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Abstract 

The main contributions of this thesis are the developments of the dual-rate Kalman filters and the 

time-delay compensation Kalman filters to improve the accuracy of the state estimations for motion 

control applications. Besides that, we introduce the unscented Kalman filter which is a nonlinear filter 

algorithm for estimating the states and the parameters simultaneously. As shown in the figure of the 

“Thesis Structure,” the thesis is organized as follows. 

Chapter 1 introduces the background and the motivation of the thesis. In this chapter, the 

definition of motion control is presented. Then, three main problems studied in this thesis are stated.  

1) Robust estimation of dual-rate system: In this thesis, we propose the disturbance accommodation 

Kalman filter to improve the robustness of dual-rate estimation in which the sampling time of the 

output measurement equals to multiple times of the control period.  

2) Estimation considering the large time-delay of the measurement: Based on the upper-bound of the 

estimation error covariance and the µ-gains, a new algorithm for handling the large-time-delay 

measurement in Kalman filter is proposed. 

3) Simultaneous estimation of state and parameter: In adaptive estimation, the parameters are 

estimated along with the states. To improve the estimation convergence and simplify the 

estimation configuration, we introduce the idea such that the parameters are also considered as the 

Thesis Structure 
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extended states. By constructing the extension state system, the states and parameters are 

estimated simultaneously using the unscented Kalman filter algorithm. 

Part A, including Chapter 2, Chapter 3, and Chapter 4, presents the Kalman filter theories 

developed and used in this thesis. Chapter 2 presents the robust dual-rate KF based on disturbance 

accommodation. Chapter 3 presents the Kalman filter for delayed measurement based on the 

upper-bound scheme. The unscented Kalman filter and the simultaneous estimation of parameter and 

state are introduced in Chapter 4. 

Part B, including Chapter 5, Chapter 6, and Chapter 7, presents the motion control applications of 

the Kalman filter theories presented in Part A. 

Chapter 5 presents the motion control of electric vehicle using GPS based on the robust dual-rate 

Kalman filter. In this system, the fusion of GPS receiver with inertia sensors is utilized to obtain the 

motion variable of the vehicle, such as the sideslip angle, yaw angle, velocity. Three types of motion 

controls of electric vehicle are demonstrated: lateral stability control, autonomous attitude control, and 

wheel slip-ratio control. 

Chapter 6 presents the chip-mounting system in which the time-delay Kalman filter is used to fuse 

the delayed measurement from the image processing unit with the linear encoder measurement to 

estimate the position of the target. By compensating the delay and improve the update frequency of the 

information of the target position, accurate target tracking control is achieved. 

The minor contribution of this thesis is presented in Chapter 7 in which the augmented system and 

the unscented Kalman filter are applied to estimate the cornering stiffness and the sideslip angle 

simultaneously. The key sensors used in this estimation design are the tire lateral force sensors. 

Finally, the summary and the future works are given in Chapter 8. 

(A Japanese translation of the above abstract is presented in the next page). 
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論論論論    文文文文    のののの    内内内内    容容容容    のののの    要要要要    旨旨旨旨    

本論文の主たる貢献はデュアルレートカルマンフィルタ及び時間遅延補償カルマンフィ

ルタの構築によるモーションコントロールにおける状態推定の精度向上である。その他に、

動的なシステムにおける状態とパラメータを同時推定する非線形アルゴリズムである無香カ

ルマンフィルタ(Unscented Kalman Filter)についても述べる。論文の構造図に示すように、

本論文の構成は以下のようになる。 

第 1 章では本論文の背景と動機について紹介する。始めにモーションコントロールを定

義し 、本論文で解決する三つの主要問題を述べる。 

1. デュアルレート系におけるロバスト推定：本論文では、 出力のサンプリング周期が制

御周期の数倍となるデュアルレート推定のロバスト性改善のため Disturbance 

Accommodation カルマンフィルタを提案する。 

2. 測定の大幅な遅れを考慮した推定：推定誤差共分散の上界を基に、カルマンフィルタ

における測定の大幅な遅延に対応できる新たなアルゴリズムを提案する: 

[Upper-bound Kalman filter with the μ-gains]。 

3. パラメータと状態の同時推定：観測器・推定器と RLS 同定の組み合わせに基づく様々

な推定構成が提案されてきた。推定の収束を改善し、推定構成を簡単にするために、

パラメータは拡張状態とみなされるような考えを導入する。拡張状態のシステムを構

築することにより、状態およびパラメータが同時に無香カルマンフィルタアルゴリズ

ムを用いて推定される。 

パート A に含まれる第２章・第３章・第 4 章では、この論文で開発し使用されるカルマ

ンフィルタ理論を提示する。第２章では Disturbance Accommodation に基づくロバストなデ

ュアルレートカルマンフィルタを紹介し、第３章では上界に基づく測定遅延を考慮したカル

マンフィルタについて述べる。第 4 章では無香カルマンフィルタおよびパラメータと状態の

同時推定を紹介する。 

パート B に含まれる第 5 章・第 6 章・第 7 章では、パート A で示されたカルマンフィル

タ理論のモーションコントロール応用を提示する。 

第 5 章ではロバストなデュアルレートカルマンフィルタを利用した、GPS を搭載する電

気自動車の運動制御について述べる。このシステムでは、GPS の情報を車載の諸センサの情

報と融合させる事によって横滑り角、ヨー角、速度といった車両の状態を得る。 

第 6 章ではチップ実装において、リニアエンコーダと測定遅延が生じる画像処理ユニッ

トの情報を時間遅延補償カルマンフィルタを使って融合させ、目標からみた制御対象の位置

を推定するシステムを示す。 

第 7 章では本論文のマイナーな貢献として拡張状態と無香カルマンフィルタを適用した

状態とパラメータの同時推定について述べる。例として車両のコーナリングスティフネスと

横滑り角の推定を行い、提案手法の有効性を実証する。この推定設計で使用される主要セン

サーはタイヤ横力センサである。 

最後に、第 8章で本論文のまとめ、結論、そして今後の課題を述べる。 
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Chapter 1:   

Introduction 

 
“To the person who does not know where he wants to go there is no favorable wind.”    

Lucius Annaeus Seneca 

 

1.1 Motion control system and state estimation 

Soon after the discovery of the negative feedback of Harold Black in 1927, the first pneumatic 

motion control products arrived in 1930s [1]. Since then, motion control has attracted tremendous 

interests in both control theory and practical applications. Until now, motion control plays the 

important roles in various motion systems, such as trains, automotives, industrial machines, industrial 

robots, flights, quadcopter, submarine watercrafts, etc. Thanks to the development of electric motors 

design, motor drives and power electronics, networking, and digital controllers, advance and precision 

motion control are realized [2]. For instance, Ethernet Power Link (EPL) – an Ethernet extension of 

CANopen with high connectivity rates and robust communication capabilities, enables the high 

performance and convenience of motion control [3]. New methods of torque ripple cancellation and 

speed range extension control of electric motors enables the smooth and accurate actuators for motion 

control systems [4], [5]. 

As the definition of Ohnishi et al [6], the motion control system includes the mechanical system, 

the motion reference generator, the controller, the actuators, and the sensors (Fig. 1.1). Through the 

sensors, motion states are measured and fed back to the controller. The controller computes the control 

signal to manage the actuators such that the motion of the mechanical system can follows the desired 

motion from the reference generator. Common motion controls are velocity control, position control, 

force or acceleration control. Typical actuators are the hydraulic pump, the air cylinder, the linear 

motors, or the rotational motors. Motion measurement sensors can be the optical encoders, the 

Hall-effect devices, and the inertia sensors such as gyroscopes or accelerometers. Various control 

algorithms have been introduced to motion control, such as the proportional-integral-derivative (PID) 

[7], the disturbance observer (DOB) [8], and the sliding-mode control [9]. 

However, the fundamental motion control configuration in Fig. 1.1 is not always applicable. To 

maintain the state feedback, the state estimator is required in various motion control system due to the 

following reasons. Firstly, in the motion control system, there exist motion states that cannot be 

measured directly. Secondly, some sensors cannot be used in mass production because of their very 

high cost. For instance, the noncontact optical sensor can be used to measure the sideslip angle of a 

vehicle [10]. However, it is too expensive for commercial cars. Therefore, the sideslip angle estimators  
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Mechanical 
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Fig. 1.1 Motion control system – a fundamental definition by Ohnishi (1996). 
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   System
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Fig. 1.2 State estimation in the motion control system. 

 

using lower cost sensor such as inertia measurement units (IMUs) are implemented in every vehicle 

stability control system. The motion control system with the state estimator is shown in Fig. 1. 2. 

 

1.2 Fundamental tools for state estimation 

In order to estimate the state, it is necessary to establish the state space model including the 

dynamic equations and the measurement equations. In the discrete-time domain, the linear state space 

model is expressed as follows: 

Dynamic equation: 

1k k k k k kx A x B u w+ = + +

                          

(1.1)
 

Measurement equation: 

k k k ky C x v= +

                          

(1.2)
 

where xk is the state vector, uk is the input vector, yk is the measurement vector, Ak is the state matrix, 

Bk is the input matrix, Ck is the measurement matrix, wk and vk are the process and measurement noises, 

respectively. 

There are two fundamental tools for estimation design, the Observer and the Kalman filter: 

1- Observer [11]: 

( )1
ˆ ˆ ˆ

k k k k k k k k k
x A x B u L y C x+ = + + −

                          

(1.3)
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where ˆ
kx  is the observed stated, Lk is the observer gain matrix designed by pole-placement 

considering the desired eigenvalues of the estimation error dynamics: 

( ) ( )1 1 1
ˆ

k k k k k k k k k k
x x x A L C x w L v+ + += − = − + −ɶ ɶ

                          

(1.4)
 

2-Kalman filter [12]: 

Prediction: 

1 1 11 1 1
ˆ ˆ

k k kk k k k
x A x B u− − −− − −

= +

                           

(1.5)
 

Correction: 

( )1 1
ˆ ˆ ˆ

k k kk k k k k k
x x L y C x

− −
= + −  

                          

(1.6)
 

where 
1

ˆ
k k

x
−

 is the predicted state, ˆ
k k

x  is the corrected state, Lk is the filter gain matrix solved by 

minimizing the correction error covariance: 

( )( )ˆ ˆ min 0
T

k k

k kk k k k k k
k

P
P E x x x x

L

∂ = − − → ⇔ =  ∂ 

ɶ
ɶ  

                          

(1.7)
 

Based on the above fundamental tools, many other estimation algorithms are developed, such as 

nonlinear observer [13], sliding mode observer [14], extended Kalman filter [15], and unscented 

Kalman filter [16]. 

 

1.3 Practical problems 

In this section, three practical problems in motion control are discussed for establishing the 

research background and motivation of this thesis. 

1.3.1 Estimation of vehicle’s sideslip angle using GPS and yaw-rate sensor 

Sideslip angle is defined as the angle between the vehicle’s velocity vector at the center of gravity 

and the longitudinal axis (Fig. 1.3). To stabilize the lateral motion, for instance on cornering road, 

sideslip angle must be controlled [17]. Otherwise, the sideslip angle might increase considerably even 

if the yaw-rate is controlled. In this situation, the vehicle cannot maintain the desired path and the 

serious accidents might happen.  

Unluckily, current commercial vehicles are not equipped with an ability to measure the sideslip 

angle directly. Using the noncontact optical sensor produced by Corrsys-Datron, the longitudinal and 

the lateral velocity of the vehicle can be measured. Thus, sideslip angle can be calculated as: 

1tan
y

x

v

v
β −  

=  
 

  (1.8)  

Because of the very high cost, this optical sensor is not affordable for mass production. Sideslip 

angle estimation has been an important topic in motion control of vehicle. From literature reviews, 

many sideslip angle estimation methods using inertia sensors (IMU) have been proposed, such as in 

[18], [19], [20]. 
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Fig. 1.3 Sideslip angle of the vehicle. 

 

   (a) 

 

(b)                                                                           

Fig. 1.4 High-rate yaw-rate measurement (a) and low-rate GPS course angle measurement (b). 

 

However, IMUs (yaw-rate sensor or acceleration sensor) are always suffered from strong noises, 

sensor bias, scale error, and the change of the temperature. Moreover, the influences of the external 

forces (strong wind or gravity) are not accurately captured by IMUs. In recent years, GPS becomes a 

candidate for sideslip angle estimation. Besides the position and the velocity, the on-board GPS 

receiver can provide the measurement of the course angle of the vehicle [21] or the sideslip angle 

calculation [22]. The motion measurement using GPS is obtained at high accuracy in long term, thanks 

to the development of GPS technology such as the Real time kinematic GPS (RTK GPS) [23]. It is 

also possible to estimate the sideslip angle using the fusion of GPS and IMUs, such as single antenna 

GPS and yaw-rate sensor [24]. 
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There are two main problems in sideslip angle estimation using GPS. First, while the yaw-rate 

can be measured at high rate using the IMU, the GPS data’s update rate is very poor, usually less than 

50 Hz. Fig. 1. 4 shows the experimental results in which the yaw-rate sensor’s update frequency is 1 

kHz while the GPS’s rate is only 10 Hz. This means that between two consecutive updates of the GPS 

measurement, the sideslip angle estimation only relies on the yaw-rate. Moreover, the dynamic model 

of the vehicle contains the time varying parameters such as the cornering stiffness which depends on 

the road condition. Therefore, the fundamental tools introduced in the previous section are not 

applicable to estimate sideslip angle accurately. In other words, it is desirable to design the robust filter 

considering the dual-rate measurements of GPS and yaw-rate sensor. 

1.3.2 Estimation of the target position in chip-mounting machine 

Chip-mounting machine is a type of industrial machines based on surface mount technology 

(SMT) such that an actuator system is used to pick and place the surface-mount devices (SMDs) onto 

a printed circuit board (PCB). The photo of a chip-mounting machine produced by Hitachi Ltd. is 

shown in Fig. 1. 5. Although the motion trajectory can be programmed in advances, position error 

might occur due to the influences of the environment and the operation process to the mechanical 

system. To improve the mounting accuracy, the pick and place motion can be handled by visual servo 

control. In this system, the relative position between the target on the PCB and the object (the chip 

device) is obtained from the image processing unit (IPU). Then, the controller generates the control 

signal to drives the linear motor to move the object to the target as fast and accurate as possible [25]. 

However, the problem is that the position measurement from the IPU is delayed due to the time 

required for exposure, image processing, and data transferring. The time delay of few milliseconds is 

very large in comparison with the control period of 0.1 millisecond of the linear motor [25]. Moreover, 

current image processing technique cannot provide the relative position at high rate. A standard NTSC 

camera frequency which is often used in visual sensing has the sampling frequency of 30 Hz. To the 

best of our knowledge, the maximum visual processing capability using high speed camera is only 1 

kHz [26] which is still smaller than the linear motor control frequency of 10 kHz [25]. The time-delay 

and the low-rate of the position measurement using IPU through a real-time experiment is expressed in 

Fig. 1. 6. 

                                                                              

Fig. 1.5 Hitachi GXH-1S-Direct drive modular mounter (http://www.smtnet.com). 
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Fig. 1.6 Target position through image processing unit (data of a real-time experiment). 

 

If the delayed measurement is fed back, not only the tracking performance but also the stability of 

the control system is degraded. Thus, it is essential to design the estimation method that can 

compensate the large-time-delay and improve the rate of the IPU. 

1.3.3 On-line estimation of the parameter 

The parameters of the dynamics system can be the total mass, the moment of inertia, the height of 

the system’s center of gravity, etc. It is very important to understand the system’s parameters precisely 

to design the controller. For instance, the feed-forward controller is designed by inversing the system 

dynamics. If the parameters are inaccurate, the feed-forward control signal cannot satisfy the desired 

motion. Many parameters are constant and they can be measured or identified before designing the 

controller. However, there exists parameters that vary during the operation and they cannot be 

measured directly. For different control purposes, it is useful to perform on-line identification of 

system parameters. The estimated parameters can be used for designing adaptive feedback controller 

[27] or adaptive feed-forward controller [28]. 

A typical configuration for on-line estimation of the state and the parameter is shown in Fig. 1. 7 

including two parallel components. The estimator (observer or filter) outputs the estimated state ˆ
kx . 

The estimated state is fed to the recursive least square (RLS) identification to obtain ˆ
k

C  which is 

again fed to the estimator to update the estimation model in the next estimation period. For instance, 

this model is used to estimate the sideslip angle and the cornering stiffness of an electric vehicle in 

[29]. 

However, the effectiveness of the above estimation configuration is still questionable. Firstly, the 

design of the structure in Fig. 1.7 is complex because it is required to design the estimator and RLS 

identification separately. Secondly, the tuning process may be not flexible. We just can vary the 

forgetting factor of the identification in a narrow range. If the forgetting factor is close to 1, the 

convergence performance is too slow. If the forgetting factor is smaller than a threshold, vibration will 

happen in parameter identification and the quality of state estimation is also degraded considerably. 

Thirdly, the convergence under the very sharp and sudden change of system parameter may be not fast 
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enough, due to the limitation of the tuning range that we cannot reduce the forgetting factor too much. 

From the above discussion, our goal is to seek a simpler but effective estimation configuration. A 

possible solution is to estimate both the states and the parameters simultaneously using only one 

model, instead of using the mutual feedback configuration with the estimator and the identification. If 

the parameters are considered as the extension states, the extension system might be nonlinear and the 

nonlinear estimation theory is required. 

 

1.4 Literature review on estimation theory 

    To solve the aforementioned practical problems, we need to look at the estimation theory. In this 

section, a literature review of estimation theory considering dual-rate issue and delayed measurement 

issue are presented. The nonlinear estimation is not presented in this section but in the Chapter 4. 

1.4.1 Dual-rate estimation 

Considering the different rates in an estimation model, it is essential to study the multi-rate 

estimation. In this thesis, we will focus on the dual-rate estimation. A dual-rate system can be defined 

as follows: 

Dynamic equation: 

1k k k k k kx A x B u w+ = + +

                          

(1.9)
 

Measurement equation: 

k k k k ky C x vδ= +

                          

(1.10)  

where 

0
k

C  if  k jr
C

  if  k jr

=
= 

≠                           

(1.11)  

1

0
k

  if  k jr

  if  k jr
δ

=
= 

≠                           

(1.12)
 

P(X, C)

Estimator

Identification

X̂ Ĉ

U Y

                                                                              

Fig. 1.7 Conventional adaptive estimator. 
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where j is the integer and r is the dual-rate ratio between the sampling time of the measurement Ts and 

the control period Tc (in this thesis r is assumed to be a constant). 

s

c

T
r

T
=

                          

(1.13)
 

Literature review shows that there are two main methods for dual-rate estimation (see Fig. 1. 8). 

1- Conventional dual-rate estimation (CDRE). 

( )1

1

ˆ ˆ ˆ     if    

ˆ ˆ                                if    

k k k k k k k k k

k k k k k

x A x B u L y C x k jr

x A x B u k jr

+

+

 = + + − =


= + ≠                           

(1.14)
 

When the measurement is unavailable, the state is only predicted using the dynamic model. This 

method is widely utilized in various applications. For instance, Hori named the method “instantaneous 

speed observer” to estimate the motor speed from low precision shaft encoder [30] for motion control 

using motor servo. When generalizing the multi-rate control framework, Fujimoto proposed the 

intersample observer which is essential equivalent to the instantaneous speed observer [107], [108]. 

This method is improved by a dual-rate observer with observer gain matrix varying according to the 

time interval between two consecutive encoder pulses [31]. In [32] and [33], the cascade dual-rate 

observers are introduced. This method is also represented by the lifting technique in which all the state 

between two consecutive measurement updates are placed into an extension state vector as follows 

[34], [35], [36]:  [ ]1 2 1

T

k k k k m k mX x x x x+ + − + −= … .  

The CDRE is certainly very simple to be implemented. However, between two consecutive 

measurements, the state is only predicted without any correction. Therefore, the estimated state may be 

non-smooth and the estimation accuracy might be seriously degraded due to the influence of the model 

uncertainties and the unknown disturbances. 

...

k

Correction 

  using ε

k
y k ry +

k 1k + k r+1k r+ −

k
ε { {

Prediction using dynamics

    

...

kCorrection using ε

ky
k ry +

k 1k + k r+1k r+ −

k
ε {...

Hold

         

(a)                                          (b) 

Fig. 1.8 Dual-rate estimation: a) conventional method, b) innovation holding method. 
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2- Innovation holding dual-rate estimation (IHDRE).  

Assume that k = jr, the measurement is unavailable during the period k+i where i ∈ [1, r-1]. The 

IHDRE is performed as follows: 

( )

( ) [ ]
1

1

ˆ ˆ ˆ                    for  

ˆ ˆ ˆ      for  1, 1

k k k k k k k k k

k i k i k i k i k i k i k k k

x A x B u L y C x k jr

x A x B u L y C x i r

+

+ + + + + + +

 = + + − =


= + + − ∈ −                           

(1.15)
 

The key idea of this method is to hold the innovation ˆ
k k k ky C xε = −  for estimating the state 

when the measurement is still unavailable. Hara et al proposed this method for motion control of the 

hard disk drives in which the sampling frequency of the position sensor is one-quarter of the control 

updating frequency [37]. Thanks to the innovation holding, smoother position estimation and control is 

achieved. On the other hand, Oh et al utilized the innovation holding to improve the instantaneous 

speed observer in motion control of the electric wheelchair [38]. However, Hara and Oh used the 

conventional pole-placement scheme to obtain the observer gain Lk+i in (1.15). No consideration on 

model uncertainties and unknown disturbances is taken into account when designing the estimation 

gain. This is also our problem in the first attempt to deal with dual-rate estimation using Kalman filter 

and innovation holding [39]. 

Discussion: CDRE and IHDRE might be suitable for the applications in which the model 

uncertainty is small. In case of considerable model uncertainties and strong external disturbances, it is 

essential to develop the robustness of dual-rate estimation.  

1.4.2 Estimation with time-delay measurement 

A system with delayed measurement can be expressed as: 

1k k k k k kx A x B u w+ = + +

                          

(1.16)
 

k k d k d ky C x v− −= +

                          

(1.17)  

where d is the number of delayed samples. In this thesis, we assume that d is a constant. 

Literature review shows that there are following methods for state estimation with delayed 

measurement. 

1-Cascade estimation 

This estimation algorithm is explained in Fig. 1. 9. The input signal is intentionally stored for 

d+1 periods [uk-(d+1), uk-d, uk-(d-1),…, uk-2, uk-1]. In the first stage, the past time state 
*ˆ
k d k d

x
− −  is 

estimated by standard Kalman filter using the delayed measurement yk and the input uk-d. Then, in the 

second stage, the present time state is obtained through a d-step prediction as follows: 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

* *

1 1

* *

1 1 12 2 1 1

* *

1 1 11 1

ˆ ˆ

ˆ ˆ

ˆ ˆ

k d k d k dk d k dk d k d

k d k d k dk d k d k d k d

k k kk k k k

x   A x B u

x  A x B u

x                A x B u

− − −− −− − − −

− − − − − −− − − − − − − −

− − −− −

 = +

 = +




= +

…                            

(1.18)  
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This algorithm is very simple and it is introduced in [40] to estimate the state of the system with 

the delayed and non-delayed measurements. If the model is ideally precise, this method seems to be a 

good solution. However, if the number of the delayed samples is big, huge computational effort is 

required. Moreover, if the model contains uncertainty, the d-step prediction process cannot provide the 

accurate estimated state. 

2-State augmentation 

The key idea of this method is to organize the augmented system using the extended state vector 

1

T
T T T

k k k k dX x x x− −
 =  …  where d is the number of delayed samples [41], [42], [43]. Then, the 

estimation problem becomes the design of the standard Kalman filter for the augmented system. If the 

time delay stands for few samples, this method would be a suitable solution. However, the time delay 

is big, the size of the augmented system will be increased considerably along with the computational 

cost. Moreover, the design and the tuning procedure will become a complex task due to the huge size 

of the process noise covariance matrix associated with the extended state Xk. 

