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論文の内容の要旨

論文題目 Monitoring the clonal composition of HTLV-1-infected cells（HTLV-1 感染細胞のクローナリティ解析）

氏 名 フィルジ サナーズ

<Abstract>

Human T-cell leukemia virus type-I (HTLV-1) mainly survives in vivo by persistent proliferation of infected
cells. HTLV-1 infection is the initial necessary event of multiple leukemogenic events that lead to adult T-
cell leukemia (ATL) onset. As the first generation of studies on ATL risk factors, our Joint Study on
Predisposing Factors of ATL Development (JSPFAD) group demonstrated that a proviral load (PVL) >4%
is one of the risk factors for progression to ATL; however, PVL alone cannot predict development of the
disease. Moreover, how the threshold of 4% and high levels of PVL are maintained and how they contribute
to ATL onset remains to be elucidated.

Thus, with revolutionized insights, I have started a next generation of studies on prevention and revealing
the molecular mechanisms of ATL development. For this purpose, I developed and validated an original
methodology to detect clonality as accurate as qPCR while also taking advantage of the ability of deep
sequencing to precisely characterize and distinguish large numbers of infected clones, based on provirus
integration sites. This new methodology has been published, and is currently the most reliable method for
accurate analysis of HTLV-1 clonality that can be used for clinical applications worldwide [Firouzi et al.
Genome medicine 2014]. The realization of the potential clinical applications of this methodology will have
far-reaching impacts on the diagnosis, prognosis, and treatment of infected individuals. Here I present my
original methodology and part of pilot data on the clonal composition of HTLV-1 infected cells.

Summary of results

<Background and the necessity of this study>

ATL is a highly aggressive leukemia of T-cells, with an extremely poor prognosis and a short median
survival time due to development of multidrug resistance. Prevention and treatment of ATL remain to be
unresolved problems.

In 2002 JSPFAD was established as a nationwide collaborative study group to collect biomaterial samples
from individuals infected with human T-cell leukemia virus type-I (HTLV-1) to facilitate research on the
mechanisms and risk factors associated with ATL development. In the first generation of studies on ATL
risk factors, JSPFAD assessed the correlation between disease outcome and proviral load (PVL). PVL
represents the burden of HTLV-1 infection, defined as the percentage of infected cells among the total
peripheral blood mononuclear cells (PBMCs), accurately measurable by qPCR. The JSPFAD initiative has
currently collected > 9000 samples, all of which have had their PVL measured in our laboratory. PVL levels
are different among infected individuals, with patients with malignant ATL having a significantly higher PVL
than asymptomatic carriers (ACs). The initial JSPFAD study showed that a PVL >4% is one of the risk
factors for progression to ATL [Iwanaga et al. Blood 2010]. However, some of ACs have abnormally high
PVLs but do not develop ATL, and some infected individuals with low PVLs develop acute ATL. Thus,
although an elevated PVL is currently the best-characterized risk factor associated with ATL development,
a high PVL alone is not sufficient to predict disease progression and there is a need to discover additional
predictive factors. Moreover, the mechanisms behind the maintenance of high levels of PVL and how these
high PVLs lead to ATL onset need to be elucidated.

HTLV-1 infection is the initial necessary event among the multiple leukemogenic events that lead to ATL
onset. HTLV-1 integrates into the human genome and maintains itself in vivo through persistent clonal
growth of primarily infected cells. Following a long latency period of 40–60 years, about 5% of infected
individuals convert from a polyclonal population of HTLV-1 infected cells into a monoclonal pattern that
terminates in ATL onset. The monoclonal proliferation of HTLV-1-infected cells as a hallmark of ATL was
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first detected by Southern blotting showing monoclonal bands [Yoshida et al. 1984]. Later, PCR-based
analyses isolated HTLV-1 provirus integration sites and revealed that in addition to a monoclonal
proliferation of infected cells, an oligoclonal or polyclonal proliferation occurs even in nonmalignant HTLV-
1 carriers [Wattel et al. 1995, Etoh et al. 1997]. The overall proliferation levels of infected cells (PVL) are
quantifiable by qPCR, and the general patterns of proliferation can be identified by the conventional
techniques of Southern blot and inverse PCR. However, in-depth monitoring of the clonal composition of
infected cells requires an advanced quantitative method that fulfills the three main criteria:

(1) High throughput isolation of a large numbers of integration sites (2) Detection of low abundance clones
with high sensitivity even from the sample with low PVLs (3) Accurate measurement of the number of the
infected cells in each clone (clone size).

Recently, a research group from the Imperial College of London devised a method that met only the first
two criteria. Their method employed sonication to shear DNA to generate fragments of different lengths as
a strategy for making unique fragments prior to PCR for the determination of clone size [Gillet et al. Blood
2011]. Owing to the limited variation in DNA fragment size observed with shearing, the probability of
generating starting fragments of the same lengths is high, leading to a nonlinear relationship between
fragment length and clone size; thus, introducing high error with this method. Therefore, Gillet et al. used a
calibration curve to statistically correct the shear site data. However, even with these statistical corrections,
they had a bias of at least >20% in the prediction of large clones [Berry et al. Bioinformatics 2012].

I showed that a major problem with shear site strategy of Gillet et al. is that practically shear sites can
provide <250 variations [Firouzi et al. Genome medicine 2014]. This number of variations is not enough to
accurately estimate the size of clones because most of the time, the number of infected cells in each clone
exceeds the number of variations of the shear sites. Because the incidence of large clones (clones with
>250 infected cells) increases with disease progression from the healthy AC state to the malignant states
of smoldering, chronic, or acute ATL, an accurate measurement of clone size, and particularly of large
clones, is of great clinical significance. Because the method of Gillet et al. leads to an underestimation of
the clone sizes, the development of an alternative methodology with a high accuracy is necessary for clinical
applications.

<Results and Discussion>

<Approaches of our study to fulfill all three aforementioned criteria >

A novel methodology for accurate quantitative analysis of clonality with a potential far-reaching
impact on worldwide clinical applications [Firouzi et al. Genome medicine 2014]

I conducted a comprehensive multidisciplinary study combining our expertise in the field of HTLV-1 with
genomics and bioinformatics analysis. I took advantage of next-generation sequencing (NGS) technology,
using a tag system and an in silico analysis pipeline to develop and internally validate a new high-throughput
methodology (Figure 1). Analyzing control samples with already known clone sizes ensured accurate
measurement of the size of clones using this method. This high-
throughput method enables specific isolation of HTLV-1
integration sites, and allows for accurate quantitative clonality
analysis of not only the major clones and high-PVL samples but
also low-abundance clones (minor clones) and samples with low
PVLs (Figure 2, 3).. An original strategy to remove PCR bias and
to measure clone size was developed using a tag system, in which
8-bp random nucleotides are incorporated at the end of DNA
fragments. Each tag acts as a molecular barcode, which gives
each DNA fragment a unique signature prior to PCR. Information
on the frequency of observed tags from the deep-sequencing data
can be used to remove PCR duplicates, and thereby more
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accurately estimate the original clonal abundance in the starting sample. Owing to their random design, the
tags theoretically provide approximately 65,536 variations (4^8 = 65,536). This degree of potential variation
is expected to provide a unique tag for a large number of sister cells in each clone (Figure 1). I proved my
methodology to be reliable for isolating large numbers of integration sites and to be accurate for quantifying
clone size. To the best of our knowledge, our methodology is the first in which the accurate size of clones
is able to be experimentally measured without using any statistical corrections. This new methodology is
currently the most reliable method for accurate analysis of HTLV-1 clonality available worldwide (Figure 2,
3) [Firouzi et al. Genome medicine 2014].

Results and discussion: “Analysis of Clinical samples”

A method to enable accurate quantification of clonality is in the center of this project

In this study, I aimed to connect the clonal composition of HTLV-1
infected cells with the diagnosis, prediction of prognosis, and
elucidation of the mechanism underlying the multistep
leukemogenesis of ATL. Similar to the project of JSPFAD on PVL,
I have planned to study the clonality patterns of HTLV-1 infected
individuals by taking advantage of my new methodology to
accurately quantify the clonality of HTLV-1 infected cells. In the
following sections, I present the results of my pilot data.

