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Chapter 1

Introduction

We study visible actions on complex algebraic varieties, and the main result is a classifica-
tion of visible actions on generalized flag varieties.

Definition 1.0.1 (Kobayashi [Ko2]). We say a holomorphic action of a Lie group G on a
complex manifold X is strongly visible if the following two conditions are satisfied:

1. There exists a real submanifold S (called a “slice”) such that

X ′ := G · S is an open subset of X.

2. There exists an anti-holomorphic diffeomorphism σ of X ′ such that

σ|S = idS,

σ(G · x) = G · x for any x ∈ X ′.

In the above setting, we say the action of G on X is S-visible. This terminology will
be used also if S is just a subset of X.

Definition 1.0.2 (Kobayashi [Ko2]). We say a holomorphic action of a Lie group G on a
complex manifold X is previsible if the condition (1) of Definition 1.0.1 is satisfied for a
totally real submanifold S of X.

The notion of visible actions on complex manifolds was introduced by T. Kobayashi
[Ko2] with the aim of uniform treatment of multiplicity-free representations of Lie groups.

Definition 1.0.3. We say a unitary representation V of a locally compact group G is
multiplicity-free if the ring EndG(V ) of intertwining operators on V is commutative.

There are various kinds of multiplicity-free representations (c.f. [BR, HU, Ka, VK]), and
for the proof of the multiplicity-freeness property of representations, typical approaches are
the following: verifying the existence of an open orbit of a Borel subgroup; using a combi-
natorial method (computing or estimating coefficients of the character of a representation).
These two approaches work very well for (the direct sum of) finite dimensional represen-
tations, but it would be hard to apply them to the infinite dimensional representations
with continuous spectra. A new approach has been introduced by Kobayashi, namely, the
propagation theorem of the multiplicity-freeness property under visible actions:
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Fact 1.0.4 (Kobayashi [Ko3]). Let G be a Lie group and W a G-equivariant Hermi-
tian holomorphic vector bundle on a connected complex manifold X. Let V be a unitary
representation of G. If the following conditions from (0) to (3) are satisfied, then V is
multiplicity-free as a representation of G.

(0) There exists a continuous and injective G-intertwining operator from V to the space
O(X,W) of holomorphic sections of W.

(1) The action of G on X is S-visible. That is, there exist a subset S ⊂ X and an anti-
holomorphic diffeomorphism σ of X ′ satisfying the conditions given in Definition
1.0.1. Further, there exists an automorphism σ̂ of G such that σ(g · x) = σ̂(g) · σ(x)
for any g ∈ G and x ∈ X ′.

(2) For any x ∈ S, the fiber Wx at x decomposes as the multiplicity-free sum of irreducible

unitary representations of the isotropy subgroup Gx. Let Wx =
⊕

1≤i≤n(x)

W(i)
x denote

the irreducible decomposition of Wx.

(3) σ lifts to an anti-holomorphic automorphism σ̃ of W and satisfies σ̃(W(i)
x ) = W (i)

x

for each x ∈ S (1 ≤ i ≤ n(x)).

The advantage of this new approach is that not only finite dimensional cases but also
infinite dimensional (both discrete and continuous spectra) cases can be applied by this
method. Indeed, we can see in the statement of the above theorem that we do not need to
assume

G is compact, reductive,

V is of finite-dimensional, discretely decomposable, or

X is compact.

In the following, we quote a few examples of applications of Fact 1.0.4 from [Ko2]. The first
example is an infinite dimensional unitary representation with only continuous spectrum.

Example 1.0.5. Let G be a semisimple Lie group and K a maximal compact subgroup
of G. Then it is well-known that the space L2(G/K) of square integrable functions on the
Riemannian symmetric space G/K is multiplicity-free (see [Wo] for example). We can also
prove the multiplicity-freeness property by combining Fact 1.0.4 with the following facts.

• The G-action on the complexification GC/KC is strongly visible by Kobayashi [Ko2].

• Let U be the complex crown of G/K, which was introduced by Akhiezer and Gindikin
[AG]. Then there exists a G-embedding L2(G/K) ↪→ O(U) by Krötz and Stanton
[KS].

Next, we give an example of a multiplicity-free representation arising from a visible
action of a semisimple Lie group on a Hermitian symmetric space.

Example 1.0.6. Let G be a simple Lie group of Hermitian type, K a maximal compact
subgroup and H a symmetric subgroup of G, i.e., H is an open subgroup of the τ -fixed
points subgroup Gτ for an involution τ of G. Let π be a unitary highest weight represen-
tation of the scalar type of G. Then the restriction of π to H is multiplicity-free [Ko5] by
Fact 1.0.4 combined with the following facts.
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• π can be realized in the space O(G/K,L) of holomorphic sections of a G-equivariant
holomorphic line bundle L on the Hermitian symmetric space G/K.

• The H-action on G/K is strongly visible by Kobayashi [Ko5] by the Cartan decompo-
sition G = HAK in the symmetric setting (see Flensted-Jensen [Fl1], Hoogenboom
[Ho] and Matsuki [Ma2, Ma3]).

As the last example, we show a multiplicity-free representation of a non-reductive Lie
group.

Example 1.0.7. Let G, K and π as in Example 1.0.6. Let N be a maximal unipotent
subgroup of G. Then the restriction of π to N is multiplicity-free by Fact 1.0.4 combined
with the facts that π can be realized in O(G/K,L) for a G-equivariant holomorphic line
bundle L on G/K, and that the action of N on G/K is strongly visible by Kobayashi [Ko2]
by the Iwasawa decomposition G = NAK.

As these examples show, we can obtain multiplicity-free representations from a visible
action of a Lie group. Therefore it would be natural to try to find, or even classify, visible
actions. In the following, we exhibit preceding results on a classification problem of visible
actions. We firstly state a result on visible actions on symmetric spaces.

Fact 1.0.8 (Kobayashi [Ko5]). Let (G,K) be a Hermitian symmetric pair and (G,H) a
symmetric pair. Then H acts on the Hermitian symmetric space G/K strongly visibly.

The next result concerns the visibility of linear actions. Let GC be a connected complex
reductive algebraic group and V a finite-dimensional representation of GC.

Definition 1.0.9. We say V is a linear multiplicity-free space of GC if the space C[V ] of
polynomials on V is multiplicity-free as a representation of GC.

Fact 1.0.10 (Sasaki [Sa1, Sa4]). Let V be a linear multiplicity-free space of GC. Then a
compact real form U of GC acts on V strongly visibly.

Remark 1.0.11. We note that if U acts on a representation V of GC strongly visibly, then
V is a linear multiplicity-free space of GC by Fact 1.0.4.

A linear multiplicity-free space is a special case of smooth affine spherical varieties.
Let GC be a connected complex reductive algebraic group and X a connected complex
algebraic GC-variety.

Definition 1.0.12. We say X is a spherical variety of GC if a Borel subgroup B of GC has
an open orbit on X.

A typical example of spherical varieties is a complex symmetric space (e.g. GC =
GL(n,C) and X = GL(n,C)/(GL(m,C) × GL(n − m,C))). The third result deals with
visible actions on affine homogeneous spherical varieties.

Fact 1.0.13 (Sasaki [Sa2, Sa3, Sa5]). Let GC/HC be one of the following affine homoge-
neous spherical varieties:

SL(m+ n,C)/(SL(m,C)× SL(n,C)) (m ̸= n),

Spin(4n+ 2,C)/SL(2n+ 1,C),
SL(2n+ 1,C)/Sp(n,C),
E6(C)/Spin(10,C),
SO(8,C)/G2(C).
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Then the action of a compact real form U of GC on GC/HC is strongly visible.

Lastly we state a classification result on visible actions on generalized flag varieties of
type A, which is the prototype of the main result of this paper. Let G = U(n) and L,H
Levi subgroups of G. Kobayashi [Ko4] classified the triple (G,H,L) such that the following
actions are strongly visible (we denote by ∆(G) the diagonal subgroup of G×G).

L↷ G/H, H ↷ G/L, ∆(G) ↷ (G×G)/(H × L).

In fact, all the above three actions are strongly visible if and only if at least one of those is
strongly visible [Ko2]. The visibility of the three actions on generalized flag varieties was
proved by giving a generalized Cartan decomposition:

Definition 1.0.14. Let G be a connected compact Lie group, T a maximal torus and H,L
Levi subgroups of G, which contain T . We take a Chevalley–Weyl involution σ of G with
respect to T . If the multiplication mapping

L×B ×H → G

is surjective for a subsetB of the σ-fixed points subgroupGσ, then we say the decomposition
G = LBH is a generalized Cartan decomposition.

Definition 1.0.15. An involution σ of a compact Lie group G is said to be a Chevalley–
Weyl involution if there exists a maximal torus T of G such that σ(t) = t−1 for any t ∈ T .

The definition of a generalized Cartan decomposition comes from that of a visible action.
Let us explain. We retain the setting of Definition 1.0.14. Suppose that G = LBH holds
for some B ⊂ Gσ. Since σ acts on generalized flag varieties

G/H, G/L, (G×G)/(H × L)

as anti-holomorphic diffeomorphisms, we can obtain three strongly visible actions.

L↷ G/H, H ↷ G/L, ∆(G) ↷ (G×G)/(H × L).

Furthermore, we can obtain three multiplicity-free theorems by using Fact 1.0.4.

indG
H χH |L, indG

L χL|H , indG
H χH ⊗ indG

L χL.

Here indG
H χH and indG

L χL denote the holomorphically induced representations from uni-
tary characters χH and χL of H and L, respectively. As we saw, one generalized Cartan
decomposition leads us to three strongly visible actions, and three multiplicity-free theo-
rems (Kobayashi’s triunity principle [Ko1]).

As the name indicates, the decompositionG = LBH can be regarded as a generalization
of the Cartan decomposition. Under the assumption that both (G,H) and (G,L) are
symmetric pairs, the decomposition theorem of the form G = LBH or its variants has
been well-established: G = KAK with K compact by É. Cartan, G = KAH with G, H
non-compact and K compact by Flensted-Jensen [Fl1], G = KAH with G compact by
Hoogenboom [Ho], and the double coset decomposition L\G/H by Matsuki [Ma2, Ma3].
We note that in our setting the subgroups L and H of G are not necessarily symmetric.
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1.1 Main result 1: Classification of visible triples

The theorem below gives a classification of generalized Cartan decompositions (Definition
1.0.14).

Theorem 1.1.1 ([Ta2, Ta3, Ta4, Ta5]). Let G be a connected compact simple Lie group, T
a maximal torus, Π a simple system and L1, L2 Levi subgroups of G, whose simple systems
are given by proper subsets Π1,Π2 of Π. Let σ be a Chevalley–Weyl involution of G with
respect to T . Then the triples (G,L1, L2) listed below exhaust all the triples such that the
multiplication mapping

L1 ×B × L2 → G

is surjective for a subset B of Gσ.

Remark 1.1.2. For the type A simple Lie groups (or G = U(n)), this theorem was proved
by Kobayashi [Ko4].

In the following, we specify only the types of simple Lie groups G since our classification
is independent of coverings, and list pairs (Π1,Π2) of proper subsets of Π instead of pairs
(L1, L2) of Levi subgroups of G. Also, we put (Πj)

c := Π \ Πj (j = 1, 2).

Classification for type An [Ko4]

α1 α2 α3 αn−2αn−1 αn

◦ ◦◦ ◦ ◦ ◦

Hermitian type:

I. (Π1)
c = {αi}, (Π2)

c = {αj}.

Non-Hermitian type:

I. (Π1)
c = {αi, αj}, (Π2)

c = {αk}, min
p=i,j

{p, n+ 1− p} = 1 or i = j ± 1.

II. (Π1)
c = {αi, αj}, (Π2)

c = {αk}, min{k, n+ 1− k} = 2.

III. (Π1)
c = {αl}, Π2: arbitrary, l = 1 or n.

Here i, j, k satisfy 1 ≤ i, j, k ≤ n.

Classification for type Bn

α1 α2 α3 αn−2αn−1 αn

◦ ◦◦ ◦ ◦ ◦ +3

Hermitian type:

I. (Π1)
c = {α1}, (Π2)

c = {α1}.

Non-Hermitian type:

I. (Π1)
c = {αn}, (Π2)

c = {αn}.

II. (Π1)
c = {α1}, (Π2)

c = {αi}, 2 ≤ i ≤ n.
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Classification for type Cn

α1 α2 α3 αn−2αn−1 αn

◦ ◦◦ ◦ ◦ ◦ks

Hermitian type:

I. (Π1)
c = {αn}, (Π2)

c = {αn}.

Non-Hermitian type:

I. (Π1)
c = {α1}, (Π2)

c = {αi}, 1 ≤ i ≤ n.

Classification for type Dn

α1 α2 αn−3αn−2

αn

αn−1

◦ ◦ ◦ ◦
◦

@@@
@
◦~~~~

Hermitian type:

I. (Π1)
c = {αi}, (Π2)

c = {αj}, i, j ∈ {1, n− 1, n}.

Non-Hermitian type:

I. (Π1)
c = {α1}, (Π2)

c = {αj}, j ̸= 1, n− 1, n.

II. (Π1)
c = {αi}, (Π2)

c = {αj}, i ∈ {n− 1, n}, j ∈ {2, 3}.

III. (Π1)
c = {αi}, (Π2)

c = {αj, αk}, i ∈ {n− 1, n}, j, k ∈ {1, n− 1, n}.

IV. (Π1)
c = {αi}, (Π2)

c = {α1, α2}, i ∈ {n− 1, n}.

V. (Π1)
c = {α1}, (Π2)

c = {αj, αk}, j or k ∈ {n− 1, n}.

VI. (Π1)
c = {αi}, (Π2)

c = {α2, αj}, n = 4, (i, j) = (3, 4) or (4, 3).

Classification for type E6

α1 α3 α4 α5 α6

α2

◦ ◦ ◦ ◦ ◦

◦

Hermitian type:

I. (Π1)
c = {αi}, (Π2)

c = {αj}, i, j ∈ {1, 6}.

Non-Hermitian type:

I. (Π1)
c = {αi}, (Π2)

c = {α1, α6}, i = 1 or 6.

II. (Π1)
c = {αi}, (Π2)

c = {αj}, i = 1 or 6, j ̸= 1, 4, 6.
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Classification for type E7

α1 α3 α4 α5 α6 α7

α2

◦ ◦ ◦ ◦ ◦ ◦

◦

Hermitian type:

I. (Π1)
c = {α7}, (Π2)

c = {α7}.

Non-Hermitian type:

I. (Π1)
c = {α7}, (Π2)

c = {αi}, i = 1 or 2.

Classification for type E8, F4, G2

There is no pair (Π1,Π2) of proper subsets of Π such that G = L1G
σL2 holds.

For the proof of sufficiency of Theorem 1.1.1, we use the herringbone stitch method
introduced by Kobayashi [Ko4], which reduces unknown decompositions to the known
decomposition in the symmetric case. This method enables us to obtain a generalized
Cartan decomposition G = L1BL2 with B ⊂ Gσ (Definition 1.0.14). For the proof of
necessity in the classical case, we prove that G ̸= L1G

σL2 for any pair (Π1,Π2) which is
not in the list in Theorem 1.1.1 by using invariant theory for quivers associated to Levi
subgroups. For the proof in the exceptional case, we use Fact 1.0.4 and Stembridge’s
classification of multiplicity-free tensor product representations ([St2]). See Chapters 2–5
for the details.

1.2 Main result 2: Classification of visible actions on

generalized flag varieties

As we explained before, one generalized Cartan decomposition (Definition 1.0.14) leads us
to three strongly visible actions. The following corollary shows that the converse is also
true in our setting. Therefore we can obtain a classification of visible actions on generalized
flag varieties from Theorem 1.1.1.

Corollary 1.2.1 ([Ta1]). We retain the setting of Theorem 1.1.1. We denote by GC and
(Lj)C the complexifications of G and Lj, respectively (j = 1, 2). We let Pj be a parabolic
subgroup of GC with Levi subgroup (Lj)C, and put Pj = GC/Pj (j = 1, 2). Then the
following eleven conditions are equivalent.

(i) The multiplication mapping L1 ×Gσ × L2 → G is surjective.

(ii) The natural action L1 ↷ P2 is strongly visible.

(iii) The natural action L2 ↷ P1 is strongly visible.

(iv) The diagonal action ∆(G) ↷ P1 × P2 is strongly visible.
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(v) Any irreducible representation of G, which belongs to P2-series is multiplicity-free
when restricted to L1.

(vi) Any irreducible representation of G, which belongs to P1-series is multiplicity-free
when restricted to L2.

(vii) The tensor product of arbitrary two irreducible representations π1 and π2 of G, which
belong to P1 and P2-series, respectively, is multiplicity-free.

(viii) P2 is a spherical variety of (L1)C.

(ix) P1 is a spherical variety of (L2)C.

(x) P1 × P2 is a spherical variety of ∆(GC).

(xi) The pair (Π1,Π2) is one of the entries listed in Theorem 1.1.1 up to switch of the
factors.

Here an irreducible representation of G is in Pj-series if it is a holomorphically induced
representation from a unitary character of the Levi subgroup Lj (j = 1, 2).

Proof. ∗ We prove that Theorem 1.1.1 implies this corollary. The strategy of the proof is
summarized in the below diagram.

(vii) · · · · · ·multiplicity-free

⇔

(xi) · · · · · · classification of (L1, L2)

⇔

(i) · · · · · ·Cartan decomposition

⇐ ⇐ ⇒
(ii) (iv) (iii) · · · · · · visible action

⇐ ⇐ ⇐

(v) ⇔ (vii) ⇔ (vi)· · · · · ·multiplicity-free

⇔ ⇔ ⇔

(viii) (x) (ix)· · · · · · spherical action.

The implication (vii) ⇒ (xi) can be verified by comparing Stembridge’s classification
[St2] with Theorem 1.1.1. The converse implication (xi) ⇒ (vii) follows from Fact 1.0.4.
The equivalence (xi) ⇔ (i) is Theorem 1.1.1. The implications (i) ⇒ (ii), (i) ⇒ (iii) and
(i) ⇒ (iv) are the triunity of visibility ([Ko1]). Each of the three implications (ii) ⇒ (v),
(iii) ⇒ (vi) and (iv) ⇒ (vii) is followed by Fact 1.0.4. As in the proof of [Ko2, Corollary
15], we see that a result of Vinberg and Kimel’fel’d [VK, Corollary 1] implies the three
equivalences (v) ⇔ (viii), (vi) ⇔ (ix) and (vii) ⇔ (x). The equivalence (v) ⇔ (vii) ⇔ (vi)
on the multiplicity-freeness property of representations follows from a result of Stembridge
[St2, Corollary 2.5]. This completes the proof of the corollary.

Remark 1.2.2. For the type A simple Lie groups (or G = U(n)), this corollary was proved
by Kobayashi [Ko2].

∗This proof for Corollary 1.2.1 is quoted from [Ta1].
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Remark 1.2.3. Littelmann [Li] classified for any simple algebraic group G over any al-
gebraically closed field of characteristic zero, all the pairs of maximal parabolic subgroups
Pω and Pω′ corresponding to fundamental weights ω and ω′, respectively, such that the
tensor product representation Vnω ⊗Vmω′ decomposes multiplicity-freely for arbitrary non-
negative integers n and m. Moreover, he found the branching rules of Vnω ⊗ Vmω′ and the
restriction of Vnω to the maximal Levi subgroup Lω′ of Pω′ for any pair (ω, ω′) that admits
a ∆(G)-spherical action on G/Pω ×G/Pω′ .

Remark 1.2.4. Stembridge [St2] gave a complete list of a pair (µ, ν) of highest weights
such that the corresponding tensor product representation Vµ ⊗ Vν is multiplicity-free for
any complex simple Lie algebra g. His method was combinatorial and not based on the
Borel–Weil realization of irreducible representations. He also classified all the pairs (µ, l)
of highest weights µ and Levi subalgebras l of g with the restrictions Vµ|l multiplicity-free.

1.3 Main result 3: Seeds and visible actions for the

orthogonal group

As we mentioned in Remark 1.2.4, finite dimensional multiplicity-free tensor product rep-
resentations were classified by Stembridge [St2]. By using the notion of visible actions
on complex manifolds, we would be able to, and indeed can in the types A, B and D
cases, understand his classification more deeply. By Fact 1.0.4, we can reduce complicated
multiplicity-free theorems to a pair of data:

visible actions on complex manifolds, and

much simpler multiplicity-free representations (seeds of multiplicity-free representa-
tions).

For the type A simple Lie groups, Kobayashi found the following seeds of multiplicity-free
representations that combined with visible actions can produce all the cases of the pair of
two representations (V1, V2) of U(n) such that V1 ⊗ V2 is multiplicity-free [Ko1].

• One-dimensional representations.

• (U(n) ↓ Tn) The restriction of an alternating tensor product representation Λk(Cn).

• (U(n) ↓ Tn) The restriction of a symmetric tensor product representation Sk(Cn).

• (U(n) ↓ U(n1)×U(n2)×U(n3)) The restriction of an irreducible representation V2ωk

(n = n1 + n2 + n3).

Here Vλ denotes an irreducible representation of U(n) with highest weight λ and {ωk}1≤k≤n−1

is the set of fundamental weights of U(n). On the other hand, he classified in [Ko4] visible
actions on generalized flag varieties of type A as listed in Theorem 1.1.1. By combining
the above seeds of multiplicity-free representations with the visible actions and using his
triunity principle, Kobayashi constructed all the multiplicity-free tensor product represen-
tations of U(n) [Ko1]. In this paper we construct all the multiplicity-free tensor product
representations for SO(N) and its covering group Spin(N) by following Kobayashi’s argu-
ment for U(n). In our case, visible actions come from triples (G,L1, L2) for G = Spin(N)
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listed in Theorem 1.1.1 as in the case of the type A groups. On the other hand, seeds
of multiplicity-free tensor product representations arise only from one-dimensional repre-
sentations, alternating tensor product representations and spin representations. These are
exhibited in Proposition 1.3.1. We can see how to combine those visible actions and seeds
to obtain multiplicity-free tensor product representations in Theorem 1.3.2.

We denote by Π = {αi}1≤i≤[N/2] (see Theorem 1.1.1 for the labeling of the Dynkin
diagrams) a simple system of the root system of G = Spin(N) with respect to its maximal
torus T , and by {Hi}1≤i≤[N/2] the dual basis of Π. We define a subgroupM of Spin(2n+1)
as follows.

M :=
{
exp

(√
−1mπH1

)}
1≤m≤4

· Spin(2n− 1), (1.3.1)

where exp denotes the exponential mapping, and the simple system of Spin(2n−1) is given
by {αk ∈ Π : 2 ≤ k ≤ n}.

Proposition 1.3.1. We denote by 1, CN and SpinN for the one-dimensional trivial repre-
sentation, the natural representation and the spin representation of Spin(N), respectively.
Then the following hold.

(1) One-dimensional representations are multiplicity-free.

(2) 1, CN and SpinN are multiplicity-free as representations of a maximal torus T of
Spin(N).

(3) Λi(CN) is multiplicity-free as a representation of a maximal Levi subgroup U(j) ×
SO(N − 2j) of SO(N) (when N is even and i = N/2, we replace ΛN/2(CN) by
its SO(N)-irreducible constituent whose highest weight is 2ωN/2−1 or 2ωN/2) if the
following condition (3-1) or (3-2) is satisfied (1 ≤ i, j ≤ [N/2]).

(3-1) N is odd.

(3-2) N is even, and i, j satisfy i+ j ≤ N/2, j = N/2 or i = N/2.

(4) SpinN is multiplicity-free as a representation of M , where N is odd and M as in
(1.3.1).

The theorem below gives a geometric construction of all the multiplicity-free tensor
product representations for the orthogonal group. For a realization of irreducible repre-
sentations of a compact Lie group, we use the Borel–Weil theory. Namely, we realize an
irreducible representation of a compact Lie group G as the space O(G/L,W) of holomor-
phic sections of a vector bundle W on a generalized flag variety G/L, which is associated
to an irreducible representation W of a Levi subgroup L of G.

Theorem 1.3.2. We let G = Spin(N). For any two irreducible representations Vλ1 and
Vλ2 of G such that Vλ1 ⊗ Vλ2 is multiplicity-free, there exists a pair of

• a generalized flag variety (G×G)/(L1×L2) with a strongly visible ∆(G)-action, and

• irreducible representations (a seed given in Proposition 1.3.1) W1 and W2 of L1 and
L2, respectively,
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such that Vλk
≃ O(G/Lk,Wk) as G-modules (k = 1, 2).

The correspondence between the data (Lk,Wk) of visible actions and seeds, and the
highest weights λk of Vλk

(k = 1, 2) is given as in Tables 1.3.1–1.3.4 below. In the tables,
Cλ denotes a one-dimensional representation with weight λ, T a maximal torus of G and
Lλ a Levi subgroup of G, whose simple system is given by {αl ∈ Π : ⟨λ, α̌l⟩ = 0} where α̌l

is the coroot of αl (1 ≤ l ≤ [N/2]).

Table 1.3.1: Line bundle type
L1 L2 W1 W2 N λ1 λ2
Lλ1 Lλ2 Cλ1 Cλ2 2n+ 1 sω1 tωj

sωn tωn

2n sω1 tωj + uωn−δ

sωn−δ tω3, tω1 + uω2, tω1 + uωn−δ′

or tωn−1 + uωn

8 sω5−ϵ tω2 + uω2+ϵ

1 ≤ j ≤ n, s, t, u ∈ N, δ = 0 or 1, δ′ = 0 or 1 and ϵ = 1 or 2.

Table 1.3.2: Weight multiplicity-free type
L1 L2 W1 W2 N λ1 λ2
G T Vλ1 Cλ2 2n+ 1 0, ω1 or ωn arbitrary

2n 0, ω1, ωn−1 or ωn arbitrary

Table 1.3.3: Alternating tensor product type
L1 L2 W1 W2 N λ1 λ2 Condition
G Lλ2 Vλ1 Cλ2 2n+ 1 ωi or 2ωn tωj

2n ωi tωj i+ j ≤ n
ωi tωn−δ

2ωn−δ tωj

1 ≤ i, j ≤ n, t ∈ N and δ = 0 or 1.

Table 1.3.4: Spin type
L1 L2 W1 W2 N λ1 λ2
Lλ1 Lωj

Cλ1 C(1/2+t)ωj
⊠ SpinN−2j 2n+ 1 sω1 ωn + tωj

1 ≤ j ≤ n− 1 and s, t ∈ N.

See Chapter 6 for the proof of Theorem 1.3.2. By virtue of Fact 1.0.4 and the triunity
principle [Ko1], we obtain the following corollary. This corollary was proved by Stembridge
[St2] by a combinatorial method.

Corollary 1.3.3. We retain the notation of Theorem 1.3.2. For the data (L1, L2, N ,
λ1, λ2) of each row in Tables 1.3.1–1.3.4, the representations Vλ1 and Vλ2 of G decompose
multiplicity-freely when restricted to the subgroups L2 and L1 of G, respectively.
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So far we have considered visible actions of Levi subgroups on generalized flag varieties.
For a general spherical variety, we have the following result on the visibility of actions of
compact Lie groups. Let U be a compact real form of a connected complex reductive
algebraic group GC, and X a GC-spherical variety. We denote by θ the Cartan involution
of GC, which corresponds to U , and by ν a Chevalley–Weyl involution of GC (i.e., ν is an
involution of GC, which satisfies ν(t) = t−1 for any element t ∈ TC for some maximal torus
TC), which preserves U . We put ι = θ ◦ ν.

Theorem 1.3.4. Assume that there exists a real structure µ on a GC-spherical variety X
compatible with ι and that the µ-fixed points subset Xµ is non-empty. Then a compact real
form U acts on X strongly visibly.

Here by a real structure on a complex manifold Z we mean an anti-holomorphic invo-
lution η : Z → Z [Ak, AC]. Also for a real structure η on a complex manifold Z with an
action of a group K, we say η is compatible with an automorphism ϕ of K if η satisfies
η(kz) = ϕ(k)η(z) for any k ∈ K and z ∈ Z. Combining Theorem 1.3.4 with Akhiezer’s
result [Ak] on the existence of compatible real structures on Stein manifolds, we obtain

Corollary 1.3.5. Let (GC, V ) be a linear multiplicity-free space. Then a compact real form
U acts on V strongly visibly.

Corollary 1.3.6. Let X be a smooth affine GC-spherical variety. Then a compact real
form U acts on X strongly visibly.

Here a typical example of smooth affine spherical varieties is a complex symmetric
space. On the other hand, we have the principal affine space GC/N (N is a maximal
unipotent subgroup) as an example of non-affine smooth spherical varieties. We remark
that Corollary 1.3.5 was earlier proved by Sasaki (Fact 1.0.10) by constructing slices ex-
plicitly. By combining Theorem 1.3.4 with Akhiezer and Cupit-Foutou’s result [AC], we
also have

Corollary 1.3.7. Let X be a GC-wonderful variety. Then a compact real form U acts on
X strongly visibly.

Definition 1.3.8. A GC-variety X is said to be wonderful if

• X is smooth and projective,

• GC has an open orbit on X, whose complement is a union of finitely many smooth
prime divisors Xi (i ∈ I) with normal crossings, and

• the closure of any GC-orbit on X is given as a partial intersection of Xi (i ∈ I).

To prove the visibility of actions of non-compact reductive groups on complex manifolds,
we use the following extension of a result of Matsuki [Ma2, Ma3]. Let L and H be reductive
subgroups of a connected real semisimple algebraic group G such that both GC/LC and
GC/HC are GC-spherical varieties.

Theorem 1.3.9. There exist finitely many abelian subspaces ji of g and elements xi of
G (i = 1, . . . ,m) such that

∪m
i=1 LCiH contains an open dense subset of G, where Ci =

exp(ji)xi.
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We use this decomposition to show the previsibility of actions of non-compact reductive
groups.

Theorem 1.3.10. Let X be a GC-spherical variety and G a real form of inner type of GC.
Then G acts on X previsibly.

Here a real reductive Lie group is said to be of inner type if its Lie algebra has a compact
Cartan subalgebra.

See Chapter 7 for the proofs of Theorems 1.3.4 and 1.3.10, and Corollaries 1.3.5–1.3.7.
The proof of Theorem 1.3.9 is given in Chapter 9.

19



Bibliography

[Ak] D. Akhiezer, Spherical Stein manifolds and the Weyl involution, Ann. Inst. Fourier
(Grenoble) 59 (2009), no. 3, 1029–1041.

[AC] D. Akhiezer and S. Cupit-Foutou, On the canonical real structure on wonderful va-
rieties, J. Reine Angew. Math. 693 (2014), 231–244.

[AV] D. Akhiezer and E. Vinberg, Weakly symmetric spaces and spherical varieties, Trans-
form. Groups 4 (1999), no. 1, 3–24.

[BR] C. Benson and G. Ratcliff, A classification of multiplicity free actions, J. Algebra
181 (1996), 152–86.

[Bo] N. Bourbaki, Lie Groups and Lie Algebras. Chapters 4–6, translated from the 1968
French original by Andrew Presdsley, Elements of Mathematics (Berlin), Springer,
Berlin, 2002.

[Br] M. Brion, Classification des espaces homogenes spheriques, Compositio Math. 63
(1987), no. 2, 189–208.

[BLV] M. Brion, D. Luna and Th. Vust, Espaces homogènes sphériques, Invent. Math. 84
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Organization of this thesis

Each of the following chapters could be read independently of the other chapters. We give
a classification of generalized Cartan decompositions for compact Lie groups (Definition
1.0.14) of the types B, C, D and of the exceptional type in Chapters 2, 3, 4 and 5, respec-
tively. Those classification results combined with [Ko4] show Theorem 1.1.1. In Chapter
6, we deal with seeds for multiplicity-free representations of the types B and D groups, and
prove Theorem 1.3.2. In Chapter 7, we prove the visibility of actions of reductive groups
on spherical varieties. In Chapter 8, we give another proof for the existence of generalized
Cartan decompositions for compact Lie groups (Definition 1.0.14), which is useful for an
explicit calculation. A KAK-decomposition for Gelfand pairs is also given there. In Chap-
ter 9, we deal with a double coset decomposition of a real reductive group with respect to
reductive spherical subgroups and prove Theorem 1.3.9.
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Chapter 2

Visible actions on flag varieties of
type B and a generalization of the
Cartan decomposition

2.1 Introduction for Chapter 2

Let G be a connected compact simple Lie group of type B and σ a Chevalley–Weyl invo-
lution of G. The aim of this section is to classify all the pairs (L,H) of Levi subgroups of
G such that G = LGσH holds. The motivation for considering this kind of decomposition
comes from the theory of visible actions on complex manifolds introduced by T. Kobayashi
([Ko2]), and G = LGσH can be interpreted as a generalization of the Cartan decomposi-
tion to the non-symmetric setting. (We refer the reader to [He1], [Ho], [Ma2] and [Ko4]
and references therein for some aspects of the Cartan decomposition from geometric and
group theoretic viewpoints.)

A generalization of the Cartan decomposition for symmetric pairs has been used in
various contexts including analysis on symmetric spaces, however, there was no analogous
result for non-symmetric cases before Kobayashi’s paper [Ko4]. Motivated by visible actions
on complex manifolds ([Ko1], [Ko2]), he completely determined the pairs of Levi subgroups

(L,H) = (U(n1)× · · · × U(nk),U(m1)× · · · × U(ml))

of the unitary group G = U(n) such that the multiplication mapping L×O(n)×H → G is
surjective. Furthermore he developed a method to find a suitable subset B of O(n) which
gives the following decomposition (a generalized Cartan decomposition, see [Ko4]):

G = LBH.

On the other hand, A. Sasaki studied recently visible actions in the setting where (G,H) is a
pair of complex reductive Lie groups, and gave a generalization of the Cartan decomposition
G = LBH ([Sa2], [Sa3]).

Back to the decomposition theory [Ko4], we consider the following problems:

The contents of this section are taken from [Ta2].
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Let G be a connected compact Lie group, t a Cartan subalgebra, and σ a Chevalley–
Weyl involution of G with respect to t. (Here, we recall that an involutive automorphism
µ of a connected compact Lie group K is said to be a Chevalley–Weyl involution if there is
a maximal torus T of K such that µ(t) = t−1 for every t ∈ T . For instance, an involution
σ(g) = ḡ defines a Chevalley–Weyl involution of G = U(n) with the standard maximal
torus, and Gσ = {g ∈ U(n) : ḡ = g} ≃ O(n).)

1) Classify all the pairs of Levi subgroups L and H with respect to t such that the
multiplication mapping ψ : L×Gσ ×H → G is surjective.

2) Find a “good” representative B ⊂ Gσ such that G = LBH in the case ψ is surjective.
We call such a decomposition G = LBH a generalized Cartan decomposition. Here we

note that the role of the subgroups H and L is symmetric.
In the present chapter, we solve the above problems for connected compact simple Lie

groups G of type B. In order to state the results, we label the Dynkin diagram of type
Bn as follows. For a subset Π′ of the set Π of simple roots, we denote by LΠ′ the Levi

α1 α2 α3 αn−2 αn−1 αn

• • • • • •+3

Figure 2.1.1: Dynkin diagram of type Bn

subgroup whose root system is generated by Π′. For example, L∅ is a maximal torus of G
and L{αp}c = U(p)× SO(2(n− p) + 1) for G = SO(2n+1) (1 ≤ p ≤ n). Here (Π′)c denotes
the complement Π \ Π′.

Theorem 2.1.1. Let G be a connected compact simple Lie group of type Bn, σ a Chevalley–
Weyl involution, Π′, Π′′ proper subsets of the simple system Π, and LΠ′, LΠ′′ the corre-
sponding Levi subgroups. Then the following two conditions on {Π′,Π′′} are equivalent.
(i). G = LΠ′ Gσ LΠ′′.
(ii).One of the following conditions holds up to switch of the factors Π′ and Π′′ :

Case I. (Π′)c = {αn}, (Π′′)c = {αn}.
Case II. (Π′)c = {α1}, (Π′′)c = {αj}, 1 ≤ j ≤ n.

We note that the pair (G,LΠ′) forms a symmetric pair if and only if (Π′)c = {α1}, and
that G/LΠ′ = G/LΠ′′ is a (non-symmetric) spherical variety in Case I (c.f. [Kr]).

Theorem 2.1.1 implies that G = LGσH holds if and only if (G,L,H) satisfies one of
the following two conditions: Case I both H and L are maximal and of type A, or Case II
(G,H) is symmetric and L comes from a maximal parabolic subgroup up to switch of H
and L. In each case, we give a generalized Cartan decomposition G = LBH explicitly with
dimB = rankG in Case I and dimB = 2 or 3 in Case II. This is stated in Propositions
2.3.2 and 2.3.3.
Application to representation theory. A generalized Cartan decomposition G = LBH
implies that the subgroup L acts on G/H in a (strongly) visible fashion, and likewise H on
G/L, and G on (G×G)/(L×H). Then Kobayashi’s theory leads us to three multiplicity-
free theorems (triunity à la [Ko1]):

Restriction G ↓ L : IndG
H(Cλ)|L,

Restriction G ↓ H : IndG
L(Cλ)|H ,

Tensor product : IndG
H(Cλ)⊗ IndG

L(Cµ).
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Here IndG
H(Cλ) denotes a holomorphically induced representation of G from a character

Cλ of H by the Borel–Weil theorem. See [Ko1], [Ko2], [Ko3] for the general theory on the
application of visible actions (including the vector bundle setting), and Corollaries 2.5.4
and 2.5.5 for type B groups.
Organization. Chapter 2 is organized as follows. In Section 2.2, we give a matrix re-
alization of the orthogonal group G = SO(2n + 1) and its subgroups which are used in
Sections 2.3 and 2.4. In Section 2.3, we prove that (ii) implies (i). Furthermore, we find
explicitly a slice B that gives a generalized Cartan decomposition G = LΠ′ B LΠ′′ . The
converse implication on (ii) ⇒ (i) is proved in Section 2.4 by using the invariant theory for
quivers. An application to multiplicity-free representations is discussed in Section 2.5.

2.2 Matrix realization

The surjectivity of ψ : L×Gσ ×H → G is independent of the coverings and the choice of
Cartan subalgebras and Chevalley–Weyl involutions. Thus, we may and do work with the
orthogonal group SO(2n+1) and a fixed pair of a Cartan subalgebra and a Chevalley–Weyl
involution in Sections 2.2, 2.3 and 2.4.

Throughout this chapter, we realize G = SO(2n+ 1) as a matrix group as follows.

G := {g ∈ SL(2n+ 1,C) : tgJ2n+1g = J2n+1,
tgg = I2n+1}, (2.2.1)

where tg denotes the transpose of g, and Jm is defined by

Jm :=



1
1

O
. ..

O
1


∈ GL(m,R).