3-Measurement extrapolation 

This is a popular method proposed by Larsen et al [44]. Application of this method can be found 

in the vehicle state estimation using GPS and magnetometer [45]. The key idea of this method is to 

extrapolate the measurement *

ky  from the delayed measurement 
ky : 

*

1 1
ˆ ˆ

k k k k dk k k d k d
y y C x C x−− − − −

= + −

                           

(1.19)  

The extrapolated measurement is proved to be equivalent to a non-delayed measurement: 

* *

k k k ky C x v= +

                           

(1.20)  

where 

*

1 1k k k d kk d k d k k
v v C x C x− − − − −

= + −ɶ ɶ

                           

(1.21)  

Cascade estimator

YU
System

-1z

-dz

⋮

-(d+1)z Kalman filter

-d
z

*

k-d k-d
X̂

-step Predictord
*

k k
X̂

                      

Fig. 1.9 Cascade configuration for estimation with delayed measurement. 
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In comparison with the state augmentation method, this method has the advantage of maintaining 

the dimension of the system. However, it is hard to know the covariance of the noise *

kv  associating 

with *

ky . Therefore, Larsen et al proposed to compute the prediction/correction error covariance 

approximately. Consequently, the solution of the Kalman gain is sub-optimal. As stated by Larsen, the 

algorithm is only applicable if there is no other measurement fused during the delay period [k-d, k]. 

4-Innovation reorganization 

This method has been studied since the last decade [46], [47], [48], [49]. For instance, in [46], the 

algorithm for the fusion of a non-delayed measurement y1(t) with a delayed measurement y2(t) is 

proposed. The key idea of this method is to organize two new measurement sequences Y1(t) = y1(t) and 

Y2(t) = [y1(t)  y2(t+td)]
T
 where td is the delay time. The algorithm includes the solving of two Riccati 

equations or two Kalman filters associated with Y1(t) and Y2(t) in real-time, one followed by the other. 

Therefore, this method requires the high computational cost, especially when the time delay td is large. 

Moreover, this method is only demonstrated by simulations without any experiment or practical 

application. 

5-Inter-sample observer 

In case of multi-rate sampling system with delayed measurement, Fujimoto improved the 

inter-sample observer to estimate the unknown state [109], [110]. Fujimoto introduced the extended 

state 
T

T T

ux x x =   and the extended measurement 
T

T T

uy y x =   where x is the state, y is the 

delayed measurement, and xu is a vector composed of the intersample control inputs. By this way, a 

non-delayed augmented system is established and the delay-compensation is solved easily. This 

method is beautiful from the view of mathematic formulation. However, it has three problems. First, it 

is required to increase the size of the system. Secondly, it is the observer which cannot assure the 

optimality of the observer gain. In other words, we do not know if we can minimize the estimation 

error covariance at a given control period. Thirdly, the observation matrix of the augmented system is 

                      

Fig. 1.10 Feedback control of time delay system based on Communication Disturbance Observer. 
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obtained by calculating c y fA T

cC e
ν

where Ac is the state matrix of the original system in continuous time 

form, Cc is the observation matrix of the original system, and /y d fT Tν = − , Tf is the fundamental 

sampling time and Td is the delay time. If matrix Ac contains big model uncertainty, the accuracy of the 

extended measurement and the robustness of the observer might be degraded.  

6-Communication Disturbance Observer (CDOB) 

The delay in the feedback control system is handled using CDOB, as shown in Fig. 1.10 [119]. 

The key idea of this method is very interesting such that the original system with time delay is 

represented as a non-delayed system with network disturbance. The advantage of the method is that it 

can be implemented even if the system contains time varying delay without any change in the 

algorithm. However, there are several questions for this method. The first is how to apply this method 

to a multi input-multi output system and obtain other internal state rather than the output? The second 

question is how much the delay is compensated? The quality of delay compensation depends on how 

we can know the model transfer function G(s) precisely? Will this method still effective if G(s) suffers 

from strong uncertainty? 

Besides the above studies, a number of works have been done in the topic of state estimation with 

delayed measurement, such as nonlinear estimation with delayed measurement [50], [51], [52]; robust 

estimation with delayed measurement [53], [54]; estimation with random time delay measurement [55], 

[56], etc. For instance, in [55], the random time delay problem is solved under the assumption that the 

probability density function of the time delay is known. 

Discussion: Literature review shows that estimation with delayed measurement is not a new topic. 

Many works and methods have been conducted for two decades. However, it is still desirable to design 

the practical algorithm for estimation with large-time-delay measurement, such that: a) The algorithm 

does not requires the innovation reorganization and the solving of multiple Riccati equations. b) The 

algorithm does not increase the system’s dimension. c) The optimality and the stability of the 

algorithm are assured to a certain extent. The random time delay is not the main goal of this study, but 

a little discussion on this issue will be given in the Chapter 3. 

 

1.5 Research motivation 

1.5.1 Theory contribution 

1-Robust dual-rate filter 

Objective: Consider the dual-rate system in which the measurement is updated at low-rate and the 

control signal stands for the fast-rate. The estimation is designed with the constant nominal parameter 

Cn. Due to the model uncertainty, the real parameter of the system is Cn + ∆C. We aim to design the 

robust dual-rate filter and compare the proposed filter with other dual-rate estimation methods. 

Solution: Firstly, we will propose the disturbance accommodation dual-rate Kalman filter in 

which the disturbance term is the extended state. This method is applied in the practical application. 

Then, we will design the robust dual-rate Kalman filter by considering the bound uncertainty in the 
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system dynamics through the upper-bound of the estimation error covariance. 

2-Time-delay compensation filter 

Objective: Consider the system in which the measurement is delayed. Assume that the number of 

the delayed sample d is a large constant. We aim to design the filter to handle the delayed 

measurement and estimate the state accurately and compare the proposed filter with other time-delay 

estimation methods. Then, we will discuss the case such that the number of delayed sample is a 

random number. 

Solution: As it is very complex to derive the estimation error covariance in the filter algorithm 

with large-time-delay measurement, we propose the method to obtain the upper-bound of estimation 

error covariance. The filter gains are simply designed by minimizing the upper-bound. 

3-Simultaneous estimation of state and parameter 

Objective: Consider the system which includes the state X and parameter C. We will establish the 

augmented system with the augmented state vector [X  C]
T
. We aim to estimate the state and the 

parameter simultaneously using the augmented system and compare the proposed method with the 

estimation configuration in Fig. 1. 7. 

Solution: Even if the original system is linear, the augmented system is usually nonlinear. 

Therefore, we will apply a sigma-point-transformation based tool, the unscented Kalman filter (UKF) 

[104] to estimate the augmented system. 

1.5.2 Application contribution 

The estimation theories are developed through three applications as follows: 

1-Electric vehicle motion control using GPS 

Using the proposed dual-rate filter, GPS, and other sensors, we design the estimator to obtain the 

following motion variables of the electric vehicles: sideslip angle, yaw angle, and longitudinal velocity. 

They are applied to three motion controls, lateral stability motion control, attitude control, and slip 

ratio control, respectively. 

2-Chip-mounting machine 

Using the proposed time-delay filter and the fusion of IPU and linear encoder, we design the 

estimator to estimate the relative position of the target. The estimated position is used for target 

tracking control. 

3-Estimation of sideslip angle and tire cornering stiffness of the vehicles 

Consider the lateral dynamics of the vehicle, we establish the augmented system with the state 

vector 
T

f rC Cβ γ   where β is the sideslip angle, γ is the yaw-rate, Cf and Cr are the front and 

rear tire cornering stiffness. Two sources of measurements are used: yaw-rate sensor and tire lateral 

force sensors. We will use the unscented Kalman filter to estimate the tire cornering stiffness with the 

sideslip angle simultaneously. In addition, we will prove that the proposed estimation is more effective 

than the conventional estimation shown in Fig. 1. 7. 
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Chapter 2:   

Robust Dual-rate Kalman Filter 

 
      “The quality of your life is in direct proportion to the amount of uncertainty 

you can comfortably deal with.” 

Tony Robbins 

 

2.1 Introduction 

One of our motivations is to enhance the accuracy of the dual-rate estimation in which the 

sampling time of the output equals to multiple times of the control period (example: Fig. 2.1). In this 

chapter, we will try to design the robust dual-rate Kalman filter from two points of view as follows: 

1) Dual-rate disturbance accommodation Kalman filter 

The idea of disturbance accommodation was proposed by Johnson in [83] for linear regulator. By 

introducing a disturbance term and its dynamics, an augmented state system is established. The 

estimated disturbance can be fed back to improve the robustness of the control system. In this thesis, 

we will utilize this idea to enhance the dual-rate estimation. During the periods that the measurement 

is unavailable, the correction is still maintained by the estimated disturbance. 

2) Dual-rate Kalman filter considering the norm-bounded model uncertainty 

The model may contain uncertainties due to the following reasons: 

+ The error of parameter identification. 

+ The parameter is time-varying and cannot be known precisely (for instance the tire cornering 

stiffness of the vehicle). 

In many motion control system, the estimator/controller is designed using the constant nominal 

parameters because the on-line parameter identification increases the cost of the system. In addition, 

more hardware or computational efforts may be needed. Therefore, it is essential to improve the 

robustness of the control system with constant nominal parameters. For instance, the upper-bound 

scheme has been utilized for robust filter design in [97], [98], [99], [100]. Due to the model uncertainty, 

it is impossible to exactly derive the estimation error covariance
kP . To overcome this obstacle, linear 

matrix inequality is utilized to find the upper-bound 
kΩ  of the estimation error covariance under the 

assumption that the uncertainty is norm-bounded. The estimation gain Lk can be designed such that it 

minimizes the upper-bound 
kΩ . In other words, the estimation gain is obtained by solving the 

following equation: 

0k

kL

∂Ω
=

∂
                             

(2.1)  
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Literature review also shows that almost the robust filters based on upper-bound (such as [97] ~ 

[100]) do not deal with the unknown input due to the external disturbance or the uncertainty in the 

input matrix. For this reason, we will propose the robust dual-rate filter considering not only the model 

uncertainty but also the unknown input. A possible solution is to combine the disturbance 

accommodation scheme with the upper-bound scheme. This is the last effort in this Chapter to enhance 

the dual-rate estimation. 

 

2.2 Dual-rate disturbance accommodation Kalman filter 

2.2.1 System modeling 

The discrete-time stochastic dual-rate system can be expressed as follows: 

1k k k k k k

k k k k k

x A x B u w

y C x vδ
+ = + +


= +                              

(2.2)  

where xk is the state vector, uk is the input vector, yk is the output vector. Ak is the state matrix, Bk is the 

input matrix, and Ck is the measurement matrix. wk is the process noise, vk is the measurement noise.   

The size of the vectors and the matrices are as follows: xk ∈ R
m
, uk ∈ R

p
, yk ∈ R

q
, wk ∈ R

m
, vk ∈ R

q
, 

dim[Ak] = m×m, dim[Bk] = m×p, dim[Ck] = q×m. 

Define the dual-rate ratio as: 

s

c

T
r

T
=

                             

(2.3)  

where Ts is the sampling time of the output, and Tc is the control input’s period. 

Assumptions: 

 

sT

cT cT cT cT

 

 

Fig. 2.1 Example of the dual-sampling-time: Ts = rTc where r = 4. 
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-  The process noise and the measurement noise are Gaussian noises with zero means and they are 

uncorrelated with each other. 

( ) ( ), ,0, ; 0, ; 0T

k w k k v k k kw R   v R     E w v  = ∼ ∼

                             

(2.4)  

- The dual-rate ratio r is a constant integer. 

- The system is fully observable. 

The output’s sampling time equals to r times of the control period. Thus, the switching of the 

output measurement is expressed as: 

[ ]

[ ]

[ ]
;

0 0

q q

k k

q m q q

C          if  k=jr I       if  k=jr
C     

   if  k jr       if  k jr
δ

×

× ×

  
= = 

≠ ≠                                

(2.5)  

where j is the integer. 

2.2.2 Disturbance accommodation 

To deal with model uncertainty and disturbance, we introduce the disturbance term xd,k and its 

dynamics: 

1 ,k k k k k d k kx A x B u x w+ = + + +

                             

(2.6)  

, 1 , , ,d k d k d k d kx A x w+ = +

                             

(2.7)  

where Ad,k is the state matrix of the disturbance process. wd,k is a Gaussian noise with zero means. xd,k 

∈ R
m
, wd,k ∈ R

m
, dim[Ad,k] = m×m. The noise wd,k is assumed to be uncorrelated with wk and vk: 

( ), , , ,0, , 0, 0T T

d k wd k d k k d k kw R     E w w     E w v   = =   ∼

                             

(2.8)  

If Ad,k is selected as the unity matrix, the disturbance term becomes a random-walk process. 

From (2.6) and (2.7), we can establish the augmented system: 

1k k k k k k

k k k k k

X A X B U W

Y C X Vδ

+
 = + +


= +                              

(2.9)  

where: 

, ,

, , , ,
k k

k k k k k k k k

d k d k

x w
X   U u   Y y   W   V v

x w

   
= = = = =   
                                 

(2.10)  

[ ]
[ ] [ ] [ ]

,

, , 0 ,
00

kk m m

k k k k k kq m
m pd km m

BA I
A  B  C C  

A
δ δ×

×
××

   
 = = = =          

       (2.11)  

Ad,k is selected such that the augmented system is full observable. The covariance matrices 

associated with the process noise and measurement noise of the augmented system is expressed as: 

[ ]
[ ]

,

, , ,

,

0

0

w k m m

w k v k v k

wd km m

R
R ,   R R

R

×

×

 
= = 
                                

(2.12)  
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2.2.3 Kalman filter algorithm 

Standard Kalman filter can be applied to estimate the state of the augmented system. The 

algorithm is presented as follows: 

Initial condition: 

( )
0 0

11 2 20 0 0 0

,0 0

ˆ
ˆ

,..., ,...,
ˆ

m m m m

d

x
X ;  P diag P P P

x
× ×

 
= = 
      

(2.13)

                             

Prediction stage: 

- Predicted state: 

1 1 11 1 1

ˆ ˆ
k k kk k k k

X A X B U− − −− − −
= +

                             

(2.14)  

- Prediction error covariance: 

1 1 ,1 1 1

T

k k w kk k k k
P A P A R− −− − −

= +

                             

(2.15)  

Correction stage: 

- Estimation gain: 

( )
1

,1 1

T T T

k k k k k v k kk k k k
L P C C P C Rδ δ

−

− −
= +

                             

(2.16)  

- Corrected state: 

( )1 1

ˆ ˆ ˆ
k k kk k k k k k

X X L Y C X
− −

= + −

                             

(2.17)  

- Correction error covariance: 

( ) 1k kk k k k
P I L C P

−
= −

                             

(2.18)  

where 
1

ˆ
k k

X
−

 is the predicted state, ˆ
k k

X  is the corrected state (the estimated value which is output 

from the Kalman filter), 
k

L  is the estimation gain, 
1k k

P
−

 is the prediction error covariance, and 
k k

P  

is the correction error covariance. 
0 0

x̂  and 
,0 0

ˆ
d

x  are the initial vectors of the state and the 

disturbance term, 
0 0

P  is the initial matrix of the correction error covariance which is assume to be 

diagonal matrix. 

2.2.4 Discussion 

The correction stages of the proposed algorithms is examined for the periods that the 

measurement is unavailable (k ≠ jr). Because the measurement matrix is set to zero, the estimation 

gains of the augmented system will be zero during these periods. The correction stage is performed as: 
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1

, , 1

ˆ ˆ

ˆ ˆ

k k k k

d k k d k k

x x

x x

−

−

   
=   

                                    

(2.19)  

or: 

[ ]
[ ] [ ]

1 1 11

1

, , 1 , 1 , 1 1

ˆ ˆ ˆ

0ˆ ˆ ˆ0

k k k k k k kk m m

k

m pd k k d k k d k d k km m

x x x BA I
 + u

x x xA

− − −− ×

−

×− − − −×

        
= =        

                    

(2.20)  

From (2/20) the estimated state equations are re-written as: 

1 11 1 , 1 1

, 1, , 1 1

ˆ ˆ ˆ

ˆ ˆ

k k kk k k k d k k

d kd k k d k k

x A x B u x

x A x

− −− − − −

− − −

= + +


=     

(2.21)  

 

 

...

k

Correction 

  using ε

ky k r
y +

k 1k + k r+1k r+ −

kε

{ {

Prediction using dynamics

     

...

kCorrection using ε

ky
k r

y +

k 1k + k r+1k r+ −

k
ε {...

Hold

                

(a)                                                (b) 

...

,
ˆCorrection using 

d k k
x

ky
k ry +

k 1k + k r+1k r+ −

,
ˆ

d k k
x {...

,
ˆTransition of 

d k k
x

, 1 1
ˆ

d k r k r
x

+ − + −

 

(c) 

Fig. 2.2 Dual-rate estimation: a) conventional method, b) innovation holding method,  

c) disturbance accommodation method. 
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From (2.21) we can see that: Even though the measurement is unavailable, the estimate of the 

disturbance term ,d̂ k k
x  serves as the “virtual” innovation to fulfill the correction stage. Therefore, the 

estimation accuracy can be improved. In practical applications, tuning process is required to select the 

suitable matrices Ad,k and Rwd,k.  

Fig. 2.2 is to compare the key ideas of three dual-rate estimation methods. The “conventional 

dual-rate estimation” has no correction during the periods that the measurement is unavailable. The 

“innovation holding dual-rate estimation” holds the innovation εk to perform the correction stage. On 

the other hand, the “disturbance accommodation dual-rate estimation” utilizes the transition of the 

estimated disturbance ,d̂ k k
x  to perform the correction stage. This also means that the uncertainty and 

disturbance are treated by “disturbance accommodation dual-rate estimation”. Another advantage of 

this method is that it can provide more tuning parameters which are the matrix matrices Ad,k and Rwd,k. 

 

2.3 Dual-rate filter considering the norm-bounded uncertainty 

In the previous section, the disturbance accommodation dual-rate Kalman filter is proposed. 

However, the model uncertainty is not taken into account in the design procedure. In this section, we 

will design the robust dual-rate filter from another point of view: the model uncertainties are assumed 

to be norm-bounded. For the sake of simplicity, the uncertainty is only placed in the state matrix and 

the system has no input. The upper-bound scheme is applied to obtain the filter parameters ∆Ae,k and 

Le,k. 

2.3.1 System modeling and the idea of robust estimation 

The discrete-time stochastic dual-rate system with model uncertainty in the state matrix can be 

expressed as follows: 

( )1k k k k k

k k k k k

x A A x w

y C x vδ

+ = + ∆ +


= +                              

(2.22)  

[ ]

[ ]

[ ]
;

0 0

q q

k k

q m q q

C          if  k=jr I       if  k=jr
C     

   if  k jr       if  k jr
δ

×

× ×

  
= = 

≠ ≠                                

(2.23)  

The definitions of the vectors and the matrices in (2.22) are the same as in the previous section: xk 

is the state vector, uk is the input vector, yk is the output vector. Ak is the state matrix, Bk is the input 

matrix, and Ck is the measurement matrix. wk is the process noise, vk is the measurement noise. The 

size of the vectors and the matrices are as follows: xk ∈ R
m
, uk ∈ R

p
, yk ∈ R

q
, wk ∈ R

m
, vk ∈ R

q
, dim[Ak] 

= m×m, dim[Bk] = m×p, dim[Ck] = q×m. 

Assumptions: 

-  The process noise and the measurement noise are Gaussian noises with zero means and they are 
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uncorrelated with each other. 

k
w ~ ( ),0,

w k
R ;  

k
v ~ ( ),0,

v k
R ;

 

0T

k kE w v  = 
                            

(2.24)  

- The dual-rate ratio r is a constant integer. 

- The system is fully observable. 

- The uncertainty is assumed to be written as: 

k k k k
A H F E∆ =

                             

(2.25)  

where Hk and Ek are known matrices with appropriate dimensions, Fk is a bounded matrix, for instance 

T

k k
F F I≤ . 

The robust filter is proposed as follows: 

( ) ( )1 , ,
ˆ ˆ ˆ

k k e k k e k k k k
x A A x L y C x+ = + ∆ + −

                            

(2.26)  

where ∆Ae,k and Le,k are filter parameters to be designed such that the filter is optimal to some extent, 

ˆ
k

x  is the estimated state. 

2.3.2 Upper-bound of the estimation error covariance 

The estimation error of the filter (2.26) is defined as: 

ˆ
k k k

x x x= −ɶ

                            

(2.27)  

From (2.22), (2.25), (2.26) and (2.27), the following dynamics system is established: 

( )1k k k k k k k kZ A H F E Z G W+ = + +

                            

(2.28)  

;
ˆ

k k

k k

k k k

x w
Z    W

x vδ

   
= =   
   

ɶ

                            

(2.29)  

, ,

, ,

k e k k e k

k

e k k k e k

A L C A
A

L C A A

− −∆ 
=  + ∆                              

(2.30)  

,

,0

e k

k

e k

I L
G

L

− 
=  
                              

(2.31)  

[ ]k k k
E E E=

                            

(2.32)  

0

k

k

H
 H

 
=  
                              

(2.33)  

The covariance matrix of the augmented noise 
k

W  is: 

,

,

,

0

0

w k

w k T

k v k k

R
R

Rδ δ

 
=  
                              

(2.34)  

The covariance of the augmented state is expressed as: 

( ) ( )1 ,

T
T

k k k k k k k k k k k w k kA H F E A H F E G R G+Σ = + Σ + +

                            

(2.35)  
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Apply the lemma L2 (see the Appendix), if at the estimation period k there exists αk that satisfies

1 0T

k k k k
I E Eα − − Σ > , then the following inequality holds true: 

( )
1

1 1

1 ,

T T T T T T

k k k k k w k k k k k k k k k k k k k k kA A G R G H H A E I E E E Aα α
−− −

+Σ ≤ Σ + + + Σ − Σ Σ

    

(2.36)  

Define the following sequence (assume that the initial state is zero): 

0

0 0

0

0 0

P 
Ω = Σ =  

      

(2.37)  

( )
1

1T T

k k k k k k k k k kS E I E E Eα
−−= Ω + Ω − Ω Ω

    

(2.38)  

1

1 ,

T T T

k k k k k w k k k k k
A S A G R G H Hα −

+Ω = + +

    

(2.39)  

where P0 is the initial estimation error covariance. 

From the inequality (2.36), it is transparent that the above sequence is an upper-bound of the 

augmented system: 

1 1k k+ +Σ ≤ Ω

    

(2.40)  

On the other hand, we have the following relationship: 

[ ]1 10
k k

x I Z+ +=ɶ

    

(2.41)  

From (2.40) and (2.41), the upper-bound of the estimation error covariance is obtained as: 

[ ] [ ]1 1 1 11, 1
0 0

TT

k k k k
E x x I I+ + + +
  ≤ Ω = Ω ɶ ɶ

    

(2.42)  

2.3.3 Design of the filter parameters 

From (2.30) ~ (2.34), (2.38) ~ (2.39), and (2.42), the dynamics of the upper-bound is obtained as 

follows: 
1

11, 1 11, ,

T T T T T

k k k k k k k k k k k k k k w k
L M L L N N L A S A H H Rα −

+Ω = − − + + +

    

(2.43)  

where 

, ,k e k e k
L L A = ∆ 

    

(2.44)  

11, , 12,

21, 22,

T T

k k k k v k k k k

k T

k k k

C S S R C S
M

S C S

δ δ +
=  
       

(2.45)  

11, 12,

T

k k k k k kN A S C A S =  
    

(2.46)  

S11,k, …, S22,k are the components of the matrix 
k

S : 

11, 12,

21, 22,

k k

k

k k

S S
S

S S

 
=  
      

(2.47)  

The filter parameters 
, ,k e k e k

L L A = ∆   are designed such that they minimize the upper-bound of 

the estimation error covariance, in other words: 
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11, 1
0

k

k
L

+∂Ω
=

∂
    

(2.48)  

Substitute (2.43) into (2.48) and solve this equation, the filter parameters are obtained as: 

1

11, , 12,1

, , 11, 12,

21, 22,

T T

k k k k v k k k kT

e k e k k k k k k k k T

k k k

C S C R C S
L A N M A S C A S

S C S

δ δ
−

−
 +

  ∆ = = ×     
       

(2.49)  

Comment: Consider a dual-rate system with model uncertainty. It is hard to derive exactly the 

estimation error covariance. Luckily, it is possible to obtain the upper-bound of the estimation error. 