Although the number of analyzed samples is limited, our initial data
suggested different clonality patterns specific to individuals who
were AC and those with the different subtypes of ATL (Figure 4). I
analyzed samples from ACs, patients with the indolent types of ATL
[smoldering (SM) and chronic] and patients with aggressive ATL
(acute). Despite similar PVLs, AC vs. SM could be distinguished
using clonality patterns (polyclonal vs. a shift towards oligoclonal). The clones of ACs showed a uniform
distribution pattern with no large difference in clone size; however, clones of SM types had non-uniform
sizes (Figure 4A-B). Chronic subtypes showed expanded oligoclonal patterns with a large shift to
monoclonality (Figure 4C). All of the samples from patients with acute ATL harbored a largely expanded
clone with a high absolute number of infected cells (Figure 4D). The clonality pattern of the chronic samples
was more similar to the acute than the smoldering types (Figure 4C-D).

Due to diverse clinical manifestations and varying prognosis, ATL patients are categorized into distinct
subtypes, based on standard clinical criteria: presence of organ involvement, leukemic manifestation, and
levels of lactate dehydrogenase (LDH) and calcium. Currently, in clinical practice distinct treatment
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strategies are used for the different subtypes of ATL [Tsukasaki et al. JCO 2009]. Therefore, classifying
ATL patients into distinct subgroups is of high importance for selecting appropriate therapeutic interventions
[Tsukasaki et al. Hematology 2013]. Considering the intimate link between ATL diagnosis and treatment, a
more robust classification of ATL subtypes mediated by HTLV-1 clonal composition would be of
fundamental clinical significance. Further examination of clonality patterns with a greater numbers of
samples is necessary to validate the relationship between clonality patters and ATL subtypes, and to apply
these patterns to diagnosis.

Impact on Prognosis and Prevention: An immediate demand for an effective prognostic indicator
of ATL onset In a pilot study, I obtained data from four SM patients over 4 years. Two of the samples
showed no progression in disease status (T1 = SM, T2 = SM); the other samples had progression into the
chronic stage over the time course (T1 = SM, T2 = Chronic) (Figure 5). I detected a significant difference
between the clonality patterns of the two sample sets independent of their PVL. Non-progressed samples
manifested a polyclonal or oligoclonal expansion with a low number of infected cells (Figure 5B). However
the progressed samples manifested monoclonal or largely expanded oligoclonal patterns (Figure 5A).
Moreover, when I analyzed a particular individual over a time course of 6 years who progressed from AC
to acute ATL (T1: AC, T2: AC, T3: Chronic, and T4:
Acute), the major clone of the T4: acute state (showed
with asterisk mark) was found to be dominant in earlier
time points. This suggests the potential connection
between clone size and the fate of the clone (Figure 6).
In addition, I examined the effect of therapy on clonality
patterns of patients before and after treatment. I could
detect both stable and fluctuating clones from these
samples. Most of the samples harbored a stable major
clone before and after relapse (Figure 7A). However, in
one patient I did find changes in size and order of the
clones before and after treatment (Figure 7B).

Although still preliminary, the data suggests that
clonality patterns can be of prognostic use to patients.
To pursue this, large-scale expansion of the project is
recommended. This analysis should be helpful for
decision making or developing timely and appropriate
therapeutic intervention, based on clonality status of
patients. ACs harbor a polyclonal population of HTLV-1
infected cells, whereas ATL patients show monoclonal
patterns. Thus, changes in the clonality pattern and
onset of a clonal expansion of HTLV-1-infected cells are
a risk indicator of progression into ATL. The comparison of clonality patterns in individuals who progress
from AC to development of ATL is expected to provide critical information on the clonality alterations that
are associated with the transition from the AC to ATL state. Using this information as a prognostic indicator
appears to be beneficial for the early detection of ATL onset, and eventually, ATL prevention. Accurate
monitoring of the clonality patterns among infected individuals may help us to differentiate progressive and
non-progressive patterns as well as assessments of the risk of disease development.

<Conclusion> In this next generation study on ATL risk factors, I have developed an original methodology
to accurately monitor clonal composition of HTLV-1-infected cells. Our pilot data is promising and suggests
possible applications of this methodology in enabling the molecular-based diagnosis of ATL, as well as
predicting ATL development among HTLV-1-infected individuals. For this purpose, a cohort study to
evaluate the clonal composition of infected cells is currently in progress. In summary overtime monitoring
of clinical samples suggested the importance of our method for generating biologically meaningful
information.
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Introduction

Modern medicine has done much to eradicate and cure diseases. However, it has failed in
certain areas, such as many types of cancer, and cancer remains one of the top 10 incurable
diseases. A neoplasm, or tumor, is a cell population that has undergone unregulated cell growth.
Most neoplasms are composed of clonally expanded cell populations [1-5]. Owing to its
biological significance, the concept of clonal expansion in cancer biology has been investigated
using a variety of approaches in many tumor types. Using different approaches starting from
early cytogenetic analysis of chromosomal abnormalities to later, more elaborate studies of
mutation patterns with next generation sequencing (NGS) technologies, the clonal composition
of different tumors has been analyzed [3, 6-9]. However, approaches like artificial labeling
methods or the analysis of naturally occurring cytogenetic or genetic abnormalities are limited to
analysis of progressing or already developed tumors. Therefore, comprehensive analysis of
tumor development and its clonal evolution from early initiating events to the finally developed
tumor is restricted

Among the different types of cancers, adult T-cell leukemia (ATL) is a remarkably unique
neoplasm; because, Human T-cell Leukemia Virus type-1 (HTLV-1) is the direct cause of ATL,
and HTLV-1 infection and integration of the provirus is intrinsic and unavoidable for ATL
development [10-14]. HTLV-1 infection mainly occurs via breast- feeding among ATL patients
[15]. Therefore, unlike most other malignancies, initiation of ATL can be traced back to the same
initial time and event. Moreover, HTLV-1 is a retrovirus that integrates into the Human genome
and persists in vivo during mitosis of host cells for a long latency period [12, 16]. Since infection
is chiefly leads to a single integration per host cell; thus, each single infected cell can be
uniquely characterized based on its integration site [17]. Using this feature as a clue provides us
a strong advantage to track the changes and events from early infection to the final stage of
malignancy (Figure 1). This makes ATL an appropriate and ideal model to study clonal
composition and the dynamics of tumor development.

In this thesis, I used ATL as a model system to investigate the clonal composition of tumor
development. The HTLV-1 integration site itself is a unique mark that clearly discriminates each
single cell in the complex population of tumor cells. To elucidate clonal composition and to
define clones based on integration sites, accurate isolation of as many integration sites and
accurate measurement of infected cell numbers with the same integration site (clones) is
necessary(Figure 1, 2).Previous studies have not been able to use a method to accurately
analyze clonal composition[10, 12, 18-28].

Here I present my unique strategy that enables accurate monitoring of HTLV-1 infected cells[29].
In the first section, I will describe my original methodology to define and characterize clones
based on provirus integration sites, and describe the biological data obtained by analyzing rare
samples from HTLV-1 infected individuals and different subtypes of ATL. In the second section,
I include the information on how to reveal intra-clonal composition of HTLV-1 infected clones by
creating a link between integration sites and the genomic abnormality associated with each
specific clone. The work for this section is still in progress; however, I have included my
preliminary data (Figure 2).