Then, the corresponding Lie algebra g = so(2n+ 1) of G forms

g := {X ∈ sl(2n+ 1,C) : tXJ2n+1 + J2n+1X = O, tX +X = O}. (2.2.2)

We take a Cartan subalgebra t and a involution σ of G as follows.

t :=
⊕
1≤i≤n

R
√
−1Hi, (2.2.3)

σ : G→ G, g 7→ ḡ, (2.2.4)

where Hi := Ei,i −E2n+2−i,2n+2−i, and ḡ denotes the complex conjugation of g ∈ G. The
differential of σ is denoted by the same letter. Then, σ is a Chevalley–Weyl involution of
G with respect to t.
We let {εi}1≤i≤n ⊂ (t ⊗R C)∗ be the dual basis of {Hi}1≤i≤n. Then we define a simple
system Π := {α1, ..., αn} by

α1 := ε1 − ε2, . . . , αn−1 := εn−1 − εn, αn := εn.
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Let n = n1 + · · ·+ nk be a partition of n with n1, ..., nk−1 > 0 and nk ≥ 0. We put

si :=
∑
1≤p≤i

np (1 ≤ i ≤ k − 1),

Π′ := Π \ {αsi ∈ Π : 1 ≤ i ≤ k − 1} ,

and denote by LΠ′ the Levi subgroup whose root system is generated by Π′. In the matrix
realization, LΠ′ takes the form:

LΠ′ =





A1

. . .

Ak–1

B
Jnk−1

Ak–1Jnk−1

. . .

Jn1A1Jn1


:
Ai ∈ U(ni) (1 ≤ i ≤ k − 1),

B ∈ SO(2nk + 1)


(2.2.5)

≃ U(n1)× · · · × U(nk−1)× SO(2nk + 1).

Here, we note that the pair (G,LΠ′) forms a symmetric pair if and only if (Π′)c = Π \Π′ =
{α1}, and that G/L{αn}c is a weakly symmetric space in the sense of Selberg. For a later
purpose, we give explicitly an involution τ1 and an automorphism µ satisfying µ4 = id of
which the connected component of fixed point subgroups are L{α1}c and L{αn}c respectively.

L{α1}c = (Gτ1)0, τ1 : G→ G, g 7→ I1,2(n−1)+1,1gI1,2(n−1)+1,1, (2.2.6)

L{αn}c = Gµ, µ : G→ G, g 7→ I√−1gI
√
−1, (2.2.7)

where K0 denotes the connected component of K containing the identity element for a Lie
group K, and I1,2(n−1)+1,1, I√−1 are defined by

I1,2(n−1)+1,1 := diag(−1,

2(n−1)+1︷ ︸︸ ︷
1, . . . , 1,−1),

I√−1 := diag(

n︷ ︸︸ ︷√
−1, . . . ,

√
−1, 1,

n︷ ︸︸ ︷
−
√
−1, . . . ,−

√
−1).

To obtain a generalized Cartan decomposition by the herringbone stitch method, we will
use an involutive automorphism τp of G (1 ≤ p ≤ n) given by

τp : G→ G, g 7→ Ip,2(n−p)+1,pgIp,2(n−p)+1,p, (2.2.8)

where Ip,2(n−p)+1,p := diag(

p︷ ︸︸ ︷
−1, . . . ,−1,

2(n−p)+1︷ ︸︸ ︷
1, . . . , 1,

p︷ ︸︸ ︷
−1, . . . ,−1). Then (Gτp)0 is given by

SO(2p)× SO(2n− 2p+ 1) = (2.2.9)
 A B

S
C D

 :

(
A B
C D

)
∈ SO(2p), S ∈ SO(2n− 2p+ 1)

.
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2.3 Generalized Cartan decomposition

In this section, we give a proof of the implication (ii) ⇒ (i) in Theorem 2.1.1. The idea
is to use the herringbone stitch method that reduces unknown decompositions for non-
symmetric pairs to the known Cartan decomposition for symmetric pairs.

2.3.1 Cartan decomposition for symmetric pairs.

In this subsection we recall a well-known fact on the Cartan decomposition for the sym-
metric case ([Ho, Theorem 6.10], [Ma3, Theorem 1]).

Fact 2.3.1. Let K be a connected compact Lie group with Lie algebra k and two involutions
τ , τ ′ (τ 2 = (τ ′)2 = id). Let H and L be subgroups of K such that

(Kτ )0 ⊂ L ⊂ Kτ and (Kτ ′)0 ⊂ H ⊂ Kτ ′ .

We take a maximal abelian subspace b in

k−τ,−τ ′ := {X ∈ k : τ(X) = τ ′(X) = −X},

and write B for the connected abelian subgroup with Lie algebra b. Suppose that ττ ′ is
semisimple on the center z of k. Then,

K = LBH.

2.3.2 Decomposition for Case I

This subsection is devoted to showing the following proposition.

Proposition 2.3.2 (generalized Cartan decomposition for Case I). Let G = SO(2n + 1)
and (Π′)c = (Π′′)c = {αn}. Then we have G = LΠ′ exp(a⊕q) LΠ′′ where a and q are defined
by

a :=

[n
2
]⊕

i=1

R(E2i−1,2n−2i+2−E2i,2n−2i+3−E2n−2i+2,2i−1 +E2n−2i+3,2i), (2.3.1)

q :=

[n+1
2

]⊕
i=1

R(E2i−1,n+1−En+1,2n+3−2i−En+1,2i−1 +E2n+3−2i,n+1). (2.3.2)

Proof. Since an automorphism µ of g is an involution of gµ
2
(see (2.2.7) for the definition

of µ) and a is a maximal abelian subspace of g−µ, we have

g = gµ ⊕

( ∪
g∈Gµ

Ad(g)a

)
⊕ g−µ2

. (2.3.3)

Let Zgµ(a) denote the centralizer of a in gµ. Then M := exp(Zgµ(a)) is given by

M =

{
SU(2)m (n = 2m),

SU(2)m × U(1) (n = 2m+ 1).
(2.3.4)
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By using this block diagonal matrix group M , we rewrite the third factor g−µ2
of the

decomposition (2.3.3) as follows.

g−µ2

=
∪
g∈M

Ad(g)q. (2.3.5)

We omit details since this can be verified by a simple matrix computation. The equation
(2.3.5) leads us to the following.( ∪

g∈Gµ

Ad(g)a

)
⊕ g−µ2

=
∪

g∈Gµ

Ad(g)(a⊕ q). (2.3.6)

Let us verify (2.3.6). It is clear that the left-hand-side contains the right-hand-side. We
show the converse inclusive relation. From (2.3.5), for any l ∈ Gµ, X ∈ a and Z ∈ g−µ2

there exist h ∈M and Y ∈ q satisfying

Ad(h)Y = Ad(l)−1Z.

Then we have

Ad(l)X + Z = Ad(l)(Ad(h)X) + Ad(lh)(Y )

= Ad(lh)(X + Y ).

Thus Ad(l)X + Z belongs to
∪

g∈Gµ Ad(g)(a⊕ q), and we have shown (2.3.6).
We are ready to give a generalized Cartan decomposition for Case I. We continue the

decomposition (2.3.3) as follows.

g = gµ ⊕

( ∪
g∈Gµ

Ad(g)a

)
⊕ g−µ2

= gµ ⊕

( ∪
g∈Gµ

Ad(g)(a⊕ q)

)
by (2.3.6).

Hence we can find that the exponential mapping

exp :
∪

g∈Gµ

Ad(g)(a⊕ q) → G/Gµ

is surjective ([He1]). Consequently we have

G = exp

( ∪
g∈Gµ

Ad(g)(a⊕ q)

)
Gµ

= Gµ exp(a⊕ q)Gµ

= LΠ′ exp(a⊕ q) LΠ′′ .
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2.3.3 Decomposition for Case II

The aim of this subsection is to show the following proposition.

Proposition 2.3.3 (generalized Cartan decomposition for Case II). Let G = SO(2n+ 1),
(Π′)c = {α1} and (Π′′)c = {αj} (1 ≤ j ≤ n). We define abelian subspaces b1 and b2 of g
by

b1 := R(E1,j+1 −E2n−j+1,2n+1−Ej+1,1 +E2n+1,2n−j+1) (2.3.7)

+ R(E1,2n−j+1−Ej+1,2n+1−E2n−j+1,1+E2n+1,j+1),

b2 := R(E1,2n−j+2 −Ej,2n+1−E2n−j+2,1 +E2n+1,j). (2.3.8)

Then we have G = LΠ′ exp(b1) exp(b2) LΠ′′.

Proof. We put L = LΠ′ , H = LΠ′′ for simplicity. Let us take a symmetric subgroup
G′G′′ = (Gτj)0 containing H where G′ and G′′ are given by G′ := SO(2j) × I2n−2j+1 and
G′′ := I2j × SO(2n− 2j+1). In light that b1 is a maximal abelian subspace of g−τ1,−τj , we
can see from Fact 2.3.1 that

G = L exp(b1)G
′G′′. (2.3.9)

We take a symmetric subgroup (G′)µ = U(j)× I2n−2j+1 of G′. We again use Fact 2.3.1 as
follows.

G′ = (G′)τ10 exp(b2)(G
′)µ. (2.3.10)

Further, the equality (2.3.10) can be rewritten as

G′ = (G′)τ1ss exp(b2)(G
′)µ, (2.3.11)

where (G′)τ1ss denotes the analytic subgroup of (G′)τ1 with Lie algebra the semisimple part
of the Lie algebra of (G′)τ1 . Then we continue the decomposition (2.3.9) as follows.

G = L exp(b1)G
′G′′ by (2.3.9)

= L exp(b1)((G
′)τ1ss exp(b2)(G

′)µ)G′′ by (2.3.11)

= L(G′)τ1ss exp(b1) exp(b2)(G
′)µG′′ by (G′)τ1ss ⊂ ZG(b1)

= L exp(b1) exp(b2)H by (G′)µG′′ = H.

Here is a herringbone stitch which we have used for L\G/H in Case II.

(G′)τ1ss⊂
G′ ·G′′

⊃
⊃

G (G′)µ

⊂
L

Figure 2.3.1: Herringbone stitch for Case II
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2.4 Application of invariant theory of quivers

This section aims for proving the implication (i) ⇒ (ii) in Theorem 2.1.1. We shall use
invariants of quivers for the proof as in [Ko4]. This section could be read independently of
Section 2.3 which gives a proof on the opposite implication (ii) ⇒ (i) in Theorem 2.1.1.

2.4.1 Invariants of quivers

In the sequel, the proofs of Lemmas 2.4.1, 2.4.2 and 2.4.3 are essentially the same as
[Ko4, Lemmas 6.1, 6.2 and 6.3] respectively. So, we give necessary changes and precise
statements, but omit the proof.

Let σ : M(N,C) → M(N,C) be the complex conjugation with respect to M(N,R).

Lemma 2.4.1. (c. f. [Ko4, Lemma 6.1]) Let G ⊂ GL(N,C) be a σ-stable subgroup, R ∈
M(N,R), and L a subgroup of G. If there exists g ∈ G such that

Ad(L)(Ad(g)R) ∩M(N,R) = ∅, (2.4.1)

then G ̸= LGσGR. Here GR := {h ∈ G : hRh−1 = R}.

We return to the case G = SO(2n+1). We fix a partition n = n1+ · · ·+nk with ni > 0
(1 ≤ i ≤ n− 1), nk ≥ 0, and a positive integer r ≥ 2. We consider the following loop:

i0 → i1 → · · · → ir, is ∈ {1, . . . , 2k − 1}, i0 = ir, is−1 ̸= is (1 ≤ s ≤ r).

Correspondingly to this loop, we define a non-linear mapping

Ai0···ir : M(2n+ 1,C) →

{
M(ni0 ,C) (i0 = ir ̸= k),

M(2ni0 + 1,C) (i0 = ir = k),

as follows: let P ∈ M(2n,C), and we write P as (Pij)1≤i,j≤2k−1 in the block matrix form
corresponding to the partition 2n+ 1 = n1 + · · ·+ nk−1 + (2nk + 1) + nk−1 + · · ·+ n1 such
that

Pij ∈


M(ni, nj;C) (i, j ̸= k),

M(2nk + 1, nj;C) (i = k, j ̸= k),

M(ni, 2nk + 1;C) (i ̸= k, j = k),

M(2nk + 1,C) (i = j = k),

(2.4.2)

where n2k−i := ni (1 ≤ i ≤ k). Then we define (P̃ )1≤i,j≤2k−1 and Ai0···ik(P ) by

P̃ij :=


Pij (i+ j ≤ 2k),

Jni
tP2k−j,2k−iJnj

(i+ j > 2k, i, j ̸= k),

J2nk+1
tP2k−j,kJnj

(i = k, j > k),

Jni
tPk,2k−iJ2nk+1 (i > k, j = k),

and
Ai0···ir(P ) := P̃i0i1P̃i1i2 · · · P̃ir−1ir .
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The point here is that for any l = (l1, . . . , lk−1, lk) ∈ L := U(n1)×· · ·×U(nk−1)×SO(2nk+1)
(see (2.2.5) in Section 2.2 for the realization as a matrix), the following equality holds.

˜(Ad(l)P )ij = liP̃ijl
−1
j . (2.4.3)

We omit details since (2.4.3) can be verified by a simple matrix computation. This equality
leads us to the following lemma (c. f. [Ko4, Lemma 6.2]):

Lemma 2.4.2. If there exists a loop i0 → i1 → · · · → ir such that at least one of the
coefficients of the characteristic polynomial det(λIni0

− Ai0···ir(P )) is not real, then

Ad(L)P ∩M(2n,R) = ∅.

Combining Lemma 2.4.1 with Lemma 2.4.2, we obtain the next lemma (c. f. [Ko4,
Lemma 6.3]):

Lemma 2.4.3. Let n = n1+· · ·+nk be a partition with ni > 0 (1 ≤ i ≤ n−1), nk ≥ 0, and
L = U(n1)× · · · ×U(nk−1)× SO(2nk + 1) the corresponding Levi subgroup of SO(2n+ 1).
Let us suppose that R is a block diagonal matrix :

R :=


R1

R2

. . .

R2k−1

 ,

where Rs, R2k−s ∈ M(ns,R) (1 ≤ s ≤ k − 1), Rk ∈ M(2nk + 1,R).
If there exist X ∈ so(2n+ 1) and a loop i0 → · · · → ir such that

det(λIni0
− Ai0···ir([X,R])) /∈ R[λ],

then the multiplication map L×Gσ×GR → G is not surjective. Here, [X,R] := XR−RX.

We shall use Lemma 2.4.3 in each of the subsequent Propositions 2.4.4, 2.4.5 and 2.4.6.

2.4.2 Necessary conditions for G = LGσH

Throughout this subsection, we set G = SO(2n+ 1) and (L,H) =

(U(n1)× · · · × U(nk−1)× SO(2nk + 1), U(m1)× · · · × U(ml−1)× SO(2ml + 1)),

where n = n1 + · · · + nk = m1 + · · · +ml with ni,mj > 0 (1 ≤ i ≤ k − 1, 1 ≤ j ≤ l − 1),
and nk,ml ≥ 0. We give necessary conditions on (L,H) under which G = LGσH holds.
We divide the proof into three cases (Propositions 2.4.4–2.4.6).

Proposition 2.4.4. G ̸= LGσH if k = 3, l = 2, m1 = 1.

Proposition 2.4.5. G ̸= LGσH if k = l = 2, n1,m1 ≥ 2, n2,m2 ̸= 0.

Proposition 2.4.6. G ̸= LGσH if k = l = 2, n1 ≥ 2, n2 ̸= 0, m2 = 0.

In the following proofs of Propositions 2.4.4, 2.4.5 and 2.4.6, all entries in the blank
space are zero in any matrix.
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Proof of Proposition 2.4.4. Let 1 → 3 → 5 → 2 → 1 be a loop, and R a diagonal matrix
R = diag(1, 0, . . . , 0,−1) of size (2n + 1) × (2n + 1). Then, GR coincides with H. Let us
fix u ∈ C and define X = (Xij)1≤i,j≤5 ∈ so(2n+1) in the block matrix form corresponding
to the partition 2n+ 1 = n1 + n2 + (2n3 + 1) + n2 + n1 as (2.4.2):

X13 :=E1,n3+1 =

 1

O O
0

 ∈ M(n1, 2n3 + 1;C),

X41 :=En2,1 =

(
O

1

)
, X21 := uE1,1 =

(
u

O
)

∈ M(n2, n1;C).

We define the block entries X11, X15, X22, X23, X24, X32, X33, X34, X42, X43, X44, X51

and X55 to be zero matrices. The remaining block entries are automatically determined
by the definition (2.2.2) of so(2n+ 1). Then Q := [X,R] has the following block entries:

Q13 = −E1,n3+1, Q41 = En2,1, Q21 = uE1,1 .

By a simple matrix computation, we have (here we recall k = 3)

A13521(Q) = Q13J2n3+1
tQ13Jn1Jn1

tQ41Jn2Q21 = uE1,1 ∈ M(n1,C).

Therefore we obtain

det(λIn1 − A13521(Q)) = λn1 − uλn1−1 /∈ R[λ] if u /∈ R.

By Lemma 2.4.3, we have shown G ̸= LGσH.

Proof of Proposition 2.4.5. We may and do assumem1 ≥ n1 ≥ 2 without loss of generality.
Let 1 → 2 → 3 → 1 be a loop, and R ∈ M(2n+1,R) a diagonal matrix with the following
entries:

R := diag(

m1︷ ︸︸ ︷
1, . . . , 1,

2m2+1︷ ︸︸ ︷
2, . . . , 2,

m1︷ ︸︸ ︷
−1, . . . ,−1).

Then, GR = H. We fix u ∈ C and define X = (Xij)1≤i,j≤3 ∈ so(2n+1) in the block matrix
form corresponding to the partition 2n+ 1 = n1 + (2n2 + 1) + n1 as (2.4.2):

X12 : = E1,n2 +uE1,n2+1+En1,n2+1+En1,n2+2

=


O 1 u 0 O

O
O 0 1 1 O

 ∈ M(n1, 2n2 + 1;C),

X31 : = −E1,1+En1,n1

=

−1

O
1

 ∈ M(n1,C).
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We define the block entries X11, X22 and X33 to be zero matrices. The remaining block
entries of X are determined automatically by (2.2.2). Then Q := [X,R] has the following
block entries.

Q12 = E1,n2 +uE1,n2+1+En1,n2+1+En1,n2+2, Q31 = −2E1,1 +2En1,n1 .

A simple matrix computation shows (here we recall k = 2)

A1231(Q) = Q12J2n2+1
tQ12Jn1Q31

= −2(1 + u) E1,1 +2u2 E1,n1 −2En1,1 +2(1 + u) En1,n1 ∈ M(n1,C).

Consequently we obtain

det(λIn1 − A1231(Q)) = λn1 − 4(1 + 2u)λn1−2 /∈ R[λ] if u /∈ R.

By using Lemma 2.4.3, we have G ̸= LGσH.

Proof of Proposition 2.4.6. We consider the loop 1 → 2 → 1 → 3 → 2 → 1, and a diagonal
matrix R ∈ M(2n+ 1,R) with the following entries:

R := diag(

n−1︷ ︸︸ ︷
1, . . . , 1,−1, 0, 1,

n−1︷ ︸︸ ︷
−1, . . . ,−1).

ThenGR is conjugate toH by an element ofGσ. We fix u ∈ C and defineX = (Xij)1≤i,j≤3 ∈
so(2n+1) in the block matrix form corresponding to the partition 2n+1 = n1+(2n2+1)+n1

as (2.4.2):

X12 : = E1,n2 +E1,n2+1−En1,n2+1

=


O 1 1 0 O

O
O 0−10 O

 ∈ M(n1, 2n2 + 1;C),

X13 : = uE1,1−uEn1,n1

=

u O
−u

 ∈ M(n1,C).

We define the block entries X11, X22 and X33 to be zero matrices. The remaining block
entries are automatically determined by (2.2.2). Then, Q := [X,R] has the following block
entries.

Q12 = −2E1,n2 −E1,n2+1 +En1,n2+1, Q13 = −2uE1,1+2uEn1,n1 ,

Q21 = −2En2,1−En2+1,1 +En2+1,n1 .

By a simple matrix computation, we have (here we recall k = 2)

A121321(Q) = Q12Q21Q13Jn1

tQ21J2n2+1Q21 = 8uE1,1 −8uE1,n1 ∈ M(n1,C),

and thus

det(λIn − A121321(Q)) = λn1 − 8uλn1−1 /∈ R[λ] if u /∈ R.

By Lemma 2.4.3, we have shown G ̸= LGσH.
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2.4.3 Completion of the proof of Theorem 2.1.1

We complete the proof of the implication (i) ⇒ (ii) in Theorem 2.1.1 (Proposition 2.4.7)
by using Propositions 2.4.4–2.4.6. We recall that for a given partition n = n1 + · · · + nk

with n1, ..., nk−1 > 0 and nk ≥ 0, we have the corresponding Levi subgroup LΠ′ = U(n1)×
· · · × U(nk−1)× SO(2nk + 1) of SO(2n+ 1), which is associated to the subset

Π′ := Π \

{
αi ∈ Π : i =

j∑
s=1

ns, 1 ≤ j ≤ k − 1

}

of the simple system Π (see Diagram 2.1.1 for the label of the Dynkin diagram).

Proposition 2.4.7. Let G be the special orthogonal group SO(2n+1), σ a Chevalley –Weyl
involution, Π′, Π′′ subsets of Π, and LΠ′ , LΠ′′ the corresponding Levi subgroups. Then we
have

G ̸= LΠ′ Gσ LΠ′′ , (2.4.4)

if one of the following conditions up to switch of Π′ and Π′′ is satisfied (1 ≤ i, j, k ≤ n) :

(I). Either (Π′)c or (Π′′)c contains more than one element.
(II). (Π′)c = {αi}, (Π′′)c = {αj} and i, j /∈ {1, n}.
(III). (Π′)c = {αi}, (Π′′)c = {αn} and i /∈ {1, n}.

Proof. Let (LΠ′ ,LΠ′′) =

(U(n1)× · · · × U(nk−1)× SO(2nk + 1), U(m1)× · · · × U(ml−1)× SO(2ml + 1)).

First, let us show the condition (I) implies (2.4.4). Without loss of generality, we may and
do assume that n1 ≥ · · · ≥ nk−1, m1 ≥ · · · ≥ ml−1 and that (Π′)c contains more than one
element since the role of Π′ and Π′′ is symmetric.

Case (I–1): m1 = 1. Since L and H are contained in U(n1)×U(n2)× SO(2(n3 + · · ·+
nk) + 1) and U(1) × SO(2(m2 + · · · +ml) + 1) respectively, we can see that (2.4.4) holds
by Proposition 2.4.4.

Case (I–2): m1 ≥ 2, nk ̸= 0. Since L and H are contained in U(n1 + n2)× SO(2(n3 +
· · ·+nk)+ 1) and U(m1)×SO(2(m2+ · · ·+ml)+ 1) with m1 ≥ 2 respectively, we can find
that (2.4.4) holds by using Propositions 2.4.5 and 2.4.6.

Case (I–3): m1 ≥ 2, nk = 0. In this case n1 is greater than one, and thus (2.4.4)
follows from Propositions 2.4.5 and 2.4.6. Here, we note that L and H are contained in
U(n1) × SO(2(n2 + · · · + nk) + 1) with n2 ̸= 0 and U(m1) × SO(2(m2 + · · · + ml) + 1)
respectively.

Next, let us treat the conditions (II) and (III). Then, we can immediately find that
each of the conditions (II) and (III) implies (2.4.4) by using Propositions 2.4.5 and 2.4.6
respectively.

Therefore we have finished the proof.

By Propositions 2.3.2, 2.3.3 and 2.4.7, we have finished the proof of Theorem 2.1.1.
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2.5 Application of visible actions to representation

theory

As an application of Theorem 2.1.1, we obtain some multiplicity-free theorems by using
Kobayashi’s theory of visible actions. Here we recall the definition ([Ko2]).

Definition 2.5.1. We say a biholomorphic action of a Lie group G on a complex manifold
D is strongly visible if the following two conditions are satisfied:

1. There exists a real submanifold S such that (we call S a “slice”)

D′ := G · S is an open subset of D.

2. There exists an antiholomorphic diffeomorphism σ of D′ such that

σ|S = idS,

σ(G · x) = G · x for any x ∈ S.

Definition 2.5.2. In the above setting, we say the action of G on D is S-visible. This
terminology will be used also if S is just a subset of D.

Let G be a compact Lie group and L,H its Levi subgroups. Then G/L, G/H and
(G×G)/(L×H) are complex manifolds. If the triple (G,L,H) satisfies G = LGσH, the
following three group-actions are all strongly visible:

L ↷ G/H,
H ↷ G/L,

∆(G) ↷ (G×G)/(L×H).

Here, ∆(G) is defined by ∆(G) := {(x, y) ∈ G × G : x = y}. The following fact ([Ko3,
Theorem 4.3]) constructs a family of multiplicity-free representations from visible actions.

Fact 2.5.3. Let G be a Lie group and V a G-equivariant Hermitian holomorphic vector
bundle on a connected complex manifold D. If the following three conditions from (1) to
(3) are satisfied, then any unitary representation that can be embedded in the vector space
O(D,V) of holomorphic sections of V decomposes multiplicity-freely:

1. The action of G on D is S-visible. That is, there exists a subset S ⊂ D satisfying
the conditions given in Definition 2.5.1. Further, there exists an automorphism σ̂ of
G such that σ(g · x) = σ̂(g) · σ(x) for any g ∈ G and x ∈ D′.

2. For any x ∈ S, the fiber Vx at x decomposes as the multiplicity free sum of irreducible

unitary representations of the isotropy subgroup Gx. Let Vx =
⊕

1≤i≤n(x)

V(i)
x denote the

irreducible decomposition of Vx.

3. σ lifts to an antiholomorphic automorphism σ̃ of V and satisfies σ̃(V(i)
x ) = V(i)

x (1 ≤
i ≤ n(x)) for each x ∈ S.
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We return to the case where G = SO(2n+1). The fundamental weights ω1, ..., ωn with
respect to the simple roots α1, ..., αn are given as follows (see Diagram 2.1.1 for the label
of the Dynkin diagram).

ωi = α1 + 2α2 + · · ·+ (i− 1)αi−1 + i(αi + αi+1 + · · ·+ αn−1 +
1

2
αn) (1 ≤ i ≤ n).

By using the Borel–Weil theory together with Fact 2.5.3 and our generalized Cartan de-
compositions, we obtain the following two corollaries of Theorem 2.1.1.

Corollary 2.5.4. If the pair (L, λ) is an entry in the Table 2.5.1, then the restriction πλ|L
of the irreducible representation πλ of SO(2n + 1) with highest weight λ to L decomposes
multiplicity-freely. Here, 1 ≤ i ≤ n and a is an arbitrary non-negative integer.

Table 2.5.1: Restriction

Levi subgroup L highest weight λ
U(n) aωn

U(1)× SO(2n− 1) aωi

U(i)× SO(2n− 2i+ 1) aω1

Corollary 2.5.5. The tensor product representation πaω1⊗πbωi
decomposes as a multiplicity-

free sum of irreducible representations of SO(2n + 1) for 1 ≤ i ≤ n and arbitrary non-
negative integers a, b. Likewise, the tensor product πaωn ⊗ πbωn is also multiplicity-free for
any a, b ∈ N.

Remark 2.5.6. The above representations have been known to be multiplicity-free by P.
Littelmann ([Li2]) by checking the sphericity of the product of flag varieties associated
to maximal parabolic subgroups and J. R. Stembridge ([St2]) by a combinatorial method
using the Weyl character to analyze the tensor product multiplicities. Our approach is
different from these two methods, and uses the notion of visible actions.

We have listed an application of Fact 2.5.3 only for the line bundle case. Let us give a
simple example of that in the vector bundle setting. Let G be the spin group Spin(2n+1)
and T a maximal torus of G. We let πλ denote any irreducible representation of G with
highest weight λ and πωn as above. Since πωn is weight multiplicity-free, i.e. πωn decomposes
multiplicity-freely as a representation of T , we can apply Fact 2.5.3 to the tensor product
representation of πλ and πωn by setting V := G×T (Cλ ⊗ πωn), D := G/T , S := {o}, and
then conclude that πλ ⊗ πωn is multiplicity-free as a representation of G (the irreducible
decomposition may be thought of a Pierri rule for a type B group). Here, we note that
Vx and Gx for x = o are given by Cλ ⊗ πωn and T respectively in this setting. Further
applications of Theorem 2.1.1 and Fact 2.5.3 to representation theory are discussed in
Chapter 6.
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Chapter 3

Visible actions on flag varieties of
type C and a generalization of the
Cartan decomposition

3.1 Introduction for Chapter 3

In this chapter, we classify all the pairs of Levi subgroups (L,H) of a connected compact
simple Lie group G of type C such that G = LGσH holds, where σ is a Chevalley–Weyl
involution of G. The motivation for considering this kind of decomposition is the theory
of visible actions on complex manifolds introduced by Kobayashi [Ko2], and G = LGσH
can be interpreted as a generalization of the Cartan decomposition to the non-symmetric
setting. (We refer the reader to [He1], [Ho], [Ma2] and [Ko4] and references therein for
some aspects of the Cartan decomposition from geometric and group theoretic viewpoints.)

A generalization of the Cartan decomposition for symmetric pairs has been used in
various contexts including analysis on symmetric spaces. However, there was no analogous
result for non-symmetric cases before Kobayashi’s paper [Ko4]. Motivated by visible actions
on complex manifolds [Ko1], [Ko2], he completely determined the pairs of Levi subgroups

(L,H) = (U(n1)× · · · × U(nk), U(m1)× · · · × U(ml))

of the unitary group G = U(n) such that the multiplication mapping L×O(n)×H → G is
surjective. Furthermore, he developed a method to find a suitable subset B of O(n) which
gives the following decomposition (a generalized Cartan decomposition, see [Ko4]):

G = LBH.

On the other hand, Sasaki has been studying recently visible actions on a homogeneous
space G/H in the setting where both G and H are complex reductive Lie groups, and in
his papers [Sa2], [Sa3], he gave a generalization of the Cartan decomposition G = LBH.

Back to the decomposition theory [Ko4], we consider the following problems:
Let G be a connected compact Lie group, T a maximal torus, and σ a Chevalley–Weyl

The contents of this section are taken from [Ta3].
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involution of G with respect to T . Here, we recall that an involutive automorphism µ of a
connected compact Lie group K is said to be a Chevalley–Weyl involution if there exists a
maximal torus T of K such that µ(t) = t−1 for every t ∈ T . For example, σ(g) = ḡ defines
a Chevalley–Weyl involution of G = U(n) with respect to the maximal torus consisting of
diagonal matrices, and the fixed point subgroup Gσ is given by Gσ = O(n).

1) Classify all the pairs of Levi subgroups L and H with respect to t such that the
multiplication mapping ψ : L×Gσ ×H → G is surjective.

2) Find a “good” representative B ⊂ Gσ such that G = LBH in the case ψ is surjective.
We call such a decomposition G = LBH a generalized Cartan decomposition. Here we note
that the roles of the subgroups H and L are symmetric.

We solve the problems for type C groups. In order to state the results, we label the
Dynkin diagram of type Cn as follows: For a subset Π′ of the set Π of simple roots, we

α1 α2 α3 αn−2 αn−1 αn

• • • • • •ks

Figure 3.1.1: Dynkin diagram of type Cn

denote by LΠ′ the Levi subgroup whose root system is generated by Π′. For example, L∅
is a maximal torus of G and L{αp}c = U(p)× Sp(n− p) for G = Sp(n) (1 ≤ p ≤ n). Here,
we set Sp(0) := {1} for the convenience, and (Π′)c denotes the complement Π \ Π′.

Theorem 3.1.1. Let G be a connected compact simple Lie group of type Cn, σ a Chevalley–
Weyl involution, Π′, Π′′ two proper subsets of Π, and LΠ′ , LΠ′′ the corresponding Levi
subgroups. Then the following two conditions on {Π′,Π′′} are equivalent.

(i). G = LΠ′ Gσ LΠ′′.
(ii). One of the following conditions holds up to switch of the factors Π′ and Π′′ :

Case I. (Π′)c = {αn}, (Π′′)c = {αn}.
Case II. (Π′)c = {α1}, (Π′′)c = {αi}, 1 ≤ i ≤ n.

In the case where G is simply connected, i.e., G = Sp(n), Theorem 3.1.1 means that
the pairs (LΠ′ ,LΠ′′) satisfying (i) are classified as follows:

Case I. (LΠ′ ,LΠ′′) = (U(n), U(n)).
Case II. (LΠ′ ,LΠ′′) = (U(1)× Sp(n− 1), U(i)× Sp(n− i)), 1 ≤ i ≤ n.

In each of the two cases in Theorem 3.1.1, we give a generalized Cartan decomposition
G = LBH explicitly with B ⊂ Gσ. In Case I, B is an abelian subgroup of dimension n,
and in Case II, B is given by B = T · T ′ · T ′′ = {xyz ∈ G ; x ∈ T, y ∈ T ′, z ∈ T ′′} or
B = T ′ · T ′′ = {yz ∈ G ; y ∈ T ′, z ∈ T ′′}, where T , T ′ and T ′′ denote one-dimensional
abelian subgroups. This is stated in Propositions 3.3.2 and 3.3.3. Here, we note that B is
no longer a subgroup in Case II.

A generalized Cartan decomposition G = LBH implies that the subgroup L acts on
G/H in a (strongly) visible fashion, and likewise H on G/L, and G on (G×G)/(L×H).
Then Kobayashi’s theory leads us to three multiplicity-free theorems (triunity in [Ko1]):

Restriction G ↓ L : IndG
H(Cλ)|L,

Restriction G ↓ H : IndG
L(Cλ)|H ,

Tensor product : IndG
H(Cλ)⊗ IndG

L(Cµ).
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Here IndG
H(Cλ) denotes a holomorphically induced representation of G from a character Cλ

of H by the Borel-Weil theorem. See [Ko1], [Ko2] and [Ko3] for the general theory on the
application of visible actions (including the vector bundle setting), and Corollaries 3.5.5
and 3.5.6 in this section for type C groups.
Organization. In Section 3.2, we give a matrix realization of the symplectic group G =
Sp(n) and its subgroups which are used in Sections 3.3 and 3.4. In Section 3.3, we prove
that (ii) implies (i). Furthermore, we find explicitly a slice B that gives a generalized
Cartan decomposition G = LΠ′ B LΠ′′ . The converse implication (ii) ⇒ (i) is proved in
Section 3.4 by using the invariant theory for quivers. An application to multiplicity-free
representations is discussed in Section 3.5.

3.2 Matrix realization

The surjectivity of ψ : L×Gσ ×H → G depends on neither the coverings of the group G
nor the choice of Cartan subalgebras and Chevalley–Weyl involutions. Thus, we may and
do work with the symplectic group Sp(n), and a fixed pair of a Cartan subalgebra and a
Chevalley–Weyl involution as below.

Throughout this chapter, we realize G = Sp(n) as the matrix group

G := {g ∈ SL(2n,C) ; tgJng = Jn,
tgg = I2n}, (3.2.1)

where tg denotes the transpose of g, and Jn is defined by

Jn :=



n︷ ︸︸ ︷ n︷ ︸︸ ︷
O

1

. ..

1

−1

. ..

−1
O


∈ GL(2n,R).

Then, the corresponding Lie algebra g of G is given by

g := {X ∈ sl(2n,C) ; tXJn + JnX = O, tX +X = O}.

We take a Cartan subalgebra t of g and a involution σ as

t =
⊕
1≤i≤n

R
√
−1Hi, (3.2.2)

σ : G→ G, g 7→ ḡ, (3.2.3)

where Hi := Ei,i −E2n+1−i,2n+1−i, and ḡ denotes the complex conjugation of g ∈ G. The
differential of σ is denoted by the same letter. Then, σ is a Chevalley–Weyl involution of
G with respect to t. We let {εi}1≤i≤n ⊂ (t⊗RC)∗ be the dual basis of {Hi}1≤i≤n. Then we
define a set of simple roots Π := {α1, . . . , αn} by

α1 := ε1 − ε2, . . . , αn−1 := εn−1 − εn, αn := 2εn.
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Let n = n1 + · · ·+ nk be a partition of n with n1, . . . , nk−1 > 0 and nk ≥ 0. We put

si :=
∑
1≤p≤i

np (1 ≤ i ≤ k − 1),

Π′ := Π \ {αsi ∈ Π ; 1 ≤ i ≤ k − 1} ,

and denote by LΠ′ the Levi subgroup whose root system is generated by Π′. In the matrix
realization, LΠ′ takes the form:

LΠ′ =





A1

. . .

Ak–1

B
J ′

nk−1
Ak–1J

′
nk−1

. . .

J ′
n1
A1J

′
n1


;
Ai ∈ U(ni) (1 ≤ i ≤ k − 1),

B ∈ Sp(nk)


(3.2.4)

≃ U(n1)× · · · × U(nk−1)× Sp(nk).

Here, all entries in the blank space are zero, and J ′
m is defined by

J ′
m :=



1
1

O
. ..

O
1


∈ GL(m,R).

We note that the pair (G,LΠ′) forms a symmetric pair if and only if (Π′)c = {αn}. For a
later purpose, we give an explicit involution µ of G of which the fixed point subgroup is
L{αn}c . We set

L{αn}c = Gµ, µ : G→ G, g 7→ In,ngIn,n, (3.2.5)

where In,n is defined by In,n := diag(1, . . . , 1︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
n

).

To obtain a generalized Cartan decomposition by the herringbone stitch method [Ko4],
we will use the following symmetric subgroup (1 ≤ i ≤ n).

Sp(i)× Sp(n− i) = (3.2.6)
 A B

S
C D

 ;

(
A B
C D

)
∈ Sp(i), S ∈ Sp(n− i)

 .

3.3 Generalized Cartan decomposition

The aim of this section is to prove the implication (ii) ⇒ (i) in Theorem 3.1.1. The main
tool for our proof is the herringbone stitch method that reduces unknown decompositions
for non-symmetric pairs to the known Cartan decomposition for symmetric pairs.
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3.3.1 Symmetric case (Decomposition for Case I)

In this subsection we recall a well-known fact on the Cartan decomposition for the sym-
metric case [Ho, Theorem 6.10], [Ma3, Theorem 1], and give a generalized Cartan decom-
position for Case I.

Fact 3.3.1. Let K be a connected compact Lie group with Lie algebra k and two involutions
τ , τ ′ (τ 2 = (τ ′)2 = id). Let H and L be subgroups of K such that

(Kτ )0 ⊂ L ⊂ Kτ and (Kτ ′)0 ⊂ H ⊂ Kτ ′ .

Here F0 denotes the connected component of F containing the identity element for a Lie
group F . We take a maximal abelian subspace b in

k−τ,−τ ′ := {X ∈ k ; τ(X) = τ ′(X) = −X}

and write B for the connected abelian subgroup with Lie algebra b.
Suppose that ττ ′ is semisimple on the center z of k. Then we have

K = LBH.

