outflow boundary condition in computation. How-
ever, the energy inequality of velocity is not satisfied under the free-traction
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boundary condition, which may cause the outflow instabilities or “blow-up”
of solution in numerical simulation.

We introduce the model problem. Let Ω ⊂ Rd, d = 2, 3 be a bounded
domain. The boundary ∂Ω is composed of S (inflow boundary), C (the wall)
and Γ (outflow boundary) (see Figure 3.1.1); those S, C and Γ are assumed
to be smooth surfaces. In particular, S and Γ are smooth domains in Rd−1.
That is, S and Γ are line segments (d = 2) and flat surfaces (d = 3). Then,
for t ∈ (0, T ], T > 0, we consider the Navier-Stokes equations in Ω,

ut + (u · ∇)u = ∇ · σ(u, p) + f, in Ω, (3.1.1a)

∇ · u = 0, in Ω, (3.1.1b)

u|S = b, (3.1.1c)

u|C = 0, (3.1.1d)

u(x, 0) = u0, on Ω, (3.1.1e)

where σ(u, p) is the stress tensor defined by (2.1.2). Force f and initial
velocity u0 are given functions. On the wall C we impose the homogeneous
Dirichlet boundary condition (3.1.1d). On the inflow boundary S, we give
the Dirichlet boundary condition u|S = b(t, x), where we assume

β(t) := −
∫
S
bn ds > 0, ∀t ∈ [0, T ],

and u0 = b(0) on S, u0 = 0 on C.

S

Ω

C

Γ
Γ

Figure 3.1.1: Ω, S, Γ and C.

If we impose the free-traction boundary condition

τ(u, p) = 0 on Γ,
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where τ(u, p) is traction vector defined by (2.1.3), then we cannot obtain
the energy inequality such as

∥u(T )∥2L2 +

∫ T

0
∥E(u)∥2L2dt ≤ C.

Here C is some constant dependent on some norms of f , u0 and b.
To tackle this problem, various types of artificial outflow boundary con-

dition are proposed. In [7, Chapter VII], [10, 11], the authors introduce and
analysis the nonlinear boundary condition

τ(u, p) = −1

2
[un]−(u− g) + τ(g, π) on Γ,

where [w]± = max{0,±w} and (g, π) is some reference flow defined below by
(3.2.2). Under this boundary condition, one can show the energy inequality.
In [4, Y. Bazilevs et al.], a regularized traction vector

τ̃(u, p) = τ(u, p)− ρ[un]−u

is introduced, and they consider the resistance boundary condition

τ̃n(u, p) +R

∫
Γ
un ds+ p0 = 0, τ̃T (u, p) = 0 on Γ.

This boundary condition also satisfies the energy inequality.
These approaches are verified to be important for the overall stability

of the computations. However, a certain relation between u and τ(u, p) on
Γ is assumed in order to ensure the energy inequality. Here, we propose
another approach. We pose the following unilateral boundary condition of
Signorini’s type:{

un ≥ 0,
τn(u, p) ≥ 0, unτn(u, p) = 0, τT (u) = 0

on Γ. (3.1.2)

(3.1.2) guarantees the energy inequality to the Navier-Stokes problems (3.1.1).
In this chapter, we study the well-posedness of (3.1.1) under the outflow

boundary condition (3.1.2) (cf. Theorem 3.3.1, Proposition 3.3.1, 3.3.2.).
Since the Signorini’s boundary condition leads to a variational inequality
for weak form, which is not easy to solve by numerical method. For that
purpose, we introduce the penalty method to approximate the variational
inequality by variational equation. The well-posedness of penalty problem
is also been investigated (cf. Theorem 3.4.1, Proposition 3.4.1, 3.4.2.).
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To apply this model problem in numerical simulation, we have to study
the error estimates of penalty method and the finite element method to
the model problem. As a first step, we consider a simple case of stationary
Stokes equations with Signorini’s boundary condition (3.1.2). In Section 3.6,
We examine not only the well-posedness of Stokes problem and its penalty
problem, but also we obtain the error estimates of penalty method.

3.2 The energy inequality and the variational in-
equality

Reference flow.

To describe the energy inequality, we take a reference flow (g, π).
In view of β(t) = −

∫
S bn(t) ds > 0, for any t ∈ [0, T ], there exists some

g0(x) ∈ C∞
0 (Γ)n, with ∫

Γ
g0 · n ds = 1, g0 · n ≥ 0. (3.2.1)

We set the reference flow (g, π) such that, for all t ∈ [0, T ],

−∇ · σ(g, π) = 0, ∇ · g = 0, in Ω, (3.2.2a)

g = b on S, g = 0 on C, g = g0(x)β(t) on Γ. (3.2.2b)

And we find (u, p) of the form

u = U + g, p = P + π.

Assume u0 = g(0) on ∂Ω, then we have U0 = u0 − g ∈ H1
0 (Ω)

d. It is
equivalent to consider the problem of (U,P ), denoted as (NS). For all
t ∈ (0, T ), (U,P ) satisfies

Ut + ((U + g) · ∇)U + (U · ∇)g −∇ · σ(U,P ) = F, in Ω, (3.2.3a)

∇ · U = 0, in Ω, (3.2.3b)

U = 0, on S ∪ C, (3.2.3c)

Un + gn ≥ 0, τn(U + g, P + π) ≥ 0, on Γ, (3.2.3d)

(Un + gn)τn(U + g, P + π) = 0, τT (U) = −τT (g), on Γ, (3.2.3e)

U(x, 0) = U0, on Ω. (3.2.3f)

where F = f − gt − (g · ∇)g, U0 = u0 − g(0).
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Theorem 3.2.1 (Energy inequality). If (U,P ) is a smooth solution of
(3.2.3), then we have

sup
0≤t≤T

∥U(t)∥2L2 + 2ν

∫ T

0
∥E(U)∥2L2 dt ≤ C. (3.2.4)

The proof of Theorem 3.2.1 is presented later. Let us set some function
spaces and bilinear forms, and write the variational form of (NS). The
following settings are slightly different to Chapter. 2.

Function spaces.

• V = {v ∈ H1(Ω)d | v = 0 on C ∩ S}, V σ = V ∩ {v | ∇ · v = 0}.

• V0 = H1
0 (Ω)

d, V σ
0 = V0 ∩ {v | ∇ · v = 0}.

• K = {v ∈ V | vn + gn ≥ 0 on Γ}, Kσ = K ∩ {v | ∇ · v = 0}.

• Q = L2(Ω), Q̊ = L2
0(Ω) := {v ∈ Q |

∫
Ω vdx = 0}.

• M =

{
H

1
2 (Γ) if Γ ∩ C = ∅,

H
1
2
00(Γ) if Γ ∩ C ̸= ∅.

• We denote X ′ as the dual space of Banach space X. For example,
M ′ = H− 1

2 (Γ).

Bilinear and trilinear forms.

a(u, v) = 2ν

∫
Ω
E(u) : E(v) dx, ∀u, v ∈ H1(Ω)d, (3.2.5a)

a1(u, v, w) =

∫
Ω
(u · ∇)vw dx, ∀u, v, w ∈ H1(Ω)d, (3.2.5b)

b(v, p) = −
∫
Ω
(∇ · v)p dx, ∀v ∈ H1(Ω)d, p ∈ L2(Ω), (3.2.5c)

[λ, η] = the duality paring between M and M ′, (3.2.5d)

[[λ, η]] = the duality paring between Md and (Md)′, (3.2.5e)
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Korn’s inequality and inf-sup conditions.( cf. [7, 27, 43])

(1) Korn’s inequality: there exists a constant α > 0, such that,

a(v, v) ≥ α∥v∥2H1 , ∀v ∈ V. (3.2.6)

(2) inf-sup conditions: there exists constants γ1, γ2 > 0, such that,

inf
q∈Q̊\{0}

sup
v∈V0\{0}

b(v, q)

∥v∥H1∥q∥L2

≥ γ1, (3.2.7)

inf
η∈M ′\{0}

sup
v∈V \{0}

[η, vn]

∥v∥H1∥η∥M ′
≥ γ2. (3.2.8)

Lemma 3.2.1. For all u, v, w ∈ H1(Ω)d, we have, when d = 2,

|a1(u, v, w)| ≤ C∥u∥L4∥v∥H1∥w∥L4

≤ C∥u∥
1
2
Ω∥u∥

1
2

H1∥v∥H1∥w∥
1
2

L2∥w∥
1
2

H1 .
(3.2.9)

When d = 3, we have,

a1(u, v, w) ≤ C∥u∥L3∥v∥H1∥w∥L6

≤ C∥u∥
1
2

L2∥u∥
1
2

H1∥v∥H1∥w∥H1 .
(3.2.10)

Moreover, for all u, v ∈ V σ, d = 2, 3, we have,

a1(u, v, v) =
1

2

∫
Γ
un|v|2 ds

≤ ∥un∥L2(Γ)∥v∥2L4 ≤ c1∥un∥L2(Γ)∥v∥2H1 .

(3.2.11)

Proof. It follows form Sobolev’s embedding theorem and the trace theorem.

Remark 3.2.1. Applying Young’s inequality and Lemma 3.2.1, for any
η0 > 0, when d = 2, we have,

|a1(u, v, u)| ≤ C∥u∥L2∥u∥H1∥v∥H1

≤ η0∥u∥2H1 + Cη−1
0 ∥u∥2H1∥v∥2H1 .

(3.2.12)

When d = 3,

|a1(u, v, u)| ≤ C∥u∥
1
2

L2∥u∥
3
2

H1∥v∥H1

≤ η0∥u∥2H1 + Cη−3
0 ∥u∥2H1∥v∥4H1 .

(3.2.13)
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3.2.1 The re-definition of traction vectors

For (U,P ) ∈ V ×Q, we cannot define τ(U,P ) as a function on Γ. However,
if (U,P ) is smooth and satisfies (3.2.3a), it also satisfies∫

Γ
τ(U,P ) · v dΓ = (Ut, v) + a(U, v) + a1(U + g, U, v)

+ a1(U, g, v) + b(v, P )− (F, v) (∀v ∈ V ), (3.2.14)

where τ(U, p) is understood as a usual function on Γ.
Based on this identity, we re-define the traction vector τ(U,P ) as a

functional over Md for (U,P ) ∈ V × Q. We recall the following result (cf.

[20] for M = H
1/2
00 (Γ) and [29] for M = H1/2(Γ)).

Lemma 3.2.2. There exists an extension operator E : Md → V such that
Eη = η on Γ and ∥Eη∥V ≤ C∥η∥Md for all η ∈ Md. Conversely, for any
w ∈ V , we have η = w|Γ ∈Md and ∥η∥Md ≤ C∥w∥V .

As a consequence, we obtain an extension operator En : M → V ; for
any η ∈M ,

(Enη)n = η , (Enη)T = 0 on Γ, ∥Enη∥V ≤ C∥η∥M .

Now we propose the re-definition of τ(U,P ) as follows:

[[τ(U,P ), η]] = (Ut, wη) + a(U,wη) + a1(U + g, U,wη)

+ a1(U, g, wη) + b(wη, P )− (F,wη) (η ∈Md), (3.2.15)

where wη = Eη ∈ V . Actually, the right-hand side of (3.2.15) does not
depend on the way of extension; Hence, this definition is well-defined. Sim-
ilarly, we re-define as

[[τT (U), η]] = (Ut, wη) + a(U,wη) + a1(U + g, U,wη) + a1(U, g, wη)

+ b(wη, P )− (F,wη) (η ∈Md with ηn = 0; wη = Eη) (3.2.16)

and

[τn(U,P ), η] = (Ut, wη) + a(U,wη) + a1(U + g, U,wη)

+ a1(U, g, wη) + b(wη, P )− (F,wη) (η ∈M ; wη = Enη). (3.2.17)

Then, we deduce an expression

[[τ(U,P ), η]] = [τn(U,P ), ηn] + [[τT (U), ηT ]] (η ∈Md). (3.2.18)
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On the other hand, we will assume that τ(g, π) ∈ H1(0, T ;L2(Γ)d) (see,
(A1) below) so that we have

[[τ(g, π), η]] =

∫
Γ
τ(g, π) · η dΓ (η ∈Md).

3.2.2 Variational form of (NS).

(NSE): For a.e. t ∈ (0, T ), find (U(t), P (t)) ∈ V × Q, with Ut ∈ V , such
that

(Ut, v) + a(U, v) + a1(U + g, U, v) + a1(U, g, v)

+ b(v, P ) = (F, v) ∀v ∈ V0,
(3.2.19a)

b(U, q) = 0, ∀q ∈ Q, (3.2.19b)

U = 0, on (S ∪ C), (3.2.19c)

Un + gn ≥ 0, on Γ, (3.2.19d)

[τn(U + g, P + π), η] ≥ 0, ∀η ∈M, η ≥ 0, (3.2.19e)

[τn(U + g, P + π), (Un + gn)] = 0, (3.2.19f)

[[τT (U) + τT (g), η]] = 0, ∀η ∈M, (3.2.19g)

U(x, 0) = U0, on Ω. (3.2.19h)

Proof of Theorem 3.2.1(Energy inequality). Suppose that (U,P ) is a smooth
solution of (3.2.19), multiplying U to (3.2.3a), it yields

1

2

d

dt
∥U(t)∥2L2 + 2ν

∫
Ω
|E(U)|2dx+

∫
Ω
((U + g) · ∇)U · Udx

= −
∫
Ω
(U · ∇)g · Udx+

∫
Ω
F · Udx.

(3.2.20)

Applying Lemma 3.2.1 and Remark 3.2.1, we have, for any η0 > 0,∫
Ω
|(U · ∇g)U |dx ≤

{
η0∥U∥2H1 + Cη−1

0 ∥U∥2L2∥g∥2H1 , for d = 2,

η0∥U∥2H1C + η−3
0 ∥g∥4H1∥U∥2L2 , for d = 3,∫

Ω
|F · U |dx ≤ C∥F∥(H1(Ω)d)′∥U∥H1 ≤ η0∥U∥2H1 + Cη−1

0 ∥F∥2(H1(Ω)d)′ .

