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On a new geometric construction of
a family of Galois representations
associated to modular forms

PREE RS % 71 7 RBLDJx
DR 7= 3BT HIRE I DWW T

K4 0 =R A



B =

We define a prgs Abelian sheaf on a modular curve of a fixed ledet 5 divis-
ible by a prime numbep # 2. Everyp-adic representation of G&(Q) associated

to an eigenform is obtained as a quotient ofétale conomology. For any com-
pactZp[[1 + NZp]]-algebraA; satisfying certain suitable conditions, we construct a

representation of G@Q) over Az associated to A1-adic cuspidal eigenform of
finite slope as a scalar extension of a quotient ofetaée cohomology.
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0 2HDFEX

We give a new explicit geometric construction opadic family of Galois represen-
tations associated to modular forms of finite slope. We construct a compact sheaf on a
modular curve of a fixed levall with p | N, and define a family as a quotient of its
cohomology. Even if we restrict the case where modular forms are ordinary, then our
construction completely fiers from well-known ones: One is the inverse limit of Tate
modules of Jacobian varieties of towers of modular curves ([Hid86] Theorem 2.1), and
another one is a gluing of pseudo-representations along Hida family ([Wil88] Theorem
2.2.1). The result is deeply related to one of the open questions in [CM98]. R. Coleman
and B. Mazur defined an eigencurve of tame level 1 called Coleman family in [CM98]
6.1 Definition 1. Excluding a discrete subspace from the reduced eigencurve, they con-
structed a continuous representation of Ga(l) over the ring of rigid analytic functions
of rank 2 from the pseudo-representation obtained as the pull-back of the universal defor-
mation of a pseudo-representation over a finite field. Then they asked an open question
whether this Galois representation is obtained as the Pontryagin dual of the direct limit
of étale cohomologies of a tower of modular curves.

First, §1 consists of three subsections. §h.1, we recall topological modules over
topological rings. A topological module over a topological ring is said to peoéinite
moduleif it is homeomorphically isomorphic to an inverse limit of topological modules
whose underlying topological spaces are discrete finite spaces. A profinite module is
a compact Hausd#rtotally disconnected topological module, and the set of open sub-
modules forms a fundamental system of neighbourhoods of 0. A topological module
is said to becompletdf its is homeomorphically isomorphic to the inverse limit of the
quotients by its open submodules. Every profinite module is complete. We introduce the
notion of the complete tensor product. It is a bifunctor sending two complete topologi-
cal modules (resp. profinite modules) to a complete topological module (resp. a profinite
module). In§1.2, we recall topological modules over monoid algebras of topological
monoids over topological rings. We are interested not only in a topological group but
also in a topological monoid, because we need the latter in order to give an action of
Hecke operators on cohomologies§ia.3. A topological module over a monoid algebra
of a topological monoid over a topological ring is said to bprafinite moduléf it is
homeomorphically isomorphic to an inverse limit of topological modules whose under-
lying topological spaces are discrete finite spaces. Roughly speaking, a functor from the
category of topological modules whose underlying topological spaces are discrete finite
spaces to a complete category extends to a functor from the category of profinite mod-
ules. This construction is important when we consider a correspondence betwaalean



sheaf on a connected Noetherian scheme and a module over a group algebra of the fun-
damental group. I§1.3, we recall modular forms and several variants of Hecke algebras
over ap-adic field. Amodular formover@p is a formal power series with cfiients in

@p such that its image i€[[ g]] by a fixed isomorphisn@p = Cis a Fourier transform of

a modular form. The space of modular forms o@gyris a finite dimensional,-vector

space with endomorphisms callei@cke operatorsTheZy-algebra generated by Hecke
operators is commutative, and is finitely generated d@g-enodule. We introduce the
universal Hecke algebras:® andTs® of finite slope< s. We will use them in order to
formulate a family of systems of cusp Hecke eigenvalues of finite slop&.th

Secondly§2 consists of three subsections.§l& 1, we introduce the notion of a con-
tinuous cohomology of a complete topological module with a continuous action of a
topological monoid. Roughly speaking, it is the inverse limit of the cohomologies of its
finite quotients. When the topological monoid is a finitely generated free group equipped
with the discrete topology, then the continuous cohomology of a first countable profi-
nite module coincides with the continuous cohomology, and hence the calculation of the
inverse limit. In§2.2, we introduce a notion of a profini&,-sheaf. It is an inverse
system ofétale sheaves of finite Abeligorgroups, and unlike a smootty,-sheaf, we
assume no finiteness condition. Similar with a continuous cohomology of a complete
topological module with a continuous action of a topological monoid, we define a con-
tinuous cohomology of a profinit&,-sheaf as an inverse limit of the cohomologies. It
is not a derived functor, but works well due to the profiniteness of sheaves. A continu-
ous cohomology is a cohomology of a single profittesheaves on a single scheme by
definition, while a completed cohomology introduced by Emerton in [Eme] is the inverse
limit of the direct limit of torsion cohomologies of a compatible systenp-@idic sheaves
on a tower of schemes. Of course, Shapiro’s lemma gives an interpretation of a compat-
ible system of sheaves on a tower of schemes as a compatible system of sheaves on a
single scheme. However, such an interpretation yields a direct linptaxdic sheaves,
and hence completely fiiers from a profiniteZ,-sheaf. A continuous cohomology of
profiniteZ,-sheaves is compact, while a completed cohomology of a compatible system
of sheaves on a tower of schemes is Banach, which is far from compact. The compact-
ness is important for interpolation. The lwasawa algebra, which is compact, is identified
with the algebra of rigid analytic functions, and interpolation by rigid analytic functions
has good congruence property. On the other hand, the algebra of bounded continuous
functions, which is Banach, has infinitely many idempotents, and hence interpolation by
continuous functions does not perform so well. We guess that in order to compare with
the two cohomologies in a direct way, one needs some duality theory of sheaves extend-
ing Schneider—Teitelbaum theory ([ST02]). §8.3, we define actions of G&(Q) and



Hecke operators on continuous cohomologies. We verify the action of Hecke operators
is Gal(Q/Q)-equivariant in Proposition 2.16. Its proof is given in a way imitating one in
[Del69] using Hecke correspondence. We will use the actions in a geometric construction
of a p-adic family of Galois representations associated to modular forms.

Thirdly, §3 consists of three subsections.§f1, we give an explicit way to interpolate
Synt?(Q?2) along weights € N N [2, o). Although the dimensions of SyfTf(Q3) for
eachk € NN[2, o0) are pairwise distinct, there are infinite dimensional extensions of them
as is shown in Theorem 3.7 and Remark 3.12. They share the underlying topological
modules, and hence can be easily interpolate¢312, we construct a profinite module
over the lwasawa algebra with a continuous actions of @4l andTy®. We verify the
finiteness of it as a module over the topological ring generated by the lwasawa algebra
and Hecke operators in Theorem 3.19§#3, we introduce a notion of/a-adic algebra
in Definition 3.25. Roughly speaking, it is a 1-dimensional topological algebra over the
lwasawa algebra with “enough points Bf weight” and “the identity theorem”. As is
shown in Theorem 3.29, the reduced eigencurve admits a dense open subspéataavith
coverings of its smooth alteration by formdlinoid spaces associated thiaoid A-adic
algebras. We verify a certain finiteness of the space of modular forms ateadic
algebra in Theorem 3.34. Finally, we construgi-adic family of Galois representations
associated to modular forms in Theorem 3.46 of finite slope.
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1 Preliminaries

In this section, letp denote a prime number. We recall several notions of algebraic
objects with topologies. We also recall modular forms and Hecke algebras.

1.1 Topological Modules over Topological Rings

A topological monoids a monoidG endowed with a topology such that the multipli-
cationG x G — G: (g,g) — gd is continuous. A monoid is always equipped with the
discrete topology unless specified so that it is regarded as a topological mortoigo-A
logical groupis a topological monoid such that its underlying monoid is a group and
the inverseG — G: g — g is continuous. A topological group is said to Abelian
if its underlying group is Abelian. A topological group admits two canonical uniform
structures compatible with its topology, and for an Abelian topological group, the two
canonical uniform structures coincide with each other. Therefore we always equip a
topological Abelian group with the canonical uniform structure.

Example 1.1.Let G be a topological monoid. We denote GY° the opposite monoid of
G endowed with the topology induced by the identity mgpP( G — G°P: g — g°° of
the underlying sets. The@°? is a topological monoid. 16 is a topological group, then
S0 isG°, and the majs — G°P: g (g~1)°P is a homeomorphic group isomorphism.

Example 1.2. Let | be a set, ands = (Gj)iy a family of topological monoids (resp.
topological groups). Then the direct prodydgt., G; is a topological monoid (resp. a
topological group) with respect to the direct product topology.

Let M be an Abelian group. The sgh+ p"M c M | (m,n) € M x N} forms a basis of
atopology®y,, on M, and we calliy, , the p-adic topology orM. ThenM is an Abelian
topological group with respect to theeadic topology orM. We say thai is p-adically
separatedresp.p-adically completgif the group homomorphism

tmpi M = lim M/p'M
reN
m — (m+p'M)2,

Is injective (resp. an isomorphism). By definition, th@dic topology orM is the weak-
est topology for whichy, , is continuous with respect to the inverse limit topology of the
discrete topology on the target. In particullt,is p-adically separated (resp-adically
complete) if and only iM is Hausdoft (resp. complete) with respect to tpeadic topol-
ogy (resp. the canonical uniform structure associated t@+heic topology).



Example 1.3.Let | be a set, andM = (M), a family of p-adically separated (resp.
p-adically complete) Abelian groups. Then the direct produgt, M; is a p-adically
separated (resg-adically complete) Abelian group. The direct product topology of the
p-adic topologies does not necessarily coincide with gkeedic topology on the direct
product.

Proposition 1.4. Let M and N be Abelian groups. Every group homomorphisihi- N
Is continuous with respect to theadic topologies.

Proof. Lety: M — N be a group homomorphism. We have

U (Mm+ )+ pP'M = m+ker(p) + pP'M c ¢ (o(m) + p'N)

nY eker(p)

forany (m r) € M x N. It ensures the continuity of. O

A Zy-module is said to b@-adically separatedresp.p-adically completgif its un-
derlying Abelian group ig-adically separated (resp-adically complete). For anp-
adically complete Abelian grould, the natural action dZ, on the target ofy, , makesM
aZp-module. Therefore the notion of@adically complete Abelian group is equivalent
to that of ap-adically complete&Z,-module.

Example 1.5. Every finitely generateéd ,-module isp-adically complete, while there is
no non-trivialQp-vector space which ip-adically separated.

Proposition 1.6. Let M be a p-adically completeZ,-module. For anyZ,-submodule
L ¢ M closed with respect to thg-adic topology, the canonical projectidi - M/L is
a quotient map with respect to thgeadic topologies.

Proof. Let¢: M —-» M/L denote the canonical projection. The continuitygadfollows
from Proposition 1.4. We have

e(m+ p'M) = (m+ L) + p'(M/L)

for any (m,;r) € M x N, and hencep is an open map. Thus the surjective mags a
guotient map. O

In this paper, a ring is always assumed to be unital and associative, but not necessarily
commutative. Atopological ringis a ringR endowed with a topology such thRtis a
topological Abelian group with respect to the additRix R —» R: (r,r’) — r +r’, and
Is a topological monoid with respect to the multiplicati@x R — R: (r,r’) — rr’. We
always equip a topological ring with the canonical uniform structure associated to the
topological Abelian group structure given by the addition. A topological ring is said to
becommutativef its underlying ring is commutative.
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Example 1.7. For a ringR, the p-adic topology orR is the p-adic topology on the ad-
ditive group ofR. Sincep"R c Ris a two-sided ideal for anp € N, g, is a ring
homomorphism, and henégis a topological ring with respect to theadic topology.

Remark 1.8. Let R be a topological ring. The unit grolg‘ c Ris a submonoid oR

with respect to the multiplication, and we regard it as a topological monoid with respect
to the relative topology. It is not necessarily a topological group. For a topological group
G, we call a continuous monoid homomorphi§ni— R* acontinuous character

Let Rbe a topological ring. AopologicalR-moduleis a topological Abelian group
endowed with a structure of a left module over the underlying rirlg @f the underlying
Abelian group ofM such that the scalar multiplicatidRx M — M: (r,m) — rm s
continuous. A topologicaR-module is said to be discreteR-moduleif its underlying
topology is the discrete topology, is said to bérate R-moduleif it is a discreteR-
module whose underlying set is a finite set, and is said tofrefanite R-moduleif it is
homeomorphically isomorphic to an inverse limit of finRemodules. For a topological
R-module M, we denote by the set of operR-submodules oM. A topologicalR-
module is said to b&nearly completeaf the continuousR-linear homomorphism

M — lim M/L
(—
LeOm

m — (m+ L)LE@’M

iIs @ homeomorphic isomorphism. For any linearly complete topologleabdule,dy,
forms a fundamental system of neighbourhoods of 0. Every disBratedule is linearly
complete. In particular, every finie-module is linearly complete. Every inverse limit of
linearly complete topologicdR-modules is linearly complete. Therefore every profinite
R-module is linearly complete.

Example 1.9. For any ringR and leftR-moduleM, M is a topologicalR-module with
respect to thg-adic topologies ol and M.

Example 1.10.Let R be a commutative topological ring. For linearly complete (resp.
profinite) R-modulesMy andM;, we set

Mo®rM; = “ﬁ (Mo/Lo) ®& (M1/Ly),
(Lo,L1)eOmgxOmy

and endow it with the inverse limit topology of the discrete topologies. THgdxM; is
a linearly complete (resp. profinit&® module.

10



Proposition 1.11. LetR be a commutative topological ring with underlying rifigj, and
Mo, M1, and M, linearly completeR-modules with underlyingR-modules|Mg|, |M4],
and|M,| respectively. For any continuot&linear homomorphisni: M; — M,, there
uniquely exists a continuoud&linear homomorphism

idMOé)f: Moé)RMl - Moé)RMz
extending théR|-linear homomorphism

idimg ® T Mol ®r IM1] — Mgl ®r IM2]
mem - me f(m).

Moreover, ifMg and M; are profiniteR-modules and is surjective, then so iisiMoébf.

Proof. The uniqueness is obvious because the imaf@®r |M,| is dense iMo®rM;
andMo®gM, is Hausdoff. The|R/-linear homomorphism jgl,® f induces a well-defined
R-linear homomorphism

Mo/Lo®r M1/L1 — Mo/Lo®r M2/L,
(n'b + Lo) ® (ml + Ll) — (I’Tb + Lo) ® (f(ml) + Lz)

continuous with respect to the discrete topologies for &gyl(;, Ly) € Oy, X Om, X O,
with f(L;) c L,. Sincef is continuousf~(L,) € Oy, for anyL, € Oy,, and hence we
have{L, € Oy, | L1 € Oy,,s.t.f(L1) C Lo} = On,. Therefore taking an inverse limit,
we obtain a continuouB-linear homomorphism

idMoé)f: MoéRMl - MQ@RMZ

extending igy, ® f by the continuity off. Suppose thaM, and M; are profiniteR-
modules and is surjective. The image ¢f|®r|M,]| is dense ifMo®:zM,, and coincides
with the image ofMy| ®r |M4| by idy,&f. SinceMy and M; are profiniteR-modules,
S0 is My®gMj. It ensures that idoé)f is a continuous homomorphism from a compact
module to a Hausd@rmodule, and hence is a closed map. Thygdf is surjective. O

Proposition 1.12. Every profiniteZ,-module isp-adically separated, and itg-adic
topology is finer than or equal to its original topology.

Proof. Let M be a profiniteZ,-module. SinceM is Hausdoff, the second assertion im-
plies the first assertion. Since the topology of a linearly compgtodule is generated
by operiZ,-submodules, it dtices to verify that for any opefi,-submoduld. ¢ M, there
isanr € N such thap'M c L. SinceM is compactL is of finite index as an additive sub-
group of M. ThereforeM/L is aZy-module whose underlying group is a finite Abelian
group, and hence there is e N such thatp'(M/L) = 0. It impliesp'M c L. O

11



Corollary 1.13. For a p-adically separated,-moduleM and a profiniteZ,-moduleN,
everyZy-linear homomorphisniM — N is continuous with respect to theadic topology
on M.

Let R be a commutative topological ring. #pological R-algebrais a topological
ring «# endowed with a continuous ring homomorphifn- .« whose image lies in
the centre ofey. Every topologicaR-algebras/ is a topological leftR-module by the
continuity of the multiplicatione x &« — </ and the structure map — <. A topolog-
ical R-algebra is said to berofinite R-algebraif it is homeomorphically isomorphic to
an inverse limit of topologicaR-algebras whose underlying topologi¢dimodules are
finite R-modules. Every profinit®-algebra is a profinit®-module by definition. We do
not use the term “a finitR-algebra” because it is ambiguous here.

Example 1.14.Let K be an algebraic extension @f,, andOx the integral closure df,

in K. ThenK andOk are commutative topological,-algebras with respect to a unique
extensior| - |: K — [0, o) of a p-adic norm onQp, and the relative topology @« c K
coincides with thep-adic topology.

Example 1.15.Let X be a topological space, aRh commutative topological ring. Then
theR-algebra CK, R) of continuous mapX — Ris a commutative topologic&-algebra
with respect to the topology of uniform convergence.

Example 1.16.Let R be a commutative topological ring, and a profiniteR-algebra.
For a linearly complete (resp. profinitmodule M, we regard#Z®zM as a linearly
complete (resp. profinite}y-module with respect to the natural action.gf. When
we emphasis the structure morphismR — o7, then we write £, ¢)®:M instead of
ﬂ@RM.

Example 1.17.Let R be a commutative topological ring with underlying rijfig}, and
7y and.e/;, commutative profinitdR-algebras with underlyingRl-algebrag.e%| and|.<|
respectively. Then the structure|ofy| ®r |.2%| as a commutativiR -algebra uniquely ex-
tends a structure of,®gr#% as a topologicaR-algebra, for whicha®g# is a commu-
tative profiniteR-algebra. For any profinite-moduleM, if M is endowed with structures
of a profinite.e/-module and a profinitez;-module extending the structure of a profinite
R-module, then there uniquely exists a structure of a profinitgg.c7;)-module onM
extending the structures of a profinitg-module and a profinites;-module.

Proposition 1.18. Let R be a commutative topological ring. A topologid&lalgebra
</ is a profiniteR-algebra if and only if the underlying topological ring of is a com-
pact Hausdoff topological ring such that the set of open two-sided ideals’diorms a
fundamental system of neighbourhood§.of

12



Proof. Let .# denote the set of open two-sided idealsasf If o7 is a profiniteR-
algebra, thenes is homeomorphically isomorphic to the inverse limit of its quotients
by open two-sided ideals of finite index, and hence the underlying topological ring of
&/ 1S a compact Hausdfirtopological ring such that? forms a fundamental system

of neighbourhoods of 0. Conversely, suppose that the underlying topological ring of
</ 1S a compact Hausdfirtopological ring such that” forms a fundamental system

of neighbourhoods of 0. For arlye .#, the compactness o ensures that7//l is a
topologicalR-algebra whose underlying-module is a finiteR-module. TheR-algebra
homomorphism

.o/ — limga//I
H
les

a = (a+|)|5j

Is continuous, and the image is dense with respect to the inverse limit topology on the
target. Since« is compact, is a closed map and hence is surjective. Sin€ds
Hausdoff, ¢ is injective becauseZ forms a fundamental system of neighbourhoods of

0. Thust is a homeomorphid-algebra isomorphism, and hengg is a profiniteR-
algebra. O

Corollary 1.19. LetRy be a commutative topological ring; a commutative topological
R-algebra, and« a topologicalR;-algebra. Then is a profiniteR,-algebra if and only
if o7 is a profiniteR;-algebra.

Corollary 1.20. Let R be a commutative topological ring, and a Zy-algebra finitely
generated as &,-module. For any continuous ring homomorphin- <7, &7 is a
profinite R-algebra with respect to thp-adic topology ong.

Proposition 1.21.Let.«7 be a topologicalZ,-algebra. For any Hausdgftopological.e/-
moduleM whose underlying.,-module is finitely generated, the topologybtoincides
with the p-adic topology, andM is a profinite.s7-module.

Proof. Take a finite subseéd c M of generators of the underlyirigy,-module ofM. By
the continuity of the additioM x M — M and the scalar multiplicatiod, x M — M,
the surjectiveZ,-linear homomorphism

(,DZZ‘;' - M

@ndmes ) 8nm
meS

IS continuous. Sinc%g is compact andM is Hausdoff, ¢ is a quotient map. It follows
from Proposition 1.6 that the topology bf coincides with thep-adic topology. Sincé

13



is finitely generated asZ,-module, it isp-adically complete. Sincg' lies in the centre
of 7, the action ofer’ on M extends to a unique action dvi/p'M for anyr € N. We
have a homeomorphi-linear isomorphism
- ]
M — I(@ M/p'M,
reN

and henceM is a profinite<”-module. O

Corollary 1.22. Let <7 be a commutative topologica,-algebra with a topologically
nilpotent element € 7. For any Hausdgff topological.Z-moduleM whose underlying
Zp-module is finitely generated, the continuawslinear homomorphism
M — limM/eM
(_
reN
m - (Mm+eM)2,

iIs a homeomorphic isomorphism.

Proof. By Proposition 1.21, the topology d¥l is given by thep-adic topology. Let
' € N\{0}. ThenM/p"M is a finite o/-module. For anym € M/p"M, sincee is a
topologically nilpotent, there is ane N such that'm = 0. Since the underlying set of
is a finite set, there is ane N such thak'(M/p” M). It implies the canonical projection
M/P"M = (M/p"M)/e(M/p"M) = M/(p"M + €M) is a homeomorphig-linear
isomorphism. Sinc#/ is finitely generated asZ&,-module, so idV/e"M for anyr € N.
ThereforeM/e"M is p-adically complete, and the topology bf/e" M coincides with the
p-adic topology by Proposition 1.21 for any N. Therefore we obtain a homeomorphic
<7 -linear isomorphism
M = lim M/p"M = lim lim M/(p"M + €M) = lim lim M/(p"M + €M
g /p am {m /(p ) am {m /(p )
~ I(iEM/erM.
reN
O

Definition 1.23. Let </ be a topologicak,-algebra. For a topologica-moduleM, we
denote by tgs(M) c M the .«/-submodule consisting of elememse M with p'm =0
for somer € N, and by Mz the topologicale-module flat overZ, obtained as the
quotientM/tory(M).

For any discretezZ-module M, its .o7-submodule tgy(M) is closed, and hence its
quotient Mgee IS also a discrete7-module. On the other hand, for a topologicat
module M which is not a discreteZ-module, top(M) is not necessarily closed, and
henceMgee is NOt necessarily Hausddreven if M is Hausdoftf. Moreover, the corre-
spondencé/ ~» Mgee does not necessarily commute with direct products.
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Example 1.24.

Zp=limZp/P'Zp — []_[ Z/ pfz) - H(Z/ P'Z)tree = O.
reN r=0 free r=0
1.2 Topological Modules over Topological Monoids

Let S be a topological space. ®pological space with an action & is a pair , p)
of a topological spacX and a continuous magp: S x X — X. For topological spaces
(X0, p0) @and Xy, p1) with actions ofS, anS-equivariant mapp: (Xo, po0) — (X1,p01) is @

continuous mag: Xo — X; satisfyinge(oo(s, X)) = p1(S, ¢(X)) for any (s, x) € S x Xo.
Let G be a topological monoid. &-spaceis a topological spaceX(p) with an action of
the underlying topological space Gfsatisfying the following:

(i) The equalityp(g, p(d', X)) = p(gd’, X) holds forany ¢,g’, x) € G x G x X.
(i) The equalityp(1, X) = x holds for anyx € X.

Example 1.25.Let H c C denote the upper half plafa + b+ — 1| (&, b) € R x (0, 0)}.
ThenH is an Sly(Z)-space with respect to the action

SL(Z)xH —» H

ab | o az+b

c d)’ cz+d
given by linear fractional transformations.

Proposition 1.26. Let p be a prime number. The subset

Zp Zp

PZ, 7% ) < Ma(Zp)

o(p) = (

Is a closed submonoid with respect to the multipication andptaelic topology of the
additive group oM»(Z,), andZ, is aIly(p)-space with respect to the action

mMp: Io(P) X Zp — Zp

(Ea)d = mll2 o)

given byp-adic linear fractional transformations.
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Proof. To begin with, we verify that the image ofi, actually lies inZ,. Let (A,2) €
. b .
ITo(p) x Zp with A = ( i q ) . We havecze pZp, d € Z;, and hencez+ d € Zj. Since

az+b € Zy, we obtainmy(A, z) € Z,. The function

ZpXZpX PLyX (L+ PZp) X Zp — Zp

(a,b,c,d,2 - mp((i 2)2)

is locally analytic, and hena, is continuous. For anyX; B, 2) € ITp(p) x Io(p) X Zp

with A = a b andB = e f , we have
c d g h

_ ((a b)Y ez+t) a(ez+ f)+b(gz+h)

(ae+bgz+ (af + bh) ae+bg af+bh
(ce+dgz+ (cf+dh) P\l ce+dg cf+dh

),z) = my(AB, 2).

For anyz € Zy, my(1, 2) = zby definition. ThusZ,, m,) is allp(p)-space. O

Atopological group is said to beqaofinite groupif it is homeomorphically isomorphic
to an inverse limit of finite groups. The notion of a profinite group is equivalent to
the notion of a compact Hausdbtotally disconnected group, and to the notion of a
compact topological group such that the set of open normal subgroups forms a system of
fundamental neighbourhoods of the unit.

Example 1.27.Let K be afield,L a Galois algebraic extension Kf andS an algebraic
variety overk. Then Gall/K) is a profinite group, and for any locally constant sheaf
Z of finite Abelian groups o018, the étale cohomology HS xk L,.%#) of the inverse
image of.# by the base changg xx L — S is a Gal(/K)-space whose underlying set
is a finite set.

In the following in this subsection, ¢ denote a commutative topological ring, and
G a topological monoid. Aopological RiG]-moduleis a pair (M, p) of a topological
R-moduleM and a continuous mgp: G x M — M such thajp makes the underlying
topological space dfl a G-space and satisfies the following:

(iif) The equalityo(g, m+nY) = p(g, M)+ (g, M) holds for any ¢, m,n’) € Gx M x M.