I believe that robust monitoring and tracking of clonal dynamics using provirus integration sites
and linking this information to the mutation profile of clones will allow for the assessment of
clonal composition of HTLV-1-infected individuals from early infection to the final stage of ATL
development. Moreover, such analysis not only enables clarification of the mechanisms
underlying the multistep leukemogenic events of ATL development but also provides information
that can be used as a model for studying the role of clonality in tumor development in general.
(Figure 1-2).
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Figure 1: the landscape of tumor development.
Cancer genome is employable as a stable fingerprint for identification of cancer cells.
In most types of cancers, genomic marks such as chromosomal aberrations or single-nucleotide mutations
can be used as genetic fingerprints of cancer cells. Human T-cell Leukemia Virus type-1 (HTLV-1) is the
direct cause of Adult T-cell Leukemia. ATL is a malignancy that HTLV-1 infection and integration of provirus
is intrinsic for its development. HTLV-1 infection mainly occurs via breast feeding among ATL patients.
Therefore, unlike other malignancies initiation of ATL can be traced back to the same event. Moreover,
HTLV-1 as a retrovirus integrates into the human genome and persist in vivo during mitosis of host cells for a
long latency period. Since infection is chiefly a single integration per host cell, each single infected cell can
be uniquely characterized based on its integration sites. Using this feature as a clue gives us a strong
advantage to track the changes and events from early infection to the final stage of malignancy . Cancer
development is known a Multistep evolutionary process during which a normal cell undergo change and
abnormal growth and turn into cancer cells. In different kind of cancers genetic fingerprints have been used
to monitor clonal expansion of cancer cells. Mainly this monitoring are limited to progression and fully
developed malignancy. Because Initiation steps are difficult to be monitored. However, in the case of ATL.
Because HTLV-1 infection through breast feeding is the early initiative event, the provirus integration sites
can be used as a unique fingerprint to monitor each HTLV-1 infected cells. This makes ATL an appropriate
model to monitor clonal expansion from early infection to the final stage of malignancy.
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Clonality &
integration site analysisCurrent project

Number of integration sites
Positions of integration sites

Accurate measurement of the clone size
(numbers of infected cells in each clone)

• A link between clonality data
based on HTLV-1 integration sites and mutation profiling of each clone.

• Genomic abnormalities associated with each specific clone.
• Clonal evolution through multistep leukemogenesis of ATL

Future directions of this project (ongoing)

Intra clonal composition of HTV-1 infected clones

A Photo abstract of the present thesis

Figure 2: Outlines of the present thesis.
(A)The main part of this thesis has been focused on defining HTLV-1 infected clones based
on integration sites of the provirus. I have developed an original methodology which provides
information on numbers of integration sites, positions of integration sites, and most
importantly accurate numbers of infected cells in each clone (the clone size).
(B) My final ideal goal is to comprehensively demonstrate clonal composition of ATL from
different perspectives. In the second part of this thesis I have discussed my plan to monitor
clonality based on mutation profiling of each specific clone. For this purpose I will make a link
between the data of integration sites-based clonality and mutation profiling- based clonality. I
discussed my plan in the present thesis.
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General Background

It has been >30 years since HTLV-1 was shown to be the causative agent of ATL [13, 30]. At
the current time, although much research has been conducted on ATL and other HTLV-1-
associated diseases like HTLV-1-associated myelopathy/tropical spastic paraparesis
(HAM/TSP) and a vast amount of knowledge has been generated, we still cannot cure ATL [31,
32]. We do not even clearly know “what HTLV-1 is”, and “what ATL is”. Thus, it is important to
review what we know about ATL and HTLV-1 to recognize the advantages and drawbacks of
our previous strategies. We need to understand our advantages and try to increase them, as
well as try to overcome our drawbacks. We also need to be open to new alternative strategies
that may open new doors of knowledge about ATL. Using this philosophy, my study is
empowered with the hope of making a difference and my final goal is to contribute to the field to
be one step closer to the treatment of ATL and other HTLV-1-associated diseases.

Following HTLV-1 infection, 95% of HTLV-1-infected individuals show a polyclonal pattern of
infected cells and remain as healthy asymptomatic carriers (ACs) throughout their life. However,
approximately 5% of infected individuals change to a monoclonal pattern of infected cells and
develop ATL after a long latency period [18, 19, 28, 29, 33, 34]. The factors that determine ATL
development remain to be elucidated (Figure 3).

To discover the factors associated with ATL development, the Joint Study on Predisposing
Factors of ATL Development (JSPFAD), a nationwide collaborative group, has been extensively
investigating the proviral loads (PVLs) of infected individuals. In the first generation of studies on
ATL risk factors, JSPFAD demonstrated that an elevated PVL is the best characterized risk
factor associated with ATL development [35]. PVL represents the burden of HTLV-1 infection,
i.e., the percentage of infected cells among the total peripheral blood mononuclear cells
(PBMCs), which is accurately measurable by qPCR [36-38]. A PVL >4% is a strong indication of
risk for progression to ATL. However, PVL alone cannot predict development of the disease [35],
and it remains to be elucidated how the threshold of 4% and the overall high levels of PVL are
maintained and how they contribute to ATL onset. A PVL <4% includes healthy infected
individuals; thus, has been considered a “safety zone”; a PVL >4% includes both healthy
individuals and ATL patients, and therefore has been considered as uncertainty zone (Figure4).
Discovering further ATL risk factors and the underlying mechanisms of ATL development
requires a comprehensive characterization of this PVL “uncertainty zone” (Figure 4).

Therefore, in the next generation study on ATL risk factors, I focused on the contents of PVLs
that is the clonal composition of infected cells. Monitoring the clonal composition of infected
cells is only achieved by determining the integration sites of the provirus and accurately
measuring the size of every clone (Figure 4, 5).

I put my effort into developing a method to comprehensively monitor the clonal composition of
HTLV-1 infected cells with a high level of accuracy. Investigating the clonality of HTLV-1
infected cells has previously been attempted using different conventional methods: Southern
blot, inverse PCR and ligation-mediated PCR, and NGS technology [18, 26, 39-42]. However,
the role of HTLV-1 integration site preference and the clonal composition of infected cells in
disease outcome remain to be elucidated.

Asking the question, “What were the drawbacks of previous studies?” our experience led us to
recognize that the level of accuracy and accessibility of information needed to be improved.
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HTLV-1
Infection

A long latency period (40-60 years)

95%

Asymptomatic
Carriers (ACs)

Polyclonal

No Clear Determinant

5%

ATL

Monoclona

ATL course of disease

Polyclonal

Figure 3: a background on the ATL course of disease.
Following HTLV-1 infection people show polyclonal population of infected cells.
After a long latency period about 95%of infected individuals, keep the initial polyclonal pattern
and remain as ACs. But about 5% of them change into a monoclonal pattern and develop ATL.
However there is no clear determinant to distinguish between the people who remain as AC and
those who develop ATL.

Subjective experience is true, but it may not be the totality of truth. With each of those methods
we just observed a part of reality without being able to achieve a clear image of whole reality
about clonal composition of HTLV-1 infected cells. In the following sections, I introduce
information obtained from the previous studies, then describe the strategies I employed to
analyze the clonal composition of HTLV-1 infected cells in the Results sections (Figure 2).



HTLV-1
Infection

Asymptomatic
Carriers(ACs)

95%

ATL Patients

5%

A long latency period(40-60 years)

The factors associated with
ATL development

Proviral loads (PVL)

JSPFAD: Japan nation-wide collaborative group

HTLV-1 infected population

75% 25%
safety Uncertainty

0% 4% 100%
PVL

Higher riskLower
Risk

Healthy +patientsHealthy

Safety
zone

Uncertainty zone

Figure 4: the necessity of determining the factors associated with ATL development
To discover the factors associated with ATL development, JSPFAD, which is a nationwide
collaborative group, has been extensively investigating the levels of PVLs. PVL is the
percentage of infected cells among total PBMCs, thus represents the total level of infection.
Currently a PVL higher than 4% is the best factor associated with the risk of ATL development.
Below 4% includes healthy infected individuals, thus considered as the safety zone. Above 4%
includes both healthy individuals and ATL patients, so is considered as uncertainty zone.
Discovering ATL risk factors requires comprehensive characterization of both zones.
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Uncertainty zone

Discovering ATL Determinants
A next generation study on ATL determinants

The contents of PVLs

Clonal composition

HTLV-1
Infection

A single cell=A single integration site

The size of every clone

How many infected cells is in each clone?Analyze every single infected cells

Figure 5: My approach to investigate factors determining ATL development.
As a next generation study on ATL risk factors, I have focused on the contents of PVLs
that is the clonal composition of infected cells. Monitoring clonal composition of infected
cells is only achievable by determining integration sites of provirus, and accurately
measuring the size of every clone.
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Background: Clonality of HTLV-1 infected cells by previous studies

Clonal proliferation of HTLV-1-infected cells was first detected as monoclonal-derived bands by
southern blotting[39]. Early studies found that monoclonal integration of HTLV-1 is a hallmark of
ATL cells [20]. Furthermore, it was suggested that detecting a monoclonal band is useful for
diagnosis and is associated with a high risk of ATL development [12, 24]. Subsequent PCR-
based methods included inverse PCR, linker-mediated PCR, and inverse long PCR, which
enabled analysis of samples with clonality below the detection threshold of southern blotting[26,
40-42]. Based on the observed banding patterns, the clonality of the samples was described as
having undergone monoclonal, oligoclonal, or polyclonal expansion. Such PCR-based analyses
revealed that, in addition to a monoclonal proliferation of infected cells, a monoclonal or
polyclonal proliferation occurs even in non-malignant HTLV-1 carriers [26, 43]. Moreover,
considering the stability of the HTLV-1 proviral sequence, it was hypothesized that maintaining a
high PVL is achieved by persistent clonal proliferation of infected cells in vivo [42]. This
hypothesis was further supported by the detection of a particular HTLV-1 clone in the same
carrier over the course of several years [21]. Two Miyazaki cohort studies focused on the
maintenance and establishment of clonal expansion: Okayama et al. analyzed the maintenance
of a pre-leukemic clone in an AC state several years prior to ATL onset [22], and Tanaka et al.
assessed the establishment of clonal expansion by comparing the clonality status of long-term
carriers with that of seroconverters. They showed that some of the clones from long-term
carriers were stable and large enough to be consistently detectable by inverse long PCR;
however, those from seroconverters were unstable and rarely detectable over time [23].

