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We develop a numerical algorithm for calculating the light-scattering properties of small partic¥es of 
arbitrarγshape on the basis of a method involving sUlface integral equations. The ca¥culation error 
was estimated by performing a comparison between the proposed method and the exact Mie method 
with regard to the extinction efficiency factor, and the results show that the error is less than 1% 
when four or more nodes per wavelength are set on the surface of a spherical partic¥e. The accuracy 
fluctuates in accordance with the distribution of nodal points on th巴 parti c\ e surface with respect to 
the direction of propagation of th巴 incidentlight. From our examinations, it is shown that the polar inｭ
cidence alignment yields higher accuracy than equator incidence when a “latitude-longitude" type of 
mesh generation is adopted. The 巴lectric currents on the partic¥e surface and the phase functions of 
all scattering directions are shown for pa比ic\es shaped as spheres 01' hexagona¥ columns. It is shown 
that the phase function for a hexagonal column has four or eight cold spots. The phase function of a 
randomly oriented hexagonal column shows halolike pe出swith size parameters ofup to 20. This method 
can be applied to partic¥es with a size parameter of up to about 20 without using the symmetηchar­

acteristic of the partic¥e. @ 2009 Optical Society of America 
OCIS codes: 010.0010 , 290.5850, 290.5825 , 280.0280 , 280.1310 

1. Jntroduction 

Light scattering by small particles is an important 

research subject in many scientific and engineering 

fields , such as astronomy and geophysics. For 
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example , in Earth observation and remote sensing 
with spaceborne satellites, it is necessary to calcuｭ
late the radiative transfer, which includes scatterｭ
ing of electromagnetic waves by particles in the 

a tmos phere , such as clouds and aerosols , in addiｭ
tion to scattering 仕om molecules and interactions 
at the ground surface. In fact , many radiative 
transfer solvers have been used for simulating 



satellite-measured signals with respect to such comｭ
plex scattering processes. 1n such calculations, it is 
necessary to consider that, generally, the shape of 
most scattering particles in nature is nonspherical , 
with the exception of particular types of particles, 
such as warm water cloud droplets. Thus, an e伍clent
and accurate method for calculating the light-scatｭ
tering properties of nonspherical particles has been 
pursued for many years. 1n the context of this paper, 
the term “ scattering properties" denotes the effiｭ
ciency factors of the scattering and the phase 
function. 
There are two possible approaches to obtaining the 
light-scattering properties for nonspherical particles. 
One approach is based on an approximation method , 
while the other involves an exact solution. A typical 
method used in the former approach is an algorithm 
based on the geometrical optics approximation 
(GOA) , which is applicable to particles with veηr 
large size parameters (α = 2πr / ,1, where r is the 
equwαlent-volume-sphere rαdius of the nonspherical 
particle and ,1 is the wavelength ofthe incident light). 
Liou and Takano [1] applied GOA to homogeneous 
hexagonal columns, hollow columns, bullet rosettes , 
dendrites, and capped columns. The method has also 
been applied to more complex shapes, such as polyｭ
hedral ice cηstals [2] and randomly shaped rough 
particles [3,4]. Although the GOA technique has a 
long history, it is still valuable for estimating the apｭ
pearance of visible optical phenomena, such as halos 
andJor arcs, in the results of exact methods [5 ,6], as 
well as for calculating the scattering properties for 
large particles [7]. The most precise theories and nu 
merical algorithms corresponding to the latter ap 
proach are based on solving Maxwell's equations. 
Analytical solutions have been examined for only a 
few simple cases. Mie [8] derived a solution for homo 
geneous isotropic spheres , while Wait [9] obtained a 
full solution for infinite homogenous isotropic circuｭ
lar cylinders. Furthermore, Asano and Yamamoto 
[10] successfully derived a general solution for homo 
geneous isotropic spheroids. 1n addition to exact 
analytical solutions , many numerical algorithms 
have also been developed for solving this problem. 
The τmatrix method [11 ,12] and the finite 
difference time-domain (FDTD) method [13] are two 
e自cient methods for performing such calculations, 
and a comprehensive scattering database has bee 

