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概要

We define a pro-p Abelian sheaf on a modular curve of a fixed levelN ≥ 5 divis-
ible by a prime numberp , 2. Everyp-adic representation of Gal(Q/Q) associated
to an eigenform is obtained as a quotient of itsétale cohomology. For any com-
pactZp[[1 +NZp]]-algebraΛ1 satisfying certain suitable conditions, we construct a
representation of Gal(Q/Q) overΛ1 associated to aΛ1-adic cuspidal eigenform of
finite slope as a scalar extension of a quotient of theétale cohomology.
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0 全体の序文
We give a new explicit geometric construction of ap-adic family of Galois represen-

tations associated to modular forms of finite slope. We construct a compact sheaf on a
modular curve of a fixed levelN with p | N, and define a family as a quotient of its
cohomology. Even if we restrict the case where modular forms are ordinary, then our
construction completely differs from well-known ones: One is the inverse limit of Tate
modules of Jacobian varieties of towers of modular curves ([Hid86] Theorem 2.1), and
another one is a gluing of pseudo-representations along Hida family ([Wil88] Theorem
2.2.1). The result is deeply related to one of the open questions in [CM98]. R. Coleman
and B. Mazur defined an eigencurve of tame level 1 called Coleman family in [CM98]
6.1 Definition 1. Excluding a discrete subspace from the reduced eigencurve, they con-
structed a continuous representation of Gal(Q/Q) over the ring of rigid analytic functions
of rank 2 from the pseudo-representation obtained as the pull-back of the universal defor-
mation of a pseudo-representation over a finite field. Then they asked an open question
whether this Galois representation is obtained as the Pontryagin dual of the direct limit
of étale cohomologies of a tower of modular curves.

First, §1 consists of three subsections. In§1.1, we recall topological modules over
topological rings. A topological module over a topological ring is said to be aprofinite

moduleif it is homeomorphically isomorphic to an inverse limit of topological modules
whose underlying topological spaces are discrete finite spaces. A profinite module is
a compact Hausdorff totally disconnected topological module, and the set of open sub-
modules forms a fundamental system of neighbourhoods of 0. A topological module
is said to becompleteif its is homeomorphically isomorphic to the inverse limit of the
quotients by its open submodules. Every profinite module is complete. We introduce the
notion of the complete tensor product. It is a bifunctor sending two complete topologi-
cal modules (resp. profinite modules) to a complete topological module (resp. a profinite
module). In§1.2, we recall topological modules over monoid algebras of topological
monoids over topological rings. We are interested not only in a topological group but
also in a topological monoid, because we need the latter in order to give an action of
Hecke operators on cohomologies in§2.3. A topological module over a monoid algebra
of a topological monoid over a topological ring is said to be aprofinite moduleif it is
homeomorphically isomorphic to an inverse limit of topological modules whose under-
lying topological spaces are discrete finite spaces. Roughly speaking, a functor from the
category of topological modules whose underlying topological spaces are discrete finite
spaces to a complete category extends to a functor from the category of profinite mod-
ules. This construction is important when we consider a correspondence between anétale
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sheaf on a connected Noetherian scheme and a module over a group algebra of the fun-
damental group. In§1.3, we recall modular forms and several variants of Hecke algebras
over ap-adic field. Amodular formoverQp is a formal power series with coefficients in
Qp such that its image inC[[q]] by a fixed isomorphismQp � C is a Fourier transform of
a modular form. The space of modular forms overQp is a finite dimensionalQp-vector
space with endomorphisms calledHecke operators. TheZp-algebra generated by Hecke
operators is commutative, and is finitely generated as aZp-module. We introduce the
universal Hecke algebrasT[<s]

N andT<s
N of finite slope< s. We will use them in order to

formulate a family of systems of cusp Hecke eigenvalues of finite slope in§3.3.

Secondly,§2 consists of three subsections. In§2.1, we introduce the notion of a con-
tinuous cohomology of a complete topological module with a continuous action of a
topological monoid. Roughly speaking, it is the inverse limit of the cohomologies of its
finite quotients. When the topological monoid is a finitely generated free group equipped
with the discrete topology, then the continuous cohomology of a first countable profi-
nite module coincides with the continuous cohomology, and hence the calculation of the
inverse limit. In§2.2, we introduce a notion of a profiniteZp-sheaf. It is an inverse
system ofétale sheaves of finite Abelianp-groups, and unlike a smoothZp-sheaf, we
assume no finiteness condition. Similar with a continuous cohomology of a complete
topological module with a continuous action of a topological monoid, we define a con-
tinuous cohomology of a profiniteZp-sheaf as an inverse limit of the cohomologies. It
is not a derived functor, but works well due to the profiniteness of sheaves. A continu-
ous cohomology is a cohomology of a single profiniteZp-sheaves on a single scheme by
definition, while a completed cohomology introduced by Emerton in [Eme] is the inverse
limit of the direct limit of torsion cohomologies of a compatible system ofp-adic sheaves
on a tower of schemes. Of course, Shapiro’s lemma gives an interpretation of a compat-
ible system of sheaves on a tower of schemes as a compatible system of sheaves on a
single scheme. However, such an interpretation yields a direct limit ofp-adic sheaves,
and hence completely differs from a profiniteZp-sheaf. A continuous cohomology of
profiniteZp-sheaves is compact, while a completed cohomology of a compatible system
of sheaves on a tower of schemes is Banach, which is far from compact. The compact-
ness is important for interpolation. The Iwasawa algebra, which is compact, is identified
with the algebra of rigid analytic functions, and interpolation by rigid analytic functions
has good congruence property. On the other hand, the algebra of bounded continuous
functions, which is Banach, has infinitely many idempotents, and hence interpolation by
continuous functions does not perform so well. We guess that in order to compare with
the two cohomologies in a direct way, one needs some duality theory of sheaves extend-
ing Schneider–Teitelbaum theory ([ST02]). In§2.3, we define actions of Gal(Q/Q) and
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Hecke operators on continuous cohomologies. We verify the action of Hecke operators
is Gal(Q/Q)-equivariant in Proposition 2.16. Its proof is given in a way imitating one in
[Del69] using Hecke correspondence. We will use the actions in a geometric construction
of a p-adic family of Galois representations associated to modular forms.

Thirdly, §3 consists of three subsections. In§3.1, we give an explicit way to interpolate
Symk−2(Q2

p) along weightsk ∈ N ∩ [2,∞). Although the dimensions of Symk−2(Q2
p) for

eachk ∈ N∩[2,∞) are pairwise distinct, there are infinite dimensional extensions of them
as is shown in Theorem 3.7 and Remark 3.12. They share the underlying topological
modules, and hence can be easily interpolated. In§3.2, we construct a profinite module
over the Iwasawa algebra with a continuous actions of Gal(Q/Q) andT<s

N . We verify the
finiteness of it as a module over the topological ring generated by the Iwasawa algebra
and Hecke operators in Theorem 3.19. In§3.3, we introduce a notion of aΛ-adic algebra
in Definition 3.25. Roughly speaking, it is a 1-dimensional topological algebra over the
Iwasawa algebra with “enough points ofZp weight” and “the identity theorem”. As is
shown in Theorem 3.29, the reduced eigencurve admits a dense open subspace withétale
coverings of its smooth alteration by formal affinoid spaces associated to affinoidΛ-adic
algebras. We verify a certain finiteness of the space of modular forms over aΛ-adic
algebra in Theorem 3.34. Finally, we construct ap-adic family of Galois representations
associated to modular forms in Theorem 3.46 of finite slope.
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1 Preliminaries
In this section, letp denote a prime number. We recall several notions of algebraic

objects with topologies. We also recall modular forms and Hecke algebras.

1.1 Topological Modules over Topological Rings

A topological monoidis a monoidG endowed with a topology such that the multipli-
cationG ×G → G: (g,g′) 7→ gg′ is continuous. A monoid is always equipped with the
discrete topology unless specified so that it is regarded as a topological monoid. Atopo-
logical groupis a topological monoidG such that its underlying monoid is a group and
the inverseG → G: g 7→ g−1 is continuous. A topological group is said to beAbelian

if its underlying group is Abelian. A topological group admits two canonical uniform
structures compatible with its topology, and for an Abelian topological group, the two
canonical uniform structures coincide with each other. Therefore we always equip a
topological Abelian group with the canonical uniform structure.

Example 1.1.Let G be a topological monoid. We denote byGop the opposite monoid of
G endowed with the topology induced by the identity map (·)op: G → Gop: g 7→ gop of
the underlying sets. ThenGop is a topological monoid. IfG is a topological group, then
so isGop, and the mapG→ Gop: g 7→ (g−1)op is a homeomorphic group isomorphism.

Example 1.2. Let I be a set, andG = (Gi)i∈I a family of topological monoids (resp.
topological groups). Then the direct product

∏
i∈I Gi is a topological monoid (resp. a

topological group) with respect to the direct product topology.

Let M be an Abelian group. The set{m+ pnM ⊂ M | (m,n) ∈ M ×N} forms a basis of
a topologyOM,p on M, and we callOM,p thep-adic topology onM. ThenM is an Abelian
topological group with respect to thep-adic topology onM. We say thatM is p-adically

separated(resp.p-adically complete) if the group homomorphism

ιM,p : M → lim←−−
r∈N

M/pr M

m 7→ (m+ pr M)∞r=0

is injective (resp. an isomorphism). By definition, thep-adic topology onM is the weak-
est topology for whichιM,p is continuous with respect to the inverse limit topology of the
discrete topology on the target. In particular,M is p-adically separated (resp.p-adically
complete) if and only ifM is Hausdorff (resp. complete) with respect to thep-adic topol-
ogy (resp. the canonical uniform structure associated to thep-adic topology).
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Example 1.3. Let I be a set, andM = (Mi)i∈I a family of p-adically separated (resp.
p-adically complete) Abelian groups. Then the direct product

∏
i∈I Mi is a p-adically

separated (resp.p-adically complete) Abelian group. The direct product topology of the
p-adic topologies does not necessarily coincide with thep-adic topology on the direct
product.

Proposition 1.4. Let M andN be Abelian groups. Every group homomorphismM → N

is continuous with respect to thep-adic topologies.

Proof. Let φ : M → N be a group homomorphism. We have∪
m′∈ker(φ)

(m+m′) + pr M = m+ ker(φ) + pr M ⊂ φ−1 (φ(m) + pr N)

for any (m, r) ∈ M × N. It ensures the continuity ofφ. □

A Zp-module is said to bep-adically separated(resp.p-adically complete) if its un-
derlying Abelian group isp-adically separated (resp.p-adically complete). For anyp-
adically complete Abelian groupM, the natural action ofZp on the target ofιM,p makesM
aZp-module. Therefore the notion of ap-adically complete Abelian group is equivalent
to that of ap-adically completeZp-module.

Example 1.5. Every finitely generatedZp-module isp-adically complete, while there is
no non-trivialQp-vector space which isp-adically separated.

Proposition 1.6. Let M be a p-adically completeZp-module. For anyZp-submodule

L ⊂ M closed with respect to thep-adic topology, the canonical projectionM ↠ M/L is
a quotient map with respect to thep-adic topologies.

Proof. Let φ : M ↠ M/L denote the canonical projection. The continuity ofφ follows
from Proposition 1.4. We have

φ(m+ pr M) = (m+ L) + pr(M/L)

for any (m, r) ∈ M × N, and henceφ is an open map. Thus the surjective mapφ is a
quotient map. □

In this paper, a ring is always assumed to be unital and associative, but not necessarily
commutative. Atopological ring is a ringR endowed with a topology such thatR is a
topological Abelian group with respect to the additionR× R→ R: (r, r ′) 7→ r + r ′, and
is a topological monoid with respect to the multiplicationR× R→ R: (r, r ′) 7→ rr ′. We
always equip a topological ring with the canonical uniform structure associated to the
topological Abelian group structure given by the addition. A topological ring is said to
becommutativeif its underlying ring is commutative.
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Example 1.7. For a ringR, the p-adic topology onR is the p-adic topology on the ad-
ditive group ofR. Since pnR ⊂ R is a two-sided ideal for anyn ∈ N, ιR,p is a ring
homomorphism, and henceR is a topological ring with respect to thep-adic topology.

Remark 1.8. Let R be a topological ring. The unit groupR× ⊂ R is a submonoid ofR
with respect to the multiplication, and we regard it as a topological monoid with respect
to the relative topology. It is not necessarily a topological group. For a topological group
G, we call a continuous monoid homomorphismG→ R× acontinuous character.

Let Rbe a topological ring. AtopologicalR-moduleis a topological Abelian groupM
endowed with a structure of a left module over the underlying ring ofRon the underlying
Abelian group ofM such that the scalar multiplicationR× M → M : (r,m) 7→ rm is
continuous. A topologicalR-module is said to be adiscreteR-moduleif its underlying
topology is the discrete topology, is said to be afinite R-moduleif it is a discreteR-
module whose underlying set is a finite set, and is said to be aprofiniteR-moduleif it is
homeomorphically isomorphic to an inverse limit of finiteR-modules. For a topological
R-moduleM, we denote byOM the set of openR-submodules ofM. A topologicalR-
module is said to belinearly completeif the continuousR-linear homomorphism

M → lim←−−
L∈OM

M/L

m 7→ (m+ L)L∈OM

is a homeomorphic isomorphism. For any linearly complete topologicalR-module,OM

forms a fundamental system of neighbourhoods of 0. Every discreteR-module is linearly
complete. In particular, every finiteR-module is linearly complete. Every inverse limit of
linearly complete topologicalR-modules is linearly complete. Therefore every profinite
R-module is linearly complete.

Example 1.9. For any ringR and leftR-moduleM, M is a topologicalR-module with
respect to thep-adic topologies onRandM.

Example 1.10.Let R be a commutative topological ring. For linearly complete (resp.
profinite)R-modulesM0 andM1, we set

M0⊗̂RM1 B lim←−−
(L0,L1)∈OM0×OM1

(M0/L0) ⊗R (M1/L1),

and endow it with the inverse limit topology of the discrete topologies. ThenM0⊗̂RM1 is
a linearly complete (resp. profinite)R-module.
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Proposition 1.11.LetRbe a commutative topological ring with underlying ring|R|, and

M0, M1, and M2 linearly completeR-modules with underlying|R|-modules|M0|, |M1|,
and |M2| respectively. For any continuousR-linear homomorphismf : M1 → M2, there

uniquely exists a continuousR-linear homomorphism

idM0⊗̂ f : M0⊗̂RM1→ M0⊗̂RM2

extending the|R|-linear homomorphism

id|M0| ⊗ f : |M0| ⊗|R| |M1| → |M0| ⊗|R| |M2|
m0 ⊗m1 7→ m0 ⊗ f (m1).

Moreover, ifM0 andM1 are profiniteR-modules andf is surjective, then so isidM0⊗̂ f .

Proof. The uniqueness is obvious because the image of|M0|⊗|R| |M1| is dense inM0⊗̂RM1

andM0⊗̂RM2 is Hausdorff. The|R|-linear homomorphism id|M0|⊗ f induces a well-defined
R-linear homomorphism

M0/L0 ⊗|R| M1/L1 → M0/L0 ⊗|R| M2/L2

(m0 + L0) ⊗ (m1 + L1) 7→ (m0 + L0) ⊗ ( f (m1) + L2)

continuous with respect to the discrete topologies for any (L0, L1, L2) ∈ OM0 ×OM1 ×OM2

with f (L1) ⊂ L2. Since f is continuous,f −1(L2) ∈ OM1 for anyL2 ∈ OM2, and hence we
have{L2 ∈ OM2 | ∃L1 ∈ OM1, s.t. f (L1) ⊂ L2} = OM2. Therefore taking an inverse limit,
we obtain a continuousR-linear homomorphism

idM0⊗̂ f : M0⊗̂RM1→ M0⊗̂RM2

extending id|M0| ⊗ f by the continuity of f . Suppose thatM0 and M1 are profiniteR-
modules andf is surjective. The image of|M0|⊗|R||M2| is dense inM0⊗̂RM2, and coincides
with the image of|M0| ⊗|R| |M1| by idM0⊗̂ f . SinceM0 and M1 are profiniteR-modules,
so is M0⊗̂RM1. It ensures that idM0⊗̂ f is a continuous homomorphism from a compact
module to a Hausdorffmodule, and hence is a closed map. Thus idM0⊗̂ f is surjective. □

Proposition 1.12. Every profiniteZp-module isp-adically separated, and itsp-adic

topology is finer than or equal to its original topology.

Proof. Let M be a profiniteZp-module. SinceM is Hausdorff, the second assertion im-
plies the first assertion. Since the topology of a linearly completeZp-module is generated
by openZp-submodules, it suffices to verify that for any openZp-submoduleL ⊂ M, there
is anr ∈ N such thatpr M ⊂ L. SinceM is compact,L is of finite index as an additive sub-
group ofM. ThereforeM/L is aZp-module whose underlying group is a finite Abelian
group, and hence there is anr ∈ N such thatpr(M/L) = 0. It impliespr M ⊂ L. □
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Corollary 1.13. For a p-adically separatedZp-moduleM and a profiniteZp-moduleN,

everyZp-linear homomorphismM → N is continuous with respect to thep-adic topology

on M.

Let R be a commutative topological ring. AtopologicalR-algebra is a topological
ring A endowed with a continuous ring homomorphismR → A whose image lies in
the centre ofA . Every topologicalR-algebraA is a topological leftR-module by the
continuity of the multiplicationA ×A → A and the structure mapR→ A . A topolog-
ical R-algebra is said to be aprofiniteR-algebraif it is homeomorphically isomorphic to
an inverse limit of topologicalR-algebras whose underlying topologicalR-modules are
finite R-modules. Every profiniteR-algebra is a profiniteR-module by definition. We do
not use the term “a finiteR-algebra” because it is ambiguous here.

Example 1.14.Let K be an algebraic extension ofQp, andOK the integral closure ofZp

in K. ThenK andOK are commutative topologicalZp-algebras with respect to a unique
extension| · | : K → [0,∞) of a p-adic norm onQp, and the relative topology ofOK ⊂ K
coincides with thep-adic topology.

Example 1.15.Let X be a topological space, andRa commutative topological ring. Then
theR-algebra C(X,R) of continuous mapsX→ R is a commutative topologicalR-algebra
with respect to the topology of uniform convergence.

Example 1.16.Let R be a commutative topological ring, andA a profiniteR-algebra.
For a linearly complete (resp. profinite)R-moduleM, we regardA ⊗̂RM as a linearly
complete (resp. profinite)A -module with respect to the natural action ofA . When
we emphasis the structure morphismφ : R→ A , then we write (A , φ)⊗̂RM instead of
A ⊗̂RM.

Example 1.17.Let R be a commutative topological ring with underlying ring|R|, and
A0 andA1 commutative profiniteR-algebras with underlying|R|-algebras|A0| and |A1|
respectively. Then the structure of|A0|⊗|R| |A1| as a commutative|R|-algebra uniquely ex-
tends a structure ofA0⊗̂RA1 as a topologicalR-algebra, for whichA0⊗̂RA1 is a commu-
tative profiniteR-algebra. For any profiniteR-moduleM, if M is endowed with structures
of a profiniteA0-module and a profiniteA1-module extending the structure of a profinite
R-module, then there uniquely exists a structure of a profinite (A0⊗̂RA1)-module onM

extending the structures of a profiniteA0-module and a profiniteA1-module.

Proposition 1.18. Let R be a commutative topological ring. A topologicalR-algebra

A is a profiniteR-algebra if and only if the underlying topological ring ofA is a com-

pact Hausdorff topological ring such that the set of open two-sided ideals ofA forms a

fundamental system of neighbourhoods of0.
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Proof. Let I denote the set of open two-sided ideals ofA . If A is a profiniteR-
algebra, thenA is homeomorphically isomorphic to the inverse limit of its quotients
by open two-sided ideals of finite index, and hence the underlying topological ring of
A is a compact Hausdorff topological ring such thatI forms a fundamental system
of neighbourhoods of 0. Conversely, suppose that the underlying topological ring of
A is a compact Hausdorff topological ring such thatI forms a fundamental system
of neighbourhoods of 0. For anyI ∈ I , the compactness ofA ensures thatA /I is a
topologicalR-algebra whose underlyingR-module is a finiteR-module. TheR-algebra
homomorphism

ι : A → lim←−−
I∈I

A /I

a 7→ (a+ I )I∈I

is continuous, and the image is dense with respect to the inverse limit topology on the
target. SinceA is compact,ι is a closed map and hence is surjective. SinceA is
Hausdorff, ι is injective becauseI forms a fundamental system of neighbourhoods of
0. Thusι is a homeomorphicR-algebra isomorphism, and henceA is a profiniteR-
algebra. □

Corollary 1.19. LetR0 be a commutative topological ring,R1 a commutative topological

R-algebra, andA a topologicalR1-algebra. ThenA is a profiniteR0-algebra if and only
if A is a profiniteR1-algebra.

Corollary 1.20. Let R be a commutative topological ring, andA a Zp-algebra finitely

generated as aZp-module. For any continuous ring homomorphismR → A , A is a

profiniteR-algebra with respect to thep-adic topology onA .

Proposition 1.21.LetA be a topologicalZp-algebra. For any Hausdorff topologicalA -

moduleM whose underlyingZp-module is finitely generated, the topology ofM coincides

with thep-adic topology, andM is a profiniteA -module.

Proof. Take a finite subsetS ⊂ M of generators of the underlyingZp-module ofM. By
the continuity of the additionM × M → M and the scalar multiplicationZp × M → M,
the surjectiveZp-linear homomorphism

φ : ZS
p → M

(am)m∈S 7→
∑
m∈S

amm

is continuous. SinceZS
p is compact andM is Hausdorff, φ is a quotient map. It follows

from Proposition 1.6 that the topology ofM coincides with thep-adic topology. SinceM
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is finitely generated as aZp-module, it isp-adically complete. Sincepr lies in the centre
of A , the action ofA on M extends to a unique action onM/pr M for any r ∈ N. We
have a homeomorphicR-linear isomorphism

M
∼→ lim←−−

r∈N
M/pr M,

and henceM is a profiniteA -module. □

Corollary 1.22. Let A be a commutative topologicalZp-algebra with a topologically

nilpotent elementϵ ∈ A . For any Hausdorff topologicalA -moduleM whose underlying

Zp-module is finitely generated, the continuousA -linear homomorphism

M → lim←−−
r∈N

M/ϵr M

m 7→ (m+ ϵr M)∞r=0

is a homeomorphic isomorphism.

Proof. By Proposition 1.21, the topology ofM is given by thep-adic topology. Let
r ′ ∈ N\{0}. Then M/pr ′M is a finiteA -module. For anym ∈ M/pr ′M, sinceϵ is a
topologically nilpotent, there is anr ∈ N such thatϵrm= 0. Since the underlying set ofA

is a finite set, there is anr ∈ N such thatϵr(M/pr ′M). It implies the canonical projection
M/pr ′M ↠ (M/pr ′M)/ϵr(M/pr ′M) � M/(pr ′M + ϵr M) is a homeomorphicA -linear
isomorphism. SinceM is finitely generated as aZp-module, so isM/ϵr M for anyr ∈ N.
ThereforeM/ϵr M is p-adically complete, and the topology ofM/ϵr M coincides with the
p-adic topology by Proposition 1.21 for anyr ∈ N. Therefore we obtain a homeomorphic
A -linear isomorphism

M � lim←−−
r ′∈N

M/pr ′M � lim←−−
r ′∈N

lim←−−
r∈N

M/(pr ′M + ϵr M) � lim←−−
r∈N

lim←−−
r ′∈N

M/(pr ′M + ϵr M)

� lim←−−
r∈N

M/ϵr M.

□

Definition 1.23. Let A be a topologicalZp-algebra. For a topologicalA -moduleM, we
denote by torp(M) ⊂ M theA -submodule consisting of elementsm ∈ M with prm = 0
for somer ∈ N, and byMfree the topologicalA -module flat overZp obtained as the
quotientM/torp(M).

For any discreteA -module M, its A -submodule torp(M) is closed, and hence its
quotientMfree is also a discreteA -module. On the other hand, for a topologicalA -
module M which is not a discreteA -module, torp(M) is not necessarily closed, and
henceMfree is not necessarily Hausdorff even if M is Hausdorff. Moreover, the corre-
spondenceM⇝ Mfree does not necessarily commute with direct products.
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Example 1.24.

Zp = lim←−−
r∈N
Zp/prZp ↪→

 ∞∏
r=0

Z/prZ


free

↠
∞∏

r=0

(Z/prZ)free = 0.

1.2 Topological Modules over Topological Monoids

Let S be a topological space. Atopological space with an action ofS is a pair (X, ρ)
of a topological spaceX and a continuous mapρ : S × X → X. For topological spaces
(X0, ρ0) and (X1, ρ1) with actions ofS, anS-equivariant mapφ : (X0, ρ0) → (X1, ρ1) is a
continuous mapφ : X0 → X1 satisfyingφ(ρ0(s, x)) = ρ1(s, φ(x)) for any (s, x) ∈ S × X0.
Let G be a topological monoid. AG-spaceis a topological space (X, ρ) with an action of
the underlying topological space ofG satisfying the following:

(i) The equalityρ(g, ρ(g′, x)) = ρ(gg′, x) holds for any (g,g′, x) ∈ G ×G × X.

(ii) The equalityρ(1, x) = x holds for anyx ∈ X.

Example 1.25.LetH ⊂ C denote the upper half plain{a+ b
√
− 1 | (a,b) ∈ R × (0,∞)}.

ThenH is an SL2(Z)-space with respect to the action

SL2(Z) × H → H a b
c d

 , z 7→ az+ b
cz+ d

given by linear fractional transformations.

Proposition 1.26.Let p be a prime number. The subset

Π0(p) B
 Zp Zp

pZp Z
×
p

 ⊂ M2(Zp),

is a closed submonoid with respect to the multipication and thep-adic topology of the

additive group ofM2(Zp), andZp is aΠ0(p)-space with respect to the action

mp : Π0(p) × Zp → Zp a b
c d

 , z 7→ mp

 a b
c d

 , z B az+ b
cz+ d

given byp-adic linear fractional transformations.
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Proof. To begin with, we verify that the image ofmp actually lies inZp. Let (A, z) ∈

Π0(p) × Zp with A =

 a b

c d

 . We havecz∈ pZp, d ∈ Z×p, and hencecz+ d ∈ Z×p. Since

az+ b ∈ Zp, we obtainmp(A, z) ∈ Zp. The function

Zp × Zp × pZp × (1+ pZp) × Zp → Zp

(a,b, c, d, z) 7→ mp

 a b

c d

 , z
is locally analytic, and hencemp is continuous. For any (A, B, z) ∈ Π0(p) × Π0(p) × Zp

with A =

 a b
c d

 andB =

 e f
g h

 , we have

mp(A,mp(B, z)) = mp

 a b

c d

 , ez+ f
gz+ h

 = a(ez+ f ) + b(gz+ h)
c(ez+ f ) + d(gz+ h)

=
(ae+ bg)z+ (a f + bh)
(ce+ dg)z+ (c f + dh)

= mp

 ae+ bg a f + bh
ce+ dg c f + dh

 , z = mp(AB, z).

For anyz ∈ Zp, mp(1, z) = z by definition. Thus (Zp,mp) is aΠ0(p)-space. □

A topological group is said to be aprofinite groupif it is homeomorphically isomorphic
to an inverse limit of finite groups. The notion of a profinite group is equivalent to
the notion of a compact Hausdorff totally disconnected group, and to the notion of a
compact topological group such that the set of open normal subgroups forms a system of
fundamental neighbourhoods of the unit.

Example 1.27.Let K be a field,L a Galois algebraic extension ofK, andS an algebraic
variety overk. Then Gal(L/K) is a profinite group, and for any locally constant sheaf
F of finite Abelian groups onSét, theétale cohomology H∗(S ×K L,F ) of the inverse
image ofF by the base changeS ×K L → S is a Gal(L/K)-space whose underlying set
is a finite set.

In the following in this subsection, letR denote a commutative topological ring, and
G a topological monoid. AtopologicalR[G]-moduleis a pair (M, ρ) of a topological
R-moduleM and a continuous mapρ : G × M → M such thatρ makes the underlying
topological space ofM aG-space and satisfies the following:

(iii) The equalityρ(g,m+m′) = ρ(g,m)+ρ(g,m′) holds for any (g,m,m′) ∈ G×M×M.

(iv) The equalityρ(g, rm) = rρ(g,m) holds for any (g, r,m) ∈ G × R× M.
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For a topologicalR[G]-module (M, ρ), we denote byΓ(G, (M, ρ)) ⊂ M the closedR-
submodule consisting of elementsm ∈ M with ρ(g,m) = m for anyg ∈ G. A topological
R[G]-module is said to bea discreteR[G]-moduleif its underlying topologicalR-module
is a discreteR-module. A topologicalR[G]-module is said to bea finiteR[G]-moduleif its
underlying topologicalR-module is a finiteR-module, and is said to be aprofiniteR[G]-
moduleif it is homeomorphically isomorphic to an inverse limit of finiteR[G]-modules.
The underlying topologicalR-module of a finiteR[G]-module is a finiteR-module by
definition, and hence the underlying topologicalR-module of a profiniteR[G]-module
is a profiniteR-module. Every profiniteR[G]-module is a compact Hausdorff totally
disconnected topologicalR[G]-module.

Example 1.28.We endow M2(R) with the direct product topology through theR-linear
isomorphism M2(R) � R4 given by the canonical basis ofR2. Then M2(R) is a topological
monoid with respect to the multiplication, andR2 is a topologicalR[M2(R)]-module with
respect to the natural representation

ρR2 : M2(R) × R2→ R2 a b

c d

 ,  α0

α1

 7→  aα0 + bα1

cα0 + dα1

 .
For eachn ∈ N, we denote by Symn(R2, ρR2) = (Symn(R2),Symn(ρR2)) the topologi-
cal R[M 2(R)]-module obtained as then-th symmetric tensor product of (R2, ρR2) overR.
Identifying Symn(R2, ρR2) with theR-module

⊕n
i=0 RTi

1T
n−i
2 ⊂ R[T1,T2] of homogeneous

polynomials of degreen, we put

T i
1T

n−i
2 B

 1
0

i

⊗
 0

1

n−i

∈ Symn(R2)

for each (n, i) ∈ N × N with i ≤ n.

Let (M, ρ) be a topologicalR[G]-module. AnR-submoduleL ⊂ M is said to be an
R[G]-submodule of(M, ρ) if ρ(g, l) ∈ L for any (g, l) ∈ G × L. For instance,rM ⊂ M

is anR[G]-submodule of (M, ρ) for any r ∈ R. WhenR is a commutative topological
Zp-algebra, then the kernel torp(M) of the canonical projectionM ↠ Mfree is anR[G]-
submodule ofM.

Example 1.29.Let (M, ρ) be a topologicalR[G]-module. There are several examples of
topologicalR[G]-modules induced by (M, ρ).

(i) Every R[G]-submoduleL ⊂ M is a topologicalR[G]-module with respect to the
relative topology and a well-defined action

ρ|L : G × L → L
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(g, l) 7→ ρ(g, l),

and we put (M, ρ)|L B (L, ρ|L).

(ii) For anyR[G]-submoduleL of (M, ρ), M/L is a topologicalR[G]-module with re-
spect to the quotient topology and the well-defined action

ρ/L : G × M/L → M/L

(g,m+ L) 7→ ρ(g,m) + L = {ρ(g,m′) | m′ ∈ m+ L} ,

and we put (M, ρ)/L B (M/L, ρ/L). In particular, we abbreviate (M, ρ)/rM to
(M, ρ)/r for eachr ∈ R. WhenR is a commutative topologicalZp-algebra, then we
put (M, ρ)freeB (M, ρ)/torp(M).

(iii) For any topological monoidH and continuous monoid homomorphismι : H → G,
M is a topologicalR[H]-module with respect to the action

ResGH(ρ) : H × M → M

(h,m) 7→ ρ(ι(h),m),

and we also denote ResG
H(M, ρ) B (M,ResGH(ρ)) simply by (M, ρ) as long as this

abbreviation yields no confusion. In other words, we usually regard a topological
R[G]-module as a topologicalR[H]-module.

For a topologicalR[G]-module (M, ρ), we denote byO(M,ρ) the set of openR[G]-
submodules of (M, ρ). A topologicalR[G]-module (M, ρ) is said to belinearly complete

if the natural continuousR-linearG-equivariant homomorphism

(M, ρ) → lim←−−
L∈O(M,ρ)

(M, ρ)/L

m 7→ (m+ L)L∈O(M,ρ)

is a homeomorphic isomorphism. For any linearly completeR[G]-module (M, ρ), O(M,ρ)

forms a fundamental system of neighbourhoods of 0∈ M, and hence is cofinal inOM.
Therefore the underlying topologicalR-module of a linearly completeR[G]-module is
linearly complete. Every discreteR[G]-module is linearly complete. In particular, ev-
ery finite R[G]-module is linearly complete. Every inverse limit of linearly complete
topologicalR[G]-modules is linearly complete. Therefore every profiniteR[G]-module
is linearly complete.

Example 1.30. Let (M0, ρ0) and (M1, ρ1) be linearly complete (resp. profinite)R[G]-
modules. Then the continuous actionsρ0 andρ1 induce a continuous action

ρ0⊗̂ρ1 : G × (M0⊗̂RM1)→ M0⊗̂RM1,
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for which (M0, ρ)⊗̂R(M1, ρ1) B (M0⊗̂RM1, ρ0⊗̂ρ1) is a linearly complete (resp. profi-
nite) R[G]-module. When (M0, ρ0) is the underlying topologicalR[G]-module of a com-
mutative profiniteR-algebraA endowed with the trivial action ofG, then we regard
A ⊗̂R(M1, ρ1) as a linearly complete (resp. profinite)A [G]-module with respect to the
natural action ofA .