Knowledge provided by conventional studies has shed light on the next challenges worthy of
further investigation. Owing to technical hurdles, however, previous studies isolated small
numbers of integration sites from highly abundant clones and detected low abundant clones in a
non-reproducible manner [18, 41]. Furthermore, conventional techniques could not provide
adequate information regarding the number of infected cells in each clone (clone size)[18]. To
effectively track and monitor HTLV-1 clonal composition and dynamics, I Considered devising a
new method that would not only enable the high-throughput isolation of integration sites but also
provide an accurate measurement of clone size (Figure 6).

PCR is a necessary step for the integration site isolation and clonality analysis. However, bias in
the amplification of DNA fragments (owing to issues such as extreme fragment length and high
GC content) is intrinsic to any PCR-based method [44-48]. Different fragment amplification
efficiencies make it difficult to calculate the amount of starting DNA (the original distribution of
template DNA) from PCR products. Hence, estimating HTLV-1 clonal abundance, which
requires calculating the number of starting DNA fragments, is only achievable by avoiding the
PCR bias.

Recently, Bangham’s research group analyzed HTLV-1 clonality and integration site preference
by a high-throughput method [18]. In the method developed by Gillet et al., clone sizes were
estimated using length of DNA fragments (shear sites generated by sonication) as a strategy for
removing PCR bias [18] (Figure 6, 7). Owing to the limited variation in DNA fragment size
observed with shearing, the probability of generating starting fragments of the same lengths is
high, leading to a nonlinear relationship between fragment length and clone size [18] (Figure 7).
Therefore, Gillet et al. used a calibration curve to statistically correct the shear site data [18]
(Figure 8). Later, Berry et al. introduced a statistical approach, and further addressed the
difficulties of estimating clone size from shear site data [49]. Their approach estimates the size
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of small clones with little error, but estimates for larger clones have greater error [49] (Figure 8).
All estimations of this method mainly is based on relative size of clones. Gillet et al used a
parameter which has been generally employed in economy to describe the distribution of the
wealth in the society to convert the relative size of clones and general pattern of clonality of
each sample into numbers. A parameter adopted from the Gini coefficient [49, 50] and termed
the oligoclonality index was used to describe the size and distribution of HTLV-1 clones [18]
(Figure 8). They showed that the oligoclonality index differs between ATL and non-malignant
HTLV-1 infections (ACs). However they could not discriminate between different subtypes of
ATL by relative measurement of the clone size and OCI. In figure 8, I simply depicted what the
Gini coefficient is and how to measure it.

Followings I discuss about the method of Gillet et al. I tried to simplify the concepts to facilitate
understanding of this method for the readers of present thesis. To understand the details please
study all related sections here.

Here I introduce a method that overcomes many of the limitations of currently available methods.
Taking advantage of next-generation sequencing (NGS) technology, nested-splinkerette PCR,
and a tag system, I designed a new high-throughput method that enables specific isolation of
HTLV-1 integration sites and, most importantly, allows for the quantification of clonality not only
from the major clones and high-PVL samples but also from low-abundance clones (minor
clones) and samples with low PVLs. Moreover, I conducted comprehensive internal validation
experiments to assess the effectiveness and accuracy of my new methodology. A preliminary
validation was conducted by analyzing DNA samples from HTLV-1-infected individuals with
different PVLs and disease status. Subsequently, an internal validation was performed that
included an appropriate control with known integration sites and clonality patterns[29]. I present
my methodology, which illustrates that employing the tag system is effective for improving
quantification of clonal abundance.
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The clone size is the number of infected cells in each clone.
Accurate measurement of the size of every clone is essential for monitoring clonality.
There are two main strategies for measuring the size of clones.
The shear site system and our original tag system.
In the present thesis I have explained and compared these two systems.
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Randomly cutting the DNA by Sonication

5’LTR 3’LTR
Human GenomeHTLV-1 GenomeHuman Genome

GDNA
Sonication
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Theoretically shear sites can not provide more than 400 variations

400 shear site variations400 infected cells

Figure 7: introducing shear site strategy of Gillet et al.
Shear site system is based on randomly cutting DNA by sonication. Having GDNA fragmented by
sonication generates random shear sites. Therefore, Different unique lengths of fragments
correspond to the original number of infected cells. However considering the lengths is not enough.
Because sonication generates a size distribution of 300 to 700 bp, which can theoretically provide
only 400 shear site variations. This amount of variation cannot cover more than 400 infected cells in
each clone. Therefore as the size of clones increases the probability of DNA shearing at the same
site will increase. This leads to underestimation of the number of infected cells.
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Figure 8: Statistical correction of shear sites data.
(A) Limited shear site variations leads to a non linear correlation between shear sites and clone
size.Therefore it gets difficult to predict the size of clones from shear sites data, when the clone
size exceeds shear sites variations. (B) Gillet et all introduced a calibration curve to statistically
expand the range of shear site variations.They used 3 dilutions of gDNA to generate the graph.
From the graph they retrieved this formulation to correct the shear site data. (C) Berry et al
described how to generate the calibration curves .They converted Frequency of shear sites to
fragment length distribution –the factor phi- by maximum like hood algorism.Then the phi were
converted to (tetta) which is the estimated numbers of infected cells in each clone.They
reported difference of shear sites distribution even in replicate samples because most of
integration sites in their data corresponded to 1 or 2 sequencing reads. This reduce reliability of
generated shear data. At least a bias greater that 20% will be introduced in the estimation of
clone sizes when the factor J in other words the size of clones exceeds 200 infected cells.
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The Gini coefficient

In economics: the distribution of income in a society

A relative measurement of inequality

How evenly the income (or wealth) is distributed throughout a country.

Society Clonality

Relative Income Relative clone size

People Integration sites

How evenly the income is distributed ?

Figure 8 (D) Gini coefficient is a
relative measurement of inequality.
It has been mainly used in
economics to show distribution of
income in a society. In other words
to show how evenly the income (or
wealth) is distributed throughout a
country. Gini coefficient ranges from
zero to one. In the case of perfect
equal distribution of income Gini is
zero but when only one individual
have all the income of society Gini
value is one. If the society was
clonality status of each sample,
people correspond to integration
sites and relative income
corresponds to relative size of
clones. Therefore it is expected that
Perfect equality represents perfect
polyclonality and inequality
represents perfect monoclonality.
This is the graphic representation of
Gini coefficient. X axis is The
cumulative proportion of society
having a special income. Y axis is
the cumulative proportion of income.
The area between Lorenz curve and
equality line is the value of Gini.
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Cumulative proportion of
Integration sites

Cumulative proportion
of clone size

Cumulative proportion of population (on the
horizontal axis) against the cumulative percentage

of income (on the vertical axis)

Graphic representation of a society with an
equal distribution of income

Figure 8 (E):
This is an example of a society in which. All people have the
same income. Cumulative proportion of population
corresponds to Cumulative proportion of Integration sites.
Cumulative income corresponds to Cumulative proportion of
clone size. To calculate Gini coefficient we should make a
graph from cumulative proportion of population against
cumulative percentage of income .