(iv) The equalityo(g, rm) = rp(g, m) holds for any ¢,r,m) € G x Rx M.
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For a topologicalR[G]-module (M, p), we denote by['(G, (M, p)) c M the closedr-

submodule consisting of elemems=s M with p(g, m) = mfor anyg € G. A topological
R[G]-module is said to ba discreteR[G]-moduleif its underlying topologicaR-module
is a discretdr-module. A topologicaR[G]-module is said to ba finite R{G]-modulé&f its

underlying topologicaR-module is a finitecR-module, and is said to bepaofinite R[G]-

moduleif it is homeomorphically isomorphic to an inverse limit of finlRG]-modules.
The underlying topologicaR-module of a finiteR[G]-module is a finiteR-module by
definition, and hence the underlying topologi€module of a profiniteR[G]-module
is a profiniteR-module. Every profinitdR[G]-module is a compact Hausdbitotally

disconnected topologic&G]-module.

Example 1.28.We endow M(R) with the direct product topology through tielinear
isomorphism M(R) = R* given by the canonical basis Bf. Then My(R) is a topological
monoid with respect to the multiplication, aR is a topologicaR[M »(R)]-module with
respect to the natural representation

ore: Ma(R) x R? —» R?
(2] - (enie)
c d)'\ oy Cag +day )
For eachn € N, we denote by SyAfR?, pg:) = (SynT'(R?), SynT'(or:)) the topologi-
cal RIM»(R)]-module obtained as th@th symmetric tensor product oRt, pr:) overR.
Identifying Synf(R?, pre) with theR-moduled;  RTI TS c R[T;, T,] of homogeneous
polynomials of degreg, we put

TITy = ( ! ] ®( 2 ) e Sym'(R?)

for each 1,i) e N x N withi < n.

Let (M, p) be a topologicaR[G]-module. AnR-submoduleL c M is said to be an
R[G]-submodule ofM, p) if p(g,l) € L for any @,l) € G x L. For instancerM c M
is anR[G]-submodule of M, p) for anyr € R. WhenR is a commutative topological
Zy-algebra, then the kernel {g§M) of the canonical projectioM — Myee is anR[G]-
submodule oM.

Example 1.29.Let (M, p) be a topologicaR[G]-module. There are several examples of
topologicalR[G]-modules induced by, p).

() EveryR[G]-submoduleL c M is a topologicalR[G]-module with respect to the
relative topology and a well-defined action

oL:GxL — L
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@) ~ p@l)
and we put i, p)IL := (L, p|L).

(i) For anyR[G]-submodulel of (M, p), M/L is a topologicaR[G]-module with re-
spect to the quotient topology and the well-defined action

o/L:GxM/L — M/L
(@m+L) » p(@m+L={o(@m)|mem+L},

and we put (,p)/L = (M/L,p/L). In particular, we abbreviateM, p)/rM to
(M, p)/r for eachr € R. WhenRis a commutative topological,-algebra, then we
put (M, p)iree := (M, p)/torp(M).

(i) For any topological monoidl and continuous monoid homomorphismH — G,
M is a topologicaR[H]-module with respect to the action

Reg(p): HxM — M
(h,m) - p((h), m),

and we also denote g6V, p) = (M, Res; (o)) simply by (M, p) as long as this
abbreviation yields no confusion. In other words, we usually regard a topological
R[G]-module as a topologicdH]-module.

For a topologicalR[G]-module (M, p), we denote bydv, the set of operR[G]-
submodules of{l, p). A topologicalR[G]-module (M, p) is said to bdinearly complete
if the natural continuouB-linear G-equivariant homomorphism

(M.p) — lim (M,p)/L
LeOmp)

m — (m+ L)Leﬁ(M,p)

is @ homeomorphic isomorphism. For any linearly compRftg]-module M, p), G
forms a fundamental system of neighbourhoods &f M, and hence is cofinal if),.
Therefore the underlying topologicB®module of a linearly complet® G]-module is
linearly complete. Every discre®GJ]-module is linearly complete. In particular, ev-
ery finite RG]-module is linearly complete. Every inverse limit of linearly complete
topologicalR[G]-modules is linearly complete. Therefore every profiff€&]-module

is linearly complete.

Example 1.30.Let (Mg, po) and My, p1) be linearly complete (resp. profinit€&GJ-
modules. Then the continuous actigRsandp; induce a continuous action

Po®p1: G X (Mg®rM1) = Mo®rMy,
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for which (Mo, p)®r(M1,01) = (Mo®rM41, po®p1) is a linearly complete (resp. profi-
nite) R{G]-module. When WMo, po) is the underlying topologicdkG]-module of a com-

mutative profiniteR-algebra.e/ endowed with the trivial action of, then we regard
o/ ®=(My, p1) as a linearly complete (resp. profinite)[G]-module with respect to the
natural action ofe7'.

Proposition 1.31. For any commutative topologicay-algebra .o/, every Hausdgf
topological «7[G]-module(M, p) whose underlyingZ,-module is finitely generated is
a profinite.<Z[G]-module.

Proof. Since the underlyin@,-module ofM is finitely generated, it ip-adically com-
plete. By Proposition 1.21, the topology B coincides with thep-adic topology. Since
p'M is stable under the action &, we have a homeomorphi¢-linear G-equivariant
iIsomorphism

(M,p) — Lrie_rg(l\/l,p)/p
m — (m+ p'M)2,.

Thus (M, p) is a profinite</[G]-module. O

A topologicalR[G]-algebrais a pair (&7, p) of a topologicalR-algebra<’ and a con-
tinuous map: G x &/ — & such thap makes the underlying topologicBtmodule of
</ atopologicaR[G]-module and satisfies the following:

(iv) The equalityp(g, ff’) = p(g, f)p(g, f’) holds forany ¢, f, f') e G x &/ x 7.
(v) The equalityp(g, 1) = 1 holds for anyg € G.

We remark that whe( is a topological group, then the condition (v) follows from other
conditions. For any topologic&[G]-algebra 7, p), we havep(g,rl) = rp(g,1) = rl

by the condition (v) for anyd,r) € G x R, and hence the image & is contained in
I'(G, («7,p)). A topological R[G]-algebra is said to beommutativef its underlying
topologicalR-algebra is commutative, and is said to bprafinite R[G]-algebraif it is
homeomorphically isomorphic to an inverse limit of topologi€f]-algebras whose
underlying topologicaR-modules are finit&-modules.

Example 1.32. Suppose tha is a profinite group, and lef; denote the set of open
normal subgroups d&. Then

Zol[G]] = lim Z,[G/K]

KEﬁG
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is a profiniteZ,[G]-algebra with respect to the inverse limit topology of fradic topolo-
gies, and we call ithe lwasawa algebra associated® It admits a natural embedding
G — Zp[[G]]*, for which for any profiniteZ,[G]-module (M, p), there uniquely ex-
ists a structure oM as a profiniteZ,[[ G]]-module extending the structure as a profinite
Zp[G]-module. In particular, for any profinitgy-algebras with a continuous character
G — & (Remark 1.8), the natural structure ofas a profiniteZ,[G]-algebra uniquely
extends to a structure as a profiriilgf[ G]]-algebra. We call this propertye universality

of the lwasawa algebra

Proposition 1.33. Let (X, p) be a compacts-space. TherC(X,R) is a commutative
topologicalR[G°P]-algebra with respect to the action

V1 G®xC(X,R) — C(XR
Q" f) = ('@ ) x f(o(g,%)).

For the convention o&°?, see Example 1.1.

Proof. We verify the continuity op". For eachf € C(X, R) and open subsek c R, put
f+C(X, J):={f" e CX,R) | (f'=f)(X) € J,"x € X}, which is an open neighbourhood of
f, and the set of such subsets forms an open basiSOR} by the definition of the topol-
ogy of uniform convergence. For any open subket R, we havep' (g, f) € C(X, J)
for any @°", f) € G°P x C(X, J) by the definition of". Let (ggp, fo) € G x C(X,R), and

| ¢ C(X, R) be an open neighbourhood@f(g;", fo). Take an open neighbourhodd: R
of 0 such tha;ov(ggp, fo) + C(X, J) is contained inl. By the continuity of the addition
R x R —» Rand the additive inversB — R: r — —r, there is an open neighbourhood
Jo c RofOsuchthat —r" +r” e Jforany (,r’,r"”) € Jo X Jp X Jo. For anyx € X, the
setUy = {X' € X | fo(X) — fo(X) € Jo} is an open neighbourhood &fby the continuity
of f, the additiorR x R — R, and the additive inverde — R: r — —r. For anyx € X,
the preimage—(U,q,») € G x X is an open neighbourhood a( X) by the continuity
of p, and hence there are open neighbourhdafis G andU?2 c X of g, andx respec-
tively such thatul x U2 c p™1(U %), or equivalently,fo(o(g’, X)) — fo(o(Qo, X)) € Jo
for any @, x) € Ul x U2. We denote by the set of triad X, UL, U2) of x € X, an
open neighbourhood?! c G of gy, and an open neighbourhotf c X of x such that
folo(d', X)) — fo(o(go. X)) € Jo for any @, x) € Ul x U2, SinceX is compact, the
open coverindU? | ?x € X,7U! c G,s.t. (x, U, U?) € ¢} admits a finite subcovering
% ={U?|i e Nn[1,d]}. Foreach € Nn[1,d], take anx € X and an c G with
(%, Uy, UP) € ¢, and formally putU? := U?. We do not meat)? = U? even though
x = Xj. SetU! := N, UL c G. We denote by?)° c G° the image olU?. Itis an
open neighbourhood af’. Let (@), f) € U x (fo + C(X, J)). For anyx € X, there
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is ani €e NN [1,d] such thatx € U2, and we have

P (@)%, 1)) = T (o(g', X))
e F'(p(Uy x U3Z)) € F'(Upgm) = T/ (IX € X fo(X) = folo(go. X)) € Jo})
c ((f" = fo) + fo) ({X € X fo(X') = fo(o(Do, Xi)) € Jo})
c  Jo+ (folo(9o. %)) + Jo) € Jo + ((folo(Go. X)) — Jo) + Jo) € p*(dg’> fo)(X) + J.

It impliesp"(g', ') € p¥(go, fo) + C(X, J). Thusp” is continuous.
We verify the other conditions. For ang®C, h°P, f) € G° x G° x C(X, R), we have
p'(@h%*, f) = p*((hg), f) = f(o(hg. X)) = f(o(h, p(9. X)) = p"(h*", )(0(g, X))
= p"(g®p (", (X,

for any x € X, and hence”(g°?, p"(h°, f)) = p¥(g°"h°P, f). For anyf € C(X,R), we
have

p’ (1%, £)(x) = f(p(1°, %)) = f(¥)

for anyx € X, and hence”(1°, f) = f. Forany ¢°°, f, f') € G°? x C(X,R) x C(X,R),
we have

p (@ f+ 190 = (f + £)(0(9. X)) = fo(g. X)) + f'(p(9. X))
= p'(@ 1)) +p" (@, )(X),

for anyx € X, and hence"(g°, f + ') = p"(g°, ) + p"(g°, f’). For any ¢°°,r, f) €
G x Rx C(X,R), we have

p (@, rf)(x) = (rf)(p(9. ¥) = r(f(o(g. %)) = rp" (g, (),

foranyx € X, and hence"(g°?,rf) = rp¥(g°?, f). For any §°, f, f’) € G°® x C(X, R) x
C(X,R), we have

p (@, F1)(¥) = (F£)((g. ) = T(o(9. %)) F'(p(9. X)) = p" (g, )(X)p" (g, F)(X),

foranyx € X, and hence" (g, ff’) = p"(g°, f)p"(g°, f’). For anyg®® € G°P, we have

P’ (@ 1)) = 1((g. X)) = 1 = 1(x),

foranyx € X, and hence"(g°?, 1) = 1. Thus (CK, R), p") is a commutative topological
R[G°P]-algebra. |
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Definition 1.34. Let .« be a topologicaR[G]-algebra. A continuous map. G — &7 is
said to be arossed homomorphism G — (<7, p) if it satisfies«k(1) = 1 andk(gg) =
k(9)p(9,x(g)) for any @,9') € G x G. For a crossed homomorphismG — (<, p), we
define a map

0c-Gxod —» o
9. f) = «(@p(g f),

and call itthe action ofG on (<7, p) of weightx.

Proposition 1.35. Let.«# be a topologicaR[G]-algebra, andk: G — (<7, p) a crossed
homomorphism. The@7, p,) is a topologicalR[G]-module.

Proof. The continuity ofo, follows from that ofo, x, and the multiplications' x.«7 — o7 .
We have

P9 P9, 1)) = pu(9. (@)p(d', 1)) = x(9)p(9. x(d)p(g’, 1))
= «(Q«(9)e(9.0(g, ) = x(99)p(9d. f) = p(9d, T)

forany @, g, f) € Gx G x «/. We have
p(1,f) =x(1)p(1, f) = f
foranyf € &/. We have

p(Q T+ 1) = k(@p(9. T + ') = x(9)p(9, T) + x(Q)p(9. T') = (@, T) + p(9. T)

forany @, f, f') € G x &/ x o/. We have

p(9.1f) = k(@)p(9.rf) = k(Q)rp(g, f) = r(@)p(g, f) = rp.(9, f)
forany @,r, f) e GXx Rx .«7. Thus (¢, p,) is a topologicaR[G]-module. O

Corollary 1.36. Let (X,p) be a compacG-space, anck: G — C(X,R): g — «g a
continuous map such that = 1 and k4q(X) = x4(p(9', X))ky (X) for any (9,9, X) €
G x G x X. ThenC(X, R) is a topologicalR[G°P]-module with respect to the action

pl:G®xC(X,R) — C(XR)
@) = (/@™ 1) x = k() F(0(g, X))

Proof. We abbreviata o (-)° to x. We havep, (g, f) = kgep” (9, f) for any @, f) €
G°" x C(X,R). Therefore by Proposition 1.33 and Proposition 1.35, fices to verify

22



thatx is a crossed homomorphisBf? — (C(X,R),p"). For any ¢°, (g')°", f) € G° x
G°? x C(X,R), we have

KgOP(g/)OP(X) = K(g/g)OP(X) = K(g/)Op(p(g, X))th)p(X) = pv (gOP, K(g/)Op)(X)Kgor)(X)

for any x € X, and hencegorgyr = kgrp”' (9%, k(gyor). Thusk: G® — (C(X,R),p") is a
crossed homomorphism. O

Example 1.37.By Proposition 1.26 and Proposition 1.33Z(Z,) admits an actiomy
of Ip(p)°° such that (CZy, Zp), my) is a commutative topologica,[I1o(p))°P]-algebra.
For any continuous group homomorphigmzZy — Zg, the map

k(x): Ho(p) — C(Zp,Zp)

(i 2) —  y(cz+d)

satisfies the conditions in Corollary 1.36 with respeatip wherez := idz,. Indeed, we

have
a blfe f))_ ae+bg af+bh
K(X)[[c d)(g h])_KC\/)(( ce+dg cf+dh))

x((ce+dg)z+ (cf + dh)) = xy(c(ez+ f) + d(gz+ h)) = )(((92+ h) (C(gezz:g + d))

s R () R (b

for any (( i g )[ ; :] )) € Ilp(p) x Io(p). Thus we obtain a continuous action

(M) Of o(p)°P on CEZp, Zp).

1.3 p-adic Modular Forms and Hecke Algebras

Let N be a positive integer withl > 5, andp a prime number dividing. Henceforth,
we fix an algebraic closu@p of Q, and an isomorphisny, : @p = C of fields. We
recall p-adic modular forms.

Let Rbe a commutative topological ring. For each formal power séiig@s= Y, anq"
overR, we putay(f) := a, € Rfor eachh € N. Suppose thaR is a subring o@p. Let
k € NN [2,). A modular form ovemR of weightk and levelN is an element of the
R-algebraR[[ g]] of formal power series whose image@j[ q]] is a modular form of level
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I''(N) of weightk. Te denote by MT';(N),R) c R[[q]] the R-submodule of modular
forms overR of weightk. For a modular form oveR of weightk and levelN, we call
its image inC[[q]] its corresponding modular formA modular form oveR of weightk
and levelN is said to bea cusp form oveR of weightk and levelN if its corresponding
modular form is a cusp form.

Identifying Mk(l“l(N),@p) as theC-vector space of modular forms of weigkt we
have a@p-linear action of Hecke operators on it. Let(Z/NZ)* — @; be a Dirichlet
character. We denote by JM'1(N), e, R) ¢ My(I';(N), R) the R-submodule of elements
whose corresponding modular forms are contained in the kern@) of ¢ ..(e(n)) for
anyd € (Z/Nz)*. We denote byR[e] C @p the R-subalgebra generated by the im-
age ofe. OperatorsT, for a prime numbe¥ and S, for ann € Z coprime toN act
on Mc(T'1(N), ¢, R{€]) through the embedding into Ml(N),@p). The action is given
explicitly in the following way:

Te: MTN) € Rle) = Mi(T3(N), € Rle)
(@ {Zﬁioagh(f)qwz;‘;oah(f)e(uNZ)fk-quh (CIN)
ioan(fa’ (C1N)
Sn: MiT'i(N), €, Rle]) — M(I'y(N), €, Rle])
f(q ~ e(n+NZ)N2f(q).

A modular formf(qg) overR of weightk is said to be aeigenform oveR of weightk and
levelN if its corresponding modular form is an eigenform. Itis equivalent to the condition
that there is a Dirichlet charactey such that the image df in My(I'1(N), R[&¢]) lies in
M(T'1(N), ¢, R[e¢]) and is a simultaneous eigenvector of Hecke operators. An eigenform
f overR of weightk is said to benormalisedf a;(f) = 1. A cuspidal eigenform oveR

of weightk and levelN is an eigenform oveR of weightk and levelN which is a cusp
form overR of weightk and levelN.

Example 1.38.Letk € NN [2, o) be an even number. Then the formal power series
B« - _

Ed(e) =5 + ) (Z d ) o" € QI ]l

h=1 \ dh

is a normalised eigenform ov@rof weightk and levelN which is not cusp. Her8y € Q
is thek-th Bernoulli number.

Letky € NN [2,00). We denote by I n C End@p(MkO(Fl(N),@p)) the commuta-
tive Zy-subalgebra generated by Hecke operators. Sing@“MN),@p) is a@p-vector
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space, . is torsionfree as @&,-module. SinceC ®z, Ty, is isomorphic to aC-
vector subspace of ER(HY(I'1(N), Sym©=2(C2, pc2))) by the Eichler—Shimura isomor-
phism ([Shi59] 5 Tkoeme 1, [Hid93] 6.3 Theorem 4), it is finite dimensional as a
C-vector space. By the equalityk = End: (M, (Ti(N). Zp)) N (Qp ®z, Tion) as
Z,-algebras of Er@p(Mko(Fl(N),@p)) = Qp ®z, Endep(MkO(l"l(N),Zp)), Tion IS @Z-
algebra finitely generated asZa-module. For anyn € N with n € 1 + NZ, we have
Sh = N°°2(n + NZ) = n%(1 + NZ) = n©2 ¢ T, y, and hences, is invertible as an
element of T,y because is coprime top. The map

NN(L+NzZ) - TXy

n —» no?2=5g,

is a monoid homomorphism, and it extends to a continuous character

S.:1+NZ, — Ty
n — no?z

ThenS, associates a continuotg-algebra homomorphisty[[1 + NZy]] — Ty, n, and
we regard , n as a profiniteZ,[[1 + NZ,]]-algebra. TheZ,-bilinear pairing

()t Tion ®2, Mig(T1(N), Q) — Q,
(A ) > (A f):=ay(Af)

is non-degenerate, and induce@ialinear isomorphism

Mio(T1(N), Qp) = Homy, (Tion, Qp)

by [Hid93] 5.3 Theorem 1. Therefore the subset %(Ml(N)a@p) consisting of nor-
malised eigenforms corresponds to the subset of HOI N, Q) consistingZy-algebra
homomorphisms. Let be a normalised eigenforinoverQ, of weightk,. We denote by
At Tin — Qp theZp-algebra homomorphism correspondingt@nd call itthe system
of Hecke eigenvalues associatedftoWe havea,(f) = A¢(Ty) for anyh € N\{0}. In

particular, if f is a cuspidal eigenform ov@IO of weightky and levelN, then we have

f =Y 4(Th)d"

We denote by

TSko,N C En(bp

kO —_
P My, Qp))
k=2

the commutativeZ,-subalgebra generated by Hecke operators diagonally acting on the
direct sum. By the universality of the lwasawa algebra, we have a contiiealgebra
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homomorphisn¥Z,[[1 + NZy]] — T~ sending eacm € NN (1+ NZ) c 1 +Z, to
the Hecke operatds,. There is a natural embedding ]y — 1‘[::0:2 T~ by definition,
and hence i is finitely generated asZ,-module. We endow J, n With the p-adic
topology, and regard it as a profinifg[[1 + NZp]]-algebra. We put

T = lim T,
keN

and regard it as a profini#,[[1 + NZ]]-algebra.

Letky € NN [2,0). Henceforth, we fix g-adic norm| - |: Q, — [0, o), and endow
@p with a unique non-Archimedean norm|: @p — [0, o0) extending thep-adic norm
on Q,. We denote byzZ, c @p the valuation ring. Itis an integral closure B in @p,
and hence is independent of the choice of kadic norm onQ,. It is well-known that
My,(T2(N), Q,) < Q,l[d]] is contained in the image dy[[q]] ®z, Qp, and hence we
endow W(Fl(N),@p) with the non-Archimedean norip || given by setting

Il := maxjan(f)I < eo

for eachf € M(I'1(N),Q,). We denote by M('1(N), Q,)< the T,-stableQ,-vector
subspace il TH(M,(T2(N), Qp)) € Mi(T'1(N), Q). Since Hecke operators commute
with each other, M(I'1(N), Q,)=* c My, (I'1(N), Q) is stable under the action of the
other Hecke operators. SincekJ(/Fl(N),@p) is a finite dimensiona@p-vector space,
the decreasing sequendéQ(Mko(l“l(N),@p)))ﬁ’:o is eventually stable. It implies that the
restriction of T, on My, (T'1(N), Q)< is bijective. Moreover, since M'1(N), Q)< is

a finite dimensionaQ,-vector space, the restriction df, on My,(I'1(N), Q,)=* and its
inverseTr;l are continuous with respect to the norm topology.

Letse N. An f € Mi,(T1(N), Q,) is said to beof slope< sif f € My (I'1(N), Q)<
and limh_e ||(pST51)hf|| = 0. If f is an eigenform, then it is equivalent to the condition
that the system;: Ty, n — Q, of Hecke eigenvalues associatedftsatisfiegA¢(Tp)| >
Ipl°. LetR c Q, be a subring. Arf € My,(T'1(N),R) is said to beof slope< sif f isa
modular form overQ,, of slope< s. We denote by M (I'1(N), R)** ¢ My,(I'y(N), R) the
R-submodule of modular forms of slopes. Since Hecke operators commute with each
other, M<0(1“1(N),@p)<S C MkO(Fl(N),@p) is stable under the action of Hecke operators.
We denote by T} c End; (Mi,(T1(N), Q,) ) the image of . Since T, is finitely
generated asZj,-module, so is 5.

The operatoil, is invertible on I\/J<O(F1(N),@p)<S by definition. We denote by
Tion € Endg, (M(T1(N), @;)%)
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the commutativeZ,-subalgebra generated bf(j and pSTF‘,l. Let
FOX) = X"+ X" + -+ ay € Zy[X]

be the minimal polynomial oT', as an element of[TS] Since every eigenvalue df,
as an element of E@d(Mko(Fl(N) Qp)<s) is of normin (p|5, 1], we havea;| < 1 for any
i e NN[1,n], |p™ ')Sa. < |a,| for anyi e NN [1,n— 1], and|p|" < |a,|. It implies that the
polynomial

ns
Xn_1+...+p_

S
X —lan Sx 1 p an-1
Q(X) = (p°X™) = A 2

lies inZp[X]. Since Engt (M w(T1(N),Q,)5)is aQ,-vector space, it&y-subalgebra J°

is torsionfree as @,-module. Therefore the equaliayQ(pSTlgl) = (pST‘;l)”P(Tp) =
End@p(MkO(Fl(N),Qp)“) ensures thaQ(pSTF;l) = 0 as an element of . It implies
that pST—1 is integral over T;Sﬂl as an element of F\,, and T.* is finitely generated as a
=9 _module.

ko,N
Proposition 1.39. The surjectivel, n-algebra homomorphism
ToolXl > Ty
X - pT,t
induces arl, y-algebra isomorphism
(TeX/(TeX = PY),.. = Tion:

Proof. By the argument abovqa”(pSTrjl) € Ty lies in the image of {]zs,l, forann e N.
Therefore the flatness @, as aZ,-module ensures the assertion. O

For eachky € N, we denote by

ko
TR, © End; [@ Mk(Fl(N),@p)<5)
k=2

the image of Ty, n, and by

TSN C End@p

k() —_
P M), Q,ﬁ)
k=2

the Z,-subalgebra generated by,Jn and pSTF‘,l. They are finitely generated &&,-
modules by a similar argument with that in the previous paragraph. We set

[<s] ._ [<s]
™ = ImToN

keN
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T <s
Y = Lﬂ TN
keN

and regard them as profinitg-algebras. In particular, they are regarded as profinite
Zp[[1 + NZp]]-algebras.

Proposition 1.40. The continuou&'y-algebra homomorphism
I - TR
X - pT?
IS surjective.

