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Abstract

We introduce the stable presentation length of a finitely presented
group. The stable presentation length of the fundamental group of a 3-
manifold can be considered as an analogue of the simplicial volume. We
show that the stable presentation length have some additive properties like
the simplicial volume, and the simplicial volume of a closed 3-manifold
is bounded from above and below by constant multiples of the stable
presentation length of its fundamental group.
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1 Introduction

Mostow-Prasad rigidity [Mos73, Pra73] states that a finite volume hyperbolic 3-
manifold is determined by its fundamental group. In particular, the volume of a
hyperbolic 3-manifold is a topological invariant. Gromov [Gro82] introduced the
simplicial volume of a manifold, and showed some fundamental properties of the
simplicial volume. For example, the simplicial volume of a hyperbolic manifold
is proportional to its volume as a Riemannian manifold. The simplicial volume
of a manifold with an amenable fundamental group vanishes. Furthermore,
the simplicial volume have additivity for a decomposition along manifolds with
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amenable fundamental groups. Therefore, the geometrization theorem proved
by Perelman [Per02, Per03] implies that the simplicial volume of a closed 3-
manifold is equal to the sum of the simplicial volumes of hyperbolic pieces after
the prime decomposition and the JSJ decomposition. Since the decompositions
for fundamental group of a 3-manifold correspond to the decompositions of the
3-manifold along essential surfaces, the simplicial volume of a closed 3-manifold
is uniquely determined by its fundamental group. In order to consider a direct
relation between the simplicial volume of a 3-manifold and its fundamental
group, we will introduce the stable presentation length of a finitely presented
group.

Milnor and Thurston [MT77] considered some characteristic numbers of
manifolds, where “characteristic” means multiplicativity for the finite sheeted
coverings, i.e. an invariant C of manifolds is a characteristic number if it holds
that C(N) = d · C(M) for any d-sheeted covering N → M . For example,
the Euler characteristic and the simplicial volume are characteristic numbers.
We say such an invariant is volume-like instead of a characteristic number in
order to indicate similarity to the volume. Milnor and Thurston introduced
the following volume-like invariant of a manifold, which is called the stable ∆-
complexity by Francaviglia , Frigerio and Martelli [FFM12]. ∆-complexity σ(M)
of a closed 3-manifold M is the minimal number of simplices in a triangulation
of M . ∆-complexity is not volume-like, but an upper volume in the sense of
Reznikov [Rez96], i.e. it holds that σ(N) ≤ d · σ(M) for any d-sheeted covering
N →M . Then a natural way gives a volume-like invariant defined by

σ∞(M) = inf
N→M

σ(M)

deg(N →M)
,

where the infimum is taken among the finite sheeted coverings of M . σ∞(M) is
called the stable ∆-complexity of M .

While the stable ∆-complexity is hard to handle, the simplicial volume fol-
lowing it can work similarly and has more application. Thus the stable ∆-
complexity became something obsolete, but recently Francaviglia, Frigerio and
Martelli [FFM12] brought a further development. They introduced the stable
complexity of a 3-manifold. The complexity c(M) of 3-manifold M is the mini-
mal number of vertices in a simple spine for M . Matveev [Mat90, Theorem 5]
showed that the complexity of M is equal to its ∆-complexity if M is irreducible
and not S3,RP or the lens space L(3, 1). In particular, the two complexities of
M coincide if M is a hyperbolic 3-manifold. The stable complexity c∞(M) is
defined in the same way as the stable ∆-complexity. Francaviglia, Frigerio and
Martelli showed that the stable complexity has same additivity as the simplicial
volume of 3-manifold, and therefore c∞(M) is the sum of the ones of hyperbolic
pieces after the geometrization. Moreover, the stable complexity of 3-manifold
is bounded from above and below by constant multiples of the simplicial vol-
ume. This is implied from the fact that the stable ∆-complexity of a hyperbolic
3-manifold is so.

Delzant [Del96] introduced a complexity T (G) of a finitely presented group
G. We call it the presentation length according to Agol and Liu [AL12]. Delzant
also introduced a relative version of presentation length, and he gave an estimate
of presentation length for a decomposition of group. There are some applica-
tions for the presentation length of the fundamental group of a 3-manifold.
Cooper [Coo99] gave an estimate for the volume of a hyperbolic 3-manifold by
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the presentation length. White [Whi01] gave an estimate for the diameter of a
closed hyperbolic 3-manifold by the presentation length. Agol and Liu [AL12]
solved Simon conjecture by using presentation length.

Delzant and Potyagailo [DP13] remarked that the volume of hyperbolic 3-
manifold is not bounded from below by a constant multiple of the presentation
length. They considered a relative presentation length for a thick part of a
hyperbolic 3-manifold, and showed that the volume is bounded from above
and below by constant multiples of this relative presentation length. We will
introduce the stable presentation length T∞(G) instead of this.

The presentation length is an upper volume. Hence we can define the stabi-
lization of the presentation length. We will show the stable presentation length
of a 3-manifold has additivity like the simplicial volume and the stable com-
plexity.

Theorem 1.1. • For finitely presented groups G1 and G2, it holds that

T∞(G1 ∗G2) = T∞(G1) + T∞(G2).

• Let M be an irreducible 3-manifold. Suppose M = M1∪· · ·∪Mh is the JSJ
decomposition. M1, . . . ,Mh are compact 3-manifolds with incompressible
torus boundary. Then

T∞(M) = T∞(M1) + · · ·+ T∞(Mh).

Francaviglia, Frigerio and Martelli gave a problem whether the simplicial
volume and the stable complexity coincide, which they call the 3-dimensional
Ehrenpreis conjecture. They showed the simplicial volume and the stable ∆-
complexity of a higher dimensional hyperbolic manifold cannot coincide [FFM12,
Theorem 2.1]. We conjecture the stable presentation length for a 3-manifold is
half of the stable complexity.

Conjecture 1.2. For a finite volume hyperbolic 3-manifold M , it holds that

T∞(M) =
1

2
σ∞(M).

This conjecture seems more likely than the 3-dimensional Ehrenpreis con-
jecture. We expect the stable presentation length is useful for approaching the
3-dimensional Ehrenpreis conjecture.

Organization of the thesis

In Section 2, we review the definition and elementary properties of the pre-
sentation length.

In Section 3, we define the stable presentation length as a volume-like in-
variant of a finitely presented group.

In Section 4, we consider the stable presentation length of a hyperbolic 3-
manifold. For a 3-manifold with boundary M , it is natural to consider its
presentation length relative to the fundamental groups of the boundary compo-
nent. we show that the stable presentation length of the hyperbolic 3-manifold
relative to the cusp subgroups coincides the non-relative stable presentation
length. In fact, we show a more general result.
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Theorem 1.3. Let G be a finitely presented group, and let C1, . . . , Cl be free
abelian subgroups of G whose ranks are at least two. Suppose G is residually
finite. Then it holds that T∞(G;C1, . . . , Cl) = T∞(G).