Proposition 1.31. For any commutative topologicalZp-algebra A , every Hausdorff

topological A [G]-module(M, ρ) whose underlyingZp-module is finitely generated is
a profiniteA [G]-module.

Proof. Since the underlyingZp-module ofM is finitely generated, it isp-adically com-
plete. By Proposition 1.21, the topology ofM coincides with thep-adic topology. Since
pr M is stable under the action ofG, we have a homeomorphicA -linearG-equivariant
isomorphism

(M, ρ) → lim←−−
r∈N

(M, ρ)/pr

m 7→ (m+ pr M)∞r=0.

Thus (M, ρ) is a profiniteA [G]-module. □

A topologicalR[G]-algebrais a pair (A , ρ) of a topologicalR-algebraA and a con-
tinuous mapρ : G ×A → A such thatρ makes the underlying topologicalR-module of
A a topologicalR[G]-module and satisfies the following:

(iv) The equalityρ(g, f f ′) = ρ(g, f )ρ(g, f ′) holds for any (g, f , f ′) ∈ G ×A ×A .

(v) The equalityρ(g,1) = 1 holds for anyg ∈ G.

We remark that whenG is a topological group, then the condition (v) follows from other
conditions. For any topologicalR[G]-algebra (A , ρ), we haveρ(g, r1) = rρ(g, 1) = r1
by the condition (v) for any (g, r) ∈ G × R, and hence the image ofR is contained in
Γ(G, (A , ρ)). A topologicalR[G]-algebra is said to becommutativeif its underlying
topologicalR-algebra is commutative, and is said to be aprofinite R[G]-algebra if it is
homeomorphically isomorphic to an inverse limit of topologicalR[G]-algebras whose
underlying topologicalR-modules are finiteR-modules.

Example 1.32.Suppose thatG is a profinite group, and letOG denote the set of open
normal subgroups ofG. Then

Zp[[G]] B lim←−−
K∈OG

Zp[G/K]
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is a profiniteZp[G]-algebra with respect to the inverse limit topology of thep-adic topolo-
gies, and we call itthe Iwasawa algebra associated toG. It admits a natural embedding
G ↪→ Zp[[G]]×, for which for any profiniteZp[G]-module (M, ρ), there uniquely ex-
ists a structure onM as a profiniteZp[[G]]-module extending the structure as a profinite
Zp[G]-module. In particular, for any profiniteZp-algebraA with a continuous character
G→ A × (Remark 1.8), the natural structure onA as a profiniteZp[G]-algebra uniquely
extends to a structure as a profiniteZp[[G]]-algebra. We call this propertythe universality

of the Iwasawa algebra.

Proposition 1.33. Let (X, ρ) be a compactG-space. ThenC(X,R) is a commutative

topologicalR[Gop]-algebra with respect to the action

ρ∨ : Gop× C(X,R) → C(X,R)

(gop, f ) 7→ (
ρ∨(gop, f ) : x 7→ f (ρ(g, x))

)
.

For the convention ofGop, see Example 1.1.

Proof. We verify the continuity ofρ∨. For eachf ∈ C(X,R) and open subsetJ ⊂ R, put
f +C(X, J) B { f ′ ∈ C(X,R) | ( f ′− f )(x) ∈ J, ∀x ∈ X}, which is an open neighbourhood of
f , and the set of such subsets forms an open basis of C(X,R) by the definition of the topol-
ogy of uniform convergence. For any open subsetJ ⊂ R, we haveρ∨(gop, f ) ∈ C(X, J)
for any (gop, f ) ∈ Gop×C(X, J) by the definition ofρ∨. Let (gop

0 , f0) ∈ Gop×C(X,R), and
I ⊂ C(X,R) be an open neighbourhood ofρ∨(gop

0 , f0). Take an open neighbourhoodJ ⊂ R

of 0 such thatρ∨(gop
0 , f0) + C(X, J) is contained inI . By the continuity of the addition

R× R→ R and the additive inverseR→ R: r 7→ −r, there is an open neighbourhood
J0 ⊂ R of 0 such thatr − r ′ + r ′′ ∈ J for any (r, r ′, r ′′) ∈ J0 × J0 × J0. For anyx ∈ X, the
setUx B {x′ ∈ X | f0(x′) − f0(x) ∈ J0} is an open neighbourhood ofx by the continuity
of f , the additionR× R→ R, and the additive inverseR→ R: r 7→ −r. For anyx ∈ X,
the preimageρ−1(Uρ(g0,x)) ⊂ G × X is an open neighbourhood of (g0, x) by the continuity
of ρ, and hence there are open neighbourhoodsU1

x ⊂ G andU2
x ⊂ X of g0 andx respec-

tively such thatU1
x × U2

x ⊂ ρ−1(Uρ(g0,x)), or equivalently,f0(ρ(g′, x′)) − f0(ρ(g0, x)) ∈ J0

for any (g′, x′) ∈ U1
x × U2

x. We denote byC the set of triad (x,U1
x,U

2
x) of x ∈ X, an

open neighbourhoodU1
x ⊂ G of g0, and an open neighbourhoodU2

x ⊂ X of x such that
f0(ρ(g′, x′)) − f0(ρ(g0, x)) ∈ J0 for any (g′, x′) ∈ U1

x × U2
x. SinceX is compact, the

open covering{U2 | ∃x ∈ X, ∃U1 ⊂ G, s.t. (x,U1,U2) ∈ C } admits a finite subcovering
U = {U2

i | i ∈ N ∩ [1,d]}. For eachi ∈ N ∩ [1,d], take anxi ∈ X and aU1
xi
⊂ G with

(xi ,U1
xi
,U2

i ) ∈ C , and formally putU2
xi
B U2

i . We do not meanU2
i = U2

j even though
xi = xj. SetU1 B

∩d
i=1 U1

xi
⊂ G. We denote by (U1)op ⊂ Gop the image ofU1. It is an

open neighbourhood ofgop
0 . Let ((g′)op, f ′) ∈ U1 × ( f0 + C(X, J0)). For anyx ∈ X, there
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is ani ∈ N ∩ [1,d] such thatx ∈ U2
xi
, and we have

ρ∨((g′)op, f ′)(x) = f ′(ρ(g′, x))

∈ f ′(ρ(U1
xi
× U2

xi
)) ⊂ f ′(Uρ(g0,xi )) = f ′

({x′ ∈ X | f0(x
′) − f0(ρ(g0, xi)) ∈ J0}

)
⊂ (( f ′ − f0) + f0)

({x′ ∈ X | f0(x
′) − f0(ρ(g0, xi)) ∈ J0}

)
⊂ J0 + ( f0(ρ(g0, xi)) + J0) ⊂ J0 + (( f0(ρ(g0, x)) − J0) + J0) ⊂ ρ∨(gop

0 , f0)(x) + J.

It impliesρ∨(g′, f ′) ∈ ρ∨(g0, f0) + C(X, J). Thusρ∨ is continuous.

We verify the other conditions. For any (gop, hop, f ) ∈ Gop×Gop× C(X,R), we have

ρ∨(gophop, f ) = ρ∨((hg)op, f ) = f (ρ(hg, x)) = f (ρ(h, ρ(g, x))) = ρ∨(hop, f )(ρ(g, x))

= ρ∨(gop, ρ∨(hop, f ))(x),

for any x ∈ X, and henceρ∨(gop, ρ∨(hop, f )) = ρ∨(gophop, f ). For any f ∈ C(X,R), we
have

ρ∨(1op, f )(x) = f (ρ(1op, x)) = f (x)

for any x ∈ X, and henceρ∨(1op, f ) = f . For any (gop, f , f ′) ∈ Gop × C(X,R) × C(X,R),
we have

ρ∨(gop, f + f ′)(x) = ( f + f ′)(ρ(g, x)) = f (ρ(g, x)) + f ′(ρ(g, x))

= ρ∨(gop, f )(x) + ρ∨(gop, f ′)(x),

for any x ∈ X, and henceρ∨(gop, f + f ′) = ρ∨(gop, f ) + ρ∨(gop, f ′). For any (gop, r, f ) ∈
Gop× R× C(X,R), we have

ρ∨(gop, r f )(x) = (r f )(ρ(g, x)) = r( f (ρ(g, x))) = rρ∨(gop, f )(x),

for anyx ∈ X, and henceρ∨(gop, r f ) = rρ∨(gop, f ). For any (gop, f , f ′) ∈ Gop × C(X,R) ×
C(X,R), we have

ρ∨(gop, f f ′)(x) = ( f f ′)(ρ(g, x)) = f (ρ(g, x)) f ′(ρ(g, x)) = ρ∨(gop, f )(x)ρ∨(gop, f ′)(x),

for anyx ∈ X, and henceρ∨(gop, f f ′) = ρ∨(gop, f )ρ∨(gop, f ′). For anygop ∈ Gop, we have

ρ∨(gop,1)(x) = 1(ρ(g, x)) = 1 = 1(x),

for anyx ∈ X, and henceρ∨(gop,1) = 1. Thus (C(X,R), ρ∨) is a commutative topological
R[Gop]-algebra. □
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Definition 1.34. Let A be a topologicalR[G]-algebra. A continuous mapκ : G→ A is
said to be acrossed homomorphismκ : G → (A , ρ) if it satisfiesκ(1) = 1 andκ(gg′) =
κ(g)ρ(g, κ(g′)) for any (g,g′) ∈ G ×G. For a crossed homomorphismκ : G→ (A , ρ), we
define a map

ρκ : G ×A → A

(g, f ) 7→ κ(g)ρ(g, f ),

and call itthe action ofG on (A , ρ) of weightκ.

Proposition 1.35. Let A be a topologicalR[G]-algebra, andκ : G → (A , ρ) a crossed

homomorphism. Then(A , ρκ) is a topologicalR[G]-module.

Proof. The continuity ofρκ follows from that ofρ, κ, and the multiplicationA ×A → A .
We have

ρκ(g, ρκ(g
′, f )) = ρκ(g, κ(g

′)ρ(g′, f )) = κ(g)ρ(g, κ(g′)ρ(g′, f ))

= κ(g)κ(g′)ρ(g, ρ(g′, f ) = κ(gg′)ρ(gg′, f ) = ρκ(gg′, f )

for any (g, g′, f ) ∈ G ×G ×A . We have

ρκ(1, f ) = κ(1)ρ(1, f ) = f

for any f ∈ A . We have

ρκ(g, f + f ′) = κ(g)ρ(g, f + f ′) = κ(g)ρ(g, f ) + κ(g)ρ(g, f ′) = ρκ(g, f ) + ρκ(g, f ′)

for any (g, f , f ′) ∈ G ×A ×A . We have

ρκ(g, r f ) = κ(g)ρ(g, r f ) = κ(g)rρ(g, f ) = rκ(g)ρ(g, f ) = rρκ(g, f )

for any (g, r, f ) ∈ G × R×A . Thus (A , ρκ) is a topologicalR[G]-module. □

Corollary 1.36. Let (X, ρ) be a compactG-space, andκ : G → C(X,R) : g 7→ κg a

continuous map such thatκ1 = 1 and κgg′(x) = κg(ρ(g′, x))κg′(x) for any (g,g′, x) ∈
G ×G × X. ThenC(X,R) is a topologicalR[Gop]-module with respect to the action

ρ∨κ : Gop× C(X,R) → C(X,R)

(gop, f ) 7→
(
ρ∨κ (gop, f ) : x 7→ κg(x) f (ρ(g, x))

)
.

Proof. We abbreviateκ ◦ (·)op to κ. We haveρ∨κ (gop, f ) = κgopρ∨(gop, f ) for any (gop, f ) ∈
Gop × C(X,R). Therefore by Proposition 1.33 and Proposition 1.35, it suffices to verify
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thatκ is a crossed homomorphismGop → (C(X,R), ρ∨). For any (gop, (g′)op, f ) ∈ Gop ×
Gop× C(X,R), we have

κgop(g′)op(x) = κ(g′g)op(x) = κ(g′)op(ρ(g, x))κgop(x) = ρ∨(gop, κ(g′)op)(x)κgop(x)

for any x ∈ X, and henceκgop(g′)op = κgopρ∨(gop, κ(g′)op). Thusκ : Gop → (C(X,R), ρ∨) is a
crossed homomorphism. □

Example 1.37.By Proposition 1.26 and Proposition 1.33, C(Zp,Zp) admits an actionm∨p
of Π0(p)op such that (C(Zp,Zp),m∨p) is a commutative topologicalZp[Π0(p))op]-algebra.
For any continuous group homomorphismχ : Z×p → Z×p, the map

κ(χ) : Π0(p) → C(Zp,Zp) a b

c d

 7→ χ(cz+ d)

satisfies the conditions in Corollary 1.36 with respect tomp, wherezB idZp. Indeed, we
have

κ(χ)

 a b

c d

  e f

g h

 = κ(χ)

 ae+ bg a f + bh

ce+ dg c f + dh


= χ((ce+ dg)z+ (c f + dh)) = χ(c(ez+ f ) + d(gz+ h)) = χ

(
(gz+ h)

(
c
(ez+ f
gz+ h

+ d

))
= χ(gz+ h)χ

(
c
(ez+ f
gz+ h

+ d

)
= κ(χ)

 e f

g h

 ρ∨  e f

g h

 , κ(χ)

 a b

c d


for any

 a b

c d

 ,  e f

g h

 ∈ Π0(p) × Π0(p). Thus we obtain a continuous action

(m∨p)κ(χ) of Π0(p)op on C(Zp,Zp).

1.3 p-adic Modular Forms and Hecke Algebras

Let N be a positive integer withN ≥ 5, andp a prime number dividingN. Henceforth,
we fix an algebraic closureQp of Qp and an isomorphismιp,∞ : Qp

∼→ C of fields. We
recall p-adic modular forms.

LetRbe a commutative topological ring. For each formal power seriesf (q) =
∑∞

h=0 ahqh

overR, we putah( f ) B ah ∈ R for eachh ∈ N. Suppose thatR is a subring ofQp. Let
k ∈ N ∩ [2,∞). A modular form overR of weightk and levelN is an element of the
R-algebraR[[q]] of formal power series whose image inC[[q]] is a modular form of level
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Γ1(N) of weight k. Te denote by Mk(Γ1(N),R) ⊂ R[[q]] the R-submodule of modular
forms overR of weightk. For a modular form overR of weightk and levelN, we call
its image inC[[q]] its corresponding modular form. A modular form overR of weightk
and levelN is said to bea cusp form overR of weightk and levelN if its corresponding
modular form is a cusp form.

Identifying Mk(Γ1(N),Qp) as theC-vector space of modular forms of weightk, we
have aQp-linear action of Hecke operators on it. Letϵ : (Z/NZ)× → Q×p be a Dirichlet
character. We denote by Mk(Γ1(N), ϵ,R) ⊂ Mk(Γ1(N),R) the R-submodule of elements
whose corresponding modular forms are contained in the kernel of⟨n⟩ − ιp,∞(ϵ(n)) for
any d ∈ (Z/NZ)×. We denote byR[ϵ] ⊂ Qp the R-subalgebra generated by the im-
age ofϵ. OperatorsTℓ for a prime numberℓ and Sn for an n ∈ Z coprime toN act
on Mk(Γ1(N), ϵ,R[ϵ]) through the embedding into Mk(Γ1(N),Qp). The action is given
explicitly in the following way:

Tℓ : Mk(Γ1(N), ϵ,R[ϵ]) → Mk(Γ1(N), ϵ,R[ϵ])

f (q) 7→


∑∞
h=0 aℓh( f )qh +

∑∞
h=0 ah( f )ϵ(ℓ + NZ)ℓk−2qℓh (ℓ |/N)∑∞

h=0 aℓh( f )qh (ℓ | N)

Sn : Mk(Γ1(N), ϵ,R[ϵ]) → Mk(Γ1(N), ϵ,R[ϵ])

f (q) 7→ ϵ(n+ NZ)nk−2 f (q).

A modular form f (q) overRof weightk is said to be aneigenform overRof weightk and

levelN if its corresponding modular form is an eigenform. It is equivalent to the condition
that there is a Dirichlet characterϵ f such that the image off in Mk(Γ1(N),R[ϵ f ]) lies in
Mk(Γ1(N), ϵ f ,R[ϵ f ]) and is a simultaneous eigenvector of Hecke operators. An eigenform
f overR of weightk is said to benormalisedif a1( f ) = 1. A cuspidal eigenform overR

of weightk and levelN is an eigenform overR of weightk and levelN which is a cusp
form overRof weightk and levelN.

Example 1.38.Let k ∈ N ∩ [2,∞) be an even number. Then the formal power series

Ek(q) B −Bk

2k
+

∞∑
h=1

∑
d|h

dk−1

 qh ∈ Q[[q]]

is a normalised eigenform overQ of weightk and levelN which is not cusp. HereBk ∈ Q
is thek-th Bernoulli number.

Let k0 ∈ N ∩ [2,∞). We denote by Tk0,N ⊂ EndQp
(Mk0(Γ1(N),Qp)) the commuta-

tive Zp-subalgebra generated by Hecke operators. Since Mk0(Γ1(N),Qp) is aQp-vector
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space, Tk0,N is torsionfree as aZp-module. SinceC ⊗Zp Tk0,N is isomorphic to aC-
vector subspace of EndC(H

1(Γ1(N),Symk0−2(C2, ρC2))) by the Eichler–Shimura isomor-
phism ([Shi59] 5 Th́eor̀eme 1, [Hid93] 6.3 Theorem 4), it is finite dimensional as a
C-vector space. By the equality Tk0,N = EndZp

(
Mk0

(
Γ1(N),Zp

))
∩ (Qp ⊗Zp Tk0,N) as

Zp-algebras of EndQp
(Mk0(Γ1(N),Qp)) � Qp ⊗Zp EndZp

(Mk0(Γ1(N),Zp)), Tk0,N is a Zp-
algebra finitely generated as aZp-module. For anyn ∈ N with n ∈ 1 + NZ, we have
Sn = nk0−2⟨n + NZ⟩ = nk0−2⟨1 + NZ⟩ = nk0−2 ∈ Tk0,N, and henceSn is invertible as an
element of Tk0,N becausen is coprime top. The map

N ∩ (1+ NZ) → T×k0,N

n 7→ nk0−2 = Sn

is a monoid homomorphism, and it extends to a continuous character

S• : 1+ NZp → T×k0,N

n 7→ nk0−2.

ThenS• associates a continuousZp-algebra homomorphismZp[[1 + NZp]] → Tk0,N, and
we regard Tk0,N as a profiniteZp[[1 + NZp]]-algebra. TheZp-bilinear pairing

⟨·, ·⟩ : Tk0,N ⊗Zp Mk0(Γ1(N),Qp) → Qp

(A, f ) 7→ ⟨A, f ⟩ B a1(A f)

is non-degenerate, and induces aQp-linear isomorphism

Mk0(Γ1(N),Qp)
∼→ HomZp(Tk0,N,Qp)

by [Hid93] 5.3 Theorem 1. Therefore the subset of Mk0(Γ1(N),Qp) consisting of nor-
malised eigenforms corresponds to the subset of HomZp(Tk0,N,Qp) consistingZp-algebra
homomorphisms. Letf be a normalised eigenformf overQp of weightk0. We denote by
λ f : Tk0,N → Qp theZp-algebra homomorphism corresponding tof , and call itthe system

of Hecke eigenvalues associated tof . We haveah( f ) = λ f (Th) for any h ∈ N\{0}. In
particular, if f is a cuspidal eigenform overQp of weightk0 and levelN, then we have
f =

∑∞
h=1 λ f (Th)qh.

We denote by

T≤k0,N ⊂ EndQp

 k0⊕
k=2

Mk(Γ1(N),Qp)


the commutativeZp-subalgebra generated by Hecke operators diagonally acting on the
direct sum. By the universality of the Iwasawa algebra, we have a continuousZp-algebra
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homomorphismZp[[1 + NZp]] → T≤k0,N sending eachn ∈ N ∩ (1 + NZ) ⊂ 1 + Zp to
the Hecke operatorSn. There is a natural embedding T≤k0,N ↪→ ∏k0

k=2 Tk,N by definition,
and hence T≤k0,N is finitely generated as aZp-module. We endow T≤k0,N with the p-adic
topology, and regard it as a profiniteZp[[1 + NZp]]-algebra. We put

TN B lim←−−
k∈N

T≤k,N,

and regard it as a profiniteZp[[1 + NZp]]-algebra.

Let k0 ∈ N ∩ [2,∞). Henceforth, we fix ap-adic norm| · | : Qp → [0,∞), and endow
Qp with a unique non-Archimedean norm| · | : Qp → [0,∞) extending thep-adic norm
onQp. We denote byZp ⊂ Qp the valuation ring. It is an integral closure ofZp in Qp,
and hence is independent of the choice of thep-adic norm onQp. It is well-known that
Mk0(Γ1(N),Qp) ⊂ Qp[[q]] is contained in the image ofZp[[q]] ⊗Zp Qp, and hence we
endow Mk0(Γ1(N),Qp) with the non-Archimedean norm∥ · ∥ given by setting

∥ f ∥ B max
h∈N
|ah( f )| < ∞

for each f ∈ Mk0(Γ1(N),Qp). We denote by Mk0(Γ1(N),Qp)
<∞ the Tp-stableQp-vector

subspace
∩∞

h=0 Th
p(Mk0(Γ1(N),Qp)) ⊂ Mk0(Γ1(N),Qp). Since Hecke operators commute

with each other, Mk0(Γ1(N),Qp)
<∞ ⊂ Mk0(Γ1(N),Qp) is stable under the action of the

other Hecke operators. Since Mk0(Γ1(N),Qp) is a finite dimensionalQp-vector space,
the decreasing sequence (Th

p(Mk0(Γ1(N),Qp)))
∞
h=0 is eventually stable. It implies that the

restriction ofTp on Mk0(Γ1(N),Qp)
<∞ is bijective. Moreover, since Mk0(Γ1(N),Qp)

<∞ is
a finite dimensionalQp-vector space, the restriction ofTp on Mk0(Γ1(N),Qp)

<∞ and its
inverseT−1

p are continuous with respect to the norm topology.

Let s ∈ N. An f ∈ Mk0(Γ1(N),Qp) is said to beof slope< s if f ∈ Mk0(Γ1(N),Qp)
<∞

and limh→∞ ∥(psT−1
p )h f ∥ = 0. If f is an eigenform, then it is equivalent to the condition

that the systemλ f : Tk0,N → Qp of Hecke eigenvalues associated tof satisfies|λ f (Tp)| >
|p|s. Let R ⊂ Qp be a subring. Anf ∈ Mk0(Γ1(N),R) is said to beof slope< s if f is a
modular form overQp of slope< s. We denote by Mk0(Γ1(N),R)<s ⊂ Mk0(Γ1(N),R) the
R-submodule of modular forms of slope< s. Since Hecke operators commute with each
other, Mk0(Γ1(N),Qp)

<s ⊂ Mk0(Γ1(N),Qp) is stable under the action of Hecke operators.
We denote by T[<s]

k0,N
⊂ EndQp

(Mk0(Γ1(N),Qp)
<s) the image of Tk0,N. Since Tk0,N is finitely

generated as aZp-module, so is T[<s]
k0,N

.

The operatorTp is invertible on Mk0(Γ1(N),Qp)
<s by definition. We denote by

T<s
k0,N
⊂ EndQp

(
Mk0(Γ1(N),Qp)

<s
)
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the commutativeZp-subalgebra generated by T[<s]
k0,N

andpsT−1
p . Let

F(X) = Xn + a1Xn−1 + · · · + an ∈ Zp[X]

be the minimal polynomial ofTp as an element of T[<s]
k0,N

. Since every eigenvalue ofTp

as an element of EndQp
(Mk0(Γ1(N),Qp)

<s) is of norm in (|p|s,1], we have|ai | ≤ 1 for any
i ∈ N∩ [1,n], |p|(n−i)sai < |an| for any i ∈ N∩ [1, n− 1], and|p|ns < |an|. It implies that the
polynomial

Q(X) B a−1
n XnP(psX−1) = Xn +

psan−1

an
Xn−1 + · · · + pns

an

lies inZp[X]. Since EndQp
(Mk0(Γ1(N),Qp)

<s) is aQp-vector space, itsZp-subalgebra T<s
k0,N

is torsionfree as aZp-module. Therefore the equalityanQ(psT−1
p ) = (psT−1

p )nP(Tp) = 0 ∈
EndQp

(Mk0(Γ1(N),Qp)
<s) ensures thatQ(psT−1

p ) = 0 as an element of T<s
k0,N

. It implies

that psT−1
p is integral over T[<s]

k0,N
as an element of T<s

k0,N
, and T<s

k0,N
is finitely generated as a

T[<s]
k0,N

-module.

Proposition 1.39.The surjectiveTk0,N-algebra homomorphism

T[<s]
k0,N

[X] ↠ T<s
k0,N

X 7→ psT−1
p

induces aTk0,N-algebra isomorphism(
T[<s]

k0,N
[X]/(TpX − ps)

)
free
� T<s

k0,N
.

Proof. By the argument above,pn(psT−1
p ) ∈ T<s

k0,N
lies in the image of T[<s]

k0,N
for ann ∈ N.

Therefore the flatness ofQp as aZp-module ensures the assertion. □

For eachk0 ∈ N, we denote by

T[<s]
≤k0,N

⊂ EndQp

 k0⊕
k=2

Mk(Γ1(N),Qp)
<s


the image of T≤k0,N, and by

T<s
≤k0,N

⊂ EndQp

 k0⊕
k=2

Mk(Γ1(N),Qp)
<s


the Zp-subalgebra generated by T≤k0,N and psT−1

p . They are finitely generated asZp-
modules by a similar argument with that in the previous paragraph. We set

T[<s]
N B lim←−−

k∈N
T[<s]
≤k,N
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T<s
N B lim←−−

k∈N
T<s
≤k,N,

and regard them as profiniteTN-algebras. In particular, they are regarded as profinite
Zp[[1 + NZp]]-algebras.

Proposition 1.40.The continuousTN-algebra homomorphism

T[<s]
N [[X]] → T<s

N

X 7→ psT−1
p

is surjective.

Proof. To begin with, we verify that theTN-algebra homomorphism

T[<s]
N [X] → T<s

N

X 7→ psT−1
p

uniquely extends to a continuousTN-algebra homomorphism

T[<s]
N [[X]] → T<s

N .

HereT[<s]
N [X]/(Xr) is regarded as a profiniteT[<s]

N -algebra with respect to the topology
given by the canonicalT[<s]

N -linear basis (Xh)r−1
h=0 for eachr ∈ N, and

T[<s]
N [[X]] = lim←−−

r∈N
T[<s]

N [X]/(Xr),

is endowed with the inverse limit topology. Letk1 ∈ N∩ [2,∞). Let P(X) = Xn+a1Xn−1+

· · · + an ∈ Zp[X] be the minimal polynomial ofTp as an element of T[<s]
≤k1,N

. Since every

eigenvalue of the action ofTp on
⊕k1

k=2 Mk(Γ1(N),Zp)<s is of norm in (|p|s,1], we have
|ai | ≤ 1 for anyi ∈ N ∩ [1,n], |p|(n−i)sai < |an| for any i ∈ N ∩ [1,n− 1], and|p|ns < |an|.
Therefore the polynomial

Q(X) B Xn +
psan−1

an
Xn−1 + · · · + pns

an
.

satisfiesQ(X) − Xn ∈ pZp[X]. Since T<s
≤k1,N

is torsionfree as aZp-module, the equality

anQ(psT−1
p ) = (psT−1

p )nP(Tp) = 0

in T<s
≤k1,N

ensuresQ(psT−1
p ) = 0 ∈ T<s

≤k1,N
and hence (psT−1

p )n ∈ pT<s
≤k1,N

. It implies psT−1
p

is topologically nilpotent in T<s
≤k1,N

with respect to thep-adic topology, because T<s
≤k1,N

is
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p-adically complete. ThereforepsT−1
p is topologically nilpotent in T<s

≤k1,N
, and theTN-

algebra homomorphism

T[<s]
N [X] → T<s

≤k1,N

X 7→ psT−1
p

uniquely extends to a continuousTN-algebra homomorphism

T[<s]
N [[X]] → T<s

≤k0,N

by the universality of the algebra of formal power series and thep-adic completeness of
T<s
≤k0,N

. Thus theTN-algebra homomorphism

T[<s]
N [X] → T<s

N

X 7→ psT−1
p

uniquely extends to a continuousTN-algebra homomorphism

φ : T[<s]
N [[X]] → T<s

N = lim←−−
k∈N

T<s
≤k,N

by the universality of the inverse limit. The composite

T[<s]
N [[X]] → T<s

N ↠ T<s
≤k0,N

is surjective by the definition of T<s
≤k0,N

for anyk0 ∈ N ∩ [2,∞), and hence the image of
φ is dense by the definition of the inverse limit topology. SinceT[<s]

N [[X]] is compact and
T<s

N is Hausdorff, the continuity ofφ ensures its surjectivity. □

2 Actions on Continuous Cohomologies
In this section, letRdenote a commutative topological ring, andG a monoid endowed

with the discrete topology. We mainly consider the case whereR is Zp or the Iwasawa
algebras, andG is a submonoid of M2(Zp). We introduce the notion of a continuous
cohomology of a linearly completeR[G]-module. We compare it with the group coho-
mology of the underlying module, and with the cohomology of the derived functor of
Γ(G, ·)◦ lim←−−. We also introduce the notion of a profiniteR-sheaf on a modular curve. The
continuous cohomology of a profiniteR-sheaf coincides with that of the corresponding
profiniteR[G]-module for a suitableG under several conditions.
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2.1 Continuous Cohomologies of Complete Topological Modules

Suppose thatR is discrete. The category Mod(R) (resp. Mod(R[G])) of discreteR-
modules andR-linear homomorphisms (resp. discreteR[G]-modules andR-linear G-
equivariant homomorphisms) naturally admits a structure of an Abelian category. The
correspondence (M, ρ) ⇝ Γ(G, (M, ρ)) gives a left exact functorΓ(G, ·) : Mod(R[G]) →
Mod(R). We denote by H∗(G, ·) the cohomology of the right derived functor ofΓ(G, ·),
and call itthe group cohomology. We remark that the underlying Abelian group of the
group cohomology of a discreteR[G]-module is naturally isomorphic to the group co-
homology of the underlyingZ[G]-module, because they can be calculated cocycles and
coboundaries in the same way.

Now we consider the case whereR is not necessarily discrete. We denote by|R| the
underlying ring ofRendowed with the discrete topology. For a topologicalR[G]-module
(M, ρ), the pair|(M, ρ)| = (|M|, |ρ|) of the underlying|R|-module|M| endowed with the dis-
crete topology and the induced action|ρ| : G × |M| → |M| : (g,m) 7→ ρ(g,m) is a discrete
|R|[G]-module, and we denote by H∗(G, (M, ρ)) the discrete|R|-module H∗(G, |(M, ρ)|).
For any finiteR[G]-module (M, ρ), the annihilator AnnR(M) ⊂ R is an open ideal, and
acts trivially on H∗(G, (M, ρ)). Therefore the action of|R| makes H∗(G, (M, ρ)) a discrete
R-module for any finiteR[G]-module (M, ρ).

For a linearly complete topologicalR[G]-module (M, ρ), we set

H ∗(G, (M, ρ)) B lim←−−
L∈O(M,ρ)

H∗(G, (M, ρ)/L),

and endow it with the inverse limit topology. We call itthe continuous cohomology of

(M, ρ), and regard it as a linearly complete|R|-module. For any profiniteR[G]-module
(M, ρ), the action of|R| makesH ∗(G, (M, ρ)) a linearly completeR-module by the ar-
gument in the previous paragraph. In this subsection, we show that the continuous co-
homology has an aspect of the cohomology of a derived functor reflecting the topology
of R. We remark that a derived functor usually does not possess information of topolo-
gies. For example, the category of topologicalR[G]-modules and continuousR-linear
G-equivariant homomorphisms does not necessarily admit a structure of an Abelian cat-
egory, and hence one should forget topologies in order to consider a derived functor.

Lemma 2.1. Let (M, ρ) be a first countable linearly completeR[G]-module. Then the

natural |R|-linear homomorphism

Hi(G, (M, ρ))→H i(G, (M, ρ))

is surjective for anyi ∈ N.
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Proof. Let c = (cL)L∈O(M,ρ) ∈ H i(G, (M, ρ)). SinceM is first countable, there is a de-
creasing sequence (Lr)∞r=0 in O(M,ρ) such that{Lr | r ∈ N} forms a fundamental system of
neighbourhoods of 0. For eachr ∈ N, take ani-cocyclec̃Lr ∈ Zi(G, (M, ρ)/Lr) represent-
ing cLr . We construct an inverse system (˜c′Lr

)∞r=0 of i-cocycles ˜c′Lr
∈ Zi(G, (M, ρ)/Lr) rep-

resentingcLr for any r ∈ N. If i = 0, then we have Zi(G, (M, ρ/Lr)) = Γ(G, (M, ρ)/Lr) �
Hi(G, (M, ρ)/Lr) for any r ∈ N, and hence (˜c′Lr

)∞r=0 B (c̃Lr )
∞
r=0 is an inverse system. Sup-

posei > 0. Putc̃′L0
B c̃L0. Assume that a compatible system (˜c′Lr

)r0
r=0 of representatives

of (cLr )
r0
r=0is taken for anr0 ∈ N. Since the image of ˜cLr0+1 in Zi(G, (M, ρ)/Lr0) represents

cLr0
, there is a set-theoretical mapbr0 : Gi−1 → M/Lr0 which associates thei-coboundary

∂br0 ∈ Bi(G, (M, ρ)Lr0
) given as the difference of ˜c′Lr0

and the image of ˜cLr0+1. Take a

set-theoretical liftb′r0+1 : Gi−1 → M/Lr0+1, and denote by∂b′r0+1 ∈ Bi(G, (M, ρ)/Lr0+1) the
i-coboundary associated tob′r0+1. We set ˜c′Lr0+1

B c̃Lr0+1 + ∂b′r0+1 ∈ Zi(G, (M, ρ)/Lr0+1).