than that based on volume integral equations since 
the number ofmatching nodal points (NMNP) is proｭ
portional to aL.. Mano [16] developed an algorithm for 
a method based on surface-integral equations and 
obtained the scattering properties for a homogeneous 
hexagonal column with a size parameter of up to 40. 
FDTD can be applied to both the volume-and 
surface-integral methods [17]. Results obtained 企om
several methods have been used for the data analysis 
of atmospheric observations. For example , Dubovik 
[18] applied nonspherical models to the Aerosol Roｭ
botic Network (AERONET) sky-radiometer data and 
showed that the mixture ofspheroids allows accurate 
fitting of measured spectral and angular dependenｭ
cies of observed intensity and polarization 
We have focused on developing an algorithm , the 
surface-integral equation method for M�ler type 
(S1EMIM) , for a method based on surface-integral 
equations. The target particles are shaped as spheres 
or hexagonal columns in this paper. There are three 
objectives in this paper. The 日rstis the elucidation of 
the relationship between the accuracy of the obｭ
tained scattering properties and NMNP. Regarding 
this objective , Mano [16] has shown that six nodes 
per wavelength are necessaηin order to obtain 
the scattering properties with verγhigh accuracy. 
He used the s戸nmetry characteristic of hexagonal 
particles in order to drastically reduce the required 
computational resources (both the calculation time 
and the amount of required memory). Since one of 
the aims ofthis paper is the elucidation of the appliｭ
cability of the method based on surface-integral 
equations to particles with arbitrary shapes with 
limited computer resources , we do not use the symｭ
metηofthe particles. Thus , the number ofnodes per 
wavelength is set to less than six in some calcula 
tions. Although this might degrade the calculation 
accuracy or restrict the calculations to smaller values 
of the size parameter as compared with those in 
Mano [16], the results provide significant indications 
when the method based on surface-integral equaｭ
tions is adopted to particles of arbitrary shape , which 
entail higher requirements for computer memory. 
The second objective is the derivation of the electro 
magnetic currents on the surface of scattering partiｭ
cles and the scattering phase functions for all 
scattering directions. The results reveal the impor 
tance of the smoothness of the electroma 

2. Formulations and Numerical Calculation Method 

A. Combined Surface-Integral Equations of the M�ler 
type 

1n this section, we introduce an integral equation 
method based on obtaining numerical solutions of 
Maxwell's equations. The important advantage of 
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surface-integral equations is that the dimensionality 
of the problem is reduced by 1 as compared to the 
case of volume-integral equations , and the number 
of unknowns is proportional to the square rather 
than to the cube of the particle size. We chose 
Fredholm equations of the second kind , which were 
obtained by M�ler [191. These equations are based 
on the following formulations: 

i(r) x Ein刈 = -i (が + 川( r) 一 i ( r )

xl 同J川201 仇ω) ト ko械刷koK(r'訓附K町町(げピ
x V"(m.201 -00) + j(J ( ピ)
. V")V"(01 -Oo ) }ds' う ( 1 )

i(r) x Hinc(r) = J ( r ) 一 i ( r )

x 1" {jkõK川201 -00) -koJ例
x V"(01 -00) 

+ j(K(ピ) . V")V"(01 -Oo )}ds' , 

(2) 

where r and r' are the positions of matching and inｭ
tegration points, respectively. Einc and Hinc denote 
the incident plane electromagnetic wave. J and K 
are unknown surface electric and magnetic currents 
at r , j is the imaginary unit, m. is the complex ref均c­
tive index of the scattering particle, i is an outward 
unit vector normal to the surface of the scattering 
particle at r , and ko is the wavenumber of the inci 
dent electromagnetic wave. 01 and 00 represent 
the Green's function of the three-dimensional Helm 
holtz equation for the incident wavenumber kn for 
the inside (subindex of 1) and the outside (subindex 
of 0) of the scattering object: 
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B. Methodology of Numerical Calculation 
For the numerical calculation, J and K are discreｭ
tized as 
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where fm(r) is the local-domain basis function with 
number of M = 100 (10 x 10 = 100 around the inte-
gral point). We adopted the three-dimensional 
B-spline function for f. Equations (1) and (2) can 
be discretized and written by using residual equaｭ
tions. In our calculations, a point matching method 
is adopted. 
The coordinates of every nodal point are expressed 
as r(x ,y ,z) = r (s ぅ t ). Here , r is parametrically repreｭ
sented by r (s , t) = (x(s , t ),y(s , t ) ス (s ， t )), where s and 
t are scalar parameters along the latitudinal and 
longitudinal curves on the surface of particles. 
Figure 1 schematically illustrates the “latitude 
longitude" type of particle definition with s and t 
as parameters and presents a parametrical illustraｭ
tion ofthe defined particle surface for a sphere and a 
hexagonal column. In this example, the number of 
points defined along the s and t curves is 19 and 
24 for the sphere and 25 and 24 for the hexagonal 
column and , thus, the surface currents J and K are 
set at 19 x 24 = 456 and 25 x 24 = 600 NMNP for 
the sphere and the hexagonal column in these cases. 
The small surface facet used for integrating Eqs. (1) 
and (2) can be described by means of a Jacobian 
and dsdt: 