We shall apply Fact 3.3.1 to Case I. Let us set

G = Sp(n), (Π′)c = {αn}. (3.3.1)

(See Diagram 3.1.1 for the label of the Dynkin diagram.) Then, (G,LΠ′) is a symmetric
pair with µ the corresponding involution (see (3.2.5) for the definition of µ). We take a
maximal abelian subspace b of g−µ as

b :=
⊕
1≤i≤n

R(Ei,2n+1−i −E2n+1−i,i). (3.3.2)

We note that b is fixed by the Chevalley–Weyl involution σ. Using Fact 3.3.1, we obtain
the following proposition.

Proposition 3.3.2 (Generalized Cartan decomposition for Case I). Let G, LΠ′ be as in
(3.3.1) and B := exp(b) for b as in (3.3.2). Then we have

G = LΠ′ B LΠ′ .

3.3.2 Decomposition for Case II

This subsection is devoted to showing the following proposition.

Proposition 3.3.3 (Generalized Cartan decomposition for Case II). Let G be the sym-
plectic group Sp(n), and (Π′)c = {α1}, (Π′′)c = {αi} (1 ≤ i ≤ n). We define an abelian
subgroup B′ and a subset B′′ by

B′ :=

{
exp(R(E1,i+1−E2n−i,2n−Ei+1,1+E2n,2n−i)) (1 ≤ i < n),

I2n (i = n),
(3.3.3)

B′′ := exp(RX) exp(RY ) (3.3.4)

for X := E1,2n+1−i+Ei,2n −E2n+1−i,1−E2n,i and Y := E1,2n −E2n,1. Then we have G =
LΠ′ B′B′′ LΠ′′.
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We put L := L{α1}c , H := L{αi}c for simplicity. To prove Proposition 3.3.3, we shall
show three lemmas. First, we consider the double coset decomposition of G by L and a
symmetric subgroup G′G′′ = Sp(i) × Sp(n − i) containing H, where G′ and G′′ are given
by G′ := Sp(i)× I2n−2i and G

′′ := I2i × Sp(n− i) (see (3.2.6) for the realization of G′G′′).

Lemma 3.3.4. The equality G = LB′G′G′′ holds.

Proof. If i = n, both (G,L) and (G,G′G′′) are symmetric and thus the lemma is followed by
Fact 3.3.1. Let us suppose i ̸= n. We identify G/L with CP 2n−1 in the natural way (which
is induced from the natural action of G on C2n). For any x ∈ CP 2n−1, since S4i−1 and
S4n−4i−1 admit transitive actions of G′ and G′′, respectively, there exist g = g′g′′ ∈ G′G′′

and θ ∈ R such that

g · x = [cos θ : 0 : · · · : 0 :
i+1
ˇsin θ : 0 : · · · : 0] ∈ B′ · e1,

where e1 := [1 : 0 : · · · : 0] ∈ CP 2n−1. Thus we obtain G = LB′G′G′′.

Next, we consider the double coset decomposition of G′ by (G′)µ and L ∩G′.

Lemma 3.3.5. The equality G′ = (G′)µ(B′′)−1(L ∩ G′) holds, where (B′′)−1 is defined by
(B′′)−1 := {b−1 ; b ∈ B′′}.

Proof. Let us identify G′/(L ∩ G′) with CP 2i−1 in the natural way by taking I2n−2i away
from G′ = Sp(i) × I2n−2i. For any z ∈ CP 2i−1, we write z = [z′ : z′′] where both z′ and
z′′ have i entries. Since (G′)µ ≃ U(i) acts on S2i−1 transitively, there exists g ∈ (G′)µ such
that

g · z = [∥z′∥ :

i−1︷ ︸︸ ︷
0 : · · · : 0 : w]

for some w with i entries, where ∥ · ∥ denotes the usual Euclidean norm. We write w =
[w′ : re

√
−1θ] where r, θ ∈ R, and w′ has (i − 1) entries. Then there is g′ ∈ ((L ∩ G′)ss)

µ

satisfying

g′ · (gz) =[∥z′∥ :

i−1︷ ︸︸ ︷
0 : · · · : 0 : ∥w′∥ :

i−2︷ ︸︸ ︷
0 : · · · : 0 : re

√
−1θ]

since ((L ∩ G′)ss)
µ ≃ U(i − 1) acts on S2i−3 transitively. Here, (L ∩ G′)ss denotes the

analytic subgroup of L ∩G′ whose Lie algebra is the semisimple part of the Lie algebra of
L ∩G′. Let us set

t := diag(e
√
−1θ/2,

i−2︷ ︸︸ ︷
0, . . . , 0, e−

√
−1θ/2, e

√
−1θ/2,

i−2︷ ︸︸ ︷
0, . . . , 0, e−

√
−1θ/2) ∈ (G′)µ.

We then obtain

t · (g′gz) = [∥z′∥e
√
−1θ/2 : 0 : · · · : 0 : ∥w′∥e

√
−1θ/2 : 0 : · · · : 0 : re

√
−1θ/2]

= [∥z′∥ : 0 : · · · : 0 : ∥w′∥ : 0 : · · · : 0 : r] ∈ (B′′)−1 · e1,

where e1 = [1 : 0 : · · · : 0]. Therefore we have G′ = (G′)µ(B′′)−1(L ∩G′).
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Noting that the centralizer of B′ in L ∩ G′ is the subgroup (L ∩ G′)ss ≃ Sp(i − 1) of
codimension 1, we introduce the subgroup, which also centralizes B′, by

L̂ := A · (L ∩G′)ss(= {a · x ∈ G ; a ∈ A, x ∈ (L ∩G′)ss}),

where A is defined by A := exp(R
√
−1(E1,1+Ei+1,i+1−E2n−i,2n−i −E2n,2n)). By using

Lemma 3.3.5, we obtain a decomposition of G′G′′ by L̂ and H.

Lemma 3.3.6. The equality G′G′′ = L̂B′′H holds.

Proof. By Lemma 3.3.5, we have

G′G′′ = ((L ∩G′)B′′(G′)µ)G′′

= (L ∩G′)B′′H by H = (G′)µG′′. (3.3.5)

Further, (L ∩G′)B′′H coincides with L̂B′′H:

(L ∩G′)B′′H = L̂B′′H. (3.3.6)

Let us verify the equality (3.3.6). We define A′ = exp(R
√
−1(Ei+1,i+1−E2n−i,2n−i)) an

abelian subgroup of H. Since A′ centralizes both B′′ and L ∩ G′, and since any element
of A can be written in terms of elements of the center of L ∩ G′ and A′, the equality
(L ∩ G′)B′′H = (L ∩ G′)B′′(A′H) = A′(L ∩ G′)B′′H shows that (L ∩ G′)B′′H contains
L̂B′′H. Conversely, since AA′ contains the analytic subgroup of L∩G′, which corresponds
to the center of the Lie algebra of L ∩ G′, the equality L̂B′′H = A(L ∩ G′)ssB

′′(A′H) =
AA′(L ∩G′)ssB

′′H shows L̂B′′H ⊃ (L ∩G′)B′′H. Therefore we have the equality (3.3.6).
By the two equalities (3.3.6) and (3.3.5), the lemma follows.

We are ready to give a proof of a generalized Cartan decomposition by using the her-
ringbone stitch method [Ko4].

Proof of Proposition 3.3.3. By using Lemmas 3.3.4 and 3.3.6, we have

G = LB′G′G′′ by Lemma 3.3.4

= LB′(L̂B′′H) by Lemma 3.3.6

= LB′B′′H.

This completes the proof of the proposition.

Here is a herringbone stitch which we have used for L\G/H in Case II. Now we have

L ∩G′
⊂
G′ ·G′′

⊃ ⊃
G (G′)µ

⊂
L

Figure 3.3.1: Herringbone stitch for Case II

finished the proof of the implication (ii) ⇒ (i) in Theorem 3.1.1 since the abelian group B
in Proposition 3.3.2 and subsets B′, B′′ in Proposition 3.3.3 are contained in Gσ.
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3.4 Application of invariant theory for quivers

The aim of this section is to prove that (i) implies (ii) in Theorem 3.1.1. For the proof, we
use invariants of quivers as in [Ko4]. This section could be read independently of Section
3.3 which gives a proof on the opposite implication (ii) ⇒ (i).

3.4.1 Invariants of quivers

In the following, Lemmas 3.4.1, 3.4.2 and 3.4.3 are parallel to [Ko4, Lemmas 6.1, 6.2 and
6.3] respectively, and their proofs are essentially the same as that in [Ko4]. So, we give
necessary changes and precise statements, but omit the proof.

Let σ : M(N,C) → M(N,C) be the complex conjugation with respect to M(N,R).

Lemma 3.4.1. (c.f. [Ko4, Lemma 6.1]) Let G ⊂ GL(N,C) be a σ-stable subgroup, R ∈
M(N,R) and L a subgroup of G. If there exists g ∈ G such that

Ad(L)(Ad(g)R) ∩M(N,R) = ∅, (3.4.1)

then G ̸= LGσGR. Here GR := {h ∈ G ; hRh−1 = R}.

We return to the case G = Sp(n). We fix a partition n = n1 + · · · + nk with ni > 0
(1 ≤ i ≤ k − 1), nk ≥ 0 and a positive integer r ≥ 2. We consider the following loop:

i0 → i1 → · · · → ir, is ∈ {1, . . . , 2k − 1}, i0 = ir, is−1 ̸= is (1 ≤ s ≤ r).

Correspondingly to this loop, we define a non-linear mapping

Ai0···ir : M(2n,C) →

{
M(ni0 ,C) (i0 = ir ̸= k),

M(2ni0 ,C) (i0 = ir = k)

as follows: Let P ∈ M(2n,C), and we write P as (Pij)1≤i,j≤2k−1 in the block matrix form
corresponding to the partition 2n = n1+ · · ·+nk−1+2nk +nk−1+ · · ·+n1 of 2n such that

Pij ∈


M(ni, nj;C) (i, j ̸= k),

M(2nk, nj;C) (i = k, j ̸= k),

M(ni, 2nk;C) (i ̸= k, j = k),

M(2nk,C) (i = j = k),

(3.4.2)

where n2k−i := ni (1 ≤ i ≤ k). Then we define (P̃ij)1≤i,j≤2k−1 and Ai0···ir(P ) by

P̃ij :=


Pij (i+ j ≤ 2k),

J ′
ni

tP2k−j,2k−iJ
′
nj

(i+ j > 2k, i, j ̸= k),

Jnk

tP2k−j,kJ
′
nj

(i = k, j > k),

J ′
ni

tPk,2k−iJnk
(i > k, j = k),

and
Ai0···ir(P ) := P̃i0i1P̃i1i2 · · · P̃ir−1ir .
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For any ℓ ∈ L := U(n1)×· · ·×U(nk−1)×Sp(nk) (see (3.2.4) in Section 3.2 for the realization
as a matrix), a direct computation shows

˜(Ad(ℓ)P )ij = ℓiP̃ijℓ
−1
j (1 ≤ i, j ≤ 2k − 1), (3.4.3)

where ℓs (1 ≤ s ≤ 2k− 1) denotes the (s, s)-th block entry of ℓ. The equality (3.4.3) leads
us to the following lemma (cf. [Ko4, Lemma 6.2]).

Lemma 3.4.2. If there exists a loop i0 → i1 → · · · → ir such that at least one of the
coefficients of the characteristic polynomial det(λIni0

− Ai0···ir(P )) is not real, then

Ad(L)P ∩M(2n,R) = ∅.

By Lemmas 3.4.1 and 3.4.2, we can obtain the next lemma (cf. [Ko4, Lemma 6.3]).

Lemma 3.4.3. Let n = n1+· · ·+nk be a partition and L := U(n1)×· · ·×U(nk−1)×Sp(nk)
a Levi subgroup of Sp(n). We define a block diagonal matrix R by

R :=


R1

R2

. . .

R2k−1

 ,

where Rs, R2k−s ∈ M(ns,R) (1 ≤ s ≤ k − 1), Rk ∈ M(2nk,R) (the last condition makes
sense when nk ̸= 0). If there exist X ∈ sp(n) and a loop i0 → · · · → ir such that

det(λIni0
− Ai0···ir([X,R])) /∈ R[λ],

then the multiplication map L×Gσ×GR → G is not surjective Here, [X,R] := XR−RX.

We shall repeatedly use this lemma in the next subsection.

3.4.2 Necessary conditions for G = LGσH

Throughout this subsection, we set

(G,L,H) = (Sp(n), U(n1)× · · · × U(nk−1)× Sp(nk), U(m1)× · · · × U(ml−1)× Sp(ml)),

where n = n1 + · · · + nk = m1 + · · · +ml with ni,mj > 0 (1 ≤ i ≤ k − 1, 1 ≤ j ≤ l − 1)
and nk,ml ≥ 0. We give necessary conditions on (L,H) under which G = LGσH holds.
We divide the proof into three cases (Propositions 3.4.4 through 3.4.6).

Proposition 3.4.4. G ̸= LGσH if k = 3, l = 2, m1 = 1.

Proposition 3.4.5. G ̸= LGσH if k = l = 2, n1,m1 ≥ 2, n2,m2 ̸= 0.

Proposition 3.4.6. G ̸= LGσH if k = l = 2, n1 ≥ 2, n2 ̸= 0, m2 = 0.
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Proof of Proposition 3.4.4. Let 1 → 5 → 2 → 1 be a loop. We define a
diagonal matrix R by R := diag(1, 0, . . . , 0,−1) ∈ M(2n,R). Then, the centralizer GR

coincides with H. We fix u ∈ C and define X = (Xij)1≤i,j≤5 ∈ sp(n) in the block matrix
form corresponding to the partition 2n = n1 + n2 + 2n3 + n2 + n1 as (3.4.2):

X15 := uE1,n1 ∈ M(n1,C), X41 := En2,1 ∈ M(n2, n1;C), X21 := E1,1 ∈ M(n1, n2;C).

We define the block entries X11, X13, X22, X23, X24, X31, X32, X33, X34, X35, X42, X43,
X44, X53 and X55 to be zero matrices. The remaining block entries are automatically
determined by the definition (3.2.1) of G = Sp(n). Then, Q := [X,R] has the following
block entries:

Q15 = −2uE1,n1 ∈ M(n1,C), Q41 = En2,1 ∈ M(n2, n1;C), Q21 = E1,1 ∈ M(n1, n2;C).

By a simple matrix computation, we have (here, we recall k = 3)

A1521(Q) = Q15J
′
n1

tQ41J
′
n2
Q21 = −2uE1,1 ∈ M(n1,C).

Hence we obtain

det(λIn1 − A1521(Q)) = λn1 + 2uλn1−1 /∈ R[λ] if u /∈ R.

By Lemma 3.4.3, we have shown G ̸= LGσH.

Proof of Proposition 3.4.5. We may and do assume m1 ≥ n1 without loss of
generality since the roles of L and H are symmetric. Let 1 → 2 → 3 → 1 be a loop, and
R = diag(r1, . . . , r2n) ∈ M(2n,R) a diagonal matrix with the following entries:

R := diag(

m1︷ ︸︸ ︷
1, . . . , 1,

2m2︷ ︸︸ ︷
2, . . . , 2,

m1︷ ︸︸ ︷
−1, . . . ,−1).

Then, we have GR = H. We fix u ∈ C and define X = (Xij)1≤i,j≤3 ∈ sp(n) in the block
matrix form corresponding to the partition 2n = n1 + 2n2 + n1 as (3.4.2):

X12 := E1,n2 +En1,n2+1 ∈ M(n1, 2n2;C), X31 := −E1,n1 +uEn1,1 ∈ M(n1,C).

We define the block entries X11, X22 and X33 to be zero matrices. The remaining block
entries of X are determined automatically by (3.2.1). Then the block entries of Q := [X,R]
are given by

Q12 = E1,n2 +En1,n2+1 ∈ M(n1, 2n2;C), Q31 = −2E1,n1 +2uEn1,1 ∈ M(n1,C).

A simple matrix computation shows (here, we recall k = 2)

A1231(Q) = Q12Jn2

tQ12J
′
n1
Q31 = −2E1,n1 −2uEn1,1 ∈ M(n1,C),

and thus we have

det(λIn1 − A1231(Q)) = λn1 − 4uλn1−2 /∈ R[λ] if u /∈ R.

By using Lemma 3.4.3, we obtain G ̸= LGσH.
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Proof of Proposition 3.4.6. Let 1 → 2 → 3 → 1 be a loop, and R a diagonal
matrix

R := diag(

n1−1︷ ︸︸ ︷
1, . . . , 1,−1,−1,

n2−1︷ ︸︸ ︷
1, . . . , 1,

n2−1︷ ︸︸ ︷
−1, . . . ,−1, 1, 1,

n1−1︷ ︸︸ ︷
−1, . . . ,−1).

Then, GR is conjugate to H by an element of Gσ. We fix u ∈ C and define X =
(Xij)1≤i,j≤3 ∈ sp(n) in the block matrix form corresponding to the partition 2n = n1 +
2n2 + n1 as (3.4.2):

X12 := uE1,1 +En1,2n2 ∈ M(n1, 2n2;C), X31 := −E1,n1 −En1,1 ∈ M(n1,C).

We define the block entries X11, X22 and X33 to be zero matrices. The remaining block
entries of X are determined automatically by (3.2.1). Then Q := [X,R] has the block
entries

Q12 = −2uE1,1+2En1,2n2 ∈ M(n1, 2n2;C), Q31 = 2E1,n1 −2En1,1 ∈ M(n1,C).

By a simple matrix computation, we have (here, we recall k = 2)

A1231(Q) = Q12Jn2

tQ12J
′
n1
Q31 = −8uE1,n1 −8uEn1,1 ∈ M(n1,C).

Consequently we obtain

det(λIn1 − A1231(Q)) = λn1 − 64u2λn1−2 /∈ R[λ] if u2 /∈ R.

From Lemma 3.4.3, we have G ̸= LGσH.

3.4.3 Completion of the proof of Theorem 3.1.1

We complete the proof of the implication (i) ⇒ (ii) in Theorem 3.1.1 (Proposition 3.4.7)
by using Propositions 3.4.4 through 3.4.6. We recall that for a given partition n = n1 +
· · · + nk with n1, . . . , nk−1 > 0 and nk ≥ 0, we have the corresponding Levi subgroup
LΠ′ = U(n1)× · · · × U(nk−1)× Sp(nk) of Sp(n), which is associated to the subset

Π′ := Π \

{
αi ∈ Π ; i =

j∑
s=1

ns, 1 ≤ j ≤ k − 1

}

of the set of simple roots Π (see Diagram 3.1.1 for the label of the Dynkin diagram).

Proposition 3.4.7. Let G be the symplectic group Sp(n), σ a Chevalley–Weyl involution,
Π′,Π′′ subsets of the set of simple roots Π, and LΠ′ , LΠ′′ the corresponding Levi subgroups.
Then we have

G ̸= LΠ′ Gσ LΠ′′ (3.4.4)

if one of the following conditions up to switch of Π′ and Π′′ is satisfied (1 ≤ i, j, k ≤ n) :

(I) Either (Π′)c or (Π′′)c contains more than one element.
(II) (Π′)c = {αi}, (Π′′)c = {αj} and i, j /∈ {1, n}.
(III) (Π′)c = {αi}, (Π′′)c = {αn} and i /∈ {1, n}.
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Proof. Let

(LΠ′ , LΠ′′) = (U(n1)× · · · × U(nk−1)× Sp(nk), U(m1)× · · · × U(ml−1)× Sp(ml)).

First, let us show the condition (I) implies (3.4.4). Without loss of generality, we may and
do assume that n1 ≥ · · · ≥ nk−1 and m1 ≥ · · · ≥ ml−1, and that (Π′)c contains more than
one element, that is, k ≥ 3 since the roles of Π′ and Π′′ are symmetric.

Case (I–1): m1 = 1. Since LΠ′ and LΠ′′ are contained in U(n1)×U(n2)×Sp(n3+· · ·+nk)
and U(1) × Sp(m2 + · · · +ml), respectively, we can see that (3.4.4) holds by Proposition
3.4.4.

Case (I–2): m1 ≥ 2, nk ̸= 0. Since LΠ′ and LΠ′′ are contained in U(n1 + n2)× Sp(n3 +
· · ·+ nk) and U(m1)× Sp(m2 + · · ·+ml), respectively with n1 + n2 ≥ 2 and m1 ≥ 2, we
can find that (3.4.4) holds by using Propositions 3.4.6 and 3.4.5.

Case (I–3): m1 ≥ 2, nk = 0. In this case n1 ≥ 2 and thus (3.4.4) follows from
Propositions 3.4.6 and 3.4.5. Here, we note that LΠ′ and LΠ′′ are contained in U(n1) ×
Sp(n2 + · · ·+ nk) and U(m1)× Sp(m2 + · · ·+ml), respectively with n2 ̸= 0.

Next, let us treat the conditions (II) and (III). Then, we can immediately find that each
of the conditions (II) and (III) implies (3.4.4) by Propositions 3.4.5 and 3.4.6, respectively.

Therefore we have finished the proof of the proposition.

3.5 Application of visible actions to representation

theory

As an application of Theorem 3.1.1, we obtain some multiplicity-free theorems by using
Kobayashi’s theory of visible actions. Here we recall the definition [Ko3, Definition 4.1].

Definition 3.5.1. We say a biholomorphic action of a Lie group G on a complex manifold
D is strongly visible if the following two conditions are satisfied:

1. There exists a real submanifold S such that (we call S a “slice”)

D′ := G · S is an open subset of D.

2. There exists an antiholomorphic diffeomorphism σ of D′ such that

σ|S = idS,

σ(G · x) = G · x for any x ∈ D′.

Definition 3.5.2. In the above setting, we say the action of G on D is S-visible. This
terminology will be used also if S is just a subset of D.

Let G be a compact Lie group and L,H its Levi subgroups. Then G/L, G/H and
(G×G)/(L×H) are complex manifolds. If the triple (G,L,H) satisfies G = LGσH, the
following three group-actions are all strongly visible:

L ↷ G/H,
H ↷ G/L,

∆(G) ↷ (G×G)/(L×H).

Here, ∆(G) is defined by ∆(G) := {(x, y) ∈ G × G ; x = y}. The following fact [Ko3,
Theorem 4.3] constructs a family of multiplicity-free representations from visible actions.
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Fact 3.5.3. Let G be a Lie group and V a G-equivariant Hermitian holomorphic vector
bundle on a connected complex manifold D. If the following three conditions from (1) to
(3) are satisfied, then any unitary representation that can be embedded in the vector space
O(D,V) of holomorphic sections of V decomposes multiplicity-freely.

1. The action of G on D is S-visible. That is, there exist a subset S ⊂ D and an anti-
holomorphic diffeomorphism σ of D′ satisfying the conditions given in Definition
3.5.1. Further, there exists an automorphism σ̂ of G such that σ(g · x) = σ̂(g) · σ(x)
for any g ∈ G and x ∈ D′.

2. For any x ∈ S, the fiber Vx at x decomposes as the multiplicity free sum of irreducible

unitary representations of the isotropy subgroup Gx. Let Vx =
⊕

1≤i≤n(x)

V(i)
x denote the

irreducible decomposition of Vx.

3. σ lifts to an antiholomorphic automorphism σ̃ of V and satisfies σ̃(V(i)
x ) = V(i)

x (1 ≤
i ≤ n(x)) for each x ∈ S.

We return to the case where G = Sp(n). The fundamental weights ω1, ..., ωn with
respect to the simple roots α1, . . . , αn are given as follows (see Diagram 3.1.1 for the label
of the Dynkin diagram).

ωi = α1 + 2α2 + · · ·+ (i− 1)αi−1 + i(αi + αi+1 + · · ·+ αn−1 +
1

2
αn) (1 ≤ i ≤ n).

In the sequel, we denote by πλ an irreducible representation of Sp(n) with highest weight
λ =

∑n
i=1 ciωi with c1, . . . , cn ∈ N. By using the Borel-Weil theory together with Fact

3.5.3 and our generalized Cartan decompositions, we can give a geometric proof of the
multiplicity-freeness property of some representations.

Example 3.5.4. The tensor product πaωn⊗πbωn+cωi
is multiplicity-free for any i (1 ≤ i ≤ n)

and for arbitrary non-negative integers a, b ∈ N, and c = 0 or 1.

To see this example, we apply Fact 3.5.3 to πaωn ⊗ πbωn+cωi
by setting V := (Sp(n) ×

Sp(n)) ×(U(n)×U(n)) (Cωn ⊗ Λi), D := (Sp(n) × Sp(n))/(U(n) × U(n)), S := B · o × {o}
and G := ∆(Sp(n)), where Λi is the representation of U(n) on the i-th alternating tensor
product of Cn, B is as in Proposition 3.3.2 and o denotes the identity coset. In this
situation, Gx contains M := {diag(ε1, . . . , εn) ∈ U(n); εj = ±1 (1 ≤ j ≤ n)}, and Vx

is given by Cωn ⊗ Λi for any x ∈ S. Since Λi is multiplicity-free as a representation of
the subgroup M of U(n), we find that πaωn ⊗ πbωn+cωi

decomposes multiplicity-freely as a
representation of Sp(n) by Fact 3.5.3. On the other hand, it follows from Stembridge [St2]
that πaωn ⊗ πbωn+cωi

is not multiplicity-free if c is greater than one.
In the following, we confine ourselves to the line bundle case and give applications of

Theorem 3.1.1 and Fact 3.5.3.

Corollary 3.5.5. If the pair (L, λ) is an entry in the Table 3.5.1, then the restriction
πλ|L of the irreducible representation πλ of Sp(n) with highest weight λ to L decomposes
multiplicity-freely. Here, 1 ≤ i ≤ n and a is an arbitrary non-negative integer.

Corollary 3.5.6. The tensor product representation πaω1 ⊗ πbωi
decomposes multiplic-

ity freely for any non-negative integers a, b. Likewise, the tensor product πaωn ⊗ πbωn is
multiplicity-free for any a, b ∈ N.
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Table 3.5.1: Restriction

Levi subgroup L highest weight λ
U(n) aωn

U(1)× Sp(n− 1) aωi

U(i)× Sp(n− i) aω1

The above representations have been known to be multiplicity-free by Littelmann [Li2]
by checking the sphericity and Stembridge [St2] by a combinatorial method using character
formulas. Our approach uses visible actions and is different from these two methods. We
hope that further applications of Theorem 3.1.1 and Fact 3.5.3 to representation theory
will be discussed in a future paper.
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Chapter 4

Visible actions on flag varieties of
type D and a generalization of the
Cartan decomposition

4.1 Introduction for Chapter 4

The aim of this chapter is to classify all the pairs of Levi subgroups (L,H) of connected
compact simple Lie groups of type D with the following property: G = LGσH where σ is
a Chevalley–Weyl involution of G (Definition 4.2.1). The motivation for considering this
kind of decomposition is the theory of visible actions on complex manifolds introduced by
T. Kobayashi ([Ko2]), and the decomposition G = LGσH serves as a basis to generalize the
Cartan decomposition to the non-symmetric setting. (We refer to [He1], [Ho], [Ma2] and
[Ko4] and references therein for some aspects of the Cartan decomposition from geometric
and group theoretic viewpoints.)

A generalization of the Cartan decomposition for symmetric pairs has been used in
various contexts including analysis on symmetric spaces, however, there were no analogous
results for non-symmetric cases before Kobayashi’s paper [Ko4]. Motivated by visible
actions on complex manifolds ([Ko1], [Ko2]), he completely determined the pairs of Levi
subgroups

(L,H) = (U(n1)× · · · × U(nk),U(m1)× · · · × U(ml))

of the unitary group G = U(n) such that the multiplication mapping L×O(n)×H → G
is surjective. Further he developed a method to find a suitable subset B of O(n) which
gives the following decomposition (a generalized Cartan decomposition, see [Ko4]):

G = LBH.

In view of this decomposition theory, we consider the following problems: Let G be a
connected compact Lie group, t a Cartan subalgebra, and σ a Chevalley–Weyl involution
of G with respect to t.

The contents of this section are taken from [Ta4].
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1) Classify all the pairs of Levi subgroups L and H with respect to t such that the
multiplication map ψ : L×Gσ ×H → G is surjective.

2) Find a “good” representative B ⊂ Gσ such that G = LBH in the case ψ is surjective.
We call such a decomposition G = LBH a generalized Cartan decomposition. Here we

note that the role of the subgroups H and L is symmetric.
The surjectivity of ψ implies that the subgroup L acts on the flag variety G/H in a

(strongly) visible fashion (see Definition 4.5.1). At the same time the H-action on G/L,
and the diagonal G-action on (G × G)/(L × H) are strongly visible. Then Kobayashi’s
theory leads us to three multiplicity-free theorems (triunity à la [Ko1]):

Restriction G ↓ L : IndG
H(Cλ)|L,

Restriction G ↓ H : IndG
L(Cλ)|H ,

Tensor product : IndG
H(Cλ)⊗ IndG

L(Cµ).

Here IndG
H(Cλ) denotes a holomorphically induced representation of G from a character

Cλ of H by the Borel–Weil theorem. See [Ko1], [Ko2], [Ko3] for the general theory on the
application of visible actions (including the vector bundle setting), and also Section 4.5 for
the compact simple Lie groups of type D.

We solve the aforementioned problems for connected compact simple Lie groups G of
type D. That is, we give a complete list of the pairs of Levi subgroups that admit generalized
Cartan decompositions, by using the herringbone stitch method that Kobayashi introduced
in [Ko4].

In order to state the results, we label the Dynkin diagram of type Dn as follows: For

α1 α2 α3 αn−3 αn−2

αn

αn−1

• • • • •
•

AAA
A

•}}}}

Figure 4.1.1: Dynkin diagram of type Dn

a subset Π′ of the set Π of simple roots, we denote by LΠ′ the Levi subgroup whose
root system is generated by Π′. For example, L∅ is a maximal torus of G and L{αp}c =
U(p)× SO(2(n− p)) for G = SO(2n) (1 ≤ p ≤ n− 2). Here (Π′)c denotes Π \ Π′.

Theorem 4.1.1. Let G be a connected compact simple Lie group of type Dn (n ≥ 4), σ a
Chevalley–Weyl involution, Π′, Π′′ two proper subsets of Π, and LΠ′ , LΠ′′ the corresponding
Levi subgroups. Then the following two conditions on {Π′,Π′′} are equivalent.

(i). G = LΠ′ Gσ LΠ′′.
(ii). One of the conditions below holds up to switch of the factors Π′ and Π′′ :

I. (Π′)c = {αi}, (Π′′)c = {αj}, i ∈ {n− 1, n}, j ∈ {1, 2, 3, n− 1, n},
II. (Π′)c = {αi}, (Π′′)c ⊂ {αj, αk}, i ∈ {n− 1, n}, j, k ∈ {1, n− 1, n},
III. (Π′)c = {αi}, (Π′′)c ⊂ {αj, αk}, i ∈ {n− 1, n}, j, k ∈ {1, 2},
IV. (Π′)c = {α1}, (Π′′)c ⊂ {αj, αk}, either j or k ∈ {n− 1, n},
V. (Π′)c = {αi}, (Π′′)c ⊂ {α2, αj}, n = 4, (i, j) = (3, 4) or (4, 3).

Here Gϕ := {g ∈ G : ϕ(g) = g} for an automorphism ϕ of G. We did not intend to
make the above cases I–V be exclusive, that is, there is a small overlap among Cases I, II
and III.
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As a corollary, we obtain three multiplicity-free theorems for type D groups (see Corol-
lary 4.5.4 for the restriction to Levi subgroups and Corollary 4.5.5 for the tensor product
representations).
Organization. In Section 4.2, we see that Theorem 4.1.1 is reduced to the standard Levi
subgroups of a matrix group G = SO(2n) without any loss of generality. In Section 4.3, we
prove that (ii) implies (i). Furthermore, we find explicitly a slice B that gives a generalized
Cartan decomposition G = LΠ′ B LΠ′′ . The converse implication on (ii) ⇒ (i) is proved in
Section 4.4 by using the invariant theory for quivers. An application to multiplicity-free
representations is discussed in Section 4.5.

4.2 Reduction and Matrix realization

4.2.1 Reduction

In this subsection, we show that the surjectivity of ψ : L×Gσ×H → G depends on neither
the coverings of the group G nor the choice of Cartan subalgebras and Chevalley–Weyl
involutions. This consideration reduces a proof of Theorem 4.1.1 to the case G = SO(2n).

We firstly recall the definition of a Chevalley–Weyl involution of a connected compact
Lie group, and then we show the independence of the coverings.

Definition 4.2.1. Let G be a connected compact Lie group and σ an involution of G.
We call σ a Chevalley–Weyl involution if there exists a maximal torus T of G such that
σ(t) = t−1 for every t ∈ T .

Proposition 4.2.2. Let G be a connected compact semisimple Lie group, G̃ its universal
covering group, ϕ : G̃ → G the covering homomorphism, and σ (resp. σ̃) a Chevalley–
Weyl involution with respect to a maximal torus T (resp. T̃ ) of G (resp. G̃) such that the
following diagram commutes.

G
σ−−−→ G

ϕ

x ϕ

x
G̃

σ̃−−−→ G̃

Then for any subsets Π′,Π′′ of the set of simple roots Π of the Lie algebra g of G, G =
LΠ′ Gσ LΠ′′ holds if and only if G̃ = L̃ϕ∗Π′G̃σ̃L̃ϕ∗Π′′ does. Here, ϕ∗ denotes the natural
induced map from ϕ, LΠ′ (resp. LΠ′′) the Levi subgroup of G whose root system is generated
by Π′ (resp. Π′′), and L̃ϕ∗Π′ (resp. L̃ϕ∗Π′′) the Levi subgroup of G̃ whose root system is
generated by ϕ∗Π′ (resp. ϕ∗Π′′).

Proof. Let ZG̃ denote the center of G̃. Assume G = LΠ′ Gσ LΠ′′ . Since Gσ ⊂ ϕ(T̃ · G̃σ̃),
we have ϕ(L̃ϕ∗Π′Gσ̃L̃ϕ∗Π′′)= LΠ′ Gσ LΠ′′ = G. Then we obtain G̃ =ZG̃ · (L̃ϕ∗Π′Gσ̃L̃ϕ∗Π′′)=
L̃ϕ∗Π′Gσ̃L̃ϕ∗Π′′ .

Conversely, assume G̃ = L̃ϕ∗Π′Gσ̃L̃ϕ∗Π′′ . Then we have G = LΠ′ ϕ(G̃σ̃) LΠ′′ because ϕ is
surjective. Since ϕ(G̃σ̃) ⊂ Gσ, we obtain G = LΠ′ Gσ LΠ′′ .

Further, we can see that Theorem 4.1.1 is independent of the choice of Cartan subal-
gebras and Chevalley–Weyl involutions because any two Cartan subalgebras are conjugate
to each other by an inner automorphism, and any two Chevalley–Weyl involutions of the
same Cartan subalgebra t are conjugate to each other by the adjoint action of exp(t) (see
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[Wo]). For these reasons, we may and do work with the matrix group SO(2n), and fix a
Cartan subalgebra and a Chevalley–Weyl involution as in the next subsection.

4.2.2 Matrix realization

Throughout this chapter, we realize G = SO(2n) as a matrix group as follows:

G := {g ∈ SL(2n,C) : tgJ2ng = J2n,
tgg = I2n}, (4.2.1)

where Jm is defined by

Jm :=



1
1

O
. ..

O
1


∈ GL(m,R).

Then, the corresponding Lie algebra of G forms

g := {X ∈ sl(2n,C) : tXJ2n + J2nX = O, tX +X = O}.

We take a Cartan subalgebra t of g as diagonal matrices:

t =
⊕
1≤i≤n

R
√
−1Hi,

where Hi := Ei,i −E2n+1−i,2n+1−i.
We define

σ : G→ G, g 7→ ḡ, (4.2.2)

where ḡ denotes the complex conjugate of g ∈ G. The differential of σ is denoted by the
same letter. This involutive automorphism σ is a Chevalley–Weyl involution with respect
to t.

We let {εi}1≤i≤n ⊂ (t ⊗R C)∗ be the dual basis of {Hi}1≤i≤n. Then we define a set of
simple roots Π := {α1, ..., αn} by

αi := εi − εi+1 (1 ≤ i ≤ n− 1), αn := εn−1 + εn.

Let n = n1 + · · ·+ nk be a partition of n with n1, ..., nk−1 > 0 and nk ≥ 0. We put

si :=
∑
1≤p≤i

np (1 ≤ i ≤ k − 1),

Π′ := Π \ {αsi ∈ Π : 1 ≤ i ≤ k − 1} ,

and denote by LΠ′ the Levi subgroup whose root system is generated by Π′. In the matrix
realization, LΠ′ takes the form:

LΠ′ = U(n1)× · · · × U(nk−1)× SO(2nk) = (4.2.3)
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



A1

. . .

Ak-1

B
Jnk−1

Ak-1J
−1
nk−1

. . .

Jn1A1J
−1
n1


: Ai ∈ U(ni), B ∈ SO(2nk)


.

Here, we note that the pair (G,LΠ′) forms a symmetric pair if and only if Π \ Π′ = {α1},
{αn} or {αn−1}. For a later purpose, we give explicit involutions τ1, µ and µξ of G of which
the connected component of fixed point subgroups are L{α1}c , L{αn}c and L{αn−1}c .

L{α1}c = (Gτ1)0, τ1 : G→ G, g 7→ I1,2(n−1),1gI1,2(n−1),1, (4.2.4)

L{αn}c = Gµ, µ : G→ G, g 7→ In,ngIn,n, (4.2.5)

L{αn−1}c = Gµξ

, µξ = ξ ◦ µ ◦ ξ : G→ G (see (4.2.7)), (4.2.6)

where K0 denotes the connected component of K containing the identity element for a
Lie group K, and I1,2(n−1),1 and In,n are defined by I1,2(n−1),1 := diag(1,−1, . . . ,−1, 1) and
In,n := diag(1, . . . , 1︸ ︷︷ ︸

n

,−1, . . . ,−1︸ ︷︷ ︸
n

).

The Dynkin diagram of type Dn has an outer automorphism of order two, which switches
αn−1 and αn. This outer automorphism is induced from the following involution of G.

ξ : G→ G, x→ gξxg
−1
ξ , (4.2.7)

where gξ :=



n n+1

1 ˇ ˇ
. . .

1
0 1
1 0

1
. . .

1


.

Note that for any Π′ ⊂ Π, ξ(LΠ′) coincides with LΠ′′ where Π′′ is obtained from Π′ by
replacing αn−1 with αn. We also note that ξ preserves Gσ.

To obtain a generalized Cartan decomposition by the herringbone stitch method ([Ko4]),
we will use an involutive automorphism τp of G (1 ≤ p ≤ n− 1) given by

τp : G→ G, g 7→ Ip,2(n−p),pgIp,2(n−p),g (4.2.8)

where Ip,2(n−p),p := diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
2(n−p)

, 1, . . . , 1︸ ︷︷ ︸
p

). Then the connected component of

the fixed point subgroup Gτp is given by

SO(2p)× SO(2(n− p)) := (4.2.9)
 A B

S
C D

 :

(
A B
C D

)
∈ SO(2p), S ∈ SO(2(n− p))

 .
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4.3 Generalized Cartan decomposition

In this section, we give a proof of the implication (ii) ⇒ (i) in Theorem 4.1.1. The idea
is to use the herringbone stitch method that reduces unknown decompositions for non-
symmetric pairs to the known Cartan decomposition for symmetric pairs. For this, we
divide the proof to six cases.