Gini coefficient =0

Perfect equality

An infected
individual with

an equal
distribution of

clones
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Results-section-1-A

General concepts

I originally designed our method to overcome the limitations of conventional techniques [26, 41]
and the only existing high-throughput method [18]. In general, our method includes two main
sets of wet experiments and an in-silico analysis. I used genomic DNA (gDNA) as the starting
material to prepare an appropriate library for Illumina sequencing. Subsequently, deep-
sequencing data were analyzed by a supercomputer. The resulting information represents the
clonality status of each sample (Figure 9).

There are complex populations of infected clones and uninfected cells in a given HTLV-1
infected individual. High-throughput clonality analysis requires monitoring two main
characteristics of clones: HTLV-1 integration sites and the number of infected cells in each
clone (clone size). Each HTLV-1-infected cell naturally harbors only a single integration site [17].
Therefore, the number of detected unique integration sites corresponds to the number of
infected clones. Based on our analysis, which is consistent with the data of Gillet et al. [18],
employing high-sensitivity deep sequencing allowed for the isolation of a large number of unique
integration sites (UISs), including samples with low PVLs (Figure 10). I analyzed four samples
from HTLV-1-infected individuals with different PVLs, disease status, and expected clonality
patterns. The samples include S-1: AC (8% PVL); S-2: smoldering ATL (SM) (9% PVL); S-3: SM
(31% PVL); and S-4: acute ATL (33% PVL). Based on the final optimized conditions, 1030, 39,
265, and 384 UISs were isolated from each sample, respectively (Figure 10).

The most challenging aspect of our clonality analysis was estimating the number of infected
cells in each clone. Although a necessary step in the analysis, PCR introduces a bias in the
frequency of starting DNA material [44-47]. Because amplification causes significant changes in
the initial frequency of starting materials, PCR products cannot be used directly to estimate the
amount of the starting DNA material. To overcome this problem, I needed to manipulate DNA
fragments to make them unique prior to PCR amplification. Thus, if each DNA fragment could
be marked with a unique feature, it would then be possible to calculate its frequency based on
the frequency of that unique feature. When a single unique stretch of DNA is amplified by PCR,
the resulting product is a cluster of identical fragments termed PCR duplicates. Therefore, to
estimate the frequency of starting DNA fragments, one should count the number of clusters with
unique features. The remaining technical question then becomes how to mark the starting DNA
prior to PCR amplification. In the following section, I compare and discuss two main strategies,
namely (1) shear sites and (2) a tag system, which enable DNA fragments to be uniquely
marked (Figure 6).

Estimating the size of clones by shear sites

The first strategy, described by Gillet et al., relies on shearing DNA by sonication, resulting in
fragments of random length [18]. Sonication-derived shear sites were thus used as a
distinguishing feature to make fragments unique prior to PCR. Clone sizes were then estimated
by statistical approaches [18, 49] (Figure 7, 8).To directly assess the effectiveness of the shear
site strategy, I analyzed the clonality of the aforementioned clinical samples (S-1, S-2, S-3, and
S-4). Genomic DNA was cleaved by sonication with fragments in the 300- to 700-bp range,
theoretically providing approximately 400 possible variations in fragment size (Figure 10A and
10B). Following library construction, however, the final product represented smaller size ranges,
implying a relatively limited number of variations (Figure 10C). Finally, the number of PCR
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amplicons with unique shear sites was retrieved from deep-sequencing data. See Figure 36 for
a simple image from an integration site and its shear sites. The data obtained from the shear
site experiments were not fitted to calibration curves or statistical treatments, which were used
by Gillet et al. and Berry et al., respectively (See the next part) [18, 49]. For clarity, only the
information relating to the major clone of each sample is provided in Figure 10D. The shear-site
variations of the major clone were 209, 119, 242, and 222 for samples S-1 through S-4,
respectively. Even in the case of control samples with 100% PVLs, the shear sites did not
provide more than 225 variations (see Validation of the methodology). However, it was expected
that samples with differing PVLs and disease status would harbor varying numbers of sister
cells, at least in their major clones. Similar variations of shear sites were observed in major
clones of AC, SM, and acute samples. These data suggest that, because the number of sister
cells in each clone exceeded the shear site variations, the size of the clones was
underestimated (Figure 10). This is most problematic in the case of large clones and leads to an
underestimation of the clone size.

Measuring the size of clones by the tag system

I developed an alternate strategy to remove PCR bias and to estimate starting DNA.I designed
a tag system in which 8-bp random nucleotides are incorporated at the end of DNA fragments
during adaptor ligation step. Each tag acts as a molecular barcode, which gives each DNA
fragment a unique signature prior to PCR. Information on the frequency of observed tags from
the deep-sequencing data can be used to remove the PCR duplicates and thereby estimate the
original clonal abundance in the starting sample. Owing to their random design, the tags could
theoretically provide approximately 65,536 variations. This degree of potential variation is
expected to provide a unique tag for a large number of sister cells in each clone (Figure 11).

I analyzed samples S-1, S-2, S-3, and S-4 to assess the effectiveness of our tag system for
estimating clone size. The major clone of each sample showed tag variations of 393, 142, 1751,
and 2675, respectively (Figure 11D). Similar variations of tags and shear sites were observed in
the largest clones of S-1 and S-2 ((shear sites vs. tags): (209 vs. 393) and (119 vs. 142))
(Figure 10D and Figure 11D). In all four samples, those variations were also similar in the minor
clones of which the clone sizes did not exceed shear sites variations (approximately <200
variations) (See Table 1 and Table 2 for information on the ten largest clones). However, the
variations covered by tags were significantly greater than those of shear sites, especially for
large clones like those observed in the major clones of S-3 and S-4 ((shear sites vs. tags): (242
vs. 1751) and (222 vs. 2675)). The variations covered by tags and combinations were almost
the same for all four samples ((tags vs. combinations): (393 vs. 296), (142 vs. 119), (1751 vs.
1192), and (2675 vs. 2038)).

Upon comparison of the tag system data with the shear site data, it was clear that both
strategies yield essentially the same results when the size of clones is small enough to be
covered by the number of shear site variations generated. However, the tag system provides a
much better estimation of clonality when the number of sister cells in each clone exceeds shear
site variations. Therefore, clone size was underestimated when considering only shear sites in
expanded clones like samples S-3 and S-4. Given this, our tag system should be used for
samples with different clonality status to avoid underestimation of the size of clones. See Figure
12 for a simple comparison of shear site and tag variations.
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Estimating clone size by shear sites vs. tags

Berry et al. estimated clone size using shear site data [49]. Considering that there is a nonlinear
correlation between shear site variation (fragment lengths) and clone size, they proposed a
statistical approach for correcting shear site data. They introduced J, ϕ, and as factors
referring to possible fragment length, fragment length distribution, and expected number of
parent fragments, respectively. J was determined empirically whereas ϕ and were statistically
calculated. Because I did not use the same experimental setup or statistical estimations, I could
not directly compare our data with those of Berry et al. . Alternatively, the generated variation in
shear sites (factor J) might be indirectly compared. Berry et al. showed that the relative
abundance of small clones was estimated with little bias, but estimating the size of large clones
was problematic. For example, they observed a bias greater than 20% when J = 200 and was
more than 1000. Consistent with their data, I observed underestimations in samples of which
the clone sizes exceeded the generable shear site variations. I showed that these
underestimations could be overcome by a large variety of tags. In the case of clinical samples
(S-1, S-2, S-3, and S-4), maximum generated shear site variations were [S-3: 242] whereas
maximum tag variations were [S-4: 2675].See figure 7 and 8.

Oligoclonality index: shear sites vs. tag system (Figure 13)

Gillet et al. introduced the oligoclonality index (OCI) as a parameter to describe HTLV-1 clonal
distribution [51]. OCI was adapted from the Gini coefficient, which has been mainly used in
economics to measure income inequality [52]. The ratio of the area between the line of equality
(the 45-degree diagonal line) and the Lorenz curve graphically represents the Gini coefficient.
Here, I calculated the Gini coefficient using Statsdirect software (http://www.statsdirect.com/),
and similar to Gillet et al. termed it OCI. Our analysis is based on the data for shear sites, tags,
and combinations without any statistical manipulation.

Generally, OCI values range from zero to one. A low OCI indicates a more equal distribution of
clones; for example, an OCI of zero represents clones of equal sizes of uniform distribution
(perfect equality). A higher OCI indicates a more unequal clone size distribution. An OCI of one
represents perfect monoclonality (Figure 13).