This result is the most technical part in this thesis. The simplicial volume has
a similar property [LS09, Theorem 1.5]. Namely, We can consider two versions
of simplicial volume of a manifold M with boundary. One is the seminorm of
the relative fundamental class, and another is for the open manifold intM . They
coincide if the fundamental groups of the boundary components are amenable.

Furthermore, we show that the stable presentation length of a hyperbolic
3-manifold is bounded by constant multiples of the volume and the stable com-
plexity.

Theorem 1.4. There exists a constant K > 0 such that the following holds. If
M be a hyperbolic 3-manifold, then

K · T∞(M) ≤ vol(M) ≤ π · T∞(M).

In Section 5, we show additivity of the stable presentation length. We give
a proof as with the proof for the stable complexity by using Delzant’s estimate
[Del96, Theorem II] and Theorem 1.3. We also show that the stable presentation
length of a Seifert 3-manifold vanishes. These result implies that the stable
presentation length of a closed 3-manifold is equal to the sum of the stable
presentation lengths of hyperbolic pieces after the geometrization.

In Appendix, we give examples of stable presentation length. The stable
presentation lengths of the surface groups are the only example of non-zero ex-
plicit value of stable presentation length in this thesis. We also give examples for
fundamental groups of some hyperbolic 3-manifolds. Those examples support
Conjecture 1.2.
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2 Preliminaries for presentation length

We review the definition of presentation length and some elementary facts. See
Delzant [Del96] for details.

Definition 2.1. Let G be a finitely presented group. We define the presentation
length T (G) of G by

T (G) = min
P

m∑
i=1

max{0, |ri| − 2},

where we take the minimum among the presentations such as
P = 〈x1, . . . , xn|r1, . . . , rm〉 of G, and let |ri| denote the word length of ri.

We associate the presentation complex P to a presentation
P = 〈x1, . . . , xn|r1, . . . , rm〉 of G. P is the 2-dimensional cell complex consisting
of a single 0-cell, 1-cells and 2-cells corresponding to the generators and relators.
Then π1(P ) is isomorphic to G. By dividing a k-gon of a presentation complex
into k− 2 triangles, T (G) can be realized by a triangular presentation of G, i.e.
a presentation 〈x1, . . . , xn|r1, . . . , rm〉 in which each word length |ri| is equal to 2
or 3. If G has no 2-torsion, we can assume |ri| = 3. From now on, a presentation
complex is always assumed to be triangular, i.e. each of its 2-cells is a triangle
or a bigon. T (G) is the minimal number of triangles in a presentation complex
for G.

Delzant [Del96] also introduced a relative version of the presentation length.
We need this in order to estimate the presentation length under a decomposition
of group.

Definition 2.2. Let G be a finitely presented group. Suppose that C1, . . . , Cl

are subgroups of G. A (relative) presentation complex P for (G;C1, . . . , Cl) is
a 2-dimensional cell complex satisfying the following conditions:

• P consists of triangles, bigons, edges and l vertices marked with C1, . . . , Cl.

• P is an orbihedron in the sense of Haefliger [Hae91], with isotropies C1, . . . , Cl

on the vertices.

• The fundamental group πorb
1 (P ) of P as an orbihedron is isomorphic to

G. This isomorphism makes the isotropies C1, . . . , Cl be the subgroups of
G up to conjugacy.

We define the relative presentation length T (G;C1, . . . , Cl) as the minimal num-
ber of triangles in a relative presentation complexes for (G;C1, . . . , Cl). We say
that a presentation complex P is minimal if P realizes the presentation length.

Our definition requires that the isotropy is only on the vertices, but this
is not essential. Indeed, if isotropy of a 2-complex is on edges or 2-cells, we
can construct a presentation complex by replacing edges with bigons. We can
consider only the conjugacy classes of C1, . . . , Cl < G. By definition, we have
T (G; {1}) = T (G). We can allow a presentation complex for G to have more
than one vertex, namely, T (G; {1}, . . . , {1}) = T (G; {1}). This follows by con-
tracting vertices of a presentation complex along edges, without changing the
fundamental group. More generally, the following holds.
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Proposition 2.3. [Del96, Lemma I.1.3] For a finitely presented group G and
its subgroups C,C ′, C1, . . . , Cl, suppose that C ′ is contained in a conjugate of
C. Then

T (G;C,C ′, C1, . . . , Cl) = T (G;C,C1, . . . , Cl).

The relative presentation length is finite in a usual case though it was not
declared. The construction in the proof will be used for the proof of Theorem
4.2.

Proposition 2.4. Let G be a finitely presented group. Suppose that C1, . . . , Cl

are finitely generated subgroups of G. Then T (G;C1, . . . , Cl) <∞.

Proof. Take a presentation complex P for G. Let yi1, . . . , yiki
be generators of

Ci for a ≤ i ≤ l. There exist simplicial paths ai1, . . . , aiki
in P corresponding

to yi1, . . . , yiki
. We construct a complex P ′ by attaching cones of ai1, . . . , aiki

to P (Figure 1). Put isotropy Ci on the vertex of the i-th cone. Then P ′ is a
finite presentation complex for (G;C1, . . . , Cl, {1}).

Figure 1: Construction of a relative presentation complex

Delzant [Del96] show how the presentation length behaves under a decompo-
sition into a graph of groups. A graph of groups G in the sense of Serre [Ser80]
is a collection of the following data:

• An underlying connected graph Γ, consisting a vertex set V , an edge set
E and maps o± : E → V from edges to their end points.

• Vertex groups {Gv} and edge groups {Ce} for v ∈ V and e ∈ E.

• Injections {ι± : Ce ↪→ Go±(e)} for e ∈ E.

G induces the fundamental group π1(G). A graph of spaces X corresponding to
G is a collection of CW-complexes {Xv}, {Xe} and π1-injective maps {i± : Xe ↪→
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Xo±(e)}, where π1(Xv) = Gv, π1(Xe) = Ce and i± induces ι±. We construct a
space

XX =

(∐
v∈V

Xv t
∐
e∈E

(Xe × [−1, 1])

)
/ ∼,

where the gluing relation is that (x,±1) ∼ i±(x) for x ∈ Xe. Then π1(G) =
π1(XX ). For a given group G, we say that G is a decomposition of G if G ∼=
π1(G).

Let G be a decomposition of a group G. Suppose that G1, . . . , Gn are the
vertex groups of G and C1, . . . , Cl are the edge groups of G. We construct
presentation complexes Pi for (Gi;Ci1, . . . , Cili), where Cij for 1 ≤ j ≤ li are
the edge groups corresponding to the edges such that the i-th vertex is its end
point. We can construct a presentation complex P for (G;C1, . . . , Cl) by gluing
P1, . . . , Pn along their vertices. Then the number of the triangles of P is the
sum of the ones of Pi. Therefore we have the following proposition.

Proposition 2.5. [Del96, Lemma I.1.4] Let G,Ci and Cij be as above. Then

T (G;C1, . . . , Cl) ≤
n∑

i=1

T (Gi; {Cij}1≤j≤li).