4.3.1 Decomposition for the symmetric case (Case I− 1)

In this subsection we recall a well-known fact on the Cartan decomposition for the symmet-
ric case ([Ho, Theorem 6.10], [Ma3, Theorem 1]) and deal with Case I with i, j ∈ {n−1, n}.

Fact 4.3.1. Let K be a connected compact Lie group with Lie algebra k and two involutions
τ , τ ′ (τ 2 = (τ ′)2 = id). Let H and H ′ be subgroups of K such that

(Kτ )0 ⊂ H ⊂ Kτ and (Kτ ′)0 ⊂ H ′ ⊂ Kτ ′ .

We take a maximal abelian subspace b in

k−τ,−τ ′ := {X ∈ k : τ(X) = τ ′(X) = −X}

and write B for the connected abelian subgroup with Lie algebra b.
Suppose that ττ ′ is semisimple on the center z of k. Then we have

K = HBH ′.

We shall apply Fact 4.3.1 to Case I with i, j ∈ {n− 1, n} in Theorem 4.1.1. Let

(Π′)c = Π \ Π′ = {αn}, (Π′′)c = Π \ Π′′ = {αn−1}. (4.3.1)

(See Diagram 4.1.1 for the label of the Dynkin diagram.) Then, both (G,LΠ′) and (G,LΠ′′)
are symmetric pairs with µ and µξ = ξ ◦ µ ◦ ξ the corresponding involutions respectively
(see (4.2.5) and (4.2.7) for the definitions of µ and ξ). We take maximal abelian subspaces
b ⊂ g−µ and b′ ⊂ g−µ,−µξ

as follows:

b :=
⊕

1≤i≤[n
2
]

R(E2i−1,2n−2i+1 −E2i,2n−2i+2−E2n−2i+1,2i−1+E2n−2i+2,2i), (4.3.2)

b′ := b ∩ ξ(b).

We note that both b and b′ are contained in gσ where σ is the complex conjugation (4.2.2).
Using Fact 4.3.1, we obtain the following proposition.

Proposition 4.3.2. (Generalized Cartan decomposition.) Let G = SO(2n) and LΠ′, LΠ′′ be
as in (4.3.1), and define B := exp(b), B′ := exp(b′) for b, b′ as in (4.3.2). Then we have
the following three decompositions of G.

G = LΠ′ B LΠ′

= LΠ′′ ξ(B) LΠ′′

= LΠ′ B′ LΠ′′ .
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4.3.2 Decomposition for Case I− 2

In this subsection, we deal with the following case:

(Π′)c = {αi}, (Π′′)c = {α3} (i = n− 1 or n).

Since ξ switches the role of n − 1 and n, G = LΠ′ Gσ LΠ′′ holds for i = n if and only if so
does for i = n− 1 (see (4.2.7) for the definition of ξ). Thus, we may and do assume i = n
without loss of generality, and put

L : = L{αn}c(= U(n)), (4.3.3)

H : = L{α3}c(= U(3)× SO(2n− 6)),

for simplicity. We also note that the equality G = LGσH follows for n = 4 from Case II in
Theorem 4.1.1. (See Subsection 4.3.3.)

First, let us take a symmetric subgroup G′G′′ = (Gτ6)0 containing H where G′ :=
SO(6) × I2n−6 and G′′ := I6 × SO(2n − 6)(⊂ H) (see (4.2.8) for the definition of τ6). We
define a maximal abelian subspace b′ of g−τ6,−µ by

b′ :=


⊕
1≤j≤3

R(Ej,n+j −En+j,j −En+1−j,2n+1−j +E2n+1−j,n+1−j) (n ≥ 6),⊕
1≤j≤2

R(Ej,n+j −En+j,j −En+1−j,2n+1−j +E2n+1−j,n+1−j) (n = 5).
(4.3.4)

Then we give a decomposition of G by using Fact 4.3.1 as follows.

G = L exp(b′)(G′G′′). (4.3.5)

Second, we consider the centralizer of b′. We define an abelian subgroup T ′′ by T ′′ :=
exp(t′′) where

t′′ :=


⊕
1≤i≤3

R
√
−1(Ei,i −E2n+1−i,2n+1−i −En+1−i,n+1−i+En+i,n+i) (n ≥ 6),⊕

1≤i≤2

R
√
−1(Ei,i −E11−i,11−i −E6−i,6−i+E5+i,5+i)

⊕ R
√
−1(E3,3 −E8,8)

(n = 5).

A simple matrix computation shows that b′ commutes with t′′.

Lemma 4.3.3. ZG(b
′) ⊃ T ′′.

Third, we consider the double coset decomposition of G′ by (G′)µ and a maximal torus
T ′ := G′ ∩ exp(t) of G′, which consists of diagonal matrices. For this, we decompose the
Lie algebra g′ of G′ as follows.

g′ = (g′)µ ⊕ (g′)−µ.

It is easy to see that (g′)−µ is rewritten as

(g′)−µ =
∪
g∈T ′

Ad(g)(g′)−µ,σ.
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Then we can find that the exponential mapping

exp :
∪
g∈T ′

Ad(g)(g−µ,σ) → G′/(G′)µ

is surjective. Thus we have

G′ = T ′ exp(g−µ,σ)(G′)µ. (4.3.6)

We are ready to give a proof of a generalized Cartan decomposition for Case I with (i, j) =
(n, 3).

Proposition 4.3.4. (Generalized Cartan decomposition.) Let G = SO(2n) and L, H be as
in (4.3.3). We set B := exp(b′) exp(g−µ,σ) (see (4.3.4) for the definition of b′). Then we
have

G = LBH.

Proof. In the following proof, we use the herringbone stitch method introduced by Kobayashi
([Ko4]).

G = L exp(b′)(G′G′′) by (4.3.5)

= L exp(b′)T ′ exp(g−µ,σ)(G′)µG′′ by (4.3.6)

= L exp(b′)T ′ exp(g−µ,σ)H by (G′)µG′′ = H. (4.3.7)

Since T ′ and T ′′ satisfy T ′ exp(g−µ,σ)H = T ′′ exp(g−µ,σ)H, we can continue the decompo-
sition (4.3.7) as follows.

(4.3.7) = L exp(b′)T ′′ exp(g−µ,σ)H

= LT ′′ exp(b′) exp(g−µ,σ)H by Lemma 4.3.3

= L exp(b′) exp(g−µ,σ)H

= LBH.

Here is a herringbone stitch which we have used for L\G/H in Case I with i = n, j = 3.

T ′
⊂
G′ ·G′′

⊃
⊃

G (G′)µ

⊂
L

Figure 4.3.1: Herringbone stitch for Case I with i = n, j = 3
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4.3.3 Decomposition for Case II

In this subsection we deal with the following case:

(Π′)c = {αi}, (Π′′)c = {αj, αk} ( i ∈ {n− 1, n}, j ̸= k and j, k ∈ {1, n− 1, n}).

Since ξ (see (4.2.7) for the definition of ξ) switches the role of n− 1 and n, and L{α1,αn}c is
conjugate to L{αn−1,αn}c by an element of Gσ where σ is the complex conjugation (4.2.2),
G = LΠ′ Gσ LΠ′′ holds for (i, j, k) = (n, 1, n) if and only if so does for each of the other triples
(i, j, k). Thus, we may and do assume (i, j, k) = (n, 1, n) without any loss of generality,
and put

L : = L{αn}c(= U(n)), (4.3.8)

H : = L{α1,αn}c(= U(1)× U(n− 1)),

for simplicity. The goal of this subsection is to prove

G = L exp(b′)DH, (4.3.9)

where the subspace b′ and the subset D are defined by

b′ :=
⊕

1≤i≤[n
2
]

R(E2i−1,2n−2i+1 −E2i,2n−2i+2−E2n−2i+1,2i−1+E2n−2i+2,2i), (4.3.10)

D := D1D2 · · ·D[n−1
2

] (4.3.11)

for Dj := exp(R(E2j−1,2j+1 −E2j+1, 2j−1−E2n−2j,2n−2j+2+E2n−2j+2,2n−2j)) (1 ≤ j ≤ [n−1
2
]).

This subspace b′ is a maximal abelian subspace of g−µ.
As the first step to the goal, we use Proposition 4.3.2 and then obtain

G = L exp(b′)L. (4.3.12)

Second, we consider the centralizer of b′. We omit details of the proof of the following
lemma since it follows from a simple matrix computation.

Lemma 4.3.5. ZG(b
′) ⊃ K :=

{
(SU(2))m (n = 2m),

(SU(2))m × U(1) (n = 2m+ 1).

Here, we realize the subgroup K as block diagonal matrices in G.

Third, we consider the double coset decomposition of L by K and H.

Lemma 4.3.6. L = KDH.

Proof. The following proof is due to [Sa3]. Let us identify L/H with CP n in the natural
way. Here, we note that D ·H/H is identified with a subset{

[z1 : · · · : zn] ∈ CP n : zk ∈ R (1 ≤ k ≤ n) and z2l = 0
(
1 ≤ l ≤ [

n

2
]
)}

of CP n. We shall show the equality K · D · H/H = L/H for two cases n = 2m and
n = 2m+ 1 separately.
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• Case 1: n = 2m. Since the SU(2)-action on S3 is transitive, for any [z1 : · · · : z2m] ∈
CP n, there exists g = (g1, . . . , gm) ∈ K such that

g · [z1 : · · · : z2m] =[g1 · (z1 : z2) : · · · : gm · (z2m−1 : z2m)]

=[(
√

|z1|2 + |z2|2 : 0) : · · · : (
√
|z2m−1|2 + |z2m|2 : 0)]

∈ D ·H/H.

Thus, we obtain K ·D ·H/H = L/H.

• Case 2: n = 2m + 1. As similar to the case n = 2m, for any [z1 : · · · : z2m :
z2m+1] ∈ CP n, we can find an element h = (h1, . . . , hm) of the commutator subgroup
Kss = [K,K] satisfying

h · [z1 : · · · : z2m] =[(
√
|z1|2 + |z2|2 : 0) : · · · : (

√
|z2m−1|2 + |z2m|2 : 0)].

We then put θ := arg(z2m+1) and g := (h, e−
√
−1θ) ∈ K, and obtain

g · [z1 : · · · : z2m : z2m+1] =

[(
√
|z1|2 + |z2|2 : 0) : · · · : (

√
|z2m-1|2 + |z2m|2 : 0) : |z2m+1|] ∈ D ·H/H.

Hence we have K ·D ·H/H = L/H.

We are ready to give a proof of a generalized Cartan decomposition (4.3.9).

Proposition 4.3.7. (Generalized Cartan decomposition.) Let G = SO(2n) and L, H be as
in (4.3.8). We put B := exp(b′)D (see (4.3.10) and (4.3.11) for the definitions of b′ and
D). Then we have G = LBH.

Proof.

G = L exp(b′)L by (4.3.12)

= L exp(b′)KDH by Lemma 4.3.6

= LK exp(b′)DH by Lemma 4.3.5

= LBH.

Here is a herringbone stitch which we have used for L\G/H in Case II with (i, j, k) =
(n, 1, n).

K

⊃
⊂
L

⊃
G H
⊂

L

Figure 4.3.2: Herringbone stitch for Case II with (i, j, k) = (n, 1, n)
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4.3.4 Decomposition for Case III

In this subsection we deal with the following case:

(Π′)c = {αi}, (Π′′)c = {α1, α2} (i = n− 1 or n).

As in the beginning of Subsection 4.3.2, we may and do assume i = n without loss of
generality, and put

L : = L{αn}c(= U(n)), (4.3.13)

H : = L{α1,α2}c(= U(1)× U(1)× SO(2n− 4)),

for simplicity. This subsection aims for showing

G = L exp(b′) exp(b′′)H, (4.3.14)

where the subspaces b′ and b′′ are defined by

b′ :=
⊕
i=1,2

R (Ei,n+i−En+i,i −En+1−i,2n+1−i+E2n+1−i,n+1−i), (4.3.15)

b′′ := R(E1,2−E2,1−E2n−1,2n+E2n,2n−1) (4.3.16)

⊕ R(E1,2n−1 −E2n−1,1−E2,2n +E2n,2).

First, we take a symmetric subgroup (Gτ4)0 = G′G′′ containing H where G′ := SO(4)×
I2n−4 and G′′ := I4 × SO(2n− 4)(⊂ H). In light that b′ is a maximal abelian subspace of
g−τ4,−µ, we see from Fact 4.3.1 that

G = L exp(b′)(G′G′′). (4.3.17)

Next we consider the double coset decomposition of G′ by a symmetric subgroup T ′ defined
by T ′ := (G′)τ10 . The point here is that T ′ satisfies T ′G′′ = H. Applying Fact 4.3.1 to
(G′, τ1|G′ , τ1|G′), we have

G′ = T ′ exp(b′′)T ′. (4.3.18)

We are ready to give a proof of a generalized Cartan decomposition (4.3.14) by using the
herringbone stitch method.

Proposition 4.3.8. (Generalized Cartan decomposition.) Let G = SO(2n) and L,H be as
in (4.3.13). We put B := exp(b′) exp(b′′) (see (4.3.15) and (4.3.16) for the definitions of b′

and b′′). Then we have G = LBH.

Proof.

G = L exp(b′)(G′G′′) by (4.3.17)

= L exp(b′)(T ′ exp(b′′)T ′)G′′ by (4.3.18)

= L exp(b′)T ′ exp(b′′)H by T ′G′′ = H. (4.3.19)

We define

T ′′ := exp

(⊕
i=1,2

R
√
−1((Ei,i −E2n+1−i,2n+1−i)− (En+1−i,n+1−i−En+i,n+i))

)
.
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Then T ′ and T ′′ satisfy the following equality:

T ′ exp(b′′)H = T ′′ exp(b′′)H,

and T ′′ centralizes b′. From this, we can continue the decomposition as follows.

(4.3.19) = L exp(b′)T ′′ exp(b′′)H

= LT ′′ exp(b′) exp(b′′)H

= LBH.

Here is a herringbone stitch which we have used for L\G/H in Case III with i = n.

T ′⊂
G′ ·G′′

⊃
⊃

G T ′

⊂
L

Figure 4.3.3: Herringbone stitch for Case III with i = n

4.3.5 Decomposition for Case IV

In this subsection we deal with the following case:

(Π′)c = {α1}, (Π′′)c = {αj, αk} (1 ≤ j ≤ n and k = n− 1 or n).

As in the beginning of Subsection 4.3.2, we may and do assume k = n without loss of
generality, and put

L : = L{α1}c(= U(1)× SO(2n− 2)), (4.3.20)

H : = L{αj ,αn}c(= U(j)× U(n− j)),

for simplicity. The goal of this subsection is to prove

G = L exp(b′) exp(b′′)H, (4.3.21)

where the subspaces b′ and b′′ are defined by

b′ :=
⊕
i=1,2

R(E1,n+i−1−En+i−2,1−En+2−i,2n +E2n,n+2−i), (4.3.22)

b′′ := R(E1,2n+1−j −E2n+1−j,1−Ej,2n+E2n,j) (4.3.23)

⊕ R(Ej+1,n+1−En+1,j+1−En,2n−j +E2n−j,n).

Then b′ and b′′ are maximal abelian subspaces of g−τ1,−τj and (gτj)−(τ1τn−1),−µ respectively.
We apply Fact 4.3.1 to (G, τ1, τj), and then obtain

G = L exp(b′)(Gτj)0. (4.3.24)
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Next we consider the double coset decomposition of (Gτj)0 by H and a subgroup L′ of
Gτj ∩ L given by

L′ : = I2 × SO(2j − 2)× SO(2(n− j)− 2)× I2

=





1 0
A B

E F
1 0
0 1

G H
C D

0 1


:

(
A B
C D

)
∈ SO(2j − 2),

(
E F
G H

)
∈ SO(2(n− j)− 2)


.

The point here is that L′ centralizes b′. Applying Fact 4.3.1 to ((Gτj)0, τ1τn−1, µ), we get

(Gτj)0 = (Gτj ,(τ1τn−1))0 exp(b
′′)Gτj ,µ. (4.3.25)

Further, it is easy to see (Gτj ,(τ1τn−1))0 exp(b
′′)Gτj ,µ = L′ exp(b′′) Gτj ,µ. Thus we have

(Gτj)0 = L′ exp(b′′)Gτj ,µ. (4.3.26)

We are ready to give a proof of a generalized Cartan decomposition (4.3.21) by using the
herringbone stitch method.

Proposition 4.3.9. (Generalized Cartan decomposition.) Let G = SO(2n) and L,H be as
in (4.3.20), and put B := exp(b′) exp(b′′) (see (4.3.22) and (4.3.23) for the definitions of b′

and b′′). Then we have G = LBH.

Proof.

G = L exp(b′)(Gτj)0 by (4.3.24)

= L exp(b′)(L′ exp(b′′)Gτj ,µ) by (4.3.26)

= L exp(b′)(L′ exp(b′′)H) by Gτj ,µ = H

= LL′ exp(b′) exp(b′′)H by L′ ⊂ ZG(b
′)

= LBH.

Here is a herringbone stitch which we have used for L\G/H in Case IV with k = n.

L′⊂
(Gτj)0
⊃ ⊃

G H
⊂

L

Figure 4.3.4: Herringbone stitch for Case IV with k = n
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4.3.6 Decomposition for Case V

In this subsection, we deal with the following case for G = SO(8):

(Π′)c = {αi}, (Π′′)c = {α2, αj} ((i, j) = (3, 4) or (4, 3)).

We may assume (i, j) = (4, 3) without any loss of generality since ξ(L{α4}c) = L{α3}c and
ξ(L{α2,α3}c) = L{α2,α4}c . For simplicity, we put

L : = L{α4}c(= U(4)), (4.3.27)

H : = L{α2,α3}c(= ξ(U(2)× U(2))).

The goal of this subsection is to prove

G = L exp(a)ξ(B′′B′)H, (4.3.28)

where the subspace a and the subgroups B′, B′′ are defined by

a := R(E1,7−E2,8 −E7,1+E8,2), (4.3.29)

B′ := exp(R(E1,4−E4,1−E5,8 +E8,5)⊕ R(E2,3 −E3,2−E6,7 +E7,6)), (4.3.30)

B′′ := exp(R(E1,3−E3,1 −E6,8 +E8,6)). (4.3.31)

Then a is a maximal abelian subspace of g−µ,−µξ
.

First, we decompose G by using Proposition 4.3.2 as follows.

G = L exp(a)ξ(L). (4.3.32)

Next, we recall a generalized Cartan decomposition for type A group ([Ko4, Theorem 3.1]).
We set H ′ := SU(2) × U(1) × U(1) ⊂ L which is realized as block diagonal matrices and

T :=

{(
e
√
−1θI4 O

O e−
√
−1θI4

)
∈ L : θ ∈ R

}
. Then we have

Lemma 4.3.10. ([Ko4,Theorem 3.1]) L = (H ′T )B′′B′ξ(H).

Further, we can see that L = (H ′T )B′′B′ξ(H) = H ′B′′B′ξ(H) since T is the center of
L, and thus we have the following decomposition of ξ(L).

ξ(L) = H ′ξ(B′′B′)H. (4.3.33)

Here, we note ξ(H ′) = H ′.
We are ready to give a proof of a generalized Cartan decomposition (4.3.28).

Proposition 4.3.11. (Generalized Cartan decomposition.) Let G = SO(8) and L,H be as
in (4.3.27). Put B := exp(a)ξ(B′′B′) (see (4.3.29), (4.3.30) and (4.3.31) for the definitions
of a, B′ and B′′). Then we have G = LBH.

Proof.

G = L exp(a)ξ(L) by (4.3.32)

= L exp(a)(H ′ξ(B′′B′)H) by (4.3.33)

= LH ′ exp(a)ξ(B′′B′)H by H ′ ⊂ ZG(a)

= LBH.

Here is a herringbone stitch which we have used for L\G/H in CaseV.
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H ′⊂
ξ(L)
⊃ ⊃

G H
⊂L

Figure 4.3.5: Herringbone stitch for Case V

4.4 Application of invariant theory

In this section, we prove that (i) implies (ii) in Theorem 4.1.1. The idea of the proof
is to use invariants of quivers. Although Lemmas 4.4.1, 4.4.2 and 4.4.3 are parallel to
[Ko4, Lemmas 6.1, 6.2 and 6.3] respectively, we give proofs of these lemmas for the sake of
completeness. This section could be read independently of Section 4.3 which gives a proof
on the opposite implication of (ii) ⇒ (i) in Theorem 4.1.1.

4.4.1 Invariants of quivers

Let σ : M(N,C) → M(N,C) be the complex conjugation with respect to M(N,R).

Lemma 4.4.1. (c.f. [Ko4,Lemma 6.1]) Let G ⊂ GL(N,C) be a σ-stable subgroup, R ∈
M(N,R), and L a subgroup of G. If there exists g ∈ G such that

Ad(L)(Ad(g)R) ∩M(N,R) = ∅, (4.4.1)

then G ̸= LGσGR. Here GR := {h ∈ G : hRh−1 = R}.

Proof. Let us observe that Ad(GσGR)R = Ad(Gσ)R ⊂ M(N,R). Then, the condition
(4.4.1) implies Ad(Lg)R∩Ad(GσGR)R = ∅, and thus Lg∩GσGR = ∅. Therefore we have
g /∈ LGσGR.

We return to the case G = SO(2n). Let k, r ≥ 2 be integers. We fix a partition
n = n1 + · · · + nk of a positive integer n with n1, ..., nk−1 > 0 and nk ≥ 0, and consider a
loop i0 → i1 → · · · → ir such that

is ∈

{
{1, . . . , 2k − 1} (nk ̸= 0),

{1, . . . , k − 1, k + 1, . . . , 2k − 1} (nk = 0),

and i0 = ir, is−1 ̸= is (1 ≤ s ≤ r). Correspondingly to this loop, we define a non-linear
mapping

Ai0···ir : M(2n,C) →

{
M(ni0 ,C) (i0 = ir ̸= k)

M(2nk,C) (i0 = ir = k)

as follows: Let P ∈ M(2n,C), and we write P as (Pij)1≤i,j≤2k−1 in the block matrix form
corresponding to the partition 2n = n1+ · · ·+nk−1+2nk +nk−1+ · · ·+n1 of 2n such that

Pij ∈


M(ni, nj;C) (i, j ̸= k),

M(2nk, nj;C) (i = k, j ̸= k),

M(ni, 2nk;C) (i ̸= k, j = k),

M(2nk,C) (i = j = k),

(4.4.2)
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where n2k−i := ni (1 ≤ i ≤ k). We define P̃ij and Ai0···ir(P ) by

P̃ij :=


Pij (i+ j ≤ 2k),

Jni
tP2k−j,2k−iJnj

(i+ j > 2k, i, j ̸= k),

J2nk

tP2k−j,kJnj
(i = k, j > k),

Jni
tPk,2k−iJ2nk

(i > k, j = k).

Ai0···ir(P ) := P̃i0i1P̃i1i2 · · · P̃ir−1ir .

Then for any l = (l1, . . . , lk−1, lk) ∈ L := U(n1) × · · · × U(nk−1) × SO(2nk) (see (4.2.3) in
Section 4.2 for the realization as matrices), a direct computation shows

˜(Ad(l)P )ij = liP̃ijl
−1
j (4.4.3)

where ls ∈ U(ns)(1 ≤ s ≤ k − 1), lk ∈ SO(2nk). The equation (4.4.3) leads us to the
following lemma (c.f. [Ko4, Lemma 6.2]):

Lemma 4.4.2. If there exists a loop i0 → i1 → · · · → ir such that at least one of the
coefficients of the characteristic polynomial det(λIni0

− Ai0···ir(P )) is not real, then

Ad(L)P ∩M(2n,R) = ∅.

Proof. From (4.4.3), we can see that the characteristic polynomial of Ai0···ir(P ) is invariant
under the conjugation by L. Therefore if there exists l ∈ L such that Ad(l)P ∈ M(2n,R)
and thus the characteristic polynomial of Ai0···ir(Ad(l)P ) is real, then that of Ai0···ir(P ) is
also a real polynomial. By contraposition, our lemma holds.

By using Lemmas 4.4.1 and 4.4.2, we obtain the next lemma (c.f. [Ko4, Lemma 6.3]):

Lemma 4.4.3. Let n = n1+· · ·+nk be a partition and L = U(n1)×· · ·×U(nk−1)×SO(2nk)
the corresponding Levi subgroup of SO(2n). Let us suppose that R is a block diagonal matrix
:

R :=


R1

R2

. . .

R2k−1

 ,

where Rs, R2k−s ∈ M(ns,R) (1 ≤ s ≤ k − 1), and Rk ∈ M(2nk,R) (the last condition
makes sense when nk ̸= 0).

If there exist X ∈ so(2n) and a loop i0 → · · · → ir such that

det(λIni0
− Ai0···ir([X,R])) /∈ R[λ],

then the multiplication map L×Gσ×GR → G is not surjective. Here, [X,R] := XR−RX.
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Proof. Let us set P (ε) := Ad(exp(εX))R. It suffices to show

det(λIni0
− Ai0···ir(P (ε))) /∈ R[λ]

for some ε > 0. We set Q := [X,R]. The matrix P (ε) depends real analytically on ε, and
we have

P (ε) = R + εQ+O(ε2),

as ε tends to 0. In particular, if i ̸= j then the (i, j)-block of matrix Pij(ε) ∈ M(ni, nj;C)
satisfies

Pij(ε) = εQij +O(ε2) as ε tends to 0.

Then, we have

det(λIni0
− Ai0···ir(P (ε))) = det(λIni0

− εrQ̃i0i1 · · · Q̃ir−1ir +O(εr+1))

= det(λIni0
− εrAi0···ir(Q) +O(εr+1))

=

ni0∑
s=0

λni0
−sεsrhs(ε), (4.4.4)

where hs(ε) (0 ≤ s ≤ ni0) are real analytic functions of ε such that

det(λIni0
− Ai0···ir(Q)) =

ni0∑
s=0

λni0
−shs(0).

From our assumption, this polynomial has complex coefficients, namely, there exists s such
that hs(0) /∈ R. It follows from (4.4.4) that det(λIni0

− Ai0···ir(P (ε))) /∈ R[λ] for any
sufficiently small ε. Hence, we have shown the lemma.

4.4.2 Necessary conditions for G = LGσH

Throughout this subsection, we set (G,L,H) =
(SO(2n), U(n1) × · · · × U(nk−1) × SO(2nk), U(m1) × · · ·U(ml−1) × SO(2ml)), where

n = n1 + · · · + nk = m1 + · · · + ml with ni,mj > 0 (1 ≤ i ≤ k − 1, 1 ≤ j ≤ l − 1)
and nk,ml ≥ 0. We give necessary conditions on (L,H) (resp. (L, ξ(H))) under which
G = LGσH (resp. G = LGσξ(H)) holds. We divide the proof into six cases (Propositions
4.4.4–4.4.9).

Proposition 4.4.4. G ̸= LGσH if one of the following two conditions is satisfied.

k ≥ 4, m1 = 1. (4.4.5)

k ≥ 3, nk ̸= 0, m1 = 1. (4.4.6)

Proposition 4.4.5. G ̸= LGσH if nk,ml ̸= 0, n1,m1 ≥ 2.

Proposition 4.4.6. G ̸= LGσH if k = 2, n1 ≥ 4, n2 ≥ 2, ml = 0.

Proposition 4.4.7. G ̸= LGσH if k = 3, max{n1, n2} ≥ 2, n3 ̸= 0, ml = 0.
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Proposition 4.4.8. G ̸= LGσH if k = 3, n1, n2 ≥ 2, n3 = ml = 0.

Proposition 4.4.9. G ̸= LGσξ(H) if n ≥ 5, k = 3, n1, n2 ≥ 2, nk = ml = 0.

Proof of Proposition 4.4.4. We note that the following two inclusive relations reduce a
proof of Proposition 4.4.4 to the case k = 3, l = 2, n3 ̸= 0 and m1 = 1:

L ⊂

{
U(n1)× U(n2 + · · ·+ nk−2)× SO(2(nk−1 + nk)) (k ≥ 4),

U(n1)× U(n2 + · · ·+ nk−1)× SO(2nk) (k ≥ 3, nk ̸= 0),

H ⊂ U(1)× SO(2(m2 + · · ·+ml)).

We shall show that G ̸= LGσH if k = 3, l = 2, n3 ̸= 0 and m1 = 1. Under this condition,
(G,L,H) takes the form:

(G,L,H) = (SO(2n),U(n1)× U(n2)× SO(n3),U(1)× SO(2n− 2)).

Let 1 → 2 → 5 → 3 → 1 be a loop and define a diagonal matrixR byR := diag(1, 0, . . . , 0,−1).
Then, GR coincides with H. We fix u ∈ C and define X = (Xij)1≤i,j≤5 ∈ so(2n) in the
block matrix form corresponding to the partition 2n = n1 + n2 + 2n3 + n2 + n1 as (4.4.2):

X12 :=

(
−u

O

)
∈ M(n1, n2;C), X14 :=

(
−1

O

)
∈ M(n1, n2;C),

X31 :=

1

O
1

 ∈ M(2n3, n1;C).

We define the block entries X11, X15, X22, X23, X24, X32, X33, X34, X42, X43, X44, X51

and X55 to be zero matrices. The remaining block entries are automatically determined by
the definition (4.2.1) of G = SO(2n). Then, Q := [X,R] has the following block entries.

Q12 =

(
u

O

)
∈ M(n1, n2;C), Q14 =

(
1

O

)
∈ M(n1, n2;C),

Q31 =

1

O
1

 ∈ M(2n3, n1;C).

By a simple matrix computation, we have

A12531(Q) = Q12Jn2

tQ14Jn1Jn1

tQ31J2n3Q31 =

(
2u

O
)
,

and thus the characteristic polynomial det(λIn1−A12531(Q)) = λn1−2uλn1−1 is not defined
over R if u is not real. By using Lemma 4.4.3, we obtain G ̸= LGσH.

Proof of Proposition 4.4.5. We can reduce a proof of Proposition 4.4.5 to the case k = l =
2, m1 ≥ n1 ≥ 2 and n2,m2 ̸= 0 because the following two inclusive relations hold:
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• U(n1)× · · · × U(nk−1)× SO(2nk) is contained in{
U(n1 + n2)× SO(2(n3 + · · ·+ nk)) (k ≥ 4),

U(n1)× SO(2(n2 + · · ·+ nk)) (nk ̸= 0, n1 ≥ 2),

• U(m1)× · · · × U(ml−1)× SO(2ml) ⊂ U(m1)× SO(2(m2 + · · ·+ml)).

We shall show G ̸= LGσH in the case k = l = 2, m1 ≥ n1 ≥ 2 and n2,m2 ̸= 0. Let
1 → 2 → 3 → 1 be a loop and define a diagonal matrix R by

R := diag(−1,

n1−2︷ ︸︸ ︷
1, . . . , 1,−1,

m1−n1︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0,

m1−n1︷ ︸︸ ︷
−1, . . . ,−1, 1,

n1−2︷ ︸︸ ︷
−1, . . . ,−1, 1).

Then, GR is conjugate to H by an element of Gσ. We fix u ∈ C and define X =
(Xij)1≤i,j≤3 ∈ so(2n) in the block matrix form corresponding to the partition 2n =
n1 + 2n2 + n1 as (4.4.2):

X12 :=

 u 0

O O
0 1

 ∈ M(n1, 2n2;C), X31 :=

1

O
−1

 ∈ M(n1,C).

We define the block entries X11, X22 and X33 to be zero matrices. The remaining block
entries of X are determined automatically by (4.2.1). Then Q := [X,R] has the following
block entries.

Q12 =

 u 0

O O
0 1

 , Q31 =

−2

O
2

 .

A simple matrix computation shows

A1231(Q) = Q12J2n2

tQ12Jn1Q31 =

−2u

O
2u

 ,

and we find that det(λIn1 −A1231(Q)) = λn1 −4u2λn1−2 /∈ R[λ] if u2 /∈ R. By Lemma 4.4.3,
we have proved G ̸= LGσH.

Proof of Proposition 4.4.6. Clearly H is contained in U(n) under the condition of Propo-
sition 4.4.6. Hence, it is enough to prove the following:

G ̸= LGσH if k = l = 2, n1 ≥ 4, n2 ≥ 2, m2 = 0. (4.4.7)

Let 1 → 2 → 3 → 1 be a loop and define a diagonal matrix R as follows.

R := diag(

n1−2︷ ︸︸ ︷
1, . . . , 1,−1,−1,−1,−1,

n2−2︷ ︸︸ ︷
1, . . . , 1,

n2−2︷ ︸︸ ︷
−1, . . . ,−1, 1, 1, 1, 1,

n1−2︷ ︸︸ ︷
−1, . . . ,−1).

Then GR is conjugate to H by an element of Gσ. Let us fix u ∈ C and define X =
(Xij)1≤i,j≤3 ∈ so(2n) in the block matrix form corresponding to the partition 2n = n1 +
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2n2 + n1 as (4.4.2):

X12 :=


u
1

O
1
1

 , X31 :=


−1

1

O
−1

1

 ,

where X12 ∈ M(n1, 2n2;C), X31 ∈ M(n1,C). We define the block entries X11, X22 and X33

to be zero matrices. The remaining block entries of X are automatically determined by
(4.2.1). Then Q := [X,R] has the following block entries:

Q12 =


−2u

−2

O
2
2

 , Q31 =


2
−2

O
−2

2

 .

By a simple matrix computation, we have

A1231(Q) = Q12J2n2

tQ12Jn1Q31 = 8


−u

1

O
1
−u

 ,

and thus det(λIn1 − A1231(Q)) = λn1−4(λ2 + 64u)2 /∈ R[λ] if u /∈ R. From Lemma 4.4.3,
we obtain G ̸= LGσH.

Proof of Proposition 4.4.7. For Proposition 4.4.7, it is enough to show that

G ̸= LGσH if k = 3, l = 2, n2 ≥ 2, n3 ̸= 0, m2 = 0. (4.4.8)

Under this condition, (G,L,H) takes the form:

(G,L,H) = (SO(2n),U(n1)× U(n2)× SO(2n3),U(n)) (n2 ≥ 2).

Let 1 → 2 → 3 → 4 → 1 be a loop and define a diagonal matrix R as follows.

R := diag(

n1+n2−1︷ ︸︸ ︷
1, . . . , 1,−1,−1,

n3−1︷ ︸︸ ︷
1, . . . , 1,

n3−1︷ ︸︸ ︷
−1, . . . ,−1, 1, 1,

n1+n2−1︷ ︸︸ ︷
−1, . . . ,−1).

We note that GR is conjugate to H by an element of Gσ. Let us fix u ∈ C and de-
fine X = (Xij)1≤i,j≤5 ∈ so(2n) in the block matrix form corresponding to the partition
2n = n1 + n2 + 2n3 + n2 + n1 as (4.4.2):

X12 :=

(
1

O

)
∈ M(n1, n2;C),X23 :=

u O
1

 ∈ M(n2, 2n3;C), X41 :=

(
O

−1

)
∈

M(n2, n1;C).
We define the block entries X11, X13, X15, X22, X24, X31, X33, X35, X42, X44, X51, X53 and
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X55 to be zero matrices. The remaining block entries of X are automatically determined
by 4.2.1. Then, Q := [X,R] has the following block entries:

Q12 =

(
−2

O

)
, Q23 =

−2u

O
2

 , Q41 =

(
O

−2

)
.

A simple matrix computation shows

A12341(Q) = Q12Q23J2n3

tQ23Jn2Q41 =

(
−16u

O

)
,

and thus we obtain det(λIn1 − A12341(Q)) = λn1 + 16uλn1−1 /∈ R[λ] if u /∈ R. From
Lemma 4.4.3, we have proved G ̸= LGσH.

Proof of Proposition 4.4.8. Under the condition of Proposition 4.4.8, H is contained in
U(n). Hence it is enough to show the following:

G ̸= LGσH if k = 3, l = 2, n1, n2 ≥ 2, n3 = m2 = 0.

Let 1 → 4 → 2 → 5 → 1 be a loop and define R by

R := diag(

n︷ ︸︸ ︷
1, . . . , 1,

n︷ ︸︸ ︷
−1, . . . ,−1).

Then, GR = H. Let us fix u ∈ C and define X = (Xij)1≤i,j≤5 ∈ so(2n) in the block matrix
form corresponding to the partition 2n = n1 + n2 + 2n3 + n2 + n1 as (4.4.2):

X14 :=

−u −1

O
−1 −1

 ∈ M(n1, n2;C), X42 :=

−1

O
1

 ∈ M(n2,C),

X51 :=

−1

O
1

 ∈ M(n1,C).

We define X11, X12, X21, X22, X44, X45, X54 and X55 to be zero matrices. The remaining
block entries of X are automatically determined by (4.2.1). Here we note that none of
the block entries X13, X23, X31, X33, X34, X35, X43 and X53 exists since n3 = 0. Then
Q := [X,R] has the following block entries:

Q14 =

2u 2

O
2 2

 , Q42 =

−2

O
2

 , Q51 =

−2

O
2

 .

A simple matrix computation shows

A14251(Q) = Q14Q42Jm2

tQ14Jm1Q51 =

16(u− 1)

O
16(u− 1)

 ,

and thus, det(λIn1 − A14251(Q)) = λn1−2(λ− 16(u− 1))2 /∈ R[λ] if u /∈ R. From Lemma
4.4.3, we get G ̸= LGσH.
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Proof of Proposition 4.4.9. Wemay assume n2 ≥ n1. It suffices to show thatG ̸= LGσξ(H)
if k = 3, l = 2, n1 ≥ 2, n2 ≥ 3 and n3 = m2 = 0. Let 1 → 4 → 2 → 5 → 1 be a loop and

define R by R := diag(

n−1︷ ︸︸ ︷
1, . . . , 1,−1, 1,

n−1︷ ︸︸ ︷
−1, . . . ,−1). Then, GR = ξ(H). Let us fix u ∈ C and

define X = (Xij)1≤i,j≤5 ∈ so(2n) in the block matrix form corresponding to the partition
2n = n1 + n2 + 2n3 + n2 + n1 as (4.4.2):

X14 :=

0 −u −1

O
0 −1 −1

 ∈ M(n1, n2;C),

X42 :=


0 0 0
−1 0 0

O
0 1 0

 ∈ M(n2,C), X51 :=

−1

O
1

 ∈ M(n1,C).

The remaining block entries of X are defined in the same way as in the proof of Proposition
4.4.8. Then Q := [X,R] has the following block entries.

Q14 =

0 2u 2

O
0 2 2

 , Q42 =


0 0 0
−2 0 0

O
0 2 0

 , Q51 =

−2

O
2

 .

By a simple matrix computation, we have

A14251(Q) = Q14Q42Jm2

tQ14Jm1Q51 =

16(u− 1)

O
16(u− 1)

 ,

and find that det(λIn1 − A14251(Q)) = λn1−2(λ − 16(u − 1))2 /∈ R[λ] if u /∈ R. From
Lemma 4.4.3, we have proved G ̸= LGσξ(H).

4.4.3 Completion of the proof of Theorem 4.1.1

We complete the proof of the implication (i)⇒ (ii) in Theorem 4.1.1 (Proposition 4.4.10) by
using Propositions 4.4.4–4.4.9. For a given partition n = n1+ · · ·+nk with n1, ..., nk−1 > 0
and nk ≥ 0, we have a Levi subgroup LΠ′ = U(n1)× · · · × U(nk−1)× SO(2nk) of SO(2n),
which is associated to the subset

Π′ := Π \

{
αi ∈ Π : i =

j∑
s=1

ns, 1 ≤ j ≤ k − 1

}
of the set of simple roots Π (see Diagram 4.1.1 for the label of the Dynkin diagram).

Proposition 4.4.10. Let G be the special orthogonal group SO(2n) (n ≥ 4), σ a Chevalley–
Weyl involution, Π′,Π′′ subsets of the set of simple roots Π, and LΠ′ , LΠ′′ the corresponding
Levi subgroups. Then we have

G ̸= LΠ′ Gσ LΠ′′ (4.4.9)
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if one of the following conditions up to switch of Π′ and Π′′ is satisfied (1 ≤ i, j, k ≤ n) :

(I). Either (Π′)c or (Π′′)c contains more than two elements.
(II). Both (Π′)c and (Π′′)c contain two elements.
(III). Both (Π′)c and (Π′′)c contain some simple root other than α1, αn−1, αn.
(IV). #(Π′)c = 2, (Π′′)c = {αi}, and i /∈ {1, n− 1, n}.
(V). #(Π′)c = 2, (Π′′)c = {α1}, and (Π′)ccontains neither αn−1 nor αn.
(VI). (Π′)c = {αi}, (Π′′)c = {αj}, i /∈ {1, 2, 3, n− 1, n}, j ∈ {n− 1, n}.
(VII). (n ≥ 5) (Π′)c = {αi, αj}, (Π′′)c = {αk}, i ̸= j, k ∈ {n− 1, n},

and (i, j) ̸= (1, 2), (1, n− 1), (1, n), (n− 1, n).
(VIII). (n = 4) (Π′)c = {αi, α2}, (Π′′)c = {αi}, i ∈ {3, 4}.

Proof. We note the following:

1. The role of LΠ′ and LΠ′′ is symmetric.

2. G ̸= LΠ′ Gσ LΠ′′ holds if and only if G ̸= ξ(LΠ′)Gσξ(LΠ′′) does.

First, we can see that (I) implies (4.4.9) by combining (4.4.5) of Proposition 4.4.4 with
Propositions 4.4.5 and 4.4.7. Second, Proposition 4.4.5 implies that (4.4.9) holds under
each of the conditions (II), (III) and (IV). Third, we can see the condition (V) implies (4.4.9)
by using (4.4.6) of Proposition 4.4.4. Fourth, we can also see that the condition (VI) implies
(4.4.9) by Proposition 4.4.6. Fifth, by combining Proposition 4.4.7 with Propositions 4.4.8
and 4.4.9, we can see that (4.4.9) holds under the condition (VII). Finally, it follows from
Proposition 4.4.8 that the condition (VIII) implies (4.4.9).

4.5 Application to representation theory

In this section, we shall see our generalized Cartan decomposition leads to three multiplicity-
free representations by using the framework of visible actions (“triunity” à la [Ko1]). The
concept of (strongly) visible actions on complex manifolds was introduced by T. Kobayashi.
Let us recall the definition ([Ko2]).

Definition 4.5.1. We say a biholomorphic action of a Lie group G on a complex manifold
D is strongly visible if the following two conditions are satisfied:

1. There exists a real submanifold S such that (we call S a “slice”)

D′ := G · S is an open subset of D.

2. There exists an antiholomorphic diffeomorphism σ of D′ such that

σ|S = idS,

σ(G · x) = G · x for any x ∈ D′.

Definition 4.5.2. In the above setting, we say the action of G on D is S-visible. This
terminology will be used also if S is just a subset of D.
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Let G be a compact Lie group and L,H its Levi subgroups. Then G/L, G/H and
(G×G)/(L×H) are complex manifolds. If the triple (G,L,H) satisfies G = LGσH, the
following three group-actions are all strongly visible:

L↷ G/H

H ↷ G/L

diag(G) ↷ (G×G)/(L×H)

The following theorem ([Ko3]) leads us to multiplicity-free representations:

Theorem 4.5.3. Let G be a Lie group and V a G-equivalent Hermitian holomorphic vector
bundle on a connected complex manifold D. If the following three conditions from (1) to
(3) are satisfied, then any unitary representation that can be embedded in the vector space
O(D,V) of holomorphic sections of V decomposes multiplicity-freely:

1. The action of G on D is S-visible. That is, there exists a subset S ⊂ D satisfying
the conditions given in Definition 4.5.1. Further, there exists an automorphism σ̂ of
G such that σ(g · x) = σ̂(g) · σ(x) for any g ∈ G and x ∈ D′.

2. For any x ∈ S, the fiber Vx at x decomposes as the multiplicity free sum of irreducible

unitary representations of the isotropy subgroup Gx. Let Vx =
⊕

1≤i≤n(x)

V(i)
x denote the

irreducible decomposition of Vx.

3. σ lifts to an antiholomorphic automorphism σ̃ of V and satisfies σ̃(V(i)
x ) = V(i)

x (1 ≤
i ≤ n(x)) for each x ∈ S.

Although our application is limited to finite dimensional representations, it is notewor-
thy that this theorem works for both compact and non-compact complex manifolds, for
both finite and infinite dimensional representations, and for both discrete and continuous
spectra. See, for example, [Ko1] and [Ko6]. [Ko1] deals with finite dimensional represen-
tations whereas the latter deals with infinite dimensional representations (not necessarily
highest weight modules).

Now we return to the case where G is a connected compact Lie group of type Dn. The
fundamental weights ω1, ..., ωn with respect to the set of simple roots α1, ..., αn are given
as follows (see Diagram 1.1 for the label of the Dynkin diagram).

ωi = α1 + 2α2 + · · ·+ (i− 1)αi−1 + i(αi + αi+1 + · · ·+ αl−2),

+
1

2
i(αn−1 + αn) (1 ≤ i < n− 1),

ωn−1 =
1

2
(α1 + 2α2 + · · ·+ (n− 2)αn−2 +

1

2
nαn−1 +

1

2
(n− 2)αn),

ωn =
1

2
(α1 + 2α2 + · · ·+ (n− 2)αn−2 +

1

2
(n− 2)αn−1 +

1

2
nαn).

By using the Borel–Weil theory together with Theorem 4.5.3 and our generalized Cartan
decompositions, we obtain the following Corollaries 4.5.4 and 4.5.5.

Corollary 4.5.4. (Corollary of Theorem 4.1.1.) If the pair (L, λ) is an entry in the Table
4.5.1 or 4.5.2, then the restriction πλ|L of the irreducible representation πλ of G with highest
weight λ to L decomposes multiplicity-freely.
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Table 4.5.1: Multiplicity-free restriction

Levi subgroup L highest weight λ
L{αl}c aω1,

aω2,
aω3,
aωn−2,
aωl

L{α1}c aωi

L{α2}c , aωl

L{α3}c

L{αj}c aω1

Levi subgroup L highest weight λ
L{αn}c , aω1 + bωl,
L{αn−1}c aω1 + bω2,

aωn−2 + bωl

L{α1}c aωi + bωl

L{α1,α2}c , aωl

L{α1,αn}c ,
L{α1,αn−1}c ,
L{αn−1,αn}c

L{αj ,αn}c , aω1

L{αj ,αn−1}c

Table 4.5.2: Multiplicity-free restriction with n = 4

L λ
L{αi}c aω2 + bωj

L{α2,αi}c aωj

Here, l = n− 1 or n and i, j, a, b are integers satisfying 1 ≤ i, j ≤ n and 0 ≤ a, b. The
following Table 4.5.2 is only for n = 4 ((i, j) = (3, 4) or (4, 3)) :

Corollary 4.5.5. (Corollary of Theorem 4.1.1.) The tensor product representation πλ⊗πµ
of any two irreducible representations πλ, πµ of G with highest weights (λ, µ) listed in the
below Table 4.5.3 decomposes as a multiplicity-free sum of irreducible representations of G.

Table 4.5.3: Multiplicity-free tensor product

pair of highest weights (λ, µ)
(aωk, bω1),
(aωk, bω2),
(aωk, bω3),
(aωk, bωn−2),
(aωk, bωl),
(aω1, bωi)

n pair of highest weights (λ, µ)
n ≥ 4 (aωk, bωn−2 + cωl),

(aωk, bω1 + cωl),
(aωk, bω1 + cω2),
(aω1, bωi + cωl)

n = 4 (aω4, bω2 + cω3),
(aω3, bω2 + cω4)

Here, k, l ∈ {n − 1, n}, 1 ≤ i ≤ n and a, b, c are arbitrary non-negative integers. We
note that the condition (2) of Theorem 4.5.3 is automatically satisfied since the fiber of a
holomorphic vector bundle is one-dimensional in the setting of the Borel–Weil Theory. We
also note that we can take the complex conjugation as σ in Theorem 4.5.3.

Remark 4.5.6. P. Littelmann ([Li2]) classified all the pairs of maximal parabolic sub-
groups (Pω, Pω′) of any simple Lie group G over any algebraically closed field such that the
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corresponding tensor products nω⊗mω′ (n and m are arbitrary non-negative integers) de-
composes multiplicity-freely where ω and ω′ are fundamental weights. Moreover, he found
the branching rules of nω ⊗mω′ and the restriction of nω to the maximal Levi subgroup
Lω′ of Pω′ for any pair (ω, ω′) that admits a G-spherical action on G/Pω ×G/Pω′ by using
the generalized Littlewood–Richardson rule ([Li1]).

Remark 4.5.7. J. R. Stembridge ([St2]) gave a complete list of pairs of highest weights
with the corresponding tensor product representation multiplicity-free. His method is
combinatorial. He also classified multiplicity-free restrictions to Levi subalgebras for all
complex simple Lie algebras. Our approach has given a geometric proof of a part of his
work based on generalized Cartan decompositions.

We have listed an application of Theorem 4.5.3 only for the line bundle case. See
Chapter 6 for an application to the vector bundle case.
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Chapter 5

Visible actions on flag varieties of
exceptional groups and a
generalization of the Cartan
decomposition

5.1 Introduction for Chapter 5

We give a classification of a pair of Levi subgroups (L,H) of any connected compact
exceptional Lie groupG such thatG = LGσH holds where σ is a Chevalley–Weyl involution
of G. This can be interpreted as a generalization of the Cartan decomposition to the
non-symmetric setting. (We refer the reader to [Fl2, He1, Ho, Ko4, Ma3] and references
therein for some aspects of the Cartan decomposition from geometric and group theoretic
viewpoints.) The motivation for considering such kind of decomposition comes from the
notion of visible action on complex manifolds, which was introduced by T. Kobayashi. It
is a geometric condition for the propagation theorem of the multiplicity-freeness property,
and classification theory of (strongly) visible action has been recently made in the linear
case [Sa1], symmetric case [Ko5] and some other non-symmetric cases [Sa2].

A generalization of the Cartan decomposition for symmetric pairs has been used in
various contexts including analysis on symmetric spaces, however, there was no analogous
result for non-symmetric cases before Kobayashi’s paper [Ko4]. Motivated by visible actions
on flag varieties of type A, he introduced a generalization of the Cartan decomposition for
the unitary group U(n) taking the form:

G = LBH,

where B is a subset of the orthogonal group O(n). He completely classified a pair of Levi
subgroups (L,H) satisfying U(n) = LO(n)H, and gave a slice B explicitly for each of such
pairs (L,H) by the herringbone stitch method [Ko4].

More generally, we consider the following problem: Let G be a connected compact Lie
group, T a maximal torus, and σ a Chevalley–Weyl involution of G with respect to T . (We

The contents of this section are taken from [Ta5].
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recall that an involutive automorphism σ of a connected compact Lie group G is said to be
a Chevalley–Weyl involution if there exists a maximal torus T of G such that σ(t) = t−1

for any t ∈ T [Wo].)

1) Classify all the pairs of Levi subgroups L and H with respect to t such that the
multiplication map ψ : L×Gσ ×H → G is surjective.

2) Find a “good” representative B ⊂ Gσ such that G = LBH in the case ψ is surjective.

Here Gσ = {g ∈ G : σ(g) = g}. We call such a decomposition G = LBH a generalized
Cartan decomposition. We note that the role of H and L is symmetric. The surjectivity of
ψ implies that the subgroup L acts on G/H in a (strongly) visible fashion (see Definition
5.6.1). At the same time the H-action on G/L, and the diagonal G-action on (G×G)/(L×
H) are strongly visible. Then the propagation theorem of multiplicity-freeness property
([Ko3, Theorem 4.3]) leads us to three multiplicity-free theorems (triunity à la [Ko1]):

Restriction G ↓ L : IndG
H(Cλ)|L,

Restriction G ↓ H : IndG
L(Cλ)|H ,

Tensor product : IndG
H(Cλ)⊗ IndG

L(Cµ).

Here IndG
H(Cλ) denotes a holomorphically induced representation of G from a unitary

character Cλ of H by the Borel–Weil theorem. See [Ko1, Ko2, Ko3, Ko5, Ko6] for the
general theory on the application of visible actions (including the vector bundle setting),
and also Section 5.6 for an application of our results to the exceptional groups.

In this chapter we deal with exceptional Lie groups. In order to state the results, we
label the Dynkin diagrams of type E6 and type E7 following Bourbaki [Bo] (see Figures
5.3.2 and 5.3.3). For a subset Π′ of a simple system Π, we denote by LΠ′ the Levi subgroup
whose root system is generated by Π′, and by (Π′)c for the complement of Π′ in Π.

Theorem 5.1.1. Let G be a connected compact Lie group with an exceptional simple Lie
algebra g, Π a simple system of the root system ∆(gC, tC) with respect to a Cartan subalgebra
t of g, and σ a Chevalley–Weyl involution of G with respect to t. Take proper subsets Π′

and Π′′ of Π. Then the following two conditions are equivalent.

(i) G = LΠ′ Gσ LΠ′′ .

(ii) Up to switch of Π′ and Π′′, one of the below conditions is satisfied.

I. g = e6, (Π
′)c = {αi}, (Π′′)c = {α1, α6}, i = 1 or 6.

II. g = e6, (Π
′)c = {αi}, (Π′′)c = {αj}, i = 1 or 6, j ̸= 4.

III. g = e7, (Π
′)c = {α7}, (Π′′)c = {αi}, i = 1, 2 or 7.

In particular, there are no such pair (Π′,Π′′) for g = e8, f4 or g2.

Cases I, II and III amount to
I. g = e6, lΠ′ = so(10)⊕ R, lΠ′′ = so(8)⊕ R2.
II. g = e6, lΠ′ = so(10)⊕ R, lΠ′′ = so(10)⊕ R, su(6)⊕ R or

su(2)⊕ su(5)⊕ R.
III. g = e7, lΠ′ = e6 ⊕ R, lΠ′′ = so(12)⊕ R, su(7)⊕ R or e6 ⊕ R.
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As a corollary of Theorem 5.1.1, we obtain three kinds of multiplicity-free theorems for
representations of exceptional Lie groups (see Corollary 5.6.4 for the restrictions to Levi
subgroups and Corollary 5.6.5 for the tensor products). In the course of the proof, we
find explicitly a slice B that gives a generalized Cartan decomposition G = LΠ′ B LΠ′′ (see
Propositions 5.3.2, 5.3.3, 5.3.5, 5.3.6, 5.3.8 and 5.3.10.) by using the herringbone stitch
method [Ko4]. The ‘slice’ B plays an important role in dealing with more delicate cases
(vector bundle cases) in the application to representation theory, which is not discussed in
this section.
Special feature of exceptional Lie groups. Here we mention some new features in
dealing with exceptional groups, which arise both in the proof and in the results:

• (In the proof.) In order to find explicit generalized Cartan decompositions in the
exceptional case, our argument relies on the root systems rather than matrix com-
putations that were effectively used in the classical case.

• (In the main results.) For all classical compact groups G, there exist pairs of proper
Levi subgroups LΠ′ and LΠ′′ such that the multiplication mapping LΠ′ ×Gσ×LΠ′′ → G
is surjective [Ko4, Ta1]. However, none of the exceptional compact Lie groups G2,
F4 or E8 admits such a pair of proper Levi subgroups. This corresponds to the
representation theoretic fact (c.f. [Li2, St2] and Section 5.6) that #MFf (G,L) is finite
for any Levi subgroup L of G if and only if G is of type E8, F4 or G2, where MFf (G,L)
is the set of equivalence classes of finite dimensional irreducible representations π of
G such that the restrictions π|L to L are multiplicity-free.

Organization. This chapter is organized as follows. In Section 5.2 we discuss a slice
for symmetric pairs. In Section 5.3, we give a proof of the implication (ii) ⇒ (i) together
with a generalized Cartan decomposition G = LΠ′ B LΠ′′ by postponing the proofs of some
technical lemmas to Section 5.4. In Section 5.4, we deal with double coset decompositions
of classical Lie groups, and complete the proof for the implication (ii) ⇒ (i). The converse
implication (i) ⇒ (ii) is proved in Section 5.5 by using the fact that a strongly visible action
gives rise to multiplicity-free representations, and classifications of multiplicity-free tensor
product representations by P. Littelmann [Li2] for the maximal parabolic case and J. R.
Stembridge [St2] for the general case. An application to multiplicity-free representations
is discussed in Section 5.6.

In the following, we denote Lie groups by capital Latin letters and their Lie algebras
by corresponding small German letters. Also, for a given real Lie algebra g, we denote its
complexification by gC.

5.2 Construction of a slice for the symmetric case

Let g be a compact Lie algebra and τ an involution of g. Then we take a τ -stable Cartan
subalgebra h of g, and write h = t⊕ a where t = hτ and a = h−τ . Here, h−τ is defined by
h−τ := {X ∈ h : τ(X) = −X}. In this section, we shall see how to construct a maximal
abelian subspace of g−τ , which is fixed by σ. We begin by the following proposition.

Proposition 5.2.1. Let us suppose that there exists an automorphism σ of g, which pre-
serves a and acts on t as the multiplication by (−1), and that the Cartan subalgebra
t ⊕

√
−1a of the non-compact dual gτ ⊕

√
−1g−τ is not maximally non-compact. Then

80



for any root vector Xβ ∈ gC of any imaginary non-compact root β, there exists Z ∈ t such
that Ad(exp(Z))(Xβ +Xβ) is fixed by σ. Here we extend σ to gC holomorphically, and X
denotes the conjugate element with respect to g for any X ∈ gC.

Proof. Since both Xβ and σ(Xβ) belong to the root subspace g−β of −β, σ(Xβ) = e
√
−1θXβ

for some θ ∈ R. Then we take Z ∈ t satisfying β(Z) = −
√
−1θ/2. (Here we note that β

is imaginary.) For this Z ∈ t, we have

σ(Ad(exp(Z))(Xβ +Xβ)) = σ(e−
√

−1θ
2 Xβ + e

−
√

−1θ
2 Xβ)

= e−
√

−1θ
2 (e

√
−1θXβ) + e

√
−1θ
2 (e−

√
−1θXβ)

= e
√
−1θ
2 Xβ + e−

√
−1θ
2 Xβ

= Ad(exp(Z))(Xβ +Xβ).

By using Proposition 5.2.1, we can give a simpler proof of the following result, which
was originally proved in [Ko5] by Berger’s classification of semisimple symmetric pairs.

Corollary 5.2.2. Let us suppose that (g, gτ ) is a Hermitian symmetric pair and that
a = {0}, i.e., h = t. Let σ be a Chevalley–Weyl involution of g with respect to t. Then
there exists a maximal abelian subspace of g−τ , which is fixed by σ.

Proof. Consider the non-compact dual gτ ⊕
√
−1g−τ of g with respect to τ . Since we

can construct a maximally non-compact Cartan subalgebra by a succession of the Cayley
transforms from t, the corollary follows from Proposition 5.2.1. Here we note that we can
choose strongly orthogonal roots in a succession of the Cayley transforms if (g, gτ ) is a
Hermitian symmetric pair.

Remark 5.2.3. From the proofs of Proposition 5.2.1 and Corollary 5.2.2, we can see the
following: Retain the setting of the proof of Corollary 5.2.2. We let {β1, . . . , βr} be a set of
imaginary non-compact roots (with respect to t⊗C), which may be used in a succession of
the Cayley transforms for obtaining a σ-fixed maximal abelian subspace a of g−τ . If some
roots (with respect to t⊗C) α1, . . . , αs are strongly orthogonal to βi for any i (1 ≤ i ≤ r),
then a semisimple subalgebra whose set of simple roots is given by {α1, . . . , αs} centralizes
a.

Remark 5.2.3 may help us to determine a set of simple roots of the centralizer of a in
the next section.

5.3 Generalized Cartan Decomposition

The aim of this section is to prove that (ii) implies (i) in Theorem 5.1.1 (by postponing
some technical lemmas to the next section). The idea is to use the herringbone stitch
method [Ko4] that reduces unknown decompositions for non-symmetric pairs to the known
Cartan decomposition for symmetric pairs (Fact 5.3.1). We divide the proof to four parts
(Subsections 5.3.1–5.3.4).

In the following, kss denotes the semisimple part of k and Kss the analytic subgroup
of K with Lie algebra kss for a compact Lie group K. Also, we write G1 ≈ G2 if two Lie
groups G1 and G2 are locally isomorphic.
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5.3.1 Decompositions for the symmetric case

In this subsection, we recall a well-known fact ([Ho, Theorem 6.10], [Ma3, Theorem 1]) on
the Cartan decomposition for the symmetric case, and deal with Case II with j = 1 or 6
and Case III with i = 7 in Theorem 5.1.1.

Fact 5.3.1. Let K be a connected compact Lie group with Lie algebra k, and τ and τ ′ two
involutions of K. Let H and L be subgroups of K such that

(Kτ )0 ⊂ L ⊂ Kτ and (Kτ ′)0 ⊂ H ⊂ Kτ ′ .

Here F0 denotes the connected component of F containing the identity element for a Lie
group F .

We take a maximal abelian subspace a in

k−τ,−τ ′ := {X ∈ k : τ(X) = τ ′(X) = −X}.

Suppose that ττ ′ is semisimple on the center z of k. Then we have

K = L exp(a)H.

By combining this fact with Corollary 5.2.2, we immediately obtain the following (cf.
[Ko5]).

Proposition 5.3.2 (Case II with j = 1 or 6 and Case III with i = 7). Let G be a connected
compact Lie group, t a Cartan subalgebra of g, σ a Chevalley–Weyl involution of G with
respect to t and L,H Levi subgroups of G with respect to a simple system of the root system
∆(gC, tC). Suppose that both L and H are Hermitian symmetric subgroups of G. Then we
have

G = L exp(a)H

where a is an abelian subspace of gσ.

Since the surjectivity of the multiplication mapping LΠ′ ×Gσ×LΠ′′ → G depends on nei-
ther the coverings of the group G nor the choice of Cartan subalgebras and Chevalley–Weyl
involutions, we may and do work with connected simply connected compact exceptional
Lie groups, and fix a Cartan subalgebra and a Chevalley–Weyl involution in each of the
subsections below.

5.3.2 Decompositions for the type E6 (non-maximal parabolic
type)

In this subsection, we deal with Case I in Theorem 5.1.1.

Proposition 5.3.3 (Case I). Let G be the connected simply connected compact simple Lie
group of type E6, t a Cartan subalgebra of g and σ a Chevalley–Weyl involution of G with
respect to t. Take two subsets Π′ and Π′′ of a simple system Π as (Π′)c = {αi} (i = 1 or 6)
and (Π′′)c = {α1, α6}. (We label the Dynkin diagram following Bourbaki [Bo]. See Figure
5.3.2 in Subsection 5.3.3.) Then we have

G = LΠ′ B LΠ′′

for a subset B ⊂ Gσ.
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Proof. Let us explicitly write the root system ∆ and the simple system Π of type E6 as
follows (see Plate V of [Bo]):

∆ = ∆(gC, tC)

=

{
±εi ± εj,

1

2
(ε8 − ε7 − ε6 +

5∑
k=1

(−1)νkεk) : 1 ≤ i < j ≤ 5,
5∑

k=1

νk is even

}
,

Π = {αi : 1 ≤ i ≤ 6},

where α1 =
1

2
(ε1 + ε8)−

1

2
(ε2 + ε3 + ε4 + ε5 + ε6 + ε7), α2 = ε1 + ε2,

α3 = ε2 − ε1, α4 = ε3 − ε2, α5 = ε4 − ε3, α6 = ε5 − ε4.

We may and do assume that i = 6 since L{α1}c is conjugate to L{α6}c under the action of
the Weyl group, and hence that of Gσ ([Kna, Theorem 6.57]). Let τ denote the involution
of G, which corresponds to LΠ′ . By using two non-compact imaginary roots ε5 − ε4 and
ε5 + ε4 for the Cayley transforms of the compact Cartan subalgebra t of the non-compact
dual gτ ⊕

√
−1g−τ of g, we obtain a maximal abelian subspace a of g−τ , which is fixed by

σ (Corollary 5.2.2). We apply Fact 5.3.1 to (G, τ, τ) as follows.

G = Gτ exp(a)Gτ . (5.3.1)

Since the pair (g, gτ ) is Hermitian of non-tube type, there existsX ∈ gτss such that R(Z+X)
is the center of Zgτ (a) where Z is a non-zero element of the center of gτ . Then we have the
following lemma on a representative of the double coset decomposition of Gτ

ss(≈ SO(10)) by
exp(RX) ·Mss and G

τ
ss∩LΠ′′(≈ U(1)×SO(8)), where M(≈ U(4)) is the analytic subgroup

of Gτ with Lie algebra Zgτ (a).

Lemma 5.3.4. There exists a subset B′ of Gσ such that the multiplication mapping

(exp(RX)Mss)×B′ × (Gτ
ss ∩ LΠ′′) → Gτ

ss

is surjective.

We postpone the proof of this lemma to Lemma 5.4.1 in Section 5.4. The above sur-
jection implies that Gτ

ss = (exp(RX)Mss)B
′(Gτ

ss ∩ LΠ′′), and thus we obtain

Gτ =MB′ LΠ′′ . (5.3.2)

Then we put B = exp(a)B′, and substitute (5.3.2) to (5.3.1) as follows.

G = Gτ exp(a)(MB′ LΠ′′)

= GτM exp(a)B′ LΠ′′

= LΠ′ B LΠ′′ .

This completes the proof since B = exp(a)B′ is contained in Gσ.
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M

⊃
⊂
LΠ′

⊃
G LΠ′′

⊂
LΠ′

Figure 5.3.1: Herringbone stitch used for LΠ′ \G/LΠ′′ in Case I.

5.3.3 Decompositions for type E6 (maximal parabolic type)

In this subsection, we discuss Case II with j = 2, 3 or 5 in Theorem 5.1.1. Let G denote the
connected simply connected compact simple Lie group of type E6, t a Cartan subalgebra of
g and σ a Chevalley–Weyl involution of G with respect to t. We take a simple system Π of
the root system ∆(gC, tC), and two commuting involutions τ and τ ′ of gC, which preserve
g and correspond to the below Vogan diagrams of type E III and type E II respectively
(see Appendix C of [Kna]).

α1 α3 α4 α5 α6

•
α1 α3 α4 α5 α6

α2α2

◦◦ ◦ ◦ ◦

◦

◦ ◦ ◦ ◦

•

Figure 5.3.2: Vogan diagrams of type E III and type E II.

Then the fixed part of the involution ττ ′ is given by gττ
′
= R⊕ so(10). Since the root

system ∆(gττ
′

C , tC) of gττ
′
is contained in ∆(gC, tC), there exists γ ∈ ∆(gC, tC) such that

{α3, α4, α5, α6, γ} gives rise to a simple system of gττ
′
. We may and do assume that γ

is connected to α4. We take a maximal abelian subspace a of g−τ,−τ ′ as follows: Let us
explicitly write the simple system Π(gττ

′

C , tC) and the root system ∆(gττ
′

C , tC) of gττ
′

C (see
Plate IV of [Bo]).

Π(gττ
′

C , tC) = {αi, γ : 3 ≤ i ≤ 6},
∆(gττ

′

C , tC) = {±fi ± fj : 1 ≤ i < j ≤ 5},
where α3 =f4 − f5, α4 = f3 − f4, α5 = f2 − f3, α6 = f1 − f2, γ = f4 + f5.

Using two non-compact imaginary roots f2 + f3 and f4 + f5 for the Cayley transforms of
the compact Cartan subalgebra t of the non-compact dual gτ,τ

′ ⊕
√
−1g−τ,−τ ′ of gττ

′
, we

obtain a maximal abelian subspace a of g−τ,−τ ′ , which is fixed by σ (Corollary 5.2.2). Then
we consider the centralizer Zgτ,τ

′ (a) of a in gτ,τ
′
. For simplicity, we put m = Zgτ,τ

′ (a). We

note the following decomposition of gττ
′
.

gττ
′
= gτ,τ

′ ⊕ g−τ,−τ ′

= RK1 ⊕ ((gττ
′
)ss)

τ ⊕ g−τ,−τ ′

= RK1 ⊕ RK2 ⊕ (gτ,τ
′
)ss ⊕ g−τ,−τ ′ ,

whereK1 is a non-zero element of the center of gττ
′
, andK2 that of the center of ((g

ττ ′)ss)
τ =

u(5). Since the pair ((gττ
′
)ss, ((g

ττ ′)ss)
τ ) = (so(10), u(5)) is Hermitian of non-tube type,

there exists K3 ∈ (gτ,τ
′
)ss ∩ t such that R(K2 +K3)⊕mss gives rise to the centralizer of a

in ((gττ
′
)ss)

τ . Hence we obtain

m = RK1 ⊕ R(K2 +K3)⊕mss. (5.3.3)
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The subalgebra gτ
′
has two simple factors su(2) and su(6). So, we write gτ

′
= g′⊕g′′ where

g′ = su(2) and g′′ = su(6). Then we decompose gτ
′
as follows.

gτ
′
= gτ

′,τ ⊕ gτ
′,−τ

= (g′)τ ⊕ (g′′)τ ⊕ gτ
′,−τ

= RZ1 ⊕ (g′′)τ ⊕ gτ
′,−τ

= RZ1 ⊕ RZ2 ⊕ (gτ,τ
′
)ss ⊕ gτ

′,−τ .

Here Z1 is a non-zero element of (g′)τ , and Z2 that of the center of (g′′)τ = u(5). Then we
give generalized Cartan decompositions for Case II with j = 2 and j = 3 or 5 separately.

Case II with j = 2

Proposition 5.3.5 (Case II with j = 2). Let G, g, t, σ, Π, τ and τ ′ be as in the beginning
of this subsection. Take two subsets Π′ and Π′′ of the simple system Π of the root system
∆(gC, tC) as (Π

′)c = {αi} and (Π′′)c = {α2} where i = 1 or 6. Then we have

G = LΠ′ B LΠ′′

for a subset B ⊂ Gσ.

Proof. Let G′ and G′′ be the analytic subgroups of Gτ ′ with Lie algebras g′ = su(2) and
g′′ = su(6) respectively. We apply Fact 5.3.1 to (G, τ, τ ′):

G = Gτ exp(a)Gτ ′

= Gτ exp(a)G′G′′. (5.3.4)

Here a is the maximal abelian subspace of g−τ,−τ ′ , which is constructed in the above. Since
(g′,RZ1) is also a symmetric pair, we can again use Fact 5.3.1 as follows.

G′ = exp(RZ1) exp(a
′) exp(RZ1), (5.3.5)

where a′ is the σ-fixed one dimensional subspace of g′. Since the vector space RZ1 ⊕ RZ2

coincides with RK1 ⊕ RK2, there are real numbers a and b such that Z1 = aK1 + bK2.
Then we have the following equality.

(exp(RZ1) exp(a
′) exp(RZ1))G

′′

= (exp(R(aK1 + b(K2 +K3))) exp(a
′) exp(RZ1))G

′′. (5.3.6)

Put B = exp(a) exp(a′). By combining (5.3.5) and (5.3.6) with (5.3.4), we obtain

G = Gτ exp(a)G′G′′ by (5.3.4)

= Gτ exp(a)(exp(RZ1) exp(a
′) exp(RZ1))G

′′ by (5.3.5)

= Gτ exp(a)(exp(R(aK1 + b(K2 +K3))) exp(a
′) exp(RZ1))G

′′ by (5.3.6)

= Gτ (exp(R(aK1 + b(K2 +K3))) exp(a) exp(a
′) exp(RZ1)G

′′ by (5.3.3)

= GτB exp(RZ1)G
′′.

Since exp(RZ1)G
′′ coincides with LΠ′′ and Gτ is conjugate to LΠ′ under the Weyl group

and hence under Gσ ([Kna, Theorem 6.57]), we have shown the proposition.
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Case II with j = 3 or 5

Proposition 5.3.6 (Case II with j = 3 or 5). Let G, g, t, σ, Π, τ and τ ′ be as in the
beginning of this subsection. Take two subsets Π′ and Π′′ of the simple system Π of the root
system ∆(gC, tC) as (Π′)c = {αi} and (Π′′)c = {αj} where (i, j) = (1, 3), (1, 5), (6, 3) or
(6, 5). Then we have

G = LΠ′ B LΠ′′

for a subset B ⊂ Gσ.

Proof. Retain the notations G′, G′′, a, Z1, Z2, K1, K2, a and b in the proof of Proposition
5.3.5. We have the following lemma on a representative of the double coset of G′′(≈ SU(6))
by exp(RZ2)Mss(≈ U(1)× SU(2)2) and (G′′)τ0(≈ U(5)), where M is the analytic subgroup
of Gτ ′ with Lie algebra m = Zgτ,τ

′ (a).

Lemma 5.3.7. There exists a subset B′ of Gσ such that the multiplication mapping

(exp(RZ2)Mss)×B′ × (G′′)τ0 → G′′

is surjective.

We postpone the proof of this lemma to Lemma 5.4.2 in Section 5.4. As in the proof
of Proposition 5.3.5, there are real numbers c and d such that Z2 = cK1 + dK2. Hence we
have

G′G′′ = G′ (exp(R(cK1 + dK2))MssB
′(G′′)τ0) by lemma 5.3.7

= exp(R(cK1 + dK2))G
′MssB

′(G′′)τ0

= exp

(
R
(
cK1 + dK2 −

d

b
Z1

))
G′MssB

′(G′′)τ0 by Z1 ∈ g′

= exp(RK1)G
′MssB

′(G′′)τ0 by Z1 = aK1 + bK2. (5.3.7)

Here, we note that a direct computation shows b ̸= 0. Put B = exp(a)B′. Substituting
(5.3.7) to (5.3.4), we obtain

G = Gτ exp(a)G′G′′ by (5.3.4)

= Gτ exp(a) (exp(RK1)G
′MssB

′(G′′)τ0) by (5.3.7)

= Gτ exp(RK1)Mss exp(a)B
′G′(G′′)τ0 by RK1,mss ⊂ Zg(a)

= GτBG′(G′′)τ0.

This completes the proof since Gτ and G′(G′′)τ0 are conjugate to LΠ′ and LΠ′′ respectively
by elements of Gσ.

5.3.4 Decompositions for type E7

In this subsection we discuss Case III with i = 1 or 2 in Theorem 5.1.1. Let G denote the
connected simply connected compact simple Lie group of type E7, t a Cartan subalgebra
of g, and σ a Chevalley–Weyl involution of G with respect to t. We fix a simple system
Π of the root system ∆(gC, tC). (For the labeling of the Dynkin diagram, see Figure 5.3.3
below.) We give the proofs for Case III with i = 1 and with i = 2 separately.
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Case III with i = 2

Proposition 5.3.8 (Case III with i = 2). Let G, Π and σ be as in the beginning of this
subsection. Take two subsets Π′ and Π′′ of Π as (Π′)c = {α7} and (Π′′)c = {α2}. Then we
have

G = LΠ′ B LΠ′′

for a subset B ⊂ Gσ.

Proof. We take two commuting involutions τ and τ ′ of gC, which preserve g and correspond
to the below Vogan diagrams of type E VII and type E V respectively (see Appendix C of
[Kna]).

α1 α3 α4 α5 α6 α7

α2

•◦
α1 α3 α4 α5 α6 α7

α2

◦◦ ◦ ◦ ◦

◦

◦ ◦ ◦ ◦ ◦

•

Figure 5.3.3: Vogan diagrams of type E VII and type E V.

Then the fixed part of the involution ττ ′ is given by gττ
′
= su(2)⊕so(12). Let α̃ denote

the smallest root of g = e7, and β̃ that of gτ
′
= su(8). Since the root system ∆(gττ

′

C , tC) of
gττ

′
is contained in ∆(gC, tC), there exists γ ∈ ∆(gC, tC) such that {α1, α3, α4, α5, α6, β̃, γ}

gives rise to a simple system of gττ
′
. We note that γ is connected to α3 or α5. We may

and do assume that γ is connected to α5. Then we take a maximal abelian subspace a of
g−τ,−τ ′ as follows: Let us explicitly write the simple system Π(gττ

′

C , tC) and the root system
∆(gττ

′

C , tC) of g
ττ ′

C (see Plate I and Plate IV of [Bo]).

Π(gττ
′

C , tC) = {β̃} ∪ {αi, γ : 1 ≤ i ̸= 2 ≤ 6},
∆(gττ

′

C , tC) = {±β̃} ∪ {±εi ± εj : 1 ≤ i < j ≤ 6},
where α1 =ε1 − ε2, α3 = ε2 − ε3, α4 = ε3 − ε4, α5 = ε4 − ε5, α6 = ε5 − ε6,

γ =ε5 + ε6.

By using three non-compact imaginary roots ε1 + ε2, ε3 + ε4 and ε5 + ε6 for the Cayley
transforms of the compact Cartan subalgebra t of the non-compact dual gτ,τ

′ ⊕
√
−1g−τ,−τ ′

of gττ
′
, we obtain a maximal abelian subspace a of g−τ,−τ ′ , which is fixed by σ (Corollary

5.2.2). We apply Fact 5.3.1 to (G, τ, τ ′):

G = Gτ exp(a)Gτ ′ . (5.3.8)

We define a subgroup M(≈ SU(2)4) to be the analytic subgroup of G with Lie algebra
Zgτ,τ

′ (a), the centralizer of a in gτ,τ
′
. Then we have the following lemma on the double

coset of Gτ ′(≈ SU(8)) by M(≈ SU(2)4) and LΠ′′(≈ U(7)).