ムダー lòr' (s ， t ).. òr'(s ハ||一一一-x 一一~~ ' " J Idsdt 
I � � 

(7) 

(3) 

The Gaussian quadrature integration was applied to 
avoid the mgularpointthat appeared when|r-rf|= 
o in the Green's function. In fact , dense and coa~se 
numerical integrations had been performed around 
and far 合om the target matching nodal point r. 
The number of Gauss points along both the s and t 
parameters were 20 at the four meshes that sur-
round the target matching nodal point r , and 4 at 
the other meshes. 
The definition of particles (generally,“mesh genｭ
eration") can be accomplished with ease in our comｭ
putation program. First, the user is required to set 
the position of the nodes by using an (x ,y , z) coordi 
nate system. At this time , only the minimal number 
ofnodes su伍cientfor representing the framework of 
the particle (referred to as “fundamental nodes") is 
necessary. U sers can add more nodes (“additional (4) 

(5) 
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Fig. l. Models of a sphere and a hexagonal column with normal 
vectors at all matching nodal points. A parametric spline is used 
for de白n ingthe particle size. ko denotes the incident wavenumbel 



nodes勺 between every fundamental node by simply 
defining the number of divisions between fundamenｭ
tal nodes. When the user wishes to distort the shape 
ofthe particle , it is necessa巧，to alter the coordinates 
of one or more fundamental nodes. The threeｭ
dimensional parametric spline function connects 
all fundamental and additional nodes smoothly, reｭ
gardless of whether the user has implemented any 
distortions. This simple method ofparticle definition 
allows us to generate particles with arbitrary shapes 
in a few simple steps. 
Equations (1) and (2) can be expressed as algebraic 
equations for solving am and bm in Eqs. (5) and (6): 

y = Zx 

Equation (8) can be solved by performing LU decomｭ
position, after which the results of the LUｭ
decomposed matrix Z can be used for solving the 
equation for an arbitrarγpropagation direction of 
the incident electromagnetic waves. This is useful 
for obtaining the optical parameters of randomly orｭ
iented particles. 
Once J and K are obtained by solving Eq. (8) by 
using Eqs. (5) and (6), the vector scattering ampliｭ
tude F, the scattering cross section Cs , and the extincｭ
tion cross section Ce are given by the optical theorem 
[20]: 
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Cs =右 I iF I2ω (10) 

Ce = 一品Im{Ao' F(ro) }, 
ルゲ iO

(11) 

where i
r 
is a unit vector of the scattering direction r 

and Ao is the polarized component of the incident 

electric field. Here , � = J po / t:o, whereμ0 = l.26x 
10-6 [H/m] and ε o = 8.85 x 10-12 [F /m] are the 
pernleabiﾜty and the permittivity of vacuum , 
respectively. 

C. Efficiency Factors and Size Parameters 

The e伍ciency factors of extinction Qext and scatter-白
ing Qsca can be expressed in a simple manner as 
follows: 

Qext = Ce /(πr2 ) ， (12) 

Qsca = Cs / (πr2 ) (13) 