We need to consider a “good” decomposition in order to estimate the pre-
sentation length from below.

Definition 2.6. Let G be a decomposition of G, and let C1, . . . , Cl be the edge
subgroups of G. A subgroup C of G is rigid if it satisfies the following condition:
If G acts a tree T without inversion and C contains a nontrivial stabilizer of an
edge of T , C fixes a vertex of T . G is rigid if every edge group of G is rigid.

Let Cij be as above. G is reduced if there is no decomposition G′ of Gi such
that Cij is a vertex group of G′, for any Gi and Cij .

Under the above preparation, we can state the following highly nontrivial
fact.

Theorem 2.7. [Del96, Theorem II] Let G, Gi and Cij be as Proposition 2.5.
Suppose that G is rigid and reduced. Then

T (G) ≥
n∑

i=1

T (Gi; {Cij}1≤j≤li).

Since a free product decomposition of a group is rigid and reduced, we have
the following theorem.

Corollary 2.8. [Del96, Corollary I] Let G = A ∗B be a free product of finitely
presented groups. Then T (G) = T (A) + T (B).

We will mainly consider the fundamental group of a 3-manifold. A decompo-
sition of the fundamental group of a 3-manifold corresponds to a decomposition
of the 3-manifold along an essential surface. Then a component of the decom-
posed manifold corresponds to a vertex group, and a component of the essential
surface corresponds to an edge group. We can apply Theorem 2.7 in this case.

Proposition 2.9. [Del96, Proposition I.6.1] Let G be a decomposition of the
fundamental group of an irreducible 3-manifold M . Suppose that G corresponds
to a decomposition of M along an essential surface. Then G is rigid and reduced.
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3 Definition of stable presentation length

The (relative) presentation length is an upper volume, i.e. it has the following
sub-multiplicative property.

Proposition 3.1. For a finitely presented group G, let H be a finite index
subgroup of G. Let d = [G : H] denote the index of H in G. Suppose that
C1, . . . , Cl are subgroups of G. Then

T (H; {gCig
−1 ∩H}1≤i≤l,g∈G) ≤ d · T (G;C1, . . . , Cl).

In particular, T (H) ≤ d · T (G).

We remark that {gCig
−1 ∩H}1≤i≤l,g∈G is a finite family of subgroups up to

conjugate in H, since H is a finite index subgroup of G.

Proof. Let P be a minimal presentation complex for (G;C1, . . . , Cl). There

exists a d-sheeted covering P̃ of P as an orbihedron which corresponds toH ≤ G.
Then the isotropies on the vertices of P̃ are {gCig

−1∩H}1≤i≤l,g∈G. Therefore P̃
a presentation complex for (H; {gCig

−1∩H}1≤i≤l,g∈G) with d ·T (G;C1, . . . , Cl)
triangles.

Proposition 3.1 leads the definition of stable presentation length as an ana-
logue of the stable complexity by Francaviglia , Frigerio and Martelli [FFM12].
Stable presentation length is a “volume-like” invariant, i.e. it is multiplicative
for finite index subgroups.

Definition 3.2. We define the stable presentation length T∞(G) of a finitely
presented group G by

T∞(G) = inf
H≤G

T (H)

[G : H]
,

where we take the infimum among all the finite index subgroups H. Further-
more, suppose that C1, . . . , Cl are subgroups of G. We define the (relative)
stable presentation length as

T∞(G;C1, . . . , Cl) = inf
H≤G

T (H; {gCig
−1 ∩H}1≤i≤l,g∈G)

[G : H]
.

Proposition 3.3. Let G,H, d and C1, . . . , Cl be as Proposition 3.1. Then

T∞(H; {gCig
−1 ∩H}1≤i≤l,g∈G) = d · T∞(G;C1, . . . , Cl).

In particular, T∞(H) = d · T∞(G).

Proof. Take a finite index subgroup G′ of G. Then H ′ = G′ ∩H is also a finite
index subgroup of G. We have

T (H ′; {gCig
−1 ∩H ′}1≤i≤l,g∈G) ≤ [G′ : H ′]T (G′; {gCig

−1 ∩G′}1≤i≤l,g∈G)

by Proposition 3.1. Hence we can calculate T∞(G;C1, . . . , Cl) by taking the
infimum for only the subgroups of H. Therefore

T∞(H; {gCig
−1 ∩H}1≤i≤l,g∈G) = inf

H′≤H

T (H ′; {gCig
−1 ∩H ′}1≤i≤l,g∈G)

[H : H ′]

= d · inf
H′≤H

T (H ′; {gCig
−1 ∩H ′}1≤i≤l,g∈G)

[G : H ′]

= d · T∞(G;C1, . . . , Cl).
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4 Stable presentation length for hyperbolic 3-
manifolds

We consider the stable presentation length of the fundamental group of a com-
pact 3-manifold M . We write

T (M) = T (π1(M)), T∞(M) = T∞(π1(M)),

T (M ; ∂M) = T (π1(M);π1(S1), . . . , π1(Sl)),

T∞(M ; ∂M) = T∞(π1(M);π1(S1), . . . , π1(Sl)),

where S1, . . . , Sl are the components of ∂M . We call them the (relative, stable)
presentation length of M respectively.

If M is a 3-manifold with boundary, we can also consider the relative pre-
sentation length T (M ; ∂M). For instance, let M be a finite volume cusped
hyperbolic 3-manifold. We consider M as a compact 3-manifold with boundary.
The interior of M admits a hyperbolic metric. Let S1, . . . , Sl be the components
of ∂M . The 2-skeleton of an ideal triangulation of M (i.e. a cell decomposi-
tion of the space obtained by smashing each boundary component of M to a
point such that every 3-cell is tetrahedron and its vertices are the points from
boundary components of M) can be regarded as a relative presentation complex
of (π1(M);π1(S1), . . . , π1(Sl)). We show that this relative stable presentation
length coincides with the non-relative stable presentation length.

Theorem 4.1. For a finite volume hyperbolic 3-manifold M , it holds that
T∞(M ; ∂M) = T∞(M).

More generally, we show the following theorem. Since π1(M) is linear for a
hyperbolic 3-manifold M , it is residually finite [Hem87].

Theorem 4.2. Let G be a finitely presented group, and let C1, . . . , Cl be free
abelian subgroups of G whose ranks are at least two. Suppose G is residually
finite. Then it holds that T∞(G;C1, . . . , Cl) = T∞(G).

We remark that it is necessary to suppose the rank of Ci is at least two. The
inequality does not hold for the case of Theorem A.2, since T∞(π1(Σg,b)) = 0.