In view of Un + gn ≥ 0 on Γ, and∫
Ω
((U + g) · ∇)U · Udx =

1

2

∫
Γ
(Un + gn)|U |2ds ≥ 0,
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from (3.2.20), we see that, for any η0 > 0,

1

2

d

dt
∥U(t)∥2L2 + 2ν∥E(U)∥2L2 − 2η0∥U∥2H1

≤

{
Cη−1

0 ∥U∥2L2∥g∥2H1 + Cη−1
0 ∥F∥2(H1(Ω)d)′ , for d = 2,

Cη−3
0 ∥g∥4H1∥U∥2L2 + Cη−1

0 ∥F∥2(H1(Ω)d)′ , for d = 3.

(3.2.21)

From Korn’s inequality,∫
Ω
|E(U)|2dx ≥ α∥U∥2H1 , for some α > 0,

and for sufficiently small η0, such that

να− 2η0 > 0,

applying Gronwall’s inequality to (3.2.21), it yields (3.2.4).

(NSE) can be written into a variational inequality, denoted as (NSI).
(NSI): For a.e. t ∈ (0, T ), find (U(t), P (t)) ∈ K ×Q, with Ut ∈ V , such

that

(Ut, v − U) + a(U, v − U) + a1(U + g, U, v − U) + a1(U, g, v − U)

+ b(v − U,P ) ≥ (F, v − U)− [[τ(g, π), v − U ]] ∀v ∈ K,

(3.2.22a)

b(U, q) = 0, ∀q ∈ Q, (3.2.22b)

U(x, 0) = U0, on Ω. (3.2.22c)

Definition 3.2.1. We say that (U,P ) is a solution of (NSE) if and only if

U ∈ L∞(0, T ;V ), U ′ ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2),

P ∈ L∞(0, T ;Q),

and (U,P ) satisfies (3.2.19).

Definition 3.2.2. We say that (U,P ) is a solution of (NSI) if and only if

U ∈ L∞(0, T ;K), U ′ ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2),

P ∈ L∞(0, T ;Q),

and (U,P ) satisfies (3.2.22).
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Theorem 3.2.2. (NSE) is equivalent to (NSI). Thus, a solution of (NSE)
solves (NSI) and the converse is also true.

Proof. First, letting (U,P ) be a solution of (NSE), we show (U,P ) satisfies
(NSI). Let v ∈ K be arbitrary. Since v − U ∈ V , we see from (3.2.15)

(Ut, v − U) + a(U, v − U) + a1(U + g, U, v − U) + a1(U, g, v − U)

+ b(v − U,P )− [[τ(U,P ), v − U ]] = (F, v − U).

Thus,

(Ut, v − U) + a(U, v − U) + a1(U + g, U, v − U) + a1(U, g, v − U)

+ b(v − U,P )− [[τ(U,P ) + τ(g, π), v − U ]] = (F, v − U).

Since vn + gn ≥ 0 a.e. Γ, by using (3.2.18), (3.2.19e) and (3.2.19f)

[[τ(U,P ) + τ(g, π), v − U ]]

= [τn(U,P ) + τn(g, π), vn − Un] + [[τT (U) + τT (g), vT − UT ]]

= [τn(U,P ) + τn(g, π), vn + gn]− [τn(U,P ) + τn(g, π), Un + gn] ≥ 0.

Hence, (U,P ) solves (NSI).

Conversely, letting (U,P ) be a solution to (NSI), we show (U,P ) satisfies
(NSE).

For any ϕ ∈ V0, substituting v = U ± ϕ ∈ K into (3.2.22a), we immedi-
ately obtain (3.2.19a).

Let φ ∈ V with φn = 0 on Γ be arbitrary. Substituting v = U ± φ ∈ K
into (3.2.22a), we have

(Ut, φ) + a(U,φ) + a1(U + g, U, φ) + a1(U, g, φ)

+ b(φ, P ) = (F,φ)− [[τT (g), φT ]].

This, together with (3.2.16), implies (3.2.19g). Let w ∈ V with wn ≥ 0 on Γ
be arbitrary. Substituting v = w+U ∈ K into (3.2.22a), we have (3.2.19e).

Finally, substituting v = −g ∈ K and v = 2U + g ∈ K into (3.2.22a), we
deduce

(Ut, U + g) + a(U,U + g) + a1(U + g, U, U + g) + a1(U, g, U + g)

+ b(U + g, P ) = (F,U + g)− [τ(g, π), U + g].
(3.2.23)

This, together with (3.2.15), gives (3.2.19f).
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3.3 The well-posedness of (NSI)

We are concerned with the class of solutions of Ladyzhenskaya type( cf.
[27]), that is to find (u, p) satsifying,

u ∈ L∞(0, T ;V σ), ut ∈ L2(0, T ;V σ) ∩ L∞(0, T ;L2(Ω)d),

p ∈ L∞(0, T ;Q).

Assumptions.

(A1) f ∈ H1(0, T ;L2(Ω)d), τ(g, π)|Γ ∈ H1(0, T ;L2(Γ)d).

(A2) g ∈ H2(0, T ;L2(Ω)d) ∩ L∞(0, T ;V σ). g′ ∈ L2(0, T ;V σ).

(A3) gn ≥ 0 on Γ,
∫
Γ gn ds = −

∫
S bn ds = β(t) ≥ β0 > 0. β(t) ∈ C2(0, T ).

(A4) U0 ∈ V σ
0 ∩H2(Ω)d, satisfying

−(ν∆U0, v) = a(U0, v) +

∫
Γ
τ(g, π)(0)v ds, ∀v ∈ V σ. (3.3.1)

Remark 3.3.1. (A1), (A2) ⇒ F ∈ H1(0, T ;L2(Ω)d).

Theorem 3.3.1. Under the assumptions (A1)-(A4), when d = 2, there
exists a unique solution (U,P ) to (3.2.22) for any T ∈ (0,∞), that is

U ∈ L∞(0, T ;V σ), Ut ∈ L2(0, T ;V σ) ∩ L∞(0, T ;L2(Ω)d), (3.3.2)

P ∈ L∞(0, T ;Q). (3.3.3)

When d = 3, the same conclusion holds for a smaller time interval (0, T̊ ].

(NSIσ): For a.e. t ∈ (0, T ), find U ∈ Kσ, with Ut ∈ V σ, such that

(Ut, v − U) + a(U, v − U) + a1(U + g, U, v − U) + a1(U, g, v − U)

≥ (F, v − U)− [τ(g, π), v − U ] ∀v ∈ Kσ,
(3.3.4a)

U(x, 0) = U0, on Ω. (3.3.4b)

Proposition 3.3.1 (Existence of P ). Let U be the solution to (3.3.4) sat-
isfying (3.3.2), then there exists a unique P ∈ L∞(0, T ;Q), such that (U,P )
is the solution to (3.2.22).
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Proof. (Existence) Let ϕ ∈ V0 ∩ V σ be arbitrary. Substitution v = ϕ+ U ∈
Kσ into (3.3.4) yields

(Ut, ϕ) + a(U, ϕ) + a1(U + g, U, ϕ) + a1(U, g, ϕ) = (F, ϕ).

Then, there exists a unique P̊ ∈ Q̊ (cf. [36, Lemma IV.1.4.3]) such that, for
a.e. t ∈ (0, T ),

(U ′, ϕ) + a(U, ϕ) + a1(U + g, U, ϕ) + a1(U, g, ϕ) + b(v, P̊ ) = (F, ϕ) ∀ϕ ∈ V0
(3.3.5)

and

∥P̊∥L2 ≤ C(∥U ′∥L2+∥U∥H1+∥F∥L2+∥(U+g)·∇U∥L2+∥U ·∇g∥L2). (3.3.6)

We will show that there exists k ∈ L∞(0, T ) such that (U, P̊ + k) solves
(NS-E).

First, by virtue of (3.3.5), (3.2.19a) is satisfied for P = P̊ + k with any
k ∈ L∞(0, T ).

Recall that (3.2.18) and (3.3.4a) give

[[τT (U), vT − UT ]] + [τn(U, P̊ + k), vn − Un]

≥ −[[τT (g), vT − UT ]]− [τn(g, π), vn − Un] ∀v ∈ Kσ. (3.3.7)

Let ψ ∈ C∞
0 (Γ)d be a function such that supp ψ ⊂ Γ and ψn = 0. Then,

since
∫
Γ ψn dΓ = 0, there is a function w ∈ V such that w|Γ = ψ, ∇ · w = 0

and ∥w∥V ≤ C∥ψ∥Md . Substituting v = U ± w ∈ Kσ into (3.3.7), we have

[[τT (U), ψT ]] = [τT (g), ψT ].

By the density, this implies (3.2.19g). Moreover, since (3.3.7) is valid for an
arbitrary k ∈ L∞(0, T ), we have

[τn(U, P̊ ) + τn(g, π), vn + gn] ≥ [τn(U, P̊ ) + τn(g, π), Un + gn] ∀v ∈ Kσ.
(3.3.8)

At this stage, we set

γ = γ(t) =
1

β
[τn(U + g, P̊ + π), Un + gn] (3.3.9)

and take k = γ.
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Then, noting
∫
Γ Un dΓ = 0 by ∇ · U = 0 in Ω and U |S∪C = 0, we can

calculate as

[τn(U, P̊ + γ) + τn(g, π), Un + gn] = [τn(U, P̊ ) + τn(g, π), Un + gn]− γ

∫
Γ
gn dΓ

= [τn(U, P̊ ) + τn(g, π), Un + gn]− γβ

= 0;

which implies (3.2.19e).
For the time being, we admit

γ = inf
η∈Y

[τn(U + g, P̊ + π), η], (3.3.10)

where

Y =

{
η ∈M | η ≥ 0, η ̸≡ 0,

∫
Γ
η dΓ = 1

}
.

For ξ ∈M with ξ ≥ 0 and ξ ̸≡ 0, we have, by setting m =
∫
Γ ξ dΓ ̸= 0,

[τn(U, P̊ + γ) + τ(g, π), ξ] = [τn(U, P̊ ) + τn(g, π), ξ]− γm

= m[τn(U, P̊ ) + τn(g, π), ξ/m]− γm

≥ mγ − γm = 0.

Hence, we get (3.2.19e).
It remains to verify (3.3.10). Let η ∈ Y be arbitrary and set η̃ = βη−gn ∈

M . Since
∫
Γ η̃ dΓ = 0, there exists ṽ ∈ V σ such that ṽn|Γ = η̃. Then, the

function ṽ satisfies that ṽn+gn = βη ≥ 0 on Γ. Thus, ṽ ∈ Kσ. Consequently,
we have by (3.3.8)

[τn(U, P̊ ) + τn(g, π), η] =

[
τn(U, P̊ ) + τn(g, π),

η̃ + gn
β

]
=

[
τn(U, P̊ ) + τn(g, π),

ṽn + gn
β

]
≥ 1

β
[τn(U, P̊ ) + τn(g, π), Un + gn] = γ;

which yields (3.3.10).
(Regularity) According to the expression (3.3.9) and the definition (3.2.17),
we deduce, for a.e. t ∈ (0, T ),

|γ| ≤ C1,
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where C1 = C1(t) denotes a positive function in L∞(0, T ) which depends
only on ∥Ut∥, ∥U∥1, ∥F∥ and ∥g∥1. This, together with (3.3.6), gives P ∈
L∞(0, T ;Q).
(Uniqueness) Suppose that there is another pressure P ′. Since P̊ and k are
unique, we have

P ′ + k′ = P̊ , k′ ≡ − 1

|Ω|

∫
Ω
P ′ dx = k.

Hence, P = P ′.

Proposition 3.3.2 (Uniqueness). If (U1, P1) and (U2, P2) are two strong
solutions to (3.2.22), then (U1, P1) = (U2, P2).

Proof. From Proposition 3.3.1, we know that P is uniquely determined by
U ; therefore, we only need to show the uniqueness of U .

Suppose U1, U2 are two strong solutions to (3.2.22). Let w = U1 − U2.
From (3.2.22), we have

(U ′
1, U2 − U1) + a(U1, U2 − U1) + a1(U1 + g, U1, U2 − U1)

+ a1(U1, g, U2 − U1) ≥ (F,U2 − U1)− [τ(g, π), U2 − U1],
(3.3.11)

(U ′
2, U1 − U2) + a(U2, U1 − U2) + a1(U2 + g, U2, U1 − U2)

+ a1(U2, g, U1 − U2) ≥ (F,U1 − U2)− [τ(g, π), U1 − U2].
(3.3.12)

From (3.3.11) and (3.3.11), we obtain

(w′, w) + a(w,w) + a1(U2 + g, w,w) ≤ −a1(w,U1 + g, w). (3.3.13)

In view of Korn’s inequality (3.2.6), Lemma 3.2.1, Remark 3.2.1 and

a1(U2 + g, w,w) =
1

2

∫
Γ
(U2 · n+ gn)︸ ︷︷ ︸

≥0

|w|2 ds ≥ 0,

we have
1

2
∥w(t)∥2L2 + α∥w(t)∥2H1

≤

{
η0∥w∥2H1 + Cη−1

0 ∥U1 + g∥2H1∥w∥2L2 , for d = 2,

η0∥w∥2H1 + Cη−3
0 ∥U1 + g∥4H1∥w∥2L2 , for d = 3,

(3.3.14)

Let η0 be sufficiently small such that, α − η0 > α/2, then from Gronwall’s
inequality, we have, for all t ∈ (0, T ],

∥w(t)∥2L2 + α

∫ t

0
∥w(1)∥2H1 ≤ CeCη0 t∥U1+g∥L∞(0,t;V )∥w(0)∥2L2 . (3.3.15)

Since w(0) = U1(0)− U2(0) = 0, we conclude U1 = U2.
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3.4 Penalty method

We introduce a penalty problem to (NS), denoted as (NSϵ). Let 0 < ϵ≪ 1.
(NSϵ) reads as: for a.e. t ∈ (0, T ), find (Uϵ, Pϵ) ∈ V ×Q, with U ′

ϵ ∈ V , such
that,

U ′
ϵ + (Uϵ + g · ∇)Uϵ + (Uϵ · ∇)g −∇ · σ(Uϵ, Pϵ) = F, in Ω (3.4.1a)

∇ · Uϵ = 0, in Ω, (3.4.1b)

Uϵ = 0, on S ∪ C, (3.4.1c)

τn(Uϵ + g, Pϵ + π) =
1

ϵ
[Uϵn + gn]−, τT (Uϵ) = −τT (g), on Γ (3.4.1d)

Uϵ(x, 0) = u0 − g(0), on Ω, (3.4.1e)

where [v]− = v − [v]+, [v]+ = max{0, v}. We write the variational form of
(NSϵ), denoted as (NSϵE).