The set of the filter parameter , ,k e k e kL L A = ∆   can be designed to minimize the upper-bound of the 

estimation error covariance.  

 

2.4 Dual-rate filter considering model uncertainty and unknown input 

2.4.1 System modeling and the idea of robust estimation 

In this section, we extend robust filter by consider not only the model uncertainty but also 

unknown input. The system with dual-rate ratio r is expressed as follows: 

( )1k k k k k k

k k k k k

x A A x d w

y C x vδ

+ = + ∆ + +


= +     

(2.50)  

[ ]

[ ]

[ ]
;

0 0

q q

k k

q m q q

C          if  k=jr I       if  k=jr
C     

   if  k jr       if  k jr
δ

×

× ×

  
= = 

≠ ≠                                

(2.51)  

The term dk is the unknown input which can be the disturbance to the system. The definition of 

the vectors and matrices in (2.50) and other assumptions can be followed the previous section: xk is the 

state vector, uk is the input vector, yk is the output vector. Ak is the state matrix, Bk is the input matrix, 

and Ck is the measurement matrix. wk is the process noise, vk is the measurement noise. The size of the 

vectors and matrices are as follows: xk ∈ R
m
, dk ∈ R

m
, uk ∈ R

p
, yk ∈ R

q
, wk ∈ R

m
, vk ∈ R

q
, dim[Ak] = 

m×m, dim[Bk] = m×p, dim[Ck] = q×m. 

Assumptions: 

-  The process noise and the measurement noise are Gaussian noises with zero means and they are 

uncorrelated with each other. 

( ) ( ), ,0, ; 0, ; 0T

k w k k v k k kw R   v R     E w v  = ∼ ∼

                             

(2.52)  

- The dual-rate ratio r is a constant integer. 

- The system is fully observable. 

- The uncertainty is assumed to be written as: 

k k k k
A H F E∆ =

                             

(2.53)  
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where Hk and Ek are known matrices with appropriate dimensions, Fk is a bounded matrix, T

k k
F F I≤ . 

The following robust filter is proposed to the dual-rate system: 

( ) ( )1 , ,
ˆˆ ˆ ˆ

k k e k k e k k k k k
x A A x L y C x d+ = + ∆ + − +

    

(2.54)  

where ∆Ae,k and Le,k are filter parameters to be designed such that the filter is optimal to some extent. 

ˆ
k

x  is the estimated state, ˆ
k

d  is the estimated unknown input. 

2.4.2 Disturbance accommodation for unknown input estimation 

In this section, utilizing the idea of “disturbance accommodation”, we assume that: 

1 , ,k d k k d k
d A d w+ = +

    

(2.55)  

where Ad,k is the state matrix of the disturbance process. wd,k is a Gaussian noise with zero means. xd,k 

∈ R
m
, wd,k ∈ R

m
, dim[Ad,k] = m×m. The noise wd,k is assumed to be uncorrelated with wk and vk: 

( ), , , ,0, ; 0; 0T T

d k wd k d k k d k kw R     E w w     E w v   = =   ∼

                             

(2.56)  

If Ad,k is selected as the unity matrix, the disturbance term becomes a random-walk process. 

From (2.50) and (2.55) the following augmented system is established: 

( )* * * * *

1

* * * * *

k k k k k

k k k k k

X A A X W

Y C X Vδ

+
 = + ∆ +


= +                              

(2.57)  

* * * *

,

, , ,
kk

k k k k k k

d kk

wx
X    Y y    W    V v

wd

  
= = = =  
                                 

(2.58)  

[ ]* * * *

,

0
, , 0 ,

0 0 0

k k

k k k k k k

d k

A I A
A    A   C C    

A
δ δ

∆   
= ∆ = = =   

  
   

 

(2.59)  

We can see that the system with unknown input in (2.50) is transformed to the system (2.57) 

which has the same form as the system expressed in (2.22). Therefore, the problem of this section can 

be solved by the filtering scheme in the previous section as follows: 

( ) ( )* * * * * * * *

1 , ,
ˆ ˆ ˆ

k k e k k e k k k k
X A A X L Y C X+ = + ∆ + −

                             

(2.60)  

    From (2.58) and (2.59), the state xk is estimated as follows: 

( ) ( )1 , ,
ˆˆ ˆ ˆ

k k e k k e k k k k k
x A A x L y C x d+ = + ∆ + − +

                             

(2.61)  

    The disturbance dk is estimated as: 

( )1 , ,
ˆ ˆ ˆ

k d k k ed k k k kd A d L y C x+ = + −

                             

(2.62)  

where Le,k and Led,k are the estimation gains associating with the state and the disturbance, respectively. 

We have *

, , ,

T
T T

e k e k ed kL L L =   . 
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2.5 Discussion 

In this chapter we study the Kalman filter for dual-rate estimation. The algorithms are developed 

through two points of view: 1) Disturbance accommodation. 2) Minimization of the estimation error 

covariance considering the norm-bounded uncertainty model. After studying each issue separately, we 

pay the effort to combine two schemes together to design the dual-rate estimation of a system with 

both the model uncertainty and the unknown input. 

Instead of holding the innovation, the disturbance accommodation Kalman filter uses the 

estimated disturbance to maintain the correction when the low-rate measurement is unavailable. This 

estimation method will be verified and compared with other dual-rate estimations in Chapter 5 – 

motion control of electric vehicle using GPS in which the measurements from GPS receiver are 

updated at low-rate in comparison with the control period of the electric motors. 
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Chapter 3:   

Time-delay Compensation Kalman Filter 

 
      “Delay is preferable to error.” 

Thomas Jefferson 

 

3.1 Introduction 

In this chapter, we will study the Kalman filter for handling the delayed-measurement. To deal 

with the large-time-delay while maintaining the affordable computational cost of the algorithm, the 

goals of the study are as follows: 

- The algorithm does not increase the dimension of the system. 

- The algorithm does not require to solve a series of Riccati equations in real-time. 

- The algorithm does not include a cascade configuration as the Kalman filter followed by a d-step 

predictor. 

- The estimation gain is optimal to some extent to assure the optimality and the stability. 

In order to achieve the above goals, we propose the upper-bound Kalman filter in which the 

upper-bound of the estimation error covariance is derived using the µ-gain to obtain the estimation 

gains. The filter algorithm is almost the same as the standard Kalman filter. 

Two cases of study are examined. The upper-bound Kalman filter is firstly applied to the system 

with delayed measurements, and then, the system with both delayed and non-delayed measurement. A 

simulation study is performed to verify the proposed algorithm. 

 

3.2 Estimation with delayed measurements 

3.2.1 System modeling and problem statement 

    We consider the following linear discrete-time system: 

1k k k k k k
x A x B u w+ = + +

                             

(3.1)  

k k d k
y Cx v−= +

                             

(3.2)  

where xk ∈ R
n
, uk ∈ R

m
, and yk ∈ R

p
. They represent the state, the input and the output vector, 

respectively. Ak, Bk, and C are the state matrix, the input matrix, and the measurement matrix with 

appropriate dimensions. wk and vk are the process noise and the measurement. They are assumed to be 

Gaussian noises with zero means, their covariance matrices are Rw,k and Rv,k. It is assumed that wk and 

vk are uncorrelated with each other. We also assume that the number of the delayed samples d is a 

known constant integer.  
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The estimation algorithm can be preliminarily proposed as follows: 

- If k < d, the output (because it is delayed) is still unavailable. Therefore, the estimation is trivially 

performed by predicting from the given initial state through the dynamics expressed in (3.1). 

- If k ≥ d, the following filter is proposed including two stages as the Kalman filter: 

Prediction: 

1 1 11 1 1
ˆ ˆ

k k kk k k k
x A x B u− − −− − −

= +

               

(3.3)  

Correction: 

( )1 1
ˆ ˆ ˆ

k kk k k k k d k d
x x L y Cx

− − − −
= + −

            

(3.4)  

where 1k̂ k
x

−  is the predicted state, k̂k
x  is the corrected state, Lk is the estimation gain. The predicted 

state at the period k-d is stored to calculate the innovation at the present period. 

    Define the prediction error, the correction error, and their covariance matrices as: 

1 1
ˆ

kk k k k
x x x

− −
= −ɶ

            

(3.5)  

ˆ
kk k k k

x x x= −ɶ

            

(3.6)  

1 1 1

T

k k k k k k
P E x x

− − −
 =  

ɶ ɶ ɶ

            

(3.7)  

T

k k k k k k
P E x x =  
ɶ ɶ ɶ

            

(3.8)  

Problem P.3.1: Given the filter expressed in (3.3) and (3.4), find the upper-bound of the 

correction error covariance and the estimation gain Lk to minimize the upper-bound. 

3.2.2 Upper-bound of the estimation error covariance 

    From (3.1) ~ (3.8), at period k, the following dynamics are obtained: 

1 11 1 1k kk k k k
x A x w− −− − −

= +ɶ ɶ

            

(3.9)  

1 1 1k k kk k k k k d k d
x x L Cx L v

− − − − −
= − −ɶ ɶ ɶ

            

(3.10)  

1 1 , 11 1 1

T

k k w kk k k k
P A P A R− − −− − −

= +ɶ ɶ

            

(3.11)  

,1 1 1 1 1 1

T T T T T T T

k k k v k k k kk k k k k d k d k k k d k d k d k d k k
P P L CP C L L R L E x x C L L CE x x

− − − − − − − − − − − −
   = + + − −   

ɶ ɶ ɶ ɶ ɶ ɶ ɶ

   

(3.12)  

In the same way we can write the dynamics of the prediction errors and the correction errors from 

the period k-d up to the period k. From all of these equations, k k
Pɶ  is derived as: 
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d d

T T T T T T

k k k v k k k j k k k jk k k k k d k d k d k d k d k d
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− −

   
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  
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i j
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  
       

∑ ∏ɶ

  

(3.13)  

It is very complex to obtain the covariance 
2 2 1 1

T

k d i k d i k d k d
E x x

− + − − + − − −
 
 
ɶ ɶ  precisely (i from 0 to d-1). 

Therefore, it is hard to derive the prediction error covariance. However, in Kalman filter, the update 

equation of the prediction covariance is desirable to design the estimation gain. To overcome this 

problem, we will try to find the upper-bound of the correction error covariance. Then, if we can design 

the estimation gain to minimize this upper-bound, we can say that the filter is “optimal” to some 

extent. 

Apply the lemma L1 (see the Appendix) to the last two terms in (3.13), we can always find the 

positive number µk,i such that: 

1

,1 1
,0

1 1

1 1

, 2 2 1

1 1

11
d

T T T

k k k v k kk k k k k d k d
k ii

T
d d

T T T

k j k k k jk d k d k d k d

j j

d i d i
T T

k i k j k d i k d i k jk d i k d i

j j

P P L CP C L L R L

     A P C L L CP A

    A L CP C L A

µ

µ

−

− − − −
=

− −− − − − − −
= =

− −

− − + − + −− + − − +
= =

 
≤ + + + 

 

   
− −   
   

   
+   

  

∑

∏ ∏

∏ ∏

ɶ ɶ ɶ

ɶ ɶ

ɶ
1

0

T
d

i

−

=

 
 
  

∑

   

(3.14)  

Define the following covariance sequence: 

Initial covariance: 

0 0 0 0
PΩ = ɶ

   

(3.15)  

Update equations of the sequence: 

1 1 , 11 1 1

T

k k w kk k k k
A A R− − −− − −

Ω = Ω +

   

(3.16)  

1

,1 1
,0

1 1

1 1

, 2 2 1

1 1

11
d

T T T

k k k v k kk k k k k d k d
k ii

T
d d

T T T

k j k k k jk d k d k d k d

j j

T
d i d i

T T

k i k j k d i k d i k jk d i k d i

j j

L C C L L R L

      A C L L C A

     A L C C L A

µ

µ

−

− − − −
=

− −− − − − − −
= =

− −

− − + − + −− + − − +
= =

 
Ω = Ω + + Ω + 

 

   
− Ω − Ω   
   

    
+ Ω   

   

∑

∏ ∏

∏ ∏
1

0

d

i

−

=


 
  

∑

   

(3.17)  
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From the inequality (3.14), it is transparent that the above sequence makes an upper-bound of the 

correction error covariance. In other words: 

k k k k
P ≤ Ωɶ

   

(3.18)  

The estimation gain Lk is design such that it minimizes the upper-bound: 

0
k k

k
L

∂Ω
=

∂
   

(3.19)  

Substitute (3.17) into (3.19) and solve this equation, the estimation gain is obtained as: 
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Fig. 3.1 Flow chart of the Kalman filter for system with delayed measurements. 
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1
1

,1 1
,01
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d d

T T

k k j v kk d k d k d k d
k iij

L A C C C R
µ

−
−

− − − − − − −
==

    
= Ω + Ω +    

    
∑∏

   

(3.20)  

The problem P.3.1 is solved completely. 

3.2.3 Algorithm and discussion 

    The flow chart of the estimation algorithm is shown in Fig. 3.1. When k is still smaller than d, the 

state is obtained by only the prediction. Since k is equal to d, the state is estimated through both the 

prediction and correction stages. 

    In (3.20), if d is zero or the measurement is non-delayed, (3.20) becomes formulation of the 

standard Kalman filter: 

1

,1 1

T T

k v kk k k k
L C C C R

−

− −
 = Ω Ω + 

   

(3.21)  

If µk,i = µk for i ∈ [0, d-1], the estimation gain formulation can be rewritten as: 

1

,1 1

1

1
d

T T

k k j v kk d k d k d k d
kj

dL A C C C R
µ

−

− − − − − − −
=

    
= Ω + Ω +    

   
∏

   

(3.22)  

In the proposed upper-bound Kalman filter, the gains µk,i are introduced as the tuning parameters. 

With more tuning degree, we can flexibly design the estimation gain to achieve the good performance 

of the estimation. This is an advantage of the proposed filter. 

 

3.3 Estimation with delayed and non-delayed measurements 

3.3.1 System modeling and problem statement 

    We examine the following linear discrete-time state space model with two measurement vectors: 

1k k k k k k
x A x B u w+ = + +

                             

(3.23)  

1, 1 1,k k k
y C x v= +

                             

(3.24)  

2, 2 2,k k d k
y C x v−= +

                             

(3.25)  

where other terms can be defined as in Case 1, y1,k ∈ R
p1

 and y2,k ∈ R
p2

 represent the non-delayed and 

delayed measurement, respectively. v1,k an and v2,k are Gaussian noises with zero means. Their 

covariance matrices are Rv1,k and Rv2,k. They are assumed to be uncorrelated with each other and with 

the process noise wk.  

The estimation algorithm can be preliminarily proposed as follows: 

- If k < d, the delayed measurement is still unavailable. Therefore, the estimation is trivially 

performed by using the non-delayed measurement through the standard Kalman filter. 

- If k ≥ d, the following filter is proposed: 

Prediction: 

1 1 11 1 1
ˆ ˆ

k k kk k k k
x A x B u− − −− − −

= +

               

(3.26)  
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Correction: 

( ) ( )1, 1, 1 2, 2, 21 1 1
ˆ ˆ ˆ ˆ

k k k kk k k k k k k d k d
x x L y C x L y C x

− − − − −
= + − + −

            

(3.27)  

where 1k̂ k
x

−  is the predicted state, k̂k
x  is the corrected state, L1,k is the estimation gain associated 

with the non-delayed measurement, and L2,k is the estimation gain associated with the delayed 

measurement. The predicted state at the period k-d is stored to calculate the innovation associated with 

the delayed measurement at the present period. 

Problem P.3.2: Given the filter expressed in (3.26) and (3.27), find the upper-bound of the 

correction error covariance and the estimation gain L1,k and L2,k to minimize the upper-bound. 

3.3.2 Upper-bound of estimation error covariance 

    From (3.23)~(3.27), at the period k, the dynamics of the prediction error, correction error, and 

their covariance matrices are derived as: 

1 11 1 1k kk k k k
x A x w− −− − −

= +ɶ ɶ

            

(3.28)  

( )1, 1 2, 2 1, 2,1 1 1k k k k k kk k k k k d k d
x I L C x L C x L v L v

− − − − −
= − − − −ɶ ɶ ɶ

            

(3.29)  

1 1 , 11 1 1

T

k k w kk k k k
P A P A R− − −− − −

= +ɶ ɶ

            

(3.30)  

( ) ( )

( ) ( )

1, 1 1, 1 2, 2 2 2, 1, 1, 1, 2, 2, 2,1 1

1, 1 2 2, 2, 2 1, 11 1 1 1

T T T T T

k k k k k v k k k v k kk k k k k d k d

TT T T T

k k k kk k k d k d k d k d k k

P I L C P I L C L C P C L L R L L R L

     I L C E x x C L L C E x x I L C

− − − −

− − − − − − − −

= − − + + +

   − − − −   

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ    

(3.31)  

In the same way, we can derive the prediction error and the correction error from the period k-d 

up to the period k. Combine all these equations together, we can derive the covariance of the 

correction error as:  

( ) ( )

( ) ( )

( )

1, 1 1, 1 2, 2 2 2, 1, 1, 1, 2, 2, 2,1 1

1, 1 2 2, 2, 2 1, 1
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j j
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     I L C P C L L C P

− − − −

− −− − − − − −
= =

= − − + + +

+ − Γ + Γ −

 
− − Ψ − Ψ 

 
∏

ɶ ɶ ɶ

ɶ ɶ ( )1, 1

1

T
d

T

kI L C
 

− 
 
∏

   

(3.32)  

where 

( )1, 1, 1k j k j k jA I L C− − −Ψ = −

   

(3.33)  

11

2, 2 2 2 1 1
0 1

d id
T

k k j k d i k d i k d i k d i k d k d
i j

A L C E x x
− −−

− − + − + − + − − + − − −
= =

  
 Γ = Ψ       

∑ ∏ ɶ ɶ

   

(3.34)  

Again, it is very complicated to derive the covariance 
2 2 1 1

T

k d i k d i k d k d
E x x

− + − − + − − −
 
 
ɶ ɶ . Utilizing the 

lemma L1 and the same scheme as in the previous section, the upper-bound of the estimation error 
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covariance is obtained as: 

Initial covariance: 

0 0 0 0
PΩ = ɶ

   

(3.35)  

Update equations of the sequence: 

1 1 , 11 1 1

T

k k w kk k k k
A A R− − −− − −

Ω = Ω +

   

(3.36)  

1

T T T

k k k k k k k kk k k k
L M L L N N L Q

−
Ω = − − + Ω +

   

(3.37)  

where 

1, 2,k k k
L L L =  

   

(3.38)  

( )1 1 1, 1 21 1

1

2 1 2 2 2,1 1
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11

T T

k v k kk k k d k d
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T T T T
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 Ω + + Ω
 
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 Ω + Ω + 
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∑    

(3.39)  

( ) 1 21 1

T T

k k kk k k d k d
N Q C S C

− − − −
 = Ω + Ω
 

   

(3.40)  

1,

1

d

k k j

j

S −
=

= Ψ∏
   

(3.40)  

1 11

, 2, 2 2 2,2 2 1
0 1 1

T
d i d id

T T T

k k i k j k d i k d i k d i k d i k jk d i k d i
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 = Ψ Ω Ψ   
     

∑ ∏ ∏
   

(3.41)  

The estimation gains are designed such that they minimize the upper-bound of the estimation 

error covariance: 

0
k k

kL

∂Ω
=

∂
   

(3.42)  

Solving (3.42) we obtain: 

1

k k k
L N M

−=

   

(3.43)  

The estimation gains can be written in the detailed form as: 

( )

( )

1, 2, 1 21 1

1

1 1 1, 1 21 1

1

2 1 2 2 2,1 1
,0

11

T T

k k k kk k k d k d

T T

k v k kk k k d k d

d
T T T T

k v kk d k d k d k d
k ii

L L Q C S C

C Q C R C S C

                                     
C S C C C R

µ

− − − −

−

− − − −

−

− − − − − −
=

   = Ω + Ω   

 Ω + + Ω
 

×   
 Ω + Ω + 
   

∑
   

(3.44)  

The problem P.3.2 is solved completely. 
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Fig. 3.2 Flow chart of the Kalman filter for system with delayed and non-delayed measurements. 
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3.3.3 Algorithm and discussion 

    The flow chart of the estimation algorithm is shown in Fig. 3.2. When k is still smaller than d, the 

state is estimated by only the non-delayed measurements. Since k is equal to d, the state is estimated 

through both the delayed and the non-delayed measurements. 

    In (3.44), if d is zero or the measurement is non-delayed, (3.44) becomes the formulation of the 

standard Kalman filter: 

1

1,1 1 1

1, 2, 1 1
,22 2 2

0

0

T T

v k

k k k k k k

v k

RC C C
L L P P

RC C C

−

− −

       
   = +                  

ɶ ɶ

   

(3.45)  

In (3.32), if we neglect the covariance (3.43) to approximately calculate the estimation error 

covariance, the estimation gain can be calculated in the following simple form: 

1

1 1 1, 1 21 1

1, 2, 1 21 1

2 1 2 2 2,1 1

T T

v k kk k k d k dT T

k k kk k k d k d T T T T

k v kk d k d k d k d

C P C R C S P C
L L P C S P C

C P S C C P C R

−

− − − −

− − − −

− − − − − −

 +
     = ×    +  

ɶ ɶ
ɶ ɶ

ɶ ɶ
   

(3.46)  

 

3.4 Simulation verification 

3.4.1 A case of study 

    In this chapter, we will examine a case of study as follows: A linear stochastic discrete-time 

system includes two states x1 and x2 is established with the fundamental sampling time Tc = 1ms. Only 

the state x2 is measurable. However, the measurement of x2 is delayed, the time-delay is Td = 30Tc. 

This means that the time-delay is relatively large in comparison with the fundamental sampling time. 

Moreover, the nominal model for estimation design is not perfectly precise. The problem is to estimate 

both x1 and x2 as accurate as possible. 

The real model: 

1 1k k k k

k k d k

x Ax Bu w

y Cx v

− −

−

= + +


= +    

(3.47)  

where 

[ ]1, 2,
,

T

k k k k k
x x x    u δ = = 

   

(3.48)  

[ ]
0.9870 0.0014 0.0065

, , 0 1
0.1440 0.9585 0.2880

A    B    C
−   

= = =   −       

(3.49)  

The number of the delayed samples is d = 30. wk and vk are Gaussian noises with zero means. The 

initial state is [ ]0 0 0
T

x = . The input δ is a sinusoidal signal with the frequency of 0.25 Hz and the 

amplitude of 5π/180. To simulate the uncertainty, the nominal model for the designing the estimator is 

selected as: 
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0.9882 0.0013 0.0059
,

0.1312 0.9622 0.2624
n n

A    B
−   

= =   −       

(3.50)  

3.4.2 Simulation results 

    Four estimation methods are designed and performed for comparison. As the number of the 

delayed samples is large (d = 30), the “state augmentation” method is not applicable. 

1) The standard Kalman filter (Standard KF): the time-delay is not handled. 

2) The cascade estimation (Cascade KF): It is a standard Kalman filter plus a d-step predictor. 

3) The measurement extrapolation Kalman filter (MeaExtra KF): As shown in Chapter 1 and the 

formulation (1.19), a non-delayed measurement is extrapolated from the delayed-measurement. 