Then the image of ˜c′Lr0+1
in Zi(G, (M, ρ)/Lr0) coincides with ˜c′Lr0

, and hence (˜c′Lr
)r0+1
r=0 is a

compatible system of representatives of (cLr )
r0+1
r=0 . By induction onr0, we obtain an in-

verse system (˜c′Lr
)∞r=0 of representatives of (cLr )

∞
r=0. Since (M, ρ) is linearly complete and

{Lr | r ∈ N} is cofinal inO(M,ρ), theR-linearG-equivariant homomorphism

ι : (M, ρ) → lim←−−
r∈N

(M, ρ)/Lr

m 7→ (m+ Lr)
∞
r=0

is a homeomorphic isomorphism. Let ˜c: Gi → M denote the composite of the set-
theoretical map

Gi → lim←−−
r∈N

(M, ρ)/Lr

(gj)
i
j=1 7→

(
c̃′Lr

((gj)
i
j=1)

)
andι−1. SinceM is Hausdorff, we have

∩∞
r=0 Lr = {0}, and hence the cocycle conditions

for c̃′Lr for eachr ∈ N ensures the cocycle condition for ˜c. Forgetting the topology of the
targetM of c̃, we regard ˜c as an element of Zi(G, |(M, ρ)|). By the construction of ˜c, the
image of its cohomology class coincides withc. □

Lemma 2.2. Suppose that the underlying monoid ofG is finitely generated. Let(M, ρ)
be a first countable profiniteR[G]-module. Then the natural|R|-linear homomorphism

Hi(G, (M, ρ))→H i(G, (M, ρ))

is an isomorphism for anyi ∈ N.

Proof. By Lemma 2.1, it suffices to verify the injectivity of the given homomorphism.
Let c ∈ Hi(G, (M, ρ)) be an element of the kernel of the given homomorphism. Ifi = 0,
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thenc ∈ Hi(G, (M, ρ)) � |(M, ρ)|G ⊂ |M|, and since the image ofc in Hi(G, (M, ρ)/L) �
Γ(G, (M, ρ)/L) ⊂ M/L is 0 for anyL ∈ O(M,ρ), we havec ∈ ∩

L∈O(M,ρ)
L = {0}. Suppose

i > 0. Take a representative ˜c ∈ Zi(G, |(M, ρ)|). Put

Z B lim←−−
L∈O(M,ρ)

Zi(G, (M, ρ)/L)

B B lim←−−
L∈O(M,ρ)

Bi(G, (M, ρ)/L).

Since the image ofc in H i(G, (M, ρ)) is 0, the image of ˜c in Z lies in the image ofB. Let
S ⊂ G be a finite set of generators. The evaluation map

Zi(G, |(M, ρ)|) → MSi

c′ 7→ (c′(s1, . . . , si))(s1,...,si )∈Si

is injective by the cocycle condition. We endowMSi
and MGi−1

with the direct prod-
uct topology. They are compact and Hausdorff by Tychonoff’s theorem, becauseM is
profinite. Since the cocycle condition is given by equalities, the continuity ofρ and the
addition M × M → M ensures that the image of Zi(G, |(M, ρ)|) is closed inMSi

, and
hence Zi(G, |(M, ρ)|) is compact and Hausdorff with respect to the relative topology. The
continuity ofρ, the additionM × M → M, and the additive inverseM × M : m 7→ −m

ensures that the map∂ : MGi−1 → Zi(G, |(M, ρ)|) associating coboundaries is continuous,
and hence its image Bi(G, |(M, ρ)|) is closed. SinceM is profinite, theR-linear homomor-
phism

MSi → N B lim←−−
L∈O(M,ρ)

(M/L)Si
�

 lim←−−
L∈O(M,ρ)

(M/L)


Si

(ms)s∈Si 7→ ((ms+ L)s∈Si )L∈O(M,ρ)

is a homeomorphic isomorphism. By the definition of ani-coboundary, the image of
Bi(G, |(M, ρ)|) in Zi(G, (M, ρ)/L) coincides with Bi(G, (M, ρ)/L) for any L ∈ O(M,ρ). Re-
garding Zi(G, (M, ρ)/L) as aR-submodule of the finiteR-module (M/L)Si

by a similar
evaluation map for eachL ∈ O(M,ρ), we identifyB as a closedR-submodule ofN. By the
definition of the inverse limit topology, the image of Bi(G, |(M, ρ)|) is dense inB. Since
Bi(G, |(M, ρ)|) is compact andN is Hausdorff, the image of Bi(G, |(M, ρ)|) in N is closed,
and hence coincides withB. It implies thatc̃ belongs to Bi(G, |(M, ρ)|), because the image
of c̃ in N lies in B. Thusc = 0. □

We remark that a group is finitely generated if and only if its underlying monoid is
finitely generated. Indeed, for a setS of generators of a group, the underlying monoid of
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the group is generated byS ∪ S−1 B {gσ | (g, σ) ∈ S × {−1,1}}. Therefore Lemma 2.2
is valid also for a finitely generated group. Through the isomorphism in Lemma 2.2, we
equip the source with the pull-back of the topology of the target instead of the discrete
topology. The induced topology coincides with the quotient topology of the space of
cocycles defined in the proof of Lemma 2.2. SinceR acts continuously on the target, we
regard the source as a profiniteR-module.

Lemma 2.3. Suppose that the underlying monoid ofG is a finitely generated free group.

Let (M, ρ) be a first countable profiniteR[G]-module. Then the equalityH i(G, (M, ρ)) =
0 holds for anyi ∈ N ∩ [2,∞).

Proof. By Lemma 2.1, it suffices to verify Hi(G, (M, ρ)) = 0 for any i ∈ N ∩ [2,∞).
By the definition of the group cohomology, it suffices to verify the equality in the case
whereR is discrete. Since the underlying monoid ofG is a finitely generated free group,
it is isomorphic to the fundamental group of a based connected 1-dimensional finite CW-
complexC of the form S1 ∨ · · · ∨ S1. Therefore there is an equivalence between the
category of discreteR[G]-modules andR-linearG-equivariant homomorphisms and the
category of sheaves ofR-modules onC and morphisms of sheaves ofR-modules. LetF
denote the sheaf ofR-modules onC corresponding to the discreteR[G]-module |(M, ρ)|
by the equivalence. We have a naturalR-linear isomorphism H∗(G, (M, ρ)) � H∗(C,F ).
SinceC is a finite CW-complex, it is paracompact, and hence there is a naturalR-linear
isomorphism H∗(C,F ) � Ȟ∗(C,F ). SinceC is 1-dimensional CW-complex, it is of
Čech-dimension 1. Therefore we obtainȞi(C,F ) = 0 for anyi ∈ N ∩ [2,∞). Thus the
assertion holds. □

A complex of topologicalR-modules (resp. topologicalR[G]-modules) with continu-
ousR-linear homomorphisms (resp. continuousR-linearG-equivariant homomorphisms)
is said to be anexact sequenceif its underlying complex of left|R|-modules with|R|-linear
homomorphisms is exact.

Proposition 2.4. Suppose that the underlying monoid ofG is a finitely generated free

group. Let(M1, ρ1), (M2, ρ2), and(M3, ρ3) be first countable profiniteR[G]-modules with

an exact sequence

0→ (M1, ρ1)→ (M2, ρ2)→ (M3, ρ3)→ 0

of continuousR-linear G-equivariant homomorphisms. Then it induces an exact se-

quence

0 → H 0(G, (M1, ρ1))→H 0(G, (M2, ρ2))→H 0(G, (M3, ρ3))

→ H 1(G, (M1, ρ1))→H 1(G, (M2, ρ2))→H 1(G, (M3, ρ3))
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→ 0

of linearly completeR-modules with continuousR-linear homomorphisms.

Proof. We have an exact sequence

0 → H0(G, (M1, ρ1))→ H0(G, (M2, ρ2))→ H0(G, (M3, ρ3))

→ H1(G, (M1, ρ1))→ H1(G, (M2, ρ2))→ H1(G, (M3, ρ3))

→ 0

by the cohomology long exact sequence and Lemma 2.3. Therefore the assertion follows
from Lemma 2.2. □

Lemma 2.5. Suppose thatR is discrete and the underlying monoid ofG is a free group

with a basisE. For a discreteR[G]-module(M, ρ), the evaluation map

Z1(G, (M, ρ)) → ME

c 7→ (c(e))e∈E

is anR-linear isomorphism.

Proof. Put

H B

φ ∈ Aut(M × Z)

∣∣∣∣∣∣ φ(m,0) ∈ M × {0} , ∀m ∈ M

φ(0,1) ∈ M × {1}


Hom(G,H)ρ B {χ ∈ Hom(G,H) | χ(g)(m,0) = (ρ(g,m), 0)} .

For eachφ ∈ H, we denote bycφ ∈ M the element withφ(0,1) = (cφ,1). The map

ι1 : Z1(G, (M, ρ)) → Hom(G,H)ρ

c 7→ (g 7→ ((m,n) 7→ (ρ(g,m) + nc(g),n)))

is bijective because it admits an inverse

Hom(G,H)ρ → Z1(G, (M, ρ))

χ 7→
(
g 7→ cχ(g)

)
.

The map

ι2 : Hom(G,H)ρ → HE

χ 7→ (cχ(e))e∈E
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is bijective by the universality of a free group. The map

ι3 : HE → ME

(φe)e∈E 7→ (cφe)e∈E

is bijective because it admits an inverse

ME → HE

(ce)e∈E 7→ ((m,n) 7→ (ρ(e,m) + nce,n))e∈E .

The compositeι3 ◦ ι2 ◦ ι1 of bijective maps coincides with the evaluation map in the
assertion. □

For an Abelian categoryC , we denote byC N the Abelian category of inverse systems
of objects ofC indexed byN and compatible systems of morphisms.

Lemma 2.6. Suppose thatR is discrete. For any inverse system((Mr)∞r=0, φ•) of discrete

R[G]-modules, the equalityRi lim←−−((Mr)∞r=0, φ•) = 0 holds for anyi ∈ N ∩ [2,∞), where
lim←−− is regarded as a left exact functorMod(R[G])N → Mod(R[G]).

Proof. Let ((Mr)∞r=0, φ•) be an inverse system of discreteR[G]-modules. We denote by
ϖr0 :

∏r0+1
r=0 Mr ↠

∏r0
r=0 Mr the canonical projection for eachr0 ∈ N, and byϖ−1 the

zero homomorphismM0 ↠ 0. We define anR-linear G-equivariant homomorphism
ψr0 :

∏r0
r=0 Mr →

∏r0−1
r=0 Mr by settingψr0

(
(mr)

r0
r=0

)
B (mr − φr(mr+1))

r0−1
r=0 for eachr0 ∈ N

and (mr)
r0
r=0 ∈

∏r0
r=0 Mr . Then the systemψ• = (ψr)∞r=0 is a morphism

 r0∏
r=0

Mr

∞
r0=0

, ϖ•

→

r0−1∏

r=0

Mr

∞
r0=0

, ϖ•−1


in Mod(R[G])N. Indeed, for anyr0 ∈ N and (mr)

r0+1
r=0 ∈

∏r0+1
r=0 Mr , we have

(ϖr0 ◦ ψr0+1)((mr)
r0+1
r=0 ) = ϖr0((mr − φr(mr+1))

r0
r=0) = (mr − φr(mr+1))

r0−1
r=0

= ψr0((mr)
r0
r=0) = (ψr0 ◦ϖr0)((mr)

r0+1
r=0 ).

By the definition of the inverse limit, we obtain an exact sequence

0→ lim←−−
(
(Mr)

∞
r=0, φ•

)→ ∞∏
r=0

Mr

lim←−ψ•−−−−→
∞∏

r=0

Mr

of discreteR[G]-modules through naturalR-linearG-equivariant isomorphisms

∞∏
r=0

Mr � lim←−−


 r0∏

r=0

Mi

∞
r0=0

, ϖ•


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∞∏
r=0

Mr � lim←−−


r0−1∏

r=0

Mi

∞
r0=0

, ϖ•

 .
We denote by lim←−−

1((Mr)∞r=0, φ•) the cokernel of the right arrow of the exact sequence.

This construction gives a functor lim←−−
1 : Mod(R[G])N → Mod(R[G]). The system

lim←−−
• =

(
lim←−−

i
)∞
i=0
B

(
lim←−−, lim←−−

1,0, . . .
)

is a cohomological functor with respect to a natural connecting homomorphism. We
verify that lim←−−

• is a right derived functor of lim←−−.

We identify Mod(Z) with Mod(Z[{1}]), and also consider lim←−−
1 : Mod(Z)N → Mod(Z).

Let F andFN denote the forgetful functors Mod(R[G]) → Mod(Z) and Mod(R[G])N →
Mod(Z)N respectively. By the exactness ofF and by the definitions of lim←−−

•, we have

natural equivalencesF ◦ lim←−−
i � lim←−−

i ◦FN for eachi ∈ N. In the case whereR = Z and
G = {1}, then it is well-known that lim←−−

• is a right derived functor of lim←−−. In order to verify
that lim←−−

• is a right derived functor of lim←−− in a general case, it suffices to verify that it is a
universal effacable functor. LetI be an injective object of Mod(R[G])N. By [Jan88] 1.1
Proposition b),I is isomorphic to ((

∏r0
r=0 Mr)∞r0=0, ϖ•) for some inverse system (Mr)∞r=0 of

injective objects in Mod(R[G]) whose transition maps are 0. Therefore we have

F
(
lim←−−

1I
)
� lim←−−

1(F(I )) � R1 lim←−−(FN(I )) � R1 lim←−−


 r0∏

r=0

F(Mr)

∞
r0=0

, ϖ•

 = 0

because ((
∏r0

r=0 F(Mr))∞r0=0, ϖ•) is an inverse system of Abelian groups satisfying the
Mittag–Leffler condition. We obtain lim←−−

i I = 0 for anyi ∈ N\{0}. Thus lim←−−
• is a universal

effacable functor, and hence is a right derived functor of lim←−−. We conclude that Ri lim←−− = 0
for any i ∈ N ∩ [2,∞), and the assertion holds. □

Theorem 2.7.LetRbe a commutative topological ring,G a finitely generated free group

endowed with the discrete topology,(M, ρ) a first countable profiniteR[G]-module, and

(Li)∞i=0 a countable decreasing sequence of openR[G]-submodules of(M, ρ) such that
{Lr | r ∈ N} forms a fundamental system of neighbourhoods of0. Then there exists a

natural |R|-linear isomorphism

H ∗(G, (M, ρ)) � R∗
(
H0(G, ·) ◦ lim←−−

) (
(|(M, ρ)/Lr |)∞r=0

)
,

wherelim←−− is regarded as the left exact functorMod(|R|[G])N → Mod(|R|[G]).

Proof. Let i ∈ N. We construct anR-linear isomorphism

H i(G, (M, ρ)) � Ri
(
H0(G, ·) ◦ lim←−−

) (
(|(M, ρ)/Lr |)∞r=0

)
.
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Wheni = 0, then the assertion follows from the linear completeness of (M, ρ). Suppose
i > 0. By [Jan88] 1.1 Proposition b), lim←−− sends injective objects to a direct product of
injective objects, which is acyclic with respect toΓ(G, ·). Therefore we have a spectral
sequence

Es,t
2 B Hs

(
G,Rt lim←−− (|(M, ρ)/Lr |)∞r=0

)
=⇒ Rs+t

(
H0(G, ·) ◦ lim←−−

) (
(|(M, ρ)/Lr |)∞r=0

)
.

Since (|(M, ρ)/Lr |)∞r=0 is a surjective system, it satisfies the Mittag–Leffler condition, and
hence

R1 lim←−− (|(M, ρ)/Lr |)∞r=0 = 0

by a similar argument with that in the proof of Lemma 2.6 with the forgetful functor
Mod(|R|[G]) → Mod(Z). Together with Lemma 2.3 and Lemma 2.6, we obtain Es,t

2 = 0
for any (s, t) ∈ N × N with s≥ 2 or t ≥ 1. In particular, wheni ≥ 2, then we have

Ri
(
H0(G, ·) ◦ lim←−−

) (
(|(M, ρ)/Lr |)∞r=0

)
= 0

and hence we obtain an|R|-linear isomorphism by Lemma 2.3. Supposei = 1. We have

Ri
(
H0(G, ·) ◦ lim←−−

) (
(|(M, ρ)/Lr |)∞r=0

)
� E1,0

2 = H1
(
G, lim←−− (|(M, ρ)/Ir |)

)
� H1(G, |(M, ρ)|) = H1(G, (M, ρ)) �H 1(G, (M, ρ))

by the linear completeness of (M, ρ) and Lemma 2.2. □

ThusH ∗(G, ·) is the cohomology of a derived functor together with a topology and a
continuous action ofR.

2.2 ProfiniteZp-Sheaves on Modular Curves

In this subsection, we introduce the notion of a profiniteR-sheaf on a modular curve in
order to construct a profinite Galois representation endowed with a compatible action of
Hecke operators. LetRbe a commutative topological ringRandG a topological monoid.
Henceforth, we identify a right action of a topological groupG with a left action ofGop,
and aG-space with aGop-space by the homeomorphic isomorphismG → Gop: g 7→
(g−1)op.

Definition 2.8. Let S be a Noetherian scheme. Aprofinite R-sheaf onS is an inverse
system of sheaves onSét of finite R-modules. For a profiniteR-sheafF = (Fλ)λ∈Λ onS,
we set

H ∗
et(S,F ) B lim←−−

λ∈Λ
H∗et (S,Fλ) ,

and endow it with the inverse limit topology of the discrete topologies. We call itthe

continuous cohomology ofF .
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Example 2.9.Let S be a Noetherian scheme with a setsof geometric base points on each
connected component, and|R| denote the commutative discrete ring sharing the underly-
ing ring withR. We denote byπ1(S, s) the direct product of théetale fundamental groups
of each connected component ofS. Every finiteR[π1(S, s)]-module (M, ρ) associates a
locally constant sheaf ((M, ρ))S onSét of finite |R|-modules in a functorial way. The action
of |R|makes each section with the discrete topology a finiteR-module, because the anni-
hilator AnnR(M) ⊂ R is open and acts trivially on each section. For a profiniteR[π1(S, s)]-
module (M, ρ), we denote by ((M, ρ))S the profiniteR-sheaf (((M, ρ)/L)S)L∈O(M,ρ) onS, and
call it the profiniteR-sheaf associated to(M, ρ). The correspondence (M, ρ)⇝ ((M, ρ))S

is functorial with respect to continuousR-linear π1(S, s)-equivariant homomorphisms.
For a profiniteR-moduleM, we denote by (M)S the profiniteR-sheaf associated toM
endowed with the trivial action ofπ1(S, s).

Henceforth, we fix an algebraic closureQ of Q and an embeddingι0,∞ : Q ↪→ C. For
eachN ∈ N, we put

Γ1(N) B
 1+ NZ Z

NZ 1+ NZ

 ∩ SL2(Z)

Γ(N) B
 1+ NZ NZ

NZ 1+ NZ

 ∩ SL2(Z) = ker(Γ1(N)↠ SL2(Z/NZ)) .

For eachN ∈ N with N ≥ 5 (resp.N ≥ 3), we denote byY1(N) (resp.Y(N)) the modular
curve of modularityΓ1(N) ⊂ SL2(Z) (resp.Γ(N) ⊂ SL2(Z)), i.e. a moduli space of pairs
(E, α) of an elliptic curveE and a primitiveN-torsion pointα ∈ E[N] (resp. a moduli
space of pairs (E, (α1, α2)) of an elliptic curveE and a (Z/NZ)-linear basis (α1, α2) of
E[N]). For eachN ∈ N ∩ [3,∞), we have a left action a b

c d

 (E, (α1, α2)) B (E, (dα1 + cα2,bα1 + aα2))

of GL2(Z/NZ) onY(N), and the corresponding right action is given by a b

c d

op

(E, (α1, α2)) B
 a b

c d

−1

(E, (α1, α2)) =

(
E,

(
aα1 − cα2

ad− bc
,
−bα1 + dα2

ad− bc

))
.

We recall thatY1(N) (resp.Y(N)) is an algebraic curve defined over Spec(Q) (resp.
Spec(Q[XN]/(PN(XN))), wherePN(XN) ∈ Q[XN] is the N-th cyclotomic polynomial),
and the analytification of the base change ofY1(N) (resp.Y(N)) by the geometric point
Spec(C) → Spec(Q) is isomorphic to the quotientΓ1(N)\H (resp. a disjoint union of
copies of the quotientΓ(N)\H) of H with respect to the action ofΓ1(N) (resp.Γ(N))
given in Example 1.25. The moduli interpretations ensure that there is a natural finite
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surjectiveétale morphismY(M) → Y1(M) for eachM ∈ N, and that there are natural
finite surjectivéetale morphisms

Y1(M2)→ Y1(M1)

resp. Y(M2)→ Y(M1) ×Q[XM1 ]/(PM1(XM1)) Q[XM2]/(PM2(XM2))

for eachM1,M2 ∈ Nwith M1 | M2 andM1 ≥ 5 (resp.M1 ≥ 3) for which (Y1(M))M∈N∩[5,∞)

and (Y(M))M∈N∩[3,∞) are compatible systems. The natural morphismsY(M)→ Y1(M) for
eachM ∈ N∩[5,∞) gives a morphism (Y(M))M∈N∩[5,∞) → (Y1(M))M∈N∩[5,∞) of compatible
systems. We fix geometric pointsx: Spec(Q/Q) → Y1(N) andx: Spec(Q/Q) → Y(N)
for eachN ∈ N ∩ [5,∞) compatible with the natural morphisms. We take geometric
base pointsx on each connected component of schemes obtained by changing bases of
modular curves among subfields ofQ in a unique compatible way.

Henceforth, we fix anN ∈ N ∩ [5,∞). We put

GΓ̂1(N) B
 1+ NẐ Ẑ

NẐ 1+ NẐ

 ∩GL2(Ẑ).

For a profiniteR[π1(Y1(N), x)]-module (M, ρ), regarding it as a profiniteR[π1(Y1(N)Q, x)]
through the continuous group homomorphismπ1(Y1(N)Q, x) → π1(Y1(N), x) induced by
the base change map by the functoriality ofétale fundamental groups. The Galois group
of the finiteétale covering

Y(MN) → Y(N) ×Q[XN]/(PN(XN)) Q[XMN]/(PMN(XMN))

is naturally isomorphic to the finite group

ker(GL2(Z/MNZ)↠ GL2(Z/NZ))

=

 1+ N(Z/MNZ) NZ/MNZ

N(Z/MNZ) 1+ N(Z/MNZ)

 ∩GL2(Z/MNZ),

and the composite

Y(MN) → Y(N) ×Q[XN]/(PN(XN)) Q[XMN]/(PMN(XMN))

→ Y1(N) ×Q Q[XMN]/(PMN(XMN))

corresponds to the group 1+ N(Z/MNZ) Z/MNZ

N(Z/MNZ) 1+ N(Z/MNZ)

 ∩GL2(Z/MNZ)
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through the right action for eachM ∈ N\{0}. Taking an inverse limit, we obtain a surjec-
tive group homomorphism

π1

(
Y1(N) lim−−→

M∈N
Q[XM!N]/(PM!N(XM!N)), x

)
↠ GΓ̂1(N)op,

which is continuous with respect to their natural topologies. Therefore we regard a topo-
logical R[GΓ̂1(N)]-module as a topologicalR[π1(Y1(N)Q, x)]-module by the compatible
system (ι−1

0,∞(exp(2n−1π
√
− 1)))∞n=1 of roots of unity inQ.

Proposition 2.10.For any profiniteR[GΓ̂1(N)]-module(M, ρ), there is a natural homeo-
morphicR-linear isomorphism

H 1
et

Y1(N)Q,

(
ResGΓ̂1(N)

π1(Y1(N)
Q
,x)(M, ρ)

)
Y1(N)

Q

 �H 1
(
Γ1(N),ResGΓ̂1(N)

Γ1(N) (M, ρ)
)
.

Proof. By the definition of the continuous cohomologyH 1, the assertion for the general
case follows from the case where (M, ρ) is a finite R[GΓ̂1(N)]-module. In this case,
the assertion is well-known by the interpretation as the set of isomorphism classes of
torsors. □

We put

GΓ̂e(N) B
 Ẑ Ẑ

NẐ 1+ NẐ

 ∩GL2(Ẑ).

The natural morphism

Y(MN) → Y1(N)

(E, (α1, α2)) 7→ (E,Mα1)

corresponds to the group (Z/MNZ) Z/MNZ

N(Z/MNZ) 1+ N(Z/MNZ)

 ∩GL2(Z/MNZ)

through the right action for eachM ∈ N\{0}. Taking an inverse limit again, we obtain
a surjective group homomorphismπ1(Y1(N), x) ↠ GΓ̂e(N)op, which is continuous with
respect to their natural topologies. Therefore we regard a topologicalR[GΓ̂e(N)]-module
as a topologicalR[π1(Y1(N), x)]-module.

Remark 2.11. Let (L, ρ) be a profiniteR[GΓ̂e(N)]-module. There is a natural construc-
tion of the profiniteR-sheafF associated to (L, ρ) with no use of the base pointx. Of

40



course, the construction ofF from ResGΓ̂e(N)
π1(Y1(N),x)(M, ρ) deeply depends onx, but the con-

struction ofF from (L, ρ) is independent of the choice ofx up to natural isomorphisms.
Suppose that (L, ρ) is a finiteR[GΓ̂e(N)]-module. Then there is anM ∈ N\{0} such that
the kernel of the canonical projection

GΓ̂e(N)↠ GΓe(N,M) B
 (Z/MNZ) Z/MNZ

N(Z/MNZ) 1+ N(Z/MNZ)

 ∩GL2(Z/MNZ)

acts trivially onL, and we regard (L, ρ) as a finiteR[GΓe(N,M)]-module. The GΓe(N,M)-
torsor Y(MN) ↠ Y1(N) is independent of the choice of the base points. LetS0 →
Y1(N) be a connected finitéetale morphism. The finite set HomY1(N)(S0,Y(MN)) × L is a
GΓe(N,M)-space with respect to the action

GΓe(N,M) × (
HomY1(N)(S0,Y(MN)) × L

) → HomY1(N)(S0,Y(MN)) × L

(A, (x, l)) 7→ ((A−1)opx, ρ(A, l)) = (Ax, ρ(A, l)).

We set

F0(S0) B GΓe(N,M)\ (HomY1(N)(S0,Y(MN)) × L
)
.

SinceS0 is connected, the action of GΓe(N,M) on HomY1(N)(S0,Y(MN)) is transitive, and
hence the addition

F0(S0) ×F0(S0) → F0(S0)

(GΓe(N,M)(x, l),GΓe(N,M)(x, l′)) 7→ GΓe(N,M)(x, l + l′)

is well-defined. The action ofRonL induce an action of|R| onF0(S0), for whichF0(S0)
is a finite|R|-module. We defineF as the sheafification of the presheafF1 of finite |R|-
modules onY1(N)ét defined by setting

F1(S) B
∏

S0∈π0(S)

F0(S0)

for each finitéetale morphismS→ Y1(N). In the case where (L, ρ) is not necessarily a fi-
niteR[GΓ̂e(N)]-module, since the construction above is functorial, it gives a construction
of the profiniteR-sheaf associated to (L, ρ) with no use of the base pointx.

Example 2.12. Let p be a prime number dividingN. For anyn ∈ N, Symn(Z2
p, ρZ2

p
)

(Example 1.28) is a profiniteZp[M 2(Zp)]-module by Proposition 1.21, and in particular,
it can be regarded as a profiniteZp[π1(Y1(N), x)]-module by the composite

π1(Y1(N), x)↠ GΓ̂e(N)op ↪→ GL2(Ẑ)↠ GL2(Zp)
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For each topologicalZp[GL2(Zp)op]-module (M, ρ), we denote by (M, ρ)op the topological
Zp[GL2(Zp)]-module (M, ρop), whereρop is the action of GL2(Zp) = (GL2(Zp)op)op given
by settingρop(g,m) B det(g)ρ(m, (g−1)op) for each (g,m) ∈ GL2(Zp) × M. We obtain an
isomorphism

ResGL2(Zp)
M2(Zp)

(
Symn

(
Z2

p, ρZ2
p

)) ∼→ ResM2(Zp)op

GL2(Zp)op

(
HomZp

(
Symn

(
Z2

p, ρZ2
p

))op)
as topologicalZp[GL2(Zp)]-modules sending the canonical basis to the anti-ordered dual
basis. We have an isomorphism

Symn
(
Z2

p, ρZ2
p

)
� HomZp

(
Symn

(
Z2

p, ρZ2
p

)
,Zp

)
as topologicalZp[GL2(Zp)]-modules sending the canonical basis to the anti-ordered dual
basis. Therefore we have a natural identification(

ResGL2(Zp)op

(π1(Y1(N),x),ι2)

(
Symn

(
Z2

p, ρZ2
p

)))
Y1(N)

�
(
ResGL2(Zp)op

(π1(Y1(N),x),ι2)

(
HomZp

(
Symn

(
Z2

p, ρZ2
p

)
,Zp

)))
Y1(N)

=

((
ResGL2(Zp)op

(π1(Y1(N),x),ι2)

(
HomZp

(
Symn

(
Z2

p, ρZ2
p

)
,Zp

)
/pr

))
Y1(N)

)∞
r=0

�
((

ResGL2(Zp)op

(π1(Y1(N),x),ι2)

(
HomZp

(
Symn

(
(Z/prZ)2, ρ(Z/prZ)2

)
,Z/prZ

)))
Y1(N)

)∞
r=0

�
(
Symn

(
R1(πN)∗

(
Z/prZ

)
E1(N)

))∞
r=0
C Symn

(
R1(πN)∗

(
Zp

)
E1(N)

)
,

as profiniteZp-sheaves, whereπN : E1(N)→ Y1(N) is the universal elliptic curve.

For a sheafF of finite Abelian groups onY1(N)ét, we denote byFQ theétale sheaf of
finite Abelian groups onY1(N)Q B Y1(N) ×Q Q obtained as the inverse image ofF , and
put

H∗et

(
Y1(N)Q,F

)
B H∗et

(
Y1(N)Q,FQ

)
.

For a profiniteR-sheafF = (Fλ)λ∈Λ on Y1(N), we denote byFQ the profiniteR-sheaf
onY1(N)Q obtained as the inverse system ((Fλ)Q)λ∈Λ, and we put

H ∗
et

(
Y1(N)Q,F

)
BH ∗

et

(
Y1(N)Q,FQ

)
.

For a profiniteR[π1(Y1(N), x)]-module (M, ρ), we have a natural identification((
(M, ρ)

)
Y1(N)

)
Q
�

(
Resπ1(Y1(N),x)

π1(Y1(N)
Q
,x)(M, ρ)

)
Y1(N)

Q

as a profiniteR-sheaf onY1(N)Q.
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Proposition 2.13. For a first countable profiniteR[GΓ̂e(N)]-module(M, ρ), there is a

natural homeomorphicR-linear isomorphism

H 1
et

Y1(N)Q,
(
ResGΓ̂e(N)

π1(Y1(N),x)(M, ρ)
)
Y1(N)Q

 � H1
(
Γ1(N),ResGΓ̂e(N)

Γ1(N) (M, ρ)
)
.

Proof. By Proposition 2.10 and the argument above, we have a natural homeomorphic
isomorphism

H 1
et

Y1(N)Q,
(
ResGΓ̂e(N)

π1(Y1(N),x)(M, ρ)
)
Y1(N)

Q

 �H 1
(
Γ1(N),ResGΓ̂e(N)

Γ1(N) (M, ρ)
)

of topologicalR-modules. SinceΓ1(N) is a fundamental group of the open complex
manifoldΓ1(N)\H of dimension 1, it is a finitely generated free group. By Lemma 2.2,
we have an isomorphism

H1
(
Γ1(N),ResGΓ̂e(N)

Γ1(N) (M, ρ)
)
�H 1

(
Γ1(N),ResGΓ̂e(N)

Γ1(N) (M, ρ)
)
,

which is a homeomorphism by the definition of the topology of the left hand side intro-
duced right after Lemma 2.2. Thus the assertion holds. □

Corollary 2.14. For any finite (resp. first countable profinite)R[GΓ̂e(N)]-module(M, ρ),
the continuous cohomology

H 1
et

(
Y1(N)Q,

(
ResGΓ̂e(N)

π1(Y1(N),x)(M, ρ)
)
Y1(N)

)
is a finite (resp. first countable profinite)R-module.