(NSϵE): For a.e. t ∈ (0, T ), find (Uϵ, Pϵ) ∈ V × Q, with U ′
ϵ ∈ V , such

that

(U ′
ϵ, v) + a(Uϵ, v) + a1(Uϵ + g, Uϵ, v) + a1(Uϵ, g, v) + b(v, Pϵ)

− 1

ϵ

∫
Γ
[Uϵn + gn]−vn ds = (F, v)−

∫
Γ
τ(g, π)v ∀v ∈ V,

(3.4.2a)

b(Uϵ, q) = 0, ∀q ∈ Q, (3.4.2b)

Uϵ(x, 0) = U0, on Ω. (3.4.2c)

Well-posedness of penalty problem

Theorem 3.4.1. Under the assumptions (A1)-(A4), when d = 2, there
exists a unique strong solution (Uϵ, Pϵ) to (3.4.2) for any T ∈ (0,∞), that
is

Uϵ ∈ L∞(0, T ;V σ), U ′
ϵ ∈ L2(0, T ;V σ) ∩ L∞(0, T ;L2(Ω)d), (3.4.3)

Pϵ ∈ L∞(0, T ;Q). (3.4.4)

When d = 3, the same conclusion holds for a smaller time interval (0, T ′].

(NSϵE
σ): For a.e. t ∈ (0, T ), find Uϵ ∈ V σ, with U ′

ϵ ∈ V σ, t ∈ (0, T ),
such that

(U ′
ϵ, v) + a(Uϵ, v) + a1(Uϵ + g, Uϵ, v) + a1(Uϵ, g, v)

− 1

ϵ

∫
Γ
[Uϵn + gn]−vn ds = (F, v)−

∫
Γ
τ(g, π)v ∀v ∈ V σ,

(3.4.5a)

Uϵ(x, 0) = U0, on Ω. (3.4.5b)
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Lemma 3.4.1. Let Uϵ be the strong solution to (3.4.5), that is Uϵ satisfies
(3.4.3), then we have

∥[Uϵn + gn]−∥L2(Γ) ≤ C
√
ϵ. (3.4.6)

Proof. Substituting v = Uϵ into (3.4.5), it yields

− 1

ϵ

∫
Γ
[Uϵn + gn]−Uϵn ds = (F,Uϵ)−

∫
Γ
τ(g, π)Uϵ ds− (U ′

ϵ, Uϵ)

− a(Uϵ, Uϵ) + a1(Uϵ + g, Uϵ, Uϵ) + a1(Uϵ, g, Uϵ).

(3.4.7)

Since gn ≥ 0, we see that

LHS = −1

ϵ

∫
Γ
[Uϵn + gn]−(Uϵn + gn − gn) ds

=
1

ϵ

∫
Γ
|[Uϵn + gn]−|2 ds+

1

ϵ

∫
Γ
[Uϵn + gn]−gn ds

≥ 1

ϵ
∥[Uϵn + gn]−∥2L2(Γ).

In view of Uϵ satisfies (3.4.3), the RHS of (3.4.7) is bounded. And we have

ϵ−1∥[Uϵn + gn]−∥2L2(Γ) ≤ C.

Proposition 3.4.1 (Existence of Pϵ). Let Uϵ be the strong solution to (3.4.5)
satisfying (3.4.3), then there exists a unique Pϵ ∈ L∞(0, T ;Q), such that
(Uϵ, Pϵ) is the solution to (3.4.2).

Proof. From (3.4.5), there exists a unique P̊ϵ ∈ Q̊ (cf. [36, Lemma IV.1.4.3])
such that

(U ′
ϵ, v) + a(Uϵ, v) + a1(Uϵ + g, Uϵ, v) + a1(Uϵ, g, v)

+ b(v, P̊ϵ) = (F, v) ∀v ∈ V0 (3.4.8)

and

∥P̊ϵ∥L2 ≤ C(∥U ′
ϵ∥L2 + ∥Uϵ∥H1 + ∥(Uϵ + g) · ∇Uϵ∥L2 + ∥Uϵ · ∇g∥L2 + ∥F∥L2).

We write C1 = C1(t) to express a positive function in L∞(0, T ) which de-
pends only on ∥U ′

ϵ∥L2 , ∥Uϵ∥H1 , ∥F∥L2 and ∥g∥H1 . Thus, we have

∥P̊ϵ∥L2 ≤ C1. (3.4.9)
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We will show that there is kϵ ∈ L∞(0,∞) such that (Uϵ, Pϵ) with Pϵ =
P̊ϵ + kϵ is a solution of (NSϵ-E).

Recalling (3.2.17) and using (3.4.5a), we have

[τn(Uϵ, Pϵ), vn] = (Uϵ,t, v) + a(Uϵ, v) + a1(Uϵ + g, Uϵ, v)

+a1(Uϵ, g, v) + b(v, Pϵ)− (F, v)

=
1

ϵ

∫
Γ
[Uϵn + gn]−vn − [[τn(g, π), vn]] (v ∈ V σ, vT |Γ = 0).

Hence,[
τn(Uϵ, Pϵ) + τn(g, π)− ϵ−1[τn(Uϵ, Pϵ), vn], η

]
= 0 (η ∈Mσ), (3.4.10)

where

Mσ =

{
η ∈M |

∫
Γ
η dΓ = 0

}
.

Now we introduce

Z =

{
ϕ ∈ C∞

0 (Γ) |
∫
Γ
ϕ = 1

}
and take (and fix below) ϕ ∈ Z. Then, for any v ∈ V , η̂ = vn − αϕ with
α =

∫
Γ vn dΓ belongs to M0. Therefore, by (3.4.10),

[τn(Uϵ, Pϵ) + τn(g, π)− ϵ−1[Uϵn + gn]−, vn]

= [τn(Uϵ, Pϵ) + τn(g, π)− ϵ−1[Uϵn + gn]−, vn − αϕ]

+[τn(Uϵ, Pϵ) + τn(g, π)− ϵ−1[Uϵn + gn]−, αϕ]

= α[τn(Uϵ, Pϵ) + τn(g, π)− ϵ−1[Uϵn + gn]−, ϕ] (v ∈ V ).

Now, since

[τn(Uϵ, Pϵ) + τn(g, π)− ϵ−1[Uϵn + gn]−, ϕ]

= [τn(Uϵ, P̊ϵ) + τn(g, π)− ϵ−1[Uϵn + gn]−, ϕ]− kϵ,

choosing

kϵ = [τn(Uϵ, P̊ϵ) + τn(g, π)− ϵ−1[Uϵn + gn]−, ϕ] (3.4.11)

we obtain

[τn(Uϵ, Pϵ) + τn(g, π)− ϵ−1[Uϵn + gn]−, vn] = 0 (v ∈ V );
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which, together with (3.2.17), implies (3.4.2a).
It should be checked that kϵ defined as (3.4.11) actually independent of

ϕ ∈ Z and it represents a function only of t. We let ϕ, ϕ′ ∈ Z with ϕ ̸≡ ϕ′.
Then η = ϕ− ϕ′ ∈Mσ. Hence, by (3.4.10),

[τn(Uϵ, Pϵ) + τn(g, π)− ϵ−1[Uϵn + gn]−, ϕ]

= [τn(Uϵ, Pϵ) + τn(g, π)− ϵ−1[Uϵn + gn]−, ϕ
′],

which means that kϵ does not depend on the choice of ϕ ∈ Z.
Finally, in view of (3.4.11), (3.2.17) and (3.4.6), we get

|kϵ| ≤ C1.

Combining this with (3.4.9), we conclude Pϵ ∈ L∞(0, T ;Q).

Proposition 3.4.2 (Uniqueness). If (Uϵ1, Pϵ1) and (Uϵ2, Pϵ2) are two strong
solutions to (3.4.2), then (Uϵ1, Pϵ1) = (Uϵ2, Pϵ2).

Proof. Since Pϵ is uniquely determined by Uϵ from Proposition 3.4.1, we
show Uϵ1 = Uϵ2. Let w = U1

ϵ − Uϵ, from (3.4.2), we have, for any v ∈ V σ,

(w′, v) + a(w, v) + a1(Uϵ1 + g, Uϵ1, v)− a1(Uϵ2 + g, Uϵ2, v)

+ a1(w, g, v)−
1

ϵ

∫
Γ
([Uϵ1 · n+ gn]− − [Uϵ2 · n+ gn]−)vn ds = 0.

(3.4.12)
Substituting v = w into (3.4.12), it yields

(w′, w) + a(w,w)− 1

ϵ

∫
Γ
([Uϵ1 · n+ gn]− − [Uϵ2 · n+ gn]−)wn ds

+ a1(Uϵ2 + g, w,w) = −a1(w,Uϵ1 + g, w).

(3.4.13)

We show that

−
∫
Γ
([Uϵ1 · n+ gn]− − [Uϵ2 · n+ gn]−)wn ds

=−
∫
Γ
([Uϵ1 · n+ gn]− − [Uϵ2 · n+ gn]−)(Uϵ1 · n+ gn − (Uϵ2 · n+ gn)) ds

=

∫
Γ
|[Uϵ1 · n+ gn]− − [Uϵ2 · n+ gn]−|2 ds

+

∫
Γ
([Uϵ1 · n+ gn]−[Uϵ2 · n+ gn]+ + [Uϵ1 · n+ gn]+[Uϵ2 · n+ gn]−) ds

≥0.
(3.4.14)
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a(w,w) + a1(Uϵ2 + g, w,w)

≥α∥w∥2H1 +
1

2

∫
Γ
(Uϵ2 · n+ gn)|w|2 ds

=α∥w∥2H1 +
1

2

∫
Γ
([Uϵ2 · n+ gn]+ − [Uϵ2 · n+ gn]−)|w|2 ds

≥(α− c1∥[Uϵ2 · n+ gn]−∥L2(Γ))∥w∥2H1 . (∵ Lemma 3.2.1.)

(3.4.15)

In view of Lemma 3.4.1, we have ∥[Uϵ2 ·n+gn]−∥L2(Γ) ≤ Cϵ. For sufficiently
small ϵ, such that α−c1∥[Uϵ2 ·n+gn]−∥L2(Γ) ≥ α/2, following from (3.4.13),
(3.4.14), and (3.4.15), we have, for arbitrary η0 > 0,

1

2

d

dt
∥w∥2L2 +

α

2
∥w∥H1 ≤ −a1(w,Uϵ1 + g, w)

≤

{
η0∥w∥2H1 + Cη−1

0 ∥Uϵ1 + g∥2H1∥w∥2L2 , for d = 2,

η0∥w∥2H1 + Cη−3∥Uϵ1 + g∥4H1∥w∥2L2 , for d = 3.

(3.4.16)

Setting η = α/4, from (3.4.16) and Gronwall’s inequality, it yields, for any
t ∈ (0, T ],

∥w(t)∥2L2 +

∫ t

0
∥w∥2H1 ≤ CeCt∥Uϵ1+g∥L∞(0,t;V )∥w(0)∥2L2 .

Since w(0) = Uϵ1(0)− Uϵ2(0) = 0, we conclude Uϵ1 = Uϵ2.

3.5 The completion the proof of Theorem 3.3.1
and 3.4.1

Let (U,P ) be the solution to (3.2.3), we set

Ũ =
U

β(t)
, P̃ =

P

β(t)
, π̃ =

π

β(t)
, f̃ =

f

β(t)
, g̃ =

g

β(t)
.
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(Ũ , P̃ ) satisfies, for all t ∈ (0, T ),

Ũ ′ +
β′(t)

β(t)
Ũ + β(t)((Ũ + g̃) · ∇)Ũ + β(t)(Ũ · ∇)g̃

−∇ · σ(Ũ , P̃ ) = F̃ , in Ω,

(3.5.1a)

∇ · Ũ = 0, in Ω, (3.5.1b)

Ũ = 0, on S ∪ C, (3.5.1c)

Ũn + g̃n ≥ 0, τn(Ũ + g̃, P̃ + π̃) ≥ 0, on Γ, (3.5.1d)

(Ũn + g̃n)τn(U + g̃, P̃ + π̃) = 0, τT (Ũ) = −τT (g̃), on Γ, (3.5.1e)

Ũ(x, 0) = Ũ0, on Ω. (3.5.1f)

where Ũ0 =
U0
β(0) , and F̃ = f̃ − g̃′ − β′(t)

β(t) g̃ − β(t)(g̃ · ∇)g̃ = F/β(t).

To study the well-posedness of U , it is equivalent to consider Ũ of (3.5.1).
Setting

K̃ = {v ∈ V | vn + g̃n ≥ 0 on Γ}, K̃σ = K̃ ∩ V σ

We give the variational inequality of Ũ .

(ÑSI
σ
). For a.e. t ∈ (0, T ), find Ũ ∈ K̃σ, with Ũt ∈ V σ, such that

(Ũ ′, v − Ũ) +
β′(t)

β(t)
(Ũ , v − Ũ) + a(Ũ , v − Ũ)

+ β(t)a1(Ũ + g̃, Ũ , v − Ũ) + β(t)a1(Ũ , g̃, v − Ũ)

≥(F̃ , v − Ũ)− [τ(g̃, π̃), v − Ũ ] ∀v ∈ K̃σ,

(3.5.2a)

Ũ(x, 0) = Ũ0, on Ω. (3.5.2b)

We write the penalty problem to (ÑSI
σ
), denoted as (ÑSI

σ

ϵ ).

(ÑSϵE
σ
). For a.e. t ∈ (0, T ), find Ũσ

ϵ ∈ V σ, with Ũt ∈ V σ, t ∈ (0, T ),
such that

(Ũ ′
ϵ, v) +

β′(t)

β(t)
(Ũϵ, v) + a(Ũϵ, v) + β(t)a1(Ũϵ + g̃, Ũϵ, v)

+ β(t)a1(Ũϵ, g̃, v)−
1

ϵ

∫
Γ
[Ũϵn + g̃n]−vn ds

=(F̃ , v)− [τ(g̃, π̃), v] ∀v ∈ V σ,

(3.5.3a)

Ũ(x, 0) = Ũ0, on Ω. (3.5.3b)

We see that, for Uϵ the solution to (NSϵE
σ), Ũϵ = Uϵ/β(t). We consider

the well-posedness of (3.5.3). We shall apply the Galerkin’s approximation
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method to construct the smooth approximation solutions (we need C2 with

respect to t). However, for arbitrary w(x), g(x) ∈ H
1
2
00(Γ), with g(x) ≥ 0,∫

Γw(x)ds = 0, It is not obvious that
∫
Γ[c(t)w(x)+ g(x)]−w(x)ds is C

1 with
respect to t. Therefore, we introduce a regularization of [·]−. For any δ with
0 < δ ≪ 1, we set

ρδ(s) =

{
0, for s ≥ 0,√
s2 + δ2 − δ, for s ≤ 0.

(3.5.4)

We have ρδ(s) ∈ C1(R), and

d

ds
ρδ(s) =

 0, for s ≥ 0,
s√

s2 + δ2
, for s ≤ 0.

d2

ds2
ρδ(s) =


0, for s > 0,

δ2

(s2 + δ2)
3
2

, for s < 0.

(3.5.5)

Then we introduce the regularization problem to the penalty problem (ÑSϵE
σ
),

denoted as (ÑSϵE
σ

δ ).

(ÑSϵE
σ

δ ) For a.e. t ∈ [0, T ], find Ũϵδ(t) ∈ V σ, with Ũ ′
ϵδ(t) ∈ V σ, such

that

(Ũ ′
ϵδ, v) +

β′(t)

β(t)
(Ũϵδ, v) + a(Ũϵδ, v) + β(t)a1(Ũϵδ + g̃, Ũϵδ, v)

+ β(t)a1(Ũϵδ, g̃, v)−
1

ϵ

∫
Γ
ρδ(Ũϵδn + g̃n)vn dΓ

=(F̃ , v)− [[τ(g̃, π̃), v]] ∀v ∈ V σ,

(3.5.6a)

Ũϵδ(x, 0) = Ũ0, on Ω. (3.5.6b)

Here, we propose the regularization problem (ÑSϵE
σ

δ ) to study the well-

posedness of penalty problem (ÑSϵE
σ
). We have to mention that (ÑSϵE

σ

δ )

is more valuable for practical use than (ÑSϵE
σ
), because to exactly compute

the integration such as
∫
Γ[c(t)w(x) + g(x)]−w(x)ds is not easy. And we

recommend to use the regularization in numerical computation.

We show the well-posedness of (ÑSϵE
σ

δ ). To do so, we construct ap-
proximate solutions by Galerkin’s method. Let {wk}∞k=1 ⊂ V σ be the linear

independent elements. w1 = Ũ0 and ∪∞
m=1span{wk}mk=1 is dense in V σ. We

write the Galerkin’s approximation problems for m ∈ N.
(ÑSϵE

σ

δm). Find Ũϵδm =
∑m

k=1 cϵδk(t)wk, where cϵδk ∈ C2([0, T ]), such
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that, Ũϵδm(0) = U0, and for all k = 1, . . . ,m,

(Ũ ′
ϵδm, wk) +

β′(t)

β(t)
(Ũϵδm, Ũϵδm) + a(Ũϵδm, wk)

+ β(t)a1(Ũϵδm + g̃, Ũϵδm, wk) + β(t)a1(Ũϵδm, g̃, wk)

− 1

ϵ

∫
Γ
ρδ(Ũϵδmn + g̃n)wkn dΓ = (F̃ , wk)− [[τ(g̃, π̃), wk]],

(3.5.7)

where Ũϵδm(0) = Ũ0, Ũϵδmn = Ũϵm · n, and wkn = wk · n.

Remark 3.5.1 (The existence of cϵδk ∈ C2). To make the argument rig-
orous, we have to replace F̃ and τ(g̃, π̃) by F̃m and τ(g̃m, π̃m) in (3.5.7),
respectively, where

F̃m ∈ C1([0, T ];L2(Ω)d), τ(g̃m, π̃m) ∈ C1([0, T ];L2(Γ)d),

and as m→ ∞

F̃m → F̃ in H1([0, T ];L2(Ω)d), τ(g̃m, π̃m) → τ(g̃, π̃) in H1([0, T ];L2(Γ)d).

Since C1([0, T ]) is dense inH1((0, T )), the existence of such F̃m and τ(g̃m, π̃m)
is obvious. Hence, to make the notation simple, let us admit that

F̃ = F̃m, τ(g̃, π̃) = τ(g̃m, π̃m)

in (3.5.7), which does not effect the argument in this section. Now, we see
that (3.5.7) can be written into the system of ordinary equations:

Bmc′ϵδm(t) = G(t, cϵδm(t)),

where Bm ∈ Rm×m,
cϵδm = (cϵδ1, . . . , cϵδm)T ,

and G(t, cϵδm) is C1 with respect to t and cϵδm, because ρδ(s) is C1 with
respect to s, and F̃ , τ(g̃, π̃) are C1 with respect to t. Therefore, we conclude
the existence of cϵδk ∈ C2([0, T ]) for k = 1, . . . ,m.

Lemma 3.5.1. Let (A1)–(A4) be valid, δ ≤ Cϵ and ϵ be sufficiently small.

(1) When d = 2, for any T ∈ (0,∞), there exists a unique solution Ũϵδm

to (3.5.7), such that

∥Ũϵδm∥2L∞(0,T ;L2(Ω)d) + ∥Ũϵδm∥2L2(0,T ;V σ) ≤ C, (3.5.8a)

∥Ũϵδm∥2L∞(0,T ;V σ) + ϵ−1∥[Ũϵδmn + g̃n]−∥2L∞(0,T ;L2(Γ)) ≤ C, (3.5.8b)

∥Ũ ′
ϵδm∥2L∞(0,T ;L2(Ω)d) + ∥Ũ ′

ϵδm∥2L2(0,T ;V σ) ≤ C. (3.5.8c)
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(2) When d = 3, the same conclusion holds for a small time interval (0, T̊ ].

Proof. Multiplying (3.5.7) with cϵδk(t) and taking the summation of k, it
yields

1

2

d

dt
∥Ũϵδm∥2L2 +

β′(t)

β(t)
∥Ũϵδm∥2L2 + α∥Ũϵδm∥2H1

+ β(t)a1(Ũϵδm + g̃, Ũϵδm, Ũϵδm) + β(t)a1(Ũϵδm, g̃, Ũϵδm)

− 1

ϵ

∫
Γ
ρδ(Ũϵδmn + g̃n)Ũϵδmn ds ≤ (F,Uϵm)− [[τ(g, π), Uϵm]].

(3.5.9)

We see that

− ρδ(Ũϵδmn + g̃n)Ũϵδmn = ρδ(Ũϵδmn + g̃n)(Ũϵδmn + g̃n − g̃n)

=ρδ([Ũϵδmn + g̃n]−)[Ũϵδmn + g̃n]− + ρδ(Ũϵδmn + g̃n)g̃n ≥ 0.
(3.5.10)

β(t)a1(Ũϵδm + g̃, Ũϵδm, Ũϵδm) =
β(t)

2

∫
Γ
(Ũϵδmn + g̃n)|Ũϵδm|2 dΓ

=
β(t)

2

∫
Γ
[Ũϵδmn + g̃n]+|Ũϵδm|2 dΓ− β(t)

2

∫
Γ
[Ũϵδmn + g̃n]−|Ũϵδm|2 dΓ.

≥− C1∥[Ũϵδmn + g̃n]−∥L2(Γ)∥Ũϵδm∥2H1 . (∵ Lemma 3.2.1.)
(3.5.11)

Applying Lemma 3.2.1 and Remark 3.2.1, we have, for arbitrary η0 > 0,

|β(t)a1(Ũϵδm, g̃, Ũϵδm)|

≤

{
η0∥Ũϵδm∥2H1 + Cη−1

0 ∥g̃∥2H1∥Ũϵδm∥2L2 , for d = 2,

η0∥Ũϵδm∥2H1 + Cη−3
0 ∥g̃∥4H1∥Ũϵδm∥2L2 , for d = 3.

(3.5.12)

∣∣∣(F̃ , Ũϵδm)− [[τ(g̃, π̃), Ũϵδm]]
∣∣∣ ≤ η0∥Ũϵδm∥2H1+Cη

−1
0 (∥F̃∥2L2+∥τ(g̃, π̃)∥2L2(Γ)).

(3.5.13)
From (3.5.9) to (3.5.13), we obtain

1

2

d

dt
∥Ũϵm∥2L2 + α̃∥Ũϵδm∥2H1 +

1

ϵ
[ρδ(Ũϵδmn + g̃n), [Ũϵδmn + g̃n]−]

≤ Cη−1
0 (∥F̃∥2L2 + ∥τ(g̃, π̃)∥2L2(Γ)) + Cη0,g̃∥Ũϵm∥2L2 ,

(3.5.14)

where α̃ := α − 2η0 − c1∥[Ũϵδmn + gn]−∥L2(Γ), Cη0,g = Cη−1
0 ∥g̃∥2H1 + Cβ for

d = 2, Cη0,g = Cη−3
0 ∥g̃∥4H1 + Cβ for d = 3, and Cβ = maxt∈[0,T ]

|β′(t)|
β(t) .
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Let η0 = α/8. Since Ũϵδmn(0)+g̃n(0) = Ũ0+g̃n ≥ 0, we have ∥[Ũϵδmn(0)+
g̃n(0)]−∥L2(Γ) = 0. Let T1 be the maximum time such that, for all t ∈ [0, T1],

c1∥[Ũϵδmn + g̃n]−∥L2(Γ) ≤ α/4, (3.5.15)

we have

α̃ = α− 2η0 − c1∥[Ũϵδmn + g̃n]−∥L2(Γ) ≥ α/2, ∀t ∈ [0, T1].

Applying Gronwall’s inequality to (3.5.14), we obtain, for any t ∈ [0, T1],

∥Ũϵδm(t)∥2L2 + α

∫ t

0
∥Ũϵδm(s)∥2H1

+
1

ϵ

∫ t

0

∫
Γ
ρδ([Ũϵδmn(s) + g̃n]−)[Ũϵδmn(s) + g̃n]−dΓ

≤C(∥F̃∥2L2(0,t;L2(Ω)d) + ∥τ(g̃, π̃)∥2L2(0,t;L2(Γ)d) + ∥Ũ0∥2L2),

(3.5.16)

which proves

∥Ũϵδm∥2L∞(0,T1;L2(Ω)d) + ∥Ũϵδm∥2L2(0,T1;V σ)

+ ϵ−1

∫ T1

0

∫
Γ
ρδ([Ũϵδmn(s) + g̃n]−)[Ũϵδmn(s) + g̃n]−dΓdt ≤ C.

(3.5.17)
(3.5.17) implies

ϵ−1

∫ T1

0

∫
Γ

|[Ũϵδmn(s) + g̃n]−|3√
([Ũϵδmn(s) + g̃n]−)2 + δ2

dΓdt

=ϵ−1

∫ T1

0

∫
Γ
ρδ([Ũϵδmn(s) + g̃n]−)[Ũϵδmn(s) + g̃n]−dΓdt

+ ϵ−1

∫ T1

0

∫
Γ
(δ − δ2√

([Ũϵδmn(s) + g̃n]−)2 + δ2
)[Ũϵδmn(s) + g̃n]−dΓdt

≤C + C
δ

ϵ
≤ C (∵ δ ≤ Cϵ).

(3.5.18)
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Differentiating (3.5.7) with respect to t, it yields

(Ũ ′′
ϵδm, wk) +

(
β′(t)

β(t)

)′
(Ũϵδm, wk) +

β′(t)

β(t)
(Ũ ′

ϵδm, wk) + a(Ũ ′
ϵδm, wk)

+ β′(t)a1(Ũϵδm + g̃, Ũϵδm, wk) + β(t)a1(Ũ
′
ϵδm + g̃, Ũϵδm, wk)

+ β(t)a1(Ũϵδm + g̃, Ũ ′
ϵδm, wk) + β′(t)a1(Ũϵδm, g̃, wk)

+ β(t)a1(Ũ
′
ϵδm, g̃, wk) + β(t)a1(Ũϵδm, g̃

′, wk)

− 1

ϵ

∫
Γ
(ρδ(Ũϵδmn + g̃n))

′wkn ds = (F̃ ′, wk)− [[τ(g̃′, π′), wk]].

(3.5.19)
Multiplying (3.5.19) with c′ϵδk(t) and taking the summation of k, we get

1

2

d

dt
∥Ũ ′

ϵδm∥2L2 + α∥Ũ ′
ϵδm∥2H1 + β(t)a1(Ũϵδm + g̃, Ũ ′

ϵδm, Ũ
′
ϵδm)

− 1

ϵ

∫
Γ
(ρδ(Ũϵδmn + g̃n))

′Ũ ′
ϵδmn ds

≤−
(
β′(t)

β(t)

)′
(Ũϵδm, Ũ

′
ϵδm)− β′(t)

β(t)
∥Ũ ′

ϵδm∥2L2

− β′(t)a1(Ũϵδm + g̃, Ũϵδm, Ũ
′
ϵδm)− β(t)a1(Ũ

′
ϵδm + g̃′, Ũϵδm, Ũ

′
ϵδm)

− β′(t)a1(Ũϵδm, g̃, Ũϵδm)− β(t)a1(Ũ
′
ϵδm, g̃, Ũ

′
ϵδm)

− β(t)a1(Ũϵδm, g̃
′, Ũ ′

ϵδm) + (F̃ ′, Ũ ′
ϵδm)− [[τ(g̃′, π̃′), Ũ ′

ϵδm]].
(3.5.20)

The same to (3.5.11), we have

β(t)a1(Ũϵδm+g̃, Ũ ′
ϵδm, Ũ

′
ϵδm) ≥ −C1∥[Ũϵδmn+g̃n]−∥L2(Γ)∥Ũ ′

ϵδm∥2H1 . (3.5.21)

From (3.2.2b), we see that g̃ = g0(x) on Γ, and g̃′n = 0 on Γ. Therefore,

−
∫
Γ
(ρδ(Uϵδmn + gn))

′Ũ ′
ϵδmn dΓ

=−
∫
Γ
(ρδ(Uϵδmn + gn))

′(Ũϵδmn + g̃n)
′ dΓ

=

∫
Γ

[Uϵδmn + gn]−√
(Uϵδmn + gn)2 + δ2

|(Ũϵδmn + g̃n)
′|2 dΓ ≥ 0.

(3.5.22)

In view of (3.5.17), we have, for all t ∈ [0, T1],∣∣∣∣(β′(t)β(t)

)′
(Ũϵδm, Ũ

′
ϵδm) +

β′(t)

β(t)
∥Ũ ′

ϵδm∥2L2

∣∣∣∣ ≤ C∥Ũ ′
ϵδm∥2L2 + C. (3.5.23)
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The same to (3.5.13), for arbitrary η0 > 0,∣∣∣(F̃ ′, Ũ ′
ϵδm)− [[τ(g̃′, π̃′), Ũ ′

ϵδm]]
∣∣∣

≤η0∥Ũ ′
ϵδm∥2H1 + Cη−1

0 (∥F̃ ′∥2L2 + ∥τ(g̃′, π̃′)∥2L2(Γ)).
(3.5.24)

(1) First, let us consider the case of d = 2. Applying Lemma 3.2.1,
Remark 3.2.1 and (3.5.17), we have, for arbitrary η0 > 0,∣∣∣β′(t)a1(Ũϵδm + g̃, Ũϵδm, Ũ

′
ϵδm)

∣∣∣ ≤ C∥Ũϵδm + g̃∥L4∥Ũϵδm∥H1∥Ũ ′
ϵδm∥L4

≤C∥Ũϵδm + g̃∥1/2
L2 ∥Ũϵδm + g̃∥1/2

H1 ∥Ũϵδm∥H1∥Ũ ′
ϵδm∥1/2

L2 ∥Ũ ′
ϵδm∥1/2

H1

≤η0∥Ũ ′
ϵδm∥2H1 + Cη

−1/3
0 (∥Ũ ′

ϵδm∥2L2∥Ũϵδm + g̃∥2H1 + ∥Ũϵδm∥2H1),
(3.5.25)∣∣∣β(t)a1(Ũ ′

ϵδm + g̃′, Ũϵδm, Ũ
′
ϵδm)

∣∣∣ ≤ C∥Ũ ′
ϵδm + g̃′∥L4∥Ũϵδm∥H1∥Ũ ′

ϵδm∥L4

≤C∥Ũ ′
ϵδm∥L2∥Ũϵδm∥H1∥Ũ ′

ϵδm∥H1

+ C∥g̃′∥1/2
L2 ∥g̃′∥

1/2
H1 ∥Ũϵδm∥H1∥Ũ ′

ϵδm∥1/2
L2 ∥Ũ ′

ϵδm∥1/2
H1

≤η0∥Ũ ′
ϵδm∥2H1 + Cη−1

0 ∥Ũ ′
ϵδm∥2L2∥Ũϵδm∥2H1

+ Cη
−1/3
0 (∥Ũ ′

ϵδm∥2L2∥g̃′∥2H1 + ∥Ũϵδm∥2H1),
(3.5.26)∣∣∣β′(t)a1(Ũϵδm, g̃, Ũ

′
ϵδm)

∣∣∣
≤η0∥Ũ ′

ϵδm∥2H1 + Cη
−1/3
0 (∥Ũ ′

ϵδm∥2L2∥Ũϵδm∥2H1 + ∥g̃∥2H1),
(3.5.27)

∣∣∣β(t)a1(Ũ ′
ϵδm, g̃, Ũ

′
ϵδm)

∣∣∣ ≤ η0∥Ũ ′
ϵδm∥2H1 + Cη−1

0 ∥Ũ ′
ϵδm∥2L2∥g̃∥2H1 , (3.5.28)∣∣∣β(t)a1(Ũϵδm, g̃

′, Ũ ′
ϵδm)

∣∣∣
≤δ∥Ũ ′

ϵδm∥2H1 + Cδ−1/3(∥Ũ ′
ϵδm∥2L2∥Ũϵδm∥2H1 + ∥g̃′∥2H1).

(3.5.29)

From (3.5.20) to (3.5.29), we obtain

1

2

d

dt
∥Ũ ′

ϵδm∥2Ω + α̂∥Ũ ′
ϵδm∥21,Ω

≤C(∥g̃∥2H1 + ∥g̃′∥2H1 + ∥Ũϵδm∥2H1)∥Ũ ′
ϵδm∥2L2

+ Cδ(∥F̃∥2L2 + ∥τ(g̃, π̃)∥2L2(Γ)) + Cδ(∥g̃′∥2H1 + ∥Ũϵδm∥2H1),

(3.5.30)

where α̂ := α− 6δ − C1∥[Ũϵδmn + g̃n]−∥L2(Γ).
Let δ = α/12. From (3.5.15), we see that

α̂ = α− 6η0 − C1∥[Ũϵδmn + g̃n]−∥L2(Γ) ≥ α/2, ∀t ∈ [0, T1].
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Applying Gronwall’s inequality to (3.5.30), it yields,

∥Ũ ′
ϵδm∥2L∞(0,T1;L2(Ω)d) + ∥Ũ ′

ϵδm∥2L2(0,T1;V σ) ≤ C + ∥Ũ ′
ϵδm(0)∥2L2 . (3.5.31)

To show the boundedness of ∥Ũ ′
ϵδm(0)∥2Ω, we multiply c′ϵm(t) to (3.5.7), add

the resulting equations, and make t = 0, then it yields

∥Ũ ′
ϵδm(0)∥2L2 + a(Ũ0, Ũ

′
ϵδm(0))− [[τ(g̃, π̃)(0), Ũ ′

ϵδm(0)]]

− 1

ϵ

∫
Γ
ρδ(Ũ0 + g̃n(0))Ũ

′
ϵδmn(0) ds

=− β′(t)

β(t)
(Ũ0, Ũ

′
ϵδm(0))− β(t)a1(Ũ0 + g̃(0), Ũ0, Ũ

′
ϵδm(0))

− β(t)a1(Ũ0, g̃(0), Ũ
′
ϵδm(0)) + (F̃ (0), Ũ ′

ϵm(0)).

(3.5.32)

Since [Ũ0 + g̃n(0)]− = 0 and (A4)(3.3.1), we have

∥Ũ ′
ϵδm(0)∥2L2 ≤ |a(Ũ0, Ũ

′
ϵδm(0))|+ |(∆Ũ0, Ũ

′
ϵδm(0))|

+

∣∣∣∣β′(t)β(t)
(Ũ0, Ũ

′
ϵδm(0))

∣∣∣∣+ ∣∣∣β(t)a1(Ũ0 + g̃(0), Ũ0, Ũ
′
ϵδm(0))

∣∣∣
+

∣∣∣β(t)a1(Ũ0, g̃(0), Ũ
′
ϵδm(0))

∣∣∣+ ∣∣∣(F̃ (0), Ũ ′
ϵδm(0))

∣∣∣
≤C

(
∥Ũ0∥L2 + ∥Ũ0∥H2 + ∥Ũ0 + g̃(0)∥L∞∥Ũ0∥H1

+∥Ũ0∥L∞∥g̃(0)∥H1 + ∥F̃ (0)∥L2

)
∥Ũ ′

ϵδm(0)∥L2 ,

(3.5.33)

which shows ∥Ũ ′
ϵδm(0)∥L2 ≤ C. Furthermore, from (3.5.32), we prove

∥Ũ ′
ϵδm∥2L∞(0,T1;L2(Ω)d) + ∥Ũ ′

ϵδm∥2L2(0,T1;V σ)

+ ϵ−1

∫ T1

0

∫
Γ

[Ũϵδmn + g̃n]−√
(Uϵδmn + gn)2 + δ2

|(Ũϵδmn + g̃n)
′|2dΓdt ≤ C.

(3.5.34)
Multiplying c′ϵδm(t) to (3.5.7) and taking the summation w.r.t k, it gives

∥Ũ ′
ϵδm∥2L2 +

1

2

d

dt
a(Ũϵδm, Ũϵδm)− 1

ϵ

∫
Γ
ρδ(Ũϵδmn + g̃n)Ũ

′
ϵδmn dΓ

=− β′(t)

β(t)
(Ũϵδm, Ũ

′
ϵδm)− β(t)a1(Ũϵδm + g̃, Ũϵδm, Ũ

′
ϵδm)

− β(t)a1(Ũϵδm, g̃, Ũ
′
ϵδm) + (F̃ , Ũ ′

ϵδm) + [τ(g̃, π̃), Ũ ′
ϵδm] =: RHS.

(3.5.35)
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Since g̃′ = 0 on Γ, we have

−
∫ T1

0

∫
Γ
ρδ(Ũϵδmn + g̃n)Ũ

′
ϵδmn dΓdt

=−
∫ T1

0

∫
Γ
ρδ(Ũϵδmn + g̃n)(Ũϵδmn + g̃n)

′ dΓdt

=

∫ T1

0

∫
Γ
− d

dt
(ρδ(Ũϵδmn + g̃n)(Ũϵδmn + g̃n))

+

∫ T1

0

∫
Γ
− d

dt
(ρδ(Ũϵδmn + g̃n))

′(Ũϵδmn + g̃n)dΓdt =: I1 + I2.

(3.5.36)

In view of (Ũϵδmn + g̃n)(0) ≥ 0, we get

I1 =[ρδ(Ũϵδmn + g̃n)(T1), [Ũϵδmn(T1) + g̃n(T1)]−]− 0

=∥[Ũϵδmn(T1) + g̃n(T1)]−∥2L2(Γ) +

∫
Γ
[Ũϵδmn(T1) + g̃n(T1)]−

· (ρδ(Ũϵδmn + g̃n)(T1)− [Ũϵδmn(T1) + g̃n(T1)]−)dΓ

≥∥[Ũϵδmn(T1) + g̃n(T1)]−∥2L2(Γ) − Cδ (∵ |ρδ(s)− [s]−| ≤ δ).

(3.5.37)

1

ϵ
|I2| =

∫ T1

0

∫
Γ

|[Ũϵδmn + g̃n]−|2√
[Ũϵδmn + g̃n]−|2 + δ2

|(Ũϵδmn + g̃n)
′|dΓdt

≤1

ϵ

∫ T1

0

∫
Γ

[Ũϵδmn + g̃n]−√
[Ũϵδmn + g̃n]−|2 + δ2

|(Ũϵδmn + g̃n)
′|2
1/2

·

∫ T1

0

∫
Γ

|[Ũϵδmn + g̃n]−|3√
[Ũϵδmn + g̃n]−|2 + δ2

1/2

≤C + C
δ

ϵ
≤ C (∵ (3.5.18), (3.5.34)).

(3.5.38)

In view of (3.5.17) and (3.5.34), we have

RHS ≤ C(∥g̃∥2H1 + ∥Ũϵm∥2H1)∥Ũϵm∥2H1

+ C(∥Ũ ′
ϵm∥2H1 + ∥Ũϵm∥2H1 + ∥F̃∥2L2 + ∥τ(g̃, π̃)∥2L2).

(3.5.39)

From (3.5.35), (3.5.36)-(3.5.38), (3.5.39), and recalling that we assume δ ≤
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Cϵ, we have, for all t ∈ [0, T1],∫ t

0
∥Ũ ′

ϵδm(s)∥2L2ds+
1

2
a(Ũϵδm(t), Ũϵδm(t)) + ∥[Ũϵδmn(t) + g̃n(t)]−∥2L2(Γ)

≤C
∫ t

0
∥Ũϵδm(s)∥2H1 + C + C

δ

ϵ
+ Cδ ≤ Ca(Ũϵδm, Ũϵm) + C.

(3.5.40)
Applying Gronwall’s inequality to (3.5.40), it yields,

∥Ũϵδm∥2L∞(0,T1;V σ) + ϵ−1∥[Ũϵδmn + g̃n]−∥2L∞(0,T1;L2(Γ)) ≤ C. (3.5.41)

In view of (3.5.41), for sufficiently small ϵ,

∥[Ũϵδmn + g̃n]−∥L2(Γ) ≤ C
√
ϵ≪ 1, ∀t ∈ [0, T1].

Hence, there exists T2 > T1, such that (3.5.15) is satisfied for all t ∈ [0, T2].
Furthermore, we can replace T1 in (3.5.17), (3.5.34) and (3.5.41) by T2.

Once again, for sufficiently small ϵ,

∥[Ũϵδmn + g̃n]−∥L2(Γ) ≤ C
√
ϵ≪ 1, ∀t ∈ [0, T2].

There exists T3 > T2, such that (3.5.15) is satisfied for all t ∈ [0, T3]. We
can continue this process for sufficiently small ϵ, till we reach some Tk > T ,
for any T ∈ (0,∞), and (3.5.17), (3.5.34) and (3.5.41) are satisfied with T1
replaced by Tk. Hence, we proved (3.5.8) when d = 2.

(2) When d = 3, the discussion before (3.5.25) and the observation for
∥Ũ ′

ϵδm(0)∥L2( see (3.5.33)) are the same to the case of d = 2. The esti-
mates from (3.5.35) to (3.5.41) can also be applied to the case of d = 3.
What changes from the case d = 2 is the estimates of ∥Ũ ′

ϵδm∥2
L∞(0,T̊1;L2(Ω)d)

,

∥Ũ ′
ϵδm∥2

L2(0,T̊1;V )
.

In place of (3.5.25)-(3.5.29), we derive, for arbitrary η0 > 0,∣∣∣β′(t)a1(Ũϵδm + g̃, Ũϵδm, Ũ
′
ϵδm)

∣∣∣ ≤ C∥Ũϵδm + g̃∥L6∥Ũϵδm∥H1∥Ũ ′
ϵδm∥L3

≤C∥Ũϵδm + g̃∥H1∥Ũϵδm∥H1∥Ũ ′
ϵδm∥1/2

L2 ∥Ũ ′
ϵδm∥1/2

H1

≤η0∥Ũ ′
ϵδm∥2H1∥Ũϵδm∥2H1 + Cη

−1/3
0 ∥Ũ ′

ϵδm∥2/3
L2 ∥Ũϵδm + g̃∥4/3

H1 ∥Ũϵδm∥2/3
H1

≤η0∥Ũ ′
ϵδm∥2H1∥Ũϵδm∥2H1 + Cη

−1/3
0 ∥Ũ ′

ϵδm∥2L2∥Ũϵδm∥2H1

+ Cη
−1/3
0 ∥Ũϵδm + g̃∥2H1 ,

(3.5.42)
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∣∣∣β(t)a1(Ũ ′
ϵδm + g̃′, Ũϵδm, Ũ

′
ϵδm)

∣∣∣ ≤ C∥Ũ ′
ϵδm + g̃′∥L6∥Ũϵδm∥H1∥Ũ ′

ϵδm∥L3

≤η0∥Ũ ′
ϵδm∥2H1(∥Ũϵδm∥H1 + ∥Ũϵδm∥2H1) + Cη−3

0 ∥Ũ ′
ϵδm∥2L2∥Ũϵδm∥H1

+ Cη
−1/3
0 ∥Ũ ′

ϵδm∥2L2∥Ũϵδm∥2H1 + Cη
−1/3
0 ∥g̃′∥2H1 ,

(3.5.43)∣∣∣β′(t)a1(Ũϵδm, g̃, Ũ
′
ϵδm)

∣∣∣ ≤ η0∥Ũ ′
ϵδm∥2H1∥g̃∥2H1 + Cη−1

0 ∥Ũϵδm∥2H1 , (3.5.44)∣∣∣β(t)a1(Ũ ′
ϵδm, g̃, Ũ

′
ϵδm)

∣∣∣ ≤ η0∥Ũ ′
ϵδm∥2H1 + Cη−3

0 ∥Ũ ′
ϵδm∥2L2∥g̃∥4H1 , (3.5.45)∣∣∣β(t)a1(Ũϵδm, g̃

′, Ũ ′
ϵδm)

∣∣∣ ≤ η0∥Ũ ′
ϵδm∥2H1∥Ũϵδm∥2H1 + Cη−1

0 ∥g̃′∥2H1 . (3.5.46)

Hence, in place of (3.5.30), we obtain

1

2

d

dt
∥Ũ ′

ϵδm∥2L2 + ᾱ∥Ũ ′
ϵδm∥2H1

+ ϵ−1

∫
Γ

[Ũϵδmn + g̃n]−√
(Uϵδmn + gn)2 + δ2

|(Ũϵδmn + g̃n)
′|2dΓ

≤C(∥g̃∥4H1 + ∥g̃∥2H1 + ∥Ũϵδm∥2H1)∥Ũ ′
ϵδm∥2L2

+ Cδ(∥F̃∥2L2 + ∥τ(g̃, π̃)∥2L2(Γ)) + Cδ(∥g̃′∥2H1 + ∥Ũϵδm∥2H1),

(3.5.47)

where

ᾱ := α− 2η0 − 4η0∥Ũϵδm∥2H1 − η0∥Ũϵm∥H1 − C1∥[Ũϵδmn + g̃n]−∥L2(Γ).

We choose η0 satisfying 2η0 + 4η0∥Ũ0∥2H1 + η0∥Ũ0∥H1 ≤ α/12. Let T̂1 be

the maximum value of t such that 2η0+4η0∥Ũ0(t)∥2H1 +η0∥Ũ0(t)∥H1 ≤ α/4.

Let T̊1 = min(T̂1, T1), then we have, for all t ∈ [0, T̊1],

ᾱ := α− 2η0− 4η0∥Ũϵδm∥2H1 − η0∥Ũϵδm∥H1 −C1∥[Ũϵδmn+ g̃n]−∥L2(Γ) ≥ α/2.

Applying Gronwall’s inequality to (3.5.47), we obtain

∥Ũ ′
ϵδm∥2

L∞(0,T̊1;L2(Ω)d)
+ ∥Ũ ′

ϵδm∥2
L2(0,T̊1;V σ)

+ ϵ−1

∫ T̊1

0

∫
Γ

[Ũϵδmn + g̃n]−√
(Uϵδmn + gn)2 + δ2

|(Ũϵδmn + g̃n)
′|2dΓdt ≤ C.

(3.5.48)

Therefore, we show (3.5.8) holds for a small time interval [0, T̊ ] when d =
3.
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Lemma 3.5.2. Under the assumptions of Lemma 3.5.1, when d = 2, for any

T ∈ (0,∞) and sufficiently small ϵ, there exists a solution Ũϵδ to (ÑSϵE
σ

δ ),
such that

∥Ũϵδ∥L∞(0,T ;V σ) + ϵ−1/2∥[Ũϵδ + g̃n]−∥L∞(0,T ;L2(Γ)) ≤ C, (3.5.49a)

∥Ũ ′
ϵδ∥L∞(0,T ;L2(Ω)d) + ∥Ũ ′

ϵδ∥L2(0,T ;V σ) ≤ C. (3.5.49b)

When d = 3, the same conclusion holds for a smaller time interval (0, T̊ ).

Proof. The proof below is valid for both d = 2, 3, except that when d = 3, we
have to replace T by T̊ . As a consequence of Proposition 3.5.1, there exists
some Ūϵδ and a subsequence of {Ũϵδm}∞m=1, such that Ūϵδ ∈ L∞(0, T ;V σ),
Ū ′
ϵδ ∈ L∞(0, T ;L2(Ω)d) ∩ L2(0, T ;V σ), and as m→ ∞,

Ũϵδm → Ūϵδ, weakly* in L∞(0, T ;V σ), (3.5.50a)

[Ũϵδm + gn]− → [Ūϵδ + gn]− weakly* in L∞(0, T ;L2(Γ)), (3.5.50b)

Ũ ′
ϵδm → Ū ′

ϵδ, weakly* in L∞(0, T ;L2(Ω)d), (3.5.50c)

Ũ ′
ϵδm → Ū ′

ϵδ, weakly in L2(0, T ;V σ). (3.5.50d)

We show Ūϵδ is the solution to (3.5.6). Multiplying (3.5.7) with any ϕ ∈
C∞
0 (0, T ), and integrating over (0, T ), it yields, for all k = 1, 2, . . . ,m,∫ T

0
ϕ(t)

{
(Ũ ′

ϵδm, wk) +
β′(t)

β(t)
(Ũϵδm, Ũϵδm) + a(Ũϵδm, wk)

+β(t)a1(Ũϵδm + g̃, Ũϵδm, wk) + β(t)a1(Ũϵδm, g̃, wk)

−1

ϵ

∫
Γ
rhoδ(Ũϵδmn + g̃n)wkn ds− (F̃ , wk) + [[τ(g̃, π̃), wk]]

}
dt = 0.

(3.5.51)
It follows from [6, 43] that the embedding

{w | w ∈ L2(0, T ;V ), w′ ∈ L2(0, T ;L2(Ω)d)} ↪→ L2(0, T ;L4(Ω)d)

is compact. Hence Ũϵδm → Ūϵδ strongly in L2(0, T ;L4(Ω)d). Since the trace
mapping H1(0, T ;V ) → L2(0, T ;L2(Γ)d) is compact, we have

Ũϵδmn → Ūϵδn, strongly in L2(0, T ;L2(Γ)).

Therefore, Ũϵδmn → Ūϵδn a.e. on Γ. ρδ(·) is continuous, so that ρδ(Ũϵmn +
g̃n) → rhoδ(Ūϵδn + g̃n) a.e. on Γ.
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Let m→ ∞, we obtain, for all k ∈ N,∫ T

0
ϕ(t)

{
(Ū ′

ϵδ, wk) +
β′(t)

β(t)
(Ūϵδ, wk) + a(Ūϵδ, wk)

+β(t)a1(Ūϵδ + ḡ, Ūϵδ, wk) + β(t)a1(Ūϵδ, ḡ, wk)

−1

ϵ

∫
Γ
ρδ(Ūϵδn + g̃n)wkn ds− (F̃ , wk) + [[τ(g̃, π̃), wk]]

}
dt = 0.

(3.5.52)

Since ∪∞
m=1span{wk}mk=1 is dense in V σ, we can replace the test function

wk of (3.5.52) by any v ∈ V σ. And we proved Ūϵδ = Ũϵδ is the solution to
(3.5.6) satisfying (3.5.49).

Lemma 3.5.3. Under the assumptions of Lemma 3.5.2, when d = 2, for any

T ∈ (0,∞) and sufficiently small ϵ, there exists a solution Ũϵ to (ÑSϵE
σ
),

such that

∥Ũϵ∥L∞(0,T ;V σ) + ϵ−1/2∥[Ũϵ + g̃n]−∥L∞(0,T ;L2(Γ)) ≤ C, (3.5.53a)

∥Ũ ′
ϵ∥L∞(0,T ;L2(Ω)d) + ∥Ũ ′

ϵ∥L2(0,T ;V σ) ≤ C. (3.5.53b)

When d = 3, the same conclusion holds for a smaller time interval (0, T̊ ).

Proof. The proof below is valid for both d = 2, 3, except that when d = 3,
we have to replace T by T̊ . As a consequence of Proposition 3.5.2, there
exists some Ūϵ and a subsequence of {Ũϵδi}∞i=1, with limi→∞ δi = 0 such that
Ūϵ ∈ L∞(0, T ;V σ), Ū ′

ϵ ∈ L∞(0, T ;L2(Ω)d) ∩ L2(0, T ;V σ), and as i → ∞,
δi → 0,

Ũϵδi → Ūϵ, weakly* in L∞(0, T ;V σ), (3.5.54a)

ρδi(Ũϵδi + gn) → [Ūϵ + gn]− weakly* in L∞(0, T ;L2(Γ)), (3.5.54b)

Ũ ′
ϵδi

→ Ū ′
ϵ, weakly* in L∞(0, T ;L2(Ω)d), (3.5.54c)

Ũ ′
ϵδi

→ Ū ′
ϵ, weakly in L2(0, T ;V σ). (3.5.54d)

It is not difficult to verify that Ūϵ is the solution to (3.5.3). And we proved
Ūϵ = Ũϵ is the solution to (3.5.3) satisfying (3.5.53).

Proposition 3.5.1. Under the assumptions of Proposition 3.5.1, when d =

2, for any T ∈ (0,∞), there exists a solution Ũ to (ÑSI
σ
), such that

∥Ũ∥L∞(0,T ;V σ) ≤ C, (3.5.55a)

∥Ũ ′∥L∞(0,T ;L2(Ω)d) + ∥Ũ ′∥L2(0,T ;V σ) ≤ C. (3.5.55b)

When d = 3, the same conclusion holds for a smaller time interval (0, T̊ ).

105



Proof. The proof is valid for both d = 2, 3, except we replace T by T̊ for the
case d = 3.

In view of Proposition 3.5.3, we have, for sufficiently small ϵ, ∥Ũϵ∥L∞(0,T ;V σ),

∥Ũ ′
ϵ∥L∞(0,T ;L2(Ω)d) and ∥Ũ ′

ϵ∥L2(0,T ;V σ) are bounded independent of ϵ, and

∥[Ũϵ + g̃n]−∥L∞(0,T ;L2(Γ)) ≤ C
√
ϵ.

There exists a subsequence ϵi → 0, and Ū such that Ū ∈ L∞(0, T ;V σ),
Ū ′ ∈ L∞(0, T ;L2(Ω)d) ∩ L2(0, T ;V σ), and as ϵ→ 0,

Ũϵ → Ū , weakly* in L∞(0, T ;V σ), weakly in L2(0, T ;V σ), (3.5.56a)

[Ũϵn + g̃n]− → 0, weakly* in L∞(0, T ;L2(Γ)), (3.5.56b)

Ũ ′
ϵ → Ū ′, weakly* in L∞(0, T ;L2(Ω)d), (3.5.56c)

Ũ ′
ϵ → Ū ′, weakly in L2(0, T ;V σ). (3.5.56d)

The same to the proof of Proposition 3.5.3, we have

Ũϵ → Ū , strongly in L4(0, T ;L2(Ω)2), (3.5.57a)

Ũϵn → Ūn, strongly in L2(0, T ;L2(Ω)2), (3.5.57b)

[Ũϵ + g̃n]− → [Ūn + g̃n]− a.e. on Γ. (3.5.57c)

Hence, [Ūn + g̃n]− = 0 a.e. on Γ, Ū ∈ K̃σ, and∫ T

0
a(Ū , Ū)dt ≤ limϵ→0

∫ T

0
a(Ũϵ, Ũϵ)dt.

For arbitrary v ∈ K̃σ, from (3.5.3), we have,

(Ũ ′
ϵ, v − Ũϵ) +

β′(t)

β(t)
(Ũϵ, v − Ũϵ) + a(Ũϵ, v − Ũϵ)

+ β(t)a1(Ũϵ, g̃, v − Ũϵ) + β(t)a1(Ũϵ + g̃, Ũϵ, v − Ũϵ)

− 1

ϵ

∫
Γ
[Ũϵn + g̃n]−(vn − Ũϵn)ds

− (F̃ , v − Ũϵ)− [[τ(g̃, π̃), v − Ũϵ]] = 0,

(3.5.58a)

Ũ(x, 0) = Ũ0, on Ω. (3.5.58b)

In view of

− [Ũϵn + g̃n]−(vn − Ũϵn) = −[Ũϵn + g̃n]−[vn + g̃n − (Ũϵn + g̃n)]

=− [Ũϵn + g̃n]−(vn + g̃n)− |[Ũϵn + g̃n]−|2

≤0 (∀v ∈ K̃),

(3.5.59)
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we have, for all t ∈ [0, T ],∫ t

0

{
(Ũ ′

ϵ, v − Ũϵ) + (β′(t)/β(t))(Ũϵ, v − Ũϵ) + a(Ũϵ, v − Ũϵ)

+β(t)a1(Ũϵ, g̃, v − Ũϵ) + β(t)a1(Ũϵ + g̃, Ũϵ, v − Ũϵ)

−(F̃ , v − Ũϵ)− [[τ(g̃, π̃), v − Ũϵ]]
}
≥ 0,

(3.5.60)

Therefore, taking the lower limit limϵ→0 to (3.5.60), we obtian∫ t

0

{
(Ū ′, v − Ū) + (β′(t)/β(t))(Ū , v − Ū) + a(Ū , v − Ū)

+β(t)a1(Ū , g̃, v − Ū) + β(t)a1(Ū + g̃, Ū , v − Ū)

−(F̃ , v − Ū)− [[τ(g̃, π̃), v − Ū ]]
}
≥ 0,

(3.5.61)

Follows from Lebesgue differentiation theorem( cf. [15]), we have Ū = Ũ is
the solution to (3.5.2) for a.e. t ∈ [0, T ].

Since U = Ũβ(t) and Uϵ = Ũϵβ(t), in view of Proposition 3.5.1 and 3.5.3,
we obtain the well-posedness of U and Uϵ.

Proposition 3.5.2. Under the assumptions (A1)(A2)(A3)(A4), when d =
2, for any T ∈ (0,∞), there exists a solution U to (NSIσ), such that

∥U∥L∞(0,T ;V σ) ≤ C, (3.5.62a)

∥U ′∥L∞(0,T ;L2(Ω)d) + ∥U ′∥L2(0,T ;V σ) ≤ C. (3.5.62b)

When d = 3, the same conclusion holds for a smaller time interval (0, T̊ ).

Proposition 3.5.3. Under the assumptions (A1)(A2)(A3)(A4), when d =
2, for any T ∈ (0,∞) and sufficiently small ϵ, there exists a solution Uϵ to
(NSϵE

σ), such that

∥Uϵ∥L∞(0,T ;V σ) + ϵ−1/2∥[Uϵ + gn]−∥L∞(0,T ;L2(Γ)) ≤ C, (3.5.63a)

∥U ′
ϵ∥L∞(0,T ;L2(Ω)d) + ∥U ′

ϵ∥L2(0,T ;V σ) ≤ C. (3.5.63b)

When d = 3, the same conclusion holds for a smaller time interval (0, T̊ ).

Proof of Theorem 3.3.1. It follows from Proposition 3.5.2, 3.3.1 and 3.3.2.

Proof of Theorem 3.4.1. It follows from Proposition 3.5.3, 3.4.1, and 3.4.2.
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3.6 The Stokes problem with a unilateral bound-
ary condition of Signorini’s type

From now on, we consider the Stokes equations with unilateral boundary
condition of Signorini’s type.

Find a velocity u and a pressure p such that

− ν∆u+∇p = f, ∇ · u = 0, in Ω, (3.6.1a)

u = b, on S, (3.6.1b)

u = 0, on C, (3.6.1c)

un ≥ 0, τn(u, p) ≥ 0, on Γ, (3.6.1d)

unτn(u, p) = 0, τT (u) = 0, on Γ. (3.6.1e)

Remark 3.6.1. The Signorini’s problem has been considered in [25] with
a traction boundary condition on a portion of Γ, i.e. there exists Γ0 ⊂ Γ,
|Γ0| > 0, such that, τ(u, p) = H(x) on Γ0, which leads to an essentially
different argument.

We set the reference flow (g, π) satisfying

∇ · σ(g, π) = 0, ∇ · g = 0, in Ω,

g|C = 0, g|S = b.

And we assume that

β :=

∫
Γ
gn = −

∫
S
bn ≥ 0.

We assume that f ∈ L2(Ω)d and τ(g, π) ∈M ′.
Setting (U,P ) = (u−g, p−π), our target problem becomes the following

equations.
(S) Find a velocity U and a pressure P such that

− ν∆U +∇P = f, ∇ · U = 0, in Ω, (3.6.2a)

U = 0 on S ∪ C, (3.6.2b)

Un + gn ≥ 0, τn(U,P ) + τn(g, π) ≥ 0, on Γ (3.6.2c)

(Un + gn)(τn(U,P ) + τn(g, π)) = 0, on Γ (3.6.2d)

τT (U) + τT (g) = 0 on Γ (3.6.2e)
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Weak formulation of (S).

We interpret (S) as follows.
(S′)Find (u, p) ∈ V ×Q s.t.

a(U,φ) + b(P,φ) =

∫
Ω
f · φ dx (∀φ ∈ H1

0 (Ω)
d), (3.6.3a)

b(q, U) = 0 (∀q ∈ Q), (3.6.3b)

Un + gn ≥ 0 a.e. on Γ, (3.6.3c)

[τn(U,P ) + τn(g, π), η] ≥ 0 (∀η ∈M, η ≥ 0), (3.6.3d)

[τn(U,P ) + τn(g, π), Un + gn] = 0 (∀η ∈M, η ≥ 0), (3.6.3e)

[[τT (U) + τT (g), η]] = 0 (∀η ∈Md, ηn = 0). (3.6.3f)

Formulation by a variational inequality

(VI) Find (U,P ) ∈ K ×Q s.t.

a(U, v − U) + b(v − U, p) ≥ ⟨F, v − U⟩ (∀v ∈ K), (3.6.4a)

b(q, U) = 0 (∀q ∈ Q), (3.6.4b)

where F : V → V ′ is defined as

⟨F, v⟩ = ⟨F, v⟩V ′,V =

∫
Ω
f · v dx− [[τ(g, π), v]]. (3.6.5)

Theorem 3.6.1. (VI) ⇔ (S′) .

Proof. The argument is similar to Theorem 3.2.2.

Theorem 3.6.2. There exists a unique solution (U,P ) ∈ K ×Q of (VI).

Proof. Since a is a coercive bilinear form in V σ × V σ by Korn’s inequality,
we can apply Stampacchia’s theorem (cf. [9, Theorem 5.6]) to conclude that
there exists a unique U ∈ Kσ satisfying

a(U, v − U) ≥ ⟨F, v − U⟩ (∀v ∈ Kσ). (3.6.6)

Taking v = U ± φ with φ ∈ H1
0,σ(Ω) in (3.6.6), we deduce

a(U,φ) =

∫
Ω
f · φ dx, (∀φ ∈ H1

0 (Ω)
d ∩ V σ). (3.6.7)
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Hence, according to the inf-sup condition of b, there exists P̊ ∈ L2
0(Ω)

satisfying

(P̊ ,∇ · v) = a(U, v)−
∫
Ω
f · v dx (∀v ∈ H1

0 (Ω)
d).

Thus we obtain (U, P̊ ) ∈ K × L2
0(Ω) satisfying

a(U, v) + b(P̊ , v) =

∫
Ω
f · v dx (∀v ∈ H1

0 (Ω)
d). (3.6.8)

Setting

l ≡ inf
η∈Y

[τn(u, p̂) + hn, η] =
[τn(u, p̂) + hn, un + gn]

β
, (3.6.9)

where

Y =

{
η ∈M | η ≥ 0, η ̸≡ 0,

∫
Γ
η = 1

}
.

With a similar argument to the proof of Theorem 3.3.1, it is not difficult to
verify that (U,P ) is the solution of (VI) where P = P̊ + l

3.6.1 Penalty method for the Stokes problem

We introduce ρ : V → V ′ by setting

⟨ρ(U), v⟩ = −
∫
Γ
[Un + gn]−vn ds, (3.6.10)

where [w]± = max{0,±w} and w = [w]+ − [w]−.

Lemma 3.6.1. (i) ρ is a bounded, monotone and hemicontinuous opera-
tor from V to V ′.

(ii) K = {v ∈ V | ρ(v) = 0}.

Proof. We show (i).

1. (boundness) By using the trace theorem, we have

⟨ρ(U), v⟩ ≤
∫
Γ
[Un + gn]−|vn| ds

≤ ∥[Un + gn]−∥L2(Γ)∥vn∥L2(Γ)

≤ (∥Un∥L2(Γ) + ∥gn∥L2(Γ))∥vn∥L2(Γ)

≤ (∥U∥V + ∥gn∥L2(Γ))∥v∥V
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for U, v ∈ V . Hence,

∥ρ(U)∥V ′ ≤ ∥u∥V + ∥gn∥L2(Γ).

2. (monotonicity) For U, v, we have

⟨ρ(U)− ρ(v), u− v⟩ = ⟨ρ(U), U − v⟩ − ⟨ρ(v), U − v⟩

=−
∫
Γ
[Un + gn]−(Un − vn) +

∫
Γ
[vn + gn]−(Un − vn)−

=−
∫
Γ
([Un + gn]− − [vn + gn]−)(Un + gn − (vn + gn))

=

∫
Γ
([Un + gn]− − [vn + gn]−)(Un + gn − (vn + gn))

=∥[Un + gn]− − [vn + gn]−∥2L2(Γ)

−
∫
Γ
([Un + gn]− − [vn + gn]−)([Un + gn]+ − [vn + gn]+)

≥
∫
Γ
[Un + gn]−[vn + gn]+ +

∫
Γ
[vn + gn]−[Un + gn]+

≥0.

3. (hemicontinuity) Let U, v, w ∈ U and consider a real-valued function

η(λ) = ⟨ρ(U + λv), w⟩ =
∫
Γ
[Un + λvn]−wn (λ ∈ R).

This is a continuous function, since the function [·]− is continuous.

(ii) It is obvious.

Penalty problem of (S)

Let 0 < ϵ≪ 1. We give the penalty problem to (S).
(Sϵ) Find (Uϵ, Pϵ) ∈ V ×Q such that

a(Uϵ, v) + b(Pϵ, v) +
1

ϵ
⟨ρ(Uϵ), v⟩ = ⟨F, v⟩ (∀v ∈ V ), (3.6.11a)

b(q, Uϵ) = 0 (∀q ∈ Q). (3.6.11b)

(Sσ
ϵ ) Find Uϵ ∈ V σ such that

a(Uϵ, v) +
1

ϵ
⟨ρ(Uϵ), v⟩ = ⟨F, v⟩ (∀v ∈ V σ). (3.6.12)
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Theorem 3.6.3. There exists a unique solution Uϵ of (Sσ
ϵ ) and it satisfies

∥Uϵ∥V ≤ C(∥F∥V ′ + ∥gn∥M ), (3.6.13)

∥ρ(uϵ)∥M ′ = sup
η∈M

⟨ρ(uϵ), η⟩
∥η∥M

≤ Cϵ(∥F∥V ′ + ∥gn∥M ). (3.6.14)

Theorem 3.6.4. There exists a unique solution (Uϵ, Uϵ) of (Sϵ).

Proof of Theorem 3.6.3

We will make use of

Lemma 3.6.2 (Theorem 2.1 of [28]). Let X be a separable reflexive Banach
space and let T : X → X ′ be a (possibly nonlinear) operator satisfying the
following conditions:

1. (boundness) There exist C,C ′,m > 0 s.t. ∥Tu∥X′ ≤ C∥u∥mX + C ′ for
all u ∈ X;

2. (monotonicity) ⟨Tu− Tv, u− v⟩ ≥ 0 for all u, v ∈ X;

3. (hemicontinuity) For any u, v, w ∈ X, the function λ 7→ ⟨A(u+ λv), w⟩
is continuous on R;

4. (coerciveness)
⟨Tu, u⟩
∥u∥X

→ ∞ as ∥u∥X → ∞.

Then, for any φ ∈ X ′, there exists a unique u ∈ X such that Tu = φ.
Furthermore, if T is strictly monotone:

⟨Tu− Tv, u− v⟩ > 0 (∀u, v ∈ X,u ̸= v),

then the solution is unique.

Proof of Theorems 3.6.3. We consider a nonlinear operator Aϵ : V → V ′ by
setting

Aϵv = Av +
1

ϵ
ρ(v) (v ∈ V ),

where A : V → V ′ is a linear operator defined as ⟨Au, v⟩ = a(u, v) for
u, v ∈ V . We verify that the restriction Aϵ|V σ of Aϵ satisfies the conditions
in Lemma 3.6.2. Below we write Aϵ = Aϵ|V σ , and we use Lemma 3.6.1 (i).
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1. (boundness)

|⟨Aϵu, v⟩| ≤ |⟨Au, v⟩|+ 1

ϵ
|⟨ρ(u), v⟩|

≤ ∥a∥ · ∥u∥V ∥v∥V +
1

ϵ
(∥u∥V + ∥gn∥L2(Γ))∥v∥

for u, v ∈ V . Hence,

∥Aϵu∥(V σ)′ ≤ ∥Aϵu∥V ≤
(
∥a∥+ 1

ϵ

)
∥u∥V +

1

ϵ
∥gn∥L2(Γ) (u ∈ V σ).

2. (strictly monotonicity) By virtue of Korn’s inequality,

⟨Aϵu−Aϵv, u− v⟩ = ⟨Aϵu, u− v⟩ − ⟨Aϵv, u− v⟩

=⟨Au, u− v⟩+ 1

ϵ
⟨ρ(u), u− v⟩ − ⟨Av, u− v⟩ − 1

ϵ
⟨ρ(v), u− v⟩

=⟨A(u− v), u− v⟩+ 1

ϵ
⟨ρ(u)− ρ(v), u− v⟩

=a(u− v, u− v) +
1

ϵ
⟨ρ(u)− ρ(v), u− v⟩

=CK∥u− v∥2V − 1

ϵ
⟨ρ(u− v), u− v⟩

>0

for u, v ∈ V , u ̸= v.

3. (hemicontinuity) Let u, v, w ∈ V and consider a real-valued function

η(λ) = ⟨Aϵ(u+ λv), w⟩ = a(u+ λv,w) +
1

ϵ
⟨ρ(u+ λv), w⟩ (λ ∈ R).

This is a continuous function, since a(·, w) is continuous and ρ(·) is
hemicontinuous.
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4. (Coerciveness) For u ∈ V , we have

⟨ρ(u), u⟩ = −
∫
Γ
[un + gn]−un ds

=−
∫
Γ
[un + gn]− ([un + gn]+ − [un + gn]− − [gn]+ + [gn]−) dΓ

≥−
∫
Γ
[un + gn]−[gn]− ds

≥− ∥[un + gn]−∥L2(Γ)∥[gn]−∥L2(Γ)

≥− ∥un + gn∥L2(Γ)∥gn∥L2(Γ)

≥−
(
∥u∥V + ∥gn∥L2(Γ)

)
∥gn∥L2(Γ).

(3.6.15)
Hence,

⟨Au+ 1
ϵρ(u), u⟩

∥u∥V
≥ CK∥u∥V −

(∥u∥V + ∥gn∥L2(Γ))

ϵ∥u∥V
∥gn∥L2(Γ)

This gives

⟨Au+ 1
ϵρ(u), u⟩

∥u∥V
→ ∞ as ∥u∥V → ∞.

As a consequence, we can apply Lemma 3.6.2 to conclude that there exists
a unique uϵ ∈ V σ satisfying Aϵuϵ = F0, where F0 ∈ (V σ)′ is the restriction
of F ∈ V ′. Thus, we have proved a unique existence of the solution uϵ ∈ V σ

of (Sσ
ϵ ).

Next, we derive (3.6.13) and (3.6.14). To this end, we recall β =
∫
Γ gn >

0. First, we set
η = gn − βϕ,

where ϕ ∈ C∞
0 (Γ) is a function satisfying ϕ ≥ 0 and

∫
Γ ϕ = 1 and below

we fix it. We have η ∈ M and
∫
Γ η = 0. Hence, there exists an extension

w ∈ V0 of η satisfying ∥w∥V ≤ C∥η∥M ≤ C∥gn∥M and wn|Γ = η.
Substituting v = Uϵ + w ∈ V0 into (3.6.11), we have

a(Uϵ, Uϵ + w)− 1

ϵ

∫
Γ
[Uϵn + gn]−(Uϵn + gn − βϕ) = ⟨F,Uϵ + w⟩.

Noticing that
Uϵn + gn − βϕ ≤ Uϵn + gn,
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which guarantees

−1

ϵ

∫
Γ
[Uϵn + gn]−(Uϵn + gn − βϕ) ≥ 1

ϵ
∥[Uϵn + gn − βϕ]−∥2L2(Γ) ≥ 0.

Hence we have
a(Uϵ, Uϵ + w) ≤ ⟨F,Uϵ + w⟩.

From this, we can deduce

∥Uϵ∥V ≤ C(∥F∥(V σ)′ + ∥gn∥M ) ≤ C(∥F∥V ′ + ∥gn∥M )

and
∥[Uϵn + gn − βϕ]−∥L2(Γ) ≤ C

√
ϵ(∥F∥V ′ + ∥gn∥M ).

Further, equation (3.6.11) implies

⟨ρ(Uϵ), v⟩ = ϵ⟨F, v⟩ − ϵa(Uϵ, v) (∀v ∈ V σ),

so we have

∥ρ(Uϵ)∥M ′ = sup
v∈V0, v ̸=0

⟨ρ(Uϵ), v⟩
∥v∥V

= ϵ sup
v∈V0, v ̸=0

⟨F, v⟩ − a(Uϵ, v)

∥v∥V
≤ Cϵ(∥F∥V ′ + ∥uϵ∥V ).

This completes the proof.

Proof of Theorem 3.6.4. From Theorem 3.6.3, we know that there exists a
unique solution Uϵ ∈ V0 of (Sσ

ϵ ). Then, by the standard theory, there exists
the associating pressure P̊ϵ ∈= L2

0(Ω) of the velocity Uϵ;

a(Uϵ, v) + b(P̊ϵ, v) =

∫
Ω
f · v (v ∈ H1

0 (Ω)
d).

For any ϕ ∈ C∞
0 (Γ) with

∫
Γ ϕ = 1, we set

lϵ =

∫
Γ
(τn(Uϵ, P̊ϵ) + τn(g, π)− ϵ−1[Uϵn]−)ϕ ds. (3.6.16)

We see that lϵ is a constant independent of ϕ. It is not difficult to verify
that (U,Pϵ) is a solution of (Sϵ), where

Pϵ = P̊ϵ + lϵ.
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3.6.2 Error estimate of penalty method

Theorem 3.6.5. Let (U,P ) and (Uϵ, Pϵ) be the unique solutions of (S) and
(Sϵ), respectively. Then, we have

∥U − Uϵ∥V + ∥P̊ − P̊ϵ∥Q ≤ C
√
ϵ∥τn(U,P )∥M ′ , (3.6.17)

where P̊ and P̊ϵ are defined by

P̊ = P − l, P̊ϵ = Pϵ − lϵ, l =
1

|Ω|

∫
Ω
P, lϵ =

1

|Ω|

∫
Ω
Pϵ. (3.6.18)

Proof. Recall (U,P ) satisfies for any v ∈ V ,

a(U, v) + b(P, v)− [τn(U,P ) + τn(g, π), vn] =

∫
Ω
f · v dx−

∫
Γ
τ(g, π)v ds.

Together with (3.6.11), it implies that for all v ∈ V ,

a(U − Uϵ, v) + b(P − Pϵ, v)

=

∫
Γ
(τn(U,P ) + τn(g, π)− ϵ−1[Uϵn + gn]−)vn ds,

(3.6.19)

and for any v ∈ V σ,

a(U − Uϵ, v) =

∫
Γ
(τn(U,P ) + τn(g, π)− ϵ−1[Uϵn + gn]−)vn ds. (3.6.20)

Now we take v = U − Uϵ ∈ V σ and obtain

a(U − Uϵ, U − Uϵ) = [τn(U,P ) + τn(g, π)− ϵ−1[Uϵn + gn]−, Un − Uϵn]

= [τn(U,P ) + τn(g, π), Un − Uϵn]︸ ︷︷ ︸
=I1

−ϵ−1[Uϵn + gn]−, Un − Uϵn]︸ ︷︷ ︸
=I2

.

We calculate as

I1 = [τn(U,P ) + τn(g, π), Un + gn]︸ ︷︷ ︸
=0

−[τn(U,P ) + τn(g, π), Uϵ,n + gn]

=− [τn(U,P ) + τn(g, π), [Uϵ,n + gn]+ − [Uϵ,n + gn]−]

≤ϵ[τn(U,P ) + τn(g, π), ϵ
−1[Uϵn + gn]−],

and

I2 = −[ϵ−1[Uϵn + gn]−, Un + gn] + [ϵ−1[Uϵn + gn]−, Uϵn + gn]

≤− 1

ϵ

∫
Γ
[Uϵn + gn]−[Uϵn + gn]−ds

=− ϵ

∫
Γ
(ϵ−1[Uϵn + gn]−)

2 ds
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As a result, we get,

a(U − Uϵ, U − Uϵ) ≤ϵ
∫
Γ
(τn(U,P ) + τn(g, π))ϵ

−1[Uϵn + gn]−] ds

− ϵ

∫
Γ
(ϵ−1[Uϵn + gn]−)

2 ds,

(3.6.21)

which implies

∥U − Uϵ∥V ≤ C
√
ϵ∥τn(U,P ) + τn(g, π)∥L2(Γ).

We proceed to the pressure part. We have

a(U − Uϵ, v) + b(P̊ − P̊ϵ, v) = a(U − Uϵ, v) + b(P − Pϵ, v)

= 0 (∀v ∈ H1
0 (Ω)

d).

We apply the inf-sup condition of b, and conclude

∥P̊ − P̊ϵ∥Q ≤ C∥U − Uϵ∥V ≤ C
√
ϵ∥τn(U,P ) + τn(g, π)∥L2(Γ),

which completes the proof.

Theorem 3.6.6. Let (U,P ) and (Uϵ, Pϵ) be the unique solutions of (S) and
(Sϵ), respectively. Further, assume that

gn ∈ C(Γ), τn(g, π) ∈ H1/2(Γ), (3.6.22)

U,Uϵ ∈ H2(Ω)d, P, Pϵ ∈ H1(Ω), (3.6.23)

∥Un − Uϵn∥L∞(Γ) → 0 as ϵ ↓ 0. (3.6.24)

Then, we have as ϵ ↓ 0

∥U − Uϵ∥V + ∥P − Pϵ∥Q ≤ Cϵ∥τn(U,P ) + τn(g, π)∥M . (3.6.25)

Remark 3.6.2. If Γ ∩ C = ∅ (say, Γ is a smooth closed surface), we can
deduce

U,Uϵ ∈ H2(Ω)d, P, Pϵ ∈ H1(Ω), ∥U − Uϵ∥H2 + ∥P − Pϵ∥H1 → 0 (ϵ ↓ 0).

by the standard manner using local coordinates and difference quotients (cf.
[34] etc.). Thus, (3.6.23) and (3.6.24) actually take place if data are smooth.
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Proof of Theorem 3.6.6. Set

λϵ = τn(U,P ) + τn(g, π)− ϵ−1[uϵn + gn]−.

Recall that (cf. Proof of Theorem 3.6.5)

a(U − Uϵ, v) + b(P − Pϵ, v) = [λϵ, vn] (∀v ∈ V ). (3.6.26)

This implies

a(U − Uϵ, v) + b(P̊ − P̊ϵ, v) = [λϵ − l + lϵ, vn] (∀v ∈ V ), (3.6.27)

From the inf-sup condition of b, we have

∥P̊ − P̊ϵ∥Q ≤ 1

β2
sup

v∈H1
0 (Ω)d

−b(P̊ − P̊ϵ, v)

∥v∥V

≤ 1

β2
sup

v∈H1
0 (Ω)d

|a(U − Uϵ, v)|
∥v∥V

≤ C∥U − Uϵ∥V . (3.6.28)

On the other hand, by the inf-sup condition of c,

∥λϵ − l + lϵ∥M ′ ≤ sup
v∈V

[λϵ − l + lϵ, vn]

∥v∥V

≤ sup
v∈V

|a(U − Uϵ, v)|+ |b(P̊ − P̊ϵ, v)|
∥v∥V

≤ C∥u− uϵ∥V . (3.6.29)

Thanks to (3.6.23), we have

τn(U,P ) + τn(g, π) ∈M = H1/2(Γ), U |Γ, Uϵ|Γ ∈ C(Γ)d. (3.6.30)

Since Un + gn ≥ 0 a.e. on Γ and
∫
Γ gn > 0 (and Un, gn are continuous),

there exists a subset (with the positive area) ω ⊂ Γ such that Un + gn > 0
on ω. According to (3.6.2d), τn(U,P ) + τn(g, π) = 0 on ω. Then, in view of
(3.6.24), there exist ϵ1 > 0 and ω′ ⊂ ω with |ω′| > 0 such that Uϵn + gn > 0
on ω′ if ϵ ∈ (0, ϵ1]. Consequently, ϵ−1[Uϵn + gn]− = 0 on ω′. Hence, λϵ = 0
on ω′.

At this stage, we take η ∈ C∞(Γ) such that supp η ⊂ ω′, η ≥ 0 on ω′

and
∫
Γ η = 1, and the extension of η into V is denoted by vη = Enη ∈ V .

Substituting v = vη into (3.6.27), we have

|[λϵ − l + lϵ, η]| ≤ |a(U − Uϵ, vη)|+ |b(P̊ − P̊ϵ, v)|
≤ C∥U − Uϵ∥V + C∥P̊ − P̊ϵ∥Q ≤ C∥U − Uϵ∥V ,
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where C denotes a positive constant depending on η. On the other hand,

|λϵ − l + lϵ| =

∣∣∣∣∫
ω′
(λϵ − l + lϵ)η

∣∣∣∣
=

∣∣∣∣∫
ω′
(lϵ − l)η

∣∣∣∣
=

∣∣∣∣(lϵ − l)

∫
ω′
η

∣∣∣∣ = |lϵ − l|.

Hence,
|lϵ − l| ≤ C∥U − Uϵ∥V .

This, together with (3.6.29), gives

∥λϵ∥M ′ ≤ ∥λϵ − l + lϵ∥M ′ + |kϵ − k|
≤ C∥U − Uϵ∥V . (3.6.31)

Recall that, from (3.6.21), we deduce

α∥U − Uϵ∥2V ≤ ϵ∥λϵ∥M ′∥τn(u, p) + τn(g, π)∥M . (3.6.32)

Applying (3.6.29) to (3.6.32), it yields

α∥U − Uϵ∥2V ≤ ϵC∥U − Uϵ∥V ∥τn(U,P ) + τn(g, π)∥M ,

which completes the proof.

Remark

The chapter is based on [52, 38]
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