However, the authors of this method neglect the covariance 
2 2 1 1

T

k d i k d i k d k d
E x x

− + − − + − − −
 
 
ɶ ɶ  to simply 

obtain the estimation error covariance as: 

,1 1 1 1

1 1

T
d d

T T T T T T

k k k v k k k j k k k jk k k k k d k d k d k d k d k d

j j

P P L CP C L L R L A P C L L CP A− −− − − − − − − − − −
= =

   
≈ + + − −   

   
∏ ∏ɶ ɶ ɶ ɶ ɶ  (3.51)  

Therefore, this method might fails to predict the estimation error covariance, and the estimation 

gain is not optimal. 

4) The proposed estimation (Upper-bound KF): Because it is hard to derive the covariance 

2 2 1 1

T

k d i k d i k d k d
E x x

− + − − + − − −
 
 
ɶ ɶ , we calculate the upper-bound of the estimation error covariance for 

designing the estimation gain. In this simulation, the gain 
,k i

µ  is selected to be 0.8. 

The estimation results of the Standard KF, the MeaExtra KF, and the Upper-bound KF are shown 

in Fig. 3.3. For the convenience of comparison, Fig. 3.4 shows a segment of these data for clearly 

comparison. Certainly, the Standard KF cannot compensate the time-delay and the estimated states are 

inaccurate. Especially, the estimation of the state x1 by the Standard KF is considerably bad. In 

contrast, both the MeaExtra KF and the Upper-bound KF can handle the delayed measurement. 

However, as shown in Fig. 3.4, the Upper-bound KF attains the better estimation performance while 

the variation occurs in case of the MeaExtra KF. This phenomenal can be explained due to the fact that 

the MeaExtra KF fails to compute the estimation error covariance in every estimation period.  

The estimation results of the Standard KF, the Cascade KF, and the Upper-bound KF are 

compared in Fig. 3.5 and Fig. 3.6 for a segment of the data. The Cascade KF shows the better results 

than the Standard KF, but the estimation error of this method is still bigger than that of the 

Upper-bound KF. This means that the d-step predictor is influenced by the model error. 

From the simulation results, we can conclude that the Upper-bound KF is better than other three 

methods considering the large-time-delay and model uncertainties. The MeaExtra KF is not stable in 

long term, while the Cascade KF suffers from large estimation error. 
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Fig. 3.3 Simulation results: Standard KF, MeaExtra KF, and Upper-bound KF. 
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(a) 

 

(b) 

 

Fig. 3.4 Simulation results: Standard KF, MeaExtra KF, and Upper-bound KF (a part of the full data). 
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(a) 

 

(b) 

 

Fig. 3.5 Simulation results: Standard KF, Cascade KF, and Upper-bound KF. 
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(a) 

 

(b) 

 

Fig. 3.6 Simulation results: Standard KF, Cascade KF, and Upper-bound KF (a part of the full data). 
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(a) 

 

(b) 

 

Fig. 3.7 Simulation results of the Upper-bound KF at different µ-gains. 
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3.4.3 Estimation quality and µ-gain 

    It is desirable to known how the gain 
,k i

µ  is design. We perform the simulations using different 

number of the gain 
,k i

µ .  

1) Case 1: 
,k i

µ  is selected as a very small value, for instance 
, 0

k i
µ ≈ .  

2) Case 2: 
,k i

µ  is selected as a relatively big value in comparison with case 1, such as 
, 10

k i
µ = . 

3) Case 3: 
,k i

µ  is selected as in the previous simulation: 
, 0.8

k i
µ = . 

The simulation results are summarized in Fig. 3.7. If the gain 
,k i

µ  (µ-gain) is close to zero, from 

(3.20), the estimation gain become close to zero as well. Consequently, the estimated state almost 

relies on the dynamics model. Because of the model uncertainty, the estimation result in Case 1 is 

inaccurate. On the other hand, if the gain 
,k i

µ  is relatively big, the estimation gain also attains the big 

value. This results in the unstable estimation performance of Case 2. Case 3 shows the suitable 

selection of the gain
,k i

µ . Fig. 3.8 shows the relationship between the gain 
,k i

µ  and the quality of the 

Upper-bound KF. The quality of the upper-bound KF is decreased when the µ-gain becomes too small or 

too big. There is the optimal value of the µ-gain that we have to design. In this study, the µ-gain is only 

obtained through trial-and-error test. In future works, the systematic method to obtain the optimal 

µ-gain and the online-tuning of the µ-gain will be considered. 
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Fig. 3.8 Relationship between the µ-gain and the Upper-bound KF. 
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3.5 Random-time-delay  

In this section, we will study how the upper-bound Kalman filter is developed to the 

random-time-delay system. There are two possible cases: First, the time-delay is measurable; Second: 

the time-delay is uncertain. 

3.5.1 Measurable time-delay 

The system in which the time-delay varies can be expressed as: 

1

( )

k k k k k k

k k d k k

x A x B u w

y Cx v

+

−

= + +


= +                              

(3.52)  

Assume that at period k, the number of delayed samples d(k) is measurable. We can also assume 

that d(k) has a certain upper and lower bound: 

min max( )d d k d≤ ≤

                             

(3.53)  

The estimation algorithm is almost the same as the algorithm in Fig. 3.1. The difference is the 

size of the store is increased to capture the arrays of past time predicted state and past time 

upper-bound.  

[ ]{ }
[ ]{ }

min max1

min max1

ˆArray state: = ,

Array covariance:= ,

k i k i

k i k i

x i d d

i d d

− − −

− − −

 ∈


Ω ∈
         

(3.54)  

At the period k, when the time-delay is known, the associated values in the arrays are used. For 

instance, the estimated state, the upper-bound of the estimation error covariance, and the estimation 

gain are calculated as: 

( ) ( )( )1 1
ˆ ˆ ˆ

k kk k k k k d k k d k
x x L y Cx

− − − −
= + −

            

(3.55)  

( )

( ) ( )

( )

( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( )

1

,1 1
,0

1 1
1 1

, 2 2 1
1

11

d k

T T T

k k k v k kk k k k k d k k d k
k ii

T
d k d k

T T T

k j k k k jk d k k d k k d k k d k
j j

d k i

T

k i k j k d k i k d kk d k i k d k i
j

L C C L L R L

      A C L L C A

     A L C C L

µ

µ

−

− − − −
=

− −− − − − − −
= =

−

− − + −− + − − +
=

 
Ω = Ω + + Ω +  

 

   
− Ω − Ω      
   

 
+ Ω  

 

∑

∏ ∏

∏
( )( ) 1

0 1

T
d k id k

T

k ji

i j

A

−−

−+
= =

  
      

∑ ∏

            

(3.56)  

( )

( ) ( )

( )

( ) ( )

1
1

,1 1
,01

11

d k d k

T T

k k j v kk d k k d k k d k k d k
k iij

L A C C C R
µ

−
−

− − − − − − −
==

    
= Ω + Ω +      

     
∑∏

            

(3.57)  

3.5.2 Uncertain time-delay 

In this case, the number of the delayed samples d(k) is not known exactly. As suggest in [55], we 

assume that we can derive the time-delay’s probability density function f(t), for instance through 

experiments. From the probability density function, the probability ρi that d(k) takes the number di ∈ 
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[dmin, dmax] is obtained as: 

( )
2

2

Pr
2 2

s
s i

s
s i

T
T d

s s

i s i delay s i

T
T d

T T
T d T T d f t dtρ

+

−

 
= − ≤ ≤ + = 

 
∫

        

(3.58)  

where Ts is the sampling time of the delayed measurement. 

Define ( )ˆ
k k

x i  is the estimated state when the measurement is di-sample-delay measurement. The 

estimated state ( )ˆ
k k

x i  is obtained using the upper-bound Kalman filter by setting the number of the 

delayed sample as di. The optimal estimated state is: 

max

min

ˆ ˆ ( )
d

ik k k k

i d

x x iρ
=

= ∑
        

(3.59)  

In other words, the estimation algorithm includes (dmax – dmin + 1) upper-bound Kalman filters. 

Certainly, more computational cost must be paid to deal with the uncertain time-delay problem. 

    If the probability density function of the time-delay is unknown, the problem is more difficulty. 

This problem is still open and would be dedicated to the future works of this study. 

 

3.6 Discussion 

In this chapter, a new Kalman filter considering the large-time-delay in the measurement is 

proposed. The key idea of the method is to introduce a µ-gain to obtain the upper-bound of the 

estimation error covariance for designing the estimation gain. The effectiveness of the proposed 

method in comparisons with other previous works is discussed through simulation study. The proposed 

method is shown to be more robust and stable than the “cascade estimation” or the “measurement 

extrapolation estimation”. However, the µ-gain is just selected by trial-and-error and it is kept as a 

constant. Therefore, it is interesting to examine the online tuning of the µ-gain in the future study. 

Finally, a little discussion on the random-time-delay issue is given. 

The proposed upper-bound Kalman filter will be applied to the visual servo system for chip 

mounting machine in the Chapter 6. In this system, the information from the image processing unit is 

delayed. Therefore, the upper-bound Kalman filter is used to handle the delay and estimate the target 

position accurately. 
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Chapter 4:   

Simultaneous Estimation of Parameter and 

State 

 
“You can, for example, never foretell what any one man will do, but you can say  

with precision what an average number will be up to. Individuals vary, 

but percentages remain constant. So says the statistician.” 

Sherlock Holmes (The Sign of Four) 

 

4.1 Introduction 

In this chapter, we will introduce the Unscented Kalman Filter (UKF) for nonlinear estimation. 

Beside this, the possibility of UKF in adaptive estimation is presented. It can be a new application of 

UKF if we can use this algorithm to estimate both the state and the parameter simultaneously instead 

of using a Kalman filter and a Recursive Least Square (RLS) identification of the parameter. 

4.1.1 Optimal estimation-Bayesian point of view 

From the probability theory, given the measurement Y, the hidden X can be estimated by one of 

the following methods: maximum likelihood estimation, maximum a posterior estimation, and 

minimum variance estimation [101].  

The conditional probability of the hidden sequence Xk given the measurement Yk can be obtained 

by Bayes’ theorem [101]: 

( ) ( )
( )
( )

Pr
Pr Pr

Pr

k

k k k k

k

X
X Y Y X

Y
= ×  (4.1)  

where ( )Pr
k k

X Y  is the posterior, ( )Pr
k

X  is the prior, ( )Pr
k k

Y X  is the likelihood, and ( )Pr
k

Y  is 

the evidence. 

If the process dynamics is Markov, the sequential (recursive) the Bayesian estimator is 

established as follows with two stages in each computational cycle, the prediction and the correction. 

Prediction: 

This stage is to obtain the prior: 

( ) ( ) ( )1 1 1 1 1Pr Pr Prk k k k k k kx Y x x x Y dx− − − − −= ×∫  (4.2)  

Correction: 

This stage is to obtain the posterior: 
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( )
( )

( )
( )1

1

Pr
Pr Pr

Pr

k k

k k k k

k k

y x
x Y x Y

y Y
−

−

= ×  (4.3)  

where ( )Pr
k k

y x  is the likelihood, ( )1Pr
k k

y Y −  is the evidence, and { }1 2 3, , ,...,
k k

Y y y y y= . 

The above algorithm is the general algorithm of the optimal state estimations. Some of them are 

presented in cases of study in the previous chapters. 

4.1.2 Bayesian estimation of linear system 

The linear stochastic system is express as follows: 

1k k k k k k

k k k k

x A x B u w

y C x v

+ = + +


= +
 (4.4)  

where wk and vk are Gaussian noises, their covariance matrices are Rw,k and Rv,k, respectively.  

Using the above model, we can easily obtain the posterior in (4.3) using the following Gaussian 

distributions: 

( ) ( ),Pr ,
k k k k v k

y x C x R∼  (4.5)  

( ) ( ) ( )1 1 1 1 1 1 , 11 1 1 1 1 1
ˆ ˆPr , , T

k k k k k k k w kk k k k k k k k
x Y x P A x B u A P A R− − − − − − −− − − − − −

= + +ɶ ɶ∼  (4.6)  

( ) ( ) ( )1 ,1 1 1
ˆ ˆPr , , T

k k k k k k v kk k k k k k
y Y y R C x C P C Rε− − − −

= +ɶ∼  (4.7)  

where 1k̂ k
x

−  is the predicted state, k̂k
x  is the corrected state, 1k k

P
−
ɶ  is the prediction error covariance, 

and k k
Pɶ  is the correction error covariance. 

Then, by maximizing the posterior, the update equations of the estimation gain and the correction 

state, and the correction error covariance are obtained as follows. They are the same as the update 

equations of the standard Kalman filter which is designed based on the minimum estimation error 

covariance. This is an interesting point of the Bayesian estimation theory. 

( )
1

,1 1

T T

k k k k v kk k k k
L P C C P C R

−

− −
= +ɶ ɶ  (4.8)  

( )1 1
ˆ ˆ ˆ

k k kk k k k k k
x x L y C x

− −
= + −  (4.9)  

( ) 1k kk k k k
P I L C P

−
= −ɶ ɶ  (4.10)  

4.1.3 Bayesian estimation of nonlinear system 

How to obtain the posterior (new) distribution through the nonlinear transformation is a 

non-trivial question. The conventional solution is to approximate the nonlinear function of 
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transformation using Taylor series approximation. For instance, extended Kalman filter (EKF) is the 

algorithm that utilizes the first-order-approximation of the Taylor series [102]. This method requires 

the Jacobians calculation which suffers from the computational cost. Moreover, this algorithm might 

be unstable if the local linearity is violated. The estimation accuracy is degraded if the first order term 

does not dominate the higher order terms in the Taylor series. 

In the last years of the 20
th
 century, a new method named “sigma-points” is proposed by Julier, 

Uhlmann, and Durrant-Whyte [103] to deal with the nonlinear transformation. The key idea of this 

method seems to be heuristic: “it is easier to approximate a probability distribution, than to 

approximate an arbitrary nonlinear function of transformation.” The method can be described as 

follows: Firstly, a set of points with associated weights are generated such that they capture the 

original distribution. Then, these points are transferred directly using the nonlinear function without 

any Jacobians calculation. Finally, the transferred points with weights are used to calculate the mean 

and the covariance of the posterior distribution. One typical example of sigma-point family is the 

unscented Kalman filter (UKF) [104]. This method can capture not only the first-order-term but also 

higher-order-terms in the Taylor series. Thus, UKF can achieve the better estimation performance than 

the EKF. In this study, we will used the UKF as the tool to deal with the nonlinear estimation. 

The comparison of the sigma-point transform with the first-order Taylor series linearization is 

shown in Fig. 4.1 (redrawn from the figure in [101]). In the following section, we will introduce the 

sigma-point transformation 

 

 

Fig. 4.1 Comparison of two methods for nonlinear transformation. 
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4.2 Unscented Kalman filter 

4.2.1 Sigma-point approach 

To deal with the nonlinear transformation, the following idea is introduced by Julier et al: Select a 

set of sigma-point that they capture the specific properties of the underlying distribution. The problem 

can be expressed as: 

GIVEN the sigma-points with associated weights { }, , 0,...,
i i

X  W  i NσΣ = =  and the nonlinear 

transformation [ ]
i

a X , FIND the statistics of the transformed samples { } { },y yyE y   R Cov yµ = = . 

The sigma-point method: 

Step 1: Determine the number, weights, and locations of the sigma-points based on the unique of the 

characteristics of the prior distribution. 

Step 2: Nonlinear transform each point to obtain the set of posterior sigma-point. 

[ ]
i i

Y a X=  (4.11)  

Step 3: Estimate the posterior mean and covariance: 

( )( )
1 1

,
x xN N

T

y i i yy i i y i y

i i

W Y        R W Y Yµ µ µ
= =

= = − −∑ ∑  (4.12)  

4.2.2 Sigma-point transformation for Gaussian distribution 

In case of Gaussian distribution, the sigma-points are selected such that they capture the mean, 

the covariance, and the symmetric characteristics. Considering a Nx-dimensional random vector 

{ }, , 0,...,
i i

X  W  i NσΣ = = , the set of sigma-points can be chosen as follows: 

0 0,
x

X        W
N

κµ
κ

= =
+

 (4.13)  

( )( ) ( )
1,

2
i x x xx i

i
x

X N R        W
N

µ κ
κ

= + + =
+

 (4.14)  

( )( ) ( )
1,

2x xi N x x xx i N
i

x

X N R        W                     
N

µ κ
κ+ += − + =

+
 (4.15)  

where κ  is the tuning parameter to minimize the mismatch between the 4-th order moments of 

sigma-points and the true distribution. ( )( )x xx
i

N Rκ+  is the i-th column of the matrix-square-root 

of ( )x xx
N Rκ+ . The matrix-square-root can be obtained by the Cholesky decomposition algorithm 

[105]. 

4.2.3 Unscented Kalman filter algorithm 

Consider the following nonlinear stochastic system with additive noises: 

[ ] [ ]

[ ]
1k k k k

k k k

x a x b u w

y c x v

+ = + +


= +
 (4.16)  

where wk and vk are Gaussian noises, their covariance matrices are Rw,k and Rv,k, respectively. a[ ], b[ ], 

and c[ ] are the nonlinear transfer functions. 
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    The UKF algorithm is presented as follows: 

Initial conditions 

0 0 0 0
ˆ ,x        Pɶ  (4.17)  

State: sigma-points and weights 

00, 1 1 1 1
ˆ ,

k k k k
x

X x        W
N

κ
κ− − − −

= =
+

 (4.18)  

( )( ) ( ), 1 1 1 1 1 1

1ˆ ,
2

x ii k k k k k k
i x

X x N P        W
N

κ
κ− − − − − −

= + + =
+

ɶ  (4.19)  

( )( ) ( ), 1 1 1 1 1 1

1ˆ ,
2xx

x i Ni N k k k k k k
i x

X x N P        W                         
N

κ
κ++ − − − − − −

= − + =
+

ɶ  (4.20)  

State prediction 

[ ]1, 1 , 1 1 ki k k i k k
X a X b u −− − −

 = + 
 (4.21)  

2

1 , 1
0

ˆ
xN

ik k i k k
i

x W X
− −

=

=∑  (4.22)  

State error prediction 

, 1 , 1 1
ˆ

i k k i k k k k
X X x

− − −
= −ɶ  (4.23)  

2

, 11 , 1 , 1
0

xN
T

i w kk k i k k i k k
i

P W X X R −− − −
=

= +∑ɶ ɶ ɶ  (4.24)  

Measurement: sigma-points and weights 

{ }, 1 , 1, 1 , 1 , 1 , 1
ˆ , ,w k w ki k k i k k i k k i k k

X X X R X Rκ κ− −− − − −
= + −  (4.25)  

Measurement prediction 

, 1 , 1
ˆ

i k k i k k
Y c X

− −
 =  

 (4.26)  

2

1 , 1
0

ˆ
xN

ik k i k k
i

y W Y
− −

=

=∑  (4.27)  

Residual prediction 

, 1 , 1 1
ˆ

i k k i k k k k
Y yε

− − −
= −  (4.28)  

2

,, 1 , 1 , 1
0

xN
T

i v kk k i k k i k k
i

R W R
εε

ε ε
− − −

=

= +∑  (4.29)  

Estimation gain 

2

, 1 , 1, 1
0

xN
T

i i k k i k kX k k
i

R W X
ε

ε
− −−

=

=∑ɶ
ɶ  (4.30)  
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( )
1

, 1, 1k k kX k k
L R Rεεε

−

−−
= ɶ  (4.31)  

State correction 

1
ˆ

k k k k
e y y

−
= −  (4.32)  

1
ˆ ˆ

k kk k k k
x x L e

−
= +  (4.33)  

1 , 1

T

k kk k k k k k
P P L R Lεε− −

= −ɶ ɶ  (4.34)  

 

4.3 UKF for simultaneous estimation of parameter and state 

As discussed in Chapter 1, the adaptive estimation can be designed using the estimator (such as 

Kalman filter) along with the parameter identification (such as the RLS identification). As shown in 

Fig. 4.2 (a), the estimated state vector x̂ is fed to the Identification and the parameter vector ĉ  is fed 

to the Estimator. This estimation configuration is complex to design. Moreover, it is questionable for 

the convergence to the true values of this estimation configuration. For instance, if the uncertainty is 

large and the initial values of the parameter vector is considerably inaccurate. In this case, the 

estimated state is inaccurate, and again, it gives negative influence to the Identification.  

Considering the following stochastic system: 

[ ]

[ ]
1 , ,

, ,

k k k k k

k k k k k

x g x u c w

y h x u c v

+ = +


= +
 (4.35)  

where xk is the state vector, uk is the input vector, and ck is the parameter vector, wk and vk are Gaussian 

noises. 

We may introduce the dynamics of the parameter vector, for instance, as a random walk process: 

1 ,k k c k
c c w+ = +  (4.36)  

By this way, the following augmented system can be obtained: 

[ ]

[ ]
1 ,

,

k k k k

k k k k

X G X U W

Y H X U V

+ = +


= +
 (4.37)  

where 

, , , ,
k k

k k k k k k k k

k k

x w
X  U u  Y y  W  V v

c v

   
= = = = =   
   

   (4.38)  

The system (4.35) can be a linear or nonlinear system. However, the augmented system (4.37) is 

generally a nonlinear system. Therefore, it is possible to estimate both the state and the parameter 

simultaneously using the simpler configuration in Fig. 4.2 (b).  
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P(x, c)

Estimator

Identification

x̂ ĉ

u y

 

(a) State estimator + parameter identification. 

 

P(x, c)

Simultaneous

  Estimator

u y

x̂

ĉ

 
 
   

(b) Estimation of augmented system using UKF. 

Fig. 4.2 Two configurations for state and parameter estimation. 
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4.4 Discussion 

In this chapter, we introduce the sigma-point-transformation and the unscented Kalman filter 

which is an effective tool for estimation design of the nonlinear system. However, our goal is not 

studying the nonlinear estimation. We aim to utilize the nonlinear estimation tool to develop a new 

configuration of adaptive estimation. Together with the state, the parameter can be considered as the 

extension state and an augmented state space model can be established. Because the augmented model 

is usually nonlinear, the unscented Kalman filter can be applied to estimate both the state and the 

parameter simultaneously. This is an alternative configuration besides the adaptive estimator including 

the filter/observer and the RLS identification.  

In Chapter 7, the effectiveness of the new configuration will be verified through a case of study: 

simultaneous estimation of vehicle’s sideslip angle and cornering stiffness using tire lateral force 

sensors. Through this case of study, the two configurations in Fig. 4.2 will be compared with each 

other. 
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Chapter 5: 

Motion Control of Electric Vehicle Using GPS 

 
“The EV is the most exciting object to apply advanced motion control technique.”    

Prof. Yoichi Hori 

 

5.1 Why electric vehicle? 

Electric vehicles (EVs) have been interested by both the industry and the academic circles 

because of their advantages for environmental protection and energy conservation. Various types of 

EVs have been produced by automotive companies all over the world, such as the Nissan Leaf, the 

Fiat 500e, the Honda Fit EV, etc. Thanks to the development of wireless power transfer, 

super-capacitor and energy management, EVs will soon become popular to replace the internal 

combustion engine vehicles (ICEVs). Equipped with the electric motors, from the view point of 

motion control, EVs has number of remarkable advances in comparison with the ICEVs [57]: 

1. The torque response of EVs is very quick, 10-100 times faster than that of ICEVs. Thus, it is 

possible use the motor torque as the control input to design the two degree of freedom control of 

EVs. For instance, high performance adhesion control of EVs was realized, such as the anti skid 

control [57]. 

2. The motor torque can be obtained easily from the motor current. Consequently, road condition 

estimation and driving force observer can be attained [58]. 

3. The electric motors are compact and inexpensive. Therefore, they can be installed at each wheel. 

This means that each wheel’s torque can be controlled independently to generate yaw-moment – a 

control input of the vehicle stability control system [59]. 

In conclusion, EVs is a novel motion control system. In near future, EVs should be the means of 

transportation of human society. Needless to say, research on motion control of EVs play the 

non-trivial role in both industrial circle and academic circle. 

 

5.2 Why GPS for EV motion control? 

Considering the control purpose and the desired state feedback, motion controls of electric 

vehicle are summarized in Table 5. 1. This summarization shows that many motion variables are 

desirable to be estimated, such as sideslip angle, roll angle, pitch angle, yaw angle, longitudinal 

velocity. These variables can be estimated using inertial sensors and encoders. For instance, in [60], 

the gyroscopes and accelerometers are used to estimate the roll angle and the pitch angle. As 

mentioned in Chapter 1, the inertial sensors suffer from the strong noises, bias, scale error… Therefore, 
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sensor fusion in which the inertia sensors are fused with other nonconventional sensors has been 

researched for years. The nonconventional sensors can be a vision system [61], magnetometer [45], 

GPS [22], tyre force sensor [62], etc. Among them, GPS became a strong candidate due to the 

following reasons: 

1) GPS provides not only the position but also the velocity and the course angle. In contrast, another 

sensor like the magnetometer or the vision system can only provide the yaw angle (heading angle) 

of the vehicle. The measurements from GPS can be utilized for many motion control purposes, 

such as lateral stability control, traction control, velocity control, autonomous control. 

2) GPS provides the long-term-stable and accurate measurements. Thanks to the development of 

GPS technology, our GPS receiver can receive not only the signal from the system produced by 

United States but also other correction signals. Nowadays, many space based augmented systems 

 

(a) QZSS (Source: JAXA) 

 

(b) MTSAT (Source: Ministry of Land, Infrastructure and Transportation, Japan). 

Fig. 5.1 Japan’s own GPS system. 
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have been launched, such as European geostationary overlay system (EGNOS), India’ GPS aided 

GEO augmented navigation system (GAGAN), and Chinese’s satellite navigation augmentation 

system (SNAS). In Japan, national projects have been conducted in order to establish Japan’s own 

GPS. The Quasi-zenith satellite system (QZSS) has been designed by Japan Space Association 

(JAXA) to provide high elevation satellites over Japan to overcome problems with navigation in 

urban area with tall buildings, as shown in Fig 5.1(a). The MTSAT satellite-based augmentation 

system (MSAS) has been developed by Japan Civil Aviation Bureau (JCAB). The MSAS is 

described in Fig. 5.1(b) with two master control stations (MCS) located in Kobe and Hitachiota. 

As the Japan’s Strategic Headquarters for Space Policy, their QZSS can improve the positioning 

accuracy considerably, to a sub-meter or several-centimeter level [63]. If real-time-kinematic 

(RTK) technique is applied in which the correction signal comes from local station, the GPS 

positioning can attain the centimeter level of accuracy. 

From the above discussions, we have been interested in using GPS to design the state estimation 

for electric vehicle motion control. 

 

Table 5.1 Controlled states in EV motion controls 

Control purpose Methods to obtain state feedback 

Measurement Estimation 

Traction control [64] Wheel rotational speed Vehicle longitudinal velocity 

Lateral stability [65] Yaw-rate Sideslip angle 

Roll stability [66]  Roll angle 

Pitch stability [67]  Pitch angle 

Driving force control [68]  Wheel’s driving force 

Range extension control [69] Wheel rotational speed  

& Yaw-rate 

Vehicle longitudinal velocity 

& Sideslip angle 

Yaw angle control [70]  Yaw angle 

 

5.3 Vehicle dynamics 

Dynamics of vehicle includes many issues. In this thesis, we just present the basics of lateral 

dynamics which is the background of the contribution of this thesis. 

5.3.1 Characteristics of the tire lateral force 

The tire is the main component of the vehicle that interacts with the surface of the road. Therefore, 

it is essential to study the tire lateral force characteristics for lateral motion control of the vehicle. In 

this section, the relation between the tire lateral force and the tire slip angle is examined. As shown in 

Fig. 5.2, the lateral force will exert on the tire as the tire slip angle appears. As a result, the tire will be 

deformed. When the tire slip angle is small, the lateral force is proportional to the tire slip angle. The 

cornering stiffness can be defined to express this linear relationship: 
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y
F Cα=

                          

(5.1)  

where 
y

F  is the tire lateral force, α  is the tire slip angle, and C is the tire cornering stiffness. 

The tire lateral force increases when the tire slip angle becomes larger. At a certain large tire slip 

angle, the tire lateral force is saturated because of the friction limit [71]. As shown in Fig. 5.3, the 

vector addition of the lateral and longitudinal tire force is upper-bounded by the vertical tire force 

multiplied by the road friction coefficient. The characteristics of the lateral tire force can be generally 

explained in Fig. 5.4. If the tire slip angle is small, the tire force is placed in the linear region with a 

certain cornering stiffness. On the other hand, if the tire slip angle is large, the tire force will be placed 

in the non-linear region. The maximum value of the tire lateral force decreases when the friction 

coefficient of the road becomes smaller. 

A number of works have been conducted to formulate the tire lateral force characteristics. For 

instance, in [71], an empirical model is proposed as follows: 
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
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
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(5.2)  

Where Fz 
is the vertical force of the tire, and µ

 

is the road friction coefficient. In this thesis, the 

empirical model expressed in (5.2) is utilized in order to construct the simulation model using 

MATLAB/SIMULINK. 

    In [72], another model is constructed for modeling the tire force characteristics using the “magic 

formula”: 

( )( ){ }sin arctan arctanyF D C B E B Bα α α = − − 
                            

(5.3)  

where B is the stiffness factor, C

 

is the shape factor, D is the peak factor, and E is the curvature factor. 

By adjusting the stiffness factors, the expression of the tire lateral force can be modified flexibly to 

match with the experimental results. 

5.3.2 Vehicle handling models 

In this study, the electric vehicle with the active front steering is used for studying. Therefore, a 

front steer vehicle model is constructed as shown in Fig. 5.5. In Fig. 5.5 and the following equations, 

β is the sideslip angle; γ  is the yaw rate;  and 
x y

a a are the longitudinal and lateral acceleration; 
x

v  

is the longitudinal velocity; 
y

v  is the lateral velocity; V is the velocity vector; 
f

δ is the front steering 

angle; , , ,  and 
f r f r

l l d d  are the dimensions of the vehicle; m is the mass of vehicle; Iz is the yaw 

moment of inertia; and Nz is the yaw moment which is the result of the different driving torques at the 

left and the right sides in-wheel motors. 
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Fig. 5.2 The deformation of the tire at different slip angles. 
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Fig. 5.3 Friction limit circle.                          Fig. 5.4 Characteristics of the tire lateral force. 
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Fig. 5.5 Planar model of the vehicle with front steering. 
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Using the vehicle model in Fig. 5.5 and assume that the tire force is in linear region, the 

calculation of the tire lateral forces can be expressed as: 

2

x ffl

y f f

f

x

v l
F C

d
v

β γ
δ
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(5.7)  

5.3.3 Linear model of vehicle 

For the sake of simplicity, the linear bicycle model in Fig. 5.6 is widely used in motion control of 

the vehicle. This model is constructed under the following assumptions: 1) The tire slip angle is small 

such that the tire force is in the linear region. 2) The vehicle is symmetric about the fore-and-aft center 

line. 3) The load transfer is neglected. 4) The vehicle velocity is almost constant. 

Using the linear bicycle model in Fig. 5.6, the front and rear tire lateral forces can be expressed as 

follows: 

2
yf f f

F C α= −

                            

(5.8)  

2
yr r r

F C α= −

                            

(5.9)  

The front and rear tire slip angle can be expressed as: 

f

f f

x

l

v
α β γ δ= + −

                            

(5.10)  

r
r

x

l

v
α β γ= −

                              

(5.11)  

The lateral force equation and the yaw moment equation can be rewritten as: 

( )yf yr xF F mv β γ+ = +ɺ

                            

(5.12)  

yf f yr r z z
F l F l N I γ− + = ɺ     (5.13)  
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From (5.8) ~ (5.13), the state space model of the lateral dynamics of the vehicle is established as 

follows:

                            

 

x Ax Bu= +ɺ

                             

(5.14)
 

[ ]
T

x β γ=

                            

(5.15)  

T

f zu Nδ =  
                            

(5.16)  
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(5.18)  

Fig. 5.6 also shows the vehicle on the North-East coordinates. The course angle χ   is the angle 

between the vehicle’s velocity vector and the North. By using a single antenna GPS receiver, the 

course angle of the vehicle is measured. It equals to the yaw angle ψ  plus the sideslip angle β . 

χ ψ β= +

                            

(5.19)  

North

EastInitial

yfF

yrF

fl

rl

U
�

xu

y
u

χ
ψ

β
N

E

γ

fδ

fα

rα

 

Fig. 5.6 Bicycle model of the vehicle on the North-East coordinates. 
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Fig. 5.7 Experimental system. 
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Table 5.2 Specification of the experimental EV 

Total mass 400 kg 

Wheel base 1.2 m 

Track-width of rear wheel 0.82 m 

Height of CG 0.4 m 

Wheel radius
 

0.26 m 

Wheel spin inertia 1.26 kgm
2
 

Yaw moment of inertia 136 kgm
2
 

Energy store (super-capacitor) 210V, 29F, 173 Wh 

Main controller PC104, Linux OS 

In-wheel motor type PMSM 

Max. motor power 2 kW 

Max. motor torque 100 Nm 

Max. vehicle velocity
 

50 km/h 

 

 

Fig. 5.8 GPS interface software and experimental data. 
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5.4 Experimental electric vehicle 

The micro in-wheel motored EV named “Super-capacitor COMS” developed by our research 

group is used in this study (Fig. 5.7). Its specifications are shown in Table 5.2. Two in-wheel motors 

are placed in the rear-left and rear-right wheels. Thus, the driving torque of each wheel can be 

controlled independently. The active-front-steering is installed so both manual driving and 

autonomous driving are available. The EV is equipped with gyroscopes and accelerometers to measure 

the yaw-rate, the longitudinal acceleration and the lateral acceleration. Encoders are used to obtain the 

steering angle or wheel rotation speed. In addition, a non-contact optical sensor produced by 

Corrsys-Datron is used for accurate acquisition of the sideslip angle, longitudinal velocity, and lateral 

velocity. In this paper, it is used to evaluate the proposed estimation algorithm. Although it is placed in 

the front of the EV, the sideslip angle at the center of gravity can be derived thanks to an 

understanding of the vehicle geometry. The RTK-GPS receiver produced by Hemisphere is used in this 

study. It can provide not only the vehicle position but also its velocity and course angle. In the RTK 

operation mode, the positioning of one-centimeter-accuracy level is achieved. The GPS interface 

software is developed to manage, decode, and displace data from the GPS receiver in real time, as 

shown in Fig. 5. 8. The RT-Linux operating system computer is used to process the algorithm in 

real-time and to collect the experimental data. 
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Fig. 5.9 Electric vehicle motion control system using GPS. 



Chapter 5: Motion Control of Electric Vehicle Using GPS 

- 63 - 

 

5.5 Introduction to the electric vehicle control system using GPS 

The electric vehicle motion control system is shown in Fig. 5.9 including three layers. Using the 

measurements from GPS and IMU, the state estimation layer outputs the estimated values of 

longitudinal velocity, sideslip angle, and yaw angle to the motion control layer. In the motion control 

layer, the traction control is established based on the wheel-slip-ratio calculated through estimated 

velocity. Lateral stability control is designed thanks to the estimated sideslip angle. Attitude control is 

constructed using the estimated yaw angle. The motion control layer outputs the acceleration 

command, the yaw moment command, and the front steering command to the actuator control layer. 

The actuator control layer distributes the torque to the rear left and rear right in-wheel motors and 

controls the front active steering motor. 

 

5.6 Robust estimation of sideslip angle using GPS 

5.6.1 Literature review 

Using an accelerometer and a gyroscope, sideslip angle estimation methods can be divided into 

three groups: kinematic model based estimation [18], [73], nonlinear dynamic model based estimation 

[74], [75], and linear dynamic model based estimation [19], [76].  The kinematic model based 

estimation is very simple to be implemented. Moreover, it does not rely on tire force characteristics of 

the vehicle. However, it uses accelerometers and gyroscopes which are always interfered by strong 

noise, offset, and scale errors. Therefore, this method does not satisfy stable and accurate estimation in 

the long-term. Although non-linear estimation has been developed theoretically, it is too complicated 

to be implemented in real-time. Therefore, linear model based estimation seems to be a suitable choice 

when considering both the robustness issue and the computation issue. However, due to the variation 

of road conditions, the linear model of the vehicle contains uncertain parameters such as the tire 

cornering stiffness. A linear estimator with constant tire cornering stiffness is certainly not robust 

enough. In [29], adaptive estimation of sideslip angle, which is the combination of a linear observer 

and online cornering stiffness identification, is introduced. This method increases the computational 

burden of the control system because it requires a tire force estimator in addition to the parameter 

identification. If the road conditions suddenly change (for instance, from high friction to low friction), 

accurate sideslip angle estimation is not achieved until the convergence of identified cornering 

stiffness. 

Recently, sideslip angle estimation using nonconventional sensors has been studied. An on-board 

vision system using a camera and image processing can obtain the heading angle of the vehicle for 

sideslip angle estimation [77]. However, visibility is not always available, due to bad weather or when 

road markers are covered with leaves, snow, dirt, or water. The huge computation time of image 

processing results in measurement delay which is a serious problem in estimation design. On the other 

hand, based on the differences between the left and right tire lateral force measurements, the sideslip 

angle can be identified without cornering stiffness [78]. This method seems to be mathematically 
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beautiful from its formulation. However, the possibility of this method for practical application is still 

questionable. First, the cost of tire force sensors are high and it is not easy to install this sensor into the 

rim of the wheel. Second, this sensor would suffer from strong noise and signal delay. Third, the 

influence of load transfer is not considered in this method. Last but not least, the authors use a linear 

identification algorithm which is only suitable for slow time-varying parameter estimation. In fact, the 

sideslip angle varies quickly and frequently, especially during sharp cornering or slalom driving.  

Since the middle of the last decade, global positioning system (GPS) became a candidate for 

sideslip angle estimation. Thanks to the development of GPS technology, satellite systems, and GPS 

signal correction services, GPS can provide accurate measurement of vehicle motion in the long term 

[79]. By using a double-antenna GPS receiver, sideslip angle can be calculated directly considering the 

phase shift of carrier waves arriving at two different antennae at known locations on the vehicle [80]. 

However, this method is too expensive to be used in production vehicles. Moreover, the estimation 

period of this method is limited by the poor update rate of GPS receivers. In [81], estimation is design 

based on a kinematic model using the fusion of the inertial measurement unit, GPS, and magnetometer. 

This method is influenced by the variation of Earth’s magnetic field and other aforementioned 

problems of the kinematic method. In [82], Bevly utilized a single-antenna GPS along with a yaw-rate 

sensor. This method relies on the integration of yaw-rate measurement to calculate the yaw angle. 

Then, the sideslip angle is calculated by subtracting GPS’s course angle with the yaw angle. This 

method is very simple but not effectively robust due to many problems, such as the noises and scale 

error of yaw-rate sensor and the out-of-plan vehicle motion. In [24], Anderson et al made an advance 

of the method in [82] by using the linear bicycle model for estimation design. However, Anderson 

used the conventional Kalman filter without any consideration of the model uncertainties or unknown 

disturbances. Between two consecutive updates of the GPS measurement, it only relies on the yaw-rate 

measurement to estimate the sideslip angle. As a result, the estimation is not robust enough and could 

be degraded easily during these intervals.  

From the aforementioned discussion, considering both the cost and robustness issues, the 

dynamic model based estimation using a single antenna GPS and a yaw-rate sensor could be a good 

selection if we can design a robust estimation algorithm. The clear advantage of this sensor fusion is 

that the measurement equation does not contain cornering stiffness as any method using lateral 

accelerometer does. Moreover, we can combine the advantages of each sensor: accuracy and stability 

in long-term GPS and high-update-rate of yaw-rate sensor.  

5.6.2 Some previous methods 

A. Estimation using yaw-rate sensor and accelerometer 

In [76], by using the linear bicycle model, Aoki et al introduce the following observer in the 

continuous-time domain:  

( )ˆ ˆ ˆx Ax Bu K y Cx Du= + + − −ɺ

                             

(5.20)
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(5.21)
 

Aoki et al claim that the observer gain K in (5.21) is the best for robust conditions. However, 

their proposed observer gain does not satisfy any popular criterion of robust estimation, such as: 

( )( )ˆ ˆDesign  that min
T

k k k k
K E x x x x − − →

 
                             

(5.22)  

For detailed explanation, k12 is obtained by considering the estimation error of sideslip angle: 
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where ' ' '

11 12 11, ,  and a a b  are the real values of the vehicle dynamics model; 
11 12 11, ,  and a a b  are the 

nominal values of the estimation model.  

According to Aoki et al, under the assumption that γ̂ γ≈  the “best” condition for robust 

estimation is that 
121 0xk v− = , in other words 

12
1

x

k
u

= . 

B. Estimation using yaw-rate sensor and GPS 

Following the idea in [24] and [82], the course angle from GPS can be a measurement and the 

yaw angle can be another state along with the sideslip angle. The following model is established: 

x Ax Bu= +ɺ

                               

(5.24)  
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(5.26)  

The above continuous time model can be transformed into the discrete time model with 

fundamental sampling time Tc using the following transformation: 

0

,
c

c

T

AT A

k kA e  B e d B
τ τ= = ∫

                             

(5.27)  

To provide the state feedback control, Tc is set to be the same as the period of the control input u. 

(for instance, Tc = 1 millisecond). In our system, the sampling time of GPS course angle is rTc where r 

is the dual-rate ratio which is an integer number. For the sake of simplicity, we assume that the 

sampling time of the yaw-rate sensor is also Tc. A stochastic discrete-time system can be established as 

follows: 
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(5.30)  

where wk and vk are Gaussian noises with zero means, the measurement vector is [ ]
T

k k ky γ χ= . The 

second row of the measurement matrix is set to zero during the periods that GPS measurement is 

unavailable. 

Then, a conventional estimation method, such as the standard Kalman filter [12] can be applied to 

design the estimation: 

( )1
ˆ ˆ ˆ

k k k k k k k k k
x A x B u L y C x+ = + + −

                              

(5.31)  

C. Estimation using yaw-rate sensor and GPS based on innovation holding scheme 

According to the above method, during the period that GPS measurement is unavailable, the 

sideslip angle is corrected only by the innovation from yaw-rate measurement. Notice that the 

yaw-rate measurement suffers from the scale error, noises, sensor bias. Moreover, the modeling may 

have uncertainty, the cornering stiffness is a time-varying parameter, and the external disturbance like 

wind force is unknown. Therefore, during the GPS-unavailable-periods, the estimation accuracy is 

degraded. To improve the estimation accuracy, it is possible to utilize the innovation holding method 

which is introduced in Chapter 1. This method is originally proposed by Hara et al [37]. 

Define y1,k as the yaw-rate measurement and y2,k as the course angle measurement. The 

measurement equations (without noises) can be expressed as: 

1, 1,k k k
y C x=

                             

(5.32)  

[ ]1, 0 1 0
k

C =

                             

(5.33)  

2, 2,k k k
y C x=

                             

(5.34)  

[ ]
[ ]2,

1 0 1

0 0 0
k

     if  k jr
C

   if  k jr

 =
= 

=

[ ]
[ ]2,

1 0 1

0 0 0
k

     if  k jr
C

   if  k jr

 =
= 

=                              

(5.35)  

Assume that t = jr, the GPS measurement is updated. The estimation algorithm can be expressed 

as follows: 

( ) ( )
( ) ( ) [ ]

1, 1, 1, 2, 2, 2,

1

1, 1, 1, 2, 2, 2,

ˆ ˆ ˆ 0
ˆ

ˆ ˆ ˆ 1, 1

t t t t t t t t t t t t

t i

t i k i t i t i t i t i t i t i t i t t t

A x B u L y C x +L y C x    for  i
x

A x B u L y C x +L y C x     for  i  r
+ +

+ + + + + + + + +

 + + − − =
= 

+ + − − ∈ −

  (5.36)

                           

The innovation of the GPS measurement ( )2, 2,
ˆ

t t ty C x−  is stored for contributing the correction 

during the GPS-unavailable-periods. The observer gains L1,t+i and L2,t+i can be obtained through 

pole-placement. 
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5.6.3 Estimation using yaw-rate sensor and GPS based on disturbance accommodation 

A. Disturbance accommodation 

All three above sideslip angle estimation methods fail to deal with model uncertainties and 

external disturbances. In this sub-section, we will propose a more robust estimation algorithm. Firstly, 

let’s go back to the decade of 1970s when Johnson introduced the concept of “disturbance 

accommodation” [83]. His idea is that we might introduce to the linear system a disturbance term 

along with the disturbance’s dynamics to establish an extended state linear system. By this way, the 

robust of the linear regulator can be improved by the estimation of both the state and the disturbance 

term. The disturbance accommodation control is applied to motion control of a helicopter in [84].  

Utilizing this idea, we introduce the disturbance term into the stochastic dynamics in (5.28): 

1 ,k k k k k k d k k
x A x B u x w+ = + + Γ +

                             

(5.37)  

where 

, 1, 2,

T

d k d k d k
x x x =  

                             

(5.38)  

1 0

0 1

0 0

k

 
 Γ =  
                                

(5.39)  

Assume that the disturbance term is a random-walk process: 

, 1 , ,d k d k d k
x x w+ = +

                             

(5.40)  

where wd,k is the Gaussian noise associated with the random-walk. 

The extended system is established as: 

1k k k k k k
X A X B U W+ = + +

                             

(5.41)  

k k k k k
Y C X Vδ= +

                             

(5.42)  

,

, ,
k

k k k k k

d k

x
X  U u  Y y

x

 
= = = 
                               

(5.43)  

[ ] [ ] [ ]
[ ]

2 2

2 3 2 2 2 2

, , 0 ,
0 0

k k k

k k k k k k

A B
A  B  C C  

I
δ δ

×
× × ×

Γ   
 = = = =     

  
  (5.44)

                              

,

,
k

k k k

d k

w
W  V v

w

 
= = 
                               

(5.45)  

The covariance matrices of the noises are: 

[ ]
[ ]

, 3 2

, , ,

,2 3

0
,

0

w k

w k v k v k

wd k

R
R  R R

R

×

×

 
= = 
                                

(5.46)  

where Rw,k and Rwd,k are covariance matrices of the process noises; Rv,k is the covariance matrix of the 

measurement noises. We can assume that they are diagonal matrices: 

( ) ( ) ( ), 1 2 3 , 4 5 ,, , , , , ,w k wd k v k gyro GPSR diag  R diag  R diagα α α α α σ σ= = =   (5.47)
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where σgyro and σGPS  are the covariance of the yaw-rate measurement and course angle measurement 

from GPS. The set ( )1 2 3 4 5, , , , , ,gyro GPSα α α α α σ σ  are tuning parameters of the estimation. In this 

study, trial-and-error was conducted to select the suitable values of the tuning parameters. 

B. Estimation algorithm 

The estimation algorithm is based on the Kalman filter in which the estimation gain is designed to 

minimize the estimation error covariance. The algorithm is expressed as follows, including two stages, 

the prediction and the correction. 

Initial condition: 

( )0 0 0 1,0 2,0 11 22 33 44 550 0 0 0

ˆ
, , , , ,

T

d dX x x  P diag P P P P Pβ γ ψ = = 
   

(5.48)

                             

Prediction stage: 

- Predicted state: 

1 1 11 1 1

ˆ ˆ
k k kk k k k

X A X B U− − −− − −
= +

                             

(5.49)  

- Prediction error covariance: 

1 1 ,1 1 1

T

k k w kk k k k
P A P A R− −− − −

= +

                             

(5.50)  

Correction stage: 

- Estimation gain: 

( )
1

,1 1

T T T

k k k k k v k kk k k k
L P C C P C Rδ δ

−

− −
= +

                             

(5.51)  

- Corrected state: 

( )1 1

ˆ ˆ ˆ
k k kk k k k k k

X X L Y C X
− −

= + −

                             

(5.52)  

- Correction error covariance: 

( ) 1k kk k k k
P I L C P

−
= −

                             

(5.53)  

5.6.4 Simulation and experimental results 

Four methods of sideslip angle estimation are performed for comparison. They are summarized in 

Table 5.3. Except Method 2, other three methods are dual-rate estimation with dual-rate ratio r = 100. 

A. Simulation results 

Simulations are performed using Matlab/Simulink with the conditions as bellow:  

- Model uncertainties: The tire cornering stiffness of vehicle model are Cfv = Crv = 7000 (N/rad). 

However, the estimation model is established with Cfn = Crn = 10,000 (N/rad). In other words, the 

uncertainties of ∆Cf = ∆Cr = -3000 (N/rad) are introduced.  

- Disturbances: Lateral wind force is simulated as unknown disturbance. The general disturbance 
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terms including model uncertainties are simulated as follows: 

( ) ( )
1 2

2 2 2 1f r f f r r f

f d
x x xx

C C C l C l C
d F

mu mu mumu
β γ δ

− ∆ + ∆ − ∆ − ∆ ∆
= + + +   (5.54)

( ) ( )2 2

2

22 2 1f f r rf f r r f f

f d

z z x z z

C l C lC l C l C l
d N

I I u I I
β γ δ

− ∆ + ∆− ∆ − ∆ ∆
= + + +    (5.55)  

where Fd and Nd are the unknown disturbance force and the unknown disturbance yaw moment. 

- Vehicle runs in a slalom test at the velocity of 25 kph. 

- A scale error of 0.9 is introduced to the yaw rate measurement. This is to simulate the incorrect of 

yaw rate measurement in real time operation. 

The simulation results are shown in Fig. 5.10, including the course angle measurement, the yaw 

rate estimation, and the sideslip angle estimation. Due to the use of yaw rate with scale error and 

model uncertainty, the estimation results of Method 2 are considerably inaccurate. Thanks to the 

utilizing of GPS course angle, Method 3 provides much better estimation in comparison with Method 2. 

However, the estimation results from method 3 are non-smooth, especially the sideslip angle. As 

shown in Fig. 5.10 (d), the estimation error of Method 3 is reduced when a course angle is updated. 

However, during the GPS-unavailable-periods, Method 3 is strongly influenced by model uncertainties 

and disturbances. Method 4 holds the course angle innovation during the GPS-unavailable-periods to 

attain the smoother estimation in comparison with Method 3. Thanks to the disturbance 

accommodation, the proposed method (Method 1) achieves the best estimation performance. The 

smooth estimation performance of Method 1 can be explained by two reasons: First, the course angle 

is accurate without scale error. Second, the disturbance is estimated to compensate the model 

uncertainties and the external disturbances (see Fig. 5.10 (e) and Fig. 5.10 (f)). 

Notice: Data of the estimation results of the disturbance terms in case of cornering test are shown in 

the Appendix 2. 

B. Experimental results 

Experiments are performed under the same conditions as simulations. Four sideslip angle 

estimation methods are implemented using C-programming. RTK-GPS receiver is set to output the 

data every 100 millisecond. Experiments are conducted under clear sky for good GPS signal. 

Trial-and-error is used to tune the noise covariance matrices. The optical sensor produced by 

Corrsys-Datron is used to obtain the sideslip angle measurement. The results of experiment are 

demonstrated in Fig. 5.11, including measured course angle, estimated yaw rate and sideslip angle. As 

the simulation, Method 2 which uses IMUs is poorest. By using GPS, Method 3 and Method 4 are 

shown to be superior, but they are still sensitive to model error and disturbances. Especially, Method 3 

is non-smooth and might result in uncomfortable driving feeling if this method is used in vehicle 

motion control system. The proposed method (Method 1), on other hand, is robust enough to the 

uncertainties. 

The idea of Method 4 is to hold the GPS measurement’s innovation to fulfill the correction stages. 
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The proposed method (Method 1) also fulfills the correction stages, but with the estimation of the 

disturbance term. From the simulation results and experimental results, the proposed method, even 

heuristic to some extent, is shown to be robust to model uncertainty and external disturbance. 

Therefore, it can be utilized for vehicle motion control system.  

For quantitative comparison, root-mean-square deviation (RMSD) of each method is calculated 

using the following formulation: 

( )
2

,

1

1 ˆ
N

j m j

j

RMSD X X
N

=

= −∑
                             

(5.56)  

where N is the number of samples, ˆ
j

X  and 
,m j

X  represent the estimated and measured value at jth 

sample. 

The RMSD results are summarized in Table 5.4 where the proposed method (Method 1) attains 

the smallest RMSD values. 

 

Table 5.3 Description of four sideslip angle estimation methods 

Number Description Outputs  Inputs  

Method 1 The proposed estimation using yaw-rate 

sensor and GPS based on disturbance 

accommodation in dual-rate Kalman filter. 

+ Yaw-rate sensor 

 

+ Front steer angle 

 

+ GPS course angle 

 

+ Yaw moment 

Method 2 Estimation using yaw-rate sensor and lateral 

accelerometer with robust observer gain 

proposed by Aoki et al. 

+ Yaw-rate sensor 

 

+ Front steer angle 

 

+ Accelerometer 

 

+ Yaw moment 

 

Method 3 Estimation using yaw-rate sensor and GPS 

based on conventional dual-rate Kalman 

filter. 

+ Yaw-rate sensor 

 

+ Front steer angle 

 

+ GPS course angle 

 

+ Yaw moment 

 

Method 4 Estimation using yaw-rate sensor and GPS 

based on innovation holding linear observer. 

 

+ Yaw-rate sensor 

 

+ Front steer angle 

 

+ GPS course angle 

 

+ Yaw moment 
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(a) Course angle from GPS receiver 

 

(b) Yaw rate estimation 

 

(c) Sideslip angle estimation 

 

(d) Sideslip angle estimation for several samples of GPS data 

Fig. 5.10 Simulation results of sideslip angle estimation. 
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(e) Estimation of the disturbance term xd1 

 

(f) Estimation of the disturbance term xd2 

Fig. 5.10 Simulation results of sideslip angle estimation (Continue from the previous page). 
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(a) Course angle from GPS receiver 

 

(b) Yaw rate estimation 

 

(c) Sideslip angle estimation 

 

(d) Sideslip angle estimation for several samples of GPS data 

Fig. 5.11 Experimental results of sideslip angle estimation. 
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Table 5.4 RMSD of four estimation methods 

Estimation method RMSD of experiment RMSD of simulation 

Sideslip angle 

[rad] 

Yaw rate 

[rad/s] 

Sideslip angle 

[rad] 

Yaw rate 

[rad/s] 

Method 1 0.36x10
-2

 0.86x10
-2

 0.16x10
-2

 0.23x10
-2

 

Method 2 1.31x10
-2

 5.61x10
-2

 1.30x10
-2

 5.60x10
-2

 

Method 3 0.88x10
-2

 3.56x10
-2

 0.61x10
-2

 2.41x10
-2

 

Method 4 0.56x10
-2

 2.52x10
-2

 0.36x10
-2

 1.44x10
-2

 

 

5.7 Lateral stability control using GPS 

5.7.1 Control system design 

In daily driving, there are many situations that the drivers want to perform the lane change or 

cornering. In these situations, it is very important to control both the yaw-rate and the sideslip angle of 

the vehicle. Otherwise, the yaw-rate and sideslip angle might increase considerably that the vehicle’s 

behavior cannot follow the driver’s will. For example, spin motion of the vehicle may results in 

serious accidents. Therefore, every vehicle must be installed the lateral stability control system to 

manage the yaw-rate and the sideslip angle. On commercial car, this system can be named Electronic 

Stability Program (ESP) in Volkswagen or Lamborghini, Vehicle Stability Assist (VSA) in Honda, 

Dynamic Stability Control (DSC) in Mazda, etc. 

The block diagram of the lateral stability control system proposed in this thesis is shown in Fig. 

5.12. The disturbance accommodation Kalman filter (DACKF) proposed in the previous section is 

used to provide the estimated state. The upper-layer based on 2DOF controller and disturbance 

rejection is used to control the yaw-rate and the sideslip angle. It outputs the front steering command 

and yaw moment command. These commands are fed to the lower-layer to control the active front 

steering systems and distribute the torque to the rear-left and rear-right in-wheel motors. 
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Fig. 5.12 Lateral stability control system based on DAKF using GPS and yaw-rate sensor. 
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A. Reference model 

The reference model is obtained based on the steady state response of sideslip angle and yaw-rate 

from the front steering command δcmd and the nominal values of the tire-cornering stiffness. Using the 

linear bicycle model, the reference values are calculated as: 

( )
( )

2

2

1
2

1

f

x
rn rf r r

d cmd

x f r

lm u
C ll l l

Gu l l
β δ

−
+

=
+ +

                             

(5.57)  

( )2

1

1

x

d cmd

x f r

u

Gu l l
γ δ=

+ +
                             

(5.58)  

where 

( )
2

2

rn r fn f

fn rn
f r

C l C lmG
C Cl l

−
=

+                              

(5.59)  

B. Upper-layer 

The upper-layer includes the feed forward controller, the feedback controller, and the disturbance 

rejection. The nominal transfer function from the input 
T

f zNδ    to the controlled state [ ]
T

β γ  is 

derived as: 
1

11 12 11 12

2 2

21 22 21 22

[ ]
n n n n

n

n n n n

a a b b
P s I

a a b b

−

×

    
= −    

                                  

(5.60)  

where an11, …, an22, bn11, …, bn22 are computed from the nominal parameters of the bicycle model. 

11 21 12 11 22 22 12

11 22 12 21 11 22 12 21

21 11 21 21 11 22 22 11

11 22 12 21 11 22 12 21

( )( ) ( )( )

( )( ) ( )( )

n n n n n n n

n n n n n n n n

n

n n n n n n n n

n n n n n n n n

b s b a b a b a

s a s a a a s a s a a a
P

b s b a b a b s b a

s a s a a a s a s a a a

+ − 
 − − − − − −
 =

+ − − 
 − − − − − − 

   (5.61)

                             

The feed forward controller is designed as the inverse of the matrix Pn: 

11 121

21 22

ff ff

ff n

ff ff

C C
C P

C C

−  
= =  

                               

(5.62)  

The desired closed loop system including the feedback controller and the plant (EV bicycle 

model) is expressed as: 

0

0

desired

K

s K
P

K

s K

β

β

γ

γ

 
 +
 =
 
 

+ 
                             

(5.63)  
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In (5.63), the cut-off frequency Kβ and Kγ can be determined by trial-and-error experiments. If the 

cut-off frequencies are too low, the response of the sideslip angle and the yaw-rate are too slow to 

track the vehicle motion with the desired motion. On the other hand, it is impossible to set the cut-off 

frequencies too high due to the limitation of the actuators’ capability. The feedback controller is 

obtained by solving the following matrix equation: 

[ ]( )
1

2 2 n fb n fb desiredI P C P C P
−

×
+ =

                             

(5.64)  

The formulation of the feedback controller is: 

[ ]( )
1 11 121

2 2
21 22

fb fb

fb n desired desired

fb fb

C C
C P P I P

C C

−
−

×

 
= − =  

                               

(5.65)  

Finally, the disturbance rejection matrix is calculated as: 

1

11 12

21 22

n n

dis

n n

b b
C

b b

−
 

=  
                               

(5.66)  

    The command from the upper-layer is obtained as: 

*
1

*
2

ˆ ˆ

ˆˆ

d df d
fb ff dis

d dz d

x
C C C

xN

βδ β β

γγ γ

      −
= + −      

−                                      

(5.67)  

C. Lower-layer 

The yaw moment is generated by distributing the different torques to the rear-left and the 

rear-right in-wheel motors. The torque of each in-wheel motors are obtained by solving the following 

equations in real time: 

 

Fig. 5.13 Front EPS motor. 
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  
− =  

  
 + =

                             

(5.68)  

where r is the wheel radius, Tacc is the acceleration command given by the driver, and dr is the 

track-width between two rear wheels. m

RLT  and m

RRT  are the rear-left and rear-right in-wheel motor’s 

torque, respectively. 

    An EPS motor is utilized for generating the front steering angle (Fig. 5.13). Thanks to the EPS, 

our system enables the steer-by-wire mode in which the steering command is generated by program 

without the driver’s handling. 

5.7.2 Simulation and experimental results 

A. Simulation results 

The simulation of lateral stability control is performed using Matlab/Simulink. The following 

conditions are set: 

- Model uncertainties: The tire cornering stiffness of vehicle model are Cfv = Crv = 7000 (N/rad). 

However, the estimation model is established with Cfn = Crn = 10,000 (N/rad).  

         

(a) Sideslip angle.                              (b)  Yaw-rate. 

         

(c) Yaw moment                           (d) Front steering angle 

Fig. 5.14 Simulation results of lateral stability control. 
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- Disturbances: Lateral wind force is simulated as unknown disturbance. The wind force starts from 4 

second. 

- Vehicle runs in a cornering test at the velocity of 25 kph.  

The simulation results are summarized in Fig. 5.14. In case of without control, the front steering 

angle is the same as the steering command and the yaw moment is zero. In this case, both the yaw-rate 

and the sideslip angle increases in comparison with the desired values. Moreover, the disturbance 

considerably influences the vehicle motion, as can be seen in the response of the yaw-rate and sideslip 

angle after 4 second. In contrast, while the proposed stability control system is applied, active front 

steering angle and yaw moment are generated to track the sideslip angle and the yaw-rate with their 

desired value. From 4 second, the disturbance only has little influence to the vehicle motion. 

B. Experimental results 

The cornering tests are conducted and the results are summarized in Fig. 5.15. The conditions are 

         

(a) Sideslip angle (without control).                    (b)  Yaw-rate (without control). 

         

(c)  Sideslip angle (with control).                      (d)  Yaw-rate (with control). 

Fig. 5.15 Experimental results of lateral stability control. 
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set the same as the simulation. The steering command and the front steering angle are generated by the 

program without the driver’s handling. In case of without control, both the sideslip angle and the 

yaw-rate increase over their references. In contrast, when the proposed lateral stability control is 

utilized, the response of the sideslip angle and the yaw-rate can follow the references. This means that 

the stability of the EV is improved. 

 

5.8 Attitude control using GPS 

5.8.1 Introduction 

In recent year, autonomous vehicle technology has been developed drastically to improve the 

safety and the comfort of the transportation. Besides the famous Google car, a number of works on 

autonomous driving can be found from literature review [85], [86], [87], [88], [89]. However, almost 

the previous works focus on the navigation and the guidance algorithm, such as position estimation or 

path planning. Less effort is paid to autonomous driving from the view point of motion control. In the 

autonomous vehicle system, the guidance layer outputs the attitude command, often represented by 

yaw angle, and velocity command. Therefore, yaw angle control should play an essential task in 

autonomous driving. Its function is to change the attitude of the vehicle to track with a desired path 

generated by the path planning layer. 

In low cost autonomous vehicle, course angle measured by single antenna GPS receiver can be 

used as the feedback of the vehicle attitude [90], [91]. However, course angle is not actually yaw angle, 

but the yaw angle plus the sideslip angle. Moreover, the update rate of GPS data is from 1 Hz to 50 Hz 

which is very slower in comparison with the control period of the actuator-the electric motor servo 

control. Therefore, yaw angle feedback cannot be updated at every control period. Thus, using only 

single-antenna GPS would limit the performance of the yaw angle control. On the other hand, Bevly et 

al propose that the yaw angle can be calculated directly by using double-antenna GPS receiver [22]. 

However, the cost of the double-antenna GPS system is very expensive. Moreover, this method cannot 

improve the update rate of yaw angle measurement. Thus, it requires the fusion of double-antenna 

GPS with IMU. As proposed in chapter, besides the sideslip angle, yaw angle can be estimated (at high 

rate) through the fusion of a single-antenna GPS with yaw-rate sensor. Transparently, this is a cost 

affordable method for yaw angle control system. 

In this thesis, the yaw angle control system is introduced based on the disturbance 

accommodation Kalman filter. Some previous works just realize yaw angle control by simple feedback 

controller like PD or PID [92], [93]. To improve the robustness of yaw angle control, this thesis 

proposes the 2-degree-of-freedom control with disturbance observer. The front EPS is selected as the 

actuator of the yaw angle control system. 

5.8.2 Modeling 

A.  Dynamic model 

Using the linear bicycle model, the transfer function from the front steering angle to the yaw 
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angle is derived as: 

( )
( )

( )
( ) ( )

21 21 11 11 21

3 2

11 22 11 22 12 21

( )
f

s b s a b a b
P s

s s a a s a a a a s

ψ

δ

+ −
= =

+ − − + −
                             

(5.69)  

B.  A simple model 

Fig. 5.16 shows the vehicle motion on the planar coordinates. Point O is the instantaneous rolling 

center of the vehicle. It is the intersection of lines AO and BO which are perpendicular to the 

orientation of the front and rear rolling wheels. OG is the instantaneous radius of the vehicle path. 

Apply the sine rule to the triangles OGA and OGB, the following geometric relationships are derived: 

( ) ( ) ( )tan cos sin
f

f

l

OG
δ β β− =

                             

(5.70)  

( )sin rl

OG
β =

                             

(5.71)  

Adding the above two equations together: 

( ) ( )tan cos
f r

f

l l

OG
δ β

+
=

                             

(5.72)  

Assume that the vehicle velocity is almost constant and the radius of the vehicle path does not 

change quickly, the rate of change of orientation of the vehicle would be equal to the angular velocity 

of the vehicle. In other words: 
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Fig. 5.16 Vehicle motion on the North-East coordinates. 
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( ) ( )
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+
ɺ

                             

(5.73)  

Assume that the steering angle and the sideslip angle are small, we can obtain the simple model 

of yaw angle: 

x

f
f r

u

l l
ψ δ≈

+
ɺ

                             

(5.74)  

5.8.3 Control system design 

    The yaw angle control system is shown in Fig. 5.17. The disturbance accommodation Kalman 

filter is used to estimate the yaw angle along with the sideslip angle. Front EPS angle is used as the 

control signal. 

A. Yaw angle reference 

Autonomous navigation can be classified into three strategies: point-to-point, path following, and 

trajectory tracking [94]. Using the point-to-point navigation, the desired yaw angle to navigate the 

vehicle from point A1(x1, y1) to point A2(x2, y2) is calculated as: 
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(5.75)  

A path can be divided into number of segments, for instance A1A2, A2A3,…, An-1An. In each 

segment, yaw angle reference is kept constant. 
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Fig. 5.17 Yaw angle control system. 
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B. Disturbance observer (DOB) 

DOB was firstly introduced by Ohnishi [95] and then further refined by many research groups. 

According to this method, the feedback loop includes a model of the dynamics of the exogenous 

reference and disturbance signal, called nominal internal model. By carefully designing the nominal 

model and a Q-filter, the perfect asymptotic tracking and disturbance compensation are achieved. Until 

now, DOB has been widely applied as a robust motion control method. 

As shown in (5.69), the model of yaw angle dynamics contains cornering stiffness which is the 

time-varying parameter. A controller which is designed using constant cornering stiffness would be not 

as robust enough as requirement. Moreover, the yaw motion may be interfered by disturbance like the 

wind force. Therefore, to improve the robustness of yaw angle control, DOB is applied. It is possible 

to utilize the simple formulation in (5.74) to obtain the following nominal model: 

( )
( )

x n

n

f r

u k
P s

l l s s
= =

+
                             

(5.76)  

The nominal model does not rely on tire cornering stiffness, but just the velocity and vehicle 

geometric distances. The yaw model can be expressed as nominal model with multiplicative 

perturbation as model uncertainties: 

[ ]( ) ( ) 1 ( )
n

P s P s s= + ∆

                             

(5.77)  

where ∆(s) is a proper boundary and stable transfer function representing the model uncertainties. 

The model uncertainty transfer function is calculated as: 

( ) ( )
( )

( )
n

n

P s P s
s

P s

−
∆ =

                             

(5.78)  

Generally, both disturbances and model uncertainties are regarded as equivalent disturbance in 

DOB. The DOB is designed to compensate the equivalent disturbance, and the inner-loop is forced to 

be approximately nominal model. Robust stability of inner-loop is assured if Q-filter satisfies the 

 

Fig. 5.18 Q-filter design for DOB (plot at the speed of 25 kph). 
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following condition for all frequencies: 

1( )
( )

Q j
j

ω
ω

<
∆

                             

(5.79)  

Because the nominal model is the first order, Q-filter is selected as a first order low-pass-filter.  

( ) c

c

Q s
s

ω
ω

=
+

                             

(5.80)  

The cut-off frequency of the Q-filter is selected as 20 Hz in this paper. Fig. 5.18 shows that even 

the cornering stiffness varies (at the speed of 25 kph), the magnitude of the Q-filter is always bounded 

by the magnitude of the inverse of the uncertainty transfer function. In other words, the robust stability 

condition is satisfied. 

C.  Feedback and feed-forward controller 

The feed-forward controller can be designed as the inverse of the nominal model: 

1( )ff

n

C s s
k

=

                             

(5.81)  

Notice that the inner-loop with DOB can be approximately the nominal transfer function. The 

feedback controller can be designed using PI regulator follows: 
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(5.82)  

where s1 and s2 are two desired poles of the close-loop. 

5.8.4 Simulation and experimental results 

A.  Simulation results 

The simulation is to test the ability of the control system to keep the vehicle motion 

straightforward to the North (desired yaw angle is zero). Simulation is performed at the speed of 25 

kph. Strong lateral wind force starts to exert onto the vehicle after the simulation starts 2 second. Yaw 

angle control by only feedback controller (PD) is also performed for comparison. The PD controller is 

designed based on pole-placement using the transfer function of yaw dynamics expressed in (5.69). 

Uncertainty of cornering stiffness is introduced such that Cfv/Cfn = Crv/Crn = 0.7. 

Simulation results are summarized in Fig. 5.19, including the response of the yaw angle, the front 

steering angle, and the vehicle trajectory. In case of without control, the front steering angle is always 

zero. As the results, the vehicle cannot follow the straightforward direction to the North under the 

influence of wind force. If the PD controller is applied, it takes a long time for the vehicle to recover 

the desired direction, but lateral position off-set occurs. Thanks to the proposed control system with 

DOB, the disturbance is suppressed and model uncertainty is compensated. Consequently, the vehicle 
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can quickly recover the reference yaw angle. Moreover, the lateral position error of the proposed 

control system is considerably reduced in comparison with that of the PD controller. 

B.  Experimental results 

To evaluate the proposed yaw angle control scheme, we conduct the autonomous driving test. In 

the first experiment, the vehicle trajectory is desired to be parallel with the direction of the test course. 

Yaw angle reference is pre-calculated by using (5.75). Experimental results including yaw angle 

response, front steering angle, and vehicle trajectories are shown in Fig. 5.20. In case of without 

control, the front EPS motor always keeps the front steering angle to be zero. Therefore, the yaw angle 

and trajectory of vehicle cannot follow the references. In contrast, when applying the proposed control 

scheme, the front steering angle is generated to compensate the influence of disturbances. As a result, 

the tracking of yaw angle and trajectory are successfully achieved. 

 

(a) Yaw angle. 

 

(b) Front steering angle. 

 

(c) Vehicle trajectory. 

Fig. 5.19 Simulation results of attitude control based on yaw angle control. 
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(a) Yaw angle. 

 

(b) Front steering angle. 

 

 

(c) Vehicle trajectory (without control) 

 

 

(d) Vehicle trajectory (with control) 

 

Fig. 5.20 Experimental results of attitude control based on yaw angle control. 
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5.9 Traction control using GPS  

5.9.1 Longitudinal model 

The longitudinal model (one-wheel-driven) of the vehicle is shown in Fig. 5.21. Assume that the 

vehicle is in acceleration mode, the following equations demonstrate the longitudinal motion: 

m dI T rFωω = −ɺ

                             

(5.83)  

x d rmv F F= −ɺ

                             

(5.84)  

x
r v

r

ω
λ

ω
−

=

                             

(5.85)  

where Fd is the driving force at tire-road contact path, Fr is the driving resistant force, Tm is the motor 

torque, r is the wheel radius, m is the vehicle mass, Iω is the wheel moment of inertia, λ is the wheel 

slip ratio. 

5.9.2 Control system design 

To maintain the safety traction on slippery road, the wheel slip ratio control is designed. The 

control system is shown in Fig. 5.22. Taking the advantage of EVs, the in-wheel motor torque is 

selected as the control signal. The sliding mode controller is utilized for wheel slip ratio control. 

A. Design of longitudinal velocity estimation 

Assume that the vehicle is running in the straight direction, the following dual-rate model is 

established for longitudinal velocity estimation: 

1k k k k k k

k k k k k

x A x B u w

y C x vδ
+ = + +


= +                              

(5.86)  

,, ,
k x k x k GPS k

x v u a y v= = =

                             

(5.87)  

if GPS data update:         1
1,    ,    

if GPS data unavailable: 0

k k

k k c

k k

C
A B T

C

δ

δ

= =
= = 

= =                              

(5.88)  

where vx is the longitudinal velocity, ax is the longitudinal acceleration obtained by accelerometer, wk 

and vk are Gaussian noises. 

 

Fig. 5.21 Longitudinal model. 
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A dual-rate Kalman filter is used to estimate the longitudinal velocity. Then, using (5.83) the slip 

ratio is computed. 

B. Design of the sliding mode controller 

From (5.83)~(5.85) the dynamics model for slip ratio control is established as: 

2 2

x x x x

m d
x x

v v v v
T F

v vI r Iω ω

λ λ
ω ω

= − + − −
ɺ ɺɺ

                             

(5.89)  

The sliding surface, the reaching law, the Lyapunov function V and its derivative are expressed as 

follows: 

( )*
S λ λ= −

                             

(5.90)  

( )S LS Qsat S= − −ɺ

                             

(5.91)  

21
2

V S=

                             

(5.92)  

2 ( )V SS LS QSsat S= = − −ɺɺ

                             

(5.93)  

In (5.91), L and Q are selected as positive constants. Thus, the derivative of the Lyapunov 

function is always negative. In other words, the stability of the control system is confirmed. A sliding 

mode control law is obtained as follows with the estimated slip ratio and the observation of driving 

force: 

( )
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x x

I r v v
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v v I

ω
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 

ɺ
ɺ

                             

(5.94)  

    The driving force observer is an advantage of in-wheel electric vehicles. The design of driving 

force observer can be found in many papers, such as in [68]. 
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Fig. 5.22 Wheel slip ratio control system. 
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5.9.3 Experimental results 

The experimental results of longitudinal velocity estimation using GPS is shown in Fig. 5.23. In 

this test, the GPS update rate is 5 Hz, but the velocity can be estimated at the rate of 1 kHz. Comparing 

with the longitudinal velocity measured by optical sensor, the estimated velocity is accurate enough 

for motion control. 

The low friction sheets covered with water is placed on the test course to simulate the slippery 

road (Fig. 5.24). The driver accelerates the vehicle from a starting point near by the low friction sheets. 

Because the vehicle motion is straight in this test, it is necessary to show the results of only one wheel 

(the rear left, for instance). In case of without control, the motor torque is kept constant as the driver’s 

command (Fig. 5.25 (a)). As the results, the wheel slip ratio increases considerably (Fig. 5.25 (b)) and 

the slip occurs. When the proposed slip ratio control based on sliding mode theory is applied, the 

motor torque is controlled and reduced in the low friction sheets as shown in Fig. 5.26 (a). Wheel slip 

ratio follows the reference value of 0.1 (Fig. 5.26 (b)) and the safe traction of EV is achieved. 

 

Fig. 5.23 Longitudinal velocity estimation using GPS. 

 

 

Fig. 5.24 Traction control on slippery road. 
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5.10 Discussion 

In this chapter, we design the electric vehicle motion control system based on the fusion of GPS 

receiver with inertial sensors. The main contribution of this chapter is to utilize the disturbance 

accommodation Kalman filter to enhance the robustness of sideslip angle estimation using single 

antenna GPS and yaw-rate sensor. Simulations and experiments are performed to verify the advances 

of the proposed estimation in comparison with other estimation methods. Besides the sideslip angle, 

the yaw angle and the longitudinal velocity are estimated using GPS. Three motion controls of EV are 

designed and tested: lateral stability control, attitude control, and wheel slip-ratio control. 

 

             

(a) Wheel torque                                  (b) Slip ratio 

Fig. 5.25 Longitudinal motion on slippery road (without control). 

             

(a) Wheel torque                                 (b) Slip ratio 

Fig. 5.26 Longitudinal motion on slippery road (with control). 
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Chapter 6:   

Motion Control of Chip Mounting Machine 

 
   “Computers are incredibly fast, accurate, and stupid. Human beings are incredibly 

slow, inaccurate, and brilliant. Together they are powerful beyond imagination.” 

Albert Einstein 

 

6.1 Chip mounting machine 

Chip mounting machine is a type of industrial machine which uses electrical actuators to place 

the chips onto a printed circuit board. To satisfy the development of electronic devices manufacturing, 

chip mounting is desirable to perform high speed and high precision operation. Fig. 6.1 shows the 

photo of the chip mounting machine model CM602-L produced by Panasonic. With 12 nozzles, it can 

mount one hundred thousand chips per hour with the accuracy of ±40µ/chip. 

There are two main tasks in the operation of a chip mounting machine. The first is to detect the 

position to place the chip. The second is to move the nozzle (as fast as possible) to the desired position. 

To perform these tasks, a chip mounting machine can be equipped with a vision system and the motor 

servo systems. Fig. 6.2 shows the basic component of the chip mounting machine with the nozzle, the 

camera, the two linear motors as actuator, and the circuit board. The vision system serves as the “eyes” 

while the motor servo systems are the “hand” of the machine. The design of the controller that 

manages the “eyes” and the “hand” is our interests in this study. 

                      

Fig. 6.1 Chip mounting machine CM602-L (Panasonic). 
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6.2 Visual servo – the key of chip mounting machine 

Since the early works by Shirai and Inoue [96], visual servo has been considerably developed and 

widely applied in various automated manufacturing systems. Visual servo is a promising solution in 

assembling machine of electronic products which requires high speed and high accuracy. As the 

miniature component trend in electronic devices, it is essential to overcome the possible position 

errors due to the inevitable reasons, such as operating temperature, ageing of machine, vibration 

induced from environments, and the dispersion among components, etc. 

The two main tasks of the chip mounting can be realized using the visual servo. The operation of 

the visual servo for chip mounting is demonstrated in Fig. 6.3. For the sake of simplicity, one-axis 

motion is used for explanation. 

(a) The nozzle N is attached with a camera C. From the initial position, the linear motor 

moves the nozzle (with camera) along the X axis in the non-visual servo mode because 

the target is not detected. The distance F represents the visible field of the camera.  

(b) The target T is detected when it is insight the field F. Based on the image processing, the 

relative distance between the target and the vertical axis of the nozzle is calculated. Right 

after that, the visual servo mode starts. The control system generates the command to the 

linear motor drives that the nozzle is moved toward the target position. 

(c) The goal of the visual servo is that the vertical axis of the nozzle can finally match with 

the target position. 

Controller

Y-linear motor

X-linear motorMounting place

Nozzle
Camera visible field

Camera

Board

                                                                   

Fig. 6.2 Main components of a chip mounting machine. 
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(b) Target detected, visual servo starts. 
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(c) Target tracking 

Fig. 6.3 Visual servo operation in chip mounting machine. 
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6.3 Experimental setup of a visual servo system 

In order to develop the key technology for chip mounting machine, we focus on the visual servo 

control in this study. A one-axis system is established for the sake of simplicity. 

6.3.1 Experimental system 

A. System specification 

The experimental system used in this research is shown in Fig. 6.4. It consists of a 

one-axis-linear-stage, a high speed CMOS camera, a motor driver, an image processing unit (IPU), and 

a motion control unit (MCU). The specifications of the system are summarized in Table 6.1. The target 

is a black line drawn on a plastic plate which is placed in parallel with the linear stage. Visual 

information from the camera mounted on the stage is transferred to IPU to obtain the relative position 

between camera and target center. The position of camera on the stage is measured by linear encoder. 

The MCU generates the current command to drive the linear motor such that the camera axis is moved 

to track the target center line with the accuracy less than 3µm. 

B. Experiment method 

The experiment is conducted as follows. At the initial status, the distance between the camera and 

the target is L+∆L as shown in Fig. 6.5 (a). Here L represents the default movement of the linear stage 

while ∆L is a random number standing for environmental error. ∆L is assumed to be smaller than a half 

of the camera’s visible field which is 2.5 mm in this research. From the initial position, the camera is 

moved toward the target in non-visual-servo mode over the distance L. When the target is detected by 

the IPU, visual servo mode starts for target tracking, as shown in Fig. 6.5 (b) . 

C. Problems of the system 

The sampling time of the relative position measurement is 2 ms which is 20 times longer than the 

control period of linear motor drive. Moreover, time delay of the IPU is found to be 3 ms which is 30 

times longer than the motor control period, as demonstrated in Fig. 1.6. 

 

                      

Fig. 6.4 Main components of a chip mounting machine. 
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L L+ ∆

 

(a) Initial status when the distance is L+△L. 

L∆

    

(b) Visual servo starts as the target is detected.                                                                  

Fig. 6.5 Operation of the experimental system. 

 

Table 6.1 Specification of the experimental system 
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Fig. 6.7 A coordinates for camera and target. 

                      

Fig. 6.6 Bode diagram: experiment and modelling. 
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6.3.2 System modeling 

A. Model of the linear stage 

The controlled plant includes the servo drive and the linear stage. The control input to this plant is 

the current command generated by the MCU and the output is the stage position measured by linear 

encoder. By conducting experiment with sub-analyzer, the Bode diagram of the plant can be obtained 

as in Fig. 6.6.  

The plant transfer function is obtained as follows though parameter fitting:  

(6.1)
2 2 2

1( )
2

x
KP s

Ms s sξω ω
= +

+ +
                          

(6.1)
 

where M = 200 [kg.count/N] is the equivalent mass and count is the unit of current command in the 

counter of MCU. ξ = 0.55 is the damping coefficient, ω = 2πx92 [rad/s] is the resonant frequency, and 

K = -5.5x10-3 is the residue of resonance. 

B. A state space model 

To establish the model for estimating the distance between the target and the camera, the 

coordinates in Fig. 6.7 is used. The distance ∆ is defined as: 

T Cx x∆ = −

                          

(6.2)
 

In the chip mounting machine, the target is fixed, we can write: 

C
x∆ = −ɺ ɺ

                          

(6.3)
 

From (6.1) and (6.3), the following state space model is established: 

( ) ( ) ( )x t Ax t Bu t= +ɺ

                          

(6.4)
 

( ) ( )1 1y t C x t=

                          

(6.5)
 

( ) ( )2 2 d
y t C x t t= −

                          

(6.6)
 

[ ]1 2 3 4 1 2, , ,
T

q Cx z z z z  u I  y x  y= ∆ = = = ∆

                          

(6.7)
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  − −     

 
+ − − −

 

                          

(6.8)
 

[ ]
2

1 2

2 1 0 0 , 0 0 0 0 1KMC   C
M M M

ξωω += =  
                          

(6.9)
 

The above system has an input, the current command of the linear motor drives, and two output 

measurements: y1 from linear encoder, and y2 from the image processing unit. While y1 is sampled at 

every control period, y2 is delayed (td = 3ms) and its sampling time is 20 times longer than that of y1. 
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6.4 Sub-pixel image processing 

Acknowledgment: I would like to thank Dr. Ito and other members of Hitachi Research Laboratory. 

The sub-pixel image processing was conducted mainly by Dr. Ito as a part of our joint-research in 

visual servo and chip mounting machine. This section is based on our publication in [97]. 

    The sub-pixel image processing algorithm is shown in Fig. 6.9 including three steps.  

1) Projection of pixel value: The IPU builds a projection histogram. Each component of this 

histogram is the pixel value in each column of an obtained image. 

2) Detection of target edges: A sub-pixel edge of the target is detected by using the histogram (as 

shown in Fig. 6.8 (b)). 

3) Calculation of the center of the target: Cross points between the envelope of the histogram and a 

certain threshold value are calculated using the following formulation: 

( ) 1
1 2 1

2 1

th y
x x x x

y y

−
= + −

−
                          

(6.10)
 

Two cross points are determined as the edges of the target in sub-pixel resolution, and the middle 

point of the detected target edges is calculated as the center of the target. By using this algorithm, the 

target position can be detected with the accuracy less than 1.0 micrometer. 
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(a)                                                 (b) 

Fig. 6.8 Sub-pixel image processing algorithm. 
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By using a field-programmable gate array (FPGA) as a processing core of the IPU, the algorithm 

described above is executed at the same sampling rate as that of the high-speed CMOS camera. A 

simplified timing chart of the processing is shown in Fig. 6.9. After a certain exposure time to obtain 

an image, the camera transfers the pixel values to the IPU which builds the projection histogram. After 

that, the IPU calculates the center position of the target, and sends the results to the MCU. As the time 

required for exposure, pixel transfer, and image processing, a time delay of 3.0 milliseconds is found. 

It means that when the vision information is sent to the MCU, it expresses the target position at 3.0 

milliseconds before the present (see Fig. 1.6 in the Chapter 1). 
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Fig. 6.9 Timing chart of image processing. 
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6.5 Design of the visual servo control system 

    The visual servo control system is shown in Fig. 6.10. A Kalman filter is designed to estimate the 

target position at every control period of the linear motor drives and compensate the time delay of the 

image processing unit. The position control loop is used to control the linear motor stage such that the 

camera axis can track the target. The reference generator is used to provide the position reference in 

non-visual servo mode. The reference trajectory is calculated considering the manufacturing 

requirement, such as the maximum velocity, maximum acceleration, and the maximum jerk. When the 

image processing unit detects the target, it sets the “target-detect-flag” from zero to one and sends the 

flag to the Kalman filter and the switch. Right after that, the Kalman filter starts to estimate the target 

position. Using the estimates from the Kalman filter, the position reference for visual servo mode is 

calculated as follows: 

* ˆ
C

x x= + ∆

                          

(6.11)
 

where xc is the camera position obtained through linear encoder. A low-pass-filter is utilized to smooth 

the reference value. 

6.5.1 Design of the Kalman filter 

Using the continuous time state space model (6.4) ~ (6.9), the following discrete-time stochastic 

model is established: 

1k k k k k kx A x B u w+ = + +

                                 

(6.12)  

1, 1, 1,k k k k
y C x v= +

                                 

(6.13)  

2, 2, 2, 2,k k k d k k
y C x vδ−= +

                                 

(6.14)  
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Fig. 6.10 Visual servo control system. 
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where the state matrix Ak and input matrix Bk are obtained using the following transformation with the 

fundamental sampling time Tc = 0.1 millisecond: 

0

,
c

c

T

AT A

k kA e  B e d B
τ τ= = ∫

                             

(6.15)  

In the discrete-time model, uk is the current command and y1,k is the measurement from linear 

encoder. The input and the linear encoder measurement are updated at every Tc. y2,k is the measurement 

obtained from the image processing unit. Its sampling time is Ts = 20Tc = 2 milliseconds. The dual-rate 

ratio is r = Ts/Tc = 20. The time delay of y2,k is 3 millisecond. Thus, the number of delayed sample is 

calculated as d = Td/Tc = 30. The measurement matrices are expressed as: 

2

1, 1

2 1 0 0
k

KMC C  
M M M

ξωω += =   
                                 

(6.16)  
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2
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C

     if  k jr
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= ≠                                  

(6.17)  

2,

1

0
k

     if  k jr

     if  k jr
δ

=
= 

≠                                  

(6.18)  

where j is the integer number. 

The covariance matrix of the process noise wk is assumed to be a diagonal matrix for the sake of 

simplicity: 
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Fig. 6.11 Target position estimation algorithm. 
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( ), 1 2 3 4 5, , , ,
w k

R diag α α α α α=   (6.19)  

The covariance matrices of the measurement noise v1,k and v2,k are expressed as follows 

considering the standard deviation of the linear encoder and the vision processing system: 

1,v k encoder
R σ=   (6.20)  

2,v k vision
R σ=    (6.21)  

We can apply the upper-bound Kalman filter for a system with delayed and a non-delayed 

measurement which is proposed in Chapter 3. The algorithm is expressed as follows: 

Initial condition: 

1,0 2,0 3,0 4,0 00 0
ˆ

T

x z z z z = ∆ 
                                 

(6.22)  

( )11 22 33 44 550 0
, , , ,diagΩ = Ω Ω Ω Ω Ω

                                 

(6.23)  

Prediction: 

- Predicted state: 

1 1 11 1 1
ˆ ˆ

k k kk k k k
x A x B u− − −− − −

= +

                                 

(6.24)  

- “Upper-bound” of the prediction error covariance: 

1 1 , 11 1 1

T

k k w kk k k k
A A R− − −− − −

Ω = Ω +

                                 

(6.25)  

Correction: 

- Corrected state: 

( ) ( )1, 1, 1, 2, 2, 2,1 1 1
ˆ ˆ ˆ ˆ

k k k k k kk k k k k k k d k d
x x L y C x L y C x

− − − − −
= + − + −

     

(6.26)  

- Estimation gains: 

1

1, 2,k k k k
L L N M −  = 

    

(6.27)
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- “Upper-bound” of correction error covariance: 

1

T T T

k k k k k k k k kk k k k
L M L L N N L Qµ

−
Ω = Ω + − − +

                                 

(6.33)  

In the above equations, µk is the tuning parameter which is assumed to be a constant in this study. 

Trial-and-error experiments are conducted to find the suitable value of µk. Notice that if µk is too small, 

the estimation gain associated with the vision measurement will be almost zero. Therefore, the vision 

information has little contribution to the estimated state. On the other hand, if µk is too big, the 

estimation will be unstable. The flow chart of the estimation algorithm is shown in Fig. 6.11. 

6.5.2 Design of the position control 

The position control loop is shown in Fig. 6.12 including a PID controller and the disturbance 

observer (DOB). The DOB is utilized to improving the robustness of the position control by rejecting 

the disturbance using the nominal model and the Q-filter. In this thesis, the nominal plant’s transfer 

function is selected as: 

2

1( )xn

n

P s
M s

=

                                 

(6.34)  

where Mn is the nominal value of the equivalent mass. 

The order of the Q-filter must be equal or higher than the order of the nominal plant. Thus, in this 

thesis the second order Q-filter is designed to satisfy the robust stability. The transfer function of the 

Q-filter is expressed as: 

2

1( )

1
n n

Q s

s s
qω ω

=
 

+ +  
 

                                 

(6.35)  

where q is the quality factor and ωn is the undamped natural frequency. 

The real plant in (6.1) can be represented by the nominal plant and the boundary function ∆(s) as 

follows: 

( )( ) ( ) 1
x xn

P s P s s=  + ∆  
                                 

(6.36)  

By using the Bode diagram, the quality factor and the undamped natural frequency is designed 

such that the following stability condition is satisfied for all frequency: 

1( )
( )

Q j
j

ω
ω

<
∆

                                 

(6.37)  
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Fig. 6.12 Position control loop based on PID and DOB. 

 

In this thesis, Q-filter is designed with q = 0.1 and ωn = 200 [rad/s]. The Bode diagram of Q-filter 

and the inverse boundary function are shown in Fig. 6.13. The PID is designed by pole placement. If 

the inner loop including the real plant and the DOB can be approximately the nominal plant in (6.34), 

the PID gains can be calculated as follows: 

 

Fig. 6.13 Bode diagram for Q-filter design. 
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K M s s s s s s

K M s s s

K M s s s

 = + +


= −
 = − + +                                  

(6.38)  

where s1, s2, and s3 are the desired poles of the close-loop. 

 

6.6 Experimental results 

6.6.1 Results of target position estimation 

The experiments are conducted as described in section 6.3. Three target position estimation 

methods are designed and performed for comparison: 

- Standard Kalman filter: Using the state space model (6.12) ~ (6.14), the standard Kalman filter 

algorithm is implemented. The estimated states are obtained as follows: 

+ Predicted state: 

1 1 11 1 1
ˆ ˆ

k k kk k k k
x A x B u− − −− − −

= +

                                 

(6.39)  

+ Corrected state: 

( ) ( )1, 1, 1, 2, 2, 2,1 1 1
ˆ ˆ ˆ ˆ

k k k k k kk k k k k k k k
x x L y C x L y C x

− − −
= + − + −

     

(6.40)  

- Cascade estimation: As introduced in section 1.4 of the Chapter 1, this method has two stages, 

the Kalman filter and the d-step predictor. The configuration of the cascade estimation is shown in Fig. 

6.14. In this configuration, the input and the non-delayed measurement y1 are intentionally delayed and 

stored. In the first stage, the past time state 
*ˆ
k d k d

x
− −  is estimated using the standard Kalman filter. In 

the second stage, the current state 
*

k̂ k
x  is obtained through the d-step predictor using the dynamics 

model. 

- Upper-bound Kalman filter: This is the proposed estimation method presented in the previous 

section. 

Experimental results of three methods are shown in Fig. 6.15. Because the standard Kalman filter 

does not handle the delayed measurement, the estimation of the target position using this method is 

considerably inaccurate. Both the cascade estimation and the upper-bound Kalman filter can 

compensate the delayed measurement. However, the estimated target from the upper-bound Kalman 

filter is close to the true values than that of the cascade estimation (Fig. 6.16). As discussed in the 

Chapter 2, the inaccuracy of the cascade estimation can be explained by the influence of the model 

uncertainty to the d-step predictor in the cascade estimation. 

Experimental results show the advances of the upper-bound Kalman filter in comparisons with 

other two methods. For this reason, we will use the upper-bound Kalman filter for providing the 

estimated target position in the visual servo control system in Fig. 6.10 

 



Chapter 6: Motion Control of Chip Mounting Machine 

- 105 - 

 

6.6.2 Results of target tracking control 

Target tracking control based on the proposed upper-bound Kalman filter is conducted as 

explained in section 6.3. The experimental results are shown in Fig. 6.17. By using the DOB based 

controller, the control system can suppress the vibration considerably. Therefore, the relative position 

between target and camera can quickly reach the desired value of zero. The final tracking error is less 

than 3µm which is the goal of this visual servo system.  

 

6.7 Discussion 

In this chapter, we introduce the basics of the chip mounting machine. A visual servo control 

system which is the key technology of the chip mounting is designed and tested. To compensate the 

large-time-delay and improve the update rate of the image processing unit, the upper-bound Kalman 

filter is utilized to estimate the target position. The control system includes the upper-bound Kalman 

filter and the position control loop based on PID and DOB. Experiments are performed to evaluate the 

effectiveness of the proposed control system. Experimental results show that the upper-bound Kalman 

filter is more accurate than the standard Kalman filter and the cascade estimation. The target tracking 

accuracy less than 3µm is successfully attained using the proposed control system. 
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Fig. 6.14 Cascade estimation of the target position. 
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(a) Target position estimation using standard Kalman filter. 

(b) Target position estimation using cascade estimation. 

(c) Target position estimation using upper-bound Kalman filter. 

Fig. 6. 15 Experimental results of target position estimation by different methods. 
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Fig. 6.16 Performance of the upper-bound KF and the cascade estimation. 
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(a) Trajectory 

 

(b) Tracking error 

Fig. 6. 17 Experimental results of target tracking control. 
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Chapter 7:   

Estimation of Cornering Stiffness and Sideslip 

Angle 

 
“We need something more than mere theory and preaching now, though.”    