Proof. SinceΓ1(N) is a finitely generated, Z1(Γ1(N), (M, ρ)) is a finite (resp. first count-
able profinite)R-module, and hence so is H1(Γ1(N), (M, ρ)). The natural homeomorphic
R-linear isomorphism

H 1
et

(
Y1(N)Q,

(
(M, ρ)

)
Y1(N)

)
� H1 (Γ1(N), (M, ρ))

in Proposition 2.13 guarantees that the left hand side is a finite (resp. first countable
profinite)R-module. □

Corollary 2.15. Let p be a prime number dividingN. For anyn ∈ N, there is a natural
homeomorphicZp-linear isomorphism

H ∗
(
Y1(N)Q,Symn

(
R1(πN)∗

(
(Zp

)
E1(N)

))
�H ∗

(
Γ1(N),ResM2(Zp)

Γ1(N)

(
Symn

(
Z2

p, ρZ2
p

)))
.

Proof. The assertion follows from Lemma 2.2 and Proposition 2.13 by the natural iso-
morphism(

ResGL2(Zp)op

(π1(Y1(N),x),ι2)

(
Symn

(
Z2

p, ρZ2
p

)))
Y1(N)
� Symn

(
R1(πN)∗

(
Zp

)
E1(N)

)
as profiniteZp-sheaf in Example 2.12. □
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2.3 Actions of the Absolute Galois Group and Hecke Operators

Henceforth, we fix a prime numberp dividing N. The natural projection̂Z↠ Zp gives
a continuous monoid homomorphism GΓ̂e(N) → Π1(p), and hence we regard a topo-
logical R[Π1(p)]-module as a topologicalR[GΓ̂e(N)]-module. Let (M, ρ) be a profinite
R[Π1(p)]-module, andF the profiniteR-sheaf onY1(N) associated to (M, ρ). If (M, ρ)
is a finiteR[GΓ̂e(N)]-module, then the action of Gal(Q/Q) on Y1(N)Q gives a continuous
action on the finite Abelian group H∗et(Y1(N)Q,F ) in a functorial way. In general, the
action of Gal(Q/Q) on Y1(N)Q gives a continuous action onH ∗

et(Y1(N)Q,F ), because
it is defined as the inverse limit of finiteR[Gal(Q/Q)]-modules byR-linear Gal(Q/Q)-
equivariant homomorphisms. The actions of Gal(Q/Q) on continuous cohomologies of
profiniteR-sheaves associated to profiniteR[Π1(p)]-modules are functorial with respect
to continuousR-linearΠ1(p)-equivariant homomorphisms.

Let A ∈ GL2(Qp) satisfyingAι B det(A)A−1 ∈ Π1(p) with the orbit decomposition⊔m
l=1 Γ1(N)Al of the double cosetΓ1(N)AΓ1(N) ⊂ GL2(Qp) with respect to the left action

of Γ1(N). For each (γ, l0) ∈ Γ1(N) × (N ∩ [1,m]), we put Al0γ = γl0Al(γ,l0) by a unique
(γl0, l(γ, l0)) ∈ Γ1(N) × (N ∩ [1,m]). For a 1-cocyclec: Γ1(N) → |(M, ρ)|, we define
Ac: Γ1(N)→ |(M, ρ)| by setting

(Ac)(γ) B
m∑

l=1

ρ
(
Aι

l , c(γl)
) ∈ |M|

for eachγ ∈ Γ1(N). ThenAc is a 1-cocycle, and its cohomology class is independent
of the presentation of the double coset decomposition. The action ofA induces aR-
linear endomorphism on H1(Γ1(N), (M, ρ)), and we call itthe double coset operator as-

sociated toA. For a prime numberℓ, we denote byTℓ the R-linear endomorphism on

H1(Γ1(N), (M, ρ)) given by the double coset operator associated to

 1 0
0 ℓ

. For each

n ∈ N\{0} with a prime factorisationn =
∏d

j=1 ℓ
sj

j , we setTn B
∏d

j=1 T
sj

ℓ j
. For each

n ∈ (Z/NZ)×, we denote by⟨n⟩ the R-linear endomorphism on H1(Γ1(N), (M, ρ)) given

by the double coset operator associated to

 a b

c n

 ∈ Γ0(N), wheren ∈ Z is represen-

tatives ofn anda,b, c are arbitrary. The operator⟨n⟩ is independent of the choice of
a,b, c,n for anyn ∈ (Z/NZ)×. For eachn ∈ Z coprime toN, we putSn B nk−2⟨n+ NZ⟩.
We call these operatorsHecke operators. The actions of Hecke operators on the first
cohomology group (and the module of 1-cocycles if we fix presentations of double coset
decompositions) are functorial with respect to continuousR-linearΠ1(p)-equivariant ho-
momorphisms.
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Proposition 2.16. For any first countable profiniteR[Π1(p)]-module(M, ρ), the natural

homeomorphicR-linear isomorphism

H 1
et

(
Y1(N)Q,ResΠ1(p)

π1(Y1(N),x)(M, ρ)
)
� H1

(
Γ1(N),ResΠ1(p)

Γ1(N)(M, ρ)
)

in Proposition 2.13 gives anR-linear Gal(Q/Q)-equivariant action of Hecke operators

on the left hand side.

Proof. The continuous cohomologies are defined as the inverse limits of cohomologies
corresponding to a finiteR[Π1(p)]-module and a sheaf of finite Abelianp-groups on
Y1(N)ét associated to it. The isomorphism in the assertion is given as the inverse limit of
isomorphisms between group cohomologies of finiteR[Π1(p)]-modules and́etale coho-
mologies of the associated sheaves of finite Abelianp-groups onY1(N)ét. Transition maps
on the right hand is Hecke-equivariant, while those on the left hand side is Gal(Q/Q)-
equivariant. Therefore it suffices to verify the assertion in the case where (M, ρ) is a
finite R[Π1(p)]-module. Imitating [Del69] Proposition 3.18, we compare the action of
Hecke operators on the right hand side with a Gal(Q/Q)-equivariant endomorphisms on
the left hand side induced by a Hecke correspondence. Letℓ be a prime number. We
deal only withTℓ. We denote byF the sheaf of finite Abelian groups onY1(N)ét asso-
ciated to (M, ρ). The construction of Hecke operators on the continuous cohomology of
F by a Hecke correspondence include the following three steps: First, we define a cor-
respondence as the graph associated to two projections pr1,pr2 : Y1(N, ℓ) ↠ Y1(N) from
a curveY1(N, ℓ) with a moduli interpretation. Secondly, we construct a natural morphism
pr∗1F → pr∗2F , and give a definition of the Hecke operatorTℓ acting on théetale coho-
mology ofF . Finally, we verify that the isomorphism in the assertion isTℓ-equivariant.

Firstly, let r ∈ N denote the multiplicity ofℓ as a prime factor ofN, and putN0 B
ℓ−r N ∈ N\{0}. We set

GΓ̂e(N, ℓ) B


 a b

c d

 ∈ GL2(Ẑ)

∣∣∣∣∣∣∣∣∣
c ∈ NℓẐ

d ∈ (1+ N)Ẑ
d + ℓr+1Ẑ ∈ (Z/ℓr+1Z)×

 .
Puttingα B

 ℓ 0
0 1

 ∈ GΓ̂e(N) , we consider an injective continuous group homomor-

phism

adα : GΓ̂e(N, ℓ) → GΓ̂e(N) a b

c d

 7→  a ℓb

ℓ−1c d

 = α  a b

c d

α−1.
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Let Y1(N, ℓ) denote the algebraic curve overQ obtained as the quotient of the finiteétale
coveringY(Nℓ) ↠ Y1(N) corresponding to the subgroup GΓ̂e(N, ℓ) ⊂ GΓ̂e(N). Then
Y1(N, ℓ) is a moduli of triads (E, α,C) of an elliptic curveE, a primitiveN-torsion point
α ∈ E[N], and a cyclic subgroupC ⊂ E[ℓr+1] of order ℓr+1 with N0α ∈ C. Let pr1 de-
note the canonical projectionY1(N, ℓ) ↠ Y1(N), which corresponds to the natural trans-
form (E, α,C) 7→ (E, α) between moduli. It gives a continuous group homomorphism
(pr1)∗ : π

ét
1 (Y1(N, ℓ), x) → πét

1 (Y1(N), x) such that the image of the compositeι1N,ℓ of (pr1)∗
and the natural continuous group homomorphismιN : πét

1 (Y1(N), x) → GΓ̂e(N) coincides
with GΓ̂e(N, ℓ). We have another projection pr2 : Y1(N, ℓ) ↠ Y1(N) given by the natural
transform (E, α,C) 7→ (E/C, α + C) between moduli. We consider the correspondence
pr1 × pr2 : Y1(N, ℓ) → Y1(N) ×Q Y1(N). Before that, we calculate the difference of the
two embeddings ĜΓe(N, ℓ) ↪→ GΓ̂e(N) induced by pr1 and pr2. The projection pr2 is not
compatible with the base pointsx. Choosing another compatible system of base pointsy

on each connected finitéetale covering ofY1(N, ℓ), we obtain a continuous group homo-
morphism (pr2)∗ : π

ét
1 (Y1(N, ℓ), y)→ πét

1 (Y1(N), x). The kernel of (pr1)∗ corresponds to the
tower (ϖM : (Y(MNℓ), x) ↠ (Y1(N, ℓ), x)M∈N\{0} of finite étale coverings induced by pr1

for eachi ∈ {1,2}. Let M ∈ N\{0}. We consider the finite groups

GΓe(N, ℓ,M) B


 a b

c d

 ∈ GL2(Z/MNℓZ)

∣∣∣∣∣∣∣∣∣
c ∈ Nℓ(Z/MNℓZ)
d ∈ 1+ N(Z/MNℓZ)
d + ℓr+1Z ∈ (Z/ℓZ)×


adα (GΓe(N, ℓ,M)) B


 a b

c d

 ∈ GL2(Z/MNℓZ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
b ∈ ℓ(Z/MNℓZ)
c ∈ N(Z/MNℓZ)
d ∈ 1+ N(Z/MNℓZ)
d + ℓr+1Z ∈ (Z/ℓr+1Z)×


GΓe(N,1,M) B


 a b

c d

 ∈ GL2(Z/MNZ)

∣∣∣∣∣∣ c ∈ N(Z/MNZ)
d ∈ 1+ N(Z/MNZ)

 .
We recall that the left action of GL2(Z/MNℓZ) (resp. GL2(Z/MNZ)) on Y(MNℓ) (resp.
Y(MN)) is given by a b

c d

 (E, (α1, α2)) B (E, (dα1 + cα2,bα1 + aα2)),

and the corresponding right action is given by

(E, (α1, α2))

 a b

c d

op

B
 a b

c d

−1

(E, (α1, α2)) =

(
E,

(
aα1 − cα2

ad− bc
,
−bα1 + dα2

ad− bc

))
.

The canonical projectionY(MN)↠ Y1(N) (resp.ϖM) is given by the natural transform

(E, (α1, α2)) 7→ (E,Mα1)
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resp. (E, (α1, α2)) 7→ (E,Mℓα1, ⟨MNα1⟩)

between moduli, and hence the right action induces an isomorphism

Gal(Y(MN)↠ Y1(N)) � GΓe(N, 1,M)

resp. Gal(ϖM) � GΓe(N, ℓ,M).

The composite pr2 ◦ϖM is given by the natural transform

(E, (α1, α2)) 7→ (E/⟨MNα1⟩,Mℓα1 + ⟨MNα1⟩)

between moduli, and hence the finiteétale morphismσM : Y(MNℓ) → Y(MN) given by
the natural transform

(E, (α1, α2)) 7→ (E/⟨MNα1⟩, (α1 + ⟨MNα1⟩, ℓα2 + ⟨MNα1⟩))

between moduli makes the diagram

Y(MNℓ)
σM−−−−−→ Y(MN)

ϖM

y y
Y1(N, ℓ)

pr2−−−−−→ Y1(N)

commutes. For any

 a b
c d

 ∈ GΓe(N, ℓ,M), we have an equality

σM

(E, (α1, α2))

 a b

c d

 = σM

 a b

c d

−1

(E, (α1, α2))


= σM

((
E,

(
aα1 − cα2

ad− bc
,
−bα1 + dα2

ad− bc

)))
=

(
E/⟨MNα1⟩,

(
aα1 − cα2

ad− bc
+ ⟨MNα1⟩,

−ℓbα1 + d(ℓα2)
ad− bc

+ ⟨MNα1⟩
))

=

 a ℓb

ℓ−1c d

−1

(E/⟨MNα1⟩, (α1 + ⟨MNα1⟩, ℓα2 + ⟨MNα1⟩))

= σM((E, (α1, α2))) adα

 a b

c d

 ,
and hence the group homomorphism GΓe(N, ℓ,M)→ GΓe(N,1,M) obtained as the com-
posite of the natural isomorphisms Gal(ϖ) � GΓe(N, ℓ,M) and Gal(Y(MN) ↠ Y1(N)) �
GΓe(N,1,M) and (σM)∗ : Gal(ϖ) → Gal(Y(MN) ↠ Y1(N)) coincides with the well-
defined group homomorphism

adα,M : GΓe(N, ℓ,M) ↠ GΓe(N,1,M)
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 a+ MNℓZ b+ MNℓZ

c+ MNℓZ d + MNℓZ

 7→  a+ MNZ ℓb+ MNZ

(ℓ−1c) + MNZ d + MNZ

 .
As a consequence, the homeomorphic group isomorphism

σ : lim←−−
M∈N\{0}

Gal(ϖM!)
∼→ lim←−−

M∈N\{0}
Gal(Y(M!N)↠ Y1(N))

induced by the compatible system ((σM)∗)M∈N\{0} corresponds to the inverse limit of the
compatible system (adα,M)M\{0} through the natural isomorphisms above, and hence is
compatible with adα through the natural homeomorphic isomorphisms

GΓ̂e(N, ℓ) � lim←−−
M∈N\{0}

GΓ̂e(N, ℓ,M!)

GΓ̂e(N) � lim←−−
M∈N\{0}

GΓ̂e(N,1,M!).

Lifting the restriction ĜΓe(N, ℓ)
∼→ adα(GΓ̂e(N, ℓ)) ⊂ GΓ̂e(N) of adα, we fix an identifica-

tion π1(Y1(N, ℓ)) B π1(Y1(N, ℓ), x) � π1(Y1(N, ℓ), y) so that the diagram

πét
1 (Y1(N, ℓ))

(pr2)∗−−−−−→ πét
1 (Y1(N), x)

ι1N,ℓ

y yιN
GΓ̂e(N, ℓ)

adα−−−−−→ GΓ̂e(N),

commutes.

Secondly, we have natural isomorphisms

pr∗1F � Resπ1(Y1(N),x)

(π1(Y1(N,ℓ)),(pr1)∗)

(
ResΠ1(p)

π1(Y1(N),x)(M, ρ)
)

= ResGΓ̂e(N,ℓ)(
π1(Y1(N,ℓ)),ι1N,ℓ

) (ResΠ1(p)

GΓ̂e(N,ℓ)
(M, ρ)

)
pr∗2F � Resπ1(Y1(N),x)

(π1(Y1(N,ℓ)),(pr2)∗)

(
ResΠ1(p)

π1(Y1(N),x)(M, ρ)
)

= Res
adα(GΓ̂e(N,ℓ))(
π1(Y1(N,ℓ)),ι2N,ℓ

) (ResΠ1(p)

adα(GΓ̂e(N,ℓ))
(M, ρ)

)
= ResGΓ̂e(N,ℓ)(

π1(Y1(N,ℓ)),ι1N,ℓ
) (ResGΓ̂e(N)

(GΓ̂e(N,ℓ),adα)

(
ResΠ1(p)

GΓ̂e(N)
(M, ρ)

))
.

By the functoriality of the correspondence ((·, ·))Y1(N), theR-linear GΓ̂e(N, ℓ)-equivariant
homomorphism

φ : ResΠ1(p)

GΓ̂e(N,ℓ)
(M, ρ) → ResGΓ̂e(N)

(GΓ̂e(N,ℓ),adα)

(
ResΠ1(p)

GΓ̂e(N)
(M, ρ)

)
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m 7→ ρ(α,m)

induces a morphismφ : pr∗1F → pr∗2F . We define anR-linear endomorphismTℓ on
H 1

et (Y1(N)Q,F ) as the composite

H 1
et

(
Y1(N)Q,F

) pr∗1−−→H 1
et

(
Y1(N, ℓ)Q,pr∗1F

) H 1
et

(
φ
)

−−−−−→H 1
et

(
Y1(N, ℓ)Q,pr∗2F

)
(pr2)∗−−−−→ H 1

et

(
Y1(N)Q,F

)
,

where (pr2)∗ is the trace map associated to the finite Galois covering pr2.

Finally, we verify that the isomorphism in the assertion isTℓ-equivariant. Put

Γ0(Nℓ) B
 Z Z

NℓZ Z

 ∩ SL2(Z)

Γ1(N, ℓ) B
 1+ NZ Z

NℓZ 1+ NZ

 ∩ SL2(Z) = Γ1(N) ∩ Γ0(Nℓ)

= Γ1(N) ∩ α−1Γ1(N)α ⊂ SL2(Q).

Take a presentationΓ1(N)αιΓ1(N) =
⊔n

i=1 Γ1(N)αi of the right coset decomposition. We
have

Γ1(N)/
(
Γ1(N) ∩ αΓ1(N)α−1)

)
=

n⊔
i=1

α−1
i α

ι
(
Γ1(N) ∩ αΓ1(N)α−1

)
.

For eachγ ∈ Γ1(N) andi ∈ N ∩ [1,n], let jγ,i ∈ N ∩ [1,n] denote a unique integer with
αiγ ∈ Γ1(N)α jγ,i , and putγi B αiγα

−1
jγ,i
∈ Γ1(N). The trace map (pr2)∗ corresponds to the

R-linear homomorphism

Tr: H1
(
Γ1(N, ℓ),ResΓ1(N)

(Γ1(N,ℓ),adα)

(
ResΠ1(p)

Γ1(N)(M, ρ)
))
→ H1

(
Γ1(N),ResΠ1(p)

Γ1(N)(M, ρ)
)

sending the cohomology class of a 1-cocyclec: Γ1(N, ℓ)→ ResΓ1(N)
(Γ1(N,ℓ),adα)(ResΠ1(p)

Γ1(N)(M, ρ)))

to the cohomology class of the 1-cocycle Tr(c) : Γ1(N)→ ResΠ1(p)
Γ1(N)(M, ρ) given by setting

Tr(c)(γ) B
n∑

i=1

ρ
(
α−1

i α
ι, c

(
ad−1

α (γi)
))

for eachγ ∈ Γ1(N). Therefore the endomorphism on H1(Γ1(N),ResΠ1(p)
Γ1(N)(M, ρ)) induced

by the action ofTℓ onH 1
et (Y1(N)Q,F ) through the isomorphism in the assertion sends the

cohomology class of a 1-cocyclec: Γ1(N) → ResΠ1(p)
Γ1(N)(M, ρ) to a 1-cocyclec′ : Γ1(N) →

ResΠ1(p)
Γ1(N)(M, ρ) given by setting

c′(γ) B Tr (φ ◦ c ◦ adα) (γ) =
n∑

i=1

ρ
(
α−1

i α
ι, φ

(
c
(
adα(ad−1

α (γi))
)))
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=

n∑
i=1

ρ
(
α−1

i α
ι, ρ(α, c(γi))

)
=

n∑
i=1

ρ
(
α−1

i α
ια, c(γi))

)
=

n∑
i=1

ρ
(
ℓα−1

i , c(γi))
)
=

n∑
i=1

ρ
(
αιi , c(γi))

)
= Tℓ(c)(γ)

for eachγ ∈ Γ1(N). Thus the isomorphism in the assertion isTℓ-equivariant. □

3 Interpolation of Étale Cohomologies
Henceforth, we only consider the casep , 2. In this section, we interpolate the family

(Symk−2(Z2
p, ρZ2

p
))∞k=2 alongk ∈ Zp. Their scalar extensions byQp are irreducibleQp-

linear representations ofΠ1(p) of pairwise distinct dimensions. In order to compare
them with each other, we construct infinite dimensional extensions of them, which share
the underlying topologicalZp-moduleZNp .

3.1 Interpolation along the Weight Spaces

In this section, we construct a profiniteZp[Π0(p)]-module interpolating finiteZp[Π0(p)]-
modules (Symn(Z2

p, ρZ2
p
))∞n=0 along weightsn+ 2 ∈ N. As is dealt with in§2.3, an action

of Π1(p) plays an important role for a geometric construction of a family of Galois repre-
sentations. To begin with, we extend several functions onN to the weight spacesZp and
W = Homcont(Z×p,Z

×
p). For each (n,m) ∈ Zp × N, we set n

m

 B 1
m!

m−1∏
h=0

(n− h).

It gives a unique continuous functionZp × N → Qp extending the binomial coefficient
function on the dense subset{(n,m) ∈ N × N | n ≥ m} ⊂ Zp × N. Since the image of the
dense subset{(n,m) ∈ N × N | n ≥ m} by the binomial coefficient function isN ⊂ Zp,
the extended binomial coefficient gives a continuous functionZp × N → Zp. For any
(d,n) ∈ (1+ pZp) × Zp, we set

dn B
∞∑

h=0

 n

h

 (d − 1)h.

The infinite sum converges in 1+ pZp, and it gives a unique continuous function (1+
pZp)×Zp→ 1+ pZp extending the restriction (1+ pZ)×N→ 1+ pZ of the exponential
functionQ× × Z → Q× : (d,n) 7→ dn. Everyn ∈ Zp associates a continuous character
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χp,n : Z×p → Z×p in the following way. To begin with, we defineχp,n|1+pZp : 1 + pZp →
1+ pZp by settingχp,n|1+pZp(d) B dn for eachd ∈ 1+ pZp. The infinite sum

d(p) B
∞∑

h=0

 (p− 1)−1

h

 (dp−1 − 1)h

converges in 1+ Zp for anyd ∈ Z×p, and the map

(·)(p) : Z×p → 1+ pZp

d 7→ d(p)

is a continuous group homomorphism whose restriction on the subgroup 1+ pZp ⊂ Z×p
is the identity map. We define a continuous characterχp,n : Z×p → Z×p as the composite
of (·)(p), χp,n|1+pZp, and the inclusion 1+ pZp ↪→ Z×p. On the other hand, the canonical
isomorphism

Z×p
∼→ F×p × (1+ pZp)

d 7→ (d + pZp,d(p))

gives a well-defined decomposition

(Z/(p− 1)Z) × Zp
∼→ W

(n0 + (p− 1)Z,np) 7→ χn0χp,np−n0

as a group, where we denote byχn ∈ W the continuous characterZ×p → Z×p : d 7→ dn for
eachn ∈ Z. For eachχ ∈ W, we denote by (np(χ),np(χ)) its image in (Z/(p− 1)Z) × Zp.
By definition, we have (np(χp,n),np(χp,n)) = (0,n) for anyn ∈ Zp, and (np(χn),np(χn)) =
(n+ (p− 1)Z,n) for anyn ∈ Z. For each (d, χ) ∈ Z×p ×W, we putdχ B χ(d) ∈ Z×p. For
each (χ,m) ∈W× N, we set  χ

m

 B  np(χ)
m

 ∈ Zp.

It gives a unique continuous functionW × N → Zp extending the binomial coefficient
function on the dense subset{(n,m) ∈ N × N | n ≥ m} with respect to the embedding
N ↪→ W: n 7→ χn. Henceforth, we often abbreviateχn to n for eachn ∈ Z. We remark
that the difference between the two embeddingsN ↪→W: n 7→ χn andN ↪→W: n 7→ χp,n

is not important at all in this paper if a reader is interested only in an action ofΠ1(p).

Proposition 3.1. Letχ ∈ W. For any(A, α, i) ∈ Π0(p) × ZNp × N with A =

 a b

c d

 and

α = (α j)∞j=0, the infinite sum

ρχ(A, α)i B
∞∑
j=0

α j

min{i, j}∑
h=0

 i

h

 i+ j−h−1∏
m=i

(np(χ) −m)

 ahbi−h cj−h

( j − h)!
dχ−i− j+h
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converges inZp, and the map

ρχ : Π0(p) × ZNp → ZNp

(A, α) 7→
(
ρχ(A, α)i

)
i∈N

is continuous.

Proof. Let (A, α, i) ∈ Π0(p) × ZNp × N with A =

 a b

c d

 andα = (α j)∞j=0. For any j ∈ N,

we have

max
h ∈ N

0 ≤ h ≤ min{i, j}

∣∣∣∣∣∣ cj−h

( j − h)!

∣∣∣∣∣∣ = max
h ∈ N

0 ≤ h ≤ min{i, j}

|c| j−h

|p|
∑∞

r=1

⌊
j−h
pr

⌋ ≤ max
h ∈ N

0 ≤ h ≤ min{i, j}

|p|( j−h)
(
1−∑∞r=1

1
pr

)

= |p|( j−min{i, j})
(
1− 1

p−1

) j→∞−→ 0,

where⌊x⌋ ∈ Z denotes the largest integer which is not larger thanx for eachx ∈ R, and
hence ∣∣∣∣∣∣∣α j

min{i, j}∑
h=0

 i
h

 i+ j−h−1∏
m=i

(np(χ) −m)

 ahbi−h cj−h

( j − h)!
dχ−i− j+h

∣∣∣∣∣∣∣ j→∞−→ 0.

It implies thatρχ(A, α)i converges inZp. The continuity ofρχ follows from the conver-
gence of the infinite sum in the definition ofρχ(A, α)i, because of the continuity of each
term of the infinite sum. □

Following the abbreviation ofχn to n, we putρn B ρχn for eachn ∈ Z. In order to verify
that the topological space (ZNp , ρχ) with an action of the underlying topological space of
Π0(p) is a profiniteZp[Π0(p)]-module for anyχ ∈ W, we compare it with Symn(Z2

p, ρZ2
p
)

for infinitely manyn ∈ N.

Lemma 3.2. Letn ∈ N. For eachi ∈ N ∩ [0,n], put

en,i B
 n

i

 xiyn−i ∈ Symn
(
Z2

p

)
.

Then the map

ϖn : (ZNp , ρn) → Symn
(
Z2

p, ρZ2
p

)
(αi)

∞
i=0 7→

n∑
i=0

αien,i

is a continuousZp-linearΠ0(p)-equivariant homomorphism.
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Proof. Let (A, α) ∈ Π0(p) × ZNp with A =

 a b

c d

 andα = (αi)∞i=0. We have

ϖn(ρn(A, α)) = ϖn((ρn(A, α)i)
∞
i=0) =

n∑
i=0

ρn(A, α)ien,i

=

n∑
i=0

∞∑
j=0

α j

min{i, j}∑
h=0

 i

h

 i+ j−h−1∏
d=i

(n− d)

 ahbi−h cj−h

( j − h)!
dn−i− j+h

 n

i

 xiyn−i

=

n∑
i=0

n∑
j=0

α j

min{i, j}∑
h=max{0,i+ j−n}

 i

h

 i+ j−h−1∏
d=i

(n− d)

 ahbi−h cj−h

( j − h)!
dn−i− j+h

 n

i

 xiyn−i

=

n∑
i=0

n∑
j=0

α j

min{i, j}∑
h=max{0,i+ j−n}

n!
h!(i − h)!( j − h)!(n− i − j + h)!

ahbi−hcj−hdn−i− j+hxiyn−i

=

n∑
j=0

α j

 n

j

 n∑
i=0

min{i, j}∑
h=max{0,i+ j−n}

 j

h

 (ax)h(cy) j−h

 n− j

i − h

 (bx)i−h(dy)n−i− j+h

=

n∑
j=0

α j

 n

j

 j∑
h=0

 j

h

 (ax)h(cy) j−h
n− j∑
h′=0

 n− j

h′

 (bx)h′(dy)n− j−h′

=

n∑
j=0

α j

 n

j

 (ax+ cy) j(bx+ dy)n− j = Symn
(
ρZ2

p

)  a b

c d

 , n∑
j=0

α j

 n

j

 x jyn− j


= Symn

(
ρZ2

p

) A, n∑
j=0

α jen, j

 = Symn
(
ρZ2

p

)
(A, ϖn(α)).

Thusφn is aZp-linearΠ0(p)-equivariant homomorphism. □

For eachn ∈ N, we denote by Symn0(Z
2
p) ⊂ Symn(Z2

p) the image ofϖn. It is a lattice of
Symn(Q2

p) with aZp-linear basis (en,i)n
i=0, and is aZp[Π0(p)]-submodule Symn(Z2

p, ρZ2
p
).

Definition 3.3. For eachn ∈ N, we put

Ln B Symn
(
Z2

p, ρZ2
p

)∣∣∣∣ Symn
0

(
Z2

p

)
.

See Example 1.29 (i) for this convention.

The modified symmetric productLn has good congruence relation with respect to
n ∈ N as is shown in the following.

Lemma 3.4. For any(r,n0,n1) ∈ (N\{0})×N×N with n0 ≤ n1 andn1−n0 ∈ pr−1(p−1)Z,
the canonical projection

ϖr
n1,n0

: Ln1/pr ↠ Ln0/pr
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n1∑
i=0

αien1,i 7→
n0∑
i=0

αien0,i

is a (Z/prZ)-linearΠ0(p)-equivariant homomorphism.

Proof. Let ϖ̃r
χ,χ′ : (ZNp , ρχ)/pr → (ZNp , ρχ′)/pr denote idZNp/prZNp

for each (χ, χ′) ∈ W ×W,
andϖr

n : (ZNp , ρn)/pr ↠ Ln/pr denote the surjective (Z/prZ)-linearΠ0(p)-equivariant
homomorphism induced byϖn for eachn ∈ N. Let (χ, χ′) ∈ W × W with χ − χ′ ∈
pr−1(p − 1)W . For anyd ∈ Z×p, we havedχ − dχ

′ ∈ prZp. By the definition ofϖr
n1,n0

,
we haveϖr

n1,n0
◦ ϖr

n1
= ϖr

n0
◦ ϖ̃r

n1,n0
. Since the matrix representation ofρχ with respect

to the canonical topological basis ofZNp is given as a function onχ ∈W belonging to the
closedZp-subalgebra of C(W,Zp) generated by polynomials of the functionsχ 7→ np(χ)
andχ 7→ χ(d) for eachd ∈ Z×p with coefficients inpZp, ϖ̃r

n1,n0
is a (Z/prZ)-linearΠ0(p)-

equivariant isomorphism. Thus the assertion follows from the surjectivity ofϖr
n1

. □

For any (r, n0) ∈ (N\{0}) × N, the family(
Ln0+pr−1(p−1)m/pr

)∞
m=0

forms an inverse system of finiteZp[Π0(p)]-modules by the canonical projections (ϖr
n2,n1

)n2,n1.
Let χ ∈W. Let r ∈ N. Although we have not verified that the continuous actionρχ of the
underlying topological space ofΠ0(p) is a continuous action ofΠ0(p) yet, it is aZp-linear
action, and hence the convention (ZNp , ρχ)/pr+1 naturally makes sense.

Definition 3.5. For eachχ ∈W, we denote byχ(r) ∈ N the smallest non-negative integer
satisfyingχ − χ(r) ∈ pr(p− 1)W.

Let χ ∈W. Following the convention in the proof of Lemma 3.4, the family(
ϖr+1
χ(r)+pr (p−1)m ◦ ϖ̃

r+1
χ,χ(r)

0 +pr (p−1)m

)∞
m=0

is a compatible system of (Z/pr+1Z)-linearΠ0(p)-equivariant (resp.Π1(p)-equivariant)
homomorphisms, and induces a continuous (Z/pr+1Z)-linear Π0(p)-equivariant (resp.
Π1(p)-equivariant) homomorphism

(ZNp , ρχ)/pr+1 → lim←−−
m∈N

(
Lχ(r)+pr (p−1)m/pr+1

)
(αi)∞i=0 7→

(∑χ(r)+pr (p−1)m
i=0 αieχ(r)+pr (p−1)m,i

)∞
m=0

It is a homeomorphic isomorphism because the canonical projections give natural identi-
fications

ZNp � lim←−−
m∈N
Zn+pr (p−1)m

p � lim←−−
m∈N

Ln+pr (p−1)m

as profiniteZp-modules for anyn ∈ N.
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Definition 3.6. Let n ∈ N. We put

Fn/pr B Ln/pr

for eachr ∈ N, and set

Fn B (Fn/pr)∞r=0 = Ln.

See Example 2.9 for this convention.

We consider the action of Hecke operators on the profiniteZp[Gal(Q/Q)]-module

(M, ρ) =H 1
et

(
Y1(N)Q,Fk0−2

)
for eachk0 ∈ N ∩ [2,∞). We denote by Tét

k0,N
⊂ EndZp[Gal(Q/Q)](M, ρ) the commutative

Zp-subalgebra generated by Hecke operators. SinceM is a finitely generatedZp-module,
Tét

k0,N
is finitely generated as aZp-module. We endow Tét

k0,N
with the p-adic topology, and

regard it as a profiniteZp-algebra. The continuous action of Tét
k0,N

on (M, ρ) induces a
continuous action of Tét

k0,N
on (M, ρ)free (Definition 1.23, Example 1.29 (ii)). Since the

embeddingLn ↪→ Symn(Z2
p, ρZ2

p
) induces aQp-linear M2(Zp)-equivariant isomorphism

Qp ⊗Zp Ln � Qp ⊗Zp Symn
(
Z2

p, ρZ2
p

)
� Symn

(
Q2

p, ρQ2
p

)
,

we have

Qp ⊗Zp H ∗
(
Y1(N)Q,Fn

)
� Qp ⊗Zp H ∗

(
Y1(N)Q,Symn

(
R1(πN)∗

(
Zp

)
E1(N)

))
by Proposition 2.13. Therefore the Eichler–Shimura isomorphism ([Shi59] 5 Théor̀eme
1, [Hid93] 6.3 Theorem 4) and the comparison theorem of cohomologies ([SGA4] Ex-
pośe XI Théor̀eme 4.4 (iii), [SGA4] Expośe XVI Corollaire 1.6) give a homeomor-
phic Zp-algebra isomorphism (Tét

k0,N
)free � Tk0,N preserving Hecke operators. We regard

(M, ρ)free as a topological Tk0,N-module through the isomorphism. It is finitely generated
as aZp-module, and hence is a profinite Tk0,N-module by Proposition 1.21.