For an integer p > 1, the p-characteristic covering of torus T 2 is the covering
which corresponds to the subgroup pZ×pZ < Z×Z ∼= π1(T 2). A p-characteristic
covering of M is a finite covering whose restriction on each cusp is a union
of p-characteristic coverings of torus. A hyperbolic 3-manifold M admits p-
characteristic coverings for arbitrarily large p [Hem87, Lemma 4.1]. We can
use them for a proof of Theorem 4.1. In general, however, a residually finite
group G with C1, . . . , Cl may not have such subgroups. Nonetheless, we can
take a nearly orthogonal basis of subgroup of Ci with respect to a basis of Ci

(1 ≤ i ≤ l).
A lattice in Rn is a discrete subgroup of Rn which spans Rn. A lattice in

Rn has a nearly orthogonal basis in the following sense. Such a basis is called
a reduced basis. We refer to Cassels [Cas71, Ch.VIII.5.2] for a proof. Lenstra,
Lenstra and Lovász [LLL82] gave a polynomial time algorithm to find a reduce
basis. We will use the following lemma with a 1-norm on Rn.
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Lemma 4.3. Given a norm ‖ · ‖ in Rn, there is a constant εn such that the
following holds. If Λ is a lattice in Rn, then there is a reduced basis (v1, . . . , vn)
of Λ such that

d(Λ) ≥ εn‖v1‖ · · · ‖vn‖,

where d(Λ) is the covolume of Λ, which is the determinant of the matrix whose
columns are vi’s.

proof of Theorem 4.2. For simplicity, we assume l = 1 and write C = C1 and
r = rank(C) ≥ 2. We first show that T∞(G;C) ≤ T∞(G). It is sufficient to
show that T∞(G;C) ≤ T (G).

Take a minimal presentation complex P for G. Let α1, . . . , αr be simplicial
paths in P representing generators x1, . . . , xr of C. Let ai denote the length of
αi for 1 ≤ i ≤ r.

Suppose that H is a finite index normal subgroup of G. Let d denote the in-
dex ofH < G. Let P̃ be the covering of P corresponding toH. Let {C ′1, . . . , C ′m}
be subgroups ofH representing the conjugacy classes of {gCg−1∩H}g∈G. C ′i can
be regarded as a finite index subgroup of C by the natural inclusion ιi : C ′i ↪→ C.
Since H is normal in G, all the images of ιi’s coincide and have index d/m in
C. We regard C ∼= Zr as a lattice in Rr and put the 1-norm ‖ · ‖ in Rr with
respect to the basis (x1/a1, . . . , xr/ar).

We construct a presentation complex P̃ ′ for (H; {C ′i}1≤i≤m) by attaching 2-

cells to P̃ . We take a reduced basis (y1, . . . , yr) of ιi(C
′
i) as in Lemma 4.3. Let

βi1, . . . , βir be paths in P̃ representing y1, . . . , yr ∈ ιi(C ′i) such that the length

of βij is ‖yj‖. We obtain a presentation complex P̃ ′ by attaching cones of βij ’s

as in the proof of Proposition 2.4. The number of the triangles of P̃ ′ is

d · T (G) +m(‖y1‖+ · · ·+ ‖yr‖).

It holds that d/m ≥ εr‖y1‖ · · · ‖yr‖ by Lemma 4.3. Hence

T∞(G;C) ≤ T (H; {C ′i}1≤i≤m)

d
≤ T (G) +

‖y1‖+ · · ·+ ‖yr‖
εr‖y1‖ · · · ‖yr‖

Since G is residually finite, there is a normal subgroup H of G such that every
‖yj‖ for 1 ≤ j ≤ r is arbitrarily large. We have supposed that r ≥ 2. Therefore
we obtain T∞(G;C) ≤ T (G).

Conversely we show that T∞(G) ≤ T (G;C). Take a minimal presentation
complex Q for (G;C). We construct a presentation complex for G by truncating
a neighborhood of the vertex of Q (Figure 2) and attaching 2-cells. Let Q′ be
the truncated complex. Let Γ be the sectional graph of the truncation in Q′.
Attaching edges to Γ if necessary, we may assume that Γ is connected and the
natural map from π1(Γ) to C is surjective. We contract vertices of Q′ along
edges of Γ to obtain a 2-complex Q′′. We obtain a bouquet Γ′ in Q′′ from Γ.
Then we have the natural surjection p : π1(Γ′) → C. Attaching more edges to
Γ′ if necessary, we may assume that there are edges γ1, . . . , γr such that the
images of the elements [γ1], . . . , [γr] ∈ π1(Γ′) forms a basis of C. Let γ′1, . . . , γ

′
s

be the other edges of Γ′. Write zj = p[γj ] and z′k = p[γ′k] for 1 ≤ j ≤ r and
1 ≤ k ≤ s. z′k can be presented as a product of zj ’s, and let bk denote its word
length. We obtain a presentation complex Q′′′ for G by attaching triangles to
Q′′ along Γ′, where r(r − 1) attached triangles correspond to the commutators

11



[zi, zj ] = zizjz
−1
i z−1j (1 ≤ i, j ≤ r) and at most b1+· · ·+bs−s attached triangles

correspond to the presentation of z′k by zj ’s. Let K denote the union of Γ′ and
the attached triangles.

Figure 2: Truncation of the presentation complex Q

Suppose that H is a finite index normal subgroup of G. d and {C ′1, . . . , C ′m}
are as above. Let Q̃ be the covering of Q′′ corresponding to H. Let K̃1, . . . , K̃m

be the components of covering of K in Q̃ corresponding to {C ′1, . . . , C ′m}. Each

covering K̃i → K has degree d/m. In order to construct a presentation complex

Q̃′ for H, we contract simplices of K̃i ⊂ Q̃ in the following manner.
We describe the way of contraction on the universal covering of K. We

regard π1(K) = C as a lattice in Rr. Take a reduced basis of π1(K̃i)(< π1(K)).

Let F be the fundamental domain of π1(K̃i) defined by this reduced basis. We
contract simplices in the interior of F into a point.

We give an example in Figure 3. Suppose z1 = (1, 0), Z2 = (0, 1) and
z′1 = (2, 1). The 2-complex K consists of three triangles corresponding to the
commutator [z1, z2] and z′1 = z21z2. Now let ((3,−1), (1, 4)) be taken as a basis

of a lattice π1(K̃i). Then we contract 15 triangles whose projection is in the
interior of F .

This construction does not change the fundamental group of Q̃. (If r ≥ 3,

this construction may change the homotopy type of Q̃.) Thus we obtain a

presentation complex Q̃′ for H.

12



Figure 3: Contraction of simplices in F

The number of the triangles of Q̃′ is at most

d · T (G;C) +m(e+ f),

where

e = e11 + · · ·+ e1r + e21 + · · ·+ e2s,

f = f1 + f21 + · · ·+ f2s,

and e1j and e2k are the numbers of the edges of Q̃′ which derive from γj and

γ′k, f1 is the number of the triangles of Q̃′ which derive from ones corresponding

to the commutators [xi, xj ], and f2k is the number of the triangles of Q̃′ which
derive from ones corresponding to the presentation of z′k by zj ’s. d·T (G;C)+me

triangles of Q̃′ derive from the hexagons of Q′ and mf triangles of Q̃′ derive
from the triangles of K.