We defined r in Eqs. (12) and (13) as the radius ofthe 
sphere in the case of a spherical particle or that of an 
equiualent-uolume sphere in the case of a nonspheriｭ
cal particle. The scattering properties are characterｭ
ized by the ratio of the particle size and the 
wavelength ﾀ of the electromagnetic wave. Thus, 
we defined the size parameterαas follows: 
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For example ， α = 1, 10, and 100 for a wavelength 
λ ~3.7μm of shortwave in合aredwaves correspond to 
a particle radius of about 0.6 , 6, and 60μm ， respecｭ
tively. One of the shapes of particles targeted in this 
paper is that of a hexagonal column. The defined diｭ
mensions are illustrated in Fig. 2. In our definition , a 
hexagonal column is described by the lengths L and 
D , while the size parameters are defined as 
in Eq. (14). 
In order to confirm validity of our SIEMIM algoｭ
rithm we compared our result with the result appearｭ
ing in Fig. 6(a) of Mano , under the same optical and 
particle conditions. Figure 3 shows the phase funcｭ
tion of the hexagonal column obtained by the 
SIEM瓜iI algorithm under the conditions of ,ñ = 
( l.3 , -0.0 ), L/D = 0.866 (corresponding to L/D = 
l.0 by the Mano definition) , and πL/À = 3.4. The reｭ
sult is quite similar to Mano , so that our calculation 
is consistent with that study. 

(9) 
3. Results 

A. Accuracy with Respect to Qext versus NMNP 

We assumed a wavelength of 3.7μm for the calculaｭ
tions since this wavelength is important for retrievｭ
ing cloud particle size in the application of cloud 
remote sensing with visible-to-in合ared imaging senｭ
sors. The extinction e伍ciency factor Qext of a homoｭ
geneous spherical particle was calculated with a 

Fig.2. Defmition ofthe hexagonal column dimension. Aspect raｭ
tio is described by LjD 
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4(d) show that the relative percent e汀or of Qext deｭ
creases as NMNP increases. When NMNP = 3136 
for PI and EI , the errors become 1% or less for values 
of size parameterαlower than about 20 and 17 , re 
spectively. On the basis ofthis evaluation, our SIEMJ 
M is considered to be applicable for values ofthe size 
parameter lower than about 20 , with an error of a few 
percent in the case of spherical particles. In this case , 
the node density was about four nodes per waveｭ
length , as shown in Table 1. We also performed calｭ
culations without absorption l� = (1. 395 ， ー0.0 ) in 
order to estimate the convergence level of the calcuｭ
lations. The relative difference value of IQext 
Qscal/Qext will be nearly zero ifthe calculation is preｭ
cise. Here , the values were 6.7 x 10-4, 2.3 X 10-3, 
6.6 x 10-3,1.0 x 10-2, 2.0 x 10-2, and 2.7 x 10-2 forva 
lues of the size parameterα = 1, 5, 9, 13 , 17 , and 21 
when total NMNP = 2408 , and were 4.9 x 10-4, 2.1x 
10-3, 6.3 x 10-3, 9.5 x 10-3, 1.4 x 10-2, and 2.0 x 10-2 

when total NMNP = 3136. 

Hexagonal Column, L/D=O.866 ， π し/λ=3 .4
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B. Electric Current on the Surface of a Particle and 
Scattering Phase Function 

The electric and magnetic currents J and K are obｭ
tained by solving Eq. (8) with the aid of Eqs. (5) 
and (6). Fi♂lre 5 illustrates the real part of the obｭ
tained J on the surface of a spherical particle for 
(a) PI and (b) EI , with a complex index of refraction 
l� = (1.395 , -6.99 x 10-3). 1'he cqlor on the surface 
denotes the magn山de of IRe(J) I normalized by its 
maximum value. The partJ:icle wlas rotated in such 
a way that the incident light illuminated the target 
from the 仕ont-right region of each viewgraph , as in 
dicated with thick blue a町ows in the 五gure. We can 
identifうr concentric ripples on the particle surface , 
which appeared when αwas larger than 5 , where 
the number of ripples increased as the size paraｭ
meter αincreased . The difference ofthe Qext accuracy 
between PI and EI as noted in Subsection 3.A. can be 
explained by considering the different distribution of 
nodal points with respect to the direction ofpropagaｭ
tion of the incident light. For PI, the density of nodes 
is higher at the “north pole," so that the incident light 
will be dealt with more e伍ciently. Moreover, the 
ripples were smoothly distributed on the surface of 
the particle since each wave仕ont and t cu円e shared 
the same central point. On the contrary, the distribuｭ
tion of nodes is coarse at the surface that faces the 
incident light, and the wave仕onts have a rough 
structure for EI. Th us, the better accuracy of Q ext 
for PI was obtained as a result ofthe density ofnodes 
at the specific area and the smooth appearance ofthe 
electric and magnetic currents on the surface of the 
particle. Despite the better accuracy of Qext for PI as 
compared with that for EI , the oscillation phases of 
Qext as a function ofαare smoother for EI than for PI , 
as seen in Fig. 4. This is due to the regular intervals 
between the nodal points along the s direction , which 
is in the direction of propagation in the PI case. As 
size parameter varies , this spacing is not able to ade 
quately represent the propagating wave. It is 