Proof. To begin with, we verify that th&-algebra homomorphism

TEIX] - T
X - pTt

uniquely extends to a continuolig-algebra homomorphism
TRIIX - TR

Here TLI[X]/(X") is regarded as a profinitg; 3-algebra with respect to the topology
given by the canonicall;9-linear basis X")'-} for eachr € N, and

TR = lim T [X]/(X),
reN

is endowed with the inverse limit topology. Ugte NN[2, o). Let P(X) = X"+a; X" 1+
“++ + @y € Zp[X] be the minimal polynomial of, as an element Of[sT:],N' Since every
eigenvalue of the action df, on @';1:2 My (I'1(N), Zp)<* is of norm in (p|*, 1], we have
lay| < 1 for anyi € Nn[1,n], |p"™% < |a,| for anyi € N n[1,n - 1], and|p"s < |a,].
Therefore the polynomial
pl’]S

XM I
an

P°an-1
X)=X"+ ——
Q(X) 2
satisfiesQ(X) — X" € pZ,[X]. Since T \ is torsionfree as &,-module, the equality
a.Q(p°T,Y) = (p°T,H)"P(Tp) = 0
in TSR \ ensureQ(p°T,Y) = 0 TS  and hence®T,*)" € pTZ; . Itimplies p°T;*
is topologically nilpotent in Ty  with respect to thep-adic topology, becauseZy \ is
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p-adically complete. Th(—:'refor}asTlg1 is topologically nilpotent in Ty \, and theTy-
algebra homomorphism

TE\TS][X] - TEN
X - pTt

uniquely extends to a continuolig-algebra homomorphism
TIX = TSew

by the universality of the algebra of formal power series andotiaelic completeness of
T n- Thus theTy-algebra homomorphism

TEIX] — TR
X - pT,t

uniquely extends to a continuolig-algebra homomorphism

o TEIX - TR = lim TSy,
keN

by the universality of the inverse limit. The composite
TRIX]) - TR > TS

is surjective by the definition of f  for anyky € N N [2, ), and hence the image of
¢ is dense by the definition of the inverse limit topology. Siﬂi‘ﬁ,ﬁ][[X]] is compact and
Ty’ is Hausdoff, the continuity ofp ensures its surjectivity. m|

2 Actions on Continuous Cohomologies

In this section, leR denote a commutative topological ring, &&d monoid endowed
with the discrete topology. We mainly consider the case wReigeZ, or the Iwasawa
algebras, an@ is a submonoid of M(Z,). We introduce the notion of a continuous
cohomology of a linearly complete]G]-module. We compare it with the group coho-
mology of the underlying module, and with the cohomology of the derived functor of
I'G,)o I(m We also introduce the notion of a profinResheaf on a modular curve. The
continuous cohomology of a profinite sheaf coincides with that of the corresponding
profinite RIG]-module for a suitabl€& under several conditions.
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2.1 Continuous Cohomologies of Complete Topological Modules

Suppose thaR is discrete. The category Mdg) (resp. ModR[G])) of discreteR-
modules andR-linear homomorphisms (resp. discrd®G]-modules andR-linear G-
equivariant homomorphisms) naturally admits a structure of an Abelian category. The
correspondenceM, p) ~ I'(G, (M, p)) gives a left exact functdr(G, -): Mod(R[G]) —
Mod(R). We denote by HG, -) the cohomology of the right derived functor B(G, ),
and call itthe group cohomologyWe remark that the underlying Abelian group of the
group cohomology of a discret®G]-module is naturally isomorphic to the group co-
homology of the underlyin@[G]-module, because they can be calculated cocycles and
coboundaries in the same way.

Now we consider the case wheRas not necessarily discrete. We denote|Bythe
underlying ring ofR endowed with the discrete topology. For a topologkf#]-module
(M, p), the paii(M, p)| = (IM|, |o|) of the underlyingR-module|M| endowed with the dis-
crete topology and the induced actipft G x [M| — [M|: (g, M) — p(g, m) is a discrete
|IR[G]-module, and we denote by (5, (M, p)) the discretgR-module H(G, [(M, p)I).
For any finiteR[G]-module (M, p), the annihilator Anp(M) c Ris an open ideal, and
acts trivially on H(G, (M, p)). Therefore the action dR| makes H(G, (M, p)) a discrete
R-module for any finiteR[G]-module (M, p).

For a linearly complete topologicBl G]-module (M, p), we set

(G, (M,p)) = lim H'(G,(M,p)/L),
LeO(myp)

and endow it with the inverse limit topology. We calltite continuous cohomology of
(M, p), and regard it as a linearly complgi&-module. For any profinit€&]G]-module
(M, p), the action ofiR| makes.7*(G, (M, p)) a linearly completdR-module by the ar-
gument in the previous paragraph. In this subsection, we show that the continuous co-
homology has an aspect of the cohomology of a derived functor reflecting the topology
of R. We remark that a derived functor usually does not possess information of topolo-
gies. For example, the category of topologiBf]-modules and continuouR-linear
G-equivariant homomorphisms does not necessarily admit a structure of an Abelian cat-
egory, and hence one should forget topologies in order to consider a derived functor.

Lemma 2.1. Let (M, p) be a first countable linearly comple®G]-module. Then the
natural |R-linear homomorphism

H'(G, (M, p)) = (G, (M, p))

IS surjective for any € N.
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Proof. Let ¢ = (CL)Leo,, € (G, (M, p)). SinceM is first countable, there is a de-
creasing sequencé,(;?, in O,y such thafL, | r € N} forms a fundamental system of
neighbourhoods of 0. For eacle N, take ani-cocycled], € Z'(G, (M, p)/L,) represent-
ing c.,. We construct an inverse system {2, of i-cocyclesc] € Z'(G, (M, p)/L;) rep-
resentingc,, for anyr € N. If i = 0, then we have '7G, (M, p/L;)) = I'(G, (M, p)/L,) =
H'(G, (M, p)/L,) for anyr € N, and henceq))2, = (CL,);2, is an inverse system. Sup-
posei > 0. Put¢] := €. Assume that a compatible systen‘LlrIr'“io of representatives
of (ch);‘;Ois taken for arrg € N. Since the image co,‘ij1 in Z'(G, (M, p)/L;,) represents
cL,,, there is a set-theoretical map : G! - M/L,, which associates thecoboundary
oby, € B'(G, (M, p)L,) given as the dierence ofc[ro and the image o€ ,. Take a
set-theoretical lifty ,,: G"™* — M/Ly,.1, and denote by, ,, € B'(G, (M, p)/Ly,.1) the
i-coboundary associated by ,. We setc{rw1 = C,., + 0y, € Z'(G, (M, p)/Lrgs1)-
Then the image OtE’L:O+l in Z'(G, (M, p)/L;,) coincides withc{ro, and hencecC){iBl isa
compatible system of representatives th:gl. By induction onry, we obtain an in-
verse systemc(")2, of representatives ofy(,);2,. Since M, p) is linearly complete and

{L; | r € N} is cofinal in&y ), theR-linearG-equivariant homomorphism

reN
m — (m+L)72,

is a homeomorphic isomorphism. Let G — M denote the composite of the set-
theoretical map

G' - lm(M,p)/Ls

@)~ (& (@))

andc~%. SinceM is Hausdoff, we have2, L, = {0}, and hence the cocycle conditions
for ¢’ for eachr € N ensures the cocycle condition farForgetting the topology of the
targetM of & we regarccas an element of G, |(M, p)|). By the construction of,"the
image of its cohomology class coincides with O

Lemma 2.2. Suppose that the underlying monoid®fs finitely generated. LgtM, p)
be a first countable profinitB[G]-module. Then the natur#R-linear homomorphism

H'(G, (M, p)) — #"(G, (M, p))
Is an isomorphism for aniye N.

Proof. By Lemma 2.1, it sffices to verify the injectivity of the given homomorphism.
Letc € H'(G, (M, p)) be an element of the kernel of the given homomorphisn.=f0,
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thenc € H'(G, (M, p)) = |(M, p)|°® c |M|, and since the image afin H'(G, (M, p)/L) =
I'(G, (M, p)/L) c M/L is O for anyL € O, we havec € (N 4,,, L = {0}. Suppose
i > 0. Take a representativec"Z'(G, |(M, p)|). Put

Z = lim Z(G.(M.p)/L)
LeO(myp)

B = lm B(G.MoL)
LeO(my)

Since the image af in 7' (G, (M, p)) is 0, the image of in Z lies in the image oB. Let
S c G be a finite set of generators. The evaluation map

Z(G,IM,p)) — M®
¢ - (C’(Sg_,...,S))(sl ..... 5)eS!

is injective by the cocycle condition. We enddM® and ME™ with the direct prod-
uct topology. They are compact and Haustlby Tychondi’s theorem, becausk! is
profinite. Since the cocycle condition is given by equalities, the continuityasid the
additonM x M — M ensures that the image of(&, |(M, p)|) is closed inMS', and
hence Z(G, |(M, p)|) is compact and Hausd®mith respect to the relative topology. The
continuity ofp, the additionM x M — M, and the additive invers®l x M: m +— —m
ensures that the majp MCE™ - Z\(G, [(M, p)|) associating coboundaries is continuous,
and hence its image' @, |(M, p)|) is closed. Sincé is profinite, theR-linear homomor-
phism

Si

MS - N:= lim (M/L)Sie[ lim  (M/L)

LeO(myp)

LeO(mp)
(M)ses = ((Ms+ L)seS‘)Leﬁ(M,p)

is @ homeomorphic isomorphism. By the definition ofiacbboundary, the image of
B'(G,|(M,p)]) in Z'(G, (M, p)/L) coincides with B(G, (M, p)/L) for anyL € Ou,). Re-
garding Z(G, (M, p)/L) as aR-submodule of the finit&-module Q\/I/L)Si by a similar
evaluation map for each € Gy ), we identify B as a close®-submodule oN. By the
definition of the inverse limit topology, the image of(8, |(M, p)|) is dense irB. Since
B'(G, |(M, p)|) is compact andN is Hausdoff, the image of BG, |(M, p)|) in N is closed,
and hence coincides wiB It implies thatcbelongs to BG, |(M, p)|), because the image
of Cin N liesinB. Thusc = 0. O

We remark that a group is finitely generated if and only if its underlying monoid is
finitely generated. Indeed, for a sebf generators of a group, the underlying monoid of
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the group is generated YU St := {g” | (9,0) € S x {—1,1}}. Therefore Lemma 2.2

is valid also for a finitely generated group. Through the isomorphism in Lemma 2.2, we
equip the source with the pull-back of the topology of the target instead of the discrete
topology. The induced topology coincides with the quotient topology of the space of
cocycles defined in the proof of Lemma 2.2. Siftacts continuously on the target, we
regard the source as a profinRemodule.

Lemma 2.3. Suppose that the underlying monoid®fs a finitely generated free group.
Let (M, p) be a first countable profinitB[G]-module. Then the equality’ (G, (M, p)) =
0 holds for anyi € N N [2, ).

Proof. By Lemma 2.1, it sffices to verify H(G, (M, p)) = 0 for anyi € N N [2, co).

By the definition of the group cohomology, itféices to verify the equality in the case
whereR s discrete. Since the underlying monoid®fs a finitely generated free group,

it is isomorphic to the fundamental group of a based connected 1-dimensional finite CW-
complexC of the form S v --. v St. Therefore there is an equivalence between the
category of discret® G]-modules andr-linear G-equivariant homomorphisms and the
category of sheaves &modules orC and morphisms of sheavesi®imodules. Let7
denote the sheaf d&modules orC corresponding to the discre®G]-module|(M, p)|

by the equivalence. We have a naturdinear isomorphism HG, (M, p)) = H*(C, #).
SinceC is a finite CW-complex, it is paracompact, and hence there is a n&tirakar
isomorphism H(C,.#) = H*(C,.#). SinceC is 1-dimensional CW-complex, it is of
Cech-dimension 1. Therefore we obt&l(C,.#) = 0 for anyi € N N [2, ). Thus the
assertion holds. O

A complex of topologicaR-modules (resp. topologic&[G]-modules) with continu-
ousR-linear homomorphisms (resp. continudinearG-equivariant homomorphisms)
is said to be aexact sequendéits underlying complex of leffR-modules withR/-linear
homomorphisms is exact.

Proposition 2.4. Suppose that the underlying monoid@fs a finitely generated free
group. Let(My, p1), (M2, p,), and(Ms, p3) be first countable profinit® G]-modules with
an exact sequence

O - (Ml’pl) - (M27p2) - (M3’p3) - O

of continuousR-linear G-equivariant homomorphisms. Then it induces an exact se-
guence

0 — G, (My,p1)) = H°G, (M2, p2)) = G, (Ms, p3))
— G, (M, p1)) = HHG, Mz, p2)) = G, (M, p3))

33



- 0
of linearly completdR-modules with continuoug-linear homomorphisms.

Proof. We have an exact sequence

0 — H%G,(My,p1) = HAG, (Mg, p2)) = HG, (M3, p3))
— HYG, (Mg, p1)) = HY(G, (Mz, p2)) = HY(G, (M3, p3))
- 0

by the cohomology long exact sequence and Lemma 2.3. Therefore the assertion follows
from Lemma 2.2. O

Lemma 2.5. Suppose thaR is discrete and the underlying monoid®fis a free group
with a basisE. For a discreteR[G]-module(M, p), the evaluation map

ZYG,(M,p)) — ME

c  (C(e)ek
is anR-linear isomorphism.

Proof. Put

H sﬂ(m,O)GMx{O},VmeM}

{go € Aut(M x Z) ‘ 2(0.1) € M x {1}
Hom@G, H), = {x € Hom(G,H) |x(9)(m 0) = (o(g, m),0)}.

For eachy € H, we denote by, € M the element witlyp(0, 1) = (c,, 1). The map

1u: ZYG,(M,p)) — Hom(G, H),
¢ = (g ((mn) = (o(g,m) + nc(g), n)))

Is bijective because it admits an inverse

Hom@G,H), — ZYG,(M,p))
X = (9'—>CX(9>)-

The map

12: HomG,H), — HEF

X = (Cx(e))eeE
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is bijective by the universality of a free group. The map
i HE - MF
(P)ece = (Cpo)ecE
IS bijective because it admits an inverse
ME N HE
(Cece = ((M.N) = (o(e, M) + NG, N))eci -

The compositas o 1, o ¢; Of bijective maps coincides with the evaluation map in the
assertion. O

For an Abelian category’, we denote by the Abelian category of inverse systems
of objects of#” indexed bylN and compatible systems of morphisms.

Lemma 2.6. Suppose thaR is discrete. For any inverse systé(M;);2,, ¢.) of discrete
R[G]-modules, the equalitiR' I(im((Mr)f‘;o, ¢.) = 0 holds for anyi € N N [2, ), where
I(im is regarded as a left exact functdod(R[G])" — Mod(R[G]).

Proof. Let ((M;);2,, ».) be an inverse system of discré®fG]-modules. We denote by
Wy, - H“’*l M. - [];°, M, the canonical projection for eagh € N, and byw_; the
zero homomorphlsnMo —» 0. We define arR-linear G-equivariant homomorphism

Vot TT% Mr = TT1%" M, by settingyr, (M%) = (M — @r(M.1))%" for eachrp € N
and )%, € [1;2, M;. Then the system, = (¢,):2, is @ morphism

(1] =) (1]~

r=0 ro=0 r=0

in Mod(R[G])"". Indeed, for any, € N and n)"°t" € TT°5" M;, we have

ro-1

(wro © '//ro+l)((mr)r0+l) = wro((mr (Pr(mr+1)) ) =(m - (Pr(mr+1))
= Yro((M)%) = (o © o) (M2

By the definition of the inverse limit, we obtain an exact sequence

limy, _®

0 — lim (Mo 0,¢,)_>ﬂ|v| _>1_[|v|

of discreteR[G]-modules through naturd-linear G-equivariant isomorphisms

[ = m({]w]_ =)

fo

[l
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IR

o0 ro—1 o0

[ M = lim {(ﬂ Mi) w]

r=0 P r=0 ro=0

We denote byirf‘((Mr)f‘;o, ¢.) the cokernel of the right arrow of the exact sequence.
This construction gives a funct(()LIi'm Mod(R[G])" — Mod(R[G]). The system

i = ('), = (. o...

is a cohomological functor with respect to a natural connecting homomorphism. We
verify that(li_m‘ is a right derived functor oﬂm

We identify Mod) with Mod(Z[{1}]), and also conside(r_lil’n Mod(Z)" — Mod(Z).
Let F andF" denote the forgetful functors Mog[G]) — Mod(Z) and ModR[G])"' —
Mod(Z)" respectively. By the exactness Bfand by the definitions of Iir‘h we have
natural equivalences o I|m = I|m oF" for eachi € N. In the case wherEl Z and
G = {1}, thenitis well- known thatllrhls a right derived functor ofI|mIn order to verify
that I|m is a right derived functor of linn a general case, it ﬁix:es to verify that it is a
unlversal &acable functor. Let be an injective object of Mo®[G])"'. By [Jan88] 1.1
Proposition b)] is isomorphic to ([,%, Mr)po_o» @.) for some inverse systenik);2,, of
injective objects in Mod®[G]) whose transmon maps are 0. Therefore we have

o ©
) ~ lim 1 ~ D11 N ~ D1 —
F(I(@ |)=|<ﬂ (F) =R I(@(F (1) =R I(@[[FOIF(M)] ,w.J_o
r= ro=0
because ({2, F(M: Dr—o» @s) IS an inverse system of Abelian groups satisfying the
Mittag—Leffler condltlon We obtaln litl = 0O for anyi € N\{0}. Thus I|m‘ is a universal
effacable functor, and hence is a rlght derived functogf Nie conclude that 'le 0
for anyi € N N [2, ), and the assertion holds. O

Theorem 2.7.LetR be a commutative topological rin a finitely generated free group
endowed with the discrete topolog, p) a first countable profinité)G]-module, and
(Li)i2, a countable decreasing sequence of opg6]-submodules ofM, p) such that
{L; | r € N} forms a fundamental system of neighbourhood8. of hen there exists a
natural |R-linear isomorphism

A (G, (M. p)) = R (HG, ) o lim) (M. p) /Le]);2)
wherel(im is regarded as the left exact functistod(R[G])" — Mod(R[G]).

Proof. Leti € N. We construct aiR-linear isomorphism
(G, (M. p)) = R (HG, ) o lim) (M, p)/Li)7Z0) -
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Wheni = 0, then the assertion follows from the linear completenes#lgp). Suppose

I > 0. By [Jan88] 1.1 Proposition bz,_limends injective objects to a direct product of
injective objects, which is acyclic with respectli¢G, -). Therefore we have a spectral
sequence

E5' = H¥(G. R ((M. p)/ LiI)iZo) = R™ (H(G. ) o lim) (M. p)/Le o) -
Since (M, p)/L;);2, is a surjective system, it satisfies the Mittag#lex condition, and
hence
R* L@ (M, p)/LiD)Ze =0

by a similar argument with that in the proof of Lemma 2.6 with the forgetful functor
Mod(R[G]) — Mod(Z). Together with Lemma 2.3 and Lemma 2.6, we obtaj‘h£0
forany (s, t) e Nx N with s> 2 ort > 1. In particular, whem > 2, then we have

R'(H(G, ) o lim) (I(M, p) /L)) = O
and hence we obtain dR|-linear isomorphism by Lemma 2.3. Suppoesel. We have

R'(HG,-) o lim) (M, p)/Li)iZ0) = E;° = HY (G, lim ((M, p)/1:]))
= HY(G,I(M,p))) = H(G, (M, p)) = #(G, (M, p))
by the linear completeness d¥l(p) and Lemma 2.2. O

Thuss7*(G, -) is the cohomology of a derived functor together with a topology and a
continuous action oR.

2.2 Profinite Z,-Sheaves on Modular Curves

In this subsection, we introduce the notion of a profiftteheaf on a modular curve in
order to construct a profinite Galois representation endowed with a compatible action of
Hecke operators. L& be a commutative topological rirgandG a topological monoid.
Henceforth, we identify a right action of a topological gragpvith a left action ofG°P,
and aG-space with aG°P-space by the homeomorphic isomorphi§n— G°: g —
(@)

Definition 2.8. Let S be a Noetherian scheme. gkofinite R-sheaf onS is an inverse
system of sheaves @y, of finite R-modules. For a profinitB-sheat# = (.%#)),ca ONS,
we set
H5(S, F) = lim Hy (S, 7).
AeN

and endow it with the inverse limit topology of the discrete topologies. We cHikit
continuous cohomology of .
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Example 2.9.Let S be a Noetherian scheme with a Sef geometric base points on each
connected component, afig] denote the commutative discrete ring sharing the underly-
ing ring with R. We denote by, (S, S) the direct product of thétale fundamental groups
of each connected component®f Every finiteR[x(S, 5)]-module (M, p) associates a
locally constant sheaf{, p))s on Se; of finite |R-modules in a functorial way. The action
of |R makes each section with the discrete topology a fiRitaodule, because the anni-
hilator Anny(M) c Ris open and acts trivially on each section. For a profiRjtg (S, S)]-
module M, p), we denote by ({1, p))s the profiniteR-sheaf (M, 0)/L)s)Leq,, ONS, and
call it the profiniteR-sheaf associated M, p). The correspondenc®ip) ~» (M, p))s

Is functorial with respect to continuod&linear =1(S, S)-equivariant homomorp—hisms.
For a profiniteR-module M, we denote by M)s the profiniteR-sheaf associated tl
endowed with the trivial action of(S, 3).

Henceforth, we fix an algebraic closueof Q and an embedding .. : Q — C. For
eachN e N, we put

_ [ 1+Nz Z
I'1(N) := ( NZ 14NZ ) N SLx(Z)
I'(N) := ( ! LQZ 1 TZNZ )n SLy(Z) = ker(I'1(N) - SL,(Z/NZ)).

For eachN € N with N > 5 (resp.N > 3), we denote by;(N) (resp.Y(N)) the modular
curve of modularity’;(N) c SL,(Z) (resp.I'(N) c SL,(Z)), i.e. a moduli space of pairs
(E, @) of an elliptic curveE and a primitiveN-torsion pointa € E[N] (resp. a moduli
space of pairsH, (a1, @p)) of an elliptic curveE and a £/NZ)-linear basis &1, a,) of
E[N]). For eachN € N N [3, =), we have a left action

( i g )(E, (a1, @2)) = (E, (day + Ccaz, bay + aay))

of GL,(Z/NzZ) on Y(N), and the corresponding right action is given by

op 1
( 0 ] (B (a1, 02)) = ( i ° ) (E, (a1, @2)) = (E, (aal — oz e ¥ daz))-

c d d ad-bc’ ad-bc

We recall thatY;(N) (resp.Y(N)) is an algebraic curve defined over Spec(resp.
SpecQ[Xn]/(Pn(Xn))), wherePy(Xn) € Q[X\] is the N-th cyclotomic polynomial),

and the analytification of the base changergiN) (resp.Y(N)) by the geometric point
Spec(C) — Spec(Q) is isomorphic to the quotieri;(N)\H (resp. a disjoint union of
copies of the quotienf(N)\H) of H with respect to the action df;(N) (resp.I'(N))

given in Example 1.25. The moduli interpretations ensure that there is a natural finite
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surjectiveétale morphisn¥(M) — Y3(M) for eachM € N, and that there are natural
finite surjectiveétale morphisms

Y1(M2) — Y1(My)
resp. Y(Mz) = Y(M1) Xqpxy,1/(u, (xu,)) QLXM1/(Pu, (X))

for eachMy, M, € N with M; | My andM; > 5 (resp.M; > 3) for which (Y1(M))mennis.c0)

and (Y(M))mennz.) are compatible systems. The natural morphiffid) — Y;(M) for

eachM e NN[5, o) gives a morphismY(M))vennis,) = (Y1(M))menn(s.) Of compatible
systems. We fix geometric poiris SpecQ/Q) — Yi(N) andx: SpecQ/Q) — Y(N)

for eachN € N N [5, ) compatible with the natural morphisms. We take geometric
base pointX on each connected component of schemes obtained by changing bases of
modular curves among subfields®@fin a unique compatible way.

Henceforth, we fix alN € N N[5, o0). We put

1+NZ 7

GI(N) ::[ NZ  1+NZ

) N GLz(Z)

For a profiniteR[71(Y1(N), X)]-module (M, p), regarding it as a profinitB[z1(Y1(N)g. X)]
through the continuous group homomorphisiY1(N)z, X) — 71(Y1(N),X) induced by
the base change map by the functorialityetdle fundamental groups. The Galois group
of the finiteétale covering

Y(MN) — Y(N) Xqrxu1/¢Puotn)) QUXMN]/ (Pun(Xun))
is naturally isomorphic to the finite group

ker(GLy(Z/MNZ) - GL»(Z/NZ))
( 1+N(Z/MNZ)  NZ/MNZ

N(Z/MNZ) 1+ N(Z/MNZ) ) N GLo(Z/MNZ),

and the composite

Y(MN) — Y(N) Xgpxul/enexn)) QLXMN]/ (Pun(Xmn))
= Y1(N) xq Q[Xmn]/(Pmn(Xun))

corresponds to the group

[ 1+ N(Z/MNZ) Z/MNZ

N(Z/MNZ) 1+ N(Z/MNZ) )“ GL(Z/MNZ)
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through the right action for eadid € N\{0}. Taking an inverse limit, we obtain a surjec-
tive group homomorphism

T Yl(N)“.nl Q[XM!N]/(PM!N(XM!N))’T() > Gfl(N)op’

which is continuous with respect to their natural topologies. Therefore we regard a topo-
logical R[GI"1(N)]-module as a topologicd®{m1(Y1(N)z, X)]-module by the compatible
system {;* (exp(2nzy - 1)), of roots of unity inQ.

Proposition 2.10. For any profiniteR[GI"1(N)]-module(M, p), there is a natural homeo-
morphicR-linear isomorphism

Hay [Yl(N)Q, (Resfﬂ;ﬁ?@)@,x)(mp)) ] = (Ta(N). Reg (M. ).

Y1i(N)g
Proof. By the definition of the continuous cohomolog#*, the assertion for the general
case follows from the case wherbl(p) is a finite RIGI;(N)]-module. In this case,

the assertion is well-known by the interpretation as the set of isomorphism classes of
torsors. O

We put

A A

Z

GfJN):(iNz 1+NZ

)mGQ@)

The natural morphism

Y(MN) — Yy(N)
(E.(a1.02)) ~ (E.May)

corresponds to the group

((%MN% Z/MNZ

N(Z/MNZ) 1+M%MN%)QGQ@MMM)

through the right action for eadd € N\{0}. Taking an inverse limit again, we obtain
a surjective group homomorphism(Y1(N),X) - GI'«(N)°P, which is continuous with
respect to their natural topologies. Therefore we regard a topoldgiGak(N)]-module
as a topologicaR[1(Y1(N), X)]-module.

Remark 2.11. Let (L, p) be a profiniteR[Gfe(N)]-moduIe. There is a natural construc-
tion of the profiniteR-sheaf.# associated tol(, p) with no use of the base poixt Of
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course, the construction ¥ from Reéff&(l'\('&,)j)(M,p) deeply depends ox but the con-
struction of.# from (L, p) is independent of the choice &fup to natural isomorphisms.
Suppose thatl( p) is a finiteRIGI'«(N)]-module. Then there is all € N\{0} such that

the kernel of the canonical projection

(Z/MNZ) Z/MNZ

GIe(N) - GI'e(N, M) := ( N(Z/MNZ) 1+ N(Z/MNZ)

) N GLA(Z/MNZ)

acts trivially onL, and we regardl(, p) as a finiteR[GI'¢(N, M)]-module. The G¢(N, M)-
torsor Y(MN) - Y;(N) is independent of the choice of the base points. $gt—
Y1(N) be a connected finitetale morphism. The finite set Ham)(So, Y(MN)) X L is a
GI'e(N, M)-space with respect to the action

GIe(N, M) x (HOMy, (S, Y(MN)) x L) = Homy, oy (So. YIMN)) x L
(A (1) = (A)Pxp(AlD) = (Ax p(A ).
We set
ﬁo(So) = GFe(N, M)\ (HomYl(N)(So, Y(M N)) X L) .