Theorem 3.7.For anyχ ∈W, (ZNp , ρχ) is a profiniteZp[Π0(p)]-module.

Proof. By the argument above, we have a homeomorphicZp-linearΠ0(p)-equivariant
isomorphism

(ZNp , ρχ) � lim←−−
r∈N

(
(ZNp , ρχ)/pr+1

)
→ lim←−−

r∈N
lim←−−
m∈N

(
Lχ(r)+pr (p−1)m/pr+1

)
of topological spaces with actions of the underlying topological space ofΠ0(p). Since the
target is a projective limit of finiteZp[Π0(p)]-modules, the source is a profiniteZp[Π0(p)]-
module. □
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Corollary 3.8. The equality

min{i, j}∑
m=h

(−1)m−h

 n−m

i −m

  j

m

  m

h

 =  n− j

i − h

  j

h


holds for any(n, i, j,h) ∈ Zp × N × N × N with h ≤ min{i, j}.

Proof. We remark that the assertion is originally proved by Yuya Matsumoto with no use
of p-adic representation theory. It is easily seen that the assertion is equivalent to the
condition thatρn(A0A1, α) = ρn(A0, ρn(A1, α)) for any (A0,A1, α) ∈ Π0(p)×Π0(p)×ZNp by
p-adic Lie algebra theory,p-adic analysis to Baker–Campbell–Hausdorff formula, and
Schneider–Teitelbaum theory. Thus the assertion follows from Theorem 3.7. □

Remark 3.9. Theorem 3.7 is deeply related to [PS11] 3.3 and 7.1. Robert Pollack and
Glenn Stevens defined a continuous right action of the topological group

Σ0(p) B
 Z×p Zp

pZp Zp

 ∩GL2(Zp)

of non-negative integral weightn on the topologicalZp-algebra of distributions onZp

in [PS11] 3.3, and proved that the closedZp-subalgebra of distributions with integral
moments, which is canonically homeomorphically isomorphic toZp[[z]], is stable under
the action ofΣ0(p) in Proposition 7.1. By the canonical topological basis (zh)h∈N of
Zp[[z]], we identifyZp[[z]] with ZNp . The mapΠ0(p)∩GL2(Qp)→ Σ0(p)op: A 7→ (Aι)op =

det(A)(A−1)op associating the cofactor matrices is a homeomorphic group isomorphism,
and hence the notion of a right action ofΣ0(p) is equivalent to that of a left action of
Π0(p) ∩ GL2(Qp). Therefore we obtain a continuous actionρ′n of Π0(p) ∩ GL2(Qp) of
non-negative integral weightn on ZNp . The homeomorphicZp-linearΠ0(p)-equivariant
isomorphism

(ZNp , ρχ) � lim←−−
r∈N

lim←−−
m∈N

(
Lχ(r)+pr (p−1)m/pr+1

)
for a χ ∈ W in the proof of Theorem 3.7 ensures that ifχ = χn for an n ∈ N, then the
restriction ofρχ on the subgroupΠ0(p) ∩ GL2(Qp) ⊂ Π0(p) coincides withρ′n. Thus the
construction of (ZNp , ρχ) is a generalisation of that of (ZNp , ρ

′
n) in the sense that the former

one deals with a general weight andΠ0(p) while the latter one deals with a non-negative
integral weight andΠ0(p) ∩GL2(Zp).

Remark 3.10. We have a geometric construction of (ZNp , ρχ) in the case whereχ =
χp,n for an n ∈ Zp. In Example 1.37, we constructed a linearly complete topological
Zp[Π0(p)op]-module (C(Zp,Zp), (m∨p)κ(χ)) using p-adic linear fractional transformations.
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Sincep-adic linear fractional transformations andχp,n(cz+d) for any (c,d) ∈ pZp×Z×p are
rigid analytic functions onZp, the p-adically completeZp-subalgebraZp{z} ⊂ C(Zp,Zp)
consisting of rigid analytic functions of Gauss norm≤ 1 is stable under the action
of Π0(p)op. The Iwasawa-type dual ([ST02] Theorem 1.2) of the BanachQp-algebra
Qp{z} � Qp ⊗Zp (Zp{z}) is the profiniteZp-algebraZp[[z]] of distributions with integral
moments. Although the Iwasawa-type duality for Banach representations of a profinite
group ([ST02] Theorem 2.3) does not extend to duality of Banach unitary representations
for a topological monoid in a direct way, it is easily seen that the continuous action of
Π0(p)op on Zp{z} induces a continuous actionρ′′χp,n

of Π0(p) on Zp[[z]], and ρ′′χp,n
corre-

sponds toρχp,n through the identificationZp[[z]] � ZNp . This gives an alternative proof of
Theorem 3.14 for the case where the weightχ is of the formχp,n for ann ∈ Zp.

Remark 3.11. Let χ ∈W. We have a natural identification(
ResΠ0(p)

π1(Y1(N),x)(Z
N
p , ρχ)

)
Y1(N)
�

(
Fχ(r)+pr (p−1)m/pr+1

)∞
m,r=0

as profiniteZp-sheaves onY1(N) by Theorem 3.7. Whenχ = χn for somen ∈ N, then we
have an identification(

ResΠ0(p)
π1(Y1(N),x)(Z

N
p , ρn)

)
Y1(N)
�

(
Fn+pr m/pr+1

)∞
m,r=0

as profiniteZp-sheaves onY1(N).

Remark 3.12. Let n ∈ N. As is constructed in Lemma 3.2, there is a canonical projection
ϖn : (ZNp , ρn) ↠ Ln. Taking the Iwasawa-type dual ([ST02] Theorem 2.3) in Schneider–
Teitelbaum theory, we obtain an exact sequence

0→ Symn(Q2
p, ρQ2

p
)→ (C(Zp,Qp), ρ

∨
n )→ (ker(ϖn)

∨, (ρn| ker(ϖn))
∨)→ 0

of unitary BanachQp-linear representations, and (ker(ϖn)∨, (ρn| ker(ϖn))∨) is an infinite
dimensional irreducible unitary BanachQp-linear representation. Thus (ZNp , ρn) is an
infinite dimensional extension ofLn by the Iwasawa-type dual of an infinite dimensional
irreducible unitary BanachQp-linear representation.

Now we interpolate the family (Symk−2(Z2
p, ρZ2

p
))∞k=2 with respect to weightsk as ele-

ments ofW. We putΛ0 B Zp[[X]] p(p−1). We regardΛ0 as aZp-submodule of C(W,Zp)
by the embedding

Zp[[X]] p(p−1) ↪→ C(W,Zp)

(Fζ(X))p(p−1)−1
ζ=0 7→

(
χ 7→ Fχ(1)(np(χ) − n(1))

)
.
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This embedding is an injective continuous homomorphism from a compact module to a
Hausdorff module, and hence is a homeomorphic isomorphism onto the closed image.
For eachχ ∈W, we denote by spχ the continuous surjectiveZp-algebra homomorphism

Λ0 ↠ Zp

f 7→ f (χ),

and call ita specialisation map. For eachχ ∈ W, we regard (ZNp , ρχ−2) as a profinite
Λ0[Π0(p)]-module through spχ.

SinceN ∩ [2,∞) is dense inW, the evaluation map

spB
∞∏

k=2

spk : Λ0 ↪→
∞∏

k=2

Zp

f 7→ (spk( f ))∞k=2

is an injective continuousZp-linear homomorphism between compact Hausdorff mod-
ules, and hence is a homeomorphic isomorphism onto the closed image. In particular, we
regardΛN0 as a closedZp-submodule of

∏∞
k=2Z

N
p by the embedding

spN : ΛN0 ↪→
∞∏

k=2

ZNp

( fi)
∞
i=0 7→ ((spk( fi))

∞
i=0)

∞
k=2.

Through the homeomorphic group isomorphismW � (Z/(p− 1)Z) × Zp, we identifyW
as the analytic space given as the disjoint union ofp − 1 copies ofZp. As a closedZp-
subalgebra of C(W,Zp),Λ0 consists of locally analytic functions onZp whose restrictions
on ζ + p(p− 1)W ⊂ ζ + (p− 1)W � Zp are given by single power series inZp[[X − ζ]]
for any ζ ∈ N ∩ [0, p(p − 1) − 1]. In particular, it containsnp and the characteristic
functions 1ζ+p(p−1)W of ζ + p(p− 1)W for eachζ ∈ N ∩ [0, p(p− 1)− 1]. We denote by
z ∈ Λ0 the element corresponding tonp, and byeζ ∈ Λ0 the idempotent corresponding
to 1ζ+p(p−1)W for eachζ ∈ N ∩ [0, p(p − 1) − 1]. We putzζ B zeζ ∈ Λ0 for eachζ ∈
N ∩ [0, p(p − 1) − 1]. Identifying eζΛ0 with Λ0/(1 − eζ)Λ0 � Zp[[X]], we obtain a
presentationΛ0 =

∏p(p−1)−1
ζ=0 Zp[[zζ − ζ]]. Let (h0, f0) ∈ N × C(W,Zp). We define a map f0

h0

 : W → Zp

χ 7→
 f0(χ)

h0

 .
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It is a polynomial function onf0 with coefficients inQp, and hence is continuous. There-
fore we regard it as an element of C(W,Zp). Let (d, f ) ∈ (1+pZp)×C(W,Zp). The infinite
sum

d f B
∞∑

h=0

 f
h

 (d − 1)h

converges in 1+ pC(W,Zp) ⊂ C(W,Zp) becaused − 1 ∈ pZp. Supposef ∈ Λ0. We have f

h

 (d − 1)h
 = 1 (h = 0)
∈ pZp[ f ] ⊂ Λ0 (h ≥ 1)

because we have∣∣∣∣∣∣ (d − 1)h

h!

∣∣∣∣∣∣ = |d − 1|h |p|−
∑∞

r=1

⌊
h
pr

⌋
≤ |p|h−

∑∞
r=1

h
pr = |p|h− h

p−1 = |p|
h(p−2)

p−1

 = 1 (h = 0)
< 1 (h ≥ 1)

by p , 2. SinceΛ0 is closed in C(W,Zp), d f also lies inΛ0. Since the embedding
Λ0 ↪→ C(W,Zp) is a homeomorphism onto the image, the infinite sum in the definition of
d f also converges tod f in Λ0. More concretely,d f lies in the closure of 1+ pZp[ f ] ⊂ Λ0.

By the universality of Iwasawa algebra, the continuous group homomorphism

1+ NZp ↪→ C(W,Zp)
×

γ 7→ γz

induces a continuousZp-algebra homomorphismZp[[1 +NZp]] → C(W,Zp). We remark
that since 1+ NZp is contained in 1+ pZp, we haveγz(χ) = γnp(χ) = χ(γ) for any (γ, χ) ∈
(1+ NZp) ×W. Through the Amice transform

Zp[[X]]
∼→ Zp[[1 + NZp]]

X 7→ [1 + N] − 1,

it corresponds to theZp-algebra homomorphism

Zp[[X]] → C(W,Zp)

X 7→ (1+ N)z− 1,

which is injective by the Weierstrass preparation theorem and the fact that the exponential
function (1+ N)z is a transcendental function. This embedding factors throughΛ0 ↪→
C(W,Zp), becauseΛ0 is closed in C(W,Zp) and theZp-subalgebra of C(W,Zp) generated
by (1+ N)z ∈ Λ0 is dense in the image ofZp[[1 + NZp]]. We regardΛ0 as a profinite
Zp[[1 + NZp]]-algebra through the embedding by Corollary 1.19.
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Proposition 3.13.For any(A, F, i) ∈ Π0(p)×ΛN0 ×N with A =

 a b

c d

 andF = (F j)∞j=0,

the infinite sum

ρ•−2(A, F)i B
∞∑
j=0

F j

min{i, j}∑
h=0

 i

h

 i+ j−h−1∏
m=i

(z− 2−m)

 ahbi−h cj−h

( j − h)!
dz−2−i− j+h

converges inΛ0, and the map

ρ•−2 : Π0(p) × ΛN0 → ΛN0

(A, F) 7→ (ρ•−2(A, F)i)i∈N

is continuous.

Proof. Let (A, F, i) ∈ Π0(p) × ΛN0 × N with A =

 a b

c d

 andF = (F j)∞j=0. Each term in

the infinite sum in the definition ofρ•−2(A, F)i lies inΛ0 by the argument above. For any
χ ∈W, we have

∏p−1
m=0(z− np(χ) −m) ∈ pΛ0 + (zp − z)Λ0. The family{

(pΛ0 + (zp − z)Λ0)
hΛ0

∣∣∣ h ∈ N
}

forms a fundamental system of neighbourhoods of 0, because of the presentation

Λ0 =

p(p−1)−1∏
ζ=0

Zp[[zζ − ζ]] � lim←−−
r,h∈N

p(p−1)−1∏
ζ=0

(Z/prZ)[zζ − ζ]/(zζ − ζ)h.

We have

F j

min{i, j}∑
h=0

 i

h

 i+ j−h−1∏
m=i

(z− 2−m)

 ahbi−h cj−h

( j − h)!
dz−i− j+h

∈
 j−1∏

m=i

(z− 2−m)

Λ0 ⊂

⌊
j−i
p

⌋∑
r=0

pr(zp − z)
⌊

j−i
p

⌋
−rΛ0 ⊂ (pΛ0 + (zp − z)Λ0)

⌊
j−i
p

⌋

for any j ∈ Nwith j > i, and henceρ•−2(A, F)i converges inΛ0 by the linear completeness
of the profiniteZp-algebraΛ0. The continuity ofρ•−2 follows from that of

∞∏
k=2

ρk−2 : Π0(p) ×
∞∏

k=2

ZNp →
∞∏

k=2

ZNp

(A, ((αk,i)
∞
i=0)

∞
k=2) 7→ (ρk−2(A, (αk,i)

∞
i=0))

∞
k=2,

because
∏∞

k=2 ρk−2 ◦ (idΠ0(p) × spN) = spN ◦ ρ•−2. □
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Theorem 3.14.The pair(ΛN0 , ρ•−2) is a profiniteΛ0[Π0(p)]-module, and the map

(
ΛN0 , ρ•−2

)
→

∞∏
k=2

Lk−2

( fi)
∞
i=0 7→

 k−2∑
i=0

spk( fi)ek−2,i

∞
k=2

,

is an injective continuousΛ0-linearΠ0(p)-equivariant homomorphism.

Proof. The embedding spN : (ΛN0 , ρ•−2) ↪→
∏∞

k=2(Z
N
p , ρk−2) is an injective continuousΛ0-

linearΠ0(p)-equivariant homomorphism onto the closed image by the definition ofρ•−2.
Since its target is a profiniteΛ0[Π0(p)]-module, so is the source. Letι : (ΛN0 , ρ•−2) →∏∞

k=2 Lk−2 denote the map in the assertion. Thenι is a continuousΛ0-linear Π0(p)-
equivariant homomorphism because it is the composite of spN and the canonical projec-
tion

∞∏
k=2

ϖk−2 :
∞∏

k=2

ZNp →
∞∏

k=2

Lk−2

((αk,i)
∞
i=0)

∞
k=2 7→

(
ϖk−2

(
(αk,i)

∞
i=0

))∞
k=2 ,

which is a continuousΛ0-linearΠ0(p)-equivariant homomorphism by Lemma 3.2. Let
f = ( fi)∞i=0 ∈ ker(ι). For anyi ∈ N, fi : W→ Zp is zero on the subsetN∩ [i + 2,∞) which
shares infinitely many points withζ + p(p− 1)W for eachζ ∈ N ∩ [0, p(p− 1)− 1], and
hencefi = 0 by the identity theorem for rigid analytic functions onζ + p(p− 1)W � pZp

for eachζ ∈ N ∩ [0, p(p− 1)− 1]. Thus f = 0. We conclude thatι is injective. □

Remark 3.15. The profiniteΛ0[Π0(p)]-module (ΛN0 , ρ•−2) also admits a geometric con-
struction usingp-adic linear fractional transformations and distributions. We define a
continuous action 1×mp of Π0(p) onZp×Zp by setting (1×mp)(A, (χ, z)) B (χ,mp(A, z))
for each (A, χ, z) ∈ Π0(p) ×W× Zp. Then by Proposition 1.33, we obtain a commutative
linearly completeZp[Π0(p)]-algebra (C(W× Zp,Zp), (1×mp)∨). The map

κ : Π0(p)op → C(W× Zp,Zp) a b

c d

op

7→ (χ(cz+ d) : (χ0, z0) 7→ χ0(cz0 + d))

satisfies the condition in Corollary 1.36 with respect to 1× mp. Therefore we obtain
a linearly completeZp[Π0(p)op]-module (C(W × Zp,Zp), (1 × mp)∨κ ). Since 1× mp and
χ(cz+ d) for any (c,d) ∈ pZp × Z×p are rigid analytic functions, thep-adically complete
Zp-subalgebraZp{z,w}p−1 ⊂ C(Zp × Zp,Zp)p−1 � C(Z⊔p−1

p × Zp,Zp) � C(W × Zp,Zp)
consisting of rigid analytic functions of Gauss norm≤ 1 is stable under the action of
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Π0(p). Similarly, thep-adically completeZp-subalgebra
∏p(p−1)−1

ζ=0 Zp{zζ − ζ,w} ⊂ C(W×
Zp,Zp) consisting of locally analytic functions whose restriction on the subspace (ζ +

p(p − 1)W) × Zp ⊂ W × Zp is given as the restriction of a rigid analytic function on
W × Zp of Gauss norm≤ 1 for anyζ ∈ N ∩ [0, p(p − 1) − 1] is stable under the action
of Π0(p). The Iwasawa-type dual of

∏p(p−1)−1
ζ=0 Zp{zζ − ζ,w} is naturally identified with∏p(p−1)−1

ζ=0 Zp[[zζ − ζ,w]] � Λ0[[w]] � ΛN0 , and hence (1× mp)∨κ induces a continuous
action ofΠ0(p) onΛN0 . The action coincides withρ•−2.

For eachk ∈ N ∩ [2,∞), we also denote by spk the continuousZp-algebra homomor-
phism obtained as the composite

Λ0
spk−−→ Zp ↪→ Tk,N.

We regard Tk,N as a profiniteΛ0-algebra through spk by Corollary 1.19. It is easy to see
that spk : Λ0→ Tk,N is aZp[[1+NZp]]-algebra homomorphism. We recall that we defined
the structure of Tk,N as a profiniteZp[[1 + NZp]]-algebra in§1.3.

We regard

k0∏
k=2

H 1
et

(
Y1(N)Q,Fk−2

)
free

as a profinite T≤k0,N-module through the embedding

T≤k0,N ↪→
k0∏

k=2

Tk,N,

and also as a profiniteΛ0-module through the evaluation

k0∏
k=2

spk : Λ0 → Zk0−1
p ↪→

k0∏
k=2

Tk,N

F 7→ (spk(F))k0
k=2.

The actions of T≤k0,N andΛ0 give two actions ofZp[[1 + NZp]], and they coincide with
each other. Therefore we regard

k0∏
k=2

H 1
et

(
Y1(N)Q,Fk−2

)
free

as a profinite (T≤k0,N⊗̂Zp[[1+NZp]]Λ0)-module in the way in Example 1.17. Taking the in-
verse limit, we regard

∞∏
k=2

H 1
et

(
Y1(N)Q,Fk−2

)
free
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as a profinite (Λ0TN)-module.

We denote by ∫ ⊞

Zp

Symk−2
0

(
Z2

p

)
dk⊂

∞∏
k=2

Symk−2
0 (Z2

p)

the image of (ΛN0 , ρ•−2) by the embedding in Theorem 3.14, and put∫ ⊞

Zp

Lk−2dkB

 ∞∏
k=2

Lk−2


∣∣∣∣∣∣∣
∫ ⊞

Zp

Symk−2
0

(
Z2

p

)
dk

 .
It is a profiniteΛ0[Π0(p)]-module admitting specialisation maps

spk0
:

∫ ⊞

Zp

Lk−2dk↠ Lk0−2

given by the canonical projections for eachk0 ∈ N ∩ [2,∞). For a formal symbolH ∈
{H 1,H1}, we denote by ∫ ⊞

Zp

H (Γ1(N),Lk−2) dk

the image of the continuousΛ0-linear Hecke-equivariant homomorphism

H

(
Γ1(N),

∫ ⊞

Zp

Lk−2dk

) ∏∞
k=2 spk−−−−−−→

∞∏
k=2

H (Γ1(N),Lk−2) ,

which is a profiniteΛ0-module endowed with an action ofTℓ for each prime numberℓ
andSn for eachn ∈ N coprime toN. By Lemma 2.2, we have a natural homeomorphic
Λ0-linear isomorphism∫ ⊞

Zp

H∗ (Γ1(N),Lk−2) dk
∼→

∫ ⊞

Zp

H ∗ (Γ1(N),Lk−2) dk

because (ΛN0 , ρ•−2) is a first countable profiniteΛ0[Π0(p)]-module.

We set ∫ ⊞

Zp

Fk−2dkB

∫ ⊞

Zp

Lk−2dk


Y1(N)

.

See 2.9 for this convention. We have specialisation maps

H 1
et

(
Y1(N)Q,

∫ ⊞

Zp

Fk−2dk

)
spk0−−−→H 1

et

(
Y1(N)Q,Fk0−2

)
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associated to the specialisation map spk0
for the corresponding topologicalΛ0[Π0(p)]-

modules for eachk0 ∈ N ∩ [2,∞). We denote by∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)
dk

the image of the continuousΛ0-linear Gal(Q/Q)-equivariant homomorphism

H 1
et

(
Y1(N)Q,

∫ ⊞

Zp

Fk−2dk

) ∏∞
k=2 spk−−−−−−→

∞∏
k=2

H 1
et

(
Y1(N)Q,Fk−2

)
,

and it is a profiniteΛ0[Gal(Q/Q)]-module. By Proposition 2.13, we have a natural home-
omorphicΛ0-linear isomorphism∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)
dk�

∫ ⊞

Zp

H1 (Γ1(N),Lk−2) dk,

on which the action ofTℓ for each prime numberℓ andSn for eachn ∈ N coprime toN on
the right hand side commutes with that of Gal(Q/Q) on the left hand side by Proposition
2.16.

Proposition 3.16.The specialisation map

H 1
et

(
Y1(N)Q,

∫ ⊞

Zp

Fk−2dk

)
spk0−−−→H 1

et

(
Y1(N)Q,Fk0−2

)
given by the canonical projection is surjective for anyk0 ∈ N ∩ [2,∞).

Proof. By the definition of the continuous cohomology and Proposition 2.10, we have
natural homeomorphicΛ0-linear isomorphisms

H 1
et

(
Y1(N)Q,

∫ ⊞

Zp

Fk−2dk

)
� H 1

(
Γ1(N),

∫ ⊞

Zp

Lk−2dk

)
H 1

et

(
Y1(N)Q,Fk0−2

)
� H 1 (

Γ1(N),Lk0−2
)
.

Therefore the assertion follows from Proposition 2.4. □

For a formal symbol

(Hk)
∞
k=2 ∈

{(
H 1 (Γ1(N),Lk−2)

)∞
k=2

,
(
H1 (Γ1(N),Lk−2)

)∞
k=2

,
(
H 1

et

(
Y1(N)Q,Fk−2

))∞
k=2

}
we denote by ∫ ⊞

Zp

(Hk)freedk
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the image of the composite∫ ⊞

Zp

Hkdk ↪→
∞∏

k=2

Hk ↠
∞∏

k=2

(Hk)free,

and regard it as a profiniteΛ0-module endowed with a continuous action ofTℓ for each
prime numberℓ andSn for eachn ∈ N coprime toN when (Hk)∞k=2 is a formal symbol
corresponding to cohomologies of (Lk−2)∞k=2, and with a continuous action of Gal(Q/Q)
when (Hk)∞k=2 is a formal symbol corresponding to cohomologies of (Fk−2)∞k=2. We have
natural homeomorphicΛ0-linear isomorphisms∫ ⊞

Zp

H1 (Γ1(N),Lk−2)freedk �
∫ ⊞

Zp

H 1 (Γ1(N),Lk−2)freedk

�
∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)
free

dk,

such the first isomorphism is Hecke-equivariant, and the action ofTℓ for each prime
numberℓ andSn for eachn ∈ N coprime toN commutes with that of Gal(Q/Q).

Theorem 3.17.The action ofTℓ for each prime numberℓ andSn for eachn ∈ N coprime

to N induces a well-defined faithful continuousΛ0-linear Gal(Q/Q)-equivariant action

TN ×
∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)
free

dk→
∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)
free

dk

of TN.

Proof. We put

L B
∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)
free

dk

M B
∞∏

k=2

H 1
et

(
Y1(N)Q,Fk−2

)
free

It follows from the natural isomorphism (Tét
k0,N

)free → Tk0,N that the action of Hecke
operators gives a well-defined faithful action

Tk0,N ×H 1
et

(
Y1(N)Q,Fk−2

)
free
→H 1

et

(
Y1(N)Q,Fk−2

)
free

for anyk0 ∈ N ∩ [2,∞). Therefore the action ofTℓ for each prime numberℓ andSn for
eachn ∈ N coprime toN induces a well-defined faithful actionTN × M → M, which is
continuous by the universality of a direct product, because it is given as the inverse limit
of the continuous actions

T≤k1,N ×
k1∏

k0=2

H 1
et

(
Y1(N)Q,Fk−2

)
free
→

k1∏
k0=2

H 1
et

(
Y1(N)Q,Fk−2

)
free
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for eachk1 ∈ N ∩ [2,∞). Since Tk0,N is generated by Hecke operators for anyk0 ∈
N ∩ [2,∞), theZp-subalgebraA ⊂ TN generated by Hecke operators is dense by the
definition of the inverse limit topology. Therefore for any (T, c) ∈ TN × L, T(c) lies in
the closure of the image ofL in M. SinceL is compact andM is Hausdorff, T(c) lies
in the image ofL. Therefore the action ofTℓ for each prime numberℓ andSn for each
n ∈ N coprime toN induces a well-defined faithfulZp-linear Gal(Q/Q)-equivariant action
TN × L → L, which is continuous because the topology of

∫ ⊞
Zp

H 1
ét (Y1(N)Q,Fk−2dk)Free

coincides with the relative topology of
∏∞

k0=2 H 1
et (Y1(N)Q,Fk−2)free. □

We putΛ0TN B Λ0⊗̂Zp[[1+NZp]]TN. By the action ofTN in Theorem 3.17, we regard∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)
free

dk

as a profiniteΛ0TN[Gal(Q/Q)]-module. It is a huge module, and we cut it by a slope
condition in the next section.

3.2 Restriction to Families of Finite Slope

Let s ∈ N. We extract the component of slope< s from the huge cohomology dealt
with in the end of§3.1. For conventions of Hecke algebras of finite slope, see§1.3. For
eachk0 ∈ N ∩ [2,∞), we set

H 1
et

(
Y1(N)Q,Fk0−2

)<s
B

(
T<s

k0,N
⊗̂Tk0,N

H 1
et

(
Y1(N)Q,Fk0−2

))
free

,

where T<s
k0,N

is regarded as a profinite Tk0,N[Gal(Q/Q)]-algebra by the trivial action of
Gal(Q/Q). It is a profinite T<s

k0,N
[Gal(Q/Q)]-modules finitely generated asZp-modules.

We putΛ0T
<s
N B Λ0⊗̂Zp[[1+NZp]]T

<s
N (resp.Λ0T

[<s]
N B Λ0⊗̂Zp[[1+NZp]]T

[<s]
N ), and regard it a

profiniteΛ0TN-algebra. We denote by∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)<s
dk

the image of the natural continuous homomorphism

Λ0T
<s
N ⊗̂Λ0TN

∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)
free

dk→
∞∏

k=2

H 1
et

(
Y1(N)Q,Fk−2

)<s
,

and regard it as a profiniteΛ0T
<s
N [Gal(Q/Q)]-module.

Let k0 ∈ N ∩ [2,∞). The truncation maps

τk0,− : ΛN0 → ΛN0
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(Fi)
∞
i=0 7→ (F0, . . . , Fk0−2,0,0 . . .)

and

τk0,+ : ΛN0 → ΛN0

(Fi)
∞
i=0 7→ (0, . . . , 0, Fk0−1, Fk0, . . .)

are continuousΛ0-linear idempotents. For a 1-cocycle

c: Γ1(N)→
∫ ⊞

Zp

Lk−2dk,

we consider the compositec′ : Γ1(N)→ (ΛN0 , ρ•−2) of c and the inverse of the homeomor-
phicΛ0-linearΠ0(p)-equivariant isomorphism

∞∏
k=2

spk : (ΛN0 , ρ•−2)
∼→

∫ ⊞

Zp

Lk−2dk.

By the proof of Proposition 2.13,Γ1(N) is a finitely generated free group. Henceforth,
we fix a basis (γh)d

h=1 of the finitely generated free groupΓ1(N). By the isomorphism in
Lemma 2.5, we identify Z1(Γ1(N), (ΛN0 , ρ•−2)) with (ΛN0 )d. Putc′ = (c′h)

d
h=1 through the

identification. Setτk0,±(c
′) B (τk0,±(c

′
h))

d
h=1, and denote by

τk0,±(c) : Γ1(N)→
∫ ⊞

Zp

Lk−2dk,

the 1-cocycle obtained as the composite ofτk0,±(c
′) and

∏∞
k=2 spk. We obtain continuous

idempotentsτk0,− andτk0,+ on

Z1

(
Γ1(N),

∫ ⊞

Zp

Lk−2dk

)
with τk0,− + τk0,+ = id.

Lemma 3.18. If ps | N, then the image of

τk0,−

(
Z1

(
Γ1(N),

∫ ⊞

Zp

Lk−2dk

))
generates a denseΛ0T

<s
N -submodule of∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)<s
dk

for anyk0 ≥ s+ 1.
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Proof. We always identify the group cohomologies and the correspondingétale coho-
mology by Proposition 2.13. Put

L B
∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)<s
dk

M̃ B Z1

(
Γ1(N),

∫ ⊞

Zp

Lk−2dk

)
M B H 1

et

(
Y1(N)Q,

∫ ⊞

Zp

Fk−2dk

)
and

M≤k1 B
k1∏

k=2

H 1
et

(
Y1(N)Q,Fk−2

)<s

for eachk1 ∈ N ∩ [2,∞). Let c ∈ L. By the definition of the inverse limit topology, it
suffices to verify that the image ofc in M≤k1 is contained in the (Λ0 ⊗Zp[[1+NZp]] T<s

≤k1,N
)-

submodule generated by the image ofτk0,−(M̃) for anyk1 ∈ N ∩ [k0,∞). Let k1 ∈ N ∩
[ps,∞). By Proposition 1.39 and Proposition 2.4, there is a lift

ck1 ∈ TN[X] ⊗TN M

of the imageck1 of c in M≤k1 with respect to theTN-algebra homomorphismTN[X] ↠
T<s
≤k1,N

: X 7→ psT−1
p . Putck1 =

∑n0
n=0 Xn ⊗ ck1,n for a (ck1,n)

n0
n=0 ∈ Mn0+1. Take a liftc̃k1,n ∈ M̃

of ck1,n for eachn ∈ N∩ [0,n0]. We have ˜ck1,n = τk0,−(c̃k1,n)+τk0,+(c̃k1,n). As a consequence,
ck1 is decomposed into the sum of the images of

n0∑
n=0

Xn ⊗ τk0,−(c̃k1,n) ∈ Zp[X] ⊗Zp τk0,−(M̃)

n0∑
n=0

Xn ⊗ τk0,+(c̃k1,n) ∈ Zp[X] ⊗Zp τk0,+(M̃),

and hence it suffices to verify that the image ofτk0,+(M̃) in M≤k1 is contained in the
(Λ0 ⊗Zp[[1+NZp]] T<s

≤k1,N
)-submodule generated byτk0,−(M̃). Before that, we calculate the

image ofτk0,+(M̃) by Tp.

By the homeomorphicΛ0-linearΠ0(p)-equivariant isomorphism

∞∏
k=2

sp(k) : (ΛN0 , ρ•−2)
∼→

∫ ⊞

Zp

Lk−2dk.
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and Lemma 2.5, we identifỹM with (ΛN0 )d. The double coset decomposition correspond-
ing toTp is given as

Γ1(N)

 1 0
0 p

 Γ1(N) =
p−1⊔
θ=0

Γ1(N)

 1 θ

0 p

 .
Let h ∈ N ∩ [1,d] andθ ∈ N ∩ [0, p− 1]. Since the right hand side is a double coset of
the action ofΓ1(N), there is a uniqueδ(h, θ) ∈ N ∩ [1, p− 1] satisfying

Ah,θ B
 1 θ

0 p

 γh

 1 δ(h, θ)
0 p

−1

∈ Γ1(N).