The OCI of the samples S-1, S-2, S-3, and S-4 were 0.54, 0.67, 0.68, 0.63, respectively, for
shear sites and 0.60, 0.67, 0.84, and 0.80 for combinations. Referring to section of Results and
discussion, the clone sizes of S-1 and S-2 measured based on shear site data were similar to
those of tags and combinations. Consistent with those data, the OCIs of S-1 and S-2 were
similar (shear sites vs. tags vs. combinations: [S-1:0.54 vs. 0.62 vs. 0.60], [S-2: 0.67 vs. 0.68 vs.
0.67]). In the case of S-3 and S-4, however, because the clone size was underestimated by
shear sites, the OCI calculated based on shear site data differed from that of tags and
combinations (shear sites vs. tags vs. combinations: [S-3:0.67 vs. 0.87 vs. 0.84], [S-4: 0.63 vs.
0.88 vs. 0.80]). Although these samples were categorized based on accurately measured clone
sizes, they could not be clearly discriminated based on their OCI. In reference to the limitations
of the Gini coefficient addressed in economics, because the Gini coefficient is a relative
measure, countries may have identical Gini coefficients even with different income distributions
[53]. This problem makes interpretation of the Gini coefficient (and thus OCI) controversial.
Therefore, S-3 and S-4, even with different sizes and distributions of clones, had a similar OCI
(0.84 vs. 0.80). These data suggest that accurately measured clone sizes are more desirable
than OCI for discriminating ATL subtypes.
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Figure 9: General outline of the high-throughput analysis of HTLV-1 clonality.
The method uses genomic DNA as the starting material. Data generated by NGS
technology undergo bioinformatics analysis using a supercomputer. Processed data
provide important information about the position of integration sites and the original
number of infected cells in each clone. From this information, we can infer the
clonality status of HTLV-1-infected individuals.
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Figure 10: Estimating clone size by ‘shear sites’.
(A) Depicted is the complex population of uninfected cells (grey circles) together with
infected clones (circles of different colors). A clone is shown as a group of sister cells
(circles of the same color) having the same integration site (IS). Different clones are
distinguishable based on differing integration sites, and thus the number of integration
sites represents the number of infected clones. For example, the six different unique
integration sites refer to six unique clones. (B) Genomic DNA fragmented by sonication
generates random shear sites (fragments of different length). Fragment size, measured
by an Agilent Bioanalyzer, ranged from 300 to 700 bp. This size range can theoretically
provide approximately 400 variations. (C) The size distribution of fragments decreased
following amplification by integration-site-specific PCR. From the deep sequencing data,
the original number of starting fragments could be estimated by removing PCR
duplicates and counting fragments with different lengths. For example, five different
lengths of PCR amplicons represent five infected sister cells. (D) We analyzed four
samples, including (S-1: asymptomatic carrier (AC), (8% PVL)), (S-2: smoldering (SM),
(9% PVL)), (S-3: smoldering, (31% PVL)), and (S-4: acute, (33% PVL)). Using my
method, the clone sizes were quantified by considering only shear sites. The first major
clone (the largest clone) of each sample was mapped to (chr 11-41829319 (+)), (chr 15:
59364370 (+)), (chr 4-563543 (-)), and (chr X - 83705328 (-)), respectively. The shear
site variations of each major clone were 209, 119, 242, and 222, respectively. Different
colors on the pie graphs indicate different integration sites, and the size of each piece
represents the clone size.
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Figure 11. Measuring clone size using the tag system. (A) The depiction above shows
that shear site variations are not able to cover all sister cells in large clones. As the
number of the sister cells in a given clone increases, the probability of DNA shearing at
the same site increases. (B) Prior to PCR, we incorporated 8-bp random tags into each
DNA fragment to uniquely mark them. Random tags could theoretically provide
approximately 65,536 variations. The number of potential variations is expected to amply
cover large numbers of the sister cells. (C) The tag information was used to remove PCR
duplicates and to estimate the original number of starting fragments. If the fragments had
the same shear sites but different tags, they were counted separately. For example, here
five different combinations of tags and shear sites represent five infected cells. (D)
Samples: S-1, S-2, S-3, and S-4 were analyzed by the final optimal condition (Bowtie
parameters: -v 3 - - best, and filtering condition: (merging approach) JT-10). Clone size
was measured by tags only or by the combination of shear sites and tags. The covered
variations were (393,142, 1751, and 2675) and (269, 119, 1192, and 2038), respectively.
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Chromosome Strand Position Tags Relative
size (%)

Combin
ations

Relative
size (%)

Shear
sites*

Relative
size (%)

1 chr11 + 41829319 393 7.08 269 5.30 209 2.60
2 chr11 - 37042565 329 5.93 235 4.63 130 1.62
3 chr7 - 121751243 83 1.50 74 1.46 43 0.54
4 chr13 + 69268469 67 1.21 58 1.14 124 1.54
5 chr18 - 46701081 65 1.17 58 1.14 30 0.37
6 chr17 + 18847529 60 1.08 58 1.14 180 2.24
7 chr15 - 37836845 46 0.83 44 0.87 29 0.36
8 chr2 - 100184973 44 0.79 42 0.83 22 0.27
9 chr6 + 10852456 42 0.76 40 0.79 72 0.90

10 chr8 - 35831701 39 0.70 37 0.73 36 0.45

1 chr15 + 59364370 142 32.27 119 28.95 119 21.25
2 chr13 - 74706141 55 12.50 52 12.65 11 1.96
3 chr3 + 28073332 25 5.68 25 6.08 11 1.96
4 chr21 - 44242161 23 5.23 23 5.60 6 1.07
5 chr18 - 38428907 19 4.32 19 4.62 1 0.18
6 chrX - 107427783 19 4.32 19 4.62 2 0.36
7 chr13 - 84177236 16 3.64 16 3.89 5 0.89
8 chr21 + 25834766 15 3.41 15 3.65 7 1.25
9 chr2 + 234346116 11 2.50 10 2.43 6 1.07

10 chr7 - 99740574 11 2.50 11 2.68 2 0.36

1 chr4 - 563543 1751 39.76 1192 35.72 242 9.48
2 chr20 + 58007381 863 19.60 579 17.35 232 9.08
3 chr5 + 62579369 502 11.40 336 10.07 202 7.91
4 chr6 + 133958124 210 4.77 207 6.20 191 7.48
5 chr3 - 126392282 91 2.07 86 2.58 94 3.68
6 chr3 + 178928610 43 0.98 43 1.29 54 2.11
7 chr8 + 119096533 27 0.61 27 0.81 43 1.68
8 chr10 - 111698526 18 0.41 18 0.54 9 0.35
9 chr13 + 21355493 17 0.39 17 0.51 24 0.94

10 chr18 + 62126326 16 0.36 14 0.42 10 0.39

1 chrX - 83705328 2675 51.50 2038 46.54 222 8.35
2 chr14 + 30655896 209 4.02 160 3.65 87 3.27
3 chr14 + 49676335 112 2.16 97 2.22 77 2.90
4 chr6 - 85461536 108 2.08 95 2.17 80 3.01
5 chr16 - 17339636 102 1.96 97 2.22 98 3.69
6 chr8 + 96129917 93 1.79 75 1.71 59 2.22
7 chr1 + 4032445 55 1.06 48 1.10 22 0.83
8 chr7 + 140001929 50 0.96 49 1.12 40 1.50
9 chr21 + 35571080 49 0.94 41 0.94 38 1.43

10 chr1 - 56007274 35 0.67 32 0.73 38 1.43

Table 1. The top 10 clones isolated from sample S-1, S-2, S-3, and S-4.
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*Orders and numbers of integration sites in shear sites has been matched to those of tags and combinations.