If the edges and triangles are not contracted by the above construction, They
are near the boundary of F in the above picture. Hence there exists a constant
δr > 0 such that the followings hold:

e1j ≤ δrvol(∂F ), e2k ≤ bkδrvol(∂F ),

f1 ≤ r(r − 1)δrvol(∂F ), f2k ≤ (bk − 1)e2k,

where vol(∂F ) is the surface area of F with respect to the standard Euclidean
metric of Rr. Therefore

T∞(G) ≤ T (H)

d
≤ T (G;C) +

m

d
(e+ f)

≤ T (G;C) + (r2 +

s∑
k=1

b2k)δr ·
vol(∂F )

vol(F )
.
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Since G is residually finite and F is defined by a reduced basis, there is a normal
subgroup H of G such that vol(∂F )/vol(F ) is arbitrarily small.

Cooper [Coo99] showed that vol(M) < π · T (M) for a closed hyperbolic
3-manifold M . The isoperimetric inequality by Agol and Liu [AL12, Lemma
4.4] implies that this inequality also holds for a cusped hyperbolic 3-manifold.
Delzant and Potyagailo [DP13] remarked that a converse inequality does not
hold, namely, the infimum of vol(M)/T (M) for the hyperbolic 3-manifolds is
zero. Indeed, hyperbolic Dehn surgery [Thu80, Ch. 4 and 6] gives infinitely
many hyperbolic manifolds whose presentation length are divergent while their
volumes are bounded. Delzant and Potyagailo used a relative presentation
length T (π1(M); E) to bound the volume from below, where E consists of the el-
ementary subgroups of π1(M) whose translation length are less than a Margulis
number. They also showed that vol(M) ≤ π · T (π1(M); E) [DP13, Theorem B].
In particular vol(M) ≤ π · T (M ; ∂M). We use the stable presentation length
to bound the volume instead of T (π1(M); E). Cooper’s inequality immediately
implies that vol(M) ≤ π · T∞(M). A converse estimate holds for the stable
presentation length.

Proposition 4.4. The infimum of vol(M)/T∞(M) for the hyperbolic 3-manifolds
is positive.

In order to show this, we mention a connection between the presentation
length and the complexity of a 3-manifold. For a closed 3-manifold M , the
∆-complexity (or Kneser complexity) σ(M) is defined as the minimal number
of tetrahedra over the triangulations of M . σ(M) is also defined for a cusped
finite volume hyperbolic 3-manifold M by ideal triangulations. The complexity
c(M) by Matveev [Mat90] is the minimal number of vertices over the simple
spines of M . It holds that σ(M) = c(M) if M is irreducible and not S3,RP3

or the lens space L(3, 1), in particular, if M is a hyperbolic 3-manifold [Mat90,
Theorem 5].

Francaviglia, Frigerio and Martelli [FFM12] introduced stable complexities

σ∞(M) and c∞(M) of 3-manifold M. They are defined as inf σ(M̃)/d and

inf c(M̃)/d by taking the infimum among all the finite coverings M̃ of M , where
d is the degree of the covering. It holds that σ∞(M) = c∞(M) if M is a hy-
perbolic 3-manifold. c∞(M) vanishes for a Seifert 3-manifold M , and c∞ has
additivity for the prime decomposition and the JSJ decomposition.

Proposition 4.5. For a closed 3-manifold M , it holds that T (M) ≤ σ(M) + 1.

Proof. We take a minimal triangulation of M . Consider the 2-skeleton P0 of
this triangulation. P0 has 2σ(M) triangles. Since a 2-complex P in M has a
fundamental group isomorphic to π1(M) as long as M \ P consists of 3-balls,
We can remove (σ(M)−1) triangles from P0 without changing the fundamental
group. Therefore we obtain a presentation complex for π1(M) with (σ(M) + 1)
triangles.

Proposition 4.6. For a cusped finite volume hyperbolic 3-manifold M , it holds
that T (M) ≤ σ(M) + 3.
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Proof. We take a minimal ideal triangulation of M . Consider the dual spine P0

of this triangulation. P0 has σ(M) 2-cells, 2σ(M) edges and σ(M) vertices. This
σ(M) 2-cells can be decomposed into 4σ(M) triangles. We contract (σ(M)− 1)
vertices along edges. Since every edge of P0 is incident on three triangles, we
obtain a presentation complex of π1(M) with (σ(M) + 3) triangles.

Since the fundamental group of 3-manifold is residually finite [Hem87], M
admits arbitrarily large finite covering if π1(M) is infinite. This implies the
following corollary.

Corollary 4.7. If M is a closed 3-manifold or a finite volume hyperbolic 3-
manifold, it holds that T∞(M) ≤ σ∞(M).

The stable complexity of a hyperbolic 3-manifold is bounded from above
and below by constant multiples of its volume. For a finite volume hyperbolic
3-manifold M , it holds that vol(M) ≤ V3σ(M), where V3 is the volume of
ideal regular tetrahedron, which is the maximum of the volumes of geodesic
tetrahedra in the hyperbolic 3-space. This implies that vol(M) ≤ V3σ∞(M).
Conversely, there exists a constant K > 0 such that σ∞(M) ≤ K · vol(M)
holds for any hyperbolic manifold M . This follows from the fact by Jørgensen
and Thurston that a thick part of a hyperbolic 3-manifold can be decomposed
by uniformly thick tetrahedra. Proofs of this fact are given by Francaviglia,
Frigerio and Martelli [FFM12, Proposition 1.5] in the case M is closed, and
by Breslin [Bre09] and Kobayashi and Rieck [KR11] otherwise. Proposition 4.4
follows from this inequality and Corollary 4.7.

We conjecture an equality between the stable presentation length and the
stable complexity.

Conjecture 4.8. For a finite volume hyperbolic 3-manifold M , it holds that

T∞(M) =
1

2
σ∞(M).

We give some examples supporting that T∞(M) ≤ σ∞(M)/2 in Appendix.
It holds that T (M) ≥ σ(M)/2 if a minimal (relative) presentation complex

for π1(M) injects to M . This is because M can be decomposed into 2T (M)
tetrahedra.

If Conjecture 4.8 holds, T∞(M) = (1/2V3)vol(M) for a hyperbolic 3-manifold
M which is commensurable with the figure-eight knot complement M1. In-
deed, σ∞(M1) = 2 since M1 can be decomposed into two ideal regular tetra-
hedra. Conjecture 4.8 implies a best possible refinement of Cooper’s inequality
vol(M) < 2V3 · T (M).

5 Additivity of stable presentation length

We will show additivity of the stable presentation length of 3-manifold groups
in the same manner as the simplicial volume. The proofs of Theorem 5.1 and
5.3 are similar. Let G be a finitely presented group and let {Gi} be decom-
posed groups of G. We will construct a presentation complex for a finite index
subgroup of G by gluing finite coverings of presentation complexes for Gi. This
implies an inequality between T∞(G) and

∑
i T∞(Gi). In order to show the
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converse inequality, we will obtain presentation complexes for finite index sub-
groups of Gi’s by decomposing a finite covering of a presentation complex for
G.