180 

Scattering Angle (degrees) 

Fig. 3. Phase function of a hexagonal column obtained by SIEMJ 
M. The obtained curve corresponds to that in Fig. 6(a) in Mano 
[16]. The conditions of the particle are r元 = ( 1.3 ， ー0.0 ) ， LjD = 

0.866 (corresponding to LjD = 1.0 by the Mano definition ), and 
πLj} 二 3 .4

150 

品-'ー」

120 90 60 30 。

complex index ofrefraction 仇 = (1.395 , -6.99 x 10-3) 
by assuming an ice-phase particle at a wavelength 
of 3.7μm of the electromagnetic waves, for 
values of the parameterαin the range between 1 
and 30. Figure 4 shows Qext as a function of the size 
parameterα [Figs. 4(a) and 4(b)], as well as the relaｭ
tive error of Qext as obtained with SIEM爪tI against 
the exact solution obtained 仕om the Mie theory. 
The results are shown as a function of NMNP 
[Figs. 4(c) and 4(d)] for electromagnetic waves with 
polar incidence (PI) [Figs. 4(a) and 4(c)] , and equator 
incidence (EI) [Figs. 4(b) and 4(d)]; Fig. 1 contains a 
de五nition of PI and EI. The relationships between 
the total NMNP and the number of nodes along 
the s and t curves are summarized in Table 1. 
As shown in Fig. 4, Qext as obtained with SIEM爪4
is similar to an exact Qext when the size parameter is 
less than about 10 , in the case ofboth PI and EI. The 
differences increase as the size parameter increases , 
and drastically decrease following the increase of 
NMNP. The e打ors decrease faster for PI than EI 
in most cases. Since these differences depend on 
the distribution of nodal points on the particle surｭ
face with respect to the direction of propagation of 
the incident light as well as total NMNP, the errors 
do not always linearly decrease with NMNP. Howｭ
ever, the general trend is that Qext errors for PI apｭ
pear to be smaller than those for EI. The oscillations 
of Qext along αare smoother for EI than for PI. This 
fact is due to the different distribution ofnodal points 
with respect to the direction ofpropagation ofthe inｭ
cident light. This feature is discussed in Subsecｭ
tion 3.B. by showing the electric currents J as 
obtained for the particle surface. Figures 4(c) and 
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with the distribution of nodal points on the particle 

surface with respect to the direction ofpropagation of 

the incident light. 

Figure 6 shows the phase functions for a sphere 

[Fig. 6(a)] and a hexagonal column with an aspect raｭ

tio LjD of l.0 [Fig. 6Cb)] for all scattering directions. 
The center and the circumference of each panel 

remarkable that the EI case , for which the nodal 
points are more irregularly spaced in the direction 

of propagation , gives a smoother representation of 
the oscillation of Qext as a function ofα. In general , 
however, the PI alignment is considered superior 
to the EI alignment for spherical particles. Our result 
indicates that the accuracy fluctuates in accordance 
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Re(J) on Sphere, m=(1.395,-6.9ge-3 ), Polar Incidence (PI) 
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denote forward and backward scattering, respecｭ
tively. The values of the size parameterαare the 
same as those in Fig. 5. The total NMNP is 2408 
(=43 x 56) for the sphere and 2352 (=49 x 48) for 
the hexagonal column , and the average number of 
nodes per wavelength along the s curve is 105 .4, 
21.1, 11.7, 8.1, 6.2, and 5.0 for values of size paraｭ
meter α = 1, 5 , 9, 13 , 17 , and 21 in the case of a hexｭ
agonal column. Since the number of nodes per 
wavelength is similar to that of a sphere with 
2408 nodes, the calculation accuracy for a hexagonal 
column is considered to be similar to that for a 
sphere. In the case of a hexagonal column , the inci 
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一二三ごエ「