The reported positions of integration sites can be readily searched by common genome browsers such as
Blast of NCBI or Blat of UCSC.
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Chromosome Strand Position A representative sequence
for each corresponding integration site position

1 chr11 + 41829319 AATATCTAGTTAAAGGAGGCTGTGAGAATTAGAAAATATA

2 chr11 - 37042565 GAAATGCATAGCACTAAATGCTCACAAGAGAAAGCAGGAA

3 chr7 - 121751243 CATAGTTATAAAAACCACTTTACAATGTTCATCTCATACT

4 chr13 + 69268469 GGAGACCTTTTATCTTTTCTTTTATAATCACTTAATGGTA

5 chr18 - 46701081 CTTTCTCACCCTTTCTAGTTAGTAAAATCCTAGGGAATAT

6 chr17 + 18847529 AATTCATAATTACCAAAACTTTGGTAGATGTCCTTAAGTA

7 chr15 - 37836845 TTTAGCTTCTACTTATAAGTGAAAACATGCAGTATTTGAT

8 chr2 - 100184973 ACCCTTGGCTTGGTCCCAGGATCAAATCTCTTTTCAAAAA

9 chr6 + 10852456 GAATAATATGTTGAAGAGTTTTGGATTTTACCTTTCTTAA

10 chr8 - 35831701 CTGAGCAACGTATCTTTCTCTTCTTTAAACTTTGAGTTTT

1 chr15 + 59364370 GCTATGACTGATGAAAGTGGTGGTACCTAAAGATTGGGGT

2 chr13 - 74706141 TGTAGAAGCATAGTGGAAATAGGATGTTGAAGGACAGACG

3 chr3 + 28073332 AAATCAATGTTCTAAGATATGTACTAAGTGCTAGGGAACA

4 chr21 - 44242161 CAAGCTCACTGATGTTTTCTTCTGTTTGATCAATTCTGCT

5 chr18 - 38428907 GATTATTAGTATGATAATTACTTTACCAATCTGGTTGCAG

6 chrX - 107427783 CAAAAGAGTCCAAACACTAAAGCAACCTTGCTTTATAACA

7 chr13 - 84177236 CACAGGTTCTAGGAATTAGTGTGTGGATATCTTTGTGGGG

8 chr21 + 25834766 ATACTCCTGTTCAGGGAAAAATTTGAGCCGGTTTTCAGCA

9 chr2 + 234346116 GACTCCGATGGTGGGTACCACACATGCTTATCCTTCTCAT

10 chr7 - 99740574 AGTTTTCAACCCAGTACAGGGACTGTTACATAGCATCTTC

1 chr4 - 563543 CATTGTTTGT GTACCTATGT ACCAGCCTTTTCAAATGAGG

2 chr20 + 58007381 TATGTTTCCT TACATTACTT ACTAATAGTA ATAAATAGCA

3 chr5 + 62579369 GTCTCAGATTCCATGCTCTGAGAAAAGTGTGTATGAATTT

4 chr6 + 133958124 GGTTTTTTTTTTTTTTTTTTTTTTTTTGCCATTGTAGGAT

5 chr3 - 126392282 GTTAACCTCTTGAATTTTGAGAACTAAGGTTAGATGCCTG

6 chr3 + 178928610 ACTAGGTAATAAAGTCATGAACTAAACAGACCTTCATTGA

7 chr8 + 119096533 ATGTCCCAGATGCTACCTCCTGGGATCAACTGCAAGTCGT

8 chr10 - 111698526 CTCCATGGTCTTCCCTGAACACCTCCTACTGCCCTGCAAC

9 chr13 + 21355493 AAAAGGTCTAGCCGTTGCAACTCAGTGGCATCCCCATCAC

10 chr18 + 62126326 CATAATCACTTTAAATGTGATTGGAATAAATTCTCCAGTT

1 chrX - 83705328 CCTTTATAGGTGAGATTGCTTTCTTGTAGGCAGTATATAG

2 chr14 + 30655896 AAAACTAAGTTTCAGCTCACAGTATTAGAGTGGGTTACAT

3 chr14 + 49676335 GTGACTCAAAACAAAAAACAACACACTTACAGTCTTTTTA

4 chr6 - 85461536 GAAGTTAACACTGATCTCTAATTAGTAAAGCTGTAGACTC

5 chr16 - 17339636 CATTGTATCCTTCAGTCACCCATGAGAGATTGGATTTAGG

6 chr8 + 96129917 ACTAGGCTGTGGACAAAAATGACATATGTCTCTTCCGGGC

7 chr1 + 4032445 GGTTTCTAAAAGAATAGGTGCAAGTCTGTCATTGTGCTAA

8 chr7 + 140001929 CACTTTCCCCATTGATGGTTGTGACACTTAAGCCCTCTTG

9 chr21 + 35571080 CGGTGAGACCCCTGAAATACGAGTCATCCCCACTCCTGAC

10 chr1 - 56007274 GGACACTTACTGTGAATTAGCTTGCAGGACTGGAAGTTGC

Information on integration site positions of  top-10 clones for each sampleTable 2
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Figure 12: A simple comparison of shear site and tag variations
A simple image representing that the two approaches result in the similar clone sizes when
the size of clones are small enough to be covered by shear site approach (Example-1).
However, when the size of clones exceeds the shear site variations (242 based on our
experiments), clone sizes get underestimated by the shear site approach. Thus, the size of
large clones are only measureable by the tag system (Example-2). 400 is the theoretical
upper-limit of shear site variations.

Practically：250
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Figure 13: Oligoclonality index for shear sites vs. combinations
The Gini coefficient and Lorenz curve were analyzed by StatsDirect software and are
represented as an oligoclonality index (OCI). The red, 45-degree diagonal lines are the lines
of equality. The green and blue curves are Lorenz curves of shear sites and combination data,
respectively. (A) Lorenz curves and the values of OCI for S-1 (shear sites vs. combinations:
0.54082 vs. 0.600775). (B) Lorenz curves and the values of OCI for S-2 (shear sites vs.
combinations: S-2:0.671612 vs. 0.669536). (C) Lorenz curves and the values of OCI for S-2
(shear sites vs. combinations: 0.668374 vs. 0.844541). (D) Lorenz curves and the values of
OCI for S-2 (shear sites vs. combinations: 0.632599 vs. 0.799413)

S-1:
AC, 8% PVL

S-2:
SM , 9% PVL

S-3:
SM, 31% PVL

S-4:
Acute, 33% PVL

0.60 0.67 0.84 0.8

Similar Gini coefficients

Different clonality patterns
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Acute Tag system for measuring size of clones

Absolute numbers
of infected cells

Especially top-10 clones

Figure 13 (F) : Gini coefficient of AC was different  from Acute sample.
SM and Acute samples with different clonality patterns showed similar Gini coefficients.
This is the disadvantage of GINI which can not differentiate polyclonality from oligoclonality and
oligoclonality from monoclonality.
Later I will show that accurate measurement of the number of infected cells particularly the size of
top-10 clones are essential to differentiate clonality status of different ATL subtypes. Therefore I
put my major effort into accurate measurement of the absolute size of clones by the tag system.

Figure 13

SM
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30



31

Validation of the methodology

My newly developed method - the tag system and the related data analysis - were successfully
validated, internally. As mentioned above, the initial validation was done by analyzing samples
from different HTLV-1-infected individuals (Figures 10 and 12). Finally, I conducted a
comprehensive internal validation by using an appropriate control with known integration sites
and clonality patterns to provide direct evidence for the effectiveness of my system in the
clonality analysis. I designed a suitable control because there was not an appropriate control
available. Using my system, I could evaluate the method and confirm its accuracy, sensitivity,
and reproducibility. I selected two samples with the following special conditions as starting
materials for preparing the control system (Figure 14).

Sample one (M): DNA from an acute ATL patient with 100% PVLs and a single integration site
in the major clone (Figure 14). The integration site of this sample was first checked with
conventional splinkerette PCR, which detected a single major integration site. Subsequently,
deep-sequencing data (tags only and combinations) showed that approximately 99% of the PVL
accounted for the major clone with an integration site at chromosome 12:94976747(-). A small
numbers of clones occupied approximately 1% of the PVL of this sample. Those clones were
only detected in the second trial samples for which the external PCR products were not diluted.
Therefore, to simplify the overall analysis, I removed those low-abundance clones (data not
shown).

Sample two (T): DNA was isolated from a fresh culture of TL-Om1, which is a registered
monoclonal ATL cell line with 100% PVL and a single integration site at chromosome
1:121251270(-) in each cell (Figure 14A).

Having prepared these two samples, they were sonicated and mixed in proportions of 50:50 and
90:10 (Figure 14B). These known proportions were thus expected to generate specific patterns
that could be verified with my subsequent analysis. We conducted two independent sets of trials.