Sherlock Holmes (A Study in Scarlet) 

 

7.1 Introduction 

In this chapter, we will study the application of unscented Kalman filter (UKF) for state and 

parameter estimation. The goal of this study is to verify that if the UKF can be used to simultaneously 

estimate the state and parameter instead of the conventional adaptive estimator with RLS identification. 

The case of study is presented as follows. 

As introduced in Chapter 5, it is essential to control the sideslip angle of a vehicle to stabilize its 

lateral motion. Besides that, the understanding of tire cornering stiffness is also important. Online 

estimation of tire cornering stiffness can be used for adaptive lateral motion control, tire force 

distribution, or range extension control [69]. In Chapter 5, a robust estimation of sideslip angle using 

GPS is proposed. Thanks to the disturbance accommodation Kalman filter, the accurate estimation is 

maintained while using the constant nominal values of the tire cornering stiffness. In this chapter, 

sideslip angle estimation is studied from another point of view, adaptive estimation instead of robust 

estimation. 

                                                                              

Fig. 7.1 The hub-bearing unit produced by NSK Ltd. 
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The key sensors for this estimation are the tire-lateral force sensors. Fig. 7.1 shows a novel 

tire-lateral force sensor which is designed as a hub-bearing-unit by NSK Ltd. In [78], based on the 

difference between the left and right side tire lateral forces, the sideslip angle is obtained through RLS 

identification. However, this conventional RLS algorithm is just suitable for estimating the “parameter” 

which is supposed to change slightly. Unluckily, the sideslip angle is a time-varying variable which 

can vary sharply and quickly according to the operation of the vehicle. If the dynamics model is 

neglected and only the measurement based RLS algorithm is used, the stable estimation is not assured. 

Moreover, this RLS algorithm cannot be utilized if the time delay or data missing is found in the force 

sensor measurements. 
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Fig. 7.2 Sideslip angle and cornering stiffness estimation:  

a) Kalman filter + RLS Identification, b) Unscented Kalman filter. 
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In this chapter, two schemes for estimating the sideslip angle and the cornering stiffness using tire 

lateral force sensors are proposed and compared. 

- Method 1: Adaptive estimation - The Kalman filter with a RLS identification of cornering 

stiffness (KF + RLS). 

- Method 2: Simultaneous estimation based on the unscented Kalman filter (UKF).  

 

7.2  Estimation design 

The two estimation configurations are shown in Fig. 7.2. The inputs are the front steering angle 

and the yaw moment, while the output measurements including the yaw-rate and the lateral tire forces. 

7.2.1 Adaptive estimation using KF + RLS 

The estimator includes three main blocks: 

Kalman filter:  

The Kalman filter is based on the linear bicycle model presented in Chapter 5. The output 

measurement of the Kalman filter is the yaw-rate sensor. 

Tire slip angle calculator: 

Using the estimated sideslip angle and yaw-rate from the Kalman filter, the tire slip angles are 

computed as follows: 

ˆ ˆˆ ˆf

f f

x

l

v
α β γ δ= + −

                             

(7.1)  

ˆˆ ˆr

r

x

l

v
α β γ= −

                             

(7.2)  

Cornering stiffness identification: 

The general front and rear lateral forces (
yf

F and 
yr

F ) are calculated from the tire-force sensor as 

follows: 

_ _yf y fl y fr
F F F= +

                             

(7.3)  

_ _yr y rl y rr
F F F= +

                             

(7.4)  

where Fy_fl, Fy_fr, Fy_rl, and Fy_rr are the lateral force at each wheels: front-left, front-right, rear-left, and 

rear-right, respectively. 

The front and rear cornering stiffness are identified using the following equations: 

T

k k k
y ϕ θ=

                             

(7.5)  

where 

,

,

ˆ2 0
, ,

ˆ0 2

yf f k fT

k k k

yr r k r

F C
y     

F C

α
ϕ θ

α

−     
= = =     −                                  

(7.6)  

The RLS algorithm is expressed as follows with the forgetting-factor λ. 

( )1 1
ˆ ˆ ˆT

k k k k k kL yθ θ ϕ θ− −= + −

                             

(7.7)  
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( )
1

1 1

T

k k k k k kL P I Pϕ λ ϕ ϕ
−

− −= +

                             

(7.8)  

( ) 1
1 T

k k k k
P I L Pϕ

λ −= −

                             

(7.9)  

7.2.2 Simultaneous estimation using UKF 

From the linear bicycle model presented in Part B, the following equations are written: 

Dynamic equations (the cornering stiffness is assumed to be a random-walk). 

( ) ( )
2

2 2 2
1

f r f f r r f

f
x xx

C C C l C l C

mv mvmv
β β γ δ

 − + −
 = + − − +
  

ɺ

                             

(7.10)  

( ) ( )2 222 2 1f f r rf f r r f f

f z

z z x z z

C l C lC l C l C l
N

I I v I I
γ β γ δ

− +− −
= + + +ɺ

                

(7.11)  

0fC =ɺ

                             

(7.12)  

0
r

C =ɺ

                             

(7.13)  

Measurement equation: 

γ γ=

                             

(7.14)  

2
f

yf f f

x

l
F C

v
β γ δ
 

= − + − 
                               

(7.15)  

2 r

yr r

x

l
F C

v
β γ
 

= − − 
                               

(7.16)  

From (7.10) ~ (7.16), a discrete-time nonlinear stochastic model is established with the 

fundamental sampling time of 1 millisecond: 

( )

( )
1 ,

,

k k k k

k k k k

x f x u w

y h x u v

+ = +


= +                 

(7.17)  

, , , , , ,, ,
T T T

k k k f k r k k f k z k k k yf k yr kx C C  u N  y F Fβ γ δ γ     = = =     
                

(7.18)  

where f(xk, uk) and h(xk, uk) are nonlinear functions, xk is the state vector, uk is the input vector, yk is the 

measurement vector, wk and vk are Gaussian noises with zero means and covariance Rw,k and Rv,k, 

respectively. 

    Using the nonlinear model (7.17), the UKF algorithm is applied to estimate the sideslip angle and 

the cornering stiffness simultaneously. 
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(a) 

 

(b) 

 

(c) 

Fig. 7.3. Simulation results of the UKF at different tuning parameters: 

a) Sideslip angle, b) front cornering stiffness, c) rear cornering stiffness. 
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     (a) 

     (b) 

     (c) 

Fig. 7.4 Simulation results of UKF and KF + RLS (λ = 0.9997):  

a) Sideslip angle, b) front cornering stiffness, c) rear cornering stiffness. 
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  (a) 

     (b) 

    (c) 

Fig. 7.5 Simulation results of UKF and KF + RLS (λ= 0.998):  

a) Sideslip angle, b) front cornering stiffness, c) rear cornering stiffness. 

0 2 4 6 8 10 12 14 16 18 20
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Time [s]

B
e
ta

 [
ra

d
]

0 2 4 6 8 10 12 14 16 18 20
5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

Time [s]

C
f 

[N
/
ra

d]

 

 

UKF

KF + RLS

0 2 4 6 8 10 12 14 16 18 20
5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

Time [s]

C
r 

[N
/
ra

d]

 

 

UKF

KF + RLS



Chapter 7: Estimation of Cornering Stiffness and Sideslip Angle 

- 115 - 

 

 

      (a) 

      (b) 

       (c) 

Fig. 7.6 Simulation results of UKF and KF + RLS (λ= 0.995):  

a) Sideslip angle, b) front cornering stiffness, c) rear cornering stiffness. 
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7.3 Simulation results 

Simulations conditions: 

- The vehicle model is based on the experimental vehicle COMS in Chapter 5. 

- The vehicle runs in the slalom-test with sinusoidal steering angle at the speed of 25 kph. 

- The initial values of the cornering stiffness in the estimation models are Cf(0) = Cr(0) = 9000 

[N/rad]. From the beginning, the vehicle runs on the high friction road such that the true 

cornering stiffness is set the same as the initial values. Since 10 second, the vehicle enters the 

slippery road where the cornering stiffness is set as Cf = 6400 [N/rad], Cr = 6000 [N/rad]. 

This means a sharp change of the tire characteristics is simulated. 

- The covariance matrices of the process and measurement noises are assumed to be diagonal. 

The sets of tuning parameter of two estimation model are as follows: 

( ), 11 22 ,, , ,w KF v KF gyro RLSKF + RLS: R diag  R  ε ε σ λ= =

                

(7.19)  

( ) ( ), 11 22 33 44 ,, , , , , ,
yf yrw UKF v UKF gyro F FUKF: R diag  R diagρ ρ ρ ρ σ σ σ= =

                

(7.20)  

where , ,  and 
yf yrgyro F Fσ σ σ  are the covariance values of the Gaussian noises associating with the 

yaw-rate measurement, front and rear tire force measurements. 

 

Tuning of the UKF: 

Fig. 7.7 Sideslip angle estimation by UKF and KF + RLS (λ= 0.995). 
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In the set of tuning parameters of the UKF, ,
yf yrF Fσ σ and 

gyro
σ  depend on the noise levels of the 

yaw-rate sensor and the tire force sensors. The values of 
11ρ  and 

22ρ  are obtained through the noise 

associated with the input to the bicycle model. For the sake of simplicity, it is assumed that the 

covariance of these measurement noise and process noises are constant. Therefore, it is only essential 

to tune the values of 
33ρ  and 

44ρ  which associate with the dynamics of the cornering stiffness. Six 

cases of the pair ( )33 44,ρ ρ  are performed: 

- Case 1: ( ) ( )33 44, 1, 4ρ ρ =  

- Case 2: ( ) ( )3 3 44, 10 , 40ρ ρ =  

- Case 3: ( ) ( )33 44, 100, 400ρ ρ =  

- Case 4: ( ) ( )33 44, 1000, 4000ρ ρ =  

- Case 5: ( ) ( )33 44, 2000, 8000ρ ρ =  

- Case 6: ( ) ( )33 44, 2500,10000ρ ρ =  

The simulation results of UKF tuning are shown in Fig. 7.3. In case 1, after entering the low 

friction road, the estimated values of the cornering stiffness converge very slowly to the true values. 

Therefore, the estimated sideslip angle of case 1 is very inaccurate. In case 2, because ( )33 44,ρ ρ is 

bigger than that of case 1, the speed of convergence of the estimated cornering stiffness is increased. 

This explains the more accurate sideslip angle estimation of case 2. Again, from case 3 to case 6, as 

the pair ( )33 44,ρ ρ  is increased, the convergence of the tire cornering stiffness estimation becomes 

better and better.  

Comparing the UKF with the KF + RLS: 

The UKF with the pair ( ) ( )33 44, 2000,8000ρ ρ =  is compared with the KF + RLS. To make the 

fair comparison, we will find the optimal tuning parameters of the KF + RLS. Notice that 
11 22,ε ε  and 

gyro
σ  depend on the process noises of the bicycle model and the measurement noise of the yaw-rate 

sensor. For the sake of simplicity, we can assume that they are constant as in the UKF algorithm. The 

forgetting factor of the KF + RLS is tuned and the following cases are demonstrated: 

- Case 1:  λRLS = 0.9997 

- Case 2:  λRLS = 0.998 

- Case 3:  λRLS = 0.995  

The simulation results of Case 1, Case 2, and Case 3 are presented in Fig. 7.4, Fig. 7.5, and Fig. 

7.6, respectively.  

Case 1: From the beginning, the UKF and the KF + RLS have the same estimation performance. 

When the vehicle suddenly enters the slippery road, the estimates from the UKF quickly converge to 

their true values with little errors. As the forgetting factor of the KF + RLS is too close to 1.0, the 

cornering stiffness identification is too slow, and the sideslip angle estimation of the KF + RLS is less 

accurate than that of the UKF. 

Case 2: The forgetting factor is reduced to 0.998. Consequently, the cornering stiffness 
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identification is faster than in Case 1. However, the UKF still attains smaller estimation errors in 

comparison with the KF + RLS. 

Case 3: The forgetting factor is even reduced to 0.995. The cornering stiffness identification of 

the KF + RLS is much faster than that in Case 1. It seems to be the best selection of the tuning 

forgetting factor for the KF + RLS. However, the trade-off occurs as the fluctuation of the identified 

cornering stiffness is found. If the forgetting factor is even smaller than 0.995, the fluctuation of the 

cornering stiffness identification is even worse and the sideslip angle estimation is considerably 

degraded.  

Case 3 seems to be the limitation that the forgetting factor should not be reduced anymore. 

Comparing the KF + RLS at λRLS = 0.995 with the UKF at ( ) ( )33 44, 2000,8000ρ ρ = , the sideslip angle 

estimations of two methods are almost the same. If we plot a part of the simulation data in the steady 

status, the UKF still achieves the better tracking to the true sideslip angle (Fig. 7.7). 

    From the above simulation results, we can conclude that: 

- The UKF has the simpler estimation structure. 

- The UKF is more flexible to design than the KF + RLS because its set of tuning parameter is 

bigger ( ( )33 44,ρ ρ v.s 
RLSλ ). 

- The UKF provide better estimations of sideslip angle and cornering stiffness. Especially, the 

convergence of the cornering stiffness from the UKF is very quick. Tuning the forgetting 

factor of the KF + RLS over the range [ ]0.995 0.9997
RLS

λ≤ ≤ , we can always tune the UKF 

such that it achieves the better performance than the KF + RLS. 

                      

Fig. 7.8 Hori’s adaptive servomotor control system (from [106]). 
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7.4 Discussion 

In this chapter, a new configuration for sideslip angle and cornering stiffness estimation is 

proposed. It does not require a Kalman filter and RLS identification. There is only one unscented 

Kalman filter to estimate the sideslip angle and cornering stiffness simultaneously. Thanks to its quick 

convergence and simple estimation design, this estimation scheme can be developed for other motion 

control application in which state estimation and parameter adaptation are desirable. 

For instance, in [106], Hori proposed the adaptive servomotor control system utilizing the low 

precision shaft encoder. As shown in Fig. 7. 8, the instantaneous speed observer is used to estimate the 

motor rotational speed at every control period. The inertia moment is obtained separately through the 

RLS identification to update the speed observer and the controller. In such kind of motion control 

system, we may think about the proposed state-parameter estimation based on UKF.  

Certainly, other cases of study and experiments should be conducted to answer the question: 

should we separate or combine the estimation of the state and the parameter. This chapter is only the 

very first step to this question. 
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Chapter 8:   

Conclusion 

 
“A conclusion is simply the place where you got tired of thinking.”    

Dan Chaon (Stay Awake) 

 

8.1  Contributions of this study 

From the side of Kalman filter and estimation theory, this thesis has three contributions: 

1) By using the disturbance accommodation, it is possible to enhance the robustness and the accuracy 

of dual-rate estimation using Kalman filter. Through both simulations and experiments, the 

disturbance accommodation dual-rate Kalman filter is shown to be more robust than the 

conventional dual-rate estimation or innovation-handling dual-rate estimation. 

2) By using the upper-bound of estimation error covariance, a new Kalman filter that can handle the 

large-time-delay measurement is proposed. The upper-bound Kalman filter has two main 

advantages: First, it does not increase the dimension of the system. Second, with the µ-gain, it is 

more flexible to design the estimation gain and the robustness of the algorithm is improved. By 

simulations and experiments, the upper-bound Kalman filter is proved to be more accurate and 

stable than other delay-compensation-estimation methods, such as the cascade estimation and 

measurement extrapolation Kalman filter. 

3) By using the unscented Kalman filter (UKF), adaptive state estimation is suggested to be designed 

simply instead of combining the state estimation with parameter identification. Moreover, the 

accuracy and the convergence of the new algorithm can be effectively improved. 

Three applications are developed and verified using the above theories: 

1) Electric vehicle motion control system using GPS: In this system, the sampling time of the GPS 

measurements are multiples of the actuator control periods. Thus, the disturbance accommodation 

Kalman filter is applied for accurately estimating the states which is fed back to the motion 

controllers. Three motions variables are estimated: sideslip angle, yaw angle, and longitudinal 

velocity. Three motion controls are demonstrated: lateral stability control, autonomous attitude 

control, and wheel slip-ratio control. 

2) Visual servo control for chip-mounting system: In this system, the target’s position is detected 

through the FPGA based image processing unit. However, the vision measurement is delayed and 

the delay time is equal to 30 times of the control period of the linear servo drive. The upper-bound 

Kalman filter is utilized in this case to estimate the target position accurately for target tracking 

control.  
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3) Simultaneous estimation of sideslip angle and cornering stiffness using tire force sensors: The 

conventional estimation scheme is the combination of the Kalman filter and the RLS identification. 

By using the UKF, the estimation algorithm is simpler, but better estimation performance is 

achieved. 

 

8.2  Limitations of this study 

In Chapter 2, besides the disturbance accommodation, the robust issue of the dual-rate estimation 

is also examined thorough another point of view: design of the robust filter parameters (∆Ae,k and Le,k) 

considering the upper-bound of the estimation error covariance. However, we have not decided the 

applications and performed experimental verifications for this method. Moreover, we only study the 

case that the dual-rate ratio is a constant. 

In Chapter 3, the µ-gain is introduced to obtain the estimation gain of the upper-bound Kalman 

filter for handling the measurement with large time delay. However, the µ-gain is obtained by 

trial-and-error test and it is designed in advance. What is the optimal µ-gain and how to tune it in 

on-line experiment is a nontrivial question to solve. The delayed-time is assumed to be constant in this 

thesis. Therefore, it is desirable to evaluate the upper-bound Kalman filter with random-time-delay. 

In all the Kalman filter algorithms proposed in this thesis, the covariance matrices of the process 

noises and measurement noises are kept constant. The on-line tuning of noise covariance matrices is 

not studied in this thesis. 

In Chapter 5, the experiments of electric vehicle motion control are not conducted at high speed 

due to the limitation of the maximum speed at the test course in our university campus. In Chapter 6, 

the visual servo is only conducted in case the target is fixed. Actually, in our joint-research project, the 

chip mounting machine is designed such that the target position if fixed. However, the time-delay 

compensation Kalman filter proposed in this thesis could be applied in the general case that the target 

is moved. In this case, the position, the velocity and the acceleration should be added into the 

modelling of the visual servo system. 

 

8.3 Kalman filter and model predictive control 

Model predictive control (MPC) is a type of optimal control which has been developed for 

decades [111], [112], [113]. Visual servo based on MPC was proposed in [117], [118]. Unlike PID or 

LQR controller, MPC has the ability to anticipate the future events. MPC can enable the shorter 

development time in comparison with PID or LQR. It can handle the constraints and the designed is 

explicit thanks to the straightforward formulation. 

In MPC, it is essential to minimize the objective function with the respect to the future control 

vectors considering some constraints: 

( ) ( ) 1 1 1 1

1

L
T T T

k k i k i i k i k i k i i k i k i i k i

i

J y r Q y r u Pu u R u+ + + + + − + − + − + −
=

 = − − + + ∆ ∆
 ∑

         

(8.1)  
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where L is the prediction horizon, Qi, Pi, Ri are symmetric and positive demi-definite weighting 

matrices specified by the designer. 

Although they have different purposes, the Kalman filter and the MPC share the background that 

both of them consists of an objective function to minimize, and a prediction model which is based on 

the dynamics of the system. The upper-bound Kalman filter proposed in Chapter 3 is based on the 

minimization of the cost function considering a certain horizontal interval defined by the delay time. 

This horizontal interval is used to taken into account the past covariance, while in the MPC, the 

horizontal interval is to predict the future. 

Literature review shows that Kalman filter has a tight relationship with MPC. In order to realize 

the prediction model, it is important to know the states of the system. If the state xk is not measured, 

Kalman filter could be utilized. Various researches that combining the Kalman filter and MPC can be 

found, such as in [114], [115], [116]. The proposed Kalman filter in this thesis could be applied to 

MPC to overcome the dual-rate and time-delay problem. Moreover, the main disadvantage of MPC is 

that it relies on the model. In Chapter 4, we propose the UKF based simultaneous estimation of system 

state and parameter. This method can be a solution to improve the robustness of MPC. 

 

8.4 Future works 

In future works we will study the following issues in theory side: 

1) Experimental verification of the robust dual-rate filter considering the upper-bound of estimation 

error covariance. 

2) On-line optimization of the µ-gain in the upper-bound Kalman filter for handing delayed 

measurement. 

3) Develop the upper-bound Kalman filter for the random-time-delay case. 

4) Examine the on-line tuning of the process and measurement noise covariance matrices. 

5) Examine the possibility of the proposed Kalman filter in this thesis to the MPC system. 

Think about the applications, we will try to expand and apply the Kalman filters designed in this 

thesis to other motion control applications. From our opinion, the unscented Kalman filter (UKF) may 

contribute a new scheme for adaptive estimation and motion control. In any system such that we need 

to feed back both the state and the parameter, the UKF can be utilized. 
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Appendix 1 

 
Lemma L1 

For any matrices X, Y with appropriate dimensions, for any positive constant µ, we have: 

1T T T TX Y Y X X X Y Yµ
µ

+ ≤ +

                             

The lemma L1 is presented in [105]. 

 

Lemma L2 

If we have the following matrices A, H, E, F where FF
T ≤ I, X is a positive definite matrix and 

there exists arbitrary α that satisfies α-1
I – EXE

T > 0, then the following inequality holds: 

( ) ( ) ( )
1

1 1T T T T T T
A HFE X A HFE AXA AXE I EXE EXA HHα α

−− −+ + ≤ + − +  

The lemma L2 is presented in [100].  
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Appendix 2 

 
In this appendix, we present more simulation results of the disturbance accommodation Kalman 

filter proposed in Chapter 2. The results appear in the journal No. 1 in our publication list.  

In this simulation, we verify the proposed Kalman filter in comparison with other estimation 

methods. As the simulation of the lane change test is shown in Chapter 5, in this Appendix we present 

the simulation results of the cornering test. The following driving conditions are set: 

1) The longitudinal velocity is 25 km/h. 

2) From 4 second, a strong lateral wind force starts to act on the vehicle. It introduces lateral force 

disturbance Fd and yaw moment disturbance Nd. 

3) The cornering stiffness of vehicle model are Cf = Cr = 7000 N/rad. However, the estimation model 

is designed with the nominal values Cfn = Crn = 10,000 N/rad. This means a big error is introduced 

to cornering stiffness of the estimation model. 

4) The disturbance terms d1 and d2 are simulated using the following formulations: 

( ) ( )
1 2

2 2 2 1f r f f r r f

f d
x x xx

C C C l C l C
d F

mu mu mumu
β γ δ

− ∆ + ∆ − ∆ − ∆ ∆
= + + +  

( ) ( )2 2

2

22 2 1f f r rf f r r f f

f d

z z x z z

C l C lC l C l C l
d N

I I u I I
β γ δ

− ∆ + ∆− ∆ − ∆ ∆
= + + +  

The disturbance accommodation multi-rate Kalman filter (DAMRKF) is compared to the 

following two methods. The first is the sideslip angle estimation using linear observer (LOB). Yaw 

rate and lateral acceleration are selected as output measurements. The second method is multi-rate 

Kalman filter (MRKF). This method uses the yaw rate and course angle as output measurement. These 

two methods are described in Chapter 5. 

Simulation results are shown in Fig. 1 in the following page. The results include sideslip angle 

estimations and disturbance estimations. The influence of lateral wind force can be demonstrated by 

the change of sideslip angle and disturbance terms from 4 second. In both tests, LOB shows the 

poorest estimation performance. By using course angle from GPS, MRKF provides better estimation 

than LOB. However, the results degrade under the influence of both model error and lateral wind force. 

By using the proposed DAMRKF method, the disturbances are estimated as the extended states. 

Although the tracking of disturbance estimation is not perfect, sideslip angle estimation performance is 

improved considerably. Therefore, the assumption that the dynamics of disturbances is random-walk is 

acceptable. 
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      (a) 

 

      (b) 

 

       (c) 

Fig. 1. Simulation results of sideslip angle estimation: Cornering test.  

(a) Sideslip angle. (b). Disturbance term d1. (c). Disturbance term d2. 
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