Lemma 5.3.9. There exists a subset B′ of Gσ such that the multiplication mapping

M ×B′ × LΠ′′ → Gτ ′

is surjective.
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We postpone the proof of this lemma to Lemma 5.4.3 in Section 5.4. Put B = exp(a)B′.
Combining Lemma 5.3.9 with (5.3.8), we obtain

G = Gτ exp(a)(MB′ LΠ′′)

= GτM(exp(a)B′) LΠ′′

= GτB LΠ′′ .

This completes the proof since Gτ = LΠ′ .

Case III with i = 1

Proposition 5.3.10 (Case III with i = 1). Let G, Π and σ be as in the beginning of
this subsection. Take two subsets Π′ and Π′′ of the simple system Π as (Π′)c = {α7} and
(Π′′)c = {α1}. Then we have

G = LΠ′ B LΠ′′

for a subset B ⊂ Gσ.

Proof. We take two commuting involutions τ and τ ′ of gC, which preserve g and correspond
to the below Vogan diagrams of type E VII and type E VI respectively (see Appendix C
of [Kna]).

α1 α3 α4 α5 α6 α7

α2

•◦
α1 α3 α4 α5 α6 α7

α2

•◦ ◦ ◦ ◦

◦

◦ ◦ ◦ ◦ ◦

◦

Figure 5.3.4: Vogan diagrams of type E VII and type E VI.

Then the fixed part of the involution ττ ′ is given by gττ
′
= R ⊕ e6. Let us take a

maximal abelian subspace a of g−τ,−τ ′ , which is fixed by σ as in the proof of Proposition
5.3.3. We also take the σ-fixed one dimensional subspace a′ of the normal subalgebra su(2)
of gτ

′
. Put B = exp(a) exp(a′). By the same argument as in the proof of Proposition 5.3.5

(we note that ((gττ
′
)ss, ((g

ττ ′)ss)
τ ) = (e6,R ⊕ so(10)) is Hermitian of non-tube type), we

obtain a generalized Cartan decomposition for Case III with i = 1:

G = LΠ′ B LΠ′′ .

5.4 Completion of the proofs in Section 5.3

We have postponed the proofs of double coset decompositions for some subgroups of the
exceptional compact simple Lie groups E6 and E7, which were used in the herringbone
stitch method in the previous section. This section gives the proofs of Lemmas 5.3.4, 5.3.7
and 5.3.9.

All of the compact Lie groups which appear in this section are of classical type. Thus we
work on (non-symmetric) generalized Cartan decompositions in the classical case. However,
we have to be careful how they are embedded in exceptional Lie groups.

88



5.4.1 Proof of Lemma 5.3.4

Retain the setting in the proof of Proposition 5.3.3. We note that simple systems of (gτ )ss,
(gτ )ss ∩ lΠ′′ and Zgτ (a)ss are given by {α1, α2, α3, α4, α5}, {α2, α3, α4, α5} and {α2, α3, α4}
respectively (Remark 5.2.3), and that X ∈ (gτ )ss centralizes Zgτ (a)ss. Let {Hi}6i=1 ⊂
tC denotes the dual basis of {αi}6i=1 with respect to the Killing form. Then a direct
computation shows that

√
−1H1 has a non-zero coefficient in X =

∑
1≤i≤5 ai

√
−1Hi, i.e.,

a1 ̸= 0. Now we find that Lemma 5.3.4 follows from the lemma below.

Lemma 5.4.1. Let L be a connected compact simple Lie group of type D5, t a Cartan
subalgebra of l and σ a Chevalley–Weyl involution of L with respect to t. We label the
Dynkin diagram of type D5 as follows:

β1 β2 β3

β5

β4

◦ ◦ ◦
◦

AA
AA

◦}}}}

Figure 5.4.1: Dynkin diagram of type D5.

We take two subsets Φ′ and Φ′′ of the simple system Φ = {βi : 1 ≤ i ≤ 5} of l as
(Φ′)c = {β1} and (Φ′′)c = {β1, β5}, and define a one dimensional abelian subgroup U by
U := exp(R(

∑5
i=1 ai

√
−1Hi)) with a1 ̸= 0 where {Hi}5i=1 denotes the dual basis of {βi}5i=1

with respect to the Killing form. Then we have

L = U(LΦ′′)ssB
′ LΦ′ ,

for a subset B′ of Lσ.

Proof. It suffices to consider the case where L = SO(10). We give a matrix realization of
L as follows:

L = SO(10) = {g ∈ SL(10,C) : tgJ10g = J10,
tgg = I10},

where Im denotes the identity matrix and Jm is defined by a bilinear form given by

Cm × Cm → C, (x, y) 7→txJmy :=
m∑
i=1

xiym+1−i.

Here xi and yi denote the i-th entries in x and y respectively. We take a Cartan subalgebra
t of l as diagonal matrices:

t =
⊕
1≤i≤5

R
√
−1Ai,

where Ai := Ei,i − E11−i,11−i.
We define an involutive automorphism σ of L by

σ : L→ L, g 7→ ḡ, (5.4.1)

where ḡ denotes the complex conjugate of g ∈ L. Then σ is a Chevalley–Weyl involution
of L with respect to t. Note that Lemma 5.4.1 is independent of the choice of a Chevalley–
Weyl involution since LΦ′ contains exp(t), and both U and (LΦ′′)ss are stable under the
conjugation by any element of exp(t).
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We let {εi}1≤i≤5 ⊂ (t ⊗R C)∗ be the dual basis of {Ai}1≤i≤5. Then we define a set of
simple roots Φ := {β1, ..., β5} by

βi := εi − εi+1 (1 ≤ i ≤ 4), β5 := ε4 + ε5.

Since the sets of the simple roots of LΦ′′ and LΦ′ are given by {β2, β3, β4} and {β2, β3, β4, β5}
respectively, LΦ′′ and LΦ′ take the forms:

LΦ′′ =



e
√
−1θ

A
J4AJ4

e−
√
−1θ

 ∈ SO(10) : θ ∈ R, A ∈ U(4)

 ,

LΦ′ =


e

√
−1θ

A

e−
√
−1θ

 ∈ SO(10) : θ ∈ R, A ∈ SO(8)

 .

Here, all the entries in the blank space are zero. We give a proof of the lemma by the
herringbone stitch method [Ko4]. First, we show that L = LΦ′′ B′ LΦ′ for a subset B′ of
Lσ. Next, we prove that LΦ′′ B′ LΦ′ coincides with U · (LΦ′′)ssB

′ LΦ′ . Then we can see that
L = U · (LΦ′′)ssB

′ LΦ′ holds.
Let us show the first assertion that the group L can be written as LΦ′′ B′ LΦ′ with

B′ ⊂ Lσ. We define an abelian subgroup B1 by

B1 := exp

(⊕
i=1,2

R(E1,4+i − E4+i,1 − E7−i,10 + E10,7−i)

)
.

Then we have the following decomposition of L by Fact 5.3.1.

L = LΦ′ B1 LΦ′ . (5.4.2)

We define a symmetric subgroup K of (LΦ′)ss and an abelian subgroup B2 by

K := SO(6)× SO(2)

=





1 0
A B

e
√
−1θ

e−
√
−1θ

C D
0 1

 ∈ SO(10) :

(
A B
C D

)
∈ SO(6),

θ ∈ R


,

B2 := exp(R(E2,6 − E6,2 − E5,9 + E9,5)).

Then we obtain the following decomposition of LΦ′ by using Fact 5.3.1.

LΦ′ = LΦ′′ B2K.

It is easy to see that K and Kss satisfy LΦ′′ B2K = LΦ′′ B2Kss. Thus we have

LΦ′ = LΦ′′ B2Kss. (5.4.3)
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Let us set B′ := B2B1. The following is a proof of the first assertion.

L = LΦ′ B1 LΦ′ by (5.4.2)

= (LΦ′′ B2Kss)B1 LΦ′ by (5.4.3)

= LΦ′′ B2B1Kss LΦ′ by Kss ⊂ ZL(B1)

= LΦ′′ B′ LΦ′ .

Then we give a proof of the second assertion, that is, we shall prove that LΦ′′ B′ LΦ′ coincides
with U · (LΦ′′)ssB

′ LΦ′ . We define one dimensional abelian subgroup T1 by

T1 := exp(R
√
−1(E3,3 − E8,8)) ⊂ LΦ′′ .

Since T1 centralizes B′, U · (LΦ′′)ssB
′ LΦ′ is equal to U · ((LΦ′′)ss · T1)B′ LΦ′ , and hence to

U · ((LΦ′)ss ∩ LΦ′′)B′ LΦ′ . Further, U · ((LΦ′)ss ∩ LΦ′′) is equal to LΦ′′ because a1 ̸= 0 (we
recall that U = exp(R

∑5
i=1 ai

√
−1Hi)). Consequently we have

U(LΦ′′)ssB
′ LΦ′ = U · ((LΦ′)ss ∩ LΦ′′)B′ LΦ′ = LΦ′′ B′ LΦ′ = L.

We have finished the proof.

5.4.2 Proof of Lemma 5.3.7

Retain the setting of subsection 5.3.3. We note that simple systems of g′′, (g′′)τ and Zgτ,τ
′ (a)

are given by {α1, α3, α4, α5, α6}, {α3, α4, α5, α6} and {α3, α5} respectively (Remark 5.2.3),
and that RZ2 is the center of (g′′)τ . Now we can see that Lemma 5.3.7 follows from the
lemma below.

Lemma 5.4.2. Let L be a connected compact simple Lie group of type A5. We take a
Cartan subalgebra t of l and label the Dynkin diagram of l as follows:

β1 β2 β3 β4 β5
◦ ◦ ◦ ◦ ◦

Figure 5.4.2: Dynkin diagram of type A5.

Let k be a Levi subalgebra whose root system is generated by {β2, β3, β4, β5}. We also
define a reductive subalgebra m by m := R ⊕ su(2) ⊕ su(2) where a simple system of m is
given by {β2, β4} and the center of m coincides with that of k. Denote by K and M the
analytic subgroups of L with Lie algebras k and m respectively. Then we have

L =MB′K

for a subset B′ of Lσ where σ is a Chevalley–Weyl involution of L with respect to t.

Proof. It suffices to consider the case where L is simply connected. We realize L = SU(6)
as a matrix group:

L = {g ∈ SL(6,C) : gtḡ = I6}.

Let us take the diagonal matrices consisting of purely imaginary numbers as a Cartan
subalgebra t, and the complex conjugation as a Chevalley–Weyl involution σ of L. Here
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we note that both K and M are stable under the conjugation by any element of the
maximal torus exp(t) (independence of the choice of a Chevalley–Weyl involution). We
define a simple system Φ of L by Φ := {εi − εi+1 : 1 ≤ i ≤ 5} where εi are given by
εi : diag(a1, . . . , a6) 7→ ai. The Levi subgroup K and the closed subgroup M take the
forms:

K =

{(
det(A)−1

A

)
∈ L : A ∈ U(5)

}
,

M =



a−5

aA
aB

a

 ∈ L : a ∈ U(1), A,B ∈ SU(2)

 .

Then we define a subset B′ of Lσ by B′ := B1B2B3 where

B1 := exp(R(E1,2 − E2,1)),

B2 := exp(R(E1,4 − E4,1)),

B3 := exp(R(E1,6 − E6,1)).

We identify L/K with CP 5 in the natural way. Through the identification, B′ · K/K is
identified with

{[x1 : x2 : 0 : x3 : 0 : x4] ∈ CP 5 : xi ∈ R (1 ≤ i ≤ 4)}.

For any z = [z1 : · · · : z6] ∈ L/K, we may and do assume that arg z1 + 5arg z6 = 0. Then
there exists g ∈M such that

g · z = [|z1| :
√
|z2|2 + |z3|2 : 0 :

√
|z4|2 + |z5|2 : 0 : |z6|] ∈ B′ ·K/K.

Thus we obtain

M ·B′ ·K/K = L/K.

5.4.3 Proof of Lemma 5.3.9

Retain the setting in the proof of Proposition 5.3.8. Since the set of simple roots of M is
given by {α1, α4, α6, β̃} (Remark 5.2.3) and that of LΠ′ by {α2}c, we can see that Lemma
5.3.9 is followed by the lemma below.

Lemma 5.4.3. Let L be a connected compact simple Lie group of type A7, t a Cartan
subalgebra of l and σ a Chevalley–Weyl involution of L with respect to t. We label the
extended Dynkin diagram of l as follows (see Plate I of [Bo]).

Define a semisimple subalgebra m by m := su(2)4 whose simple system is given by
{β2, β4, β6, β̃}, and a Levi subalgebra k by k := R ⊕ su(7) whose simple system is given
by {β1}c. Let M and K denote the analytic subgroups of L with Lie algebras m and k
respectively. Then we have

L =MB′K

for a subset B′ of Lσ.
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β1 β2 β3 β4

β̃

β5 β6 β7
◦

◦

◦ ◦ ◦ ◦ ◦ ◦

iiiiiiiiiiiiiiiiii

UUUUUUUUUUUUUUUUUU

Figure 5.4.3: Extended Dynkin diagram of type A7.

Proof. It suffices to consider the case where L is simply connected. We realize L = SU(8)
as a matrix group as follows.

L = {g ∈ SL(8,C) : gtḡ = I8}.

Let us take the diagonal matrices consisting of purely imaginary numbers as a Cartan
subalgebra t, and the complex conjugation as a Chevalley–Weyl involution σ of L. Then
we realize K = S(U(1)× U(7)) as follows:

K =

{(
det(A)−1

A

)
∈ L : A ∈ U(7)

}
.

We define a subgroup M ′ by

M ′ =



D1

D2

D3

D4

 ∈ L : Di ∈ SU(2), 1 ≤ i ≤ 4

 = SU(2)4,

and a subset B′ of Lσ by B′ := B1B2B3 where

B1 := exp(R(E1,3 − E3,1)),

B2 := exp(R(E1,5 − E5,1)),

B3 := exp(R(E1,7 − E7,1)).

We identify L/K with CP 7 in the natural way. Since SU(2) acts on S2 transitively, for
any z = [z1 : · · · : z8] ∈ L/K there exists m ∈M ′ such that

m · z =
[
√

|z1|2 + |z2|2 : 0 :
√

|z3|2 + |z4|2 : 0 :
√

|z5|2 + |z6|2 : 0 :
√

|z7|2 + |z8|2 : 0]
∈ B′ ·K/K.

Thus we obtain

M ′ ·B′ ·K/K = L/K.

Since M ′ is conjugate to M by an element of Lσ = SO(8), the lemma follows.

Lemmas 5.4.1–5.4.3 complete the proofs in Section 5.3, and therefore we have finished
the proof of the implication (ii) ⇒ (i).
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5.5 Proof of the implication (i) ⇒ (ii) of Theorem

5.1.1

In this section, we prove that the list in Theorem 5.1.1 (ii) exhausts all the triple (g, lΠ′ , lΠ′′)
satisfying the condition (i) in Theorem 5.1.1, and thus complete the proof of the remaining
implication (i) ⇒ (ii) of Theorem 5.1.1.

In the classical case (see [Ko4] for type A), invariant theory for quivers was used in the
proof for the classification of G = LΠ′ Gσ LΠ′′ , however, it is not obvious if the method is
applicable to exceptional groups. Instead we use the general theory that strongly visible
actions give rise to multiplicity-free representations [Ko3], and then apply the classification
theorems of multiplicity-free tensor product representations by Littelmann [Li2] for the
maximal parabolic case and Stembridge [St2] for the general case.

Proof of the implication (i) ⇒ (ii) of Theorem 5.1.1. Let G be a connected simply con-
nected compact simple Lie group, and GC its complexification. We fix a Cartan subalgebra
and a simple system Π of g, and denote by B the corresponding Borel subgroup of GC. For
a given subset Π′ of Π, we write PΠ′ ⊃ B for a parabolic subgroup whose reductive part
is given by the complexification of a Levi subgroup LΠ′ of G (we recall that Π′ is a simple
system of LΠ′). Also, we denote by ωi a fundamental weight of G, which corresponds to
a simple root αi (we label the Dynkin diagrams of type E6 and type E7 following Bour-
baki [Bo] as in Section 5.3), and by πλ a finite dimensional irreducible representation with
highest weight λ.

We let λ be a unitary character of LΠ′ , and extend it to a holomorphic character of PΠ′ .
By the Borel–Weil theory, we can realize the contragradient representation π∗

λ of πλ as the
space of holomorphic sections O(GC/PΠ′ ,L−λ) of the line bundle L−λ on GC/PΠ′ .

Let us suppose that the condition (i) holds. Then the diagonal action of G on GC/PΠ′×
GC/PΠ′′ is strongly visible, and thus by Fact 5.6.3 below and the Borel–Weil theory,

the tensor product representation π∗
λ ⊗ π∗

µ is multiplicity-free · · · · · · ♢

where λ and µ are any unitary characters of LΠ′ and LΠ′′ respectively.
On the other hand, we can extract the following results from the classification theorems

[Li2] and [St2] on when πλ ⊗ πµ is multiplicity-free for the maximal parabolic case and for
the general case, respectively.

Fact 5.5.1. Let gC be a complex simple Lie algebra of type E6. Let I and J be non-empty
subsets of {1, 2, 3, 4, 5, 6}. Then the tensor product of µ =

∑
i∈I miωi and ν =

∑
j∈J njωj

is multiplicity-free for arbitrary non-negative integers mi (i ∈ I) and nj (j ∈ J) if and only
if one of the following conditions holds up to switch of the factors I and J .

(i) I = {1} or {6}, J = {j} with j ̸= 4.
(ii) I = {1} or {6}, J = {1, 6}.

Fact 5.5.2. Let gC be a complex simple Lie algebra of type E7. Let I and J be non-empty
subsets of {1, 2, 3, 4, 5, 6, 7}. Then the tensor product of µ =

∑
i∈I miωi and ν =

∑
j∈J njωj

is multiplicity-free for arbitrary non-negative integers mi (i ∈ I) and nj (j ∈ J) if and only
if the following condition holds up to switch of the factors I and J .

(i) I = {7}, J = {j} with j = 1, 2 or 7.
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Fact 5.5.3. Let gC be a complex simple Lie algebra of type E8, F4 or G2. Then there
is no pair of non-empty subsets I and J of {1, ..., r} with r = rank g, which satisfies the
following:

The tensor product of µ =
∑

i∈I miωi and ν =
∑

j∈J njωj is multiplicity-free for arbitrary
non-negative integers mi (i ∈ I) and nj (j ∈ J).

By the comparison of ♢ with Facts 5.5.1, 5.5.2 and 5.5.3, the triple (g,Π′,Π′′) must be
in the list given in Theorem 5.1.1 (ii). Therefore the implication (i) ⇒ (ii) holds.

5.6 Application to representation theory

In this section, we shall see a generalized Cartan decomposition leads to three kinds of
multiplicity-free representations by using the framework of visible actions (“triunity” à la
[Ko1]). The notion of (strongly) visible actions on complex manifolds was introduced by
T. Kobayashi. Let us recall the definition [Ko2]

Definition 5.6.1. We say a biholomorphic action of a Lie group G on a complex manifold
D is strongly visible if the following two conditions are satisfied:

1. There exists a real submanifold S such that (we call S a “slice”)

D′ := G · S is an open subset of D.

2. There exists an antiholomorphic diffeomorphism σ of D′ such that

σ|S = idS,

σ(G · x) = G · x for any x ∈ S.

Definition 5.6.2. In the above setting, we say the action of G on D is S-visible. This
terminology will be used also if S is just a subset of D.

Let G be a connected compact Lie group and L,H its Levi subgroups. Then G/L, G/H
and (G×G)/(L×H) are complex manifolds. If the triple (G,L,H) satisfies G = LGσH,
the following three group-actions are all strongly visible:

L ↷ G/H,
H ↷ G/L,

∆(G) ↷ (G×G)/(L×H).

Here ∆(G) is defined by ∆(G) := {(x, y) ∈ G × G : x = y}. The following fact ([Ko3,
Theorem 4.3]) leads us to multiplicity-free representations:

Fact 5.6.3. Let G be a Lie group and V a G-equivariant Hermitian holomorphic vector
bundle on a connected complex manifold D. If the following three conditions from (1) to
(3) are satisfied, then any unitary representation that can be embedded in the vector space
O(D,V) of holomorphic sections of V decomposes multiplicity-freely:
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1. The action of G on D is S-visible. That is, there exist a subset S ⊂ D and an anti-
holomorphic diffeomorphism σ of D′ satisfying the conditions given in Definition
5.6.1. Further, there exists an automorphism σ̂ of G such that σ(g · x) = σ̂(g) · σ(x)
for any g ∈ G and x ∈ D′.

2. For any x ∈ S, the fiber Vx at x decomposes as the multiplicity free sum of irreducible

unitary representations of the isotropy subgroup Gx. Let Vx =
⊕

1≤i≤n(x)

V(i)
x denote the

irreducible decomposition of Vx.

3. σ lifts to an antiholomorphic automorphism σ̃ of V and satisfies σ̃(V(i)
x ) = V(i)

x for
any i (1 ≤ i ≤ n(x)) for each x ∈ S.

By using the Borel–Weil theory together with Fact 5.6.3 and our generalized Cartan
decompositions, we obtain the following two corollaries of Theorem 5.1.1. Let G be a
connected compact exceptional simple Lie group and ωi (1 ≤ i ≤ rank g) its fundamental
weights (we label the Dynkin diagrams following Bourbaki [Bo] as in Section 5.3).

Corollary 5.6.4. If the triple (G,L, λ) is an entry in Tables 5.6.1 or 5.6.2, then the restric-
tion πλ|L of the irreducible representation πλ of G with highest weight λ to L decomposes
multiplicity-freely. Here, a and b are arbitrary non-negative integers.

Table 5.6.1: Maximal parabolic type.

G L λ Conditions.
E6 L{αi}c aωj i = 1 or 6, j ̸= 4.

i ̸= 4, j = 1 or 6.
E7 L{αi}c aωj i = 7, j = 1, 2, or 7.

i = 1, 2 or 7, j = 7.

Table 5.6.2: Non-maximal parabolic type.

G L λ Conditions.
E6 L{α1,α6}c aωi i = 1 or 6.
E6 L{αi}c aω1 + bω6 i = 1 or 6.

Corollary 5.6.5. The tensor product representation πλ ⊗ πµ of any two irreducible repre-
sentations πλ and πµ of G with highest weights λ and µ listed in the below Tables 5.6.3 or
5.6.4 decomposes as a multiplicity-free sum of irreducible representations of G.

Here, a, b and c are arbitrary non-negative integers.

We note that the condition (2) of Fact 5.6.3 is automatically satisfied since the fiber of
a holomorphic vector bundle is one-dimensional in the setting of the Borel–Weil Theory.
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Table 5.6.3: Maximal parabolic type.

G (λ, µ) Conditions.
E6 (aωi, bωj) i = 1 or 6, j ̸= 4.
E7 (aωi, bωj) i = 7, j = 1, 2, or 7.

Table 5.6.4: Non-maximal parabolic type.

G (λ, µ) Conditions.
E6 (aω1 + bω6, cωi) i = 1 or 6.

Remark 5.6.6. Littelmann [Li2] classified for any simple algebraic group G over any
algebraically closed field of characteristic zero, all the pairs of maximal parabolic subgroups
Pω and Pω′ corresponding to fundamental weights ω and ω′ respectively such that the tensor
product representation πnω⊗πmω′ decomposes multiplicity-freely for arbitrary non-negative
integers n and m. (His classification is exactly Table 5.6.3 and does not include Table 5.6.4
in the exceptional case.) Moreover, he found the branching rules of πnω ⊗ πmω′ and the
restriction of πnω to the maximal Levi subgroup Lω′ of Pω′ for any pair (ω, ω′) that admits
a G-spherical action on G/Pω ×G/Pω′ .

Remark 5.6.7. Stembridge [St2] gave a complete list of a pair (µ, ν) of highest weights
such that the corresponding tensor product representation πµ ⊗ πν is multiplicity-free for
any complex simple Lie algebra. His method is combinatorial. He also classified all the pairs
(µ, l) of highest weights and Levi subalgebras with the restrictions πµ|l to Levi subalgebras
multiplicity-free. Our approach has given a geometric proof of a part of his work based on
generalized Cartan decompositions.

We hope that further applications of Theorem 5.1.1 and Fact 5.6.3 to representation
theory will be discussed in a future paper.
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Chapter 6

Visible actions and seeds for the
orthogonal group

6.1 Introduction for Chapter 6

Let G be a connected compact Lie group, T a maximal torus, Lj Levi subgroups containing
T (j = 1, 2) and σ a Chevalley–Weyl involution of G with respect to T . We state Corollary
1.2.1 again.

Corollary 6.1.1 (Corollary 1.2.1). We denote by GC and (Lj)C the complexifications of G
and Lj, respectively (j = 1, 2). We let Pj be a parabolic subgroup of GC with Levi subgroup
(Lj)C, and put Pj = GC/Pj (j = 1, 2). Then the following eleven conditions are equivalent.

(i) The multiplication mapping L1 ×Gσ × L2 → G is surjective.

(ii) The natural action L1 ↷ P2 is strongly visible.

(iii) The natural action L2 ↷ P1 is strongly visible.

(iv) The diagonal action ∆(G) ↷ P1 × P2 is strongly visible.

(v) Any irreducible representation of G, which belongs to P2-series is multiplicity-free
when restricted to L1.

(vi) Any irreducible representation of G, which belongs to P1-series is multiplicity-free
when restricted to L2.

(vii) The tensor product of arbitrary two irreducible representations π1 and π2 of G, which
belong to P1 and P2-series, respectively, is multiplicity-free.

(viii) P2 is a spherical variety of (L1)C.

(ix) P1 is a spherical variety of (L2)C.

(x) P1 × P2 is a spherical variety of ∆(GC).

(xi) The pair (Π1,Π2) is one of the entries listed in Theorem 1.1.1 up to switch of the
factors.
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Here an irreducible representation of G is in Pj-series if it is a holomorphically induced
representation from a unitary character of the Levi subgroup Lj (j = 1, 2).

We also show again the definition of a visible action for the sake of the convenience.

Definition 6.1.2 (Definition 1.0.1). We say a holomorphic action of a Lie group G on a
complex manifold X is strongly visible if the following two conditions are satisfied:

1. There exists a real submanifold S (called a “slice”) such that

X ′ := G · S is an open subset of X.

2. There exists an anti-holomorphic diffeomorphism σ of X ′ such that

σ|S = idS,

σ(G · x) = G · x for any x ∈ X ′.

In the above setting, we say the action of G on X is S-visible. This terminology will
be used also if S is just a subset of X.

The above corollary says that for a triple (G,L1, L2), if the tensor product representa-
tion indG

L1
χ1 ⊗ indG

L2
χ2 of holomorphically induced representations indG

L1
χ1 and indG

L2
χ2

is multiplicity-free for any unitary characters χ1 and χ2 of L1 and L2, respectively, then
we have a visible action of G on a generalized flag variety (G×G)/(L1 ×L2). However, in
general the multiplicity-freeness property of indG

L1
χ1⊗ indG

L2
χ2 depends on the choice of χ1

and χ2. To understand such representations whose multiplicity-freeness property depends
on the choice of characters from the view point of visible actions, we recall Kobayashi’s
theory on the propagation of the multiplicity-freeness property under visible actions (Fact
1.0.4). According to Fact 1.0.4 that we state again as Fact 6.3.1 below for the convenience,
we can reduce complicated multiplicity-free theorems to a pair of data:

• visible actions on complex manifolds, and

• much simpler multiplicity-free representations (seeds of multiplicity-free representa-
tions introduced by Kobayashi).

Multiplicity-free representation

O(X,W)

“Small” multiplicity-free representation
Wx

Visible action

G↷ X
Propagation theorem

//

RRRRRRRR

rrrrrrrr

With this picture in mind, we consider the following problem:

Let G be a Lie group and V a multiplicity-free representation of G. Then find
a visible action of G on a connected complex manifold X and a seed Wx as
the isotropy representation (at a generic point x of X) on the fiber of a G-
equivariant Hermitian holomorphic vector bundle W on X such that V can be
G-equivariantly embedded into the space O(X,W) of holomorphic sections of
the vector bundle W .
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In this chapter, we consider this problem in a special setting. Namely, we deal with
multiplicity-free tensor product representations of compact Lie groups. As mentioned in
Chapter 1, Kobayashi gave an answer for the unitary group [Ko1]. Following his argument,
we treat the case of the orthogonal group, and Theorem 1.3.2 (Theorem 6.3.2 in this
chapter) gives an answer for this case. Below, the proof for Theorem 1.3.2 is given after
some computations of seeds that are exhibited in Proposition 1.3.1 (Proposition 6.2.1 in
this chapter).

We fix some notations. We denote by Π = {αi}1≤i≤[N/2] a simple system of the root
system ∆(gC, tC) of G = Spin(N) with respect to its maximal torus T . We denote by
{Hi}1≤i≤[N/2] the dual basis of Π. We define a subgroup M of Spin(2n+ 1) as follows.

M :=
{
exp

(√
−1mπH1

)}
1≤m≤4

· Spin(2n− 1), (6.1.1)

where exp denotes the exponential mapping, and the simple system of Spin(2n−1) is given
by {αk ∈ Π : 2 ≤ k ≤ n}.

α1 α2 α3 αn−2 αn−1 αn

◦ ◦ ◦ ◦ ◦ ◦+3

Figure 6.1.1: Dynkin diagram of type Bn

α1 α2 α3 αn−3 αn−2

αn

αn−1

◦ ◦ ◦ ◦ ◦
◦

AAA
A

◦}}}}

Figure 6.1.2: Dynkin diagram of type Dn

6.2 Proof for Proposition 1.3.1 (computation of seeds)

In this section we give a proof of the following multiplicity-free results.

Proposition 6.2.1 (Proposition 1.3.1). We denote by 1, CN and SpinN for the one-
dimensional trivial representation, the natural representation and the spin representation
of Spin(N), respectively. Then the following hold.

(1) One-dimensional representations are multiplicity-free.

(2) 1, CN and SpinN are multiplicity-free as representations of a maximal torus T of
Spin(N).

(3) Λi(CN) is multiplicity-free as a representation of a maximal Levi subgroup U(j) ×
SO(N − 2j) of SO(N) (when N is even and i = N/2, we replace ΛN/2(CN) by
its SO(N)-irreducible constituent whose highest weight is 2ωN/2−1 or 2ωN/2) if the
following condition (3-1) or (3-2) is satisfied (1 ≤ i, j ≤ [N/2]).

(3-1) N is odd.

(3-2) N is even and i, j satisfy

(3-2-1) i+ j ≤ N/2,
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(3-2-2) j = N/2 or

(3-2-3) i = N/2.

(4) SpinN is multiplicity-free as a representation of M , where N is odd and M as in
(6.1.1).

We note that the multiplicity-freeness property in the case (1) is trivial. Also, the case
(2) is clear since the one-dimensional trivial representation, the natural representation and
the spin representation are known to be weight multiplicity-free. In the case (4), we can
see that the restriction of the spin representation SpinN of Spin(N) to M decomposes
multiplicity-freely as follows.

SpinN |M = χ⊠ SpinN−2 ⊕χ′ ⊠ SpinN−2 . (6.2.1)

Here we denote by χ and χ′ two non-equivalent faithful one-dimensional representations
of the cyclic group {exp

(√
−1mπH1

)
}1≤m≤4 ≃ Z/4Z. We note that the group M is the

quotient of the direct product group

M ′ :=
{
exp

(√
−1mπH1

)}
1≤m≤4

× Spin(N − 2) (6.2.2)

by the subgroup diag(Z/2Z) ≃ {(1, 1), (−1,−1)} of its center Z/4Z×Z/2Z ≃ {±1,±
√
−1}×

{±1}. Hence we regard representations of M as those descended from representations of
M ′. In the rest of this section, we prove the case (3). More strongly, we give the branching
law for the restriction of the alternating tensor product representation Λi(CN) of GL(N,C)
to the subgroup GL(j,C) × SO(N − 2j,C) (1 ≤ i, j ≤ [N/2]). It is well-known that the
restriction of Λi(CN) from GL(N,C) to O(N,C) is irreducible, and that from GL(N,C)
to GL(2j,C)× GL(N − 2j,C) is not irreducible but multiplicity-free. Below we find that
Λi(CN) (or its irreducible constituents if N is even and i = N/2) is still multiplicity-free
when it is further restricted to GL(j,C) × SO(N − 2j,C) by using the branching law for
Λi(CN) under the assumption that i, j and N satisfy at least one of the conditions in
Proposition 6.2.1 (3).

We fix some notations. We denote by V
GL(N)
a,b the finite-dimensional irreducible repre-

sentation of GL(N,C) with highest weight (

a︷ ︸︸ ︷
1, · · · , 1, 0, · · · , 0,

b︷ ︸︸ ︷
−1, · · · ,−1) (a + b ≤ N).

In particular, V
GL(N)
a,0 is the a-th alternating tensor product representation Λa(CN), and

V
GL(N)
0,b is the dual representation

(
Λb(CN)

)∨
of Λb(CN).

Lemma 6.2.2. (1) For the symmetric subgroup GL(M,C)×GL(N,C) of GL(M+N,C),
we have (0 ≤ l ≤M +N)

V
GL(M+N)
l,0 |GL(M,C)×GL(N,C) ≃

⊕
a + b = l,

a ≤ M, b ≤ N

V
GL(M)
a,0 ⊠ V

GL(N)
b,0 . (6.2.3)

(2) We embed GL(N,C) into GL(2N,C) by the homomorphism defined by g 7→ (g,tg−1),
which factors GL(N,C) × GL(N,C) (here tg denotes the transpose of g). Then we
have (0 ≤ l ≤ 2N)

V
GL(2N)
l,0 |GL(N,C) ≃

⊕
a + b ≤ min(l, 2N − l),

a + b ≡ l mod 2

V
GL(N)
a,b . (6.2.4)
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(3) For the natural inclusions SO(N,C) ⊂ O(N,C) ⊂ GL(N,C) of classical groups, we
have the following (0 ≤ l, l′ ≤ N).

• V
GL(N)
l,0 |O(N,C) is irreducible.

• V
GL(N)
l,0 |SO(N,C) is irreducible if N ̸= 2l, and decomposes into the sum of two

irreducible representations
(
V

GL(N)
N
2
,0

)even
and

(
V

GL(N)
N
2
,0

)odd
of SO(N,C) if N =

2l.

• V
GL(N)
l,0 ≃ V

GL(N)
l′,0 as representations of SO(N,C) if l + l′ = N .

Proof. Both (1) and (3) are well-known. We give a proof for (2). By (6.2.3), we have

V
GL(2N)
l,0 |GL(N,C)×GL(N,C) ≃

⊕
a + b = l,
a, b ≤ N

V
GL(N)
a,0 ⊠ V

GL(N)
b,0 . (6.2.5)

Using the Littlewood–Richardson rule, we further restrict (6.2.5) to GL(N,C) that is em-
bedded into GL(2N,C) by the homomorphism defined by g 7→ (g,tg−1), which factors
GL(N,C)×GL(N,C).

(6.2.5)|GL(N,C) ≃
⊕

a + b = l,
a, b ≤ N

V
GL(N)
a,0 ⊗

(
V

GL(N)
b,0

)∨
≃

⊕
a + b = l,
a, b ≤ N

V
GL(N)
a,0 ⊗ V

GL(N)
0,b

≃
⊕

a + b ≤ min(l, 2N − l),
a + b ≡ l mod 2

V
GL(N)
a,b .

Proposition 6.2.3. We embed GL(j,C)×SO(N − 2j,C) into GL(2j,C)×GL(N − 2j,C)
by the map (g, h) 7→ ((g,tg−1), h), which factors (GL(j,C)×GL(j,C))×GL(N − 2j,C).

(1) Suppose that N is odd. Then we have (1 ≤ i, j ≤ [N
2
])

V
GL(N)
i,0 |GL(j,C)×SO(N−2j,C) ≃ (6.2.6)⊕

max(i+2j−N,0)≤l≤min(i,2j)

⊕
a + b ≤ min(l, 2j − l),

a + b ≡ l mod 2

V
GL(j)
a,b ⊠ V

GL(N−2j)
i−l,0 |SO(N−2j,C).

(2) Suppose that N is even and i+ j ≤ N
2
(1 ≤ i, j ≤ N

2
). Then we have

V
GL(N)
i,0 |GL(j,C)×SO(N−2j,C) ≃ (6.2.7)⊕

0≤l≤min(i,2j)

⊕
a + b ≤ min(l, 2j − l),

a + b ≡ l mod 2

V
GL(j)
a,b ⊠ V

GL(N−2j)
i−l,0 |SO(N−2j,C).
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(3) Suppose that N is even. Then we have (1 ≤ i ≤ N
2
)

V
GL(N)
i,0 |GL(N

2
,C) ≃

⊕
a + b ≤ i,

a + b ≡ i mod 2

V
GL(N

2
)

a,b . (6.2.8)

(4) Suppose that N is even. Then we have (1 ≤ j ≤ N
2
− 1)

V
GL(N)
N
2
,0

|GL(j,C)×SO(N−2j,C) ≃ (6.2.9)

2×

 ⊕
max(2j−N

2
,0)≤l≤j−1

⊕
a + b ≤ l,

a + b ≡ l mod 2

V
GL(j)
a,b ⊠ V

GL(N−2j)
N/2−2j+l,0|SO(N−2j,C)


⊕

⊕
a + b ≤ j,

a + b ≡ j mod 2

V
GL(j)
a,b ⊠

((
V

GL(N−2j)
N/2−j,0

)even
⊕
(
V

GL(N−2j)
N/2−j,0

)odd)
.

Here by 2×V we mean that a representation V appears twice, that is, the multiplicity
of V is two.

Proof. Using the fact that the embedding of GL(j,C) × SO(N − 2j,C) into GL(N,C)
factors the symmetric subgroup GL(2j,C)×GL(N − 2j,C), we have

V
GL(N)
i,0 |GL(j,C)×SO(N−2j,C)

(6.2.3)
≃

⊕
max(i+2j−N,0)≤l≤min(i,2j)

V
GL(2j)
l,0 |GL(j,C) ⊠ V

GL(N−2j)
i−l,0 |SO(N−2j,C)

(6.2.4)
≃

⊕
max(i+2j−N,0)≤l≤min(i,2j)

⊕
a + b ≤ min(l, 2j − l),

a + b ≡ l mod 2

V
GL(j)
a,b ⊠ V

GL(N−2j)
i−l,0 |SO(N−2j,C). (6.2.10)

This proves (1). We shall prove (2), (3) and (4) separately by using (6.2.10).

(2) If N is even and i+ j ≤ N
2
, then we can rewrite (6.2.10) as follows.

(6.2.10) =
⊕

0≤l≤min(i,2j)

⊕
a + b ≤ min(l, 2j − l),

a + b ≡ l mod 2

V
GL(j)
a,b ⊠ V

GL(N−2j)
i−l,0 |SO(N−2j,C).

(3) By (6.2.10) for the case j = N
2
, we have

V
GL(N)
i,0 |GL(N

2
,C) ≃

⊕
a + b ≤ i,

a + b ≡ i mod 2

V
GL(N

2
)

a,b .
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(4) By (6.2.10) and Lemma 6.2.2 (3), we have

V
GL(N)
N
2
,0

|GL(j,C)×SO(N−2j,C)

≃
⊕

max(2j−N
2
,0)≤l≤j−1

⊕
a + b ≤ l,

a + b ≡ l mod 2

V
GL(j)
a,b ⊠ V

GL(N−2j)
N/2−l,0 |SO(N−2j,C)

⊕
⊕

a + b ≤ j,
a + b ≡ j mod 2

V
GL(j)
a,b ⊠ V

GL(N−2j)
N/2−j,0 |SO(N−2j,C)

⊕
⊕

j+1≤l≤min(N
2
,2j)

⊕
a + b ≤ 2j − l,
a + b ≡ l mod 2

V
GL(j)
a,b ⊠ V

GL(N−2j)
N/2−l,0 |SO(N−2j,C)

≃
⊕

max(2j−N
2
,0)≤l≤j−1

⊕
a + b ≤ l,

a + b ≡ l mod 2

V
GL(j)
a,b ⊠ V

GL(N−2j)
N/2−2j+l,0|SO(N−2j,C)

⊕
⊕

a + b ≤ j,
a + b ≡ j mod 2

V
GL(j)
a,b ⊠

((
V

GL(N−2j)
N/2−j,0

)even
⊕
(
V

GL(N−2j)
N/2−j,0

)odd)

⊕
⊕

max(2j−N
2
,0)≤l′≤j−1

⊕
a + b ≤ l′,

a + b ≡ l′ mod 2

V
GL(j)
a,b ⊠ V

GL(N−2j)
N/2−2j+l′,0|SO(N−2j,C)

= 2×

 ⊕
max(2j−N

2
,0)≤l≤j−1

⊕
a + b ≤ l,

a + b ≡ l mod 2

V
GL(j)
a,b ⊠ V

GL(N−2j)
N/2−2j+l,0|SO(N−2j,C)


⊕

⊕
a + b ≤ j,

a + b ≡ j mod 2

V
GL(j)
a,b ⊠

((
V

GL(N−2j)
N/2−j,0

)even
⊕
(
V

GL(N−2j)
N/2−j,0

)odd)
.

On the right hand side of the second isomorphism, we have used Lemma 6.2.2 (3),

namely, the isomorphism V
GL(N−2j)
N/2−l,0 |SO(N−2j,C) ≃ V

GL(N−2j)
N/2−2j+l,0|SO(N−2j,C) for the first

sum, and the irreducible decomposition V
GL(N−2j)
N/2−j,0 |SO(N−2j,C) =

(
V

GL(N−2j)
N/2−j,0

)even
⊕(

V
GL(N−2j)
N/2−j,0

)odd
for the second sum. Also, we put l′ = 2j − l in the third sum.

Proposition 6.2.4. We embed GL(j,C) into GL(j,C) × GL(j,C) by g 7→ (g,tg−1) as in
Lemma 6.2.2 (2). Then we have the inclusions of classical groups (the natural inclusions
except for the inclusion GL(j,C) ⊂ GL(j,C)×GL(j,C))

GL(N,C) ⊃ GL(2j,C)×GL(N − 2j,C)
⊃ (GL(j,C)×GL(j,C))×GL(N − 2j,C)
⊃ GL(j,C)×GL(N − 2j,C)
⊃ GL(j,C)× SO(N − 2j,C).

We obtain the following multiplicity-free representations for the bottom group GL(j,C) ×
SO(N − 2j,C).
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(1) Suppose that N is odd. Then the restriction

V
GL(N)
i,0 |GL(j,C)×SO(N−2j,C) is multiplicity-free (1 ≤ i, j ≤ [N

2
]).

(2) Suppose that N is even and i + j ≤ N
2

(1 ≤ i, j ≤ N
2
). Then the restriction

V
GL(N)
i,0 |GL(j,C)×SO(N−2j,C) is multiplicity-free.

(3) Suppose that N is even. Then the restriction V
GL(N)
i,0 |GL(N

2
,C) is multiplicity-free (1 ≤

i ≤ N
2
).

(4) Suppose that N is even. The restrictions(
V

GL(N)
N
2
,0

)even
|GL(j,C)×SO(N−2j,C) and

(
V

GL(N)
N
2
,0

)odd
|GL(j,C)×SO(N−2j,C) are multiplicity-

free (1 ≤ j ≤ N
2
− 1). Here we regard GL(j,C)× SO(N − 2j,C) as a Levi subgroup

of SO(N,C) by an inner automorphism of GL(N,C).

Proof. (2) and (3) are clear from Proposition 6.2.3 (2) and (3). Suppose N is odd. In

(6.2.6), if two representations V
GL(N−2j)
i−l,0 and V

GL(N−2j)
i−l′,0 are isomorphic as representations

of SO(N−2j,C) for some different l and l′, then l+l′ ≡ 1 mod 2 since (i−l)+(i−l′) = N−2j.

This implies that for such l and l′, V
GL(j)
a,b and V

GL(j)
a′,b′ are not isomorphic as representations

of GL(j,C) if a+ b ≡ l and a′ + b′ ≡ l′ mod 2. This shows (1). Then let us prove (4). By
(6.2.9), it is enough to show that the sub-representation⊕

max(2j−N
2
,0)≤l≤j−1

⊕
a + b ≤ l,

a + b ≡ l mod 2

V
GL(j)
a,b ⊠ V

GL(N−2j)
N/2−2j+l,0|SO(N−2j,C)

is contained in both
(
V

GL(N)
N
2
,0

)even
|GL(j,C)×SO(N−2j,C) and

(
V

GL(N)
N
2
,0

)odd
|GL(j,C)×SO(N−2j,C).

This follows from the fact that the direct summand V
GL(j)
a,b ⊠V GL(N−2j)

N/2−2j+l,0|SO(N−2j,C) is invari-
ant under the action of the outer automorphism ξ that induces the switching of the two
simple roots αN/2−1 and αN/2 in the Dynkin diagram of type DN/2 for any l ≤ j − 1 as a

representation of GL(j,C) × SO(N − 2j,C). Here we note that ξ switches
(
V

GL(N)
N
2
,0

)even
and

(
V

GL(N)
N
2
,0

)odd
in V

GL(N)
N
2
,0

.

By Weyl’s unitary trick, Proposition 6.2.4 completes the proof for Proposition 6.2.1
(Proposition 1.3.1). The example below gives a counter example for the multiplicity-

freeness property of the restriction V
GL(N)
i,0 |GL(j,C)×SO(N−2j,C).

Example 6.2.5. Let N = 6, i = 2 and j = 2 so that i ̸= N
2
, j ̸= N

2
and i+j > N

2
. Then we

can see from (6.2.10) that the restriction of the irreducible representation V
GL(6)
2,0 of SO(6,C)

to GL(2,C)× SO(2,C) contains two copies of the trivial representation 1GL(2,C) ⊠ 1SO(2,C)
of GL(2,C)× SO(2,C). Hence this restriction is not multiplicity-free.

Remark 6.2.6. The explicit branching law of Λi(CN) as a representation of GL(j,C) ×
SO(N−2j,C) (Proposition 6.2.3) also would follow from Koike–Terada’s character formulas
[KT2] and Okada’s branching formulas [Ok].
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6.3 Proof for Theorem 1.3.2 (realization of multiplicity-

free representations from the view point of visible

actions)

We use Fact 1.0.4 for the construction of multiplicity-free representations in Theorem 1.3.2.
Here we recall Fact 1.0.4 and Theorem 1.3.2.

Fact 6.3.1 (Fact 1.0.4). Let G be a Lie group and W a G-equivariant Hermitian holomor-
phic vector bundle on a connected complex manifold X. Let V be a unitary representation
of G. If the following conditions from (0) to (3) are satisfied, then V is multiplicity-free as
a representation of G.

(0) There exists a continuous and injective G-intertwining operator from V to the space
O(X,W) of holomorphic sections of W.

(1) The action of G on X is S-visible. That is, there exist a subset S ⊂ X and an anti-
holomorphic diffeomorphism σ of X ′ satisfying the conditions given in Definition
6.1.2. Further, there exists an automorphism σ̂ of G such that σ(g · x) = σ̂(g) · σ(x)
for any g ∈ G and x ∈ X ′.

(2) For any x ∈ S, the fiber Wx at x decomposes as the multiplicity-free sum of irreducible

unitary representations of the isotropy subgroup Gx. Let Wx =
⊕

1≤i≤n(x)

W(i)
x denote

the irreducible decomposition of Wx.

(3) σ lifts to an anti-holomorphic automorphism σ̃ of W and satisfies σ̃(W(i)
x ) = W (i)

x

for each x ∈ S (1 ≤ i ≤ n(x)).

Theorem 6.3.2 (Theorem 1.3.2). We let G = Spin(N). For any two irreducible repre-
sentations Vλ1 and Vλ2 of G such that Vλ1 ⊗ Vλ2 is multiplicity-free, there exists a pair
of

• a generalized flag variety (G×G)/(L1×L2) with a strongly visible ∆(G)-action, and

• irreducible representations (a seed given in Proposition 6.2.1) W1 and W2 of L1 and
L2, respectively,

such that Vλk
≃ O(G/Lk,Wk) as G-modules (k = 1, 2).

The correspondence between the data (Lk,Wk) of visible actions and seeds, and the
highest weights λk of Vλk

(k = 1, 2) is given as in Tables 6.3.1–6.3.4 below. In the tables,
Cλ denotes a one-dimensional representation with weight λ, T a maximal torus of G and
Lλ a Levi subgroup of G, whose simple system is given by {αl ∈ Π : ⟨λ, α̌l⟩ = 0} where α̌l

is the coroot of αl (1 ≤ l ≤ [N/2]).

We take a Chevalley–Weyl involution σ of G = Spin(N) with respect to T , that is,
σ(t) = t−1 for any t ∈ T (we note that σ is called a Weyl involution in [Wo]). We prove
the multiplicity-freeness property of tensor product representations of G by verifying the
conditions from (0) to (3) of Fact 6.3.1. Here, we note the following:

• Since G is compact, any finite-dimensional representation of G is unitary.
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Table 6.3.1: Line bundle type
L1 L2 W1 W2 N λ1 λ2
Lλ1 Lλ2 Cλ1 Cλ2 2n+ 1 sω1 tωj

sωn tωn

2n sω1 tωj + uωn−δ

sωn−δ tω3, tω1 + uω2, tω1 + uωn−δ′

or tωn−1 + uωn

8 sω5−ϵ tω2 + uω2+ϵ

1 ≤ j ≤ n, s, t, u ∈ N, δ = 0 or 1, δ′ = 0 or 1 and ϵ = 1 or 2.

Table 6.3.2: Weight multiplicity-free type
L1 L2 W1 W2 N λ1 λ2
G T Vλ1 Cλ2 2n+ 1 0, ω1 or ωn arbitrary

2n 0, ω1, ωn−1 or ωn arbitrary

Table 6.3.3: Alternating tensor product type
L1 L2 W1 W2 N λ1 λ2 Condition
G Lλ2 Vλ1 Cλ2 2n+ 1 ωi or 2ωn tωj

2n ωi tωj i+ j ≤ n
ωi tωn−δ

2ωn−δ tωj

1 ≤ i, j ≤ n, t ∈ N and δ = 0 or 1.

Table 6.3.4: Spin type
L1 L2 W1 W2 N λ1 λ2
Lλ1 Lωj

Cλ1 C(1/2+t)ωj
⊠ SpinN−2j 2n+ 1 sω1 ωn + tωj

1 ≤ j ≤ n− 1 and s, t ∈ N.

• The condition (0) is automatically satisfied by the Borel–Weil theory.

• The condition (3) is satisfied by virtue of the properties of a Chevalley–Weyl involu-
tion (see the argument in Subsection 6.3 of [Ko3], and the conditions 5.2.4 (a), (b)
in loc. cit).

Therefore we only need to check the visibility of the base space (the condition (1)) and
the multiplicity-freeness property of the fiber (the condition (2)). Below, we see that the
former follows from a classification of visible actions given in Theorem 1.1.1 (Table 6.3.5
in this chapter) and the latter from Proposition 6.2.1. The proof is divided into four cases.

For the convenience, we quote a classification of visible actions for the orthogonal group
as Table 6.3.5 from Theorem 1.1.1. In Table 6.3.5, ξ is an outer automorphism of type D
groups, which induces the switching of the two simple roots αn−1 and αn in the Dynkin
diagram of type Dn.
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Table 6.3.5: Classification of visible actions for types B and D
g Π1 Π2

so(N) Π arbitrary subset of Π
{α1}c {αj}c
{α[N/2]}c {α[N/2]}c

so(2n) {α1}c {αj, αn−δ}c
{αn−δ}c {α3}c, {α1, α2}c, {α2}c, {α1, αn−δ′}c, {αn−1, αn}c or {αn−1}c

so(8) {α5−ϵ}c {α2, α2+ϵ}c

1 ≤ j ≤ min(n, [N/2]), δ = 0 or 1, δ′ = 0 or 1 and ϵ = 1 or 2.

6.3.1 Line bundle type

Let G = Spin(N) and (L1, L2,W1,W2, N, λ1, λ2) be a member of Table 6.3.1. By the Borel–
Weil theory, Vλk

is G-isomorphic to O(G/Lk,Wk) (k = 1, 2). Since (G,L1, L2) is given as
in Table 6.3.1, the diagonal action of G on the base space (G × G)/(L1 × L2) is strongly
visible by [Ta2, Ta4] (Theorem 1.1.1 or Table 6.3.5 in this paper). On the other hand, the
multiplicity-freeness property of the fiber is clear since it is of one-dimension (Proposition
6.2.1 (1). Therefore Vλ1 ⊗ Vλ2 is multiplicity-free by Fact 6.3.1. Furthermore, the proof
implies that seeds in this case are one-dimensional representations.

6.3.2 Weight multiplicity-free type

Let G = Spin(N) and (L1, L2,W1,W2, N, λ1, λ2) be a member of Table 6.3.2. By the Borel–
Weil theory, Vλk

is G-isomorphic to O(G/Lk,Wk) (k = 1, 2). In this setting, the visibility
of the base space (G×G)/(L1 ×L2) with respect to the diagonal action of G is clear since
the action is transitive. Also, the fiber W1 ⊠W2 is multiplicity-free as a representation of
the isotropy subgroup L2 = T by Proposition 6.2.1 (2). We note that L1 = G. Therefore
Vλ1 ⊗ Vλ2 is multiplicity-free. Seeds in this case are the trivial representation, the natural
representation and the (half) spin representation restricted to a maximal torus.

6.3.3 Alternating tensor product type

Let G = Spin(N) and (L1, L2,W1,W2, N, λ1, λ2) be a member of Table 6.3.3. By the
Borel–Weil theory, Vλk

is G-isomorphic to O(G/Lk,Wk) (k = 1, 2). In this setting, the
visibility of the base space (G × G)/(L1 × L2) with respect to the diagonal action of G
is clear since the action is transitive. Also, the fiber W1 ⊠ W2 is multiplicity-free as a
representation of the isotropy subgroup L2 by Proposition 6.2.1 (3). We note that L1 = G.
Therefore Vλ1 ⊗ Vλ2 is multiplicity-free. Seeds in this case are alternating tensor product
representations (or their G-irreducible constituents) restricted to maximal Levi subgroups.

6.3.4 Spin type

Let G = Spin(N) and (L1, L2,W1,W2, N, λ1, λ2) be a member of Table 6.3.4. Then Vλk
is

G-isomorphic to O(G/Lk,Wk) (k = 1, 2) by the Borel–Weil theory. The visibility of the
base space (G×G)/(L1 × L2) with respect to the diagonal action of G follows from [Ta2]
(Theorem 1.1.1 or Table 6.3.5 in this paper). We recall from [Ta2, Proposition 3.3] that
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the corresponding “slice” S of the visible action is given by (B × {e}) · o, where o denotes
the identity coset of (G × G)/(L1 × L2), and B := B1 · B2 for the two abelian subgroups
B1 and B2 defined by

B1 := exp
(
RZ∑j

k=1 αk
+ RZ(

∑j
k=1 αk+2

∑n
k=j+1 αk)

)
,

B2 := exp
(
RZ(

∑j−1
k=1 αk+2

∑n
k=j αk)

)
.

Here we put Zα = Xα + θXα, where Xα is a non-zero root vector of gC, which corresponds
to a root α ∈ ∆(gC, tC), and denote by θ the Cartan involution of gC with g =Lie(G) its
fixed points set. We note that the centralizer of B in the intersection L1 ∩ L2 = Lω1 ∩ Lωj

contains the group Mj defined by

Mj := {exp(
√
−1mπHj+1)}1≤m≤4 · Spin(2(n− j)− 1), (6.3.1)

where the connected component ofMj is isomorphic to Spin(2(n−j)−1) whose root system
is spanned by {αi ∈ Π : j + 2 ≤ i ≤ n}. By Lemma 6.3.3 below, the multiplicity-freeness
property of the fiber W1⊠W2 as a representation of Mj follows from Proposition 6.2.1 (4).
Therefore we can find that the tensor product representation Vλ1 ⊗Vλ2 is multiplicity-free.
The proof implies that seeds in this case are spin representations (twisted by characters)
restricted to twisted products of spinor groups and cyclic groups.

6.3.5 “Seeds” for the spin type in Theorem 6.3.2

We put a := exp(
√
−1πHj) and denote by ⟨x⟩ the group generated by x. Let χa be a

character of ⟨a⟩ such that the representation χa ⊠ Spin2(n−j)+1 of ⟨a⟩ × Spin(2(n− j) + 1)
descends to the subgroup Mj−1 (6.3.1) of Lωj

.

Lemma 6.3.3. The representation χa⊠Spin2(n−j)+1 is multiplicity-free as a representation
of Mj (1 ≤ j ≤ n− 1) (see (6.3.1) for the definition of Mj).

Proof. We put b := exp(
√
−1π(Hj+1 − Hj)). Since the group Mj is the quotient of the

direct product group ⟨ab⟩ × Spin(2(n − j) − 1) by a subgroup of its center, it suffices to
show that the representation χa ⊠ Spin2(n−j)+1 of ⟨a⟩ × Spin(2(n − j) + 1) decomposes
multiplicity-freely as a representation of ⟨ab⟩ × Spin(2(n− j)− 1).

By Proposition 6.2.1 (4), Spin2(n−j)+1 is multiplicity-free as a representation of ⟨b⟩ ×
Spin(2(n−j)−1). This implies that χa⊠Spin2(n−j)+1 is multiplicity-free as a representation
of 1× (⟨b⟩× Spin(2(n− j)− 1)), and thus as that of ⟨ab⟩× Spin(2(n− j)− 1). This shows
the lemma.

According to Stembridge’s classification results [St2] for types B and D cases given
below, the above four types stated in Sections 6.3.1, 6.3.2, 6.3.3 and 6.3.4 (which cor-
respond to (i) and (i)′, (ii) and (ii)′, (iii) and (iii)′, and (iv) in Facts 6.3.4 and 6.3.5,
respectively) exhaust all the multiplicity-free tensor product representations for the spinor
group. Therefore we have completed the proof for Theorem 6.3.2.

Fact 6.3.4 ([St2]). Let λ1 and λ2 be the highest weights of irreducible representations Vλ1

and Vλ2 of Spin(2n+ 1), respectively. Then the tensor product representation Vλ1 ⊗ Vλ2 is
multiplicity-free if and only if one of the following four conditions (i), (ii), (iii) and (iv)
is satisfied up to switch of the factors λ1 and λ2 (see Figure 6.1.1 for the labeling of the
Dynkin diagram):
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(i) (λ1, λ2) = (sω1, tωj) or (sωn, tωn) with 1 ≤ j ≤ n and s, t ∈ N.

(ii) λ1 = 0, ω1 or ωn; λ2 is arbitrary.

(iii) λ1 = ωi or 2ωn; λ2 = tωj with 1 ≤ i, j ≤ n and t ∈ N.

(iv) λ1 = sω1; λ2 = ωn + tωj with 1 ≤ j ≤ n and s, t ∈ N.

Fact 6.3.5 ([St2]). Let λ1 and λ2 be the highest weights of irreducible representations Vλ1

and Vλ2 of Spin(2n), respectively. Then the tensor product representation Vλ1 ⊗ Vλ2 is
multiplicity-free if and only if one of the following three conditions (i)′, (ii)′ and (iii)′ is
satisfied up to switch of the factors λ1 and λ2 (see Figure 6.1.2 for the labeling of the
Dynkin diagram):

(i)′ (λ1, λ2) = (sω1, tωj + uωn−1) or (sω1, tωj + uωn) with 1 ≤ j ≤ n and s, t, u ∈ N,
λ1 = sωn−1 or sωn; λ2 = tω3, tω1 + uω2, tω1 + uωn−1, tω1 + uωn or tωn−1 + uωn with
s, t, u ∈ N, or
λ1 = sω5−ϵ; λ2 = tω2 + uω2+ϵ with n = 4 and ϵ = 1 or 2.

(ii)′ λ1 = 0, ω1, ωn−1 or ωn; λ2 is arbitrary.

(iii)′ λ1 = κωi; λ2 = tωj, where t ∈ N and κ, i, j satisfy one of the following three condi-
tions.

(iii-1)′ κ = 1 and i+ j ≤ n.

(iii-2)′ κ = 1, 1 ≤ i ≤ n and j = n− 1 or n.

(iii-3)′ κ = 2, i = n− 1 or n and 1 ≤ j ≤ n.

Remark 6.3.6. The pair (Vλ1 , Vλ2) corresponding to the spherical double cone associ-
ated with a pair of maximal parabolic subgroups of any simple algebraic group over any
algebraically closed field of characteristic zero was classified by Littelmann [Li2].
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Chapter 7

Visible actions on spherical varieties

7.1 Introduction for Chapter 7

Let X be a connected complex algebraic variety with an action of a connected complex
reductive algebraic group G.

Definition 7.1.1. X is said to be spherical if a Borel subgroup of G has an open orbit on
X.

We want to prove the visibility of the action of a real form GR of G on X. Here we say
GR is a real form of G if GR is a subgroup of G and the complexification of the Lie algebra
of GR coincides with that of G. For the convenience, we recall the definition of a visible
action.

Definition 7.1.2 (Kobayashi [Ko2]). We say a holomorphic action of a Lie group G on a
complex manifold X is strongly visible if the following two conditions are satisfied:

1. There exists a real submanifold S (called a “slice”) such that

X ′ := G · S is an open subset of X.

2. There exists an anti-holomorphic diffeomorphism σ of X ′ such that

σ|S = idS,

σ(G · x) = G · x for any x ∈ X ′.

In the above setting, we say the action of G on X is S-visible. This terminology will
be used also if S is just a subset of X.

Since the visibility is a local condition, we may replace X with a unique open G-orbit
on X. We denote by σ an anti-holomorphic involution of G, which corresponds to GR, and
by H a stabilizer of the open orbit of G on X. In the following, we say a subgroup L of a
complex reductive algebraic group G is a spherical subgroup of G if G/L is a G-spherical
variety.
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7.2 Reduction to the affine homogeneous case

A real reductive Lie group is said to be of inner type if its Lie algebra has a compact Cartan
subalgebra. The following is a list of real simple Lie algebras of inner type.

sl(2,R), su(p, q), so(r, s) (with r or s even), so∗(2n), sp(2n,R), sp(p, q),
EII, EIII, EV, EVI, EVII, EVIII, EIX, FI, FII, G.

Lemma 7.2.1. Assume that GR is compact or of inner type. Then there exists a σ-stable
Levi subgroup G′ of G such that the subset (Ad(x)GR)(Ad(x)G

′)H contains a non-empty
open subset of G for an element x of G, and (Ad(x)G′∩H) is a reductive spherical subgroup
of Ad(x)G′.

Proof. Since G/H is a G-spherical variety, there exists a Borel subgroup B of G such that
the subset BH is open in G. Assume that H is not reductive. Then the unipotent radical
Radu(H) of H is non-trivial, and there exists a proper parabolic subgroup P ′ of G such
that P ′ ⊃ H and Radu(P

′) ⊃ Radu(H) by Borel and Tits [BT]. Let B′ be a Borel subgroup
of G, contained in P ′. By taking a conjugate of GR if necessary, we may assume that the
subset GRB

′ is open in G. We take a maximal torus T ′ of B′ such that the intersection
T ′ ∩ GR is a compact maximal torus of GR. Then we put B′ = σ(B′) and P ′ = σ(P ′).
By the Bruhat decomposition, we can write B = Ad(p′w′

ib̄
′)B′ for p′ ∈ P ′, b̄′ ∈ B′ and

w′
i ∈ {w′

1 = e, w′
2, . . . , w

′
r} = a subset of NG(T

′), which gives a complete representatives of
the double coset P ′\G/B′. Then we have

Ad(p′w′
ib̄

′)b′ + h = g.

Since P ′ contains H, the subset BP ′ is also open in G. This implies that

Ad(p′w′
ib̄

′)b′ + p′ = g.

Therefore
Ad(w′

i)b
′ + p′ = g.

This equality implies that we can take w′
i as w

′
i = e since there is only one open B

′
-orbit on

P ′\G. Let us write b′ = u′+bl′ for a Borel subalgebra bl′ of the Levi subalgebra l′ = p′∩p′

and the nilpotent radical u′ of p′. We have

Ad(p′)u′ +Ad(p′)bl′ + h = g, (7.2.1)

Ad(p′)u′ + p′ = g. (7.2.2)

Since Ad(p′)bl′ + h ⊂ p′ and dim(Ad(p′)bl′ + h) ≥ dim g− dimAd(p′)u′ = dim p′, we have
p′ = Ad(p′)bl′ + h. From this we obtain Ad(p′)l′ = Ad(p′)bl′ + h ∩ Ad(p′)l′. We put
G1 = Ad(p′)(L′)0 and H1 = (G1∩H)0, and find that G1/H1 is an G1-spherical variety. We
succeed this procedure to construct a sequence of pairs of a complex reductive algebraic
group and a spherical subgroup (G0, H0) = (G,H), (G1, H1), (G2, H2), . . ., (Gk, Hk) =
(G′, H ′) where G′/H ′ is affine, that is, the stabilizer H ′ is reductive.

The above argument shows that our construction of visible actions of a real form (com-
pact or of inner type) of G on G/H is reduced to the affine homogeneous case by the
locality of the visible action.
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7.3 Affine homogeneous case

Proposition 7.3.1. Let GR be a real form of G and H a reductive spherical subgroup of
G. There exist finitely many abelian subspaces ji of g

−σ and elements xi and yi of G (i ∈ I)
such that

∪
i∈I GRCiH contains an open dense subset of G, where Ci = xi exp(ji)yi.

Proof. We use the induction on the dimension of G. By classification results by Brion
[Br], Krämer [Kr], Mikityuk [Mi] and Yakimova [Ya], there exists a complex symmetric
subgroup Gτ of G, which contains H except for the two cases that we discuss later if
(G,H) is irreducible. Then by Matsuki [Ma2, Ma3], we have Gss =

∪
i∈I′ GRC

′
iG

τ for
a real form GR of G with the corresponding anti-holomorphic involution σ. Here, the
set Kss of semisimple elements of a Lie group K with (not necessarily commutative) two
involutions σ and τ is defined by ([Ma2, Ma3])

Kss = {g ∈ K; στg = σAd(g)τ Ad(g)−1 is semisimple},

and C ′
i = exp(ai) exp(ti)ti are the representatives of standard Cartan subsets with a ⊂ ai ⊂

p, ti ⊂ t ⊂ k−σ ∩ k−τ for a maximal abelian subspace t of k−σ ∩ k−τ and ai+ ti ⊂ g−σ ∩ g−τti

with ti ∈ exp(t). We note that ai + ti is a maximal abelian subspace of g−σ ∩ g−τti and
that ti is not necessarily an element of exp(ti). We put Li = ZG(ti) if ti ̸= 0 otherwise
Li = ZG(Ad(t

−1
i )ai). Then the subset

∪
i∈I′ ti Ad(t

−1
i )GRLiH contains an open dense subset

of G. Here we note that Gτ = (Li ∩Gτ )H. We use the induction hypothesis for each Li:

For abelian subspaces jLi
j of l

−σti
i and elements xLi

j and yLi
j of Li (j ∈ JLi

), an open dense

subset of Li is contained in
∪

j∈JLi

(Ad(t−1
i )GR ∩ Li)C

Li
j (Li ∩H) with CLi

j = xLi
j exp(jLi

j )yLi
j .

Thus the following subset contains an open dense subset of G.∪
i∈I′

tiAd(t
−1
i )GR(

∪
j∈JLi

Ad(t−1
i )GR ∩ Li)C

Li
j (Li ∩H))H =

∪
i∈I′

∪
j∈JLi

GRtiC
Li
j H.

We deal with the two cases mentioned in the above. In the following, we only deal with
non-compact real forms GR. For the case where GR is compact, see Theorem 7.4.4.

• (G,H) = (Spin(7,C),G2,C).

– GR = Spine(3, 4).
We use the isomorphism Spin(7,C)/G2,C ≃ Spin(8,C)/ Spin(7,C). By [Ma2,
Ma3], we have

Spin(8,C)ss = Spine(4, 4)T
1 Spin(7,C) ∪ Spine(4, 4)A

1 Spin(7,C)
∪ Spine(4, 4)A

1t Spin(7,C)

for a one-dimensional torus T 1 and a one-dimensional split real torus A1 with t
an element of T 1. Since Spine(4, 4) = Spine(3, 4) SL(4,R) = Spine(3, 4) SU(2, 2),
we obtain

Spin(8,C)ss = Spine(3, 4)T
1 Spin(7,C) ∪ Spine(3, 4)A

1 Spin(7,C)
∪ Spine(3, 4)A

1t Spin(7,C).
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– GR = Spine(2, 5).
By [Ma2, Ma3], we have

Spin(8,C)ss = Spine(2, 6)T
1 Spin(7,C) ∪ Spine(2, 6)A

1 Spin(7,C)
∪ Spine(2, 6)A

1t Spin(7,C)

for a one-dimensional torus T 1 and a one-dimensional split real torus A1 with t
an element of T 1. Since Spine(2, 6) = Spine(2, 5) SU(1, 3) = Spine(2, 5) SU(2, 2),
we obtain

Spin(8,C)ss = Spine(2, 5)T
1 Spin(7,C) ∪ Spine(2, 5)A

1 Spin(7,C)
∪ Spine(2, 5)A

1t Spin(7,C).

– GR = Spine(1, 6).
In the same way as above, we have

Spin(8,C)ss = Spine(2, 6)T
1 Spin(7,C)∪ Spine(2, 6)A

1 Spin(7,C)
∪ Spine(2, 6)A

1t Spin(7,C)

for a one-dimensional torus T 1 and a one-dimensional split real torus A1 with t
an element of T 1. Since Spine(2, 6) = Spine(1, 6) SU(1, 3) = Spine(1, 6) SU(2, 2),
we obtain

Spin(8,C)ss = Spine(1, 6)T
1 Spin(7,C)∪ Spine(1, 6)A

1 Spin(7,C)
∪ Spine(1, 6)A

1t Spin(7,C).

• (G,H) = (G2,C, SL(3,C)).
We use the isomorphism G2,C / SL(3,C) ≃ SO(7,C)/ SO(6,C). By [Ma2, Ma3], we
have

SO(7,C)ss = SOe(3, 4)T
1 SO(6,C) ∪ SOe(3, 4)A

1 SO(6,C) ∪ SOe(3, 4)A
1t SO(6,C)

for a one-dimensional torus T 1 and a one-dimensional split real torus A1 with t an
element of T 1. Since SOe(3, 4) = G2(2) SOe(2, 3) = G2(2) SOe(3, 2), we obtain

SO(7,C)ss = G2(2) T
1 SO(6,C) ∪G2(2)A

1 SO(6,C) ∪G2(2)A
1t SO(6,C).

Here, we note the following: To apply Matsuki’s decomposition [Ma2, Ma3], we actually
need to put some assumptions on the connected components of G, the semisimplicity
of the action of στ on g and the existence of a “good” Cartan involution [Ma2, Ma3].
Those assumptions are satisfied if for example G is connected and semisimple after taking
a conjugate of τ (or σ) if necessary. Let us see how to reduce a general case to the
connected semisimple case. Let G be a (not necessarily connected) complex reductive
algebraic group, GR a real form of G and H a reductive spherical subgroup of G. We
write G =

∪
kG

0gk with {gk} a finite subset of G, where G0 stands for the identity
component of G. Suppose that

∪
i(G

0 ∩ GR)Cik(G
0 ∩ Ad(gk)H) contains an open dense

subset of G0. Then
∪

k

∪
i(G

0 ∩ GR)Cikgk(G
0 ∩ H) contains an open dense subset of G
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since
∪

ik
(G0 ∩ GR)Cikgk(G

0 ∩ H) =
∪

ik
(G0 ∩ GR)Cik(G

0 ∩ Ad(gk)H)gk = (
∪

ik
(G0 ∩

GR)Cik(G
0 ∩ Ad(gk)H))gk contains an open dense subset of G0gk. Hence we may assume

that G is connected. Let GR and H be as before. Let π : G→ G/ exp(z) be the projection
mapping, where z is the center of g. Then π(H) is a spherical subgroup of π(G). Suppose
that

∪
i π(GR)π(xi)π(exp(ji))π(yi)π(H) contains an open dense subset of π(G). We put

Ci = exp(ji) exp(z). Then we find that
∪

iGRCiH contains an open dense subset of G.

7.4 Generalized Cartan decomposition involving max-

imal compact subgroup

If a real form is compact, we obtain a simple description of the double coset decomposition.

Definition 7.4.1. Let G be a locally compact group and H a compact subgroup of G.
We say the pair (G,H) is a Gelfand pair if L2(G/H) is multiplicity-free as a unitary
representation of G.

Let G be a connected complex algebraic group and H a complex reductive subgroup of
G. Let (GR, HR) be a pair of real forms of (G,H), that is, GR and HR are real forms of G
and H, respectively, and HR is a subgroup of GR. It is known that (GR, HR) is a Gelfand
pair if and only if HR is compact and G/H is a G-spherical variety (see [Wo] for example).

Lemma 7.4.2. Let j = t ⊕ a be a Cartan subalgebra of gR. We suppose that j is not
maximally non-compact and that ν acts as the multiplication by −1 on j. Then for any
root vector Xβ ∈ g of any imaginary non-compact root β, there exists Z ∈ t such that
Ad(exp(Z))(Xβ+Xβ) is fixed by ν. Here we extend ν to g holomorphically, and X denotes
the conjugate element with respect to gR for any X ∈ g.

Proof. Since both Xβ and ν(Xβ) belong to the root subspace g−β of −β, ν(Xβ) = e
√
−1ϕXβ

for some ϕ ∈ R. Then we take Z ∈ t satisfying β(Z) = −
√
−1(ϕ+π)

2
. (Here we note that β

is imaginary.) For this Z ∈ t, we have

ν(Ad(exp(Z))(Xβ +Xβ)) = ν(e−
√

−1(ϕ+π)
2 Xβ + e

√
−1(ϕ+π)

2 Xβ)

= e
√
−1πe−

√
−1(ϕ+π)

2 Xβ + e−
√
−1πe

√
−1(ϕ+π)

2 Xβ

= −Ad(exp(Z))(Xβ +Xβ).

Definition 7.4.3. Let G be a real reductive Lie group and ν an involution of G. ν is said
to be a Chevalley–Weyl involution if there exists a Cartan subalgebra a such that ν acts
on a as the scalar-multiplication by (−1).

Theorem 7.4.4. Let GR be a connected compact Lie group, (GR, HR) a Gelfand pair and
ν a Chevalley–Weyl involution of GR, which preserves HR. We write θ for the Cartan
involution of the complexification H, which corresponds to HR, and extend it to the com-
plexification G of GR. Then there exists an abelian subgroup A of the complexification G of
GR such that G = GRAH holds and both θ and ν act on A as the inverse mapping, where
we extend ν holomorphically to G.
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Proof. We may assume that G is semisimple. For the proof, we use the induction on the
dimension of G. We firstly assume that there exists a compact symmetric subgroup K of
GR, which contains HR. We claim that ν preserves K.

Indeed, let ν ′ be a Chevalley–Weyl involution of HR and extend ν ′ to K and to G. We
take an element g of GR such that νg = ν ′. Then we see that ν ′ν is an inner automorphism
by the element gν(g−1) of GR and that ν ′ν preserves HR. This means that gν(g−1) is an
element of NGR(HR). We claim that NGR(HR) is contained in K. For the simplicity, we
put G′

R = NGR(HR). It suffices to show that the k⊥-part of g′R is the zero vector space by
the KP -decomposition for Riemannian symmetric pairs. Assume that k⊥ ∩ g′R is non-zero.
Then we take a maximal abelian subspace a of k⊥ ∩ g′R. By the fact that (GR, HR) is a
Gelfand pair, a is contained in the center of g′R. Furthermore we haveK = HR·(ZGR(a)∩K).
Then we obtain K ⊂ ZGR(a). This contradicts to the fact that gR is semisimple. Thus
k⊥ ∩ g′R is the zero vector space, and G′ = NGR(HR) is contained in K. Then ν ′ν coincides
with Ad(k) for some element k of K as an automorphism of gR. This implies that ν also
preserves K.

Then we have the Flensted-Jensen decompositionG = GRA0KC for an abelian subgroup
A0 on which both θ and ν act as the inverse mapping (Lemma 7.4.2). We apply the
induction hypothesis to the pair (M0,M0∩HR) and obtainM0,C = (GR∩M0,C)AM(M0,C∩H)
for an abelian subgroup AM . Thus we have G = GRA0AMH.

By a classification of reductive spherical subgroups [Br, Mi, Kr, Ya], we have the fol-
lowing two cases where we can not take K as above and (GR, HR) is irreducible.

• (GR, HR) = (G2, SU(3)).
We take a non-zero element X ∈ h⊥R such that ν(X) = −X. By the isomorphism
GR ×HR

√
−1h⊥ ≃ G/H, we have G = GRAH for A = exp(

√
−1RX). Here we note

that h⊥R =
∪

h∈HR
Ad(h)(RX).

• (GR, HR) = (Spin(7),G2).
Let j = t+ a be a Cartan subalgebra of gR, on which ν acts as the inverse mapping,
where t ⊂ hR and a ⊂ h⊥R . Since we have h

⊥
R =

∪
h∈HR

Ad(h)a, we obtain G = GRAH

for A = exp(
√
−1a).

According to the works of Akhiezer [Ak1] and Akhiezer and Cupit-Foutou [AC], we
have compatible real structures on affine spherical varieties and wonderful varieties. Here
by a real structure on a complex manifold Z we mean an anti-holomorphic involution
η : Z → Z. Also for a real structure η on a complex manifold Z with an action of a group
K, we say η is compatible with an automorphism ϕ of K if η satisfies η(kz) = ϕ(k)η(z)
for any k ∈ K and z ∈ Z. We expect the existence of strongly visible actions on these
varieties. For this purpose, the following theorem would be useful.