In the first trial, samples were named as ‘first trial control 1 ~ 4’ and abbreviated as 1st T-cnt-1 ~
4. Various amounts of DNA (μg) from samples M and T were mixed to prepare the final
expected clone sizes as shown in Figure 14C. A 1-μL sample of a 10-fold dilution of external
PCR product was used as the starting material for nested PCR for this trial. The samples were
run in separate lanes of HiSeq 2000.

I named the samples of the second trial as second trial control-1 ~ 4 and abbreviated them as
2nd T-cnt-1 ~ 4. DNA samples were mixed similarly to that for the first trial except for sample
four (Figure 14D). In contrast to the first trial, I used 1 μL of the external PCR product without
any dilution as a starting material for the nested PCR. These samples were multiplexed and run
in the same lane of HiSeq 2000. The purpose of the second trial was to test both method
reproducibility and the effect that the dilutions had on the results.

The samples of both the first and second trials were analyzed under the same conditions,
except where noted above. For each control sample, expected patterns and experimentally
observed patterns were calculated for (a) raw sequence reads, (b) shear sites, (c) only tags,
and (d) the combination of tags and shear sites (Figure 15). Figure 15 shows the data when the
optimal conditions were considered.
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Evaluating the accuracy of the clonality analyzed based on shear sites vs. tags system

The ‘absolute error’, a technique used to evaluate system accuracy [54], was used to assess my
method. The experimental values were subtracted from expected values (Figure 16A). Taking
advantage of my control system (the first and second trial samples), the clone size was
calculated by considering (a) sequencing reads without removing PCR duplicates, (b) only
shear sites, (c) only tags, and (d) the combination of tags and shear sites (Figure 16B and C).
The absolute errors of raw sequence reads for the first trial samples were 23.58, 6.26, 4.57, and
5.72, whereas those of the second trial samples were 44.66, 9.50, 6.88, and 60.24. The
magnitude of errors in the first trial was lower than that of the second trial probably due to the
dilution of the external PCR products in the first trial. However because dilution reduced the
number of covered integration sites, it should be done sparingly and with the purpose of the
experiments in mind. The errors when considering only shear sites were 1.72, 34.33, 21.76, and
18.73 for the first trial and 0.47, 38.29, 36.72, and 40.47 for the second trial. Underestimations
caused by low shear site variation did not affect the relative size of clones when the expected
size of the clones was 50% vs. 50%. In this situation, shear sites had the smallest error: 1.72 for
1st T-cnt-1 and 0.47 for 2nd T-cnt-1.

The errors were reduced in the data using the tag system: 7.27, 5.23, 14.49, and 6.50 for the
first trial, and 6.67, 7.07, 10.07, and 13.16 for the second trial. In the case of the combination of
tags and shear sites, errors were: 6.98, 4.06, 0.21, and 1.31 for the first trial and 3.42, 10.51,
12.26, and 5.83 for the second trial. Interestingly, the samples ‘tags only’ and ‘combinations’
showed similar error levels. Based on these data, my system showed lower absolute errors than
when considering only shear sites (Figure 16). Owing to differences in analyzed samples and
system setups, I could not directly compare my data with published data [18, 49]. Indirect
evidence, however, provided by shear site analysis of my own data illustrated that my system
has lower absolute errors than using the shear site-based methodology. See summary of
absolute errors data in Figure 17.
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E Chromosome Strand Position A representative sequence
for each corresponding integration site position

1 chr 1 - 121251270 TATATGTAGCACAATTTCTTTATTCAGTCTGTCATTGTTG

2 chr 12 - 94976747 AAAAAAGATTCTCCTTCTATTAAGTGAGTGAGTTCTGAGT

TL-om1(ATL cell line)

A single integration site at
chr1:121251270(-)
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chr 12:94976747(-)
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A simple control 2 known infected clones
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Figure 14: Preparing the control system.
(A) I prepared a simple control system by mixing two known infected clones in different ratios.Clone-1 was from Tlom-
1 which is an ATL cell line with a single IS. and Clone-2 was from an acute patient with 100% PVL and a single
integration site. The control system was designed by mixing sonicated genomic DNA (gDNA) of TL-Om1 with that of
an ATL patient in proportions of 50:50 and 90:10. TL-Om1 is a standard ATL cell line with 100% PVL and a known
single integration site at (chr1:121251270(-)). The patient sample was from an acute type of ATL with 100% PVL and a
single integration site at (chr 12:94976747(-)). (B) The expected clonality patterns: (50% vs. 50%), (90% vs. 10%), and
(10% vs. 90%) were generated by mixing gDNA from an ATL sample with that from TL-Om1. (C, D) Full details of the
first trial’s and the second trial’s samples including: name of samples, total amount of DNA (μg), the amount of DNA
(μg) from TL-Om1 (T) vs. major clone (M), and expected clone size are provided. (E) Integration site position of TL-
Om1 and the major clone of ATL sample.
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Figure 15: Validation of the tag system. For each control sample, both the
expected and the experimentally observed patterns of raw sequence reads, shear
sites, and the combination of tags and shear sites are represented in the bar graphs.
Abbreviations: Com.: Combinations, Exp.: expected pattern, Seq.: raw sequencing
data without removing PCR duplicates, Sh.: Shear sites, Tg.: Tags. (A) Clone size
data of the first trial samples: Data were obtained considering the final optimal
conditions: (Bowtie parameters: -v 3 - - best, and filtering condition: (merging
approach) JT-10). (B) Clone size data of the second trial samples: Data were
obtained considering the final optimal conditions: (Bowtie parameters: -v 3 - - best,
and filtering condition: (merging approach) JT-10-1%).
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Figure 16: Evaluating the accuracy of the clonality analysis. (A) Absolute error is calculated by
subtracting the expected values from the experimentally observed values. (B, C) The accuracy of the
method is evaluated by calculating the absolute error of the clone size estimation of the control samples.
The y axis represents the percentage of absolute errors in different conditions including: (1) raw
sequencing reads without removing duplicated PCR, (2) only shear sites, (3) only tags, and (4) the
combination of tags and shear sites. The absolute errors of the final optimal condition: the first trial:
(Bowtie parameters: -v 3 - - best, and filtering condition: (merging approach) JT-10), and the second trial:
(Bowtie parameters: -v 3 - - best, and filtering condition: (merging approach) JT-10-1%) are presented in
this figure. Please refer to Additional file 1: Figure S6 for the absolute errors in all examined conditions.
(B) The absolute errors of the first trial. (C) The absolute errors of the second trial.
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Figure 17: Summary of Absolute errors to evaluate the measurement,
I calculated Absolute Errors by subtracting the expected values from experimentally observed
values. My tag system showed significantly lower absolute errors than shear site strategy.
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In-silico analysis

Raw sequencing data were processed according to the workflow described in Figure 18. The
initial forward read (100-bp) was termed Read-1 and the reverse read (100-bp) was termed
Read-3 and an index read (8-bp) was termed Read-2. In brief, analysis programs were written in
Perl language and run on a supercomputer system provided by The University of Tokyo’s
Human Genome Center at The Institute of Medical Science [55]. The sequencing output was
check for quality using the FastQC tool [56]. The regions corresponding to the LTR and HTLV-1
genome were subjected to a blast search against the reference sequences described later.
Following isolation of the integration sites, the flanking human sequences were mapped to the
human genome (hg19) (the UCSC genome browser [57]) by Bowtie 1.0.0 [58]. The final
processed data included information about shear sites (R1R3), tags (R1R2), and a combination
of tags and shear sites (R1R2R3). Fitting the data to the zero truncated Poisson distribution for
retrieving correlation coefficients were done by the R-package ‘gamlss.tr’ [59]. The Gini
coefficient was calculated by StatsDirect medical statistics software [60].

Processing, management, and analysis of the large amount of data generated by deep
sequencing require special infrastructures and bioinformatics skills. I designed a data analysis
and interpretation pipeline specific for HTLV-1 integration sites and clonality studies. The
workflow is provided in Figure 18. First, the raw data for high-throughput sequencing were
checked for quality by the FastQC tool. I then removed the first 5-bp random nucleotides from
read-1 and de-multiplexed those samples that were run in the same lane of the HiSeq 2000
based on 5-bp of the known sequence (Figure 18). The downstream 23 nucleotides, which
represented LTