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We develop a numerical algorithm for calculating the light-scattering properties of small particles of
arbitrary shape on the basis of a method involving surface integral equations. The calculation error
was estimated by performing a comparison between the proposed method and the exact Mie method
with regard to the extinction efficiency factor, and the results show that the error is less than 1%
when four or more nodes per wavelength are set on the surface of a spherical particle. The accuracy
fluctuates in accordance with the distribution of nodal points on the particle surface with respect to
the direction of propagation of the incident light. From our examinations, it is shown that the polar in-
cidence alignment yields higher accuracy than equator incidence when a “latitude—longitude” type of
mesh generation is adopted. The electric currents on the particle surface and the phase functions of
all scattering directions are shown for particles shaped as spheres or hexagonal columns. It is shown
that the phase function for a hexagonal column has four or eight cold spots. The phase function of a
randomly oriented hexagonal column shows halolike peaks with size parameters of up to 20. This method
can be applied to particles with a size parameter of up to about 20 without using the symmetry char-
acteristic of the particle. © 2009 Optical Society of America
OCIS codes:  010.0010, 290.5850, 290.5825, 280.0280, 280.1310.

Introduction

example, in Earth observation and remote sensing

Light scattering by small particles is an important
research subject in many scientific and engineering
fields, such as astronomy and geophysics. For
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with spaceborne satellites, it is necessary to calcu-
late the radiative transfer, which includes scatter-
ing of electromagnetic waves by particles in the
atmosphere, such as clouds and aerosols, in addi-
tion to scattering from molecules and interactions
at the ground surface. In fact, many radiative
transfer solvers have been used for simulating



satellite-measured signals with respect to such com-
plex scattering processes. In such calculations, it is
necessary to consider that, generally, the shape of
most scattering particles in nature is nonspherical,
with the exception of particular types of particles,
such as warm water cloud droplets. Thus, an efficient
and accurate method for calculating the light-scat-
tering properties of nonspherical particles has been
pursued for many years. In the context of this paper,
the term “scattering properties” denotes the effi-
ciency factors of the scattering and the phase
function.

There are two possible approaches to obtaining the
light-scattering properties for nonspherical particles.
One approach is based on an approximation method,
while the other involves an exact solution. A typical
method used in the former approach is an algorithm
based on the geometrical optics approximation
(GOA), which 1is applicable to particles with very
large size parameters (a = 2zr/l, where r is the
equivalent-volume-sphere radius of the nonspherical
particle and 1 is the wavelength of the incident light).
Liou and Takano [1] applied GOA to homogeneous
hexagonal columns, hollow columns, bullet rosettes,
dendrites, and capped columns. The method has also
been applied to more complex shapes, such as poly-
hedral ice crystals [2] and randomly shaped rough
particles [3,4]. Although the GOA technique has a
long history, it is still valuable for estimating the ap-
pearance of visible optical phenomena, such as halos
and/or arcs, in the results of exact methods [5,6], as
well as for calculating the scattering properties for
large particles [7]. The most precise theories and nu-
merical algorithms corresponding to the latter ap-
proach are based on solving Maxwell’s equations.
Analytical solutions have been examined for only a
few simple cases. Mie [8] derived a solution for homo-
geneous isotropic spheres, while Wait [9] obtained a
full solution for infinite homogenous isotropic circu-
lar cylinders. Furthermore, Asano and Yamamoto
[10] successfully derived a general solution for homo-
geneous isotropic spheroids. In addition to exact
analytical solutions, many numerical algorithms
have also been developed for solving this problem.
The T-matrix method [11,12] and the finite-
difference time-domain (FDTD) method [13] are two
efficient methods for performing such calculations,
and a comprehensive scattering database has been
developed by using a combination of FDTD, T-matrix,
and GOA [7]. Among the numerical algorithms,
methods based on volume or surface integrals are
considered to be efficient for such calculations. One
of the popular algorithms for methods based on
volume-integral equations, which are applicable to
particles of arbitrary shapes, is discrete dipole ap-
proximation (DDA) [14,15]. This method involves
partitioning a particle into IV dipoles. However, since
N is proportional to o, in principle, the computing
time drastically increases following the increase of
a. On the contrary, a method based on surface inte-
gral equations requires less computational resources

than that based on volume integral equations since
the number of matching nodal points (NMNP) is pro-
portional to a. Mano [16] developed an algorithm for
a method based on surface-integral equations and
obtained the scattering properties for a homogeneous
hexagonal column with a size parameter of up to 40.
FDTD can be applied to both the volume- and
surface-integral methods [17]. Results obtained from
several methods have been used for the data analysis
of atmospheric observations. For example, Dubovik
[18] applied nonspherical models to the Aerosol Ro-
botic Network (AERONET) sky-radiometer data and
showed that the mixture of spheroids allows accurate
fitting of measured spectral and angular dependen-
cies of observed intensity and polarization.

We have focused on developing an algorithm, the
surface-integral equation method for Miller type
(STEM/M), for a method based on surface-integral
equations. The target particles are shaped as spheres
or hexagonal columns in this paper. There are three
objectives in this paper. The first is the elucidation of
the relationship between the accuracy of the ob-
tained scattering properties and NMNP. Regarding
this objective, Mano [16] has shown that six nodes
per wavelength are necessary in order to obtain
the scattering properties with very high accuracy.
He used the symmetry characteristic of hexagonal
particles in order to drastically reduce the required
computational resources (both the calculation time
and the amount of required memory). Since one of
the aims of this paper is the elucidation of the appli-
cability of the method based on surface-integral
equations to particles with arbitrary shapes with
limited computer resources, we do not use the sym-
metry of the particles. Thus, the number of nodes per
wavelength is set to less than six in some calcula-
tions. Although this might degrade the calculation
accuracy or restrict the calculations to smaller values
of the size parameter as compared with those in
Mano [16], the results provide significant indications
when the method based on surface-integral equa-
tions is adopted to particles of arbitrary shape, which
entail higher requirements for computer memory.
The second objective is the derivation of the electro-
magnetic currents on the surface of scattering parti-
cles and the scattering phase functions for all
scattering directions. The results reveal the impor-
tance of the smoothness of the electromagnetic cur-
rents on the surface of the particle with respect to
obtaining the scattering parameters with high accu-
racy. Finally, the phase functions of randomly ori-
ented hexagonal column particles are presented
and discussed.

2. Formulations and Numerical Calculation Method

A. Combined Surface-Integral Equations of the Mller

type

In this section, we introduce an integral equation
method based on obtaining numerical solutions of
Maxwell’s equations. The important advantage of
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surface-integral equations is that the dimensionality
of the problem is reduced by 1 as compared to the
case of volume-integral equations, and the number
of unknowns is proportional to the square rather
than to the cube of the particle size. We chose
Fredholm equations of the second kind, which were
obtained by Miiller [19]. These equations are based
on the following formulations:

l(r) X Einc(r) = _—21_()612 + 1)K(I‘) - l(l‘)

" / (R2I(E) (712G - Go) + koK(r)
x V(m2Gy - Gg) +j(J(r')
V)V(Gy - Go))ds, &

i(l‘) X Hinc(r) = J(r) - i(l‘)
x / REK(X) (712G - Go) - ko (r')
% V/(Gy - Go)
+J(K(F) - V')V/(Gy - Go)}ds,
()

where r and r’ are the positions of matching and in-
tegration points, respectively. E;,. and H;,. denote
the incident plane electromagnetic wave. J and K
are unknown surface electric and magnetic currents
atr, jis the imaginary unit, m is the complex refrac-
tive index of the scattering particle, i is an outward
unit vector normal to the surface of the scattering
particle at r, and & is the wavenumber of the inci-
dent electromagnetic wave. G; and G, represent
the Green’s function of the three-dimensional Helm-
holtz equation for the incident wavenumber %, for
the inside (subindex of 1) and the outside (subindex
of 0) of the scattering object:

G . e“j'hkuir—f\

1(r,r) = mﬁ (3)
a ) e Jkolr-r'|

o(r,r') = Wr—r’]' (4)

B. Methodology of Numerical Calculation

For the numerical calculation, J and K are discre-
tized as

M

J() =" amfm(r), (5)
m=1
M

K(r) = ) " bufu(r), (6)
m=1
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where f,,(r) is the local-domain basis function with
number of M = 100 (10 x 10 = 100 around the inte-
gral point). We adopted the three-dimensional
B-spline function for f. Equations (1) and (2) can
be discretized and written by using residual equa-
tions. In our calculations, a point matching method
is adopted.

The coordinates of every nodal point are expressed
as r(x,y,z) = r(s,t). Here, r is parametrically repre-
sented by r(s,?) = (x(s,t),y(s,¢),2(s,t)), where s and
t are scalar parameters along the latitudinal and
longitudinal curves on the surface of particles.
Figure 1 schematically illustrates the “latitude—
longitude” type of particle definition with s and ¢
as parameters and presents a parametrical illustra-
tion of the defined particle surface for a sphere and a
hexagonal column. In this example, the number of
points defined along the s and ¢ curves is 19 and
24 for the sphere and 25 and 24 for the hexagonal
column and, thus, the surface currents J and K are
set at 19 x 24 = 456 and 25 x 24 = 600 NMNP for
the sphere and the hexagonal column in these cases.
The small surface facet used for integrating Egs. (1)
and (2) can be described by means of a Jacobian
and dsdt¢:

- or'(s,t) or(s.t)

Bs 3s ot

dsdt. (7)

The Gaussian quadrature integration was applied to
avoid the singular point that appeared when |r — r'| =
0 in the Green’s function. In fact, dense and coarse
numerical integrations had been performed around
and far from the target matching nodal point r.
The number of Gauss points along both the s and ¢
parameters were 20 at the four meshes that sur-
round the target matching nodal point r, and 4 at
the other meshes.

The definition of particles (generally, “mesh gen-
eration”) can be accomplished with ease in our com-
putation program. First, the user is required to set
the position of the nodes by using an (x.y,z) coordi-
nate system. At this time, only the minimal number
of nodes sufficient for representing the framework of
the particle (referred to as “fundamental nodes”) is
necessary. Users can add more nodes (“additional

ke
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Fig. 1. Models of a sphere and a hexagonal column with normal
vectors at all matching nodal points. A parametric spline is used
for defining the particle size. k4 denotes the incident wavenumber.



nodes”) between every fundamental node by simply
defining the number of divisions between fundamen-
tal nodes. When the user wishes to distort the shape
of the particle, it is necessary to alter the coordinates
of one or more fundamental nodes. The three-
dimensional parametric spline function connects
all fundamental and additional nodes smoothly, re-
gardless of whether the user has implemented any
distortions. This simple method of particle definition
allows us to generate particles with arbitrary shapes
in a few simple steps.

Equations (1) and (2) can be expressed as algebraic
equations for solving a,, and b,, in Egs. (5) and (6):

y =Zx. (8)

Equation (8) can be solved by performing LU decom-
position, after which the results of the LU-
decomposed matrix Z can be used for solving the
equation for an arbitrary propagation direction of
the incident electromagnetic waves. This is useful
for obtaining the optical parameters of randomly or-
iented particles.

Once J and K are obtained by solving Eq. (8) by
using Eqs. (5) and (6), the vector scattering ampli-
tude F, the scattering cross section Cy, and the extinc-
tion cross section C, are given by the optical theorem
[20]:

2
F(r)—é?[nxar / Jexp(kor’ -i,)ds’ +i,

X /Kexp(jkor“i,)ds’} (9)
1

F2dQ, 10

.=z | ¥ (10)

C. = Im{A‘, (ro)}. (11)

kvo
where i, is a unit vector of the scattering direction r
and A, is the polarized component of the incident
electric field. Here, & = \/uo/€y, wWhere uy = 1.26x
106 [H/m] and ¢, =8.85x107'2[F/m| are the
permeability and the permittivity of vacuum,
respectively.

C. Efficiency Factors and Size Parameters

The efficiency factors of extinction Q. and scatter-
ing Q.. can be expressed in a simple manner as
follows:

Qext = Ce/(”rZ)v (12)

Qscazcs/(”rz)' (13)

We defined r in Eqgs. (12) and (13) as the radius of the
sphere in the case of a spherical particle or that of an
equivalent-volume sphere in the case of a nonspheri-
cal particle. The scattering properties are character-
ized by the ratio of the particle size and the
wavelength 1 of the electromagnetic wave. Thus,
we defined the size parameter « as follows:

(14)

For example, a = 1, 10, and 100 for a wavelength
1 ~ 3.7 ym of shortwave infrared waves correspond to
a particle radius of about 0.6, 6, and 60 ym, respec-
tively. One of the shapes of particles targeted in this
paper is that of a hexagonal column. The defined di-
mensions are illustrated in Fig. 2. In our definition, a
hexagonal column is described by the lengths L and
D, while the size parameters are defined as
in Eq. (14).

In order to confirm validity of our SIEM/M algo-
rithm we compared our result with the result appear-
ing in Fig. 6(a) of Mano, under the same optical and
particle conditions. Figure 3 shows the phase func-
tion of the hexagonal column obtained by the
SIEM/M algorithm under the conditions of m =
(1.3,-0.0), L/D =0.866 (corresponding to L/D =
1.0 by the Mano definition), and zL/1 = 3.4. The re-
sult is quite similar to Mano, so that our calculation
is consistent with that study.

3. Results

A. Accuracy with Respect to Qg versus NMNP

We assumed a wavelength of 3.7 ym for the calcula-
tions since this wavelength is important for retriev-
ing cloud partlcle size in the apphcatlon of cloud
remote sensing with visible-to-infrared imaging sen-
sors. The extinction efficiency factor Q. of a homo-
geneous spherical particle was calculated with a

Fig. 2. Definition of the hexagonal column dimension. Aspect ra-
tio is described by L/D.
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Hexagonal Column, L/D=0.866,7L/A=3.4
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Fig. 3. Phase function of a hexagonal column obtained by SIEM/

M. The obtained curve corresponds to that in Fig. 6(a) in Mano
[16]. The conditions of the particle are m = (1.3,-0.0), L/D =
0.866 (corresponding to L/D = 1.0 by the Mano definition), and
zL /A = 3.4.

complex index of refraction m = (1.395,-6.99 x 107?)
by assuming an ice-phase particle at a wavelength
of 3.7um of the electromagnetic waves, for
values of the parameter a in the range between 1
and 30. Figure 4 shows Q. as a function of the size
parameter « [Figs. 4(a) and 4(b)], as well as the rela-
tive error of Q. as obtained with SIEM/M against
the exact solution obtained from the Mie theory.
The results are shown as a function of NMNP
[Figs. 4(c) and 4(d)] for electromagnetic waves with
polar incidence (PI) [Figs. 4(a) and 4(c)], and equator
incidence (EI) [Figs. 4(b) and 4(d)]; Fig. 1 contains a
definition of PI and EI. The relationships between
the total NMNP and the number of nodes along
the s and ¢ curves are summarized in Table 1.

As shown in Fig. 4, Q. as obtained with SIEM/M
is similar to an exact @, when the size parameter is
less than about 10, in the case of both PI and EI. The
differences increase as the size parameter increases,
and drastically decrease following the increase of
NMNP. The errors decrease faster for PI than EI
in most cases. Since these differences depend on
the distribution of nodal points on the particle sur-
face with respect to the direction of propagation of
the incident light as well as total NMNP, the errors
do not always linearly decrease with NMNP. How-
ever, the general trend is that @, errors for PI ap-
pear to be smaller than those for EI. The oscillations
of Qeyt along a are smoother for EI than for PI. This
fact is due to the different distribution of nodal points
with respect to the direction of propagation of the in-
cident light. This feature is discussed in Subsec-
tion 3.B. by showing the electric currents J as
obtained for the particle surface. Figures 4(c) and
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4(d) show that the relative percent error of @, de-
creases as NMNP increases. When NMNP = 3136
for PI and EI, the errors become 1% or less for values
of size parameter a lower than about 20 and 17, re-
spectively. On the basis of this evaluation, our STEM/
M is considered to be applicable for values of the size
parameter lower than about 20, with an error of a few
percent in the case of spherical particles. In this case,
the node density was about four nodes per wave-
length, as shown in Table 1. We also performed cal-
culations without absorption m = (1.395,-0.0) in
order to estimate the convergence level of the calcu-
lations. The relative difference value of |Q.y —
Qscal/Qoxt Will be nearly zero if the calculation is pre-
cise. Here, the values were 6.7 x 10™%, 2.3 x 1073,
6.6x1073,1.0x1072,2.0x 1072, and 2.7 x 102 for va-
lues of the size parameter a = 1, 5, 9, 13, 17, and 21
when total NMNP = 2408, and were 4.9 x 1074, 2.1x
1072, 6.3x1073,9.5x 1073, 1.4 x 1072, and 2.0 x 1072
when total NMNP = 3136.

B. Electric Current on the Surface of a Particle and
Scattering Phase Function

The electric and magnetic currents J and K are ob-
tained by solving Eq. (8) with the aid of Eqgs. (5)
and (6). Figure 5 illustrates the real part of the ob-
tained J on the surface of a spherical particle for
(a) PI and (b) EI, with a complex index of refraction
m = (1.395,-6.99 x 1073). The cqlor on the surface
denotes the magnitude ofIRe(Jv)j normalized by its
maximum value. The particle was rotated in such
a way that the incident light illuminated the target
from the front-right region of each viewgraph, as in-
dicated with thick blue arrows in the figure. We can
identify concentric ripples on the particle surface,
which appeared when a was larger than 5, where
the number of ripples increased as the size para-
meter a increased. The difference of the @,; accuracy
between PI and EI as noted in Subsection 3.A. can be
explained by considering the different distribution of
nodal points with respect to the direction of propaga-
tion of the incident light. For PI, the density of nodes
is higher at the “north pole,” so that the incident light
will be dealt with more efficiently. Moreover, the
ripples were smoothly distributed on the surface of
the particle since each wavefront and ¢ curve shared
the same central point. On the contrary, the distribu-
tion of nodes is coarse at the surface that faces the
incident light, and the wavefronts have a rough
structure for EI. Thus, the better accuracy of Q.
for PI was obtained as a result of the density of nodes
at the specific area and the smooth appearance of the
electric and magnetic currents on the surface of the
particle. Despite the better accuracy of Q. for PI as
compared with that for EI, the oscillation phases of
Q¢ as a function of @ are smoother for EI than for PI,
as seen in Fig. 4. This is due to the regular intervals
between the nodal points along the s direction, which
is in the direction of propagation in the PI case. As
size parameter varies, this spacing is not able to ade-
quately represent the propagating wave. It is
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obtained with the Mie theory as a function of the number of matching nodal point for electromagnetic waves with (a), (c) polar incidence

and (b), (d) equator incidence.

remarkable that the EI case, for which the nodal
points are more irregularly spaced in the direction
of propagation, gives a smoother representation of
the oscillation of Q. as a function of a. In general,
however, the PI alignment is considered superior
to the EI alignment for spherical particles. Our result
indicates that the accuracy fluctuates in accordance

Table 1.

with the distribution of nodal points on the particle
surface with respect to the direction of propagation of
the incident light.

Figure 6 shows the phase functions for a sphere
[Fig. 6(a)] and a hexagonal column with an aspect ra-
tio L/D of 1.0 [Fig. 6(b)] for all scattering directions.
The center and the circumference of each panel

Average Number of Nodes per Wavelength Along s Parameter of the Spline Function at the Number of Matching Nodal Points

Average Number of Nodes per Wavelength Along (s)

Total NMNP  NMNP along (s) NMNP along (2) a=1 5 9 13 17 21 25 29
456 19 24 32.7 6.6 3.6 2.5 1.9 1.6 1.3 1.1
800 25 32 44.7 8.9 5.0 3.4 2.6 2.1 1.8 1.5
1240 31 40 56.7 11.3 6.3 4.4 3.3 2.6 2.3 2.0
1776 37 48 68.6 13.7 7.6 5.3 4.0 3.3 27 24
2408 43 56 80.6 16.1 9.0 6.2 4.7 3.8 3.2 2.8
3136 49 64 92.6 18.5 10.3 7.1 5.5 4.4 3.7 3.2
1 July 2009 / Vol. 48, No. 19 / APPLIED OPTICS 3531
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denote forward and backward scattering, respec-
tively. The values of the size parameter a are the
same as those in Fig. 5. The total NMNP is 2408
(=43 x 56) for the sphere and 2352 (=49 x 48) for
the hexagonal column, and the average number of
nodes per wavelength along the s curve is 105.4,
21.1, 11.7, 8.1, 6.2, and 5.0 for values of size para-
meter a = 1, 5,9, 13, 17, and 21 in the case of a hex-
agonal column. Since the number of nodes per
wavelength is similar to that of a sphere with
2408 nodes, the calculation accuracy for a hexagonal
column is considered to be similar to that for a
sphere. In the case of a hexagonal column, the inci-
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Fig.5. Real part of the obtained electric currents J for the spherical particle in the case of (a) polar incidence (PI) and (b) equator incidence
(ED), with complex index of refraction m = (1.395,-6.99 x 1073). The particle was rotated in such a way that the incident light propagated
toward the target particle from the front-right part in each viewgraph. The total number of matching nodal points is 3136.

dent light propagates toward the particles along the
z axis by adopting a fixed geometrical alignment (see
Fig. 7). Rayleigh-like scattering (dipole scattering)
occurs both in the case of a sphere and the case of
a hexagonal column when the particle size is com-
paratively small (for example, when a = 1). The
phase function for the sphere becomes gradually iso-
tropic as « increases, whereas the phase function for
a hexagonal column for larger values of « has a more
complex and distorted structure. The nonsphericity
of the phase function appears around « > 3 and gra-
dually increases as « increases. The other difference
between the characteristics of the phase function for



a sphere and a hexagonal column is the number and
the locations of the “cold spots,” where the phase
function takes remarkably small values. When
a =17, these spots appear at azimuth angles of
45°, 135°, 225°, and 350° with elevation angles of
90° for a hexagonal column, and at 0°, 90°, 180°,
and 270° with elevation angles of 120° for a sphere.

4. Discussion of the Results for Randomly Oriented
Particles

The scattering properties of a hexagonal column for
different orientations of the particle with respect to
the incident electromagnetic waves can be solved by
controlling the terms E;,. and H;,. on the left side of
Egs. (1) and (2) since the particle orientation is

(a) Phase function for a Sphere, m=(1.395,-6.99e-3), Equator Inc. (El)

Fig. 6. Phase functions for (a) a sphere and (b) a hexagonal column with an aspect ratio of L/D = 1.0 for all scattering directions. The
center and the circumference of each panel denote forward and backward scattering, respectively. The size parameters a are .1’ 5,9,13, 17,
and 21, with a refractive index m = (1.395,-6.99 x 10~?). The total number of matching nodal points was 2408 (=43 x 56) for the sphere

and 2352 (=49 x 48) for the hexagonal column.
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equivalent to that of the incident electromagnetic
waves. We specified the orientation of the particle
with respect to the coordinate system by using two
rotational angles. As a brief outline, a rotation
around the z axis at an angle 6, € [0, 27] and around
the y axis at an angle 6, € [0, z] defines an arbitrary
rotation of the target particle. In order to obtain the
characteristic scattering features of a particle shaped
as a hexagonal column, we obtained a solution with
randomly oriented incident electromagnetic waves
and averaged scattering properties. In order to esti-
mate the degree of convergence, we defined a conver-
gence parameter ¢ = |1 — Qe (n + 1)/Qexi(n)], where
Q. (n) represents Q... averaged over the nth rota-
tion. When ¢< 1.0 x 10" consecutively five times,
the calculation was terminated. A few hundred to
thousand rotations were needed for a < 21. Figure 8
illustrates the phase function P for values of the size
parameter of (a) a = 1, (b) 5, (¢) 9, and (d) 21 of the
sphere (Mie) and the hexagonal column (STEM/M),
where the complex index of refraction is m =
(1.313,-0.0), assuming an ice-phase particle and a
wavelength of 0.5 um for the electromagnetic wave.
For comparison of Mie and STEM/M, the phase func-
tions P were normalized by factor ¢ = 0.01 and ¢ =
1.0 for Mie and SIEM/M, respectively, using the
formulation

p

Pnormalized =cCcX m B (15>

where 6 is the scattering angle.

Fast oscillations in the phase function for each
fixed orientation (see the results obtained by Mie)
at relatively larger values of « weaken upon the aver-
aging of the phase functions obtained in each ran-
domly oriented in the case of a hexagonal column,
with the exception of a noteworthy region around
20° for the scattering angle. The perturbations ap-
pearing in this angle interval are a well-known opti-

Z

Fig. 7. Geometrical alignment of the incident electromagnetic
waves and the hexagonal column used in Fig. 6.

3534 APPLIED OPTICS / Vol. 48, No. 19/ 1 July 2009

cal phenomenon referred to as “halo,” which is a
result of the hexagonal structure of the particle.
Mishchenko et al. [21] investigated the phase func-
tion of circular cylinders by using T matrices and
GOA and concluded that well-defined halo optical
phenomena will appear when the value of the size
parameter of a nonspherical particle is 100 and more.
In this regard, a faint halo appeared slowly but
steadily in the case of a hexagonal after a sufficiently
high number of random reorientations. Similar re-
sults have been obtained with the FDTD method
by Yang and Liou [13] for hexagonal columns with
a size parameter of 10 and an aspect ratio of 2.
The SIEM/M method also confirmed that a randomly
oriented hexagonal particle generates a faint but
noticeable signal for the halo phenomenon despite
the relatively small particle size.

5. Summary and Concluding Remarks

A numerical calculation program based on a com-
bined method involving SIEM/M was developed. In
order to evaluate the accuracy of calculations with
SIEM/M, we compared the scattering properties of
spheres with respect to SIEM/M-derived and exact
Mie solutions. The results showed that the accuracy
depends on the NMNP and the error was lower than
a few percent for NMNP of four or more per wave-
length. It was shown that PI alignments yield more
favorable solutions than EI alignments in most cases
for spherical particles with the “latitude—longitude”
type of node definition. This can be explained by the
fact that the density of nodes is higher at the “north
pole” so that the incident light will be dealt with
more efficiently and the isotropic rippled structure
of the electric and magnetic current on the surface
of the particle was smooth in the case of PI and rough
in the case of EL It is shown that the calculation ac-
curacy depends on the distribution of the nodal
points on the surface with respect to the direction
of propagation. Thus optimization of the node den-
sity with respect to the shape of the particle will
be one of the tunable aspects in our algorithm.

A comparison of the respective phase functions for
a sphere and a hexagonal column with a size para-
meter between 1 and 21 showed a Rayleigh-like scat-
tering with comparatively small a ~ 1 for both the
sphere and the hexagonal column. Nonsphericity
appeared in the phase function in the region of a >
3 and gradually increased with the increase of a.
Another difference in the characteristics of the phase
function between a sphere and a hexagonal column
was the number and the locations of “cold spots,”
at which the phase function takes remarkably small
values.

An averaged phase function for a hexagonal col-
umn was obtained by solving SIEM/M. There ap-
peared a remarkable optical phenomenon known
as “halo” for scattering angles around 20° and rela-
tively large values for the size parameter, such as 20.
Our results suggested that the values of the size
parameter at which halos appear are comparatively
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Fig. 8. Phase function of Mie (lower curves) and hexagonal column particles with L/D = 1.0 (upper curves) with a size parameter
(a) a=1, (b) 5, (¢ 9, and (d) 21. Phase functions were normalized by 0.01 (Mie) and 1.0 (SIEM/M). The complex index of refraction is
m = (1.313,-0.0). Phase functions parallel (thin dashed curves) and perpendicular (thin solid curves) to Ej,. are shown. Azimuthally
averaged results of the phase functions are also shown by thick solid curves.

smaller than previously considered. Until recently,
the upper limit for the size parameter of STEM/M
was around 20 when using computers with ~8 giga-
bytes of memory, and this limit will increase follow-
ing the increased availability of computer resources.
Using the symmetric structure of the particles is ex-
pected to be an excellent way of increasing the size
parameter. However, this study has been carried
out from the perspective of applying this method
to particles with arbitrary shape in the future with
the aim that the computation holds for the full size
of the scattering matrix [Z in Eq. (8)]. It is clear that
this is a problem involving a trade-off between com-
puter resources and degrees of asymmetry of the tar-
get particles. In part II of our paper, we will present

some results of STEM/M for particles with more com-
plex shapes, with small to moderate size parameters.
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