We denote byℓh,θ ∈ N the word length ofAh,θ with respect to the basis (γh)d
h=1. Put

Ah,θ = γ
σh,θ,1

h′h,θ,1
· · · γσh,θ,ℓh,θ

h′h,θ,ℓh,θ

for unique (h′h,θ,n)
ℓh,θ

n=1 ∈ (N ∩ [1,d])ℓh,θ and (σh,θ,n)
ℓh,θ

n=1 ∈ {1,−1}ℓh,θ with γσh,θ,n

h′h,θ,n
γ
σh,θ,n+1

h′h,θ,n+1
, 1 for

anyn ∈ N ∩ [1, ℓh,θ − 1]. We define an (Ah,θ,n)
ℓh,θ

n=1 ∈ Γ1(N)ℓh,θ by setting

Ah,θ,n B


γ
σh,θ,1

h′h,θ,1
· · · γσh,θ,n−1

h′h,θ,n−1
(σh,θ,n = 1)

γ
σh,θ,1

h′h,θ,1
· · · γσh,θ,n−1

h′h,θ,n−1
γ−1

h′h,θ,n
(σh,θ,n = −1)

for eachn ∈ N ∩ [1, ℓh,θ]. For any 1-cocycle ˜c: Γ1(N)→ (ΛN0 , ρ•−2), we have

c̃(Ah,θ) = c̃

(
γ
σh,θ,1

h′h,θ,1
· · · γσh,θ,ℓh,θ

h′h,θ,ℓh,θ

)
=

ℓh,θ−1∑
n=1

ρ•−2

(
γ
σh,θ,1

h′h,θ,1
· · · γσh,θ,n−1

h′h,θ,n−1
, c̃

(
γ
σh,θ,n

h′h,θ,n

))
=

ℓh,θ−1∑
n=1

σh,θ,nρ•−2

(
Ah,θ,n, c̃(γh′h,θ,n

)
)

for anyh ∈ N∩ [1,d] andθ ∈ N∩ [0, p− 1]. Therefore the double coset operatorTp with
respect to the presentation of the decomposition above acts onM̃ as

Tp : (ΛN0 )d → (ΛN0 )d

((
Fh,i

)∞
i=0

)d

h=1
7→

 p−1∑
θ=0

ρ•−2

 1 θ

0 p

ι , ℓh,θ∑
n=1

σh,θ,nρ•−2

(
Ah,θ,n,

(
Fh′h,θ,n,i

)∞
i=0

)


d

h=1

.

For any (c,n) ∈ NZp × (N\{0}), we have∣∣∣∣∣cn

n!

∣∣∣∣∣ = |c|n |p|−
∑∞

h=1

⌊
n
ph

⌋
=

 |c|n (1 ≤ n ≤ p− 1)

|c|
n(p−2)

p−1 |p|
n

p−1−
∑∞

h=1

⌊
n
ph

⌋
(n > p− 1)
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≤ |c| ≤ |N|

by p , 2. For any (A, F) ∈ Γ1(N)× τk0,+(Λ
N
0 ) with A =

 a b

c d

 andF = (Fi)∞i=0, we have

ρ•−2(A, F) =

 ∞∑
j=k0−1

F j

min{i, j}∑
h=0

 i

h

 i+ j−h−1∏
m=i

(z− 2−m)

 ahbi−h cj−h

( j − h)!
dz−2−i− j+h


∞

i=0

∈ N(z− k0)τk0,−(Λ
N
0 ) ⊕ τk0,+(Λ

N
0 ) ⊂ ps(z− k0)τk0,−(Λ

N
0 ) ⊕ τk0,+(Λ

N
0 )

by the conditionps | N. For anyθ ∈ N∩ [0, p−1] andF ∈ ps(z− k0)τk0,−(Λ
N
0 )⊕ τk0,+(Λ

N
0 )

with F = (Fi)∞i=0, we have

ρ•−2

 1 θ

0 p

ι , F
=

 ∞∑
j=0

F j

min{i, j}∑
h=0

 i

h

 i+ j−h−1∏
m=i

(z− 2−m)

 ph(−θ)i−h 0j−h

( j − h)!
1z−i− j+h


∞

i=0

=

 i∑
j=0

F j

 i

j

 pj(−θ)i− j


∞

i=0

∈ ps(z− k0)τk0,−(Λ
N
0 ) ⊕ psτk0,+(Λ

N
0 )

by the conditionk0 ≥ s + 1. Therefore the image ofτk0,+(M̃) by Tp is contained in
ps(z− k0)τk0,−(M̃) ⊕ psτk0,+(M̃) ⊂ psM̃.

Let c̃ ∈ τk0,+(M̃), and put ˜c = (c̃1, . . . , c̃d)(ΛN0 )d by the identification. Set ˜c[0] B c̃, and
put Tp(c̃[0]) = psd̃ by a d̃ ∈ (z− k0)τk0,−(M̃) ⊕ τk0,+(M̃). As an equality of the images in
M≤k1, we have

psc̃[0] = TpX ⊗ c̃ = X ⊗ Tpc̃ = psX ⊗ d̃,

and hence ˜c[0] = X ⊗ d̃ becauseM≤k1 is torsionfree as aZp-module. Put ˜c[1] B τk0,+(d̃).
Then the image of ˜c[0] in M≤k1 coincides with that of

X ⊗ τk0,−(d̃) + X ⊗ c̃[1] ∈ Zp[X] ⊗Zp

(
(z− k0)τk0,−(M̃) ⊕ τk0,+(M̃)

)
Repeating similar calculations, we obtain a ˜c[n] ∈ τk0,+(M̃) such that the image of ˜c[0]
coincides with that ofXn ⊗ c̃[n] modulo the (Λ0 ⊗Zp[[1+NZp]] T[<s]

≤k1,N
)-submodule generated

by the image of (z− k0)τk0,−(M̃). Therefore the image of ˜c[0] in M≤k1 lies in thep-adic
closure of the (Λ0⊗Zp[[1+NZp]] T

<s
≤k1,N

)-submodule generated by the image of (z−k0)τk0,−(M̃),
because the action ofpsT−1

p on the image ofM̃ in M≤k1 is topologically nilpotent with
respect to thep-adic topology by the proof of Proposition 1.40. SinceM≤k1 is finitely
generated as aZp-module, everyZp-submodule isp-adically closed. Thus the assertion
holds. □
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Theorem 3.19.Supposeps | N. Then the profiniteΛ0T
<s
N [Gal(Q/Q)]-module∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)<s
dk

is finitely generated as a(Λ0T
<s
N )-module.

Proof. Put

M B τs+1,−

(
Z1

(
Γ1(N),

∫ ⊞

Zp

Lk−2dk

))
L B

∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)<s
dk.

The continuousΛ0-linear homomorphism (Λs+1
0 )d → M obtained by the embedding

(Λs+1
0 )d ↪→ (ΛN0 )d

((Fh,i)
s
i=0)

d
h=1 7→ ((Fh,0, . . . , F f ,s,0, . . .))

d
h=1

and the inverse of the homeomorphic isomorphism

M ↪→ (ΛN0 )d

c 7→

 ∞∏

k=2

spk

−1

(c(γh))


d

h=1

is a homeomorphic isomorphism by the definition ofM, and henceM is a finitely gen-
erated freeΛ0-module. LetE ⊂ M be aΛ0-linear basis. For eachc ∈ E, we denote
by c ∈ L the image ofc. By Lemma 3.18, the image of the continuous (Λ0T

<s
N )-linear

homomorphism

ϖ :
(
Λ0T

<s
N

)E → L

(Fc)c∈E 7→
∑
c∈E

Fcc

generates a dense (Λ0T
<s
N )-submodule ofL. SinceΛ0T

<s
N is compact andL is Hausdorff,

the image ofϖ is closed. Thusϖ is surjective, andL is generated by the image of the
finite setE as a (Λ0T

<s
N )-module. □

Definition 3.20. We set

H1
et

(
Y1(N)Q,Symk0−2

(
R1(πN)∗(Qp)E1(N)

))<s

B Qp ⊗Zp H 1
et

(
Y1(N)Q,Fk−2

)<s
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∫ ⊞

Zp

H1
et

(
Y1(N)Q,Symk−2

(
R1(πN)∗(Qp)E1(N)

))<s
dk

B Qp ⊗Zp

(∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)<s
dk

)
,

and regard them as (Qp⊗ZpΛ0T
<s
N )-modules endowed with a (Qp⊗ZpΛ0T

<s
N )-linear action

of Gal(Q/Q).

Remark 3.21. By Corollary 2.15, we have a natural identification

Qp ⊗Zp H 1
et

(
Y1(N)Q,Fk−2

)
� Qp ⊗Zp H ∗

et

(
Y1(N)Q,

(
ResM2(Zp)

(π1(Y1(N),x),ι2)

(
Symn

(
Zp, ρZ2

p

)))
Y1(N)

)
� Qp ⊗Zp H 1

et

(
Y1(N)Q,Symk0−2

(
R1(πN)∗(Zp)E1(N)

))
,

as linearly complete Tk−2,N[Gal(Q/Q)]-modules with respect to the topologies induced
by thep-adic norm of their natural integral structures for eachk ∈ N ∩ [2,∞). Therefore
we obtain natural projections

Qp ⊗Zp H 1
et

(
Y1(N)Q,Symk0−2

(
R1(πN)∗(Qp)E1(N)

))
↠ H1

et

(
Y1(N)Q,Symk0−2

(
R1(πN)∗(Qp)E1(N)

))<s

corresponding to the canonical projectionQp ⊗Zp Tét
k0,N
� Qp ⊗Zp Tk0,N ↠ Qp ⊗Zp T[<s]

k0,N
�

Qp ⊗Zp T<s
k0,N

.

We denote byP<s
k0

the kernel of the specialisation mapΛ0T
<s
N ↠ T<s

k0,N
.

Lemma 3.22. If ps | N, then for anyk0 ∈ N ∩ [2,∞), the specialisation map∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)<s
dk ↪→

∞∏
k=2

H 1
et

(
Y1(N)Q,Fk−2

)<s
↠H 1

et

(
Y1(N)Q,Fk0−2

)<s

is a surjective continuousΛ0T
<s
N -linear Gal(Q/Q)-equivariant homomorphism, and if

k0 ≥ max{s+ 1,3}, then the kernel of its localisation∫ ⊞

Zp

H1
et

(
Y1(N)Q,Symk−2

(
R1(πN)∗(Qp)E1(N)

))<s
dk

→ H1
et

(
Y1(N)Q,Symk0−2

(
R1(πN)∗(Qp)E1(N)

))<s

coincides with

P<s
k0

(∫ ⊞

Zp

H1
et

(
Y1(N)Q,Symk−2

(
R1(πN)∗(Qp)E1(N)

))<s
dk

)
.
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Proof. Let φ denote the homomorphism in the assertion. Put

L B
∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)<s
dk

M B
∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)
free

dk

and

Mk1 B H 1
et

(
Y1(N)Q,Fk1−2

)
free

M[<s]
k1

B
(
T[<s]

k1,N
⊗Tk1,N

Mk1

)
free

M<s
k1
B H 1

et

(
Y1(N)Q,Fk1−2

)<s

for eachk1 ∈ N ∩ [2,∞). The natural continuousΛ0TN-linear homomorphisms

Λ0T
<s
N ⊗̂Λ0TN M → Λ0T

<s
N ⊗̂Λ0TN Mk1

Λ0T
<s
N ⊗̂Λ0TN Mk1 → T<s

k0,N
⊗̂Λ0TN Mk1 � M<s

k1

are surjective by Proposition 1.11, Proposition 3.16, and the surjectivity of the canonical
projectionsΛ0TN ↠ Tk0,N andΛ0T

<s
N ↠ T<s

k0,N
. Thereforeφ is surjective. Before cal-

culating the kernel ofQp ⊗Zp φ, we verify that the natural T[<s]
k1,N

-linear homomorphism
M[<s]

k1
→ M<s

k1
is injective for anyk1 ∈ N ∩ [2,∞).

Let c[<s]
k1
∈ M[<s]

k1
be an element whose imagec<s

k1
in M<s

k1
is 0. By the definition ofM<s

k1
,

the image ofc[<s]
k1

in (T[<s]
k1,N

[X]/(TpX − ps)) ⊗T[<s]
k1,N

M[<s]
k1

is annihilated bypr for an r ∈ N,

and hence the image ofprc[<s]
k1

in T[<s]
k1,N

[X]⊗T[<s]
k1,N

M[<s]
k1

lies in (TpX−ps)T[<s]
k1,N

[X]⊗T[<s]
k1,N

M[<s]
k1

.

We have an identification T[<s]
k1,N

[X] ⊗T[<s]
k1,N

M[<s]
k1
� (M[<s]

k1
)⊕N given by the basis (Xh)∞h=0 of

the free T[<s]
k1,N

-module T[<s]
k1,N

[X]. SinceTp is integral overZp as an element of T[<s]
k1,N

, there
is an (n,A) ∈ N × T[<s]

k1,N
such thatATp = pn. SinceM[<s]

k1
is torsionfree as aZp-module,

the equalityATp = pn ensures that the endomorphism onM[<s]
k1

given byTp is injective.
Therefore we obtain

M[<s]
k1
∩

(
(TpX − ps)T[<s]

k1,N
[X] ⊗T[<s]

k1,N
M[<s]

k1

)
= 0.

It implies prc[<s]
k1
= 0. SinceM[<s]

k1
is torsionfree as aZp-module, we getc[<s]

k1
= 0.

In the following, for eachc ∈ M andk1 ∈ N ∩ [2,∞), and for each formal symbol
(κ, σ) ∈ {k0,≤ k1} × {∅, [< s], < s}, we denote bycσκ the image ofc in

∏k1
k=2 Mσ

k whenκ is
the formal symbol≤ k1, and inMσ

k0
whenκ is the formal symbolk0. Similarly, for each
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c<s ∈ L andk1 ∈ N ∩ [2,∞), and for each formal symbolκ ∈ {k0,≤ k1}, we denote by
c<s
κ the image ofc<s in

∏k1
k=2 M<s

k whenκ is the formal symbol≤ k1, and inM<s
k0

whenκ
is the formal symbolk0. Let c[0]<s ∈ ker(Qp ⊗Zp φ). We provec[0]<s ∈ P<s

k0
(Qp ⊗Zp L).

Multiplying c[0]<s by p sufficiently many times, we may assume thatc[0]<s lies in the
image ofL. Let q1 ∈ N\{0} denote the order of the finite Abelianp-group torp(T

[<s]
k1,N
⊗Tk1,N

Mk1), andq2 ∈ N\{0} the order of the finite Abelianp-group torp(H
1(Γ1(N),L k0−2)). We

proveq1q2c[0]<s ∈ P<s
k0

L. SinceP<s
k0

is the kernel of a continuous homomorphism, the
profiniteness ofΛ0T

<s
N ensures that ofP<s

k0
. SinceP<s

k0
is profinite and the map

(P<s
k0

)l → L

(aj)
l
j=1 7→

l∑
j=1

ajd j

is continuous, its imageP<s
k0

L is closed. Therefore in order to proveq1q2c[0]<s ∈ P<s
k0

L, it
suffices to verify thatq1q2c[0]<s

≤k1
lies in the image ofP<s

k0
L for anyk1 ∈ N ∩ [k0 + 1,∞).

By the definition ofL, there is an (n, c[1]) ∈ N × M such that (psT−1
p )nc[1]<s

≤k1
= c[0]<s

≤k1
.

In particular,Tn
pc[0]<s

≤k1
= pnsc[1]<s

≤k1
lies in the image of the natural T≤k1(N)[<s]-linear

homomorphism
∏k1

k=2 M[<s]
k → ∏k1

k=2 M<s
k , which is injective by the previous argument.

We have

pnsc[1]<s
k0
= Tn

p(psT−1
p )nc[1]<s

k0
= Tn

pc[0]<s
k0
= Tn

pφ(c<s) = 0,

and hencec[1]<s
k0
= 0 because

∏k1
k=2 M<s

k is torsion free as aZp-module. It implies
c[1][<s]

k0
= 0 by the injectivity of the natural Tk0,N-linear homomorphismM[<s]

k0
→ M<s

k0
.

Therefore the image ofc[1] in T[<s]
k0,N
⊗Tk0,N

Mk0 lies in torp(T
[<s]
k1,N
⊗Tk1,N

Mk1), and hence that
of q1c[1] is 0. LetS ⊂ Tk0,N be a finite subset of generators of the kernel of the canonical
projection Tk0,N ↠ T[<s]

k0,N
. Then the image ofq1c[1] in Mk0 lies in

∑
A∈S AMk0. Take a lift

S̃ ⊂ TN of S. By the definition ofS, the image of̃S in T<s
N is contained inP<s

k0
. Take a lift

c[2] ∈ ∑
s̃∈S̃ s̃M ⊂ M of the image ofq1c[1]k0. Since the image of̃S in T<s

N is contained
in P<s

k0
, c[2]<s

≤k1
lies in the image ofP<s

k0
L.

We identify the group cohomologies and the correspondingétale cohomology by Propo-
sition 2.13. In the following, for each 1-cocyclec: Γ1(N) → (ΛN0 , ρ•−2), we denote by
ck0 : Γ1(N) → Lk0−2 the specialisation ofc at k0, and byc ∈ M the image of the coho-
mology class ofc. Take a 1-cocyclec[3] : Γ1(N) → (ΛN0 , ρ•−2) representingqc[1] − c[2]
through the homeomorphicTN-linear isomorphism

∞∏
k=2

spk : (ΛN0 , ρ•−2)
∼→

∫ ⊞

Zp

Lk−2dk.

74



Sincec[3]k0 = q1c[1]k0 − c[2]k0 = 0, the cohomology class ofc[3]k0 is annihilated by
pr for an r ∈ N, and henceq2c[3]k0 is a 1-coboundary. Take ab ∈ Lk0−2 such that the
1-coboundary∂b associated tob coincides withq2c[3]k0. Let b̃ denote the image ofb by
theZp-linear embedding

Symk0−2
0 (Z2

p) ↪→ ΛN0
k0−2∑
i=0

biek0−2,i 7→ (b0, . . . , bk0−2, 0,0, . . .).

We denote by∂b̃ ∈ B1(Γ1(N), (ΛN0 , ρ•−2)) the 1-coboundary associated tob̃. Then we
have (∂b̃)k0 = ∂b = q2c[3]k0. Therefore every value of the 1-cocycleq2c[3] − ∂b̃ is
an element ofΛN0 whose specialisation atk0 vanishes. By the factor theorem for a rigid
analytic function, there is a set-theoretical mapc[4] : Γ1(N)→ ΛN0 such that (z−k0)c[4] =
q2c[3] − ∂b̃. SinceΛN0 is a torsionfreeΛ0-module, the cocycle condition forq2c[3] − ∂b̃
ensures thatc[4] : Γ1(N)→ (ΛN0 , ρ•−2) is a 1-cocycle. We conclude

q1q2c[0]<s
≤k1
= (psT−1

p )n
(
q1q2c[1]<s

≤k1

)
= (psT−1

p )n
(
q2c[2]<s

≤k1
+ (z− k0)c[4]<s

≤k1

)
,

and the right hand side lies in the image ofP<s
k0

L. □

3.3 p-adic Family of Galois Representations of Finite Slope

A prime ideal ofΛ0 is said to beof weightk for ak ∈ Zp if its preimage inZp[[1+NZp]]
coincides with the prime ideal of height 1 obtained as the kernel of the continuousZp-
algebra homomorphismZp[[1 + NZp]] → Zp associated to the continuous character

1+ NZp → Z×p

γ 7→ γk

of weightk by the universality of the Iwasawa algebra.

Proposition 3.23.Let k0 ∈ Zp. For anyu ∈ N ∩ [0, p− 2], the principal ideal

mu,k0 B

(z− k0)e(uχp,k0−u)(1) +

p(p−1)−1∑
ζ = 0

ζ , (uχp,k0−u)(1)

eζ

Λ0

= (z− k0) e(uχp,k0−u)(1)Λ0 ⊕
p(p−1)−1⊕
ζ = 0

ζ , (uχp,k0−u)(1)

eζΛ0 ⊂ Λ0

is a closed prime ideal of height1. Moreover, a prime idealm⊂ Λ0 is of weightk0 if and

only if m coincides withmu,k0 for a u ∈ N ∩ [0, p− 2].

75



See the beginning of§3.1 for the convention ofχp,n.

Proof. SinceZp[[X]] is Noetherian (resp. compact, resp. Hausdorff), so isΛ0. Therefore
every ideal ofΛ0 is closed. Letu ∈ N ∩ [0, p− 2]. We have

Λ0/mu,k0

�
(
Zp[[z(uχp,k0−u)(1) − (uχp,k0−u)

(1)]]/(z(uχp,k0−u)(1) − k0)
)
×

p(p−1)−1∏
ζ = 0

ζ , (uχp,k0−u)(1)

Zp[[zζ − ζ]]/eζΛ0

� Zp × 0 � Zp,

and hencemu,k0 is a closed prime ideal of height 1. The compositeφ of the embedding
Zp[[1 + NZp]] ↪→ Λ0 and the canonical projectionΛ0 ↠ Λ0/mu,k0 � Zp coincides
with the continuousZp-algebra homomorphismφk0 associated to the continuous character
1+ NZp → Z×p : γ 7→ γk0 by the universality of the Iwasawa algebra. It implies thatmu,k0

is of weightk0.

On the other hand, letm ⊂ Λ0 be a closed prime ideal of height 1 of weightk0. Since
ker(φk0) does not containp, we havep < m. Thereforem∩pΛ0 = pmbecausem is a prime
ideal. By definition, we have (1+N)z−(1+N)k0 ∈ mbecause [1+N]−(1+N)k0 ∈ ker(φk0).
Let f ∈ 1+ pC(W,Zp). We have

1
h

( f − 1)h =
ph

h

(
f − 1

p

)h

∈ Zp

[
f − 1

p

]
∩ ph−⌊logp h⌋C(W,Zp) ⊂ C(W,Qp)

for anyh ∈ N\{0}, and hence the infinite sum

log f B
∞∑

h=1

1
h

( f − 1)h

converges in C(W,Zp). If f ∈ 1+ pΛ0, then we have

1
h

( f − 1)h ∈ Zp

[
f − 1

p

]
⊂ Λ0,

for any h ∈ N\{0}, and hence logf ∈ Λ0 becauseΛ0 is closed in C(W,Zp). Since the
embeddingΛ0 ↪→ C(W,Zp) is a homeomorphism onto the image, the infinite sum in the
definition of log f converges to logf in Λ0. For any f0 ∈ 1 + pΛ0 with f − f0 ∈ m, we
have

1
h

( f − 1)h =
ph

h

(
f0 − 1

p
+

f − f0
p

)h

∈ 1
h

( f0 − 1)h +m

76



becausef − f0 ∈ m∩ pΛ0 = pm. Sincem is closed, we obtain

log f =
∞∑

h=1

1
h

( f − 1)h ∈
∞∑

h=1

(
1
h

( f0 − 1)h +m

)
=

 ∞∑
h=1

1
h

( f0 − 1)h
 +m= (log f0) +m.

In particular, we obtain

(z− k0) log(1+ N) = log(1+ N)z− log(1+ N)k0 ∈ m

by a usual calculation. Since 1+ N is not a root of unity, we have log(1+ N) , 0.
Therefore we obtain log(1+ N) ∈ Zp\{0} =

⊔
r∈N prZ×p, and hencez− k0 ∈ m by p < m.

It impliesmu,k0 ⊂ m for someu ∈ N ∩ [0, p− 2], because we have

(z− k0)Λ0 =


p−2∏
u0=0

(z− k0)e(u0χp,k0−u0)(1) +

p(p−1)−1∑
ζ = 0

ζ , (u0χp,k0−u0)(1)

eζ


Λ0.

Sincem shares height withmu,k0, we concludem= mu,k0. □

For a topologicalΛ0-algebraΛ1, we denote byΩ(Λ1) the set of continuousZp-algebra
homomorphismsΛ1→ Zp.

Proposition 3.24. Let Λ1 be a compact topologicalΛ0-algebra. For anyφ ∈ Ω(Λ1),
φ(Λ1) is aZp-subalgebra ofZp finitely generated as aZp-module.

Proof. Let φ ∈ Ω(Λ1). Sinceφ is continuous,φ(Λ1) is a compactZp-subalgebra of
the Hausdorff topologicalZp-algebraZp. Thereforeφ(Λ1) is a compact Hausdorff topo-
logical Zp-algebra with respect to the relative topology. LetF denote the set ofZp-
subalgebrasR of Zp integrally closed inQp ⊗Zp R ⊂ Qp and finitely generated asZp-
modules. The setF is directed by inclusions. We have

∪
R∈F R = Zp, and hence∪

R∈F (R ∩ φ(Λ1)) = φ(Λ1). For anyR ∈ F , R is compact topologicalZp-algebra,
and henceR∩ φ(Λ1) is closed inφ(Λ1). By Krasner’s lemma, every finite subexten-
sion ofQp/Qp can be obtained as thep-adic closure of a finite subextension ofQp/Q,
and henceF is a countable set. By Baire category theorem for aČech-complete (e.g. lo-
cally compact Hausdorff) topological space ([Bai99] 59, [Eng77] 3.9.3 Theorem), there
exists someR0 ∈ F such thatR0 ∩ φ(Λ1) admits non-empty interior inφ(Λ1). It ensures
that R0 ∩ φ(Λ1) is an openZp-subalgebra ofφ(Λ1). Sinceφ(Λ1) is compact, the quo-
tientφ(Λ1)/(R0 ∩ φ(Λ1)) as additive groups is a finite group. Leta1, . . . , ad ∈ φ(Λ1) be a
complete representative of the canonical projectionφ(Λ1) ↠ φ(Λ1)/(R0 ∩ φ(Λ1)). Since∪

R∈F (R∩ φ(Λ1)) = φ(Λ1), there exists some (Rj)d
j=1 ∈ F d such thatai ∈ Ri ∩ φ(Λ1) for

any i ∈ N ∩ [1, d]. The integral closureR ∈ F of theZp-subalgebra ofZp generated by∪d
i=0 Ri satisfiesφ(Λ1) = R∩ φ(Λ1), and henceφ(Λ1) is aZp-subalgebra ofR. Therefore

φ(Λ1) is finitely generated as aZp-module becauseZp is Noetherian. □
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Let Λ1 be a compact topologicalΛ0 algebra. For eachφ ∈ Ω(Λ1), we putZp[φ] B
Λ1/ ker(φ), and endow it with the quotient topology. For anyφ ∈ Ω(Λ1), Zp[φ] is p-
adically complete by Proposition 3.24, and thep-adic topology coincides with the origi-
nal topology by Proposition 1.21. In particular, the continuousZp-algebra isomorphism
Zp[φ]

∼→ φ(Λ1) is a homeomorphism, and hence we identifyZp[φ] with φ(Λ1) for any
φ ∈ Ω(Λ1). For ak0 ∈ Zp, aφ ∈ Ω(Λ1) is said to be aZp-valued point ofΛ1 of weightk0 if
the preimage of ker(φ) in Λ0 is of weightk0, and we denote byΩ(Λ1)k0 ⊂ Ω(Λ1) the sub-
set ofZp-valued points ofΛ1 of weightk0. We set supp(Λ1) B {k0 ∈ Zp | Ω(Λ1)k0 , ∅}.
We putΩ(Λ1)S B

⊔
k∈SΩ(Λ1)k for eachS ⊂ Zp, and denote by wt :Ω(Λ1)Zp ↠ supp(Λ1)

the canonical projection.

Definition 3.25. A Λ-adic algebrais a compact Hausdorff topologicalΛ0-algebraΛ1

satisfying the following conditions:

(i) The intersection supp(Λ1) ∩ (N ∩ [2,∞)) is an infinite set.

(ii) For any infinite subsetΣ ⊂ Ω(Λ1)N∩[2,∞), the equality
∩

φ∈Σ ker(φ) = {0} holds.

Proposition 3.26.EveryΛ-adic algebra is an integral domain.

Proof. Let Λ1 be aΛ-adic algebra. Assumef1 f2 = 0 for some (f1, f2) ∈ Λ2
1. Then for

eachφ ∈ Ω(Λ1)N∩[2,∞), we haveφ( f1)φ( f2) = φ( f1 f2) = φ(0) = 0 ∈ Zp, and hence either
φ( f1) = 0 or φ( f2) = 0 holds. Therefore by the pigeonhole principle, one of the subsets
{φ ∈ Ω(Λ1)N∩[2,∞) | φ( f1) = 0} and {φ ∈ Ω(Λ1)N∩[2,∞) | φ( f2) = 0} is an infinite set,
becauseΩ(Λ1)N∩[2,∞) is an infinite set by the condition (i). It implies that eitherf1 = 0 or
f2 = 0 holds by the condition (ii). ThusΛ1 is an integral domain. □

Proposition 3.27.EveryΛ-adic algebra is a commutative profiniteΛ0-algebra.

Proof. LetΛ1 be aΛ-adic algebra. The conditions (i) and (ii) ensure that the continuous
Zp-algebra homomorphism

Λ1 →
∏

φ∈Ω(Λ1)

Zp[φ]

f 7→ ( f + ker(φ))φ∈Ω(Λ1)

is injective, and hence is a homeomorphic isomorphism onto the closed image, because
Λ1 is compact andZp[φ] is Hausdorff for any φ ∈ Ω(Λ1). Thus the assertion holds
because the target is a commutative profiniteΛ0-algebra. □

We show an explicit way to construct aΛ-adic algebra. For this sake, we introduce a
notion of the analytic space associated to aΛ-adic algebra.
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Definition 3.28. A Λ-adic algebra is said to beaffinoid if it is finitely generated as a
Λ0-module.

We denote byM (A ) the Berkovich spectrum ofA for each affinoidQp-algebraA .
For details of analytic spaces, see [Ber90] and [Ber93]. LetΛ1 be an affinoidΛ-algebra.
Taking a finite subset{Fh | h ∈ N ∩ [1,d]} ⊂ Λ1 of generators as aΛ0-module, we obtain
a surjectiveΛ0-algebra homomorphism

ϖ : Λ0[X1, . . . ,Xd] ↠ Λ1

Xh 7→ F f

Thenϖ gives a 1-dimensional analytic subset

Mη(Λ1)(Qp) B
{
(zi)

d
i=0 ∈ Z

d+1
p

∣∣∣∣ F(z0)((zi)
d
i=1) = 0, ∀F(z)(X1, . . . ,Xd) ∈ ker(ϖ)

}
.

More precisely,Λ1 corresponds to aQp-analytic space in the following way: For eachr ∈
N\{0}, we regard

∏p(p−1)−1
ζ=0 Qp{|p|−

1
r (zζ−ζ)} as a topologicalΛ0-algebra by the continuous

embedding

Λ0 =

p(p−1)−1∏
ζ=0

Zp[[zζ − ζ]] ↪→
p(p−1)−1∏
ζ=0

Qp{|p|−
1
r (zζ − ζ)}

(Fζ(zζ − ζ))p(p−1)−1
ζ=0 7→ (Fζ(zζ − ζ))p(p−1)−1

ζ=0 .

SinceΛ1 is finitely generated as aΛ0-module, (
∏p(p−1)−1

ζ=0 Qp{|p|−
1
r (zζ − ζ)}) ⊗Λ0 Λ1 is

a 1-dimensional affinoid Qp-algebra over
∏p(p−1)−1

ζ=0 Qp{|p|−
1
r (zζ − ζ)} with respect to a

complete non-Archimedean norm unique up to equivalence for eachr ∈ N\{0}. We
obtain a locally compactσ-compact Hausdorff Qp-analytic space as the colimit

Mη(Λ1) B
∪

r∈N\{0}
M


p(p−1)−1∏

ζ=0

Qp{|p|−
1
r (zζ − ζ)}

 ⊗Λ0 Λ1

 .
We remark that there is another way to constructMη(Λ1) independent of the presentation
φ, whose underlying set is naturally identified with the set of continuous multiplicative
seminorms onΛ1. We callMη(Λ1) the formal affinoid space associated toΛ1. It is not
an affinoid space unlessΛ1 = 0, and is a countable union of affinoid spaces. SinceΛ0

itself is the direct product ofΛ-adic algebrasΛ0/eζΛ0 for eachζ ∈ N ∩ [0, p(p− 1)− 1],
we have a natural finite morphism fromMη(Λ1) to the open unit discMη(Λ/eζ) for some
ζ ∈ N∩ [0, p(p−1)−1] by the construction. We remark thatΛ1 can not be reconstructed
from Mη(Λ1). Indeed, everyΛ1-subalgebraΛ′1 of the integral closure of the image of
Λ1 in Λ1 ⊗Zp Qp finitely generated as aΛ0-module is an affinoid Λ-adic algebra with
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a natural isomorphismMη(Λ′1)
∼→ Mη(Λ1). Now we verify that analytic curves with

suitable conditions admits ańetale covering by the formal affinoid spaces associated to
affinoidΛ-adic algebras. An analytic space is said to belocally integral if it admits an
affinoid covering consisting of affinoid spaces associated to affinoid algebras which are
integral domains.

Theorem 3.29.Every locally integral closed good strictlyQp-analytic space of dimen-

sion1 admits an etale covering by formal affinoid spaces associated to affinoidΛ-adic

algebras.

See [Ber90] 3.1.2, [Ber93] 1.2.15, and [Ber93] Definition 3.3.4, for the notion of a
closed analytic space, a good strictly analytic space, and an etale covering of an analytic
space respectively.

Proof. Let C be a locally integral closed good strictlyQp-analytic space of dimension 1,
andx ∈ C. SinceC is a locally integral good strictlyQp-analytic space, there is an affi-
noid neighbourhood ofx in C associated to a strictly affinoidQp-algebraA which is an
integral domain of Krull dimension 1. By Noether normalisation lemma ([BGR84] 6.1.2
Corollary 2), there is a continuous injectiveQp-algebra homomorphismφ : Qp{X} ↪→ A

for which A is finitely generated as aQp{X}-module. Lety0 denote the image ofx in
the closed unit discM (Qp{X}). SinceC is closed, replacing the affinoid neighbourhood
by a larger one, we may assume thaty0 is not the point of the Gauss norm. Then there
is ay ∈ Zp such thaty0 is contained in the open subspace ofM (Qp{X}) corresponding
to the open unit disc centred at theQp-rational point corresponding toy. Let κ(y) denote
the completed residue field aty, X(y) ∈ κ(y) the image ofX, andϖ : A → κ(y) the
specialisation map. We consider the composite ˜φ of the embeddings

Qp {X} ↪→ κ(y) {X}
X 7→ X − X(y)

κ(y) {X} ↪→ κ(y) ⊗Qp A

f 7→
∞∑

h=0

ah( f )φ(X)h.

Sinceκ(y) is finite dimensional as aQp-vector space,κ(y) ⊗Qp A is regarded as a topo-
logicalQp{X}-algebra finitely generated as aQp{X}-module through ˜φ.

Let x̃ ∈M (κ(y)⊗Qp A ) denote the point corresponding to the non-Archimedean norm
obtained as the composite of idκ(y) ⊗ ϖ : κ(y) ⊗Qp A → κ(y) ⊗Q κ(y), the multiplication
κ(y) ⊗Q κ(y)→ κ(y), and the complete non-Archimedean normκ(y)→ [0,∞) induced by
y. Then the image of ˜x by the finiteétale morphismM (κ(y)⊗Qp A )↠M (A ) associated
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to the base change mapA ↪→ κ(y)⊗Qp A is x, and the image of ˜x by the finite morphism
M (κ(y) ⊗Qp A ) → M (Qp{X}) associated to ˜φ is the origin 0 by the construction. Let
U ⊂M (κ(y) ⊗Qp A ) denote the preimage of the open unit discU0 ⊂M (Qp{X}) centred
at 0. Since 0∈ U0, U is an open neighbourhood of ˜x in M (κ(y) ⊗Qp A ). Therefore the
composite of the open immersionU ↪→ M (κ(y) ⊗Qp A ) and the finitéetale morphism
M (κ(y)⊗QpA )↠M (A ) is anétale neighbourhood ofx. We verify thatU is isomorphic
to a formal affinoid space associated to an affinoidΛ-adic algebra.

Let S ⊂ κ(y) ⊗Qp A be a finite set of generators as aQp{X}-module. Replacing each
s ∈ S by pr s for a sufficiently larger ∈ N, we may assume that everys is of spectral
radius≤ 1 ([Ber90] 1.3). For anys ∈ S, sinces is integral overQp{X} and s is of
spectral radius≤ 1, s is integral over the closed unit discZp{X} ⊂ Qp{X} by [BGR84]
3.8.1 Proposition 7 (a). LetL ⊂ κ(y) ⊗Qp A denote theZp{X}-subalgebra generated by
S. SinceS generatesκ(y) ⊗Qp A as aQp{X}-module, for each (s, s′) ∈ S × S, there
is an (as,s′,s′′)s′′∈S ∈ Qp{X}S such that

∑
s′′∈S as,s′,s′′s′′ = ss′ as elements ofκ(y) ⊗Qp A .

Replacing eachs ∈ S by pr s for a sufficiently larger ∈ N again, we may assume that
as,s′,s′′ ∈ Zp{X} for any (s, s′, s′′) ∈ S × S × S. ThenL is generated byS as aZp{X}-
module. We putΛ1 B Zp[[X]] ⊗Zp{X} L. Let ϖ : Qp{X}⊕S ↠ κ(y) ⊗Qp A denote the
natural continuousQp{X}-linear homomorphism, which is surjective by the choice ofS.
PuttingI B Zp{X} ∩ ker(ϖ), we obtain a presentationL � Zp{X}⊕S/I as aZp{X}-module.
SinceZp{X} is Noetherian, the completion

Zp[[X]] � lim←−−
r∈N
Zp{X}/(Xr)

is flat as aZp{X}-module, and the naturalZp[[X]]-linear homomorphism

Λ1 � Zp[[X]] ⊗Zp{X}
(
Zp{X}⊕S/I

)
→ Zp[[X]]⊕S/Zp[[X]] I

is an isomorphism ofZp[[X]]-modules. We identifyZp[[X]]⊕S with Zp[[X]]S, and endow
it with the direct product topology. The quotient topology on the target gives a structure
of a profiniteZp[[X]]-module onΛ1. SinceZp[[X]] is a compact Hausdorff Noetherian
topological ring, the topology ofΛ1 coincides with the weakest topology for whichΛ1 is
a Hausdorff topologicalZp[[X]]-module, andΛ1 is a profiniteZp[[X]]-algebra. Through
the canonical projectionΛ0 =

∏p(p−1)−1
ζ=0 Zp[[zζ − ζ]] ↠ Zp[[z0]] � Zp[[X]] : z0 7→ X, we

regardΛ1 as a profiniteΛ0-module by Corollary 1.19. Letr ∈ N\{0}. The Weierstrass
localisationQp{|p|−

1
r X} is flat as aQp{X}-module by [BGR84] 7.3.2 Corollary 6, and

hence we have a naturalQp{|p|−
1
r X}-algebra isomorphism

Qp

{
|p|− 1

r X
}
⊗Zp[[X]] Λ1 � Qp

{
|p|− 1

r X
}
⊗Zp[[X]] Zp[[X]] ⊗Zp{X} L
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� Qp

{
|p|− 1

r X
}
⊗Zp{X} L � Qp

{
|p|− 1

r X
}
⊗Qp{X} (Qp ⊗Zp L)

� Qp

{
|p|− 1

r X
}
⊗Qp{X} (κ(y) ⊗Qp A ) � (κ(y) ⊗Qp A )

{
|p|− 1

r φ(X)
}

becauseκ(y)⊗QpA is finitely generated as aQp{X}-module. SinceΛ1 is finitely generated
as aZp[[X]]-module,Qp{|p|−

1
r X} ⊗Zp[[X]] Λ1 is finitely generated as aQp{|p|−

1
r X}-module.

We endowQp{|p|−
1
r X} ⊗Zp[[X]] Λ1 with a unique complete non-Archimedean norm up to

equivalence so thatQp{|p|−
1
r X} ⊗Zp[[X]] Λ1 is an affinoidQp-algebra overQp{|p|−

1
r X}, and

endow (κ(y) ⊗Qp A ){|p|− 1
r φ(X)} with the natural topology as the Weierstrass localisation

of κ(y) ⊗Qp A . Then they are strictly affinoid Qp-algebras, and hence theQp{|p|−
1
r X}-

algebra isomorphism above is a homeomorphism by the automatic continuity theorem
([BGR84] 3.7.5 Proposition 2). In particular,Qp{|p|−

1
r X} ⊗Zp[[X]] Λ1 is regarded as the

Weierstrass localisation ofκ(y) ⊗Qp A corresponding to the affinoid subspace ofC ob-
tained as the fibre product of the morphismM (κ(y) ⊗Qp A ) → M (Qp{X}) associated
to φ̃ and the Weierstrass domainM (Qp{|p|−

1
r X}) ↪→M (Qp{X}). The presentationU0 =⊔

r∈N\{0}M (Qp{|p|−
1
r X}) gives a presentationU =

⊔
r∈N\{0}M ((κ(y) ⊗Qp A ){|p|− 1

r φ(X)},
and henceU is naturally identified with the formal affinoid space associated toΛ1. □

Theorem 3.29 ensures that there are many explicit examples ofΛ-adic algebras. One
of the most important example of a good strictlyQp-analytic space of dimension 1 is
the eigencurve. We consider the reduced eigencurve introduced in [Eme] Theorem 2.23
obtained as the closed subspace of Spf(T(p)

N ) × A1
Qp

interpolating classical Hecke eigen-

forms, whereT(p)
N is the universal Hecke algebra of levelN generated by Hecke operators

Tℓ for each prime numberℓ , p andSℓ for each prime numberℓ coprime toN. Every
Qp-analytic space admits a dense open subspace which is a closedQp-analytic space and
whose complement is a discrete subset by [Ber90] 3.2.6 Theorem. Every reduced closed
Qp-analytic space of dimension 1 admits a smooth alteration given by the normalisation,
and every smoothQp-analytic space is locally integral. Therefore the reduced eigencurve
admits a dense open subspace withétale coverings of its smooth alteration by formal
affinoid spaces associated to affinoidΛ-adic algebras.

Henceforth, letΛ1 denote aΛ-adic algebra. Imitating the definition of a Berkovich
spectrum ([Ber90] 1.2), we endowΩ(Λ1) with the weakest topology for which the map

| f | : Ω(Λ1) → [0,∞)

φ 7→ |φ( f )|

is continuous for anyf ∈ Λ1. Let Σ ⊂ Ω(Λ1) be an infinite subset endowed with the
relative topology. The evaluation map

Λ1 → ZΣp
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f 7→ (φ( f ))φ∈Σ

is injective becauseΛ1 is aΛ-adic algebra. The image ofΛ1 is contained in C(Σ,Zp) by
the definition of the topology ofΩ(Λ1). Now we introduce a notion of aΛ1-adic form.
For the convention of slope, see§1.3.

Definition 3.30. A Λ1-adic form of levelN is an f (q) ∈ Λ1[[q]] such that f (φ)(q) B∑∞
h=0φ(ah( f ))qh ∈ Zp[φ][[ q]] lies in Mwt(φ)(Γ1(N),Zp[φ]) for all but finitely manyφ ∈
Ω(Λ1)N∩[2,∞). We denote byM(Γ1(N),Λ1) ⊂ Λ1[[q]] theΛ1-submodule ofΛ1-adic forms
of level N.

Since the reduced eigencurve introduced in [Eme] Theorem 2.23 forms a family of
modular forms of fixed levelN, Theorem 3.29 ensures the existence of non-trivialΛ1-
adic forms whenΛ1 is an affinoidΛ-adic algebra appearing in an open covering of the
normalisation of an open subspace of the cuspidal locus of the reduced eigencurve.

Definition 3.31. Let s ∈ N. A Λ1-adic form f (q) of level N is said to belocally of

slope< s if f (φ)(q) ∈ Zp[φ][[ q]] lies in Mwt(φ)(Γ1(N),Zp[φ])<s for all but finitely many
φ ∈ Ω(Λ1)N∩[2,∞). We denote byM(Γ1(N),Λ1)[<s] ⊂ M(Γ1(N),Λ1) theΛ1-submodule of
Λ1-adic forms of levelN locally of slope< s.

Henceforth, we fix ans ∈ N. Let R ⊂ Qp be a subring, andϵ : (Z/NZ)× → Q×p a
Dirichlet character. We put

Mk0(Γ1(N), ϵ,R)<s B Mk0(Γ1(N),R)<s∩Mk0(Γ1(N), ϵ,R)

= Mk0(Γ1(N),Qp)
<s∩Mk0(Γ1(N), ϵ,R).

If R contains the image ofϵ, then Mk0(Γ1(N), ϵ,R)<s is an intersection ofR-submodules
Mk0(Γ1(N),Qp)

<s,Mk0(Γ1(N), ϵ,R) ⊂ Mk0(Γ1(N),Qp) stable under the action of Hecke
operators, and hence is anR-submodule of Mk0(Γ1(N),Qp) stable under the action of
Hecke operators.

Let χ : (Z/NZ)× → Λ×1 be a group homomorphism. AΛ1-adic form f (q) of level N is
said to beof Dirichlet characterχ if f (φ)(q) ∈ Zp[φ][[ q]] lies in Mwt(φ)(Γ1(N), φ◦χ,Zp[φ])
for all but finitely manyφ ∈ Ω(Λ1)N∩[2,∞). We denote byM(Γ1(N), χ,Λ1) ⊂ M(Γ1(N),Λ1)
theΛ1-submodule ofΛ1-adic form of levelN of Dirichlet characterχ. We put

M(Γ1(N), χ,Λ1)
[<s] B M(Γ1(N), χ,Λ1) ∩M(Γ1(N),Λ1)

[<s] .

There is a uniqueΛ1-linear action ofTℓ for each prime numberℓ andSn for eachn ∈ N
coprime toN onM(Γ1(N), χ,Λ1)[<s] compatible with the specialisation maps. The action
is given explicitly in the following way:

Tℓ : M(Γ1(N), χ,Λ1)
[<s] → M(Γ1(N), χ,Λ1)

[<s]

83



f (q) 7→


∑∞
h=0 aℓh( f )qh +

∑∞
h=0 ah( f )χ(ℓ + NZ)ℓk−2qℓh (ℓ |/N)∑∞

h=0 aℓh( f )qh (ℓ | N)

Sn : M(Γ1(N), χ,Λ1)
[<s] → M(Γ1(N), χ,Λ1)

[<s]

f (q) 7→ χ(n+ NZ)nk−2 f (q).

Henceforth, we fix a group homomorphismχ : (Z/NZ)× → Λ×1 . We show a certain
finiteness ofM(Γ1(N),Λ1)[<s]. For a ringR and a leftR-moduleM of finite length, we
denote byℓR(M) ∈ N the length ofM.

Lemma 3.32. The set{dimQp
Mk(Γ1(N),Qp)

[<s] | k ∈ N ∩ [2,∞)} is uniformly bounded

by the constant

max
k ∈ N

2 ≤ k ≤ s+ ps

ℓZp

(
H1

(
Γ1(N),Lk−2/ps+1

))
.

Proof. We denote byC ∈ N the constant in the assertion. Letk1 ∈ [2,∞). For each
commutative topologicalZp-algebraR, put

MRB R⊗Zp H1 (
Γ1(N),Lk1−2

)
.

If k1 ∈ N ∩ [2, s+ ps], then we have

dimQp
Mk1(Γ1(N),Qp)

[<s] ≤ dimQp
Mk1(Γ1(N),Qp)

≤ dimQp
MQp
= dimQp MQp = rankZp(MZp)free ≤ ℓZp(MZ/ps+1Z) ≤ C

by the Eichler–Shimura isomorphism ([Shi59] 5 Théor̀eme 1, [Hid93] 6.3 Theorem 4).
Therefore we may assumek1 ≥ s+ps+1. LetK/Qp denote the finite Galois subextension
of Qp/Qp generated by eigenvalues ofTp acting on Mk1(Γ1(N),Qp). Put

d0 B dimQp
Mk1(Γ1(N),Qp)

<s

d1 B dimQp
MQp
= dimK MK .

Every eigenvalue ofTp acting onMK is contained inK, and the sum of the dimensions of
the generalised eigenspaces ofTp acting onMK with eigenvaluesα satisfying|α| > |p|s
is greater than or equal tod0 by the Eichler–Shimura isomorphism again. In particular,
we haved0 ≤ d1. Take a basis (ci)

d1
i=1 of MQp

such that the matrix representation ofTp

with respect to (ci)
d1
i=1 is a Jordan normal form with diagonal (αi)

d1
i=1. PutV B MK and

F i0V B
⊕i0

i=1 Kci ⊂ V for eachi0 ∈ N ∩ [0,d1]. The increasing filtration (F iV)d1
i=0 is

stable under the action ofTp by the choice of (ci)
d1
i=1. We denote byOK the valuation

ring of K, and byW ⊂ V the image ofMOK . By the functoriality of the action ofTp, W
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is a Tp-stable lattice ofV. PutF iW B W ∩ F iV for eachi ∈ N ∩ [0,d1]. We verify
eKd0 < ℓOK (Tp(W)/(Tp(W) ∩ ps+1W)), whereeK ∈ N\{0} is the ramification index of
K/Qp.

For anyi ∈ N ∩ [1,d1], we have

ℓOK

(
Tp(griF (W))/(Tp(griF (W)) ∩ ps+1griF (W))

)
= ℓOK

(
αigriF (W)/(αigriF (W) ∩ ps+1griF (W))

)
=

 − log|πK |

∣∣∣∣ αi

ps+1

∣∣∣∣ (|αi | > |p|s+1)

0 (|αi | ≤ |p|s+1)
,

whereπK is a uniformiser ofK, and in particular, the inequality

ℓOK (Tp(griF (W))/(Tp(griF (W)) ∩ ps+1griF (W))) > log|πK | |p| = eK

holds for anyi ∈ N ∩ [1,d1] with |αi | > |p|s. Since the sum of the dimensions of the
generalised eigenspaces ofTp acting on H1(Γ1(N),Symk1−2(K2, ρK2)) with eigenvaluesαi

satisfying|αi | > |p|s is greater than or equal tod0, we obtain

d1∑
i=1

ℓOK

(
Tp(griF (W))/(Tp(griF (W)) ∩ ps+1griF (W))

)
> eKd0.

Therefore it suffices to show

d1∑
i=1

ℓOK

(
Tp(griF (W))/(Tp(griF (W)) ∩ ps+1griF (W))

)
≤ ℓOK (Tp(W)/(Tp(W) ∩ ps+1W)).

SinceW is anOK-submodule of aK-vector spaceV, W is a torsionfreeOK-module. Since
(F iW)d1

i=0 is induced by the increasing filtration (F iV)d1
i=0 of K-vectors spaces, we have

F iW ∩ ps+1W = ps+1F iW for any i ∈ N ∩ [0,d1]. Since (F iW)d1
i=0 is induced by the

increasing filtration (F iV)d1
i=0 of K-vectors spaces again, gri

F W is naturally regarded as
anOK-submodule of aK-vector space gri

F V, and hence is a torsionfreeOK-module for
any i ∈ N ∩ [1,d1]. Therefore the exact sequence

0→ F iW→ F i+1W→ gri+1
F W→ 0

induces an exact sequence

0→ (F iW)/ps+1→ (F i+1W)/ps+1→ (gri+1
F W)/ps+1→ 0,
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and the commutative diagram

0 −−−−−→ F iW −−−−−→ F i+1W −−−−−→ gri+1
F W −−−−−→ 0

Tp

y Tp

y Tp

y
0 −−−−−→ (F iW)/ps+1 −−−−−→ (F i+1W)/ps+1 −−−−−→ (gri+1

F W)/ps+1 −−−−−→ 0,

induces a complex

Tp(F
iW)/(Tp(F

iW) ∩ ps+1W)

↪→ Tp(F
i+1W)/(Tp(F

i+1W) ∩ ps+1W)

↠ Tp(gri+1
F W)/(Tp(gri+1

F W) ∩ ps+1gri+1
F W).

Therefore the inequality

ℓOK

(
Tp(F

iW)/(Tp(F
iW) ∩ ps+1W)

)
+ℓOK

(
Tp(gri+1

F W)/(Tp(gri+1
F W) ∩ ps+1gri+1

F W)
)

≤ ℓOK

(
Tp(F

i+1W)/(Tp(F
i+1W) ∩ ps+1W)

)
holds for anyi ∈ N ∩ [0,d1 − 1]. As a consequence, we obtain the inequality

ℓOK

(
Tp(W)/(Tp(W) ∩ ps+1W)

)
= ℓOK

(
Tp(F

d1W)/(Tp(F
d1W) ∩ ps+1W)

)
≥ ℓOK

(
Tp(F

d1−1W)/(Tp(F
d1−1W) ∩ ps+1W)

)
+ℓOK

(
Tp(grd1

F W)/(Tp(grd1
F W) ∩ ps+1grd1

F W)
)

...

≥ ℓOK

(
Tp(F

1W)/(Tp(F
1W) ∩ ps+1W)

)
+

d1∑
i=2

ℓOK

(
Tp(griF W)/(Tp(griF W) ∩ ps+1griF W)

)
≥

d1∑
i=1

ℓOK

(
Tp(griF W)/(Tp(griF W) ∩ ps+1griF W)

)
,

which was what we wanted.

Put W0 B (MZp)free. By the flatness ofOK as aZp-module, the naturalOK-linear
homomorphism

OK ⊗Zp

(
Tp(W0)/(Tp(W0) ∩ ps+1W0)

)
→ Tp(W)/(Tp(W) ∩ ps+1W)

is an isomorphism, and hence we have

ℓZp

(
Tp(W0)/(Tp(W0) ∩ ps+1W0)

)
=

1
eK
ℓOK

(
Tp(W)/(Tp(W) ∩ ps+1W)

)
> d0.
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The canonical projectionMZp ↠ W0 induces a surjectiveZp-linear homomorphism
Tp(MZp)/(Tp(MZp) ∩ ps+1MZp)↠ Tp(W0)/(Tp(W0) ∩ ps+1W0), and hence we obtain

ℓZp

(
Tp(MZp)/(Tp(MZp) ∩ ps+1MZp)

)
≥ ℓZp

(
Tp(W0)/(Tp(W0) ∩ ps+1W0)

)
> d0.

Therefore in order to verify the assertion, it suffices to show

ℓZp

(
Tp(MZp)/(Tp(MZp) ∩ ps+1MZp)

)
≤ ℓZp

(
H1

(
Γ1(N),Lk0−2/ps+1

))
,

wherek0 is the unique integer withk0 ∈ N ∩ [s+ 1, s+ ps] and k1 − k0 ∈ psZ. Since
MZp is finitely generated as aZp-module, the natural (Z/ps+1Z)-linear Hecke-equivariant
homomorphism

H1
(
Γ1(N),Lk1−2/ps+1

)
→ MZ/ps+1Z

is an isomorphism by the proof of Proposition 2.4. Sincek1 ≥ s+ ps+1, we havek1 > k0.
By Lemma 3.4, we have a surjective (Z/ps+1Z)-linear Hecke-equivariant homomorphism

ϖs+1
k1−2,k0−2 : MZp/ps+1↠ H1

(
Γ1(N),Lk0−2/ps+1

)
,

and hence

ℓZp

(
H1

(
Γ1(N),Lk0−2/ps+1

))
+ ℓZp(ker(ϖs+1

k1−2,k0−2)) = ℓZp(MZp/ps+1).

Moreover, the action ofTp on ker(ϖs+1
k1−2,k0−2) is 0 by the proof of Lemma 3.18, we obtain

ℓZp(ker(ϖs+1
k1−2,k0−2)) + ℓZp

(
Tp(MZp)/(Tp(MZp) ∩ ps+1MZp)

)
≤ ℓZp(MZp/ps+1).

It ensures the inequality

ℓZp

(
Tp(MZp)/(Tp(MZp) ∩ ps+1MZp)

)
≤ ℓZp

(
H1

(
Γ1(N),Lk0−2/ps+1

))
.

We conclude

d0 ≤ ℓZp

(
H1

(
Γ1(N),Lk0−2/ps+1

))
≤ C.

□

Definition 3.33. Let R be a ring. A leftR-moduleM is said to beadically finiteif there
is anr ∈ Rsuch thatr is not a zero divisor andrM is contained in a finitely generated left
R-submodule ofM.

Theorem 3.34.TheΛ1-modulesM(Γ1(N),Λ1)[<s] andM(Γ1(N), χ,Λ1)[<s] are adically

finite.
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The proof is quite similar to that of [Hid93] 7.3 Theorem 1.

Proof. We deal only withM(Γ1(N),Λ1)[<s], because a similar proof with the follow-
ing works forM(Γ1(N), χ,Λ1)[<s]. SinceΛ1 is an integral domain by Proposition 3.26,
M(Γ1(N),Λ1)[<s] ⊂ Λ1[[q]] is a torsionfreeΛ1-module. We regardM(Γ1(N),Λ1)[<s] as a
Λ1-submodule of Frac(Λ1) ⊗Λ1 M(Γ1(N),Λ1)[<s]. Let d ∈ N, and assume

dimFrac(Λ1)

(
Frac(Λ1) ⊗Λ1 M(Γ1(N),Λ1)

[<s]
)
≥ d.

Take a system (fi)i∈N∩[1,d] ∈ (M(Γ1(N),Λ1)[<s])d of Frac(Λ1)-linearly independent ele-
ments. We define a decreasing sequence (Vh)∞h=0 of Frac(Λ1)-vector spaces by setting

Vh0 B

(Fi)
d
i=1 ∈ Frac(Λ1)

d

∣∣∣∣∣∣∣
d∑

i=1

Fiah( fi) = 0, ∀h ∈ N ∩ [1,h0]


for eachh0 ∈ N. Since Frac(Λ1)d is of finite dimension, we have

∩∞
h=0 Vh = Vh0

for someh0 ∈ N ∩ [1,∞]. On the other hand,
∩∞

h=0 Vh coincides with{0} because
( fi)i∈N∩[1,d] is a system of Frac(Λ1)-linearly independent elements. It implies that the
system ((ah( fi))

h0
h=0)

d
i=1 ∈ (Λh0+1

1 )d of d vectors of lengthh0 + 1 is Frac(Λ1)-linearly inde-
pendent, and hence there is a strictly increasing sequence (hj)d

j=1 ∈ (N ∩ [0,h0])d such
thatAB (ah j ( fi))d

i, j=1 ∈ Md(Λ1) lies in GLd(Frac(Λ1)).

Put D B det(A) ∈ Λ1\{0}. SinceD , 0, there is aφ ∈ Ω(Λ1)N∩[2,∞) such thatfi(φ) ∈
Mwt(φ)(Γ1(N),Qp)

<s for any i ∈ N ∩ [1,d] andφ(D) , 0 becauseΛ1 is aΛ-adic algebra.
In particular,φ(A) B (φ(ah j ( fi)))d

i, j=1 = (ah j ( fi(φ)))d
i, j=1 ∈ Md(Zp) satisfies det(φ(A)) =

φ(D) , 0, and hence lies in GLd(Qp). It implies that the system ((ah j ( fi(φ)))d
j=1)

d
i=1 ∈ (Zd

p)
d

of d vectors of lengthd isQp-linearly independent. In particular, the system (fi(φ))d
i=1 is

Qp-linearly independent. It ensures thatd is bounded by the constant in Lemma 3.32,
and hence Frac(Λ1) ⊗Λ1 M(Γ1(N),Λ1)[<s] is a finite dimensionalQp-vector space.

Let d ∈ N denote dimFrac(Λ1)(Frac(Λ1) ⊗Λ1 M(Γ1(N),Λ1)[<s]) ∈ N. By the argument
above, there is an ((fi)d

i=1, (hj)d
j=1, φ) ∈ (M(Γ1(N),Λ1)[<s])d×Nd×Ω(Λ1)N∩[2,∞) such that the

system (fi)d
i=1 is Frac(Λ1)-linearly independent, (hj)d

j=1 is a strictly increasing sequence,

fi(φ) ∈ Mwt(φ)(Γ1(N),Qp)
<s for any i ∈ N ∩ [1,d], and A B (ah j ( fi))d

i, j=1 ∈ Md(Λ1)

lies in GLd(Frac(Λ1)). Then Frac(Λ1) ⊗Λ1 M(Γ1(N),Λ1)[<s] =
⊕d

i=1 Frac(Λ1) fi by the
definition of d. Put D B det(A) ∈ Λ1\{0}. We verify DM(Γ1(N),Λ1)[<s] ⊂

⊕d
i=1Λ1 fi.

Let f ∈ M(Γ1(N),Λ1)[<s]. Since Frac(Λ1) ⊗Λ1 M(Γ1(N),Λ1)[<s] =
⊕d

i=1 Frac(Λ1) fi, there
is an (Fi)d

i=1 ∈ Frac(Λ1)d such that
∑d

i=1 Fi fi = f . We obtain a linear equation

A(Fi)
d
i=1 = (ah j ( f ))d

j=1,
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and hence

D(Fi)
d
i=1 = D(A−1(ah j ( f ))d

j=1) = (det(A)A−1)(ah j ( f ))d
j=1 ∈ Λd

1.

ThusD f =
∑d

i=1(DFi) fi ∈
⊕d

i=1Λ1 fi. We concludeDM(Γ1(N),Λ1)[<s] ⊂
⊕d

i=1Λ1 fi. □

Corollary 3.35. The following hold:

(i) TheΛ1-modulesM(Γ1(N),Λ1)[<s] andM(Γ1(N), χ,Λ1)[<s] are generically finite.

(ii) If Λ1 is Noetherian, thenM(Γ1(N),Λ1)[<s] andM(Γ1(N), χ,Λ1)[<s] are finitely gen-

erated.

(iii) There is a finite subsetS ⊂ Ω(Λ1)N∩[2,∞) such that f (φ)(q) ∈ Zp[φ][[ q]] lies in

Mwt(φ)(Γ1(N),Zp[φ])<s for any f (q) ∈ M(Γ1(N),Λ1)[<s] andφ ∈ Ω(Λ1)N∩[2,∞)\S.

(iv) If Λ1 is Noetherian, then theΛ1-modulesM(Γ1(N),Λ1)[<s] andM(Γ1(N), χ,Λ1)[<s]

are closed inΛ1[[q]] , and hence are compact Hausdorff topologicalΛ1-modules

with respect to the relative topologies.

Proof. The assertions (i) and (ii) immediately follow from Theorem 3.34. For the asser-
tion (iii), take a Frac(Λ1)-basisE ⊂ M(Γ1(N),Λ1)[<s] of Frac(Λ1) ⊗Λ1 M(Γ1(N),Λ1)[<s]

and aD ∈ Λ1\{0} such thatDM(Γ1(N),Λ1)[<s] ⊂
⊕

f∈EΛ1 f . For eachf (q) ∈ E, let
S f ⊂ Ω(Λ1)N∩[2,∞) denote a finite subset such thatf (φ)(q) lies in Mwt(φ)(Γ1(N),Zp[φ])<s

for anyφ ∈ Ω(Λ1)N∩[2,∞)\S f . Let SD denote the support{φ ∈ Ω(Λ1)N∩[2,∞) | φ(D) = 0} of
D. SinceD , 0,SD is a finite set becauseΛ1 is aΛ-adic algebra. SetS B SD∪

∪
f∈E S f ⊂

Ω(Λ1)N∩[2,∞). Let f (q) ∈ M(Γ1(N),Λ1)[<s] andφ ∈ Ω(Λ1)N∩[2,∞)\S. SinceS contains∪
f∈E S f , φ(D) f (φ) = (D f )(φ) lies in Mwt(φ)(Γ1(N),Zp[φ])<s. SinceS containsSD, we

haveφ(D) ∈ Q×p and hencef (φ) lies in Mwt(φ)(Γ1(N),Zp[φ])<s. For the assertion (iv), we
deal only withM(Γ1(N),Λ1)[<s]. Take a finite subsetE ⊂ M(Γ1(N),Λ1)[<s] of generators
as aΛ1-module. TheΛ1-linear homomorphism

ΛE
1 → Λ1[[q]]

(F f ) f∈E 7→
∑
f∈E

F f f

is continuous. SinceΛE
1 is compact andΛ1[[q]] is Hausdorff, its imageM(Γ1(N),Λ1)[<s]

is closed. □

We denote by Reg<s(Λ1) the set of allφ ∈ Ω(Λ1)N∩[2,∞) such that for anyf (q) ∈
M(Γ1(N),Λ1)[<s], f (φ)(q) ∈ Zp[φ][[ q]] lies in Mwt(φ)(Γ1(N),Zp[φ])<s. By Corollary 3.35
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(iii), Ω(Λ1)N∩[2,∞)\Reg<s(Λ1) is a finite set, and hence Reg<s(Λ1) is an infinite set. For
eachφ ∈ Reg<s(Λ1), we denote by

Mφ(Γ1(N), χ,Zp[φ])[<s] ⊂ Mwt(φ)(Γ1(N), φ ◦ χ,Zp[φ])<s

the image ofM(Γ1(N), χ,Λ1)[<s] by the specialisation atφ, and by

T[<s]
φ,N,χ ⊂ EndZp[φ]

(
Mφ(Γ1(N), χ,Zp[φ]) [<s]

)
the commutativeZp[φ]-subalgebra generated by Hecke operators. Then T[<s]

φ,N,χ is aZp[φ]-
algebra finitely generated as aZp-module, because Mwt(φ)(Γ1(N), φ◦χ,Zp[φ])<s is finitely
generated as aZp[φ]-module andZp is Noetherian. LetS ⊂ Reg<s(Λ1) be a finite subset.
We denote byΛ1/

∩
φ∈S

ker(φ)

 T[<s]
∈S,N,χ ⊂ EndΛ1/

∩
φ∈S ker(φ)

⊕
φ∈S

Mφ(Γ1(N), χ,Zp[φ])


the commutative (Λ1/

∩
φ∈S ker(φ))-subalgebra generated byTℓ for each prime numberℓ

andSn for eachn ∈ N coprime toN. We have a natural embeddingΛ1/
∩

φ∈S ker(φ) ↪→∏
φ∈S Zp[φ], and henceΛ1/

∩
φ∈S ker(φ) is finitely generated as aZp-module. Since⊕

φ∈S Mwt(φ)(Γ1(N), φ ◦ χ,Zp[φ]) is finitely generated as a (Λ1/
∩

φ∈S ker(φ))-module,

(Λ1/
∩

φ∈S ker(φ))T[<s]
∈S,N,χ is finitely generated as aZp-module. We set

T[<s]
N,χ,Λ1

B lim←−−
S⊂Reg<s(Λ1)

Λ1/
∩
φ∈S

ker(φ)

 T[<s]
∈S,N,χ,

whereS in the limit runs through all finite subsets of Reg<s(Λ1). We regard it as a
profinite (Λ1⊗̂Λ0Λ0T

[<s]
N )-algebra by Corollary 1.19.

Proposition 3.36. If Λ1 is Noetherian, then the action ofTℓ for each prime numberℓ and

Sn for eachn ∈ N coprime toN extends to an action

T[<s]
N,χ,Λ1

×M(Γ1(N), χ,Λ1)
[<s] → M(Γ1(N), χ,Λ1)

[<s]

continuous with respect to the relative topology ofM(Γ1(N), χ,Λ1)[<s] ⊂ Λ1[[q]] .