SinceS, is connected, the action off (N, M) on Homy,(n)(So, Y(MN)) is transitive, and
hence the addition

Z0(So) X Fo(So) —  F0o(So)
(GLo(N, M)(x. 1), GTo(N, M)(x.I)) = GIo(N, M)(x.| +1")

is well-defined. The action ®onL induce an action dR| on.%y(Sy), for which.%,(So)
is a finite|R-module. We defineZ as the sheafification of the presheaf of finite |R-
modules orY1(N)e; defined by setting

ZS) = || Fo(So)

SoGTro(S)

for each finiteétale morphisn® — Y1(N). In the case wherd._(p) is not necessarily a fi-
nite RIGI «(N)]-module, since the construction above is functorial, it gives a construction
of the profiniteR-sheaf associated ta. (o) with no use of the base poirt

Example 2.12.Let p be a prime number dividingl. For anyn € N, SleP(ZZ,pZ%)
(Example 1.28) is a profinité&,[M,(Z,)]-module by Proposition 1.21, and in particular,
it can be regarded as a profinitg[s1(Y1(N), X)]-module by the composite

m1(Y1(N), %) = GLe(N) < GLy(Z) - GLa(Zp)
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For each topological,[GL2(Z,)°P]-module (M, p), we denote by, p)°P the topological
Zp[GL2(Zp)]-module M, p°P), wherepP is the action of GL(Z,) = (GL2(Zp)°P)°P given

by settingo°P(g, m) := det@)o(m, (g1)°P) for each ¢, m) € GLx(Z,) x M. We obtain an
iIsomorphism

Reiicy) (SYT (25.p23)) = Resgiytyyn (Home, (Syn (24, 2))”)

as topological,[GL»(Zp)]-modules sending the canonical basis to the anti-ordered dual
basis. We have an isomorphism

SynT' (Zﬁ Pz ) = Homy, (SynT' (Zf) Pz ) ,Zp)

as topological,[GL,(Z)]-modules sending the canonical basis to the anti-ordered dual
basis. Therefore we have a natural identification

(Re%it(z%(p&;),zz) (Synf (Zf,,ng)))

GLa(Zp)P

(Re%l(vl(N),i),zz) (Homy, (Synf (2. p23) Zp)))

GLz(Zp)Op

((Re%l(Yl(N),x),tz) (Hom, (Synt (25, p23). Z) / pr))

Y1(N)

IR

Y1(N)

(9]

Yl(N))rzo

(o8]

IR

((Re%ﬁﬁnu) (Home, (Synt'((Z/0'2)% pzjprzy) - 21 prZ)))Yl(N))r:O

IR

1 r “ . 1
(Syn11 (R (). (Z/—pz)El(m))r:o = Syt (R (). (ZD)E1<N))’
as profiniteéZ,-sheaves, wherey : E1(N) — Y1(N) is the universal elliptic curve.

For a sheaf” of finite Abelian groups oiY1(N)e;, we denote by7; theétale sheaf of
finite Abelian groups orY1(N)z = Y1(N) Xg Q obtained as the inverse image.8t. and
put

He (a(N)g 7) = Ha (a(N)g. 7).

For a profiniteR-sheaf.# = (7,).a on Y1(N), we denote byZ#5 the profiniteR-sheaf
on Y1(N)g obtained as the inverse systen#{{z).ca, and we put

A (aiN)g. 7) = Ao (ai(N)g. 7).

For a profiniteR[71(Y1(N), X)]-module (M, p), we have a natural identification

o (Yi(N).%)
((M)Ym))@ = (Regﬁwi(N)@,x)(M’p))

Yi(N)g

as a profiniteR-sheaf onY;(N)z.
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Proposition 2.13. For a first countable profinitd][GI(N)]-module(M, p), there is a
natural homeomorphi&-linear isomorphism

1 ['e(N) ~ H! [e(N)
A (Yl(N)Q,(Resfl (Yl(N)j)(M,p))Yl(N)Q) = H! (Ty(N), Re€T0 (M, ).

Proof. By Proposition 2.10 and the argument above, we have a natural homeomorphic
iIsomorphism

71(Y1(N).X)

%%[Yl(N)Q,(Reste(N’ (M.p) )e%l(rl(N),Reé?ﬂeN(?)(M,m)

Yi(N)gz

of topologicalR-modules. Sincd'y(N) is a fundamental group of the open complex
manifoldI';(N)\H of dimension 1, it is a finitely generated free group. By Lemma 2.2,
we have an isomorphism

HE (C(N), Rela) (M. p)) = 72 (T3(N), Rela) (M. )

which is a homeomorphism by the definition of the topology of the left hand side intro-
duced right after Lemma 2.2. Thus the assertion holds. O

Corollary 2.14. For any finite (resp. first countable profinitRJGI «(N)]-module(M, p),
the continuous cohomology

1 [e(N)
A (Yl(N)Q’ (Reéﬂzl(Yl(N)vY) M, p))Yl(N))

is a finite (resp. first countable profinit&module.

Proof. Sincel'y(N) is a finitely generated, ZI'1(N), (M, p)) is a finite (resp. first count-
able profinite)R-module, and hence so is'@'1(N), (M, p)). The natural homeomorphic
R-linear isomorphism

A (aN)g (M), ) = HE (T(N), (M. )

in Proposition 2.13 guarantees that the left hand side is a finite (resp. first countable
profinite) R-module. O

Y1(N)

Corollary 2.15. Let p be a prime number dividiniyl. For anyn € N, there is a natural
homeomorphi@-linear isomorphism

# (Yl(N)@, Synt' (Rl(nN)* ((Zp)El(N))) = 7 (T3(N), Re® (synf (22,p.2))).

Proof. The assertion follows from Lemma 2.2 and Proposition 2.13 by the natural iso-
morphism

(Re%ﬁf&%m (Synf (Z%’PZ%)))Yl(N) = Synf (Rl(” N+ (Zp)a(m)

as profiniteéZ,-sheaf in Example 2.12. O
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2.3 Actions of the Absolute Galois Group and Hecke Operators

Henceforth, we fix a prime numberdividing N. The natural projectiod — Zp gives
a continuous monoid homomorphismi @N) — II;(p), and hence we regard a topo-
logical R[I1;(p)]-module as a topologicd®GI«(N)]-module. Let (M, p) be a profinite
R[I1;(p)]-module, and% the profiniteR-sheaf onY,;(N) associated toMN, p). If (M, p)
is a finiteR[GI«(N)]-module, then the action of G&(Q) on Y1(N)g gives a continuous
action on the finite Abelian group HYi(N)g, .#) in a functorial way. In general, the
action of GalQ/Q) on Y1(N)g gives a continuous action 0¥ (Y1(N)q, #), because
it is defined as the inverse limit of finitR[Gal(Q/Q)]-modules byR-linear GalQ/Q)-
equivariant homomorphisms. The actions of G&l{) on continuous cohomologies of
profinite R-sheaves associated to profinRd1,(p)]-modules are functorial with respect
to continuousR-linearII;(p)-equivariant homomorphisms.

Let A € GL,(Qp) satisfyingA' := det®)A™! e I1;(p) with the orbit decomposition
LM, T1(N)A of the double cosdt;(N)Al'1(N) c GL»(Q,) with respect to the left action
of I'/(N). For eachy,lp) € I'i(N) x (N N [1,m]), we putA,y = %,Aq.1,) DY a unique
(70, 1y, 10)) € T1(N) x (N N [1,m]). For a 1-cocyclec: I'1(N) — (M, p)|, we define
Ac: T'1(N) — |(M, p)| by setting

(AQW) = D p (A, ctn)) € IM|
1=1

for eachy € T';(N). ThenAcis a 1-cocycle, and its cohomology class is independent
of the presentation of the double coset decomposition. The actiédninfluces aR-
linear endomorphism on1(N), (M, p)), and we call ithe double coset operator as-
sociated toA. For a prime numbef, we denote byl, the R-linear endomorphism on

HY(T1(N), (M, p)) given by the double coset operator associateEi io ? ] For each

n € N\{0} with a prime factorisatiom = H‘jjzlfjsj, we setT, := ]’[‘leTZ_j. For each
N € (Z/NZ)*, we denote byn) the R-linear endomorphism on#1(N), (M, p)) given

. a b .
by the double coset operator assomateE Eo 0 ) € I'o(N), wheren € Z is represen-

tatives ofn anda, b, c are arbitrary. The operatdn) is independent of the choice of

a, b, c,nfor anyn € (Z/NZ)*. For each € Z coprime toN, we putS, := n“%(n + NZ).

We call these operatotdecke operators The actions of Hecke operators on the first
cohomology group (and the module of 1-cocycles if we fix presentations of double coset
decompositions) are functorial with respect to continugdimearIl;(p)-equivariant ho-
momorphisms.
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Proposition 2.16. For any first countable profinit&[I1;(p)]-module(M, p), the natural
homeomorphid-linear isomorphism

AL (Yl(N)Q, Red® (M, p)) = H' (I3 (N), ResP(M, )

71(Y1(N), 1

in Proposition 2.13 gives aR-linear Gal(Q/Q)-equivariant action of Hecke operators
on the left hand side.

Proof. The continuous cohomologies are defined as the inverse limits of cohomologies
corresponding to a finit&[I1;(p)]-module and a sheaf of finite Abeliap-groups on
Y1(N)e: associated to it. The isomorphism in the assertion is given as the inverse limit of
isomorphisms between group cohomologies of fiR{H;(p)]-modules ancettale coho-
mologies of the associated sheaves of finite Abghamoups ony;(N)e. Transition maps

on the right hand is Hecke-equivariant, while those on the left hand side i @K
equivariant. Therefore it slices to verify the assertion in the case whawk ) is a

finite R[I1;(p)]-module. Imitating [Del69] Proposition 3.18, we compare the action of
Hecke operators on the right hand side with a Galf)-equivariant endomorphisms on

the left hand side induced by a Hecke correspondence£ beta prime number. We
deal only withT,. We denote by# the sheaf of finite Abelian groups ofi(N)e; asso-
ciated to (M, p). The construction of Hecke operators on the continuous cohomology of
% by a Hecke correspondence include the following three steps: First, we define a cor-
respondence as the graph associated to two projectioaarYi(N, £) - Y1(N) from

a curveYy(N, £) with a moduli interpretation. Secondly, we construct a natural morphism
pr;.# — pr,#, and give a definition of the Hecke operaigracting on thectale coho-
mology of % . Finally, we verify that the isomorphism in the assertioi jsequivariant.

Firstly, letr € N denote the multiplicity of as a prime factor oN, and putNg :=
{7"N € N\{0}. We set

ce N(Z
) €eGLy(Z)| de (1+N)Z
d+ 17 e (Z/6+17)*

A ab
GI'e(N,¢) = (C q

. t - : L ,
Puttinga = ( 0 ) € GI'¢(N) , we consider an injective continuous group homomor-

1
phism

ad,: GIe(N,£) — GIe(N)
a b = a b _.]2 b oL
c d ¢t d) |cd '
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Let Y1(N, ¢) denote the algebraic curve ov@robtained as the quotient of the finiale
coveringY(N¢) - Y;(N) corresponding to the subgroug'@N, ¢) ¢ GI«(N). Then
Y1(N, ¢) is a moduli of triads EE, a, C) of an elliptic curveE, a primitive N-torsion point

a € E[N], and a cyclic subgroug c E[¢*] of order ¢! with Noa € C. Let pr, de-
note the canonical projectioti(N, £) - Y1(N), which corresponds to the natural trans-
form (E,a,C) — (E, @) between moduli. It gives a continuous group homomorphism
(pry).: #S(Y1(N, €), %) — 75(Y1(N), X) such that the image of the composite of (pr,).

and the natural continuous group homomorphjﬁmn'it(Yl(N),X) — GIe(N) coincides
with GI'«(N, £). We have another projectionprYi(N, £) - Y;(N) given by the natural
transform g, «,C) — (E/C,a + C) between moduli. We consider the correspondence
pr; x pry: Yi(N,€) — Yi(N) X Y1(N). Before that, we calculate thefférence of the
two embeddings Gu(N, £) < GI«(N) induced by py and ps. The projection pyis not
compatible with the base poirts Choosing another compatible system of base p@ints
on each connected finittale covering o¥;(N, £), we obtain a continuous group homo-
morphism (py).: 75(Y1(N, €),¥) — 7¥(Y1(N), X). The kernel of (py). corresponds to the
tower @n: (Y(MN?),X) - (Yi(N, £), X)men o Of finite étale coverings induced by jpr
for eachi € {1, 2}. Let M € N\{0}. We consider the finite groups

2 b c € NU(Z/MNC¢Z)

( R ) € GLo(Z/MN¢Z) | de 1+ N(Z/MN(Z)
d+ (1Z e (Z/Z)*

b e ¢(Z/MN(Z)

c € N(Z/MN¢z)

de 1+ N(Z/MN¢zZ)

d+ (17 e (Z/017Z)*

ab c € N(Z/MNZ)
{( c d ] € CLAZ/MNZ) | ¢ 14 NZ/MNZ) }

We recall that the left action of GKZ/MN¢Z) (resp. Glo(Z/MNZ)) on Y(MNY) (resp.
Y(MN)) is given by

GI'e(N, ¢, M)

ad, (GI'«(N, ¢, M))

( a 2 ) € GLy(Z/MN(Z)

GIe(N, 1, M)

( 2 z )(E, (1, @2)) = (E, (day + Caz, bay + ay)),

and the corresponding right action is given by

op -1
e e P O = |

The canonical projectiod(MN) - Y;(N) (resp.wy) is given by the natural transform

(E’ (a’]_, 052)) — (E’ Ma’l)
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resp. €, (a1, as)) — (E, Mlai, (MNay))
between moduli, and hence the right action induces an isomorphism

Gal(Y(MN) - Y1(N)) = GI'e(N, 1, M)
resp. Galfoy) = GI'e(N, £, M).

The composite pro @y is given by the natural transform
(E, (a1, @2)) = (E/{MNay), Mla; + (MNay))

between moduli, and hence the fingle morphisnary : Y(MN¢) — Y(MN) given by
the natural transform

(E, (a1, @2)) = (E/{MNa2), (@1 + (MNay), faz + (MNa1)))
between moduli makes the diagram

Y(MN¢S) -5 Y(MN)

o | |

Yi(N, ) —225 Yy(N)

ab ,
commutes. For ang/ A ] € GI'e(N, £, M), we have an equality

-1
o ((E, (al,az))[ . 2)) = oy [[ : 3) (E, (o, Clz))]
aa] — Car —bag + da
ou ((E( atlj - bcz’ adl— bc 2)))

(E/(MNa1>, (a“%ciz +(MNay),

ad-b

—tbay + d(€ay)
ad - bc

+(M Nal>))

a ¢b
¢1c d

-1
J (E/{MNay), (a1 + {(MNay), faz + (MNay)))

(. (a1, 02)) ad, (( 2 b ))

and hence the group homomorphismigN, £, M) — GI'¢(N, 1, M) obtained as the com-
posite of the natural isomorphisms Ga)(= GI'¢(N, £, M) and GalfY(MN) —» Y;(N)) =
GI'e(N,1, M) and g v).: Gal@) — Gal(Y(MN) - Y1(N)) coincides with the well-
defined group homomorphism

ad,m: GTe(N, 6, M) —» GIe(N,1, M)
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a+ MN&Z b+ MN¢EzZ a+ MNZ tb + MNZ
c+ MN¢zZ d+ MN¢ez (%) + MNZ d+ MNZ |

As a consequence, the homeomorphic group isomorphism

o: lim Gal@w) - lim Gal(Y(M!N) - Yi(N))
MeN\{0} MeN\{0}
induced by the compatible systenar({).)men o cOrresponds to the inverse limit of the
compatible system (adi)m\o; through the natural isomorphisms above, and hence is
compatible with aglthrough the natural homeomorphic isomorphisms

GIe(N,0) = lim GIe(N, ¢, M)
MeN\{0}

GI¢(N) = lim GIe(N, 1, M1).
MeN\{0}

Lifting the restriction G'«(N, £) — ad,(GI«(N, £)) c GI'«(N) of ad,, we fix an identifica-
tion 1(Y1(N, €)) = m1(Y1(N, £), X) = m1(Y1(N, £),y) so that the diagram

et Y (prZ)* et —
77 (Y1(N, £)) — 77(Y1(N), X)

1
& [

GIe(N,6) —s  GIW(N),

commutes.
Secondly, we have natural isomorphisms

g  ~ 1(Y1(N),X) 1(p)
P = Req vunonen.) (Res. amn(M-£))

= Reglv)  (Regi®  (M.p))
il(vl(N,f»,th/) i (MoP)

Re§1(Y1(N)aY) (Regfl(p) (M,p))

©

5!
Y
I

71 (Y2(N.)).(pr)) 71(Y1(N),%)
dy(GFe(N.0) ( (0) )
- Res Red® M
e?m(vl(N,f)),La_[) egaldy(Gl"e(N,é’))( -P)

- Le(N.0) Le(N) 1(P)
B Reil(vlm,f)),tm) (Re Gl'e(N.0).ady) (Reglefe(m(M’p)))'

By the functoriality of the correspondence, ()v,v), the R-linear d«(N, ¢)-equivariant
homomorphism

. 1(p) [e(N) 1(p)
L Re%fe(N,e)(M’p) - Re{Gfe(N,[),ada) (Re%fe(N)(M,p))
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m — p(a,m)

induces a morphisnp: pr;.# — pr,#. We define arR-linear endomorphisni, on
H54(Y1(N)g. -7) as the composite

pr; Hei(9)
A (1(N)g, ) = At (Va(N, O)g, pr.F) ——

A (a(N)g, 7)),

where (ps). is the trace map associated to the finite Galois covering pr

(pry)-

Finally, we verify that the isomorphism in the assertioff jsequivariant. Put

To(Ne) (N%Z ;)nSLZ(Z)
(N0 = (1:1522 1+ZNZ)mSLz(Z):I“l(N)mFO(Nf)

= Ty(N)Nna i (N)e c SL(Q).

Take a presentatiofy (N)a'T'1(N) = ||, ['1(N)e; of the right coset decomposition. We
have

Ty(N)/ (T1(N) N aTy(N)a ™)) = |_| a7 (Ty(N) N ey (N)a ™).
i=1

For eachy € T';(N) andi € NN [1, n] let j,; € NN [1,n] denote a unique integer with
aiy € I'(N)a; ;, and puty; = aiya; e I';(N). The trace map (p). corresponds to the
R-linear homomorphism

Tr H (TN . Re§e ) (ReS M. 1)) = H (Ta(N). Redi M. )

sending the cohomology class of a 1-cocyléy (N, £) - Regt (), o (Reg H(M. p)))

to the cohomology class of the 1-cocycledr(I';(N) — Re j((Npg(M,p) given by setting

'mmw—zpaaca#mm

for eachy € I';(N). Therefore the endomorphism ort(H;(N), Re§1((£;(M p)) induced
by the action off , on %’;%(Yl(N)Q, Z) through the isomorphism in the assertion sends the
cohomology class of a 1-cocyate I';(N) — Regl(p)(M p) to a 1-cocycler’: T'3(N) —

Regl((,g;(M p) given by setting 1(N)
¢)=Tr(pocoad)() = ) p(ai'e’ ¢ (c(ad.(ad (1))
i=1
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n n

p(oitet pla.cy)) = ) p(aiteta.cn))

i=1 i=1
n n
= > p(leit.cm)) = > p(ah.c)) = TQ))
i=1 i=1
for eachy € I';(N). Thus the isomorphism in the assertio jsequivariant. O

3 Interpolation of Etale Cohomologies

Henceforth, we only consider the cgse 2. In this section, we interpolate the family
(Synf‘*z(Zz,pzﬁ))ﬁ":z alongk € Z,. Their scalar extensions by, are irreducibleQ,-
linear representations di;(p) of pairwise distinct dimensions. In order to compare
them with each other, we construct infinite dimensional extensions of them, which share
the underlying topologicat,-moduleZ;.

3.1 Interpolation along the Weight Spaces

In this section, we construct a profinig[I1,(p)]-module interpolating finit& [ I1o(p)]-
modules (Syr?(Zz,erﬁ));‘;o along weights1 + 2 € N. As is dealt with in§2.3, an action
of I1;(p) plays an important role for a geometric construction of a family of Galois repre-
sentations. To begin with, we extend several functiond'da the weight spaces, and
W = Hom™™(Zx, Zx). For eachif, m) € Z, x N, we set

It gives a unique continuous functid), x N — Q, extending the binomial cdiécient
function on the dense subggh, m) € N x N | n > m} ¢ Z, x N. Since the image of the
dense subsd{n,m) € N x N | n > m} by the binomial cofficient function isN c Z,
the extended binomial céiicient gives a continuous functidi, x N — Z,. For any
(d,n) € (1 + pZp) X Zp, We set

d" = Z( E ](d—l)h.
h=0

The infinite sum converges in4 pZ,, and it gives a unique continuous function1
PZp) X Zp — 1+ pZ, extending the restriction (£ pZ) x N — 1+ pZ of the exponential
functionQ* x Z — Q*: (d,n) — d". Everyn € Z, associates a continuous character
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Xpn' Zy — Zg in the following way. To begin with, we defingynliipz,: 1+ pZp —
1+ pZ, by settingy pnl1+pz,(d) := d" for eachd € 1 + pZ,. The infinite sum

i _1y1
d(p) :=Z( e ](dp-l—l)“

h=0
converges in & Z, for anyd e Z5, and the map

O(P):Zy — 1+pZp
d ~ d(p

is a continuous group homomorphism whose restriction on the subgreupz} c Zg

is the identity map. We define a continuous charaetgr Z; — Z; as the composite
of (-)(P), Xpnli+pz,, @and the inclusion ¥ pZ, — Z7. On the other hand, the canonical
isomorphism

Zy - Fyx(1+ pZp)
d — (d+ pZpd(p)
gives a well-defined decomposition
Z/(p-1Z)xZ, — W
(o +(P—1)Z,np) = XneXpny-no
as a group, where we denote y < W the continuous characté&y — Zg: d — d" for
eachn € Z. For eachy € W, we denote byr’(y), ny(y)) its image in £/(p — 1)Z) x Z,,.
By definition, we haver{’(ypn), Np(xpn)) = (0,n) for anyn € Zy,, and @P(xn), Np(xn)) =

(n+ (p-1)Z,n) for anyn € Z. For eachd, ) € Z; x W, we putd® := x(d) € Zj. For
each {,m) € Wx N, we set

()= (" e

It gives a unique continuous functiol x N — Z, extending the binomial cdgcient
function on the dense subgéh,m) € N x N | n > m} with respect to the embedding
N — W: n — y,. Henceforth, we often abbreviatg to n for eachn € Z. We remark
that the dfference between the two embedditgs> W: n— y,andN — W: n— y,,

Is not important at all in this paper if a reader is interested only in an actidh (q).

. . . b
Proposition 3.1. Lety € W. For any(A, a,i) € Tlo(p) x Zj; x N with A = ( 2 ) and

d
@ = (@), the infinite sum

S min) ey (el o O i
o (A @) = Za,- ( h )[ 1;[ (anv)—m)) ap hmdx j+h

j=0 h=0
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converges iz, and the map

pX:HO(p)XZ§ - Z§
A0 (pA),

is continuous.

Proof. Let (A, a,i) € TIp(p) x Zj x N with A = [ 2 Z ) anda = (aj);2,. For anyj € N,

we have
CJ_h J_h i gy 1
max . = L]h < max |pldPE-Z)
heN (J—h)' heN |p|zr 1[?{J heN
0 < h<min{i, j} 0 < h<min{i, j} 0 < h<min{i, j}

J—}OO

— |p|(J'—min{i,J'})( -51) 50,

where| x| € Z denotes the largest integer which is not larger tkdor eachx € R, and
hence

min{i, j} . i+j—-h-1
o5, () [ oo -mfe ]

It implies thatp, (A, @); converges irZ,. The continuity ofp, follows from the conver-
gence of the infinite sum in the definition pf(A, )i, because of the continuity of each
term of the infinite sum. O

Following the abbreviation of, ton, we putp, := p,, for eachn € Z. In order to verify
that the topological spac@ﬁ, p,) With an action of the underlying topological space of
o(p) is a profiniteZ,[I1o(p)]-module for anyy € W, we compare it with Syf{z2, pZ%)
for infinitely manyn € N.

Lemma 3.2. Letn € N. For eachi € NN [0, n], put
€nj = ( ? )x‘yni e SynT’ (Zﬁ)
Then the map
@n: (Zy.pn) — Sym‘( 2.p)
(@i)iZo Z @;€nj
i=0
is a continuou<Z,-linear Iy(p)-equivariant homomorphism.

52



Proof. Let (A ) € IIp(p) X Z§ with A = ( 2 Z ) anda = (a;)2,- We have

@alon(A @) = Tal(oa(A, 2))20) = O polA adien;
i=0

n oo min{i, j} i i+j-h-1 heich Cj—h n-i—j+h n i n—i
= 22 (h) | [ -y (i)xyn

j=0 h=0

n z min(i, j} i i+j-h-1 hh cl-h neicjsh [ M) i
XS (IES e =

=0 h=max0,i+j—-n d=i
n min{i, j} nl

- Z 3 }h!(i—h)!(j—h)!'(n—i—j+h)!

i=0 j=0 h=max0,i+j-n
n

ahpi-hgi-hgn-i=i+hyiyn-i

n minfi, j} . .
n . n-— . iy
=2l 2 D (t‘w)(ax)“(cy)lh(i d)(bx)' "y
=0 ) )% h=max0,i+j-n) N
n n j J o n_j .
= 2l Z(h)(axﬂcy)l—“Z( " )(bx)“(dy)”-l-“
j=0 | s =0
n n
- S (oo s 2) S (7)o
j=0 j=0
n
= Synf (ng) A, Z ajen,j] = Synf (,Ozg) (A, @n(a)).
j=0
Thuse, is aZp-linearIly(p)-equivariant homomorphism. O

For eachn € N, we denote by Sy§z3) c SynT'(Z3) the image ofw,. It is a lattice of
SynT\(Q3) with aZ,-linear basisé, ), and is &,[ITo(p)]-submodule SyH(Z3, pz2).

Definition 3.3. For each € N, we put

L= SynT (Zf, pZ%) Sy (Zﬁ)

See Example 1.29 (i) for this convention.

The modified symmetric produc¥, has good congruence relation with respect to
n € N as is shown in the following.

Lemma 3.4. For any(r, ny, M) € (N\{0}) x Nx N withng < n; andn, —ng € p"~(p-1)Z,
the canonical projection
w[h,no: "S/pnl/pr —> gno/pr
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Ny No
Z i€y = Z Qi€ i
i=0 i=0

is a(Z/p'Z)-linear Ip(p)-equivariant homomorphism.

Proof. Let@! @ (Z,,0,)/P" — (Z,,py)/ P denote idy 2y for each ,x') € Wx W,
and @y, : (Z?j,pn)/pr » Z,/p" denote the surjectiveZ( p"z)-linear Iy(p)-equivariant
homomorphism induced by, for eachn € N. Let (yv,x’) € W x W with y — ' €
p~Y(p - L)W . For anyd € Z%, we havedt — d¥' € p'Z,. By the definition ofwy, 1o
we havew;, . o @y = @, o @, . Since the matrix representation @f with respect
to the canonical topological basiszﬁ Is given as a function op € W belonging to the
closedZ,-subalgebra of G/ Z,) generated by polynomials of the functions— ny(y)
andy — x(d) for eachd € Z; with codficients inpZy, @y, ,, is a (Z/p"Z)-linearIly(p)-
equivariant isomorphism. Thus the assertion follows from the surjectivity;of O

For any ¢, ng) € (N\{0}) x N, the family

(é/ﬂnw p'-l(p—l)m/ pr )::0

forms an inverse system of finig[I1o(p)]-modules by the canonical projectionsy( , )n,.n, -
Lety € W. Letr € N. Although we have not verified that the continuous actipof the
underlying topological space ok (p) is a continuous action dly(p) yet, it is aZy-linear
action, and hence the conventicZﬁ(pX)/ p"*! naturally makes sense.

Definition 3.5. For eachy € W, we denote by € N the smallest non-negative integer
satisfyingy — " € p'(p — 1)W.
Let y € W. Following the convention in the proof of Lemma 3.4, the family

w_r+1 ~r+1

( O+p (p-1)m © w)(,)(g)w'(p—l)m)mzo
is a compatible system ofZ{ p'+'Z)-linear ITy(p)-equivariant (respll,(p)-equivariant)
homomorphisms, and induces a continuoZgp*'Z)-linear Iy(p)-equivariant (resp.
I1,(p)-equivariant) homomorphism
; 1
(Z5,p)/P™ = 1M (Lo -1/ D)

meN 0o
")+ p (p—
— Yoo x+pf(p-1)m —
(@), + (Zi:O ai%«(')+pf(p—1)mi) 0

It is a homeomorphic isomorphism because the canonical projections give natural identi-
fications

N ~ | n+p" (p-1)m o i
Ly = L@Zp = Mgmpf(p—l)m
meN meN

as profiniteéZ,-modules for anyr € N.
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Definition 3.6. Letn € N. We put

Fnl pr = gn/pr

for eachr € N, and set
Fn = (ﬁn/ pr);x;o = %
See Example 2.9 for this convention.

We consider the action of Hecke operators on the profﬂ:ﬂt@al(@/@)]-module
(M.p) = #a (a(N)gs Fio-2)

for eachky € N N [2,0). We denote by I’N C Endzp[Gal@Q)](M,p) the commutative
Zp-subalgebra generated by Hecke operators. Siheea finitely generated ,-module,
Tﬁ;,\, is finitely generated asZ,-module. We endow ;’EN with 'Fhe p-adic topology, and
regard it as a profinit&y-algebra. The continuous action o;f)",g on (M, p) induces a
continuous action of @‘,N on (M, p)qee (Definition 1.23, Example 1.29 (ii)). Since the
embedding?;, — Sym“(Zf,,pZ%) induces &p-linear My(Z)-equivariant isomorphism

Qp ®z, £ = Qp ®z, SynT' (Z%’Pzg) = Synt (Q%,PQg) ,

we have
Qp @z, 2" (Ya(N)g, F) = Qp &2, A (Yl(N)Q, SynT (Rl(rrN)* (Zp)El(N)))

by Proposition 2.13. Therefore the Eichler—Shimura isomorphism ([Shi59Eb@&me

1, [Hid93] 6.3 Theorem 4) and the comparison theorem of cohomologies ([SGA4] Ex-
po¥ XI Theoeme 4.4 (iii), [SGA4] Expos XVI Corollaire 1.6) give a homeomor-
phic Z-algebra isomorphism Q’-N)free = Ty~ preserving Hecke operators. We regard
(M, p)iree @s a topological  y-module through the isomorphism. It is finitely generated
as az,-module, and hence is a profinitg, -module by Proposition 1.21.

Theorem 3.7.For anyy € W, (Zﬁ,px) is a profiniteZy[I1o(p)]-module.

Proof. By the argument above, we have a homeomorfhidinear I1y(p)-equivariant
iIsomorphism

(Zp-py) =1iM ((Z, )/ P™*) = M M (L1045 -1/ P)
reN reN melN

of topological spaces with actions of the underlying topological spatig(q). Since the
target is a projective limit of finit&y[I1y(p)]-modules, the source is a profinig[I1o(p)]-
module. O
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Corollary 3.8. The equality
minfi, j} . . .
(_1)m—h n-m J m — n-|J J
=~ I—m m h i—h h
holds for any(n,i, j,h) € Z, x N x N x N with h < min{i, j}.

Proof. We remark that the assertion is originally proved by Yuya Matsumoto with no use
of p-adic representation theory. It is easily seen that the assertion is equivalent to the
condition thajo,(AoAr, @) = pn(Aa, pn(Ag, @)) for any (Ag, Aq, @) € TIg(p) X Io(p) ><Z§‘I by

p-adic Lie algebra theoryp-adic analysis to Baker—Campbell-Haugtidormula, and
Schneider-Teitelbaum theory. Thus the assertion follows from Theorem 3.7. 0O

Remark 3.9. Theorem 3.7 is deeply related to [PS11] 3.3 and 7.1. Robert Pollack and
Glenn Stevens defined a continuous right action of the topological group

X

_| Zp Zp
Yo(p) = ( pi’p Z, )m GL2(Zp)
of non-negative integral weight on the topologicalZ,-algebra of distributions ofz,

in [PS11] 3.3, and proved that the closgg-subalgebra of distributions with integral
moments, which is canonically homeomorphically isomorphiZdiz]], is stable under

the action ofZy(p) in Proposition 7.1. By the canonical topological basf¥,( of
Zp[[2]], we identify Z[[ Z]] with Z‘Rj. The mafIy(p)NGL2(Qp) — Zo(p)°P: A (A)P =
det(A)(A-1)°P associating the cofactor matrices is a homeomorphic group isomorphism,
and hence the notion of a right action X§(p) is equivalent to that of a left action of
IIo(p) N GL2(Qp). Therefore we obtain a continuous actjgnof Iy(p) N GL2(Qp) of
non-negative integral weight on Zlg. The homeomorphiZ,-linear Iy(p)-equivariant
isomorphism

(ZIF\)I’ p)() = I(@ l(@ (D?j((rhpr(p—l)m/ pr+1)
reN meN
for ay € W in the proof of Theorem 3.7 ensures thaki& y, for ann € N, then the
restriction ofp, on the subgrouply(p) N GL2(Qp) c Io(p) coincides withp;,. Thus the
construction of Zy, p,) is a generalisation of that oZﬁ,p;,) in the sense that the former
one deals with a general weight afig(p) while the latter one deals with a non-negative
integral weight andIo(p) N GL2(Z)).

Remark 3.10. We have a geometric construction & (p,) in the case wherg =
xpn forann € Z,. In Example 1.37, we constructed a linearly complete topological
Zp[Ho(p)°P-module (CZp, Zp), (My).) using p-adic linear fractional transformations.
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Sincep-adic linear fractional transformations apgh(cz+d) for any €, d) € pZyxZ; are

rigid analytic functions orZ,, the p-adically complete&Z,-subalgebr&,{z} ¢ C(Z,,Z,)
consisting of rigid analytic functions of Gauss norn 1 is stable under the action

of IIo(p)°*. The lwasawa-type dual ([STO2] Theorem 1.2) of the Ban@gtalgebra
Qp(z) = Qp ®z, (Zp{27) is the profiniteZ,-algebraZ,[[Z]] of distributions with integral
moments. Although the Iwasawa-type duality for Banach representations of a profinite
group ([ST02] Theorem 2.3) does not extend to duality of Banach unitary representations
for a topological monoid in a direct way, it is easily seen that the continuous action of
IIo(p)°° on Z,{z} induces a continuous acti('pjpm of IIo(p) on Zp[[Z]], andp)’(’p,n corre-
sponds tg,,, through the identificatio[[Z]] = Zﬁ. This gives an alternative proof of
Theorem 3.14 for the case where the wejgld of the formy,, for ann € Z,.

Remark 3.11. Let y € W. We have a natural identification

) N N r+1\%
(Re§f<vl<w),x)(zp’PX))Yl(N) = (Foroam/ P, g

as profiniteZ,-sheaves oiY;(N) by Theorem 3.7. Whegp = x,, for somen € N, then we
have an identification

o(p) N ~(a r+1\>
(Reé,jl(Yl(Nm(zp, pn))Yl(N) = (P P o

as profiniteZ,-sheaves oiY;(N).

Remark 3.12.Letn € N. As is constructed in Lemma 3.2, there is a canonical projection
Wy (Z%‘,pn) -» %,. Taking the lwasawa-type dual ([ST02] Theorem 2.3) in Schneider—
Teitelbaum theory, we obtain an exact sequence

0— SerF(Q%,pQ%) — (C(Zp, Qp), pp) — (Ker(@n)”, (onl ker(@n))*) — 0

of unitary Banact,-linear representations, and (ket{", (onl ker(wy,))") is an infinite
dimensional irreducible unitary Banadh,-linear representation. Thu%ﬁ,pn) is an
infinite dimensional extension ok, by the lwasawa-type dual of an infinite dimensional
irreducible unitary Banact)p-linear representation.

Now we interpolate the family (Syfrt(zZ2, pz2))i, With respect to weightk as ele-
ments ofW. We putAg = Z[[ X]]PP-D. We regardA, as aZ,-submodule of O\, Z,)
by the embedding

Zo[[XPPY = CWZy)
F LN o (v Fo(nply) —n®)).
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This embedding is an injective continuous homomorphism from a compact module to a
Hausdoft module, and hence is a homeomorphic isomorphism onto the closed image.
For eachy € W, we denote by spthe continuous surjectivé,-algebra homomorphism

Ao - Zp
f - fly),

and call ita specialisation map For eachy € W, we regard ZI;\,‘, py-2) as a profinite
Ao[Io(p)]-module through sp

SinceN N [2, o) is dense iV, the evaluation map

sp::“sg:Ao — Hzp
k=2 k=2
f = (spfii.

is an injective continuoug,-linear homomorphism between compact Haugdmod-
ules, and hence is a homeomorphic isomorphism onto the closed image. In particular, we
regardAy as a closed.,-submodule of |2, Z;, by the embedding

sp'i Ay o ﬁz§
k=2
(f)Zo = ((sALf))iZo)kia:

Through the homeomorphic group isomorphig¥ne (Z/(p — 1)Z) x Z,,, we identifyW
as the analytic space given as the disjoint uniop ef1 copies ofz,. As a closedZ,-
subalgebra of G/ Z), Ao consists of locally analytic functions &) whose restrictions
on{+ p(p—-1)W c ¢+ (p- 1)W = Z, are given by single power seriesai[[ X — £]]
foranyl € Nn [0, p(p - 1) - 1]. In particular, it contains, and the characteristic
functions L. pp-1w Of { + p(p — 1)W for eachl € NN [0, p(p — 1) — 1]. We denote by
z € Ao the element corresponding g, and bye, € A, the idempotent corresponding
to 1, pp-yw for each e NN [0, p(p — 1) — 1]. We putz = ze € Aq for each €
N N[0, p(p — 1) — 1]. Identifying e, Ao With Ag/(1 — €)Ao = Zp[[X]], we obtain a
presentatiomo = [T ™ Z,[[z - £]]. Let (o, fo) € N x C(W.Z,,). We define a map

fo
[hO)ZW — Zp

(fo(X))
X P .
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It is a polynomial function orf, with codficients inQp, and hence is continuous. There-
fore we regard it as an element o\E(Z,). Let (d, ) € (1+ pZ,) x C(W, Zp). The infinite
sum

d’ ::i( :\ )(d—l)h

h=0

converges in  pC(W, Z,) c C(W,Z,) becausel — 1 € pZ,. Suppose € Ag. We have

f =1 (h = 0)
( h ](d_l)h{ € pZ[fl c Ao (h=1)

because we have

(d-1)
h!

h(p-2)

= |d - 1" pI >3] < |p" 2 ¥ = |pf = | PT { B

<1l (h=1)

by p # 2. SinceAy is closed in C{\Z,), d' also lies inA,. Since the embedding
Ao — C(W, Zp) is a homeomorphism onto the image, the infinite sum in the definition of
d" also converges td" in Ag. More concretelyd' lies in the closure of ¥ pZ,[f] c Ao.

By the universality of Iwasawa algebra, the continuous group homomorphism

1+NZp, — CWZy)*
y = Y
induces a continuous,-algebra homomorphis,[[1 + NZp]] — C(W,Z,). We remark

that since I+ NZ, is contained in & pZ,, we havey®?) = y™& = y(y) for any @, x) €
(1+ NZ,) x W. Through the Amice transform

Zp[[X]] - Zp[[1 + NZp]]
X — [1+N]-1,

it corresponds to thg,-algebra homomorphism

Zel[Xll — CW.Zp)
X — (1+Ny?-1,

which is injective by the Weierstrass preparation theorem and the fact that the exponential
function (1+ N)* is a transcendental function. This embedding factors through-
C(W,Z,), because\, is closed in C{V, Z,) and theZ,-subalgebra of G, Z,) generated

by (1+ N)? € Ag is dense in the image &,[[1 + NZp]]. We regardA, as a profinite

Zp[[1 + NZ,]]-algebra through the embedding by Corollary 1.19.
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Proposition 3.13. For any(A, F, i) € IIo(p) x Ay xN with A = [ 2 Z )andF = (F)3o

the infinite sum

o0 minfi,j} , . i+j-h-1 - C s
pe_a(A, F); ::JZ:;F,- ; [ )( (z-2- m)] a'n “( —h)ld 2-i-j+h

converges im\o, and the map

pe2: To(p) x Ay — Ag
(AF) = (pe2(A Fi)iay

is continuous.

b

d
the infinite sum in the definition gf,_»>(A, F); lies in Ag by the argument above. For any

x €W, we have]‘[fn;t(z— Np(x) — M) € pAg + (z° — 2)Ag. The family

Proof. Let (A, F,i) € IIo(p) x Ay x N with A = ( 2 ) andF = (Fj)‘jx;o. Each term in

{(PAo + (Z° — DA0)'Ao | h € )

forms a fundamental system of neighbourhoods of 0, because of the presentation

p(p-1)-1 p(p-1)-1

ro= || zZollz-l=lm [] @/0oDIz-d/z-O"

=0 r,heN =0

We have

minfi, j} i i+j-h-1 —_ '—h A
F) hz (h]{ H (z-2- m)) s

5] - g
Ao C Z p'(2° -2l 5 " Ag € (P + (22— DA0) 7
r=0

-1

H(Z—Z— m)

me=i

foranyj € Nwith j > i, and hence._»(A, F); converges im\, by the linear completeness
of the profiniteZ,-algebraA,. The continuity ofo,_, follows from that of

npkz Ho(p)anN - HZN

(A, (a2 O)k 2) (Pk 2(A, (ki)Z0))k2s

becausg T, pk-2 o (idn,(p x sPY) = sp' o p._2. O
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Theorem 3.14.The pair(Ag, p.-2) is a profiniteAq[IIo(p)]-module, and the map

(A§’po—2) - ﬁgk—Z

(f)Zo & Sh( fi)ek—z,i) ,

i=0 k=2

IS an injective continuou&o-linear Ip(p)-equivariant homomorphism.

Proof. The embedding sf1 (Ay. p.—2) = [Tia(Zp. pk-2) is an injective continuous -
linearIly(p)-equivariant homomorphism onto the closed image by the definitip of
Since its target is a profinitAo[IIo(p)]-module, so is the source. Let (A, p.-2) —
[T, %> denote the map in the assertion. Theis a continuousAp-linear Iy(p)-
equivariant homomorphism because it is the composite'bfigg the canonical projec-
tion

l—lwk_zi ﬁZ§ — ﬁgk—Z
k=2 k=2

k=2

(i)l P (@2 ((@ki)iZo)ken »

which is a continuoug\o-linear Ily(p)-equivariant homomorphism by Lemma 3.2. Let
f = (f)2, € ker@). Foranyi e N, fi: W — Z, is zero on the subsgin [i + 2, co) which
shares infinitely many points with+ p(p — 1)W for each e NN [0, p(p — 1) — 1], and
hencef; = 0 by the identity theorem for rigid analytic functions 6 p(p - 1)W = pZ,
foreachf e NN [0, p(p— 1) — 1]. Thusf = 0. We conclude thatis injective. O

Remark 3.15. The profiniteAq[I1(p)]-module AL, p._») also admits a geometric con-
struction usingp-adic linear fractional transformations and distributions. We define a
continuous action & m, of I1o(p) oNZ, X Z,, by setting (xmy)(A, (v, 2) = (x. Mp(A, 2))

for each @, y, 2) € Ilo(p) x W x Z,,. Then by Proposition 1.33, we obtain a commutative
linearly completeZ [T1o(p)]-algebra (CYV x Zp, Zy), (1 X my)¥). The map

op
( . ] > ((ez+ d): (. 7) = xo(c + )
satisfies the condition in Corollary 1.36 with respect t& fin,. Therefore we obtain
a linearly completeZ[I1o(p)°Pl-module (CW X Z,, Zp), (1 x mp),/). Since 1x m, and
x(cz+d) for any (,d) € pZ, x Z; are rigid analytic functions, thp-adically complete
Zp-subalgebray{z, WPt ¢ C(Zp X Zp, Zp)PL = C(Z3P " X Zp, Zp) = CW X Zp, Zp)
consisting of rigid analytic functions of Gauss norml is stable under the action of
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Io(p). Similarly, thep-adically complete,-subalgebrg [ X% ! Z,(z, — £, w} ¢ C(W
Zy, Zp) consisting of locally analytic functions whose restriction on the subspaee (
p(p - )W) x Z, ¢ W x Z, is given as the restriction of a rigid analytic function on
W x Z, of Gauss nornx 1 for anyl € NN [0, p(p — 1) — 1] is stable under the action
of ITo(p). The Iwasawa-type dual dff™® ' Z,(z, - £, w} is naturally identified with

M2 Y 2oz, — £ Wl = Ao[[w]] = AY, and hence (k my,), induces a continuous

action ofIlo(p) on Ay. The action coincides with,_.

For eachk € N N [2, ), we also denote by githe continuougy-algebra homomor-
phism obtained as the composite

Sh

We regard En as a profiniteAq-algebra through gy Corollary 1.19. It is easy to see
thatsp: Ag — Ty is aZy[[1+NZp]]-algebra homomorphism. We recall that we defined
the structure of [ as a profiniteZ,[[1 + NZ]]-algebra in§1.3.

We regard

ko
1k_[ A3 (V(N)g. Fic-2)
=2

free

as a profinite T, n-module through the embedding

Ko
TN = nTk,N,
k=2

and also as a profinit&,-module through the evaluation

ko ko
spc Ao - Z8 s [ | T
k=2 k=2

F — (Sp(F)L,

The actions of T, n andAg give two actions oZ,[[1 + NZ]], and they coincide with
each other. Therefore we regard

free

ko
]ka 2 (YiN)g. Fca)

as a profinite (Iko,Né)Zp[[HNZpHAo)-module in the way in Example 1.17. Taking the in-
verse limit, we regard

[ T2 (uN)z. Fie)

k=2

free
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as a profinite £oTy)-module.

We denote by
f Synt?(z2) dk ]_[ Sym 2(z2)
Zp k=2

the image of {3, p._») by the embedding in Theorem 3.14, and put

fz Lotk = (]i gk_z) [ fz Synts2(z2) dk) .

It is a profiniteAq[I1o(p)]-module admitting specialisation maps

SRy, - f L0k > Ao
Zp

given by the canonical projections for edghe N N [2, ). For a formal symboH e
{#¢1, H'}, we denote by

f H ([1(N). .2) dk

Zp
the image of the continuous,-linear Hecke-equivariant homomorphism

= M2,k T
H (Fl(N),f gk—zdk) -5 | | H (T1(N), Z-),
Zp k=2

which is a profiniteAg-module endowed with an action @f for each prime numbef
andS,, for eachn € N coprime toN. By Lemma 2.2, we have a natural homeomorphic
Ao-linear isomorphism

[ @S [ @, Fed

Zp Zp

becauseAy, p.-») is a first countable profinitdo[I1y(p)]-module.

We set

f ﬁk_zdklz (f Zk_zdk]
Zp Zp

See 2.9 for this convention. We have specialisation maps

Y1(N)

H S%
f/;%(vl(N)Q, fz yk_zdk)ﬁjzg%(vl(N)Q, Fro-2)
p
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associated to the specialisation map dpr the corresponding topological,[ITo(p)]-
modules for eacky € N N [2, ). We denote by

fEE Hy (Yl(N)@’ yk—z) dk

Zp
the image of the continuous,-linear GalQ/Q)-equivariant homomorphism

= M2,k T~
A (Yl(N)Q, f ﬁk_zdk) LN ]‘[%@1 (Ys(N)g: Fica)
Zp k=2

and it is a profiniteAo[Gal(Q/Q)]-module. By Proposition 2.13, we have a natural home-
omorphicAe-linear isomorphism

fm Ay (Yl(N)@’ yk—Z)dkE fEE H' (T(N), A2) dk,

Zp Zp

on which the action of, for each prime numbe&frandS,, for eachn € N coprime toN on
the right hand side commutes with that of GalQ) on the left hand side by Proposition
2.16.

Proposition 3.16. The specialisation map
1 ? a Sho 1 a
A [Yai(N)g, f Fi20k] —> ot (Yi(N)g, Fi-2)
Zp

given by the canonical projection is surjective for dgy= N N [2, o).

Proof. By the definition of the continuous cohomology and Proposition 2.10, we have
natural homeomorphi&q-linear isomorphisms

[l

’%%(Yl(N)Q’ f L%-zdk)
Zp

4 (Yi(N)g. Fi-2)

S (Fl(N), fz ) Zk_zdk)

p

A (T1(N), Lo-2) -

IR

Therefore the assertion follows from Proposition 2.4. O

For a formal symbol

(Hilz € {(%ﬂl (T2(N), gk—2)):;2 ’ (Hl (F'1(N). gk‘Z))Zz ’ (‘%ﬁ (Yl(N)@’ yk_z))zz}

f (Hreedk
Zp
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the image of the composite

f Hdk — l—[ H¢ —» H(Hk)free,
k=2 k=2

Zp

and regard it as a profinit®,-module endowed with a continuous actionTeffor each
prime number andS,, for eachn € N coprime toN when Hy),2, is a formal symbol
corresponding to cohomologies o¥f_,);” ,, and with a continuous action of Gal(Q)
when Hy),2, is a formal symbol corresponding to cohomologies.&f(,);”,. We have
natural homeomorphi&g-linear isomorphisms

IR

f H! (T'1(N), L-2)iree dk

Zp

f A (T1(N), L 2)iree dK
Zp

R

[ A (g 7,

Zp
such the first isomorphism is Hecke-equivariant, and the actioh, dbr each prime
numberf andS,, for eachn € N coprime toN commutes with that of Gal{/Q).

Theorem 3.17.The action ofT, for each prime numbetandS,, for eachn € N coprime
to N induces a well-defined faithful continuos-linear Gal(Q/Q)-equivariant action

& B
Tn % f H (Yl(N)@’ ’%“Z)freedk - f Ha (Yl(N)@’ L%‘_Z)freedk
Zp Zp

OfTN.

Proof. We put

B

%% (Yl(N)@’ ngl‘_z)free dk

.”.
N

kel

M

s

A (i(N)g: Fio)

free

=~
Il

2
It follows from the natural isomorphism ﬁOTN)free — Ty,n that the action of Hecke
operators gives a well-defined faithful action

TkO’N X %% (Yl(N)@’ gzk_z)free - L%pe:tt (YI(N)@’ yk_z)free

for anyky; € N N [2, ). Therefore the action of, for each prime numbef andS,, for
eachn € N coprime toN induces a well-defined faithful acticfy x M — M, which is
continuous by the universality of a direct product, because it is given as the inverse limit
of the continuous actions

Tt X ]_[ F(Ya(N)g, Fic-2), ]_[ t(a(N)g» Fic2)

free

65



for eachk; € N N [2,00). Since §,n IS generated by Hecke operators for dgye

N N [2, ), the Z,-subalgebraA c Ty generated by Hecke operators is dense by the
definition of the inverse limit topology. Therefore for anly, ¢) € Ty x L, T(c) lies in

the closure of the image df in M. Sincel is compact andM is Hausdoff, T(c) lies

in the image ofL. Therefore the action of, for each prime numbef andS,, for each

n € N coprime toN induces a well-defined faithfd,-linear GalQ/Q)-equivariant action

Ty X L — L, which is continuous because the topologyféf%@%(Yl(N)@, Fk-20K)Free
coincides with the relative topology 1y _, %@%(Yl(N)@, Fk-2)free- O

We putAgTy = Aoézp[[1+NZp]]TN. By the action ofl'y in Theorem 3.17, we regard
? 1
I A (00 i), 0k

as a profiniteA Tn[Gal(Q/Q)]-module. It is a huge module, and we cut it by a slope
condition in the next section.

3.2 Restriction to Families of Finite Slope

Let s € N. We extract the component of sloges from the huge cohomology dealt
with in the end of§3.1. For conventions of Hecke algebras of finite slope,§4e@. For
eachky € NN [2, o), we set

At (N Fio2) = (Tiin@ron et (YalN)g: Fio2)

free’

where T°y is regarded as a profinite, K [Gal(Q/Q)]-algebra by the trivial action of
Gal@Q/Q). ltis a profinite 'I:OfN[GaI(Q/Q)]-modules finitely generated &,-modules.
We putAcTy® = Ao®z vz TxS (resp.AcTh Y = Aoz nz, TR Y), and regard it a
profinite AgTn-algebra. We denote by

f ) A (N Ficz) dk

Zp

the image of the natural continuous homomorphism

B
AT ®nqry f et (i(N)g, Fic2)

Zp

freedk - rl %% (Yl(N)@’ gk_z)q ’
k=2

and regard it as a profinite, TS [Gal(Q/Q)]-module.
Letky € NN [2, ). The truncation maps
Tt Ay — AY
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(Fi)2y + (Fo,...,Fip-2,0,0...)
and
Tk0’+:A§ — A§
(F)i2o » (0,...,0,F-1,Fips- )

are continuoug\y-linear idempotents. For a 1-cocycle
H
c: Ty(N) — f Siadk
Zp

we consider the composité: I't(N) — (Ag, p.-2) of cand the inverse of the homeomor-
phic Ag-linearIly(p)-equivariant isomorphism

(o)

[ [sn: @500 > [ icad
p

k=2

By the proof of Proposition 2.13;1(N) is a finitely generated free group. Henceforth,
we fix a basis;(h)ﬂ=1 of the finitely generated free grodf(N). By the isomorphism in
Lemma 2.5, we identify ZT'1(N), (AL, p._2)) with (AL)4. Putc’ = (c)?_, through the
identification. Sety,.(C') = (Tko,i(c;,))ﬂzl, and denote by

Tio,+(C): T'1(N) ﬁfz‘ L0k,

the 1-cocycle obtained as the compositegf.(c’) and[ ], sp.. We obtain continuous
idempotents, - andry, . on

zt (Fl(N), fz ) %od k)

with Tkg— + Tko+ = id.

Lemma 3.18.If p°| N, then the image of

T | Z* ’ _odk
ko, (Z (rl(N)’Lp Lo ))

generates a densgT>-submodule of

f ) A (N Ficz) dk

Zp

for anyky > s+ 1.
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Proof. We always identify the group cohomologies and the corresponelialg coho-
mology by Proposition 2.13. Put

L = f A2 (NG, Fic)
Zp
M = Zl(Fl(N), f .Zk_zdk)
Zp
M =

%%(Yl(N)Q? f ffk—zdk)
Zp

and
kg
Mg = [ | 72 (a(N)g: Fiz) ™
k=2

for eachk; € NN [2,00). LetC € L. By the definition of the inverse limit topology, it
suffices to verify that the image @fin M, is contained in theAo ®z, 1z Top, n)-
submodule generated by the imagergf-(M) for anyk; € N N [ky, 0). Letk; € NN
[p®, o0). By Proposition 1.39 and Proposition 2.4, there is a lift

Ckl € TN[X] ®TN M

of the imagec,, of Cin M, with respect to théy-algebra homomorphisiiiy[X] -
TS n: X o pSToL Putc = 300 X" ® G fOF @ (i n)y € M™*L. Take a liftGyn € M
of ¢, n for eachn € NN[0, no]. We havecy, n = 7k, - (C.n) + Tko.+ (G, .n)- AS @ cOnsequence,
Cy, is decomposed into the sum of the images of

No
D X" @7, (Ean) € ZolX] @z, T, (M)
n=0

No
X" T, Ean) € ZplX] @2, T+ (M),
n=0

and hence it dtices to verify that the image afk0,+(l§/lv) in Mg, Is contained in the
(Ao ®z,j1+nz,) T n)-SUbmodule generated by, _(M). Before that, we calculate the

image ofry, . (M) by Tp.

By the homeomorphia,-linearIly(p)-equivariant isomorphism

[Tsp®): (A5.p.2) > f Stk
k=2 Zp
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and Lemma 2.5, we identifyl with (Aﬁ”)d. The double coset decomposition correspond-
ing to T,, is given as

rl(N)[1 Ojrl(N)—l_lrl(N)( p]

Lethe NN [1,dandfd € NN [0, p— 1]. Since the right hand side is a double coset of
the action of"y(N), there is a uniqué(h, 8) € NN [1, p — 1] satisfying

1 9) (1 o(h, )
Yh D

-1

Ang = (

We denote by € N the word length ofA, » with respect to the basisrr()ﬂzl. Put

Tho.thg

o‘
Ahe — hHl yh/

h,@,[h,e

for unique hhen)[“” e (NN [1,d) and @)™ € (1, 1) with y“‘”’” ‘;h“"”*l # 1 for
,0,n o,n+1
anyne NN[1, ¢, — 1]. We define an/(\hgn)fhf’ el (N)fha by setting

,yf]',hel ,yO'hen 1 (O'h,a,n — 1)

/
h,6,1 hhé?n 1

Angn =

Thel Oh,o,n-1 _
)’h yhhen 1‘)/h, (O-hﬂ,n - _1)

for eachn e NN [1, ¢]. For any 1-cocycleT1(N) — (Ag, p.-2), we have

Cho—1
"'h“h O'h 1 &[4 Then
C(Ahg) - C( hH[ ") Z Pe-2 ( b h:n 1l (yh . ))
0.1 ho
the—1

= Z OhgnPe—2 (Ah,e,n’ E(Vhfq,e,n))
n=1

foranyh e NN [1,d] andd € NN [0, p—1]. Therefore the double coset operalgwith
respect to the presentation of the decomposition above adsam

TpZ(Ag)d - (A§)d
d

el 10) & =
Z Do (( 0 ) , Z OhonPe—2 (Ah,e,n, (Fh;1 gn,i)izo)]] .
p n=1 - h=1

(Fado), +

6=0

For any €, n) € NZ, x (N\{0}), we have

_ye | n ICIn 1<n<p-1
= |d"Ipl Tl - 53] ( P
%t pPt ] (> p-1)

n

n!
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< o <IN

by p # 2. Forany A F) € T'1(N) X 7, . (Af) with A = ( i 2 ) andF = (F)2,, we have

o minij) ooy (-1 4, ch 2-i—j+h )
p._Z(A, F) = [Z FJ (h )[ l—l (Z 2- m)]a bI ( —h)'dz_ i—j+ ]_0

j=ko—1 h=0 m=i
€ N(z- ko)Ti,-(Ag) ® Tio.+ (A7) C P2~ Ko)Tho- (A7) @ T+ (A7)

by the conditionp® | N. For anyd € NN [0, p—1] andF € p(z— ko)tk, - (AF) ® i+ (AG)
with F = (Fj):2,, we have

AR

o min{i,j} , . i+j-h-1 Qi-h .
{Z Fj [ )( H (Z 2_ m)]p( 9)| h( h)llz—|—1+h

j=0 h=0

(o)

i=0

' iy Y
{ Fj( : )p’(—e)"’] € Pz - ko)~ (Ag) ® P°7i+ (A7)
i=0 J i=0
by the conditionk, > s+ 1. Therefore the image 0fk0’+(l\ﬁ) by T, is contained in
Pz — ko)Tio, - (M) & P°1i + (M) C P°M.

LetCe Tkw(l\ﬁ), and putc’= (Cy, ..., (“:d)(Aﬁ‘)d by the identification. Seat[0] := ¢, and
put T,(E[0]) = pd by ad € (z- ko)7y,_ (M) ® 7, . (M). As an equality of the images in
M.y, , we have

pSE0] = TX®&E=X®T,&= pX&d,

and hence[0] = X ® d becauséM.,, is torsionfree as &,-module. Put[1] := 7y, (d).
Then the image of[0] in M, coincides with that of

X ® T () + X ® E[1] € Zp[X] 82, ((2— ko)Ti~(M) & 7, (M)

Repeating similar calculations, we obtairt[a] e rk0,+(ﬂ) such that the image af0]
coincides with that oK" ® é[rll modulo the Ao ®z,11+Nz,]1 T[;(j]’N)-submodule generated
by the image of £ — ko), -(M). Therefore the image af0] in My, lies in thep-adic
closure of the £0®z,1.+nz,)1 Tk, v )-SUbmModule generated by the imagezaﬂ(o)rko,_(l\ﬁ),
because the action gfT;* on the image oM in M, is topologically nilpotent with
respect to thep-adic topology by the proof of Proposition 1.40. Sinde,, is finitely
generated as Ay,-module, everyZ,-submodule igp-adically closed. Thus the assertion
holds. O
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Theorem 3.19.Suppose® | N. Then the profinite\oTﬁs[Gal(@/Q)]-module

f ) A (N Ficz) dk

Zp

is finitely generated as @\,Ty°)-module.

= Te1- (z1 (Fl(N), L ’ gk_zdk))

L= [ A (g Fics) "k

Zp

Proof. Put

<
|

The continuousg\-linear homomorphismz‘(S“)d — M obtained by the embedding

(A8+1)d s (Agi)d
((Fh,i)iS:O)ﬁzl = ((Fh,o’ ceey Ff,S’ 09 .. '))ﬂ:l

and the inverse of the homeomorphic isomorphism

M < (Af)
% -1 d
c - (]‘[sa) (c(yh»)
k=2 h=1

is @ homeomorphic isomorphism by the definitionhdf and henceM is a finitely gen-
erated freeAg-module. LetE ¢ M be aAg-linear basis. For eacth € E, we denote
by C € L the image ofc. By Lemma 3.18, the image of the continuousTy®)-linear
homomorphism

@ (AT - L
(Fc)ceE = ZFCE

ceE

generates a densA{T'y°)-submodule ot.. SinceATy® is compact and. is Hausdoft,
the image ofw is closed. Thuso is surjective, and. is generated by the image of the
finite setE as a (\T*)-module. m|

Definition 3.20. We set

Hét (Yl(N)@, Symfe2 (R1(7TN)*(Q|O)El(N)))<S
= Qp®z, 4 (Y1(N)s: ﬁk—z)@
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fﬂa H, (Yl(N)@’ Sym2 (Rl(”N)*(@P)El(N)))<S dk

Zp

= Qpey, ( f A (a(N)g, %_2)<Sdk) ,
P

and regard them agf ®z, AoTR°)-modules endowed with &§ ®z, AoTR°)-linear action
of Gal(Q/Q).

Remark 3.21. By Corollary 2.15, we have a natural identification
Qp @z, Aot (Y1(N)g, Fic2)
* M2(Zp)
Qp ®z, Her (Yl(N)Q’ (Re%i(vfm)xm) (Synt (Zp’pzﬁ)))Y (N))
1

Qp @z, At (Y1(N)g, Symo? (RYm). (Zp)eswy))

1R

1R

as linearly complete I, n[Gal(Q/Q)]-modules with respect to the topologies induced
by the p-adic norm of their natural integral structures for e&achN N [2, ). Therefore
we obtain natural projections

Qp ®z, Mo (Yl(N)@, Synfe2 (Rl(ﬂN)*(Qp)El(N)))
- Hét (YI(N)@’ Syrrf<°‘2 (Rl(”N)*(Qp)El(N)))<S

corresponding to the canonical projectiop®z, Tty = Qp ®z, Tion > Qp ®z, Tiey =
Qp®z, TN

We denote byPcs the kernel of the specialisation mapT{® - Ty

Lemma 3.22.1f p°| N, then for anyk, € N N [2, =), the specialisation map
=] [Se]
[ (N Fice) "tk [ [ (YaN)g. i) > e (Ya(N)g. o)
Zp k=2

is a surjective continuousT>-linear Gal(Q/Q)-equivariant homomorphism, and if
ko > max{s+ 1, 3}, then the kernel of its localisation

f; Ha (Yl(N)@’ Symi? (Rl(ﬂN)*(Qp)El(N)))<S dk

N Hét (Yl(N)@, Syl‘ﬁ<"_2 (Rl(ﬂN)*(Qp)El(N)))<S

coincides with

PEOS( f; HZ, (Yl(N)@, Sym2 (Rl(ﬂN)* (Qp)El(N)))<Sdk) |
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Proof. Let ¢ denote the homomorphism in the assertion. Put
2 <S
L = f Hg (Yi(N)g. Fiz)  dk
Zp

=]
Mo [ YN A, ok
Zp

and
Mi, = jfe% (Yl(N)@’ ﬁkl_z)free
[<s ._ [<s]
Mkl - (Tkl,N ®T'<1»N Mkl)free
<s
M = g (Vai(N)g: Fig-2)

for eachk; € NN [2, ). The natural continuou&Ty-linear homomorphisms

AoTﬁséAOTNM — AOTaséAOTNMkl
AOTES(%AOTN Mkl - TEOS,NéAoTN Mkl = lels

are surjective by Proposition 1.11, Proposition 3.16, and the surjectivity of the canonical
projectionsAoTy - Ti,n andAeTR® —» T;OfN. Thereforey is surjective. Before cal-
culating the kernel o, ®z, ¢, we verify that the natural [Iﬁ-linear homomorphism
M9 — MgSis injective for anyky € N N [2, ).

LetT:d e M= be an element whose imagg in M is 0. By the definition oM,
the image oE[kjé] in (T[kis,ll[X]/(TpX - p) ®TL:<L,SI]\I Ml[(fs] is annihilated byp' for anr € N,
and hence the image pfc,¥ in TL=3[X] ®rics ML lies in (TpX— p) T RIX] i ML,
We have an identification[kfﬂl[X] ®T[kﬁ\l Ml[(fs] = (Ml[(fs])eaN given by the basisX"): , of
the free 1:3-module E3[X]. SinceT, is integral oveiZ, as an element of T3, there
is an 1, A) € N x Ti-3, such thatAT, = p". SinceM(;¥ is torsionfree as &,-module,
the equalityAT, = p" ensures that the endomorphism M given byT, is injective.
Therefore we obtain

1>
Itimplies p'G;¥ = 0. SinceM|;¥ is torsionfree as &,-module, we get, ¥ = 0.
In the following, for eactt € M andk; € N N [2, ), and for each formal symbol

(k, o) € {ko, < ki} x {0, [< 8], < s}, we denote b the image of in [T, MZ whenx is
the formal symbok k;, and inMy" whenc is the formal symbok,. Similarly, for each
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T° e L andk; € N N [2, ), and for each formal symbal € {ky, < ki}, we denote by
¢;* the image o™ in [T, Mg whenk is the formal symbok k;, and inMes whenx

is the formal symboko. LetcT[0]** € ker(Qp ®z, ¢). We provec[0]=* € P 3(Qp &z, L).
Multiplying c[0]<® by p suficiently many times, we may assume tiggd]<* lies in the
image ofL. Letg, € N\{0} denote the order of the finite Abeligngroup tog(T}:3 &r,
My,), andg, € N\{0} the order of the finite Abeliap-group top(H*('1(N), £*~2)). We
prove qu,C[0]** € PEPL. SincePg® is the kernel of a continuous homomorphism, the
profiniteness of\ Ty® ensures that dP;°. SincePy® is profinite and the map

P - L
|
@) — ). &g,
=1

is continuous, its imagB°L is closed. Therefore in order to proged,c[0] =° € P°L, it
suffices to verify thatj;,C[0] 57 lies in the image oPg°L for anyk; € NN [ko + 1, o0).
By the definition ofL, there is anif, C[1]) € N x M such that pSTgl)”C[l]zﬁl = C[0]<;, -

In particular, Tie[0]Z; = p"*c[1]Z; lies in the image of the natural T (N)<3-linear
homomorphism{ [}, MI*9 — [T M<S, which is injective by the previous argument.
We have

PPST[ALS = TO(P T, )]s = TIE[0]S = The(©™) = 0,

and hence[1];* = 0 becausd [\, Ms® is torsion free as &,-module. It implies
c[1]is¥ = 0 by the injectivity of the natural J-linear homomorphisnM=9 — M.
Therefore the image 1] in -3 &, ,, My, lies in tor, (LS ®r, , My,), and hence that

of 01C[1] is O. LetS c Ty, n be a finite subset of generators of the kernel of the canonical
projection T, T\ Then the image afsC[L] in My, lies in a5 AMy,. Take a lift

S c Ty of S. By the definition ofS, the image ofs in T{® is contained irPg>. Take a lift

C[2] € Y55 SM c M of the image of;C[1]x,. Since the image d in Ty® is contained

in Pes, €[2]2; lies in the image oPSL.

We identify the group cohomologies and the corresponétalg cohomology by Propo-
sition 2.13. In the following, for each 1-cocyote I';(N) — (Ag, p.-2), we denote by
Cw,: T1(N) — A2 the specialisation of atky, and byC € M the image of the coho-
mology class of. Take a 1-cocycle[3]: I'1(N) — (Ag,p._2) representingjc[1] — T[2]
through the homeomorphity-linear isomorphism

(o)

HSRZ(A§,p._Z); L Fodk.
p

k=2
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SinceC[3]x, = dqC[1l]lx, — C[2]k, = O, the cohomology class @3]y, is annihilated by
p' for anr € N, and hencey,c[3]y, is a 1-coboundary. Takelae %, such that the
1-coboundaryb associated tb coincides withg,c[3],. Let b denote the image df by
theZy-linear embedding

Syme3(z3) — Ay

ko—2

D beg2i P (bo,...,bg2,0,0,..).
i=0

We denote byob € BXI'y(N), (ALY, p._»)) the 1-coboundary associatedtio Then we
have ()B)k0 = db = c[3]y,. Therefore every value of the 1-cocyalec[3] — ob is
an element of\j] whose specialisation & vanishes. By the factor theorem for a rigid
analytic function, there is a set-theoretical nefd : I',(N) — Ag such that£—ko)c[4] =
0.c[3] — ob. SinceAj is a torsionfree\o-module, the cocycle condition fapc[3] — ob
ensures that[4]: T'1(N) — (Ag, p.-2) is a 1-cocycle. We conclude

qquE[o];El = (pST[;l)n (Q1CI26[1]§|§1) = (psTgl)n (q26[2 zlil + (Z_ k0)6[4 zlfl) s
and the right hand side lies in the imageRjfL. O

3.3 p-adic Family of Galois Representations of Finite Slope

A prime ideal ofA, is said to beof weightk for ak € Z;, if its preimage irZ,[[1 + NZ]]
coincides with the prime ideal of height 1 obtained as the kernel of the contifipus
algebra homomorphis,[[1 + NZ,]] — Z, associated to the continuous character

1+NzZ, — Zj
y Y
of weightk by the universality of the lwasawa algebra.

Proposition 3.23. Letky € Zp,. For anyu € NN [0, p — 2], the principal ideal

p(p-1)-1

My, = (Z— ko)e(u)(pyko_u)(l) + Z € Ao
=0
{#+ (UXpA,ko—u)(l)
p(p-1)-1

= - X p,kg—u 4
(2 ko) QurpgomAo® P &AoC Ao
=0
{# (UXp,ko—u)(l)

Is a closed prime ideal of heighit Moreover, a prime ideai c Aq is of weightk, if and
only if m coincides withm, forau e NN [0, p - 2].
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See the beginning 3.1 for the convention of ;.

Proof. SinceZ,[[ X]] is Noetherian (resp. compact, resp. Hausijpso isAq. Therefore
every ideal ofAy is closed. Leu e NN [0, p — 2]. We have

Ao/ My,
p(p-1)-1
= (Zp[[z(u;(,lko,u)a) — (Uxpro-u) ™11/ (Zuepig® — ko)) X 1—[ Zpllz; - {1l /€ Ao
=0
{# (UXp,ko—u)(l)
= Zpx0=2Zp,

and hencen,y, is a closed prime ideal of height 1. The compositef the embedding
Zpl[[1 + NZp]] — A, and the canonical projectioN, - Ao/Myx, = Zp coincides
with the continuou&,-algebra homomorphisg, associated to the continuous character
1+NZy - Z5: y - ¥ by the universality of the Iwasawa algebra. It implies timaf,

is of weightkg.

On the other hand, leh c A, be a closed prime ideal of height 1 of weidft Since
ker(py,) does not contaip, we havep ¢ m. ThereforenNpAo, = pmbecausenis a prime
ideal. By definition, we have @N)?—(1+N)* € mbecause [ N]-(1+N)* € ker(gy,).
Let f € 1+ pC(W Z,). We have

1 ph(f—l)“ [f—l
S(f-1=E(—=) ez
S(f-1) 5 P D

/ N ple%NCW Z,) ¢ CW Q)

for anyh € N\{0}, and hence the infinite sum

log f := Z %(f — 1)
h=1

converges in G Zy). If f € 1+ pAo, then we have

-1

%(f—l)hezlo[]c C Ao,

for any h € N\{0}, and hence log € A, because\, is closed in C{\/Z,). Since the
embedding\, — C(W,Z,) is a homeomorphism onto the image, the infinite sum in the
definition of logf converges to lodg in Ag. For anyfy € 1+ pAg with f — fo € m, we
have

fo—1
P

E(f—l) —F( + p ) Eﬁ(fo_l) +Mm
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becausd — f € mn pAg = pm Sincemis closed, we obtain

log f = ; %(f 1) e ;(%(fo 1)+ m) = [hz; %(f0 - 1)“) +m= (log fo) + m.

In particular, we obtain
(z— ko) log(1+ N) = log(1+ N)?—log(1+ N)* e m

by a usual calculation. Since N is not a root of unity, we have log(4 N) # O.
Therefore we obtain log(2 N) € Z,\{0} = | |,ar P'Z5, and hencag — ko € mby p ¢ m.
It impliesm,,, € mfor someu € N N [0, p - 2], because we have

p-2 p(p-1)-1
(Z - kO)AO = l—[ (Z - kO)e(UOXp,kO—uO)(l) + Z e{ AO.
U0=0 = 0

{# (UéXp.l@—uo)(l)

Sincem shares height witim,,, we concluden = m,. O

For a topological\q-algebraA;, we denote b¥2(A;) the set of continuous,-algebra
homomorphismg\; — Z,,

Proposition 3.24. Let A; be a compact topologicahy-algebra. For anyp € Q(A,),
¢(A1) Is aZp-subalgebra oip finitely generated as @j,-module.

Proof. Let ¢ € Q(A1). Sincegy is continuousg(A;1) is a compacZ,-subalgebra of
the Hausddt topologicaIZp-aIgebraZp. Thereforep(A;) is a compact Hausdfirtopo-
logical Z,-algebra with respect to the relative topology. L#tdenote the set df.,-
subalgebra® of Zp integrally closed inQp, ®;, R C @p and finitely generated d8,-
modules. The set¥ is directed by inclusions. We havgr.z R = Z,, and hence
Urez (RN @(A1)) = ¢(A1). For anyR € %, Ris compact topologicak,-algebra,
and henceR N ¢(A;) is closed ing(A1). By Krasner's lemma, every finite subexten-
sion of@p/Qp can be obtained as thgadic closure of a finite subextension@‘)/Q,
and hence” is a countable set. By Baire category theorem f@egh-complete (e.qg. lo-
cally compact Hausddi) topological space ([Bai99] 59, [Eng77] 3.9.3 Theorem), there
exists somdz; € .# such thaRy N (A1) admits non-empty interior ip(A,). It ensures
that Ry N (A1) is an operiZ,-subalgebra ofp(A1). Sincee(A;) is compact, the quo-
tientp(A1)/(Ro N ¢(A1)) as additive groups is a finite group. Lat ..., a4 € ¢(A;) be a
complete representative of the canonical projecii@h;) - ¢(A1)/(Ro N ¢(A7)). Since
Ure#(RN @(A1)) = (A1), there exists someR()?_; € .79 such thaty € R N (A1) for
anyi e Nn[1,d]. The integral closur® € .# of theZ,-subalgebra of, generated by
Uid:o R satisfiesp(A1) = RN ¢(A1), and hence(A;) is aZ,-subalgebra oR. Therefore
¢(A4) is finitely generated asz&,-module becausg, is Noetherian. O
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Let A; be a compact topological, algebra. For eacl € Q(A;), we putZy[¢] =
A1/ ker(p), and endow it with the quotient topology. For apye Q(A1), Zy[¢] is p-
adically complete by Proposition 3.24, and fr@dic topology coincides with the origi-
nal topology by Proposition 1.21. In particular, the continudysalgebra isomorphism
Zple] — ¢(A1) is a homeomorphism, and hence we idenfifyf¢] with ¢(A4) for any
¢ € Q(Aq). Foraky € Z,,, ap € Q(A,) is said to be ip-valued point ofA; of weightky if
the preimage of keg() in Aq is of weightky, and we denote b@(A;)x, € Q(A;) the sub-
set onp-vaIued points ofA; of weightk,. We set suppX,) = (ko € Zp | Q(A1), # 0.
We putQ(Ai)s = | lkes 2(A1)k for eachS c Zy,, and denote by wt€(A1)z, - supp1)
the canonical projection.

Definition 3.25. A A-adic algebrais a compact Hausdfirtopological Ag-algebraA
satisfying the following conditions:

() The intersection supp() N (N N [2, o)) is an infinite set.
(i) For any infinite subseX ¢ Q(A1)nn2.), the equality) s ker(p) = {0} holds.
Proposition 3.26. EveryA-adic algebra is an integral domain.

Proof. Let A; be aA-adic algebra. Assumég f, = 0 for some i, f;) € Ai. Then for
eachy € Q(A1)unp.«), We havep(fi)e(fz) = ¢(fif;) = ¢(0) =0 € Zp, and hence either
¢(f1) = 0 ore(f,) = 0 holds. Therefore by the pigeonhole principle, one of the subsets
lp € QADnpw) | ¢(f1) = 0} and{p € Q(Aunp«) | ¢(f2) = 0} is an infinite set,
becaus&€(A1)unp.~) IS an infinite set by the condition (i). It implies that eithigr= 0 or

f, = 0 holds by the condition (ii). Thu&, is an integral domain. O

Proposition 3.27. EveryA-adic algebra is a commutative profinite-algebra.

Proof. Let A; be aA-adic algebra. The conditions (i) and (ii) ensure that the continuous
Zy-algebra homomorphism

A -]zl

weQ(A1)
f = (f +ker@))seany

IS injective, and hence is a homeomorphic isomorphism onto the closed image, because
A, is compact andZ,[¢] is Hausdoft for any ¢ € Q(A1). Thus the assertion holds
because the target is a commutative profinigealgebra. O

We show an explicit way to construct/aadic algebra. For this sake, we introduce a
notion of the analytic space associated th-adic algebra.
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Definition 3.28. A A-adic algebra is said to bafinoid if it is finitely generated as a
Ag-module.

We denote by (/) the Berkovich spectrum of/ for each #inoid Q,-algebras’.
For details of analytic spaces, see [Ber90] and [Ber93].Asdbe an &inoid A-algebra.
Taking a finite subsdf, | he NN [1,d]} c A; of generators as Ap,-module, we obtain
a surjectiveAg-algebra homomorphism

@ No[Xq, ..., Xq] =» A
Xh (g Ff

Thenw gives a 1-dimensional analytic subset

MA@ =@ € T | F@)(@)Le) = 0. F@(Xs, .. Xa) € ker(@)}.

More preciselyA; corresponds to @,-analytic space in the following way: For each
N\{0}, we regard 2% Y™ Qp{IpI 7 (z.—¢)} as a topologicahe-algebra by the continuous
embedding

p(p-1)-1 p(p-1)-1

[T zellzz-an = r[Qmm%@—o}
(=0 =
(Fg(Z( éa))P(P—l) RN (F((Z( é«))p(p 1)- 1.