We first show additivity for a free product. This holds for any finitely pre-
sented group.

Theorem 5.1. For finitely presented groups G1 and G2, it holds that

T∞(G1 ∗G2) = T∞(G1) + T∞(G2).

Proof. We will use additivity of presentation length for a free product in Corol-
lary 2.8. Write G = G1 ∗G2. We first show that T∞(G) ≤ T∞(G1) + T∞(G2).
For i = 1, 2, let Pi be presentation complexes for Gi. Take di-index subgroups
Hi of Gi. Let P̃i denote the coverings of Pi corresponding to Hi. Since each
P̃i has di vertices, we can glue d2 copies of P̃1 and d1 copies of P̃2 along the
vertices to obtain a d1d2-sheet covering P̃ of P1 ∨ P2. The wedge sum P1 ∨ P2

is a presentation complex for G. Then π1(P̃ ) is isomorphic to a free prod-
uct H∗d2

1 ∗ H∗d1
2 ∗ Fk, where Fk is a free group. Corollary 2.8 implies that

T (π1(P̃ )) = d2 · T (H1) + d1 · T (H2). Therefore

T∞(G) ≤ T (π1(P̃ ))

d1d2
=
T (H1)

d1
+
T (H2)

d2
.

Since we tookH1 andH2 arbitrarily, we obtain that T∞(G) ≤ T∞(G1)+T∞(G2).

Conversely, we show that T∞(G1) + T∞(G2) ≤ T∞(G). Let Pi be as above.
P = P1 ∨P2 is a presentation complex for G. Take a d-index subgroup H of G.
Let P̃ denote the covering of P corresponding to H. P̃ is homotopic to

P11 ∨ · · · ∨ P1m ∨ P21 ∨ · · · ∨ P2n ∨ S1 ∨ · · · ∨ S1,

where Pij is a covering of Pi. Let dij be the degree of the covering Pij → Pi.

Then
∑m

j=1 d1j =
∑n

j=1 d2j = d. Since H = π1(P̃ ) is isomorphic to

π1(P11) ∗ · · · ∗ π1(P1m) ∗ π1(P21) ∗ · · · ∗ π1(P2n) ∗ Fk,

Corollary 2.8 and Proposition 3.3 implies that

T (H) =T (π1(P11)) + · · ·+ T (π1(P1m)) + T (π1(P21)) + · · ·+ T (π1(P2n))

≥d11 · T∞(π1(P1)) + · · ·+ d1m · T∞(π1(P1))

+ d21 · T∞(π1(P2)) + · · ·+ d2n · T∞(π1(P2))

=d · T∞(G1) + d · T∞(G2).

Therefore T∞(G1) + T∞(G2) ≤ T (H)

d
. Since we took H arbitrarily, we obtain

that T∞(G1) + T∞(G2) ≤ T∞(G).

Before we show additivity for the JSJ decomposition, we show that the stable
presentation length for a Seifert 3-manifold vanishes.

Theorem 5.2. For a compact Seifert 3-manifold M ,

T∞(M) = T∞(M ; ∂M) = 0.
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Proof. Since a Seifert 3-manifold can be regarded as an S1-bundle over an 2-
orbifold, M is covered by an S1-bundle over a surface. Hence we can assume
M is an S1-bundle over a compact surface.

If M has boundary, M is a product of S1 and a surface. Then M admits
a d-sheeted covering homeomorphic to M for any d ≤ 1. This implies that
T∞(M) = T∞(M ; ∂M) = 0 by Proposition 3.3.

We consider an S1-bundle over a closed surface Σg of genus g. Homeo-
morphic class of an S1-bundle over Σg is determined by the Euler number
e. Let M(Σg, e) denote the S1-bundle over Σg of the Euler number e. Since
π1(M(S2, e)) is finite or isomorphic to Z, we have T∞(M(S2, e)) = 0. Suppose
g ≥ 1. π1(M(Σg, e)) has a presentation

〈x1, y1, . . . , xg, yg, z|[x1, y1] . . . [xg, yg]ze, [xi, z], [yi, z] (1 ≤ i ≤ g)〉,

where xi, yi’s are corresponding to generators of the fundamental group of the
base surface and z is a generator of the fundamental group of the ordinary fiber,
and [x, y] denotes the commutator xyx−1y−1. Therefore

T (π1(M(Σg, e))) ≤ 8g + |e| − 2.

For any integer d ≥ 1, M(Σg, e) admits M(Σg′ , de) as a d-sheeted covering
along the base space, where g′ = d(g − 1) + 1. Furthermore, M(Σg′ , de) admits
M(Σg′ , e) as a d-sheeted covering along the fiber direction. Thus we obtain a
d2-sheeted covering M(Σg′ , e)→M(Σg, e). Hence

T∞(π1(M(Σg, e))) ≤
T (π1(M(Σg′ , e)))

d2
≤ 8(d(g − 1) + 1) + |e| − 2

d2
.

The right hand side converges to zero when d increases.

Finally we show additivity for the JSJ decomposition.

Theorem 5.3. Let M be an irreducible 3-manifold. Suppose M = M1∪· · ·∪Mh

is the JSJ decomposition. M1, . . . ,Mh are compact 3-manifolds with incompress-
ible torus boundary. Then

T∞(M) = T∞(M1) + · · ·+ T∞(Mh).

Proof. We remark that the fundamental group of a compact 3-manifold is resid-
ually finite by Hempel [Hem87] and the geometrization.

We first show that T∞(M) ≤ T∞(M1) + · · · + T∞(Mh). Take di-sheet cov-

erings fi : M̃i → Mi for 1 ≤ i ≤ h. Then there exists an integer p independent
of i and coverings gi : Ni → M̃i such that fi ◦ gi : Ni →Mi is a p-characteristic
covering, i.e. the restriction of the covering on each component of ∂Mi is the
covering corresponding to pZ× pZ < Z× Z [FFM12, Proposition 4.7]. We can
glue copies Nij of Ni along boundary to obtain a d-sheeted covering f : N →M .

Then f−1(Mi) = N11 ∪ · · · ∪ Nili . Each copy gij : Nij → M̃i of gi is a d/lidi-
sheeted covering. N =

⋃
i,j Nij is the JSJ decomposition. Therefore we obtain

that

T (π1(N); {π1(∂Nij)}) ≤
∑
i,j

T (Nij ; ∂Nij)

≤
∑
i,j

d

lidi
T (M̃i; ∂M̃i) =

∑
i

d

di
T (M̃i; ∂M̃i)
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by Proposition 2.5. Hence

T∞(π1(M); {π1(∂Mi)}) ≤
T (π1(N); {π1(∂Nij)})

d
≤
∑
i

T (M̃i; ∂M̃i)

di
.