Proof. By Corollary 3.35 (iv),M(Γ1(N), χ,Λ1)[<s] is a closedΛ1-submodule ofΛ1[[q]].
Therefore the assertion holds by a similar argument with that in the proof of Theorem
3.17. □

Proposition 3.37. If Λ1 is Noetherian, thenT[<s]
N,χ,Λ1

is a commutativeΛ1-algebra finitely

generated as aΛ1-module, and hence is Noetherian.
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Proof. By Corollary 3.35 (ii), it suffices to show the injectivity of theΛ1-algebra homo-
morphism

ι : T[<s]
N,χ,Λ1

→ EndΛ1

(
M(Γ1(N), χ,Λ1)

[<s]
)

induced by the action in Proposition 3.36. LetA ∈ ker(ι). Let φ ∈ Reg<s(Λ1) and
fφ(q) ∈ Mφ(Γ1(N), χ,Zp[φ])[<s], and take a liftf (q) ∈ M(Γ1(N), χ,Λ1)[<s] of fφ(q). Since
the specialisationM(Γ1(N), χ,Λ1)[<s] → Mφ(Γ1(N), χ,Zp[φ])[<s] is continuous and com-
patible with the action ofTℓ for each prime numberℓ andSn for eachn ∈ N coprime
to N, the equalityι(A)( f (q)) = 0 implies that the image ofA in T[<s]

φ,N,χ sendsfφ(q) to 0.
Therefore the image ofA in T[<s]

φ,N,χ is 0. Since the natural homomorphism

T[<s]
N,χ,Λ1

→
∏

φ∈Reg<s(Λ1)

T[<s]
φ,N,χ

is injective by the definition ofT[<s]
N,χ,Λ1

, we concludeA = 0. Thusι is injective. □

Corollary 3.38. If Λ1 is Noetherian, then the continuousΛ1-bilinear pairing

T[<s]
N,χ,Λ1

×M(Γ1(N), χ,Λ1)
[<s] → Λ1

(A, f (q)) 7→ a1(A f)

is non-degenerate, and it givesFrac(Λ1)-linear isomorphisms

Frac(Λ1) ⊗Λ1 T
[<s]
N,χ,Λ1

�
(
Frac(Λ1) ⊗Λ1 M(Γ1(N), χ,Λ1)

[<s]
)∨

Frac(Λ1) ⊗Λ1 M(Γ1(N), χ,Λ1) �
(
Frac(Λ1) ⊗Λ1 T

[<s]
N,χ,Λ1

)∨
,

whereV∨ denotes theFrac(Λ1)-linear dualHomFrac(Λ1)(V) for a Frac(Λ1)-vector spaceV.

Proof. The first assertion implies the second assertion by Proposition 3.26, Corollary
3.35 (ii), and Proposition 3.37, becauseM(Γ1(N), χ,Λ1)[<s] is a torsionfreeΛ1-module.
Let A ∈ T[<s]

N,χ,Λ1
with a1(A f) = 0 for any f (q) ∈ M(Γ1(N), χ,Λ1)[<s]. Let f (q) ∈

M(Γ1(N), χ,Λ1)[<s]. For anyh ∈ N\{0}, we haveah(A f) = a1(ThA f) = a1(A(Th f )) = 0.
It implies thatA f is a constant. Since there is no nontrivial modular form which is a con-
stant,A f = 0. Therefore the proof of Proposition 3.37 ensuresA = 0. Thus the pairing is
right non-degenerate. Letf (q) ∈ M(Γ1(N), χ,Λ1)[<s] with a1(A f) = 0 for anyA ∈ T[<s]

N,χ,Λ1
.

For anyh ∈ N\{0}, we haveah( f ) = a1(Th f ) = 0. It implies thatf is a constant. Since
there is no nontrivial modular form which is a constant,f = 0. Thus the pairing is left
non-degenerate. □

A Λ1-adic form f (q) of level N is said to be aΛ1-adic eigenform of levelN if f (q) ,
0 and for any Hecke operatorT, there is aλ f (T) ∈ Λ1 such that (T − λ f (T)) f (q) =
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0. Such a system (λ f (T))T is unique becauseΛ1 is an integral domain by Proposition
3.26. It is obvious that the specialisations of aΛ1-adic eigenform of levelN at all but
finitely manyφ ∈ Ω(Λ1)N∩[2,∞) are eigenforms overZp of level N, but we do not know
when the converse holds. AΛ1-adic form f (q) of level N is said to be aΛ1-adic cusp

form of levelN if f (φ)(q) is a cuspidal eigenform overQp of level N for all but finitely
manyφ ∈ Ω(Λ1)N∩[2,∞). A Λ1-adic eigenformf (q) of level N is said to benormalised

if a1( f ) = 1, and is said to be aΛ1-adic cuspidal eigenform of levelN if f is aΛ1-adic
cusp form of levelN. Let f (q) be aΛ1-adic cuspidal eigenform of levelN. Suppose
that f is normalised. We haveλ f (Th) = ah( f ) = a1(Th f ) for anyh ∈ N\{0}, and hence
f (q) =

∑∞
h=1 λ f (Th)qh. Thus f is explicitly determined by the system (λ f (T))T . Suppose

that f is not necessarily normalised. We havea0( f ) = 0 anda1( f )Th f = ah( f ) f for
anyh ∈ N\{0} by definition. It implies thata1( f ) , 0, ah( f ) ∈ a1( f )Λ1 for anyh ∈ N,
andλ f (Th) = a1( f )−1ah( f ) for any h ∈ N\{0}. Thereforea1( f )−1 f is a normalisedΛ1-
adic cuspidal eigenform of levelN. Thus everyΛ1-adic cuspidal eigenform of levelN
is given asa f(q) for a unique pair (a, f ) of a constanta ∈ Λ1 and a normalisedΛ1-
adic cuspidal eigenformf of level N. Now we show a relation between normalisedΛ1

cuspidal eigenforms of levelN and a continuousΛ1-algebra homomorphismsT[<s]
N,χ,Λ1

→
Λ1.

Proposition 3.39. If Λ1 is Noetherian, then for anyΛ1-adic eigenformf (q) of levelN

of Dirichlet characterχ locally of slope< s, there is a unique continuousΛ1-algebra

homomorphismλ f : T[<s]
N,χ,Λ1

→ Λ1 extending the system(λ f (T))T .

Proof. Let A ⊂ T[<s]
N,χ,Λ1

be aΛ1-subalgebra generated byTℓ for each prime numberℓ
andSn for eachn ∈ N coprime toN. ThenA is a denseΛ1-subalgebra ofT[<s]

N,χ,Λ1
by

the definition of the inverse limit topology. It implies the uniqueness ofλ f becauseΛ1

is Hausdorff. We defineλ f by settingλ f (A) B a1(A f) for eachA ∈ T[<s]
N,χ,Λ1

, whereA f

is given by the action defined in Proposition 3.36. Thenλ f is continuous, and sincef is
aΛ1-adic eigenform of levelN, λ f |A is aΛ1-algebra homomorphism. It implies thatλ f

is aΛ1-algebra homomorphism extending (λ f (T))T by the continuity of the addition and
the multiplication ofT[<s]

N,χ,Λ1
. □

Thus a normalisedΛ1-adic eigenform of levelN of Dirichlet characterχ locally of
slope< s is regarded as a continuousΛ1-algebra homomorphismT[<s]

N,χ,Λ1
→ Λ1 in the

case whereΛ1 is Noetherian. The converse correspondence is a little more complicated.

Proposition 3.40. If Λ1 is Noetherian, then for any continuousΛ1-algebra homomor-
phismλ : T[<s]

N,χ,Λ1
→ Λ1, there are somea ∈ Λ1\{0} and f (q) ∈ M(Γ1(N), χ,Λ1)[<s] such

that aλ(A) = a1(A f) for any A ∈ T[<s]
N,χ,Λ1

. In addition, if f can be taken as a cusp form,

then there uniquely exists a normalisedΛ1-adic cuspidal eigenformfλ(q) of levelN of

Dirichlet characterχ locally of slope< s with λ = λ fλ .
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Proof. By Corollary 3.38, there uniquely exists anfλ ∈ Frac(Λ1) ⊗Λ1 M(Γ1(N), χ,Λ1)[<s]

such that for anya ∈ Λ1\{0} and f ∈ M(Γ1(N), χ,Λ1)[<s] with a−1 ⊗ f = fλ, the equality
a−1a1(A f) = λ(A) holds for anyA ∈ T[<s]

N,χ,Λ1
.

Suppose thatf can be taken as a cusp form. We havea0( f ) = 0 andah( f ) = a1(Th f ) =
aλ(Th) ∈ aΛ1 for anyh ∈ N\{0}, and in particular, the equalitya1( f ) = aλ(1) = a holds.
Therefore fλ lies in the image ofM(Γ1(N), χ,Λ1)[<s]. Namely, fλ =

∑∞
h=1 λ(Th)qh ∈

M(Γ1(N), χ,Λ1)[<s]. Let A ∈ T[<s]
N,χ,Λ1

. We have

ah(A fλ) = a1(ThA fλ) = aλ(ThA) = aλ(Th)λ(A) = λ(A)ah( fλ)

for any h ∈ N\{0}, and henceA fλ − λ(A) fλ is a constant. Since there is no non-trivial
modular form which is a constant, we obtainA fλ = λ(A) fλ. In particular, the equality
Sn fλ = λ(Sn) f = λ(χ(n+ NZ)) f = χ(n+ NZ) f holds for anyn ∈ N coprime toN. Thus
fλ is a normalisedΛ1-adic cuspidal eigenform of levelN of Dirichlet characterχ locally
of slope< s with λ fλ = λ.

Let f (q) be a normalisedΛ1-adic eigenformfλ(q) of level N of Dirichlet characterχ
locally of slope< s with λ = λ f . Then we haveah( f ) = λ f (Th) = λ(T f ) = ah( fλ) for any
h ∈ N\{0}. It implies that f − fλ is a constant. Since there is no non-trivial modular form
which is a constant, we obtainf = fλ. We conclude thatfλ is a unique normalisedΛ1-adic
eigenform of levelN of Dirichlet characterχ locally of slope< s with λ = λ fλ. □

We would like to add the elementpsT−1
p to T[<s]

N,χ,Λ1
. However, the endomorphism

on Qp ⊗Zp M(Γ1(N), χ,Λ1)[<s] given by Tp seems not to be invertible, because an en-
domorphism on an infinite dimensional compactly generated topological vector space
with infinitely many points on the resolvent is never diagonalisable. Therefore for a
φ ∈ Reg<s(Λ1), we do not know whether or not the operatorTp is invertible inQp ⊗Zp

Mφ(Γ1(N), χ,Zp[φ])[<s], and hence we can not regardpsT−1
p as an element ofQp ⊗Zp

EndQp(Mφ(Γ1(N), χ,Zp[φ]) [<s]). Imitating the result of Proposition 1.39, we set

T<s
φ,N,χ B

(
T[<s]
φ,N,χ[X]/(TpX − ps)

)
free

for eachφ ∈ Reg<s(Λ1). Since T[<s]
φ,N,χ is aZp-algebra finitely generated as aZp-module, so

is T<s
φ,N,χ by a similar argument with that in§1.3. For each finite subsetS ⊂ Reg<s(Λ1), we

denote by T<s
∈S,N,χ ⊂

∏
φ∈S T<s

φ,N,χ the commutative (Λ1/
∩

φ∈S ker(φ))-subalgebra generated
by the diagonal action of Hecke operators and (psT−1

p )φ∈S. We set

T<s
N,χ,Λ1

B lim←−−
S⊂Reg<s(Λ1)

T<s
∈S,N,χ,

whereS in the limit runs through all finite subsets of Reg<s(Λ1). We regard it as a
profiniteΛ1⊗̂Λ0Λ0T

<s
N -algebra by Corollary 1.19.
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Proposition 3.41.The continuousT[<s]
N,χ,Λ1

-algebra homomorphism

T[<s]
N,χ,Λ1

[[X]] → T<s
N,χ,Λ1

X 7→ psT−1
p

is surjective.

Proof. The assertion can be easily verified by a similar argument in the proof of Propo-
sition 1.40. □

Corollary 3.42. If Λ1 is Noetherian, then so isT<s
N,χ,Λ1

.

We note that every continuousΛ1-algebra homomorphismλ : T[<s]
N,χ,Λ1

→ Λ1 uniquely
extends to aΛ1-algebra homomorphism

T[<s]
N,χ,Λ1

[X]/(TpX − ps) → Frac(Λ1)

X 7→ psλ(Tp)
−1

but does not necessarily extend to aΛ1-algebra homomorphismT<s
N,χ,Λ1

→ Frac(Λ1) be-
cause the image ofpsT−1

p in Frac(Λ1) does not necessarily topologically nilpotent even if
one equips Frac(Λ1) with suitable topologies.

Definition 3.43. A Λ1-adic family of systems of Hecke eigenvalues of levelN of Dirichlet

characterχ of slope< s is a continuousΛ1-algebra homomorphismT<s
N,χ,Λ1

→ Λ1.

Definition 3.44. A Λ1-adic eigenformf (q) of level N of Dirichlet characterχ is said to
beof slope< s if psa1( f ) ∈ ap( f )Λ1.

Suppose thatΛ1 is Noetherian. For a normalisedΛ1-adic eigenformf (q) of level N of
Dirichlet characterχ of slope< s, the homomorphism

T[<s]
N,χ,Λ1

[[X]] → Λ1

∞∑
m=0

AmXm 7→ a1

 ∞∑
m=0

(psap( f )−1)mAm f


induces aΛ1-adic family λ f : T<s

N,χ,Λ1
→ Λ1 of systems of Hecke eigenvalues of level

N of Dirichlet characterχ of slope< s by a similar argument with that in the proof
of Proposition 3.39. Thus a normalisedΛ1-adic eigenform of levelN of slope< s is
naturally identified with aΛ1-adic family of systems of Hecke eigenvalues of levelN of
slope< s.

A Λ1-adic family λ : T<s
N,χ,Λ1

→ Λ1 of systems of Hecke eigenvalues of levelN of
Dirichlet characterχ of slope< s is said to bea Λ1-adic cuspidal family of systems of
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Hecke eigenvalues of levelN of Dirichlet characterχ of slope< s if the formal power
series

fλ B
∞∑

h=1

λ(Th)q
h

is a normalisedΛ1-adic eigenform of levelN of Dirichlet characterχ of slope< s such
that fλ(φ)(q) is a cusp form overZp[φ] of weight wt(φ) and levelN for all but finitely
manyφ ∈ Ω(Λ1)N∩[2,∞). A Λ1-adic form f (q) of level N of Dirichlet characterχ of
slope< s is said to be anormalisedΛ1-adic cuspidal eigenform of levelN of Dirichlet

characterχ of slope< s if there is a cuspidalΛ1-adic family λ f of systems of Hecke
eigenvalues of levelN of Dirichlet characterχ of slope< s such thatf = fλ f . The
family λ f is unique by a similar argument in the proof of Proposition 3.39. By definition,
the notion of a normalisedΛ1-adic cuspidal eigenform of levelN of Dirichlet character
χ of slope< s is equivalent to that of a cuspidalΛ1-adic family of systems of Hecke
eigenvalues of levelN of Dirichlet characterχ of slope< s even ifΛ1 is not Noetherian.

LetϖN,χ,Λ1 : Λ0T
<s
N → T<s

N,χ,Λ1
denote the natural homomorphism. For a normalisedΛ1-

adic cuspidal eigenformf (q) of level N of Dirichlet characterχ of slope< s, following a
similar convention to that in Example 1.16, we put

H <s
f B

(
Λ1, λ f

)
⊗T<s

N,χ,Λ1

(
T<s

N,χ,Λ1
, ϖN,χ,Λ1

)
⊗Λ0T

<s
N

(∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)<s
dk

)
and regard it as a profiniteΛ1[Gal(Q/Q)]-module, which is finitely generated as aΛ1-
module by Theorem 3.19.

Lemma 3.45. Supposeps | N. For any normalisedΛ1-adic cuspidal eigenformf (q) of

level N of slope< s, Frac(Λ1) ⊗Λ1 H <s
f is a 2-dimensional representation ofGal(Q/Q)

overFrac(Λ1).

Proof. By Theorem 3.19, Frac(Λ1) ⊗Λ1 H <s
f is a finite dimensional Frac(Λ1)-vector

space. PutdB dimFrac(Λ1)(Frac(Λ1)⊗Λ1 H <s
f ) < ∞. It suffices to verifyd = 2. Sincef is

a normalisedΛ1-adic cuspidal eigenform, there is a finite subsetS ⊂ Ω(Λ1)N∩[2,∞) such
that f (φ)(q) is a normalised cuspidal eigenform overQp of weight wt(φ) and levelN for
anyφ ∈ Ω(Λ1)N∩[2,∞)\S. Letφ ∈ Ω(Λ1)N∩[2,∞)\S. We have

f (φ)(q) =
∞∑

h=1

φ(ah( f ))qh =

∞∑
h=1

φ(λ f (Th))q
h =

∞∑
h=1

(φ ◦ λ f )(Th)q
h.

Since f (φ) is a normalised cuspidal eigenform overQp of weight wt(φ) and levelN, there
is aZp-algebra homomorphismλ f (φ) : Twt(φ),N → Zp such thatf (φ) =

∑∞
h=1 λ f (φ)(Th)qh by
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the duality ([Hid93] 5.3 Theorem 1). Sincef (φ) is of slope< s, we have|ap( f (φ))| > |p|s,
and henceλ f (φ) uniquely extends to aZp-algebra homomorphismλ f (φ) : T<s

φ,N,χ → Zp by
Proposition 1.39 and the duality again. By the definition ofλ f (φ), λ f (φ)(T

<s
wt(φ),N) is aZp-

subalgebra ofλ f (φ)(T
<s
φ,N,χ) = (φ ◦λ f )(T<s

N,χ,Λ1
) = φ(Λ1). We denote byQp( f (φ)) thep-adic

Hecke fieldQp ⊗Zp λ f (φ)(T
<s
φ,N,χ) of f (φ). Letϖφ : T<s

N,χ,Λ1
↠ T<s

φ,N,χ denote the canonical
projection. We have

(φ ◦ λ f )(Th) = ah( f (φ)) = λ f (φ)(Th) = λ f (φ)(ϖφ(Th)) = (λ f (φ) ◦ϖφ)(Th)

for anyh ∈ N\{0},

(φ ◦ λ f )(Sn) = φ(λ f (χ(n+ NZ))) = (φ ◦ χ)(n+ NZ) = λ f (φ)(Sn) = λ f (φ)(ϖφ(Sn))

= (λ f (φ) ◦ϖφ)(Sn)

for anyn ∈ N coprime toN, and

(φ ◦ λ f )(p
sT−1

p ) = ps(φ ◦ λ f )(Tp)
−1 = psλ f (φ)(Tp)

−1

= λ f (φ)(p
sT−1

p ) = λ f (φ)(ϖφ(p
sT−1

p )) = (λ f (φ) ◦ϖφ)(p
sT−1

p ).

Since these operators generate a denseΛ1-subalgebra ofT<s
N,χ,Λ1

by the definition of the
inverse limit topology, we obtainφ ◦ λ f = λ f (φ) ◦ϖφ. In particular, we get an inclusion

T<s
N,χ,Λ1

P<s
wt(φ) ⊂ ker(ϖφ) ⊂ ker(φ ◦ λ f )

of ideals ofT<s
N,χ,Λ1

. By Lemma 3.22, we obtain

(Λ1/ ker(φ)) ⊗Λ1 H <s
f � (φ(Λ1), φ) ⊗Λ1 H <s

f

� (φ(Λ1), φ) ⊗Λ1

(
Λ1, λ f

)
⊗T<s

N,χ,Λ1

(
T<s

N,χ,Λ1
, ϖN,χ,Λ1

)
⊗Λ0T

<s
N

(∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)<s
dk

)
�

(
φ(Λ1), φ ◦ λ f

)
⊗T<s

N,χ,Λ1

(
T<s

N,χ,Λ1
, ϖN,χ,Λ1

)
⊗Λ0T

<s
N

(∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)<s
dk

)
�

(
φ(Λ1), λ f (φ) ◦ϖφ

)
⊗T<s

N,χ,Λ1

(
T<s

N,χ,Λ1
, ϖN,χ,Λ1

)
⊗Λ0T

<s
N

(∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)<s
dk

)
�

(
φ(Λ1), λ f (φ) ◦ϖφ

)
⊗T<s

N,χ,Λ1
/T<s

N,χ,Λ1
P<s

wt(φ)

(
T<s

N,χ,Λ1
/T<s

N,χ,Λ1
P<s

wt(φ), ϖN,χ,Λ1

)
⊗Λ0T

<s
N /P<s

wt(φ)

(
Λ0T

<s
N /P

<s
wt(φ)

)
⊗Λ0T

<s
N

(∫ ⊞

Zp

H 1
et

(
Y1(N)Q,Fk−2

)<s
dk

)
�

(
φ(Λ1), λ f (φ) ◦ϖφ

)
⊗T<s

N,χ,Λ1
/T<s

N,χ,Λ1
P<s

wt(φ)

(
T<s

N,χ,Λ1
/T<s

N,χ,Λ1
P<s

wt(φ), ϖN,χ,Λ1

)
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⊗Λ0T
<s
N /P<s

wt(φ)
H 1

et

(
Y1(N)Q,Fwt(φ)−2

)<s

�
(
φ(Λ1), λ f (φ)

)
⊗T<s

wt(φ),N/ ker(λ f (φ))

(
T<s

wt(φ),N/ ker(λ f (φ))
)
⊗T<s

wt(φ),N
H 1

et

(
Y1(N)Q,Fwt(φ)−2

)<s

� φ(Λ1) ⊗λ f (φ)(T<s
wt(φ),N)

(
λ f (φ)(T

<s
wt(φ),N), λ f (φ)

)
⊗T<s

wt(φ),N
H 1

et

(
Y1(N)Q,Fwt(φ)−2

)<s
,

and hence puttingV B Qp ⊗Zp H <s
f andQp[φ] B Qp ⊗Zp Zp[φ], we get(

Qp[φ], idQp ⊗ φ
)
⊗Qp⊗ZpΛ1 V �

((
Qp ⊗Zp Λ1

)
/ ker(idQp ⊗ φ)

)
⊗Qp⊗ZpΛ1 V

� Qp ⊗Zp (Λ1/ ker(φ)) ⊗Λ1 H <s
f

� Qp ⊗Zp φ(Λ1) ⊗λ f (φ)(T<s
wt(φ),N)

(
λ f (φ)(T

<s
wt(φ),N), λ f (φ)

)
⊗T<s

wt(φ),N
H 1

et

(
Y1(N)Q,Fwt(φ)−2

)<s

� Qp[φ] ⊗Qp( f (φ))

(
Qp( f (φ)), idQp ⊗ λ f (φ)

)
⊗Qp⊗ZpT<s

wt(φ),N
H1

et

(
Y1(N)Q,Symwt(φ)−2

(
R1(πN)∗(Qp)E1(N)

))<s

by Remark 3.21. The last term is the base change of the Galois representation associated
to f (φ) ([Shi71] Theorem 7.24 for weight 2, and [Del69] N◦ 3-4 for general weights≥ 2)
by the finite extensionQp[φ]/Qp( f (φ)).

We regardQp ⊗Zp Λ1 as aΛ1-subalgebra of Frac(Λ1), and identifyV with the (Qp ⊗Zp

Λ1)-submodule (Qp⊗Zp Λ1)⊗Λ1 H <s
f of Frac(Λ1)⊗Λ1 H <s

f . Take a Frac(Λ1)-linear basis
E = {ci | i ∈ N ∩ [1,d]} ⊂ V of Frac(Λ1) ⊗Λ1 H <s

f . We consider a (Qp ⊗Zp Λ1)-linear
homomorphism

ι : (Qp ⊗Zp Λ1)
d → V

(Fi)
d
i=1 7→

d∑
i=1

Fici .

SinceE is a set of Frac(Λ1)-linearly independent elements,ι is injective. SinceV is
finitely generated as a (Qp ⊗Zp Λ1)-module andE generates Frac(Λ1) ⊗Λ1 H <s

f as a
Frac(Λ1)-vector space, coim(ι) is a torsion (Qp ⊗Zp Λ1)-module with non-trivial anni-
hilators. LetD ∈ (Qp⊗ZpΛ1)\{0} be an annihilator of coim(ι). PutC B Spec(Qp⊗ZpΛ1).
We denote byA ⊂ Frac(Λ1) the localisation (Qp ⊗Zp Λ1)[D−1], and byU ⊂ C the image
of the open immersion Spec(A ) ↪→ C. Thenι induces anA -linear homomorphism

ιU : A d → A ⊗Qp⊗ZpΛ1 V

(Fi)
d
i=1 7→

d∑
i=1

Fici .

The right exactness of the functorA ⊗Qp⊗ZpΛ1 (·) ensures coim(ιU) � A ⊗Qp⊗ZpΛ1 coim(ι) �
0. SinceV ⊂ Frac(Λ1)⊗Λ1 H

<s
f is a torsionfree (Qp⊗ZpΛ1)-module, the naturalA -linear
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homomorphismA ⊗Qp⊗ZpΛ1 V → Frac(Λ1) ⊗Qp⊗ZpΛ1 V � Frac(Λ1) ⊗Λ1 H <s
f is injective,

and henceιU is injective. It implies thatιU is anA -linear isomorphism. SinceD , 0,
there is aφ ∈ Reg<s(Λ1) with φ(D) , 0. The specialisation

idQp ⊗ φ : Qp ⊗Zp Λ1 → Qp ⊗Zp Zp[φ] = Qp[φ]

c⊗ F 7→ cφ(F)

induces aQp[φ]-linear homomorphism

ιφ : Qp[φ]d →
(
Qp[φ], idQp ⊗ φ

)
⊗Qp⊗ZpΛ1 V

(αi)
d
i=1 7→

d∑
i=1

αici .

Sinceφ(D) , 0, idQp⊗φ factors throughA by the universality of the localisation. There-
fore the bijectivity ofιU ensures that ofιφ, becauseA d is a freeA -module. The target
of ιφ is isomorphic to the Galois representation associated tof (φ)(q) overQp[φ]. □

Let X be a topological space. For eachx ∈ X, we denote byQp(x) the C(X,Qp)-algebra
of dimension 1 as aQp-vector space given as the quotient of C(X,Qp) by the maximal
ideal{F ∈ C(X,Qp) | F(x) = 0}. Let G be a monoid. For a C(X,Qp)-moduleM endowed
with a C(X,Qp)-linear action ofG, we callQp(x) ⊗C(X,Qp) M the specialisation ofM at

x, and regard it as aQp-linear representation ofG. In the case whereX is a subspace
of Reg<s(Λ1), for aφ ∈ X, we hope that a reader does not mistakeQp(φ) for Qp[φ]. In
this case, we regard C(X,Qp) as aΛ1-algebra in a similar way with that introduced after
Proposition 3.27.

Theorem 3.46.Supposeps | N. Then there is a finite subsetΣs ⊂ Ω(Λ1)N∩[2,∞) satisfying

the following for any normalisedΛ1-adic cuspidal eigenformf (q) of levelN of Dirichlet

characterχ of slope< s:

(i) For any φ ∈ Ω(Λ1)N∩[2,∞)\Σs, f (φ)(q) is a normalised cuspidal eigenform over

Zp[φ] of weightwt(φ) and levelN of Dirichlet characterχ of slope< s.

(ii) TheC(Ω(Λ1)N∩[2,∞)\Σs,Qp)-module

H <s
f |Ω(Λ1)N∩[2,∞)\Σs B C

(
Ω(Λ1)N∩[2,∞)\Σs,Qp

)
⊗Λ1 H <s

f

endowed with aC(Ω(Λ1)N∩[2,∞)\Σs,Qp)-linear action ofGal(Q/Q) is free of rank2
as aC(Ω(Λ1)N∩[2,∞)\Σs,Qp)-module.
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(iii) For anyφ ∈ Ω(Λ1)N∩[2,∞)\Σs, the specialisation

Qp(φ) ⊗C(Ω(Λ1)N∩[2,∞)\Σs,Qp) H <s
f |Ω(Λ1)N∩[2,∞)\Σs

of H <s
f |Ω(Λ1)N∩[2,∞)\Σs at φ is naturally isomorphic to the Galois representation asso-

ciated to f (φ)(q) overQp.

Proof. NormalisedΛ1-adic cuspidal eigenforms of levelN of Dirichlet characterχ of
slope< s are Frac(Λ1)-linearly independent because they are simultaneous eigenvectors
of Frac(Λ1)-linear operators{Th | h ∈ N\{0}} with pairwise distinct systems of eigen-
values. By Corollary 3.35 (i), Frac(Λ1) ⊗Λ1 M(Γ1(N), χ,Λ1)[<s] is a finite dimensional
Frac(Λ1)-vector space, and hence there are at most finitely many normalisedΛ1-adic
cuspidal eigenforms of levelN of Dirichlet characterχ of slope< s. Therefore it suf-
fices to verify that for any normalisedΛ1-adic cuspidal eigenformf (q) of level N of
Dirichlet characterχ of slope< s, there is a finite subsetS0 ⊂ Ω(Λ1)N∩[2,∞) such that
f (φ)(q) is a normalised cuspidal eigenform overZp[φ] of weight wt(φ) and levelN of
Dirichlet characterχ of slope< s for anyφ ∈ Ω(Λ1)N∩[2,∞)\S0, and for any finite subset
S ⊂ Ω(Λ1)N∩[2,∞) containingS0, the C(Ω(Λ1)N∩[2,∞)\S,Qp)-module

H <s
f |Ω(Λ1)N∩[2,∞)\S B C

(
Ω(Λ1)N∩[2,∞)\S,Qp

)
⊗Λ1 H <s

f

is free of rank 2 as a C(Ω(Λ1)N∩[2,∞)\S,Qp)-module, and its specialisation

Qp(φ) ⊗C(Ω(Λ1)N∩[2,∞)\S,Qp) H <s
f |Ω(Λ1)N∩[2,∞)\S

is naturally isomorphic to the Galois representation associated tof (φ)(q) overQp for any
φ ∈ Ω(Λ1)N∩[2,∞)\S.

Let S1 ⊂ Ω(Λ1)N∩[2,∞) denote the finite subset consisting of elementsφ such that
f (φ)(q) is not a normalised cuspidal eigenform overZp[φ] of weight wt(φ) and levelN
of Dirichlet characterχ of slope< s. By the proof of Lemma 3.45, there is aD ∈ Λ1\{0}
such that (

Qp[φ], idQp ⊗ φ
)
⊗Qp⊗ZpΛ1

(
Qp ⊗Zp H <s

f

)
is naturally isomorphic to the Galois representation associated tof (φ)(q) overQp for
any φ ∈ Reg<s(Λ1) with φ(D) , 0. Let S2 ⊂ Ω(Λ1)N∩[2,∞) denote the support{φ ∈
Ω(Λ1)N∩[2,∞) | φ(D) = 0}. SinceΛ1 is aΛ-adic algebra,S2 is a finite subset. PutS0 B
S1 ∪ S2 ∪ (Ω(Λ1)N∩[2,∞)\Reg<s(Λ1)). Let S ⊂ Ω(Λ1)N∩[2,∞) be a finite subset containing
S0. Then for anyφ ∈ Ω(Λ1)N∩[2,∞)\S, we have

Qp(φ) ⊗C(Ω(Λ1)N∩[2,∞)\S,Qp) H <s
f |Ω(Λ1)N∩[2,∞)\S
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�
(
Qp(φ), idQp ⊗ φ

)
⊗Qp⊗ZpΛ1

(
Qp ⊗Zp Λ1

)
⊗Λ1 H <s

f

�
(
Qp(φ), idQp ⊗ φ

)
⊗Qp⊗ZpΛ1

(
Qp ⊗Zp H <s

f

)
,

and henceQp(φ) ⊗C(Ω(Λ1)N∩[2,∞)\S,Qp) H <s
f |Ω(Λ1)N∩[2,∞)\S is naturally isomorphic to the Ga-

lois representation associated tof (φ)(q) overQp becauseφ is contained in Reg<s(Λ1) =
Ω(Λ1)\S1.

We verify thatH <s
f |Ω(Λ1)N∩[2,∞)\S is a free C(Ω(Λ1)N∩[2,∞)\S,Qp)-module of rank 2. By

the definition ofS, the image ofD in C(Ω(Λ1)N∩[2,∞)\S,Qp) has no zero, and hence is
invertible. We note that C(Ω(Λ1)N∩[2,∞)\S,Qp) is not theQp-algebra of bounded con-
tinuous functions, and hence we need not to argue the lower bound of the absolute
values of the image ofD. By the universality of a localisation, the evaluation map
Λ1 ↪→ C(Ω(Λ1)N∩[2,∞)\S,Qp) factors throughΛ1 ↪→ A B (Qp ⊗Zp Λ1)[D−1]. By
the proof of Lemma 3.45, theA -moduleA ⊗Λ1 H <s

f � A ⊗Qp⊗ZpΛ1 (Qp ⊗Zp H <s
f )

is free of rank 2, and hence so is the C(Ω(Λ1)N∩[2,∞)\S,Qp)-moduleH <s
f |Ω(Λ1)N∩[2,∞)\S �

C(Ω(Λ1)N∩[2,∞)\S,Qp) ⊗A A ⊗Λ1 H <s
f . □
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