SinceA; is finitely generated as Ag-module, ﬂp(p D QP 7z = 2))) ®a, Ay is

a 1-dimensional finoid Q,-algebra overﬂp(IO - 1Qp |p|‘?(zg — )} with respect to a
complete non-Archimedean norm unique up to equivalence for each\N\{0}. We
obtain a locally compact-compact Hausddi Q,-analytic space as the colimit

p(p-1)-1
NAENRY ///[[ [T @lipriz-o
=0

reN\{0}

®no At

We remark that there is another way to constr4Gi(A,) independent of the presentation
¢, whose underlying set is naturally identified with the set of continuous multiplicative
seminorms om\;. We call.#,(A;) the formal gfinoid space associated 1®,. It is not

an dfinoid space unlesAs; = 0, and is a countable union offanoid spaces. Sinc&g
itself is the direct product ok-adic algebrag\.o/e;Ao for eachy e NN [0, p(p - 1) - 1],

we have a natural finite morphism fram#,,(A,) to the open unit disc#, (A /€;) for some

£ e NNJ[O, p(p—1)-1] by the construction. We remark that can not be reconstructed
from .#,(A1). Indeed, every\;-subalgebra\’ of the integral closure of the image of
A1 in A1 ®z, Q finitely generated as Aq-module is an fiinoid A-adic algebra with
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a natural isomorphismz;,(A?) > A,(A1). Now we verify that analytic curves with
suitable conditions admits &tale covering by the formalinoid spaces associated to
affinoid A-adic algebras. An analytic space is said tddm=lly integralif it admits an
affinoid covering consisting offinoid spaces associated thimoid algebras which are
integral domains.

Theorem 3.29.Every locally integral closed good strictly,-analytic space of dimen-
sion 1 admits an etale covering by formaffmoid spaces associated t@iaoid A-adic
algebras.

See [Ber90] 3.1.2, [Ber93] 1.2.15, and [Ber93] Definition 3.3.4, for the notion of a
closed analytic space, a good strictly analytic space, and an etale covering of an analytic
space respectively.

Proof. Let C be a locally integral closed good stricty,-analytic space of dimension 1,
andx € C. SinceC is a locally integral good strictl@,-analytic space, there is affia
noid neighbourhood of in C associated to a strictlyfiinoid Q,-algebrae/ which is an
integral domain of Krull dimension 1. By Noether normalisation lemma ([BGR84] 6.1.2
Corollary 2), there is a continuous injecti@g-algebra homomorphisigp: Qp{X} — &

for which 7 is finitely generated as @p{X}-module. Lety, denote the image of in

the closed unit discZ (Qp{X}). SinceC is closed, replacing thefinoid neighbourhood
by a larger one, we may assume thgis not the point of the Gauss norm. Then there
isay e Zp such thaty, is contained in the open subspace #f(Q,{X}) corresponding
to the open unit disc centred at t@g-rational point corresponding ¥ Letk(y) denote
the completed residue field gt X(y) € «(y) the image ofX, andw: &/ — «(y) the
specialisation map. We consider the compaogitd the embeddings

QpiX} = «(y){X}
X X = X(y)

kW {X} = «(y) ®q, &

oo ) an(fe0"
h=0

!

Sincex(y) is finite dimensional as @,-vector spacex(y) ®q, 7 is regarded as a topo-
logical Q,{X}-algebra finitely generated agla{X}-module throughy.”

Let X € .Z («(y) ®q, <) denote the point corresponding to the non-Archimedean norm
obtained as the composite ofigl® @: k(y) ®q, & — «(y) ®q «(y), the multiplication
k(y) ®q k(y) — «(y), and the complete non-Archimedean notfy) — [0, c0) induced by
y. Then the image of By the finiteétale morphismz («(y)®q, /) - .# (<) associated
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to the base change map — «(y) ®q, </ is X, and the image of By the finite morphism
A (k(Y) ®q, @) — #(Qp{X}) associated te Ts the origin 0 by the construction. Let
U c . (k(y) ®q, </) denote the preimage of the open unit dikcc .7 (Qp{X}) centred
at 0. Since (= Uo, U is an open neighbourhood &fin.# («(y) ®q, «7). Therefore the
composite of the open immersiah — .7 (k(y) ®q, /) and the finiteétale morphism
M (k(Y)®q, /) - M (/) is anétale neighbourhood of We verify thatU is isomorphic
to a formal d@finoid space associated to afiroid A-adic algebra.

LetS c «(y) ®q, </ be a finite set of generators af)g{X}-module. Replacing each
s € S by p'sfor a suficiently larger € N, we may assume that evesyis of spectral
radius< 1 ([Ber90] 1.3). For anys € S, sinces is integral overQ,{X} and s is of
spectral radius 1, sis integral over the closed unit digg{X} ¢ Q,{X} by [BGR84]
3.8.1 Proposition 7 (a). Ldt C «(y) ®g, &/ denote theZ,{X}-subalgebra generated by
S. SinceS generatex(y) ®q, </ as aQp{X}-module, for eachgs) € S x S, there
iS an @ss.s)ses € QpfX}® such thatyy.sass.s'S” = SS as elements of(y) ®q, .
Replacing eacls € S by p'sfor a suficiently larger € N again, we may assume that
asys € Zp{X} forany (5 s,8”) € Sx S xS. ThenlL is generated by as aZy{X}-
module. We putA; = Zy[[X]] ®z,x L. Letm: QpiX)® > «(y) ®q, </ denote the
natural continuouQp{X}-linear homomorphism, which is surjective by the choic&of
Puttingl := Z{X} nker(w), we obtain a presentatidn= Zy{X}*%/I as aZ{X}-module.
SinceZy{X} is Noetherian, the completion

Zol[X]] = lim Zy{X}/(X)
reN

is flat as &p{X}-module, and the natural,[[ X]]-linear homomorphism
A1 = Zp[[X]] @z, (Zp{XI%3/1) = Zo[[X]]*S/Z[[X]]

is an isomorphism dZp[[ X]]-modules. We identifyZ,y[[ X]] ®° with Z,[[ X]]®, and endow

it with the direct product topology. The quotient topology on the target gives a structure
of a profiniteZy[[ X]]-module onA;. SinceZ[[X]] is a compact HausdérNoetherian
topological ring, the topology ok, coincides with the weakest topology for whigh is

a Hausdaff topologicalZ[[ X]]-module, andA; is a profiniteZ,[[ X]]-algebra. Through

the canonical projectiong = H?i%‘l)‘l Zollz = ] > Zpl[z]] = Zp[X]]: 20— X, we
regardA; as a profiniteAg-module by Corollary 1.19. Lat € N\{0}. The Weierstrass
IocalisationQp{lpr%X} is flat as aQ,{X}-module by [BGR84] 7.3.2 Corollary 6, and

hence we have a natur@b{lpl‘%X}-algebra isomorphism

_1 _1
Qp{lpl ‘ X} ®z,(x)) A1 = Qp{|p| r X} ®z,ix11 Zpl[ X]] ®z,x) L
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IR

Qp (1P X} @z, L = Qp{IpI™" X} ®0,1 (Qp @2, L)
Qp {1177 X} 80,1 (K(Y) ®q, ) = (k(y) &g, &) {1 ¢(X)}

because(y)®q, < is finitely generated as@,{X}-module. Since\ is finitely generated
as aZ,[[ X]]-module, Qu{pl~* X} ®z,1xq Au is finitely generated as@y{|p|~7 X}-module.

We endowQ,{|pl"* X} ®z,1x A1 With a unique complete non-Archimedean norm up to
equivalence so th@pﬂpr%X} ®z,x A1 is an diinoid Qp-algebra over{|p|*%X}, and
endow (y) ®q, @) pl‘%‘,o(X)} with the natural topology as the Weierstrass localisation
of k(y) ®g, /. Then they are strictly finoid Qp-algebras, and hence tI@){lpl‘%X}-
algebra isomorphism above is a homeomorphism by the automatic continuity theorem
([BGR84] 3.7.5 Proposition 2). In particula@p{lpl‘%X} ®z,1x A1 is regarded as the
Weierstrass localisation afy) ®q, <7 corresponding to theflinoid subspace dof ob-
tained as the fibre product of the morphis#i(«(y) ®q, /) — .#(Qp{X}) associated

to ¢ and the Weierstrass domaM(Qp{lpl‘%X}) — #(Qp{X}). The presentatiobly =
Lo % (QpilpI=7 X}) gives a presentatiot) = | o) 2 ((k(Y) ®g, @){IPI7(X)},
and henceJ is naturally identified with the formalfinoid space associatedAq. O

IR

Theorem 3.29 ensures that there are many explicit exampl&ésaglic algebras. One
of the most important example of a good stricy-analytic space of dimension 1 is
the eigencurve. We consider the reduced eigencurve introduced in [Eme] Theorem 2.23
obtained as the closed subspace ofisfﬁ)fxx Aép interpolating classical Hecke eigen-
forms, wher@F(Np) is the universal Hecke algebra of leWlgenerated by Hecke operators
T, for each prime numbef # p andS, for each prime numbef coprime toN. Every
Qp-analytic space admits a dense open subspace which is a dgsatalytic space and
whose complement is a discrete subset by [Ber90] 3.2.6 Theorem. Every reduced closed
Qp-analytic space of dimension 1 admits a smooth alteration given by the normalisation,
and every smootf),-analytic space is locally integral. Therefore the reduced eigencurve
admits a dense open subspace véthle coverings of its smooth alteration by formal
affinoid spaces associated thiaoid A-adic algebras.

Henceforth, letA; denote aA-adic algebra. Imitating the definition of a Berkovich
spectrum ([Ber90] 1.2), we enddi&A;) with the weakest topology for which the map

¢ = le(f)l

is continuous for anyf € A;. LetX c Q(A;) be an infinite subset endowed with the
relative topology. The evaluation map

A1—>ZE
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fro= (@e(f))gex

Is injective becausd ; is aA-adic algebra. The image of; is contained in (X, Zp) by
the definition of the topology af2(A;). Now we introduce a notion of A;-adic form.
For the convention of slope, sé&.3.

Definition 3.30. A A;-adic form of levelN is an f(q) € A4[[q]] such thatf(¢)(q) :=

S € Zlglllal lies in My (1(N), Zolg]) for all but finitely manyp e
Q(A1)nnp,~)- We denote bwI(I'1(N), A1) C A4[[q]] the A;-submodule of\;-adic forms
of level N.

Since the reduced eigencurve introduced in [Eme] Theorem 2.23 forms a family of
modular forms of fixed leveN, Theorem 3.29 ensures the existence of non-triXial
adic forms whem; is an dfinoid A-adic algebra appearing in an open covering of the
normalisation of an open subspace of the cuspidal locus of the reduced eigencurve.

Definition 3.31. Let s € N. A Aj-adic form f(qg) of level N is said to belocally of
slope< sif f(¢)(q) € Zp[e][[d]] lies in My (T'1(N), Zp[¢]) <® for all but finitely many
¢ € QA1) We denote bpI(I'1(N), Ap)<d ¢ M(I'1(N), A;) the A;-submodule of
As-adic forms of leveN locally of slope< s.

Henceforth, we fix ars € N. LetR c @p be a subring, and: (Z/NZ)* — @g a
Dirichlet character. We put

M, (T1(N), &, RS = M (T1(N), R)** N My, (T1(N), €, R)
= M1(N),Qp)*° N M (T1(N), &, R).

If R contains the image af, then M, (I'1(N), €, R)<* is an intersection oR-submodules
Mi,(T2(N), Qp)<S, Mip(T1(N), €, R) © My,(T1(N), Q,) stable under the action of Hecke
operators, and hence is &submodule of M(I'1(N), Q) stable under the action of
Hecke operators.

Letx: (Z/NZ)* — AY be a group homomorphism. A;-adic form f(q) of level N is
said to beof Dirichlet charactery if f(¢)(Q) € Zy[¢][[ dl] lies in M) (T1(N), wox, Zp[¢])
for all but finitely manyy € Q(A1)unp,«). We denote b@I(I'1(N), v, A1) € M(I'1(N), A1)
the A;-submodule of\;-adic form of levelN of Dirichlet charactey. We put

M(T1(N), x, A == M(T1(N), v, A1) 0 M(T1(N), Ag)9.

There is a uniqué\;-linear action ofT, for each prime numbef andS,, for eachn € N
coprime toN onM(I'1(N), x, A1)<¥ compatible with the specialisation maps. The action
is given explicitly in the following way:

T[ . M(Fl(N),/\/, A]_)[<S] - M(Fl(N),){, Al)[<s]
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Sheoan(f)a" (€1 N)
Sn: M(T1(N), v, AFY = M(T1(N), x, Ay
f(@ ~ x(n+NZ)n“2f(q).

fl@ ~ { Yo @n(F)d" + Zioan(F (€ + NZ)E2g™ (£ IN)

Henceforth, we fix a group homomorphism (Z/NZ)* — AY. We show a certain
finiteness ofM(I'1(N), A1)<S. For a ringR and a leftR-moduleM of finite length, we
denote by’r(M) € N the length of\M.

Lemma 3.32. The sef(dimg_ Mi(T'1(N), @,)<¥ | k € N N [2, 00)} is uniformly bounded
by the constant
max £z, (H!(Ty(N), A/ p™*Y)).

ke N
2<k<s+p®

Proof. We denote byC € N the constant in the assertion. Uat € [2, ). For each
commutative topologicédt,-algebraR, put

Mg := R®z, H' (T1(N), %,-2) .
If k; e NN [2,s+ p?], then we have

dimg, Miq (T(N), Q)Y < dimg My, (1(N), Q)
< dim@p M@p = dimg, Mg, = rankz (Mz,)ree < €z,(Mz/psn1z) < C

by the Eichler—Shimura isomorphism ([Shi59] 5édeme 1, [Hid93] 6.3 Theorem 4).
Therefore we may assurke > s+ p°+1. LetK/Qp denote the finite Galois subextension
of Q,/Qp generated by eigenvalues Bf acting on M, ("1 (N), Q,). Put

do = dim@p Mkl(Fl(N),@p)<s
dl = dlm@p M@p = dlmK M.

Every eigenvalue of , acting onM is contained irk, and the sum of the dimensions of
the generalised eigenspaceslgfacting onMg with eigenvalues satisfyingla| > [p|®

is greater than or equal tfy by the Eichler—Shimura isomorphism again. In particular,
we havedy < d;. Take a basisd)™, of Mg, such that the matrix representationof
with respect to c(i)idzll is a Jordan normal form with diagonaiillel. PutV := Mg and
FV = @:Zl Kci c V for eachip € NN [0,d;]. The increasing filtrationﬁiV)id:lo is
stable under the action df, by the choice of <(i)id=11. We denote byOk the valuation
ring of K, and byW c V the image ofMq, . By the functoriality of the action of ,, W
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is a T,-stable lattice oV. Put.Z'W := Wn .Z'V for eachi € N n [0,d;]. We verify
exdo < Lo (Tp(W)/(Tp(W) N ps*W)), whereex € N\{0} is the ramification index of
K/Qp.

For anyi e Nn[1,d,], we have

Co (To(gr's (W))/(Tp(grs(W)) N p*gri(W)))

Cor (aigrz(W)/(aigrz (W) N p*rgrz(W)))

_ { ~10G, 5 [752|  (lel > pI*)
0 (sl < 1pI*Y)

whererny is a uniformiser oK, and in particular, the inequality

Lo (Tp(grz(W))/(To(gr s (W) N pgr; (W) > log,, 1Pl = e

holds for anyi € N N [1,d,] with |aj| > |pl®>. Since the sum of the dimensions of the
generalised eigenspacesTgfacting on H(I'1(N), Sym“~%(K2, py2)) with eigenvaluesy;
satisfyinglai| > |pl® is greater than or equal tl, we obtain

dy
> o (To(@r (WY /(To(gr5 (W) 1 P11, (W) > exdo.
i=1

Therefore it sfiices to show

th
D Lo (To(@r's (W))/(To(gr (W) N p*gr; (W)
i=1

< Lo (To(W)/(Tp(W) N p*W)).

SinceW is anOk-submodule of &-vector spac®/, W is a torsionfre®yx-module. Since
(Z'W)™, is induced by the increasing filtratio/{ V)™, of K-vectors spaces, we have
FW N p*W = p*LZiW for anyi € Nn[0,d;]. Since (F'W)%, is induced by the
increasing filtration .¢# iV)id:l0 of K-vectors spaces again,;gw is naturally regarded as
an Ox-submodule of &-vector space gv and hence is a torsionfréa-module for
anyi € NN [1,d;]. Therefore the exact sequence

0— F'W— Z"W - gri'w — 0
induces an exact sequence

0— (FW)/p™ = (FW)/p™ - (@FEW)/p™* - 0
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and the commutative diagram
00— JFW — FW — git'w — 0
"] i "
0 — (F'W)/p™ —— (FW)/p™ —— (9ri'W)/p™t —— 0,
induces a complex
To(Z'W)/(To(:F'W) N p**W)
= To(ZW)/(Tp(Z W) N p*iw)
- Tp(@rz'W)/(To(gr;'W) n p*gr;iw).

Therefore the inequality

lox (Tp(ﬁiv\/)/(-rp(ﬁi\/\/) A ps+1\/\/))
+lox (Tp(gﬁytlvv)/(Tp(gr‘:(}th\/) A DS”gr‘}lvv))
< €OK (Tp(§i+lw)/(Tp(ﬂi+1W) A ps+l\/\/))

holds for anyi € NN [0, d; — 1]. As a consequence, we obtain the inequality

Lo, (To(W)/(To(W) N P**IW)) = Lo, (To(FEW)/(To(FEW) N p™ i)
lo (To(ZE W) /(To(F47W) N p*'W))
+Coy (Tp(@EW)/(TH(griW) N p**igriw))

\%

\%

lo (To(Z'W)/(TH(Z W) N p*W))
dy

+ ) Lo (To(@r>W)/(To(gr,W) N p™'gr,w))
i=2

d;
> > lo (TolgrsW)/(To(gr, W) 0 p**igr,W)),
i=1
which was what we wanted.

PutW, = (sz)free. By the flatness oDk as aZ,-module, the naturaDg-linear
homomorphism

Ok ®z, (Tp(Wo)/(Tp(Wo) N P Wo)) — Tp(W)/(To(W) N p='W)

is an isomorphism, and hence we have
1
Lz, (ToWe) (ToW) 1 P2 We)) = = Lo (To(W)/(T(W) 1 p5*W)) > do.
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The canonical projectioMz, — W induces a surjectivé,-linear homomorphism
To(Mz,)/(Tp(Mz,) N P tMz,) - To(Wo)/(Tp(Wo) N p*'Wp), and hence we obtain

Lz, (Tp(Mz,)/(Tp(Mz,) N p*IMz,)) > £z, (Tp(Wo)/(Tp(Wo) N P51 W) > db.
Therefore in order to verify the assertion, itfces to show
z, (To(Mz,)/ (To(Mz,) 0 P Mz,) < 2, (H* (TN, Zo-2/p*)).

wherek; is the unique integer withg € NN [s+ 1,s+ p°] andk; — kg € p*Z. Since
Mz, is finitely generated as&,-module, the naturalz/ pst1Z)-linear Hecke-equivariant
homomorphism

H! (Fl(N),fkl_z/pSH) — Mgzpsiz

Is an isomorphism by the proof of Proposition 2.4. Sikce s+ p°+ 1, we havek; > ko.
By Lemma 3.4, we have a surjectivg/({s'Z)-linear Hecke-equivariant homomorphism

Ty ko2 Mz, /P* » HY (Tu(N), Lo 2/p™7),

and hence

bz, (HH(T2(N), Lo/ P¥Y)) + Lz (Ker @y 2)) = £, (Mz, /P,
Moreover, the action of , on ker@ﬁj}ziko_z) is 0 by the proof of Lemma 3.18, we obtain

5zp(ker(w|§f_12,ko_2)) + 0z, (Tp(sz)/(Tp(sz) N pylep)) < fzp(l\/lzp/ps‘Ll).

It ensures the inequality

Lz, (Tp(Mz,)/(To(Mz,) 0 p™IMz,)) < €, (H (Tu(N), Lo/ p*Y)).
We conclude

do < £z, (H* (T(N), L2/ p?)) < C.
m

Definition 3.33. Let Rbe a ring. A leftR-moduleM is said to beadically finiteif there
is anr € Rsuch that is not a zero divisor andM is contained in a finitely generated left
R-submodule oM.

Theorem 3.34. The A;-modulesM(I'y(N), A1) and M(T'1(N), y, A))<¥ are adically
finite.
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The proof is quite similar to that of [Hid93] 7.3 Theorem 1.

Proof. We deal only withM(I';(N), A1)[<¥, because a similar proof with the follow-
ing works forM(I'1(N), x, A1), SinceA; is an integral domain by Proposition 3.26,
M(1(N), A < Aq[[q]] is a torsionfreeA;-module. We regardi(I';(N), A1)<¥ as a
Az-submodule of Frag(;) ®,, M(I't(N), A1)[<9. Letd € N, and assume

dimFracqxl) (FraCQ\l) ®A1 M(FI(N), Al)[<s]) > d.

Take a systemf(iainpag € (M(T1(N), Aq)l<9)? of Frac(r,)-linearly independent ele-
ments. We define a decreasing sequeNgk(, of Frac(A1)-vector spaces by setting

Vi 1= {(Fi)i":1 € Frac(A,)®

d
i=1

for eachhy € N. Since Fracf,)? is of finite dimension, we hav€) Vi = Vi,
for somehy € N N [1,00]. On the other handf;., Vi coincides with{O} because
(fi)ienna; is @ system of Frad(y)-linearly independent elements. It implies that the
system (eh(fi))ﬂio id:l € (Arl“’*l)OI of d vectors of lengtthg + 1 is Frac{\)-linearly inde-
pendent, and hence there is a strictly increasing sequéam)t‘;gl (e (N N[0, ho])® such
thatA := (ahj(fi))ﬁ'j=1 € My(Ay) lies in GLg(Frac(Ay)).

PutD := det(A) € A;\{0}. SinceD # 0, there is ap € Q(A1)unp.) SUch thatfi(p) €
MM(¢)(F1(N),@p)<S for anyi e NN [1,d] and¢(D) # 0 because\; is aA-adic algebra.
In particular,¢(A) = ((,p(ahj(fi)))ﬂj:1 = (ahj(fi((p)))ﬂj:l e My(Z,) satisfies detf(A)) =
¢(D) # 0, and hence lies in GI(Q,). Itimplies that the systemd; ( f; (@N_)L,; € (Z3)
of d vectors of lengthd is @p-linearly independent. In particular, the systefifg))", is
@p-linearly independent. It ensures thdats bounded by the constant in Lemma 3.32,
and hence Frag(;) ®,, M(T'1(N), A1)<9 is a finite dimensiona@p-vector space.

Letd € N denote dimfacp,)(Frachs) ®,, M(T1(N), A7)<9) € N. By the argument
above, thereis an )L, (h){_, ¢) € (M(T1(N), A1)l*9)IXNIXQ(A1)1nj2.) SUCh that the
system )7, is Frac(\,)-linearly independent,t‘nﬁ)‘j’:1 is a strictly increasing sequence,
filp) € th(¢)(F1(N),@p)<s foranyi € NnJ[1,d], andA = (ahj(fi))id’j=1 € Mgy(A1)
lies in GLg(Frac(A1)). Then Fracf;) ®,, M(I1(N), A7)l = @id:l Frac(\,)f; by the
definition ofd. PutD := det(d) € A;\{0}. We verify DM(I"'1(N), A))<¥ ¢ EBid:l A ;.
Let f € M(I'y(N), A1)=3. Since Fracf;) ®4, M(I'1(N), Ap)<d = EBid:l Frac(\,)f;, there
is an F)", € Frac(A1)? such thafy?, Fif; = f. We obtain a linear equation

A(F)L, = (an ()L,

88



and hence
D(Fi)iL; = DA™ (an, (f)){y) = (det®)A™)(an, (f))5.; € AY.
ThusDf = 3¢, (DF)fi € @7, Asfi. We concluddM(Ty(N), A ¢ @Y Asfi. O
Corollary 3.35. The following hold:
(i) TheAi;-modulesM(I'1(N), A1) andM(1(N), v, A1)I<¥ are generically finite.

(i) If A1 is Noetherian, thedI(I'1(N), A1)<8 andM(I'1(N), x, A1)[<¥ are finitely gen-
erated.

(i) There is a finite subs& c Q(A1)nnpz.) SUch thatf(p)(q) € Zp[go][[ g]] lies in
Mur)(T1(N), Zp[¢]) < for any f(q) € M(T'1(N), A1)l<¥ and¢ € Q(A1)unp.)\S.

(iv) If A;is Noetherian, then tha;-modulesM(I';(N), A7) andM(T'1(N), y, Aq)<d
are closed inA4[[q]], and hence are compact Hausgfaopological A;-modules
with respect to the relative topologies.

Proof. The assertions (i) and (ii) immediately follow from Theorem 3.34. For the asser-
tion (iii), take a Frac)-basisE ¢ M(I'y(N), A1)[<¥ of Frac(A1) ®x, M(I'1(N), Ay)<d
and aD € A;\{0} such thatDM(I'1(N), A))¥ ¢ B, . A:f. For eachf(q) € E, let
St € Q(A1)unpz.~) denote a finite subset such thigtp)(q) lies in My, (T'1(N), Zp[e]) <°
for any € Q(A1)nn2.)\St. Let Sp denote the suppofl € Q(A1)nnpz.«) | ¢(D) = 0} of
D. SinceD # 0, Sp is afinite set becauge, is aA-adic algebra. S& := SpUJ;g St C
Q(A1)nnpe) Let f(g) € M(T1(N), A1)l"¥ andg € Q(A1)unpz)\S. SinceS contains
Usee St, (D) f(¢) = (Df)(¢) lies in My, (T'1(N), Zp[¢]) <S. SinceS containsSp, we
havey(D) e @§ and hencd (p) lies in My, (I'1(N), Z,[¢]) <°. For the assertion (iv), we
deal only withM(I"1(N), A1)I<3. Take a finite subsdé ¢ M(I',(N), A1)[<¥ of generators
as aA;-module. TheA;-linear homomorphism

AT - Ad[d]]
(Ff)iee = ZFff

feE

is continuous. SincaAE is compact and\;[[d]] is Hausdoff, its imageM(I';(N), Ay)!<
is closed. O

We denote by Reg(A;) the set of allp € Q(A1)unz~) such that for anyf(q) e
M(T1(N), A1), f(0)(0) € Zp[][[d]] lies in My, (T1(N), Zo[¢])<S. By Corollary 3.35
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(i), Q(A1)nnp.)\REF (A1) is a finite set, and hence R&@A;) is an infinite set. For
eachy € Reg>(A,), we denote by

M, (T1(N), x> Zp[@]) =9 € My (T1(N), ¢ 0 x, Zp[]) =

the image ofM(I'1(N), x, A1)*¥ by the specialisation at, and by

TES c Endh, (My(Ta(N). v, ZolgD) ™)

N,y

the commutativ&,[¢]-subalgebra generated by Hecke operators. Tfflp’éi}TS aZplel-
algebra finitely generated agg-module, because M) (I'1(N), o x, Zy[¢]) <*is finitely
generated as@[¢]-module andZ, is Noetherian. Les c Red(A;) be a finite subset.
We denote by

A1/ m kel’(go)] T.[:s?]N,X C BNy s kerte) @ M (T2(N), x> Zpl¢])

peS peS

the commutativeA:/ M,s ker(p))-subalgebra generated by for each prime numbef
andS,, for eachn € N coprime toN. We have a natural embedding/ (s kerp) —
[1yes Zplel, and henceA:/ (N,es ker(p) is finitely generated as @,-module. Since
@%S M) (T1(N), @ © x,Zp[¢]) is finitely generated as aAg/ (s ker(p))-module,
(A1/ Nyes ker@) TS, s finitely generated as&,-module. We set

[<s] . ;
TNv\/aAl ._ Lm

ScRed (A1)

Al/ ﬂ ker(‘p)] T[€<S?]N,X’

peS

where S in the limit runs through all finite subsets of Rég\;). We regard it as a
profinite (A&, ATk ¥)-algebra by Corollary 1.19.

Proposition 3.36.If A, is Noetherian, then the action ®f for each prime numbef and
S, for eachn € N coprime toN extends to an action

T X M(TL(N), v A — M(T1(N), y, A<

continuous with respect to the relative topologyWi1(N), v, A1) < Aq[[d]].

Proof. By Corollary 3.35 (iv),M(I'1(N), v, A1)I*¥ is a closedA;-submodule ofA[[q]].
Therefore the assertion holds by a similar argument with that in the proof of Theorem
3.17. O

Proposition 3.37.If A; is Noetherian, thefiﬁj’Al is a commutative\;-algebra finitely

generated as &;-module, and hence is Noetherian.

90



Proof. By Corollary 3.35 (ii), it sdfices to show the injectivity of tha;-algebra homo-
morphism

N,x,A1

TS, = Endy, (M(T1(N), x, Ap)'“)

induced by the action in Proposition 3.36. L&te ker(). Let ¢ € Reg®(A;) and
f,(Q) € My(T1(N), x, Zp[¢])!<¥, and take a liftf () € M(T'1(N), x, A1)!<9 of f,(q). Since
the specialisatio©(I';1(N), x, A1)S — M, (T1(N), x, Zp[¢])[<¥ is continuous and com-
patible with the action off, for each prime numbef andS,, for eachn € N coprime
to N, the equality.(A)(f(q)) = 0 implies that the image oA in T-{ sendsf,(q) to 0.
Therefore the image dkin TE:,f,],X is 0. Since the natural homomorphism

s n Tl=d

N,x.A1 o.Ny
peReg*S(A1)

[<s]

is injective by the definition off (", ,

we concludeA = 0. Thust is injective. O

Corollary 3.38. If A1 is Noetherian, then the continuos-bilinear pairing

TﬁiAlxM(Fl(N)’X,Al)ks] - A
(A f(a) — a(Af)

is non-degenerate, and it givesac(\)-linear isomorphisms

IR

< < v
FraCQ\l) A, TE\I;],Al (FraCQ\l) Qpq M(Fl(N),X, Al)[ S])
\%
Frac(\i) @, M(T1(N), x, A1) = (Fracpha) en, T, ),

whereV" denotes th&rac(\,)-linear dualHomg e, (V) for a Frac(A1)-vector space/.

Proof. The first assertion implies the second assertion by Proposition 3.26, Corollary
3.35 (i), and Proposition 3.37, becaus®I',(N), v, A1)l<¥ is a torsionfreeA;-module.

Let A e T, with a(Af) = 0 for any f(q) € M(I'y(N).x,A)"d. Let f(q) €
M(I'1(N), x, A7)[<S. For anyh € N\{0}, we havea,(Af) = ai(T,Af) = ay(A(Tyf)) = 0.

It implies thatAf is a constant. Since there is no nontrivial modular form which is a con-
stant,Af = 0. Therefore the proof of Proposition 3.37 ensukes 0. Thus the pairing is
right non-degenerate. Lé(q) € M(I'y(N), . A1)'"d with ay(Af) = 0 for anyA e T3, .

For anyh € N\{0}, we havea,(f) = a;(Tf) = 0. It implies thatf is a constant. Since
there is no nontrivial modular form which is a constahtz 0. Thus the pairing is left

non-degenerate. O

A A;-adic form f(q) of level N is said to be a\;-adic eigenform of level if f(q) #
0 and for any Hecke operatdr, there is al;(T) € A; such that T — 2:(T))f(q) =

91



0. Such a systemi¢(T))r is unique becausd; is an integral domain by Proposition
3.26. It is obvious that the specialisations oAgadic eigenform of leveN at all but
finitely manyy € Q(A1)nn2.~) are eigenforms ov@IO of level N, but we do not know
when the converse holds. A;-adic form f(qg) of level N is said to be a\;-adic cusp
form of levelN if f(¢)(q) is a cuspidal eigenform ov@p of level N for all but finitely
many¢ € Q(A1)nnp.~). A As-adic eigenformf(q) of level N is said to benormalised
if a;(f) = 1, and is said to be A;-adic cuspidal eigenform of levé\ if f is aA;-adic
cusp form of levelN. Let f(q) be aA;-adic cuspidal eigenform of levéN. Suppose
that f is normalised. We have;(Ty) = an(f) = ay(T,f) for anyh € N\{0}, and hence
f(g) = Xp2, A+(Th)g". Thusf is explicitly determined by the system¢(T))r. Suppose
that f is not necessarily normalised. We haagf) = 0 anday(f)Tnf = an(f)f for
any h € N\{0} by definition. It implies thaty(f) # 0, an(f) € ay(f)A; for anyh € N,
andA¢(Tp) = ay(f)ta,(f) for anyh € N\{0}. Thereforea,(f)-*f is a normalised\ ;-
adic cuspidal eigenform of levd®l. Thus everyA;-adic cuspidal eigenform of levé\
is given asaf(q) for a unique pair &, f) of a constanea € A; and a normalised\;-
adic cuspidal eigenfornfi of level N. Now we show a relation between normalised
cuspidal eigenforms of levé\l and a continuoud ;-algebra homomorphisrﬁ[éjjAl -
A

Proposition 3.39. If A; is Noetherian, then for any;-adic eigenformf(q) of levelN
of Dirichlet charactery locally of slope< s, there is a unique continuous;-algebra

[<s]

homomorphism; : Troa, — A1 extending the syste(;(T))r.

Proof. Let &/ C T[ij],/\l be aA;-subalgebra generated @y for each prime numbef
and S, for eachn € N coprime toN. Then.«Z is a dense\;-subalgebra OTE\T;],M by
the definition of the inverse limit topology. It implies the uniquenessdobecauseA
is Hausdoff. We defined; by settingas(A) = ay(Af) for eachA € T, , whereAf
is given by the action defined in Proposition 3.36. ThHems continuous, and sinckis
a Aj-adic eigenform of leveN, A¢|., is a A;-algebra homomorphism. It implies that
Is aA;-algebra homomorphism extending (T))r by the continuity of the addition and

the multiplication ofT{;¥, . O

Thus a normalised\ ;-adic eigenform of leveN of Dirichlet charactey locally of
slope< sis regarded as a continuows-algebra homomorphisr‘ﬁkﬁjAl — A7 inthe
case where\; is Noetherian. The converse correspondence is a little more complicated.

Proposition 3.40. If A; is Noetherian, then for any continuows -algebra homomor-
phismA: T, — Ay, there are soma € A;\{0} and f(q) € M('y(N), x, A1)l such
thatai(A) = ay(Af) for any A € T{;¥, . In addition, if f can be taken as a cusp form,
then there uniquely exists a normalisag-adic cuspidal eigenfornf,(q) of levelN of

Dirichlet charactery locally of slope< swith A = As,.
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Proof. By Corollary 3.38, there uniquely exists dne Frac(\1) ®4, M(T'1(N), y, Ag)<d
such that for any € A;\{0} and f € M(I'1(N), x, A)<¥ with a* ® f = f,, the equality
a'ay(Af) = A(A) holds for anyA e T{(¥, .
Suppose that can be taken as a cusp form. We haygf) = 0 anda,(f) = a;(T,f) =
al(Ty) € aA; for anyh € N\{0}, and in particular, the equalit(f) = at(1) = a holds.
Thereforef, lies in the image ofM(I"y(N), y, A1)'=3. Namely, f; = S, A(Tp)q" €

M(T1(N), x, A7)<9. LetAe T{, . We have

an(Afy) = a(ThAT) = ad(ThA) = aa(Th)A(A) = A(A)an(f,)

for anyh € N\{0}, and henc&f, — A(A)f, is a constant. Since there is no non-trivial
modular form which is a constant, we obtalf, = A(A)f,. In particular, the equality
Snfi=ASn) T = Ay(n+ NZ)f = y(n+ NZ)f holds for anyn € N coprime toN. Thus

f, Is a normalised\;-adic cuspidal eigenform of levé&l of Dirichlet charactey locally

of slope< swith A;, = 4.

Let f(g) be a normalised;-adic eigenformf,(q) of level N of Dirichlet charactey
locally of slope< swith A = A;. Then we havey,(f) = 1¢(T,) = A(T¢) = an(f,) for any
h € N\{0}. It implies thatf — f, is a constant. Since there is no non-trivial modular form
which is a constant, we obtain= f,. We conclude that, is a unique normalised;-adic
eigenform of leveN of Dirichlet charactey locally of slope< swith A = A;,. O

We would like to add the eIemerpISTlg1 to ka;]’,\l. However, the endomorphism
on Qp ®z, M(I'1(N), x, A1)l*d given by T, seems not to be invertible, because an en-
domorphism on an infinite dimensional compactly generated topological vector space
with infinitely many points on the resolvent is never diagonalisable. Therefore for a
¢ € Reg™(A1), we do not know whether or not the operaityis invertible inQ, ®z,
M,(T1(N), x. Zp[¢])!<9, and hence we can not regapdT ;! as an element o), ®;,
Endy, (M, (T't(N), x, Zp[¢])!=¥). Imitating the result of Proposition 1.39, we set

Tony = (Tg[;rfl],;([x]/ (TpX - ps))

for eachy € Reg®(A,). Since 'E,j{x is aZp-algebra finitely generated agg-module, so
is T; R, by @ similar argument with that i§.3. For each finite subsBtc Reg™(A4), we
denote by Tsy, € [1ges Ty, the commutativeXs/ N,es ker(p))-subalgebra generated
by the diagonal action of Hecke operators apﬂrgl)wes. We set

free

Ny

Tﬁli(,/\l = Lm TZE,N,,\/’
ScRed (A1)
where S in the limit runs through all finite subsets of Rég\;). We regard it as a

profinite A1®x,AoTx -algebra by Corollary 1.19.
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Proposition 3.41. The continuouﬁ‘{f’]A -algebra homomorphism
LY\ 1

I = TR,

Ny, A1
sT-1
X = pT,
IS surjective.

Proof. The assertion can be easily verified by a similar argument in the proof of Propo-
sition 1.40. O

Corollary 3.42. If A, is Noetherian, then so I8 , -

[<s]

We note that every continuous,;-algebra homomorphisn: TR oA

extends to a\;-algebra homomorphism

— Az uniquely

T\ [X1/(TpX = p?) - Frac(y)
X = pSA(Ty)*

but does not necessarily extend ta galgebra homomorphisﬁﬂ@ A, — FracAq) be-
cause the image cp‘STF;1 in Frac(A;) does not necessarily topologically nilpotent even if
one equips Frag(;) with suitable topologies.

Definition 3.43. A A;-adic family of systems of Hecke eigenvalues of Isv&f Dirichlet

charactery of slope< sis a continuoug\;-algebra homomorphism;;Al — Aj.

Definition 3.44. A A;-adic eigenformf(q) of level N of Dirichlet charactey is said to
beof slope< sif p°a(f) € a,(f)A;.

Suppose thah; is Noetherian. For a normaliséd -adic eigenformf (q) of level N of
Dirichlet charactey of slope< s, the homomorphism

LI IXD - A

DAXT 5| > (poay(f) ) A

m=0 m=0
induces aA;-adic family As : TK&,AI — A; of systems of Hecke eigenvalues of level
N of Dirichlet charactey of slope< s by a similar argument with that in the proof
of Proposition 3.39. Thus a normalis&d-adic eigenform of leveN of slope< sis
naturally identified with a\;-adic family of systems of Hecke eigenvalues of |eMebf
slope< s.

A Aj-adic family A: Tﬁim — A, of systems of Hecke eigenvalues of lewlof

Dirichlet characte)y of slope< sis said to bea A;-adic cuspidal family of systems of
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Hecke eigenvalues of levhll of Dirichlet charactery of slope< sif the formal power
series

1= Z ﬂ(Th)qh
h=1

is a normalised\;-adic eigenform of leveN of Dirichlet charactey of slope< ssuch
that f,(¢)(g) is a cusp form oveZy[¢] of weight wt(p) and levelN for all but finitely
many ¢ € Q(A1)nnp«). A Ag-adic form f(q) of level N of Dirichlet charactery of
slope< sis said to be anormalisedA;-adic cuspidal eigenform of lev@& of Dirichlet
charactery of slope< s if there is a cuspidal\;-adic family A; of systems of Hecke
eigenvalues of leveN of Dirichlet characteyy of slope< s such thatf = f;,. The
family At is unique by a similar argument in the proof of Proposition 3.39. By definition,
the notion of a normalised ;-adic cuspidal eigenform of lev@ of Dirichlet character

x of slope< sis equivalent to that of a cuspidal;-adic family of systems of Hecke
eigenvalues of levell of Dirichlet charactey of slope< seven ifA; is not Noetherian.

Letmnya, - AoTy — T;;Al denote the natural homomorphism. For a normalised
adic cuspidal eigenfornfi(q) of level N of Dirichlet charactey of slope< s, following a
similar convention to that in Example 1.16, we put

A= (A ) Orgs (TR s D) Bnor ( f A (H(N)g. Ficz) dk)
XA Zp
and regard it as a profinitAl[Gal(@/Q)]-module, which is finitely generated asAg-
module by Theorem 3.19.

Lemma 3.45. Suppose® | N. For any normalised\;-adic cuspidal eigenforni(q) of
levelN of slope< s, Frac(A1) ®a, 77;~° is a 2-dimensional representation &al(Q/Q)
overFrac(\y).

Proof. By Theorem 3.19, Fraa(;) ®,, #/;~° is a finite dimensional Frag)-vector
space. Pull := diMgacp,)(Frachs) ®,, ##°°) < co. It suffices to verifyd = 2. Sincef is
a normalised\;-adic cuspidal eigenform, there is a finite sutSet Q(A1)ynp2.«) SUCh
that f(¢)(q) is a normalised cuspidal eigenform o@g of weight wt() and levelN for
anyy € Q(A1)nnp.o)\S. Lety € Q(A1)nnp)\S. We have

)@ = ) @@ = > e(s(T))a" = D (¢ 0 ) (To)d".
h=1 h=1 h=1

Sincef(y) is a normalised cuspidal eigenform o@g of weight wt(p) and levelN, there
is aZ,-algebra homomorphisiy ) : Tuygn — Zp such thatf (¢) = ¢4 A5y (Th)g" by
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the duality ([Hid93] 5.3 Theorem 1). Sindéy) is of slope< s, we havda,(f(¢))l > |pI°,

and hencely(, uniquely extends to Zp-algebra homomorphism,): T2}, — Zp by

Proposition 1.39 and the duality again. By the definitiomgf), 1) (Tug,)n) IS AZp-
subalgebra oft¢(,)(T;},) = (o 4:)(TS 1) = ¢(A1). We denote by, (f(¢)) the p-adic

@.Ny Ny, A1
Hecke fieldQp ®z, A1) (T \,) of f(p). Letw,: TS , - To}, denote the canonical

e ¢ Noy,A1 ©.Noy
projection. We have

(¢ o A41)(Th) = an(f(p)) = At)(Th) = At (@, (Th)) = (At © @) (Th)

for anyh € N\{0},

(¢ 0 A6)(Sn) = ¢(A:(x(n + NZ))) = (¢ o x)(n + NZ) = A1) (Sn) = At()(@,(Sn))
= (At) © @,)(Sn)

for anyn € N coprime toN, and

(@0 A)(P°T,Y = Pp 0 A1) (Tp) ™ = P°Asy(Tp) ™
= A(P°TyY = A (@ (P°T,H) = (At © @) (P°T,Y).

Since these operators generate a densesubalgebra ot[‘;j(m by the definition of the
inverse limit topology, we obtaip o A = A¢(,) o @,. In particular, we get an inclusion

TN A, Pty C Ker(@,) c ker(p o Ar)
of ideals of T , . By Lemma 3.22, we obtain

(A1/ Ker@)) @, 75 = (9(A1), @) ®n, H5°S
((P(Al), (p) ®p, (A]_, /lf) ®T§‘iﬁ/\1 (TEZ,AH WN,)(,Al)

®AoTs? (f %% (Yl(N)@, fk_2)<s dk)
Zp

[l

[l

(ehgo i) @r (Tins Prans) Brom (fz A (N)g, Ficz)” dk)
p

IR

(¢(A2), 1 0 ) 1A (TR rs P
& <S
Bhorss ( f Az (Yi(N)g. Fiz) dk)
Zp

(SD(Al), Aty © w¢) ®r<s jyes

IR

<S <S <S
A, Pote) (TN,X,Al/ TNCea: Pat)» wNmAi)

Ny, A1~ Ny,
® <s
@narieiPigy (MOTN/ Pirto) ®narys (fz Hat (Yu(N)g, Ficz) dk)
p

IR

<S <S <S
(¢80, A1 0 @) @iz iz iz (Thovns/ Thoens Pt @hcas)
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1 o <S
®A0T§S/P<s %t (Yl(N)@a JWt(‘P)_Z)

wi(g)

1 <S

(0(AD). A1) ®rz et (Tamon! KeTQr)) @1z, 2t (Ya(N)g: FPuager-2)
<S
o(A1) Bz (A Tasion) A1) 12 At (Yi(N)gs Fugr2) -

wi(e).N wi(e).N

IR

IR

and hence putting := Q, ®z, 7;~° andQy[¢] = Qp ®z, Zy[¢], we get

(Qplels idg, ® ¢) Bgyemn, V = ((Qp ©2, A1) / ker(idy, 8 ¢)) @gye,,n, V
Qp ®z, (A1/ ker(p)) ®y, H°

< <S
Qp ®z, ¢(A1) ®ay(is,, 0 (ﬂf(¢) (TatoN)» ﬂf(@) BT Yy (Yl(N)@, ﬂwt(@_z)
Qple] @ayren (ol F(9)), idg, @ Ar)
<S
®QP®ZpT\7vf(¢),N Hét (Yl(N)@’ Syn-iNt@P)—Z (Rl(ﬂ'N)*(Qp)El(N)))

by Remark 3.21. The last term is the base change of the Galois representation associated
to f(¢) ([Shi71] Theorem 7.24 for weight 2, and [Del69} R-4 for general weights 2)

by the finite extensioRy[¢] /Qp(f(¢)).

IR

IR

IR

We regardQ, ®z, A1 as aA;-subalgebra of Frag(;), and identifyV with the Qp ®z,
A1)-submodule @, ®z, A1) ®a, ;°° of Frac(A1) ®x, #;°. Take a Frac{,)-linear basis
E={c|ieNn[ld]} cV of FracA;) ®, #;°. We consider a@, ®, Aj)-linear
homomorphism

L:(Qp®ZpA1)d - V
d

(Fi)id:1 — ZFiCi.
i=1

SinceE is a set of Frac\;)-linearly independent elementsjs injective. SinceV is
finitely generated as aQf ®;, Ai1)-module andE generates Fras() ®,, 7~ as a
Frac(A1)-vector space, coini(is a torsion Q, ®z, Ai)-module with non-trivial anni-
hilators. LetD € (Q,®z, A1)\{0} be an annihilator of coina). PutC := SpecQ,®z, A1).
We denote by c Frac(A;) the localisation@, ®, A;)[D~"], and byU c C the image
of the open immersion Speg() — C. Then: induces anz'-linear homomorphism

Ly ,Qfd - M®Qp®zp/\1v
d
F)L, » Z Fici.
i=1

The right exactness of the functof®q e, 4, () €nsures coim() = &/ ®q,, ,COIM() =
0. SinceV c Frac(A1)®,, 7;~°is a torsionfreeQ,®z, A1)-module, the natural/-linear
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homomorphisme ®qe,,a, V = Fraci1) ®qge. A, V = Frach1) ®a, ;= is injective,
and hencey is injective. It implies thaty is an.</-linear isomorphism. SincB # 0,
there is ap € Reg (A1) with ¢(D) # 0. The specialisation

idg, ® 01 Qp®z, A1 = Qp®z, Zply] = Qply]
coF - cp(F)

induces aQp[¢]-linear homomorphism
o Qplelt = (Qlel.idg, ® ) ®gyesn, V
d
(a’i)id:]_ - Zaici.
i=1

Sinceyp(D) # 0, idy, ® ¢ factors throughz by the universality of the localisation. There-
fore the bijectivity of., ensures that of,, becausex? is a frees/-module. The target
of ¢, is isomorphic to the Galois representation associatddu(q) overQq[¢]. O

Let X be a topological space. For eack X, we denote b@p(x) the C(X, @p)-algebra
of dimension 1 as @p-vector space given as the quotient oiXC@p) by the maximal
ideal{F € C(X,Q,) | F(x) = 0}. LetG be a monoid. For a & Q,)-moduleM endowed
with a C(X, @p)-linear action ofG, we call@p(x) Bcxa,) M the specialisation oM at
X, and regard it as @p-linear representation dd. In the case wher& is a subspace
of Reg(A;), for ap € X, we hope that a reader does not mist@gap) for Qpl¢]. In
this case, we regard &(Q,) as aA;-algebra in a similar way with that introduced after
Proposition 3.27.

Theorem 3.46.Suppos® | N. Then there is a finite sSubsEf c Q(A1)nn2.-) Satisfying
the following for any normalisedd;-adic cuspidal eigenfornfi(g) of levelN of Dirichlet
charactery of slope< s:

(i) For any ¢ € Q(A1)nnpz)\Zs, F(@)(Q) is a normalised cuspidal eigenform over
Zpl ] of weightwt(¢) and levelN of Dirichlet charactery of slope< s.

(i) TheC(Q(A1)nnz.0)\Zs Qp)-module
=%ﬂf<S|Q(A1)Nm[2,m)\ZS = C(Q(Al)Nm[Z,oo)\ZSa @p) ®n, H;°

endowed with &(Q(A1)wnp2,0)\Zs, @p)-linear action ofGaI(@/Q) is free of rank2
as aC(Q(A1)nnp2.) \Zs, Qp)-module.
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(iif) Foranye € Q(A1)nnp.«)\XZs, the specialisation

QP(QD) ®C(Q(A1)Nm[2,m)\zs,@p) jffdlﬂ(/\l)m[zfm)\ﬁs

Of H:™ oAz \zs @@ IS Naturally isomorphic to the Galois representation asso-
ciated tof (¢)(q) overQ,.

Proof. NormalisedA;-adic cuspidal eigenforms of lev& of Dirichlet charactey of
slope< sare Frac{;)-linearly independent because they are simultaneous eigenvectors
of Frac(A1)-linear operatorgT,, | h € N\{0}} with pairwise distinct systems of eigen-
values. By Corollary 3.35 (i), Fraag) ®, M(I'1(N), y, A1)I<¥ is a finite dimensional
Frac(A,)-vector space, and hence there are at most finitely many normalisedic
cuspidal eigenforms of levell of Dirichlet charactely of slope< s. Therefore it suf-
fices to verify that for any normalised;-adic cuspidal eigenforni(qg) of level N of
Dirichlet charactely of slope< s, there is a finite subs&y c Q(A1)nnp2.) SUch that
f(¢)(q) is a normalised cuspidal eigenform ov&s¢] of weight wt(p) and levelN of
Dirichlet charactey of slope< sfor anyy € Q(A1)nnz.)\So, @and for any finite subset
S € Q(Aunp.) CONtAININGSy, the CQ(A)wnp.)\S, Qp)-module

oA )npag\s = C (Q(Al)Nm[z,oo)\S, @p) ®n, H7°°
is free of rank 2 as a Q(A1)nnz,)\S, @p)-module, and its specialisation

Qp((p) ®C(Q(A1)Nn[2$m)\s,@p) ‘%<S|9(A1)Nn[2,oo)\5

Is naturally isomorphic to the Galois representation associaté@)¢q) over@p for any
¢ € Q(A1)un2,e)\S.

Let S; ¢ Q(A1)unp.~) denote the finite subset consisting of elemeptsuch that
f(¢)(0) is not a normalised cuspidal eigenform o%gf¢] of weight wt(p) and levelN
of Dirichlet charactey of slope< s. By the proof of Lemma 3.45, there id€ac A;\{0}
such that

(el ida, ®¢) Oayon,n: (U &2, 7,

is naturally isomorphic to the Galois representation associatddu{q) over@p for
any ¢ € Reg®(A;) with (D) # 0. LetS, c Q(A1)unp~) denote the suppofty
Q(A1)nnpe) | ¢(D) = 0}. SinceA; is aA-adic algebraS, is a finite subset. Pu§, :=
S1U Sy U (Q(Ann2.0) \RET(A1)). LetS c Q(A1)unp.«) be a finite subset containing
So. Then for anyy € Q(A1)nnp.)\S, we have

QD("O) ®C(Q(A1)Nﬁ[2,m)\s’@p) c%ﬂf<SlQ(/\l)Nn[z,oo)\S
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IR

(@p(@’ idg, ® 90) ®QpezpAs (Qp ®z, Al) ®p, H5°
(Qp(9)- idg, ® ¢) ®ayer,as (Qp ®2, H47°).

IR

and henced(¢) Oc@Aninpa\ST,) 1 IAmze\s 1S Naturally isomorphic to the Ga-

lois representation associatedft@)(q) over@p because is contained in ReG(A1) =
Q(A1)\Ss.

We verify thatg%”fslg(,\l)w’m)\g is a free CQ(Al)Nm[z,oo)\S,@p)-module of rank 2. By
the definition ofS, the image oD in C(Q(A1)wnp2.«)\S, @p) has no zero, and hence is
invertible. We note that C(A1)unp2.«)\S, Qp) is not theQ,-algebra of bounded con-
tinuous functions, and hence we need not to argue the lower bound of the absolute
values of the image oD. By the universality of a localisation, the evaluation map
A1 > CQ(ADnnpo)\S,Qp) factors throughA; — & = (Qp ®z, A)[D™Y]. By
the proof of Lemma 3.45, the/-module &/ ®, ;% = o ®QpezyA1 (Qp ®z, H;°°)
is free of rank 2, and hence s0 is theQTA1)inp.)\S, Qp)-Module S, Slo ) pa\s =
CQUADNN2.)\S, Qp) By ' ®n, HS. O
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