Since we took M̃i arbitrarily, we obtain that

T∞(π1(M); {π1(∂Mi)}) ≤
∑
i

T∞(M̃i; ∂M̃i).

Furthermore, T∞(M) = T∞(π1(M); {π1(∂Mi)}) and T∞(M̃i) = T∞(M̃i; ∂M̃i)
by Theorem 4.2.

Conversely, we show that T∞(M1) + · · · + T∞(Mh) ≤ T∞(M). Take a d-

sheet covering p : M̃ → M . Then the components Mij of p−1(Mi) are the

components of the JSJ decomposition of M̃ . Let dij denote the degree of the
covering Mij →Mi. Then

∑
j dij = d. We have∑

j

T (Mij ; ∂Mij) ≥
∑
j

dij · T∞(Mi; ∂Mi) = d · T∞(Mi; ∂Mi)

by definition. Theorem 2.7 implies that∑
i,j

T (Mij ; ∂Mij) ≤ T (M̃).

Therefore it holds that ∑
i

T∞(Mi; ∂Mi) ≤
T (M̃)

d
.

Since we took M̃ arbitrarily, we obtain that∑
i

T∞(Mi; ∂Mi) ≤ T∞(M).

Furthermore, T∞(Mi) = T∞(Mi; ∂Mi) by Theorem 4.2.

Corollary 5.4. There exists a constant K > 0 such that the following holds.
For a closed 3-manifold M , it holds that

K · T∞(M) ≤ ‖M‖ ≤ π

V3
T∞(M),

where ‖M‖ is the simplicial volume of M and V3 is the volume of an ideal
regular tetrahedron.

Proof. We can assume that M is orientable by taking the double covering. Let
M = M1# . . .#Mn be the prime decomposition. Each connected summand Mi

is irreducible or homeomorphic to S1 × S2. Let Mi = Mi1 ∪ · · · ∪Mihi
be the

JSJ decomposition if Mi is irreducible. The geometrization implies that each
JSJ component Mij is Seifert fibered or hyperbolic. Let N1, . . . , Nm denote the
hyperbolic components among Mij . Then

‖M‖ = 1/V3(vol(N1) + · · ·+ vol(Nm))
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by additivity and proportionality of simplicial volume [Gro82]. Now we have
that

T∞(M) = T∞(N1) + · · ·+ T∞(Nm)

by Theorem 5.1, Theorem 5.2 and Theorem 5.3. Therefore we are reduced to
proving for hyperbolic 3-manifolds. A hyperbolic 3-manifold M satisfies the
above inequalities by Cooper’s inequality and Proposition 4.4.

A Examples of stable presentation length

A.1 Surface groups

We calculate the explicit value of the stable presentation length of a surface
group, which coincides with the simplicial volume of the surface.

Theorem A.1. Let Σg is the closed orientable surface of genus g ≥ 1. Then

T∞(π1(Σg)) = 4g − 4 = −2χ(Σg).

Proof. If g = 1, π1(Σg) ∼= Z× Z has a finite index proper subgroup isomorphic
to Z× Z. Then T∞(π1(Σg)) = 0 by Proposition 3.3.

Suppose that g ≥ 2. Since there is a presentation

π1(Σg) = 〈x1, y1, . . . , xg, yg|[x1, y1] · · · [xg, yg]〉,

we have T (π1(Σg)) ≤ 4g − 2. In order to estimate from below, take a minimal
presentation complex P for π1(Σg). We put a hyperbolic metric on Σg. There
exists a map f : P → Σg inducing an isomorphism between their fundamental
groups. We can take f which maps every 2-cell of P to a geodesic triangle in
Σg.

We claim that f is surjective. If f is not surjective, there is a point p in Σg−
f(P ). Then f induces an injection from π1(Σg) to π1(Σg −{p}). Since π1(Σg −
{p}) is a free group and π1(Σg) is not a free group , we have a contradiction.
Now area(Σg) = (4g − 4)π and the area of a geodesic triangle in Σg is smaller
than π. Hence we obtain (4g − 4)π < π · T (π1(Σg)).

We finally compute T∞(π1(Σg)). Since Σd(g−1)+1 covers Σg with degree d,

T∞(π1(Σg)) ≤ 1
dT (π1(Σd(g−1)+1)) ≤ 1

d (4(d(g − 1) + 1) − 2). Hence we obtain

that T∞(π1(Σg)) ≤ 4g − 4 by d→∞. Conversely, 4g − 4 < 1
dT (π1(Σd(g−1)+1))

for any d ≥ 1 implies that 4g − 4 ≤ T∞(π1(Σg)).

Theorem A.2. Let Σg,b is the compact orientable surface of genus g whose
boundary components are S1, . . . , Sb. Suppose that b > 0 and 2g − 2 + b > 0.
Then

T∞(π1(Σg,b);π1(S1), . . . , π1(Sb)) = T (π1(Σg,b);π1(S1), . . . , π1(Sb))

= 4g − 4 + 2b = −2χ(Σg,b).

Proof. Σg,b admits a hyperbolic metric with cusps S1, . . . , Sb. An ideal trian-
gulation of this hyperbolic surface gives a presentation complex for
(π1(Σg,b);π1(S1), . . . , π1(Sb)), which consists of 4g− 4 + 2b triangles. Therefore
T (π1(Σg,b);π1(S1), . . . , π1(Sb)) ≤ 4g − 4 + 2b.
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In order to obtain the converse inequality, we put a hyperbolic metric with
geodesic boundary on Σg,b. Take a minimal presentation complex P for
(π1(Σg,b);π1(S1), . . . , π1(Sb)). Let P ′ be the complex obtained by truncating
P . There is a continuous map f : P ′ → Σg,b such that f sends the truncated
section ∂P ′ of P ′ to the corresponding boundary components and f induces
an isomorphism between their fundamental groups. Then f induces a map
Df : DP ′ → DΣg,b between their doubles. Since Df induces an isomorphism
between the fundamental groups, Df is surjective by the proof of Theorem A.1.
Therefore f is also surjective. After straightening f relatively to the boundary,
the 2-cells of P ′ map to right-angled hexagons, whose areas are equal to π. Then

(4g − 4 + 2b)π = area(Σg,b) ≤ π · T (π1(Σg,b);π1(S1), . . . , π1(Sb)).

Now we have T (π1(Σg,b);π1(S1), . . . , π1(Sb)) = 4g − 4 + 2b. Since these
values are already volume-like, their stable presentation lengths coincide with
their presentation lengths.

A.2 Bianchi groups

We consider the stable presentation lengths of Bianchi groups PSL(2,Od),
where Od is the ring of integers in the imaginary quadratic field Q(

√
−d),

namely,

Od =

{
Z[ 1+

√
−d

2 ] if− d ≡ 1 mod 4

Z[
√
−d] if− d ≡ 2, 3 mod 4.

It is known that the fundamental group of every finite volume cusped arith-
metic hyperbolic 3-manifold is commensurable with a Bianchi group ([NR92,
Proposition 4.1]). We give an upper bound of stable presentation lengths of
some arithmetic link components by constructing explicit presentations of their
fundamental groups. We consider them as links in T 2 × [0, 1] in order to take
coverings efficiently.

A.2.1 d = 3 (Figure-eight knot complement)

The figure-eight knot complement M1 is obtained from two ideal regular tetra-
hedra. Hence vol(M1) = 2V3 = 2.0298... and σ(M1) = σ∞(M1) = 2. π1(M1) is
an index 12 subgroup of PSL(2,O3).

Proposition A.3.
T∞(M1) ≤ 1.

Proof. We consider a link in T 2 × [0, 1] constructed by gluing of the piece in
Figure 4 along faces of top and bottom, left and right. Let M1,1 denote the com-
plement of this link. M1,1 can be decomposed into four ideal regular hexagonal
pyramids (Figure 5). Since a union of two ideal regular hexagonal pyramids can
be decomposed into six ideal regular tetrahedra, M1,1 is obtained from 12 ideal
regular tetrahedra. Hence T∞(M1,1) = 6T∞(M1).

Let Mm,n be the mn-sheeted covering of M1,1 which is the m-sheeted cov-
ering along s and the n-sheeted covering along t as Figure 6. We obtain an
explicit presentation of π1(Mm,n). The generators are

xij , yij , zij , wij , aij , bij , xm+1,j , ym+1,j , xi,n+1, zi,n+1, xm+1,n+1, s, t,
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and the relators are

aij = yijxij , aij = zijyij , aij = wijzij ,

bij = zi,j+1wij , bij = wijxi+1,j+1, bij = xi+1,j+1yi+1,j ,

xm+1,j = sx1,js
−1, xm+1,n+1 = sx1,n+1s

−1, ym+1,j = sy1,js
−1,

xi,n+1 = txi,1t
−1, xm+1,n+1 = txm+1,1t

−1, zi,n+1 = tzi,1t
−1, st = ts,

for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Therefore

T∞(M1,1) ≤ inf
m,n

T (Mm,n)

mn
≤ inf

m,n

6mn+ 4m+ 4n+ 6

mn
= 6.

Figure 4: M1,1

Figure 5: a decomposition of M1,1
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Figure 6: generators of π1(Mm,n)

We give another proof of Proposition A.3. M1,1 has four cusps S0, S1, S2, S3,
where S0 and S1 are the boundary component of T 2 × [0, 1]. We construct a
fundamental domain X of M1,1 as a union of 12 ideal regular tetrahedra such
that S0 corresponds to a single vertex v of X (Figure 7). Then we obtain a
presentation complex for (π1(M1,1);π1(S1), π1(S2), π1(S3)) from the triangles
in ∂X which do not contain v. Hence T (π1(M1,1);π1(S1), π1(S2), π1(S3)) ≤ 6.
Theorem 4.2 implies that

T∞(M1,1) = T∞(π1(M1,1);π1(S1), π1(S2), π1(S3)) ≤ 6.
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Figure 7: a fundamental domain X

A.2.2 d = 1 (Whitehead link complement)

The Whitehead link complement M2 is obtained from one ideal regular octa-
hedron. Since vol(M2) = 3.6638..., σ(M2) = 4 and 3.6 < σ∞(M2) ≤ 4. It
is unknown whether σ∞(M2) = 4 or not. π1(M2) is an index 12 subgroup of
PSL(2,O1).

Proposition A.4.
T∞(M2) ≤ 2.

Proof. As with the above proposition, we consider a link in T 2 × [0, 1] (Figure
8). Let M ′2 denote the complement of this link. M ′2 can be decomposed into
four ideal regular square pyramids (Figure 9). Since a union of two ideal regular
square pyramids is an ideal regular octahedron, M ′2 is obtained from two ideal
regular octahedra. Hence T∞(M ′2) = 2T∞(M2).

We obtain an explicit presentation of π1(M ′2). The generators are

x11, x21, x22, y11, y12, y21, a, b, s, t,

and the relators are

a = y11x11, a = x22y11, b = y12x22, b = x22y21,

x21 = sx11s
−1, y21 = sy11s

−1, y12 = ty11t
−1, x22 = tx21t

−1, st = ts.
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After we take large coverings along T 2 × [0, 1] as with Proposition A.3, the
relators which does not contain s or t contribute an estimate of the stable
presentation length. Therefore T∞(M ′2) ≤ 4.

Figure 8: M2

Figure 9: a decomposition of M2

We can prove that T∞(M ′2) ≤ 4 by constructing a relative presentation
complex as with Proposition A.3.
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A.2.3 d = 7 (Magic manifold)

The alternating 3-chain link complement M3 is called the Magic manifold (Fig-
ure 10). M3 is obtained from two ideal regular triangular prism. Since vol(M3) =
5.3334..., σ(M3) = 6 and 5.2 < σ∞(M3) ≤ 6. π1(M3) is an index 6 subgroup of
PSL(2,O7) ([Thu80, Ch.6, Example 6.8.2]).

Proposition A.5.
T∞(M3) ≤ 3.

Proof. We can consider M3 as the complement of a link in T 2 × [0, 1] (Figure
11).

We obtain an explicit presentation of π1(M3). The generators are

x11, x21, y11, y12, a, s, t,

and the relators are

a = y12x11, a = x11x21, a = x21y11,

x21 = sx11s
−1, y12 = ty11t

−1, st = ts.

After we take large coverings along T 2×[0, 1] as with the above propositions,
the relators which does not contain s or t contribute an estimate of the stable
presentation length. Therefore T∞(M3) ≤ 3.

Figure 10: the alternating 3-chain link
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Figure 11: M3

A.2.4 d = 2

Let M4 denote the complement of the link in Figure 12. M4 is obtained from one
ideal regular cuboctahedron ([Thu80, Ch.6, Example 6.8.10]). Since vol(M4) =
12.0460... and a cuboctahedron can be decomposed into 14 tetrahedra compat-
ible to a decomposition of M4, 12 ≤ σ(M4) ≤ 14 and 11.8 < σ∞(M3) ≤ 14.
π1(M4) is an index 6 subgroup of PSL(2,O2).

Proposition A.6.
T∞(M4) ≤ 7.

Proof. We can consider M4 as the complement of a link in T 2 × [0, 1] (Figure
13).

We obtain an explicit presentation of π1(M4). The generators are

x11, x21, y11, y21, y20, z11, z12, w, u, a, b, c, s, t,

and the relators are

a = y11x11, a = wy11, a = uw, b = y20z11,

c = z12u, c = ax21, c = x21b,

x21 = sx11s
−1, y21 = sy11s

−1, z12 = tz11t
−1, y21 = ty20t

−1, st = ts.

After we take large coverings along T 2×[0, 1] as with the above propositions,
the relators which does not contain s or t contribute an estimate of the stable
presentation length. Therefore T∞(M4) ≤ 7.
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Figure 12: a link whose complement is M4

Figure 13: M4
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