Theorem 7.4.5. Let H be a spherical subgroup of a connected complex reductive algebraic
group G and ι an anti-holomorphic involution of G, which defines a split real form of G.
Suppose that H is stable under ι. Then a compact real form GR of G acts on G/H strongly
visibly.

Proof. We write ι = θ ◦ ν for a commuting pair (θ, ν) of a Cartan involution θ and a
Chevalley–Weyl involution ν of G. Let GR be the compact real form corresponding to θ.
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By the argument in the beginning of this chapter, there exists a Levi subgroup G′ of G
such that ι preserves G′, (G′ ∩ H) is a reductive spherical subgroup of G′ and GRG

′H
contains a non-empty open subset of G. Then we apply Theorem 7.4.4. Here we note that
ι is unique up to conjugate.

We note that Theorem 1.3.4 follows from this theorem.

7.5 Applications

7.5.1 Application: Strongly visible action on vector space

We deal with the visibility of linear actions of compact Lie groups [Sa1, Sa4]. Let (G, V )
be a linear multiplicity-free space.

Definition 7.5.1. Let G be a connected complex reductive algebraic group and V a finite-
dimensional representation of G. We say V is a linear multiplicity-free space of G if the
space C[V ] of polynomials on V is multiplicity-free as a representation of G.

We denote by ν and θ a Chevalley–Weyl involution and a Cartan involution of G,
respectively. Let GR be the compact real form of G, which corresponds to θ.

Corollary 7.5.2. The GR-action on V is strongly visible.

Proof. By [Ak1], there exists an anti-linear involution µ of V , which is ι = ν◦θ-compatible.
We take a v ∈ V such that G · v is open in V . Since µ(G · v) is also open and V contains
only one open orbit, G · v is µ-stable. We let v0 ∈ V be a µ-fixed point and denote by H
the stabilizer of the G-action at v0. Then H is a spherical subgroup of G, which is stable
under ι. Thus we can apply Theorem 7.4.5.

Remark 7.5.3. Sasaki [Sa1, Sa4] not only proves the existence of strongly visible actions
but also constructs “slices” explicitly by using the case-by-case argument. To get a precise
information on slices that appear in our proof, we need to know the generic stabilizer of a
G-action on V .

7.5.2 Application: Strongly visible action on smooth affine spher-
ical variety

Corollary 7.5.4. Let X be a smooth affine G-spherical variety and GR a compact real
form of G. Then the GR-action on X is strongly visible.

Proof. By [Ak09], there exists a real structure onX, which is compatible with ι = θ◦ν. The
remaining argument is the same as that for the case of linear multiplicity-free spaces.

A typical example of smooth affine spherical varieties is a complex symmetric space.
On the other hand, we have the principal affine space G/N (N is a maximal unipotent
subgroup) as an example of non-affine spherical varieties.
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7.5.3 Application: Strongly visible action on wonderful variety

Definition 7.5.5. A G-variety X is said to be wonderful if

• X is smooth and projective,

• G has an open orbit on X, whose complement is the union of finitely many smooth
prime divisors Xi (i ∈ I) with normal crossings.

• The closure of any G-orbit on X is given as a partial intersection of Xi (i ∈ I).

Remark 7.5.6. • De Concini–Procesi compactification [CP] of a complex symmetric
space is wonderful.

• The stabilizer H of a unique open orbit G/H on a G-wonderful variety X is almost
self-normalizing, that is, the group NG(H)/H is finite by Brion and Pauer [BP].

Corollary 7.5.7. Let X be a wonderful G-variety and GR a compact real form of G. Then
the GR-action on X is strongly visible.

Proof. We can show this statement by the same argument as in the case of linear multiplicity-
free spaces by using the fact that any wonderful variety admits an ι = (θ ◦ ν)-equivariant
real structure by Akhiezer and Cupit-Foutou [AC].

7.5.4 Application: Strongly visible action on generalized flag va-
riety

Corollary 7.5.8. Let P be a parabolic subgroup and H a Levi subgroup of G. If G/P is
an H-spherical variety, then a compact real form of H acts on G/P strongly visibly.

Proof. The same argument as in the case of linear multiplicity-free spaces can be applied
since a unique open orbit of H is stable under a Chevalley–Weyl involution.

7.6 Visible actions of real forms of inner type on spher-

ical varieties

We recall the definition of a previsible action.

Definition 7.6.1 (Definition 1.0.2). Let K be a Lie group and X a complex manifold on
which K acts holomorphically. Then we say this action is previsible if there exists a totally
real submanifold S of X such that K · S is a non-empty open subset of X.

Let GR ⊂ G be a real form of inner type (i.e., the Lie algebra of GR has a compact
Cartan subalgebra).

Theorem 7.6.2. Let X be a G-spherical variety. Then GR acts on X previsibly.

Proof. Use Lemma 7.2.1 and Proposition 7.3.1.
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Chapter 8

A conceptual proof for generalized
Cartan decomposition

8.1 Introduction for Chapter 8

We give an abstract proof for the existence of a generalized Cartan decomposition (Defini-
tion 8.1.1), which is also useful for an explicit calculation. Let G be a connected semisimple
compact Lie group, T its maximal torus and σ a Chevalley–Weyl involution of G with re-
spect to T (that is, σ is an involutive automorphism of G, which satisfies σ(t) = t−1 for
any t ∈ T ). Let (L,H) be a pair of Levi subgroups of G with respect to a simple system
Π = Π(gC, tC) of the root system ∆ = ∆(gC, tC).

Definition 8.1.1 (Definition 1.0.14). Let G, H, L and σ as above. If the multiplication
mapping

L×B ×H → G

is surjective for a subsetB of the σ-fixed points subgroupGσ, then we say the decomposition
G = LBH is a generalized Cartan decomposition.

We extend σ to the complexification GC of G anti-holomorphically, and let B = TCN be
the Borel subgroup of GC corresponding to the positive system ∆+ = ∆+(gC, tC) generated
by Π. We denote by θ the Cartan involution of GC with respect to G. Also, for a Levi
subgroup G′ of G, we denote by UGC

G′
C
the unipotent radical of the parabolic subgroup PG′

C

of GC, which contains B and has G′
C as its Levi part. We write NG′

C
for the maximal

unipotent subgroup N ∩ G′
C of G′

C. Hence UGC
GC

= {e} and NGC = N . We put N = θ(N),

U
GC
G′

C
= θ(UGC

G′
C
) and NG′

C
= θ(NG′

C
). In the following, we assume that

LC acts spherically on a generalized flag variety G/H ≃ GC/PHC = GC/HCU
GC
HC

.

That is, a Borel subgroup of LC has an open orbit on GC/PHC .

Proposition 8.1.2. For any g ∈ G, there exist l ∈ L and h ∈ H such that σ(g) = lgh.

Proof. We write U
GC
LC

= (U
GC
LC

∩ UGC
HC

) · UHC
(L∩H)C

. We note that

N · o = U
GC
LC

·NLC · o

⊂ U
GC
LC

· L · o = L · UGC
LC

· o = L · (UGC
LC

∩ UGC
HC

) · UHC
(H∩L)C · o = L · (UGC

LC
∩ UGC

HC
) · o.
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This shows that L·(UGC
LC

∩UGC
HC

)·o contains an open dense subset of GC/PHC . Here o denotes

the identity coset of GC/PHC . Further, since U
LC
(L∩H)C

· (UGC
LC

∩ UGC
HC

) · o is open in GC/PHC

and stable under the action of the Borel subgroup TCNLC = TCN (L∩H)C · ULC
(L∩H)C

of LC,

there is an open orbit of the Borel subgroup TCN (L∩H)C ·U
LC
(L∩H)C

on U
LC
(L∩H)C

·(UGC
LC

∩UGC
HC

)·o
by the sphericality of the action of LC. Here we note that the dimension of any orbit of

the Borel subgroup TCN (L∩H)C · ULC
(L∩H)C

of LC on U
LC
(L∩H)C

· (UGC
LC

∩ U
GC
HC

) · o is less than

or equal to the sum of the dimension of U
LC
(L∩H)C

and the maximum of the dimensions of

the orbits of the Borel subgroup TCN (L∩H)C of (L ∩ H)C on (U
GC
LC

∩ UGC
HC

). Therefore any

Borel subgroup of (L ∩H)C has an open orbit on the Stein manifold (U
GC
LC

∩ UGC
HC

). Then

by [Ak1], for any u ∈ (U
GC
LC

∩ UGC
HC

) there is m ∈ (L ∩H) such that σ(u) = Ad(m)u since

(U
GC
LC

∩UGC
HC

) is an (L∩H)C-spherical Stein manifold. Thus, for any x ∈ L · (UGC
LC

∩UGC
HC

) ·o,
there is l ∈ L such that σ(x) = l · x. Hence the subset {x ∈ GC/PHC : σ(x) ∈ L · x} of
GC/PHC contains an open dense subset of GC/PHC . Since this subset is closed, it coincides
with the whole space.

Theorem 8.1.3. Let G be a connected compact Lie group, T a maximal torus of G and L,
H Levi subgroups of G, which contain T . Let σ be a Chevalley–Weyl involution of G with
respect to T . We have a generalized Cartan decomposition G = LBH (Definition 8.1.1),
where B is a subset of Gσ.

Proof. We prove this theorem by the induction on the dimension of G. By a classification
of multiplicity-free tensor product representations proved by J. Stembridge[St2], either
(G,L) or (G,H) is a Gelfand pair. Let us assume that (G,L) is a Gelfand pair. We
take a symmetric subgroup H ′ of G, which contains H. Then we have a decomposition
G = LA1A2H

′ where A1 and A2 are abelian subgroups of G (see Lemma 8.2.5 and Remark
8.2.6). By Proposition 8.1.2, for any a ∈ A1, t ∈ A2 and h′ ∈ H ′, there exist l ∈ L and
h ∈ H such that σ(ath′) = atσ(h′) = lath′h. By [Ho, Chapter 8], l ∈ ZL(a

4). So, if a4 is a
generic element of A1, l ∈ ZL(A1). Hence t−1lt ∈ H ′, and then l ∈ ZL(A2) if we choose a
suitable t.

Indeed, let a1 and a2 be any generic elements of A1 and A2, respectively, and suppose
that la2a1h = a2a1 holds for some h ∈ H ′ and l ∈ L. Then we have a−1

2 la2a1h = a1. By
[Ho, Chapter 8], this implies a−1

2 la2 ∈ ZK(A1) where K is a symmetric subgroup of G,
which contains both L and A2, and used for obtaining the decomposition G = LA1A2H

′

in Lemma 8.2.5. We put G1 = ZK(A1), and consider the double coset decomposition
(G1 ∩ L)\G1/(G1 ∩ H ′). By the induction on the dimension, l ∈ ZL∩G1(A2). Hence
l ∈ ZL(A1A2).

Thus we have σ(h′) = lh′h with l ∈ ZL∩H′(A1A2). Then by the propagation theorem
of the multiplicity-freeness property for visible actions [Ko3], the holomorphically induced
representation IndH′

H χH of H ′ is multiplicity-free when restricted to ZL∩H′(A1A2) for any
unitary character χH of H. Let L′ be a Levi subgroup of H ′, which satisfies [L′, L′] ⊂
ZL∩H′(A1A2) ⊂ L′. Then we can see that L′

C acts on H ′/H in the spherical fashion.
By the induction hypothesis, we have H ′ = L′B′H for some subset B′ ⊂ H ′σ. Also, we
have H ′ = ZL∩H′(A1A2)B

′H. Indeed, Let z and b be any elements of exp(zl′) and B′,
respectively. Here zl′ is the center of the Lie algebra l′ of L′. There are l ∈ ZL∩H′(A1A2)
and h ∈ H such that σ(zb) = z−1b = lzbh, and thus z−2b = lbh ∈ ZL∩H′(A1A2)B

′H. We
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obtain

H ′ = L′B′H

= ZL∩H′(A1A2)(exp(zl′)B
′)H

⊂ ZL∩H′(A1A2)(ZL∩H′(A1A2)B
′H)H

= ZL∩H′(A1A2)B
′H.

Therefore we haveG = LA1A2H
′ = LA1A2ZL∩H′(A1A2)B

′H = LA1A2B
′H withA1A2B

′ ⊂
Gσ.

Remark 8.1.4. This theorem combined with the propagation theorem of multiplicity-
freeness property under visible actions (Fact 1.0.4) and Stembridge’s classification [St2]
reproduces the list in Theorem 1.1.1.

8.2 Double coset decomposition with abelian slice

The aim of this section is to give a KAK-decomposition for Gelfand pairs. We use the
induction on the dimension of G in order to give the decomposition. We prepare two
lemmas. In the following, we say (G,H) is a reductive Gelfand pair if (G,H) is a Gelfand
pair and G is a real reductive Lie group.

Let (G,K ′) be a reductive Gelfand pair with G/K ′ connected. Let K be a maximal
compact subgroup of G, which contains K ′ and M0 ⊂ K the M -part of the Langlands
decomposition of a minimal parabolic subgroup P0 =M0A0N0 of G with A0 = exp(a0) for
a maximal abelian subspace a0 of q = k⊥.

Lemma 8.2.1. K =M0K
′.

Proof. Since GC/K
′
C is a GC-spherical variety and since G/K ′ is totally real of maximal

dimension in GC/K
′
C, we have

gC = Ad(k)k′C +m0,C + a0,C + n0,C

for some k ∈ K. Thus
g = Ad(k)k′ +m0 + a0 + n0.

Therefore K ′ has an open orbit on G/M0A0N0 ≃ K/M0. Since K ′ is compact and
G/M0A0N0 is connected, we have G = K ′M0A0N0, and thus K =M0K

′.

Lemma 8.2.2. (M0,M0 ∩K ′) is a Gelfand pair with K/K ′ connected.

Proof. Since GC/K
′
C is a GC-spherical variety and sinceKCA0,CN0,C is an open dense subset

of GC, there is k ∈ KC such that

gC = Ad(k)k′C + bm0,C + a0,C + n0,C

where bm0,C is a Borel subalgebra of m0,C. Further, the condition that k ∈ KC satisfies the
above equality is Zariski open and thus especially holomorphic, so we can take k from the
compact real form k ∈ K. Since K = M0K

′ we can further take k to be an element of
m ∈M0. The fact that m0,C is the centralizer of a0 in kC implies

m0,C = m0,C ∩ Ad(m)k′C + bm0,C

= Ad(m)(m0,C ∩ k′C) + bm0,C .
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Therefore the lemma follows. Here we note that M0/M0 ∩K ′ ≃ K/K ′ is connected since
G/K ′ is connected and that component groups of G and K are the same by K × p decom-
position.

Proposition 8.2.3. Let (G,K ′) be a reductive Gelfand pair with G/K ′ connected. We
have G = K ′A′K ′ for some abelian subgroup A′.

Proof. We use the induction on the dimension of G. We divide the proof into two cases.

• Assumption: There is a compact symmetric subgroup K of G, which contains K ′.
By Lemma 8.2.2, the pair (M0,M0∩K ′) is a Gelfand pair withM0/M0∩K ′ connected,
whereM0 is the centralizer ZK(a0) of a maximal abelian subspace a′0 of g

−τ in K, and
τ denotes the corresponding involution of G. Since dim(M0) is smaller than dim(G),
we can use the induction hypothesis, and obtain a decomposition

M0 = (M0 ∩K ′)A′
M0

(M0 ∩K ′)

for some abelian subgroup A′
M0

of M0. By using this decomposition of M0 and by
Lemma 8.2.1, we have

G = K exp(a0)K

= K ′M0 exp(a0)M0K
′

= K ′M0 exp(a0)K
′

= K ′(M0 ∩K ′)A′
M0

(M0 ∩K ′) exp(a0)K
′

= K ′A′
M0

exp(a0)K
′.

We put A′ = A′
M0

exp(a0), and the proposition follows.

• Assumption: There is no compact symmetric subgroup of G, which contains K ′.
By a classification of reductive Gelfand pairs [Br, Kr, Mi, Ya], there are two possi-
bilities if (G,K ′) is irreducible:

Case 1. (G,K ′) = (Spin(7),G2).

Case 2. (G,K ′) = (G2, SU(3)).

By [Da, DK], there is a one dimensional subspace a′ of (k′)⊥, which satisfies (k′)⊥ =∪
k∈K′ Ad(k)a′ in each of two cases. Therefore we have

G = K ′A′K ′.

Here we put A′ = exp(a′). This completes the proof.

Remark 8.2.4. We explain how to reduce a general case to the case where G is connected
and semisimple. Let (G,K ′) be a reductive Gelfand pair with G/K ′ connected. We denote
by z the center of g, and by π : G0 → G0/ exp(z) the quotient mapping, where G0 is
the identity component of G. Then (π(G0), π(G0 ∩ K ′)) is also a Gelfand pair [Ya, Wo].
Suppose that we have π(G0) = π(G0 ∩ K ′)π(A′′)π(G0 ∩ K ′) for an abelian subgroup A′′

of G0. We put A′ = A′′ exp(z). Then we have G0 = (G0 ∩ K ′)A′(G0 ∩ K ′), and thus
G = K ′A′K ′ since G/K ′ is connected.
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Lemma 8.2.5. Let G be a compact Lie group, (G,L) a Gelfand pair and (G,H) a symmet-
ric pair with the corresponding involution τ satisfying τ(L) = L. Then there is an abelian
subgroup A such that G = LAH.

Proof. We prove this lemma by the induction on the dimension of G. Let us suppose
that the lemma is true for any G′ whose dimension is less than dimG. Then, we firstly
assume that there is a symmetric subgroup K of G, which contains L. By the Cartan
decomposition in the symmetric setting [Ho, Ma3], there is an abelian subgroup A1 such
that G = KA1H. Since (G,L) is a Gelfand pair, the equality K = LM holds, where M
is the centralizer of a maximal abelian subspace of k⊥ (Lemma 8.2.1). Further, since M is
stable under the involution τ , and since (M,M ∩L) is again a Gelfand pair (Lemma 8.2.2),
we can use the induction-hypothesis and obtain G = L(L ∩MA2M ∩H)A1H = LA2A1H
for some abelian subgroup A2. There are two cases where we cannot apply this argument,
so we explicitly give double coset decompositions below.

Remark 8.2.6. If rankH = rankG and G is semisimple, then we can construct the
abelian subgroup A in the above as an abelian subgroup that is fixed by a Chevalley–
Weyl involution of G by a succession of the Cayley transform combined with the following
lemma.

Lemma 8.2.7. Let j be a Cartan subalgebra of g, which is stable under the involution τ
of g, and j = t ⊕ a the eigenspace decomposition as the sum of the +1-eigenspace t and
the −1-eigenspace a. Suppose that there exists an automorphism σ of g, which preserves
a and acts on t as the multiplication by (−1), and that t ⊕

√
−1a is not maximally non-

compact as a Cartan subalgebra of the non-compact dual gd = gτ +
√
−1g−τ . Then for

any root vector Xβ ∈ gC of any imaginary non-compact root β, there exists Z ∈ t such
that Ad(exp(Z))(Xβ +Xβ) is fixed by σ. Here we extend σ to gC holomorphically, and X
denotes the conjugate element with respect to g for any X ∈ gC.

Proof. Since both Xβ and σ(Xβ) belong to the root subspace g−β of −β, σ(Xβ) = e
√
−1θXβ

for some θ ∈ R. Then we take Z ∈ t satisfying β(Z) = −
√
−1θ/2. (Here we note that β

is imaginary.) For this Z ∈ t, we have

σ(Ad(exp(Z))(Xβ +Xβ)) = σ(e−
√

−1θ
2 Xβ + e

−
√

−1θ
2 Xβ)

= e−
√

−1θ
2 (e

√
−1θXβ) + e

√
−1θ
2 (e−

√
−1θXβ)

= e
√
−1θ
2 Xβ + e−

√
−1θ
2 Xβ

= Ad(exp(Z))(Xβ +Xβ).

8.3 Explicit decompositions for the minimal cases

1 (Non-factorizable case)

– (G,L,H) = (G2,A2,A1 × A1)

– (G,L,H) = (B3,G2,B1 ×D2)
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We denote by τ the involution of G, which corresponds to H. Since the pair (G,L)
is polar, we have l⊥ = a + [l, Z] for any non-zero element Z of (l⊥)−τ and the one-
dimensional subspace a = RZ [Da]. We note that [lτ , Z] ⊂ (l⊥)−τ and [l−τ , Z] ⊂ (l⊥)τ .
This implies that a + [l ∩ h, Z] = (h⊥)−τ . Because of the facts that the action of
L ∩H on (l⊥)−τ is unitary with respect to the Killing form, that the decomposition
a+ [l ∩ h, Z] = (h⊥)−τ is a direct sum and that a is of one dimension, L ∩H has an
open orbit on the unit sphere in (h⊥)−τ . Since L ∩ H is compact, this implies that
the action is transitive on the unit sphere. Hence (h⊥)−τ =

∪
h∈L∩H Ad(h)a. The

remaining argument is the same as [Ho, Chapter 6].

2 (Factorizable case)

– (G,L,H) = (B3,G2,D3)

– (G,L,H) = (B3,G2, T × B2)

For each of the above two cases, we have G = HL by [On2, Chapter 4].

Remark 8.3.1. For the case 1 (non-factorizable case), we have also the following elemen-
tary proof.

• The case (G,L,H) = (G2,Z/2Z\(SU(2)× SU(2)), SU(3)).
To study the double coset decomposition Z/2Z\(SU(2)× SU(2))\G2/ SU(3), we use
an embedding G2 → SO(7)(→ SO(8)). We let {εi − εi+1, ε3 + ε4; 1 ≤ i ≤ 3} be a
simple system of so(8,C) and σ an involution of so(8,C), which induces the switching
of the two simple roots ε3−ε4 and ε3+ε4. Also, we take an automorphism ϕ of order
three, which sends ε1−ε2, ε3+ε4 and ε3−ε4 to ε3+ε4, ε3−ε4 and ε1−ε2, respectively.
Then so(8,C)σ and so(8,C)ϕ are isomorphic to so(7,C) and g2, respectively. We write
{f1−f2, f2−f3, f3} and {α1, α2} for simple systems for so(7,C) and g2, respectively.
Then we express the root vectors for g2 in terms of that for so(7,C) as follows.

Xα1 =Xf1−f2 +Xf3 , Xα2 = Xf2−f3 , Xα1+α2 = −Xf1−f3 +Xf2 ,

X2α2+α2 =−Xf2+f3 −Xf1 , X3α1+α2 = −Xf1+f3 , X3α1+2α2 = −Xf1+f2 ,

X−α1 =X−f1+f2 +X−f3 , X−α2 = X−f2+f3 , X−α1−α2 = −X−f1+f3 +X−f2 ,

X−2α1−α2 =−X−f2−f3 −X−f1 , X−3α1−α2 = X−f1−f3 , X−3α1−2α2 = X−f1−f2 .

We note the bijection

(Z/2Z\(SU(2)× SU(2)))\G2 / SU(3) ≃ Z/2Z\(SU(2)× SU(2)))\ SO(7)/ SO(6).

We can take {α1, 3α1 + 2α2} as a simple system of (Z/2Z\(SU(2) × SU(2))). For a
(one-dimensional) abelian subgroup T 1, we have

SO(7) = (SO(3)× SO(4))T 1 SO(6)

since both SO(3)×SO(4) and SO(6) are symmetric subgroups of SO(7). If we choose
a suitable T 1, there exists a subgroup M of (1 × SO(4)) ∩ SO(6), which is of type
A1, centralizes T

1 and has {Xf1+f2 + Xf1−f2} as the set of its positive root vector.
Here we note that we can take {Xf3 , Xf1+f2 , Xf1−f2} and {Xf2−f3 , Xf1+f2 , Xf1−f2} as
the sets of positive root vectors of SO(3)× SO(4) and SO(6), respectively. Then we
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can see that the Lie algebras of (Z/2Z\(SU(2) × SU(2))) and M generate that of
SO(3)× SO(4). Thus we obtain

SO(7) =(SO(3)× SO(4))T 1 SO(6)

=((Z/2Z\(SU(2)× SU(2))) ·M)T 1 SO(6)

=(Z/2Z\(SU(2)× SU(2)))T 1M SO(6)

=(Z/2Z\(SU(2)× SU(2)))T 1 SO(6).

• The case (G,L,H) = (SO(7), SO(3)× SO(4),G2).
We note the factorization SO(7) = SO(6)G2. Since the pair (SO(6), SU(3)) is a
Gelfand pair, we have a decomposition SO(6) = (SO(3) × SO(3))A SU(3) for an
abelian subgroup A (of two dimension). Thus we obtain a decomposition SO(7) =
(SO(3)× SO(3))AG2.
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Chapter 9

An extension of a result of Matsuki

9.1 Introduction for Chapter 9

In this chapter we consider the double coset decomposition L\G/H of a reductive group G
with respect to reductive subgroups L, H. Our main result gives an extension of Matsuki’s
decomposition concerning symmetric subgroups [Ma2, Ma3]. Here we recall a result of
[Ma3]. Let G be a real reductive Lie group with two involutions σ, τ . The set Gss of
semisimple elements is defined by

Gss = {g ∈ G;στg = σAd(g)τ Ad(g)−1 is semisimple}.

Assume that there exists a Cartan involution θ of G, which commutes with both σ and τ ,
and that G = GσG0Gτ where G0 stands for the identity component of G, and Gσ and Gτ

denote the σ and τ -fixed points subgroups of G, respectively.

Fact 9.1.1 ([Ma3]). We have Gss =
∪

i∈I′ G
σC ′

iG
τ where C ′

i are the representatives of
standard Cartan subsets.

Here standard Cartan subsets are of the form C ′
i = exp(ai) exp(ti)ti with a ⊂ ai ⊂ p,

ti ⊂ t ⊂ k−σ ∩ k−τ for a maximal abelian subspace t of k−σ ∩ k−τ and ai + ti ⊂ g−σ ∩ g−τti

with ti ∈ exp(t). We note that ai + ti is a maximal abelian subspace of g−σ ∩ g−τti and
that ti is not necessarily an element of exp(ti). Our aim is to obtain the double coset
decomposition of a reductive group with respect to reductive spherical subgroups. We say
a subgroup H of a real reductive algebraic group G is a spherical subgroup of G if GC/HC
is a GC-spherical variety.

Theorem 9.1.2. Let L and H be reductive spherical subgroups of a connected real semisim-
ple algebraic group G. There exist finitely many abelian subspaces ji of g and elements xi
of G (1 ≤ i ≤ k) such that

∪
1≤i≤k LCiH contains an open dense subset of G, where

Ci = exp(ji)xi.

Proof. We use the induction on the dimension of G. For this, we firstly deal with some
minimal cases. We only consider the non-complex and non-compact case. (See Sections
8.2 and 8.3 for the compact case. The argument for the complex case is similar to, and
even more, simpler than the real case.)
The case G = G2(2) (split real simple Lie group of type G2).
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• (L,H) = (SL(3,R), SL(3,R)).
We note the following bijection

SL(3,R)\G2(2) / SL(3,R) ≃ SL(3,R)\ SOe(3, 4)/ SOe(3, 3).

By Matsuki’s decomposition [Ma2, Ma3], we have

SOe(3, 4)ss = SOe(3, 3)T
1 SOe(3, 3) ∪ SOe(3, 3)A

1 SOe(3, 3) ∪ SOe(3, 3)A
1t SOe(3, 3).

(9.1.1)

Here T 1 is a one-dimensional torus, A1 a one-dimensional real split torus and t an ele-
ment of T 1. By the factorization SOe(3, 3) = SL(3,R) SOe(2, 3) = SL(3,R) SOe(3, 2),
we obtain

(9.1.1) = (SL(3,R) SOe(3, 2))T
1 SOe(3, 3) ∪ (SL(3,R) SOe(2, 3))A

1 SOe(3, 3)

∪ (SL(3,R) SOe(2, 3))A
1t SOe(3, 3)

= SL(3,R)T 1 SOe(3, 3) ∪ SL(3,R)A1 SOe(3, 3) ∪ SL(3,R)A1t SOe(3, 3).

• (L,H) = (SL(3,R), SU(1, 2)).
We note the following bijection

SL(3,R)\G2(2) / SU(1, 2) ≃ SL(3,R)\ SOe(3, 4)/ SOe(2, 4).

By Matsuki’s decomposition [Ma2, Ma3], we have

SOe(3, 4)ss = SOe(3, 3)A
1 SOe(2, 4). (9.1.2)

Here A1 is a one-dimensional real split torus. By the factorization SOe(3, 3) =
SL(3,R) SOe(2, 3), we obtain

(9.1.2) = (SL(3,R) SOe(2, 3))A
1 SOe(2, 4)

= SL(3,R)A1 SOe(2, 4).

• (L,H) = (SU(1, 2), SU(1, 2)).
We note the following bijection

SU(1, 2)\G2(2) / SU(1, 2) ≃ SU(1, 2)\ SOe(3, 4)/ SOe(2, 4).

By Matsuki’s decomposition [Ma2, Ma3], we have

SOe(3, 4)ss = SOe(2, 4)T
1 SOe(2, 4) ∪ SOe(2, 4)A

1 SOe(2, 4) ∪ SOe(2, 4)A
1t SOe(2, 4).

(9.1.3)

Here T 1 is a one-dimensional torus, A1 a one-dimensional real split torus and t an ele-
ment of T 1. By the factorization SOe(2, 4) = SU(1, 2) SOe(1, 4) = SU(1, 2) SOe(2, 3),
we obtain

(9.1.3) = (SU(1, 2) SOe(1, 4))T
1 SOe(2, 4) ∪ (SU(1, 2) SOe(2, 3))A

1 SOe(2, 4)

∪ (SU(1, 2) SOe(2, 3))A
1t SOe(2, 4)

= SU(1, 2)T 1 SOe(2, 4) ∪ SU(1, 2)A1 SOe(2, 4) ∪ SU(1, 2)A1t SOe(2, 4).
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The case G = SOe(3, 4).

•
(L,H) =(SOe(2, 4),G2(2)), (SOe(3, 3),G2(2)), (SO(2)× SOe(1, 4),G2(2)),

(SO(2)× SOe(3, 2),G2(2)) or (SOe(1, 1)× SOe(2, 3),G2(2)).

In each of these cases, G = LH holds by [Ak2, On1, On2].

• (L,H) = (G2(2),G2(2)).
We note the following bijection

G2(2) \ SOe(3, 4)/G2(2) ≃ G2(2) \ SOe(4, 4)/ Spine(3, 4).

By Matsuki’s decomposition [Ma2, Ma3], we have

SOe(4, 4)ss = Spine(3, 4)T
1 Spine(3, 4)∪ Spine(3, 4)A

1 Spine(3, 4)

∪ Spine(3, 4)A
1t Spine(3, 4). (9.1.4)

Here T 1 is a one-dimensional torus, A1 a one-dimensional real split torus and t an
element of T 1. By the factorization Spine(3, 4) = G2(2) Spine(2, 4) = G2(2) Spine(3, 3),
we obtain

(9.1.4) = (G2(2) Spine(2, 4))T
1 Spine(3, 4) ∪ (G2(2) Spine(3, 3))A

1 Spine(3, 4)

∪ (G2(2) Spine(3, 3))A
1t Spine(3, 4)

= G2(2) T
1 Spine(3, 4) ∪G2(2)A

1 Spine(3, 4) ∪G2(2)A
1t Spine(3, 4).

• (L,H) = (SOe(1, 2)× SOe(2, 2),G2(2)).
We note the following bijection

(SOe(1, 2)×SOe(2, 2))\ SOe(3, 4)/G2(2) ≃ (SOe(1, 2)×SOe(2, 2))\ SOe(4, 4)/ Spine(3, 4).

By Matsuki’s decomposition [Ma2, Ma3], we have

SOe(4, 4)ss =(SOe(2, 2)× SOe(2, 2))T
1 Spine(3, 4)

∪ (SOe(2, 2)× SOe(2, 2))A
1 Spine(3, 4)

∪ (SOe(2, 2)× SOe(2, 2))A
1t Spine(3, 4). (9.1.5)

Here T 1 is a one-dimensional torus, A1 a one-dimensional real split torus and t
an element of T 1. Let M = ZSpine(3,4)(T

1) ∩ (SOe(2, 2) × SOe(2, 2)) and M ′ =
ZAd(t) Spine(3,4)(A

1) ∩ (SOe(2, 2)× SOe(2, 2)). Then we have

(9.1.5) =((SOe(1, 2)× SOe(2, 2)) ·M)T 1 Spine(3, 4)

∪ ((SOe(1, 2)× SOe(2, 2)) ·M ′)A1 Spine(3, 4)

∪ ((SOe(1, 2)× SOe(2, 2)) ·M ′)A1t Spine(3, 4)

=(SOe(1, 2)× SOe(2, 2))T
1 Spine(3, 4) ∪ (SOe(1, 2)× SOe(2, 2))A

1 Spine(3, 4)

∪ (SOe(1, 2)× SOe(2, 2))A
1t Spine(3, 4).
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• (L,H) = (SO(3)× SOe(1, 3),G2(2)).
We note the following bijection

(SO(3)× SOe(1, 3))\ SOe(3, 4)/G2(2) ≃ (SO(3)× SOe(1, 3))\ SOe(4, 4)/ Spine(3, 4).

By Matsuki’s decomposition [Ma2, Ma3], we have

SOe(4, 4)ss =(SOe(3, 1)× SOe(1, 3))T
1 Spine(3, 4)

∪ (SOe(3, 1)× SOe(1, 3))A
1 Spine(3, 4)

∪ (SOe(3, 1)× SOe(1, 3))A
1t Spine(3, 4). (9.1.6)

Here T 1 is a one-dimensional torus, A1 a one-dimensional real split torus and t
an element of T 1. Let M = ZSpine(3,4)(T

1) ∩ (SOe(3, 1) × SOe(1, 3)) and M ′ =
ZAd(t) Spine(3,4)(A

1) ∩ (SOe(3, 1)× SOe(1, 3)). Then we have

(9.1.6) =((SO(3)× SOe(1, 3)) ·M)T 1 Spine(3, 4)

∪ ((SO(3)× SOe(1, 3)) ·M ′)A1 Spine(3, 4)

∪ ((SO(3)× SOe(1, 3)) ·M ′)A1t Spine(3, 4)

=(SO(3)× SOe(1, 3))T
1 Spine(3, 4)

∪ (SO(3)× SOe(3, 1))A
1 Spine(3, 4)

∪ (SO(3)× SOe(3, 1))A
1t Spine(3, 4).

General case.
We use the induction on the dimension of G. By classification results by Brion [Br], Krämer
[Kr], Mikityuk [Mi] and Yakimova [Ya], there exist symmetric subgroups Gσ and Gτ of G,
which contain L and H, respectively, except for the above two cases. Then by Matsuki’s
decomposition [Ma2, Ma3], we have Gss =

∪
i∈I′ G

σC ′
iG

τ , where C ′
i = exp(ai) exp(ti)ti are

the representatives of standard Cartan subsets with a ⊂ ai ⊂ p, ti ⊂ t ⊂ k−σ ∩ k−τ for a
maximal abelian subspace t of k−σ ∩ k−τ and ai+ ti ⊂ g−σ ∩ g−τti with ti ∈ exp(t). Here we
note that ai + ti is a maximal abelian subspace of g−σ ∩ g−τti and that ti is not necessarily
an element of exp(ti). We put Li = ZG(ti) if ti ̸= 0 otherwise Li = ZG(Ad(t

−1
i )ai). Then

the subset
∪

i∈I′ ti Ad(t
−1
i )GσLiG

τ contains an open dense subset of G. Here we note that
Ad(t−1

i )Gσ = (Li ∩ Ad(t−1
i )Gσ))Ad(t−1

i )L and Gτ = (Li ∩ Gτ )H. We use the induction
hypothesis for each Li:

For abelian subspaces jLi
j of li and elements xLi

j of Li (1 ≤ j ≤ ki), an open dense subset

of Li is contained in
∪

1≤j≤ki

(Ad(t−1
i )L ∩ Li)C

Li
j (Li ∩H) with CLi

j = exp(jLi
j )xLi

j .

Here, since Li is neither semisimple nor connected in general, we explain how to reduce a
general case to the connected semisimple case.

Let G be a (not necessarily connected) real reductive algebraic group, and L and H
reductive spherical subgroups of G. We write G =

∪
kG

0gk with {gk} a finite subset of
G, where G0 stands for the identity component of G. Suppose that

∪
i(G

0 ∩ L)Cik(G
0 ∩

Ad(gk)H) contains an open dense subset of G0. Then
∪

k

∪
i LCikgkH contains an open

dense subset of G since
∪

ik
(G0 ∩ L)Cikgk(G

0 ∩H) =
∪

ik
(G0 ∩ L)Cik(G

0 ∩ Ad(gk)H)gk =
(
∪

ik
(G0 ∩L)Cik(G

0 ∩Ad(gk)H))gk contains an open dense subset of G0gk. Hence we may
assume that G is connected. Let L and H be as before. Let π : G → G/ exp(z) be the
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projection mapping, where z is the center of g. Suppose that
∪

i π(L)π(exp(ji))π(xi)π(H)
contains an open dense subset of π(G) for finitely many elements xi of G and abelian
subalgebras ji of g. We put Ci = exp(ji) exp(z). Then we find that

∪
i LCiH contains an

open dense subset of G.
Thus the following subset contains an open dense subset of G.∪

i∈I′
ti Ad(t

−1
i )L(

∪
j∈JLi

Ad(t−1
i )L ∩ Li)C

Li
j (Li ∩H))H =

∪
i∈I′

∪
j∈JLi

LAd(ti)C
Li
j tiH.

Remark 9.1.3. When a triple (G,Gσ, Gτ ) is factorizable, that is, G = GσGτ holds, the
induction argument does not work since in that case g−σ,−τ is the zero vector space and
hence Li = G for any i in the above notation. However, we can read from a classification of
factorizable triples in [Ak2, On1, On2] and a classification of reductive spherical subgroups
in [Br, Kr, Mi, Ya] that if L is a reductive spherical subgroup and H is a non-symmetric
spherical reductive subgroups of G, contained in symmetric subgroups Gσ and Gτ of G,
respectively, and if (G,Gσ, Gτ ) is factorizable, then the double coset decomposition is
reduced to the case where either G = GσH and Gσ/(Gσ ∩H) is a Gσ-spherical variety, or
G = LGτ and Gτ/(Gτ ∩ L) is a Gτ -spherical variety. Since Gσ/L and Gτ/H are Gσ- and
Gτ -spherical varieties, respectively, we can use the induction hypothesis:

∪
i LCi(G

σ ∩H)
contains an open dense subset of Gσ, or

∪
j(L∩Gτ )C ′

jH contains an open dense subset of
Gτ , and thus find that

∪
i LCiH or

∪
j LC

′
jH contains an open dense subset of G.
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