dent light propagates toward the particles along the 
z axis by adopting a fixed geometrical alignment (see 
Fig. 7). Rayleigh-like scattering (dipole scattering) 
occurs both in the case of a sphere and the case of 
a hexagonal column when the particle size is com 
paratively small (for example , when α = 1). The 
phase function for the sphere becomes gradually iso 
tropic asαincreases ， whereas the phase function for 
a hexagonal column for larger values ofαhas a more 
complex and distorled structure. The nonsphericity 
of the phase function appears around α~ 3 and graｭ
dually increases asαincreases. The other difference 
between the characteristics of the phase function for 



a sphere and a hexagonal column is the number and 
the locations of the “cold spots ," where the phase 
function takes remarkably small values. When 

α = 17, these spots appear at azimuth angles of 
45 0 , 135 0 , 225 0 , and 3500 with elevation angles of 
90
0 

for a hexagonal column , and at 0 0 , 90 0 , 1800 , 
and 270

0 

with elevation angles of 1200 for a sphere. 

4. Discussion of the Results for Randomly Oriented 
Particles 

The scattering properties of a hexagonal column for 
different orientations of the particle with respect to 
the incident electromagnetic waves can be solved by 
controlling the terms Einc and Hinc on the left side of 
Eqs. (1) and (2) since the particle orientation is 

(a) Phase function for a Sphere, m=(1.395 ,-6.9ge-3 ), Equator Inc. (EI) 

(b) Phase function for a Hexagonal Column , m=( 1.395,-6.9ge-3), Equator Inc. (EI) 

Fig. 6. Phase functions for (a) a sphere and (b) a hexagonal column with an aspect ratio of LjD = l.0 for all scattering directions. The 
center and the circumference of each panel denote fonvard and backward scattering, respectiv巴 ly.The size parameters 日 are 1, 5, 9, 13, 17 , 
and 21 , with a ref同ctiveindex m ニ ( l.395 ，-6.99 x 10-3). The total numb巴rof matching nodal points was 2408 (=43 x 56) for the sphere 
and 2352 (=49 x 48) for the hexagonal column 
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equivalent to that of the incident electromagnetic 
waves. We specified the orientation of the particle 
with respect to the coordinate system by using two 
rotational angles. As a brief outline, a rotation 
around the z axis at an angle θzε [0 ， 2π1 and around 
the y axis at an angle θy ε [0ス1 defines an arbitrary 
rotation of the target particle. In order to obtain the 
characteristic scattering features of a particle shaped 
as a hexagonal column , we obtained a solution with 
randomly oriented incident electromagnetic waves 
and averaged scattering properties. In order to estiｭ
mate the degree of convergence, we defined a converｭ
gence parameter E 三 1 1 -Qext(n + l )/ Qext (n) l, where 
Qext (η ) represents Qext averaged over the nth rotaｭ
tion. When E 三1. 0 X 10-4 consecutively 日ve tímes , 
the calculation was terminated. A few hundred to 
thousand rotations were needed for α < 21. Figure 8 
illustrates the phase function P for values ofthe size 
parameter of (a)α= 1, (b) 5 , (c) 9 , and (d) 21 of the 
sphere (Mie) and the hexagonal column (SIEM爪11)，

where the complex index of re仕action is l� = 
(1.313 , -0.0), assuming an ice-phase particle and a 
wavelength of 0.5μm for the electromagnetic wave 
For comparison of Mie and SIEM/M, the phase funcｭ
tions P were normalized by factor c = 0.01 and c = 
1.0 for Mie and SIEM/M, respectively, using the 
formulation 

= c xァヱー日)
IP 己lnσde

whereθis the scattering angle. 
Fast oscillations in the phase function for each 
fixed orientation (see the results obtained by Mie) 
at relatively larger values ofαweaken upon the averｭ
aging of the phase functions obtained in each ran 
domly oriented in the case of a hexagonal column , 
with the exception of a noteworthy region around 
200 for the scattering angle. The perturbations apｭ
pearing in this angle interval are a well-known opti-

Z 

Y 

X 

Fig. 7. Geometrical alignment of the incident electromagnetic 
waves and the hexagonal column used in Fig. 6 
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cal phenomenon referred to as “halo ," which is a 
result of the hexagonal structure of the particle. 
Mishchenko et al. [21] investigated the phase funcｭ
tion of circular cylinders by using T matrices and 
GOA and concluded that well-defined halo optical 
phenomena will appear when the value of the size 
parameter of a nonspherical particle is 100 and more 
In this regard , a faint halo appeared slowly but 
steadily in the case of a hexagonal after a sufficiently 
high number of random reorientations. Similar reｭ
sults have been obtained with the FDTD method 
by Yang and Liou [13] for hexagonal columns with 
a size parameter of 10 and an aspect ratio of 2 
The SIEM/M method also confirmed that a randomly 
oriented hexagonal particle generates a faint but 
noticeable signal for the halo phenomenon despite 
the relatively small particle size. 

5. Summary and Concluding Remarks 

A numerical calculation program based on a com 
bined method involving SIEM瓜-1 was developed. In 
order to evaluate the accuracy of calculations with 
SIEM/M, we compared the scattering properties of 
spheres with respect to SIEM/M-derived and exact 
Mie solutions. The results showed that the accuracy 
depends on the NMNP and the e打orwas lower than 
a few percent for NMNP of four or more per waveｭ
length. It was shown that PI alignments yield more 
favorable solutions than EI alignments in most cases 
for spherical particles with the “latitude-longitude" 
type of node definition. This can be explained by the 
fact that the density of nodes is higher at the “north 
pole" so that the incident light will be dealt with 
more efficiently and the isotropic rippled structure 
of the electric and magnetic current on the surface 
ofthe particle was smooth in the case ofPI and rough 
in the case of EI. It is shown that the calculation acｭ
curacy depends on the distribution of the nodal 
points on the surface with respect to the direction 
of propagation. Thus optimization of the node denｭ
sity with respect to the shape of the particle will 
be one of the tunable aspects in our algorithm. 
A comparison ofthe respective phase functions for 
a sphere and a hexagonal column with a size paraｭ
meter between 1 and 21 showed a Rayleigh-like scatｭ
tering with comparatively small α~ 1 for both the 
sphere and the hexagonal column. Nonsphericity 
appeared in the phase function in the region of α ミ
3 and gradually increased with the increase ofα. 
Another difference in the characteristics of the phase 
function between a sphere and a hexagonal column 
was the number and the locations of “ cold spots," 
at which the phase function takes remarkably small 
values 
An averaged phase function for a hexagonal colｭ
umn was obtained by solving SIEM爪-1. There apｭ
peared a remarkable optical phenomenon known 
as “halo" for scattering angles around 200 and rela 
tively large values for the size parameter, such as 20. 
Our results suggested that the values of the size 
parameter at which halos appear are comparatively 



_ (a) Hexagonal Column , L/D= 1.0 ， α= 00 
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Fig. 8. Phase function of Mie (lower curves ) 叩d hexagonal column particles with L/D = l.0 (upper cu円es ) with a size parameter 
(a) 日 = 1, (b) 5, (c 9, and (d) 2l. Phase functions were normalized by 0.01 (Mie) and l.0 (SIEM爪11 ) . The complex index of re仕actlOn IS 

,ñ = (l.313, -0.0). Phase functions parallel (thin dashed cUl'ves) and perpendicular (thin solid curves) to Ej旧 are shown. Azimuthally 
averaged results of the phase functions are also shown by thick solid CUl-ves 

smaller than previously considered. Until recently, 
the upper limit for the size parameter of SIEM瓜4
was around 20 when using computers with ~8 giga 
bytes of memoη; and this limit will increase followｭ
ing the increased availability of computer resources 
Using the symmetric structure of the particles is exｭ
pected to be an excellent way of increasing the size 
parameter. However, this study has been carried 
out 合om the perspective of applying this method 
to particles with arbitra巧T shape in the future with 
the aim that the computation holds for the full size 
ofthe scattering matrix [Z in Eq. (8)]. It is clear that 
this is a problem involving a trade-o百 between comｭ
puter resources and degrees of asymmetηofthe tarｭ
get particles. In part II of our paper, we will present 

some results of SIEM/M for particles with more com 
plex shapes, with small to moderate size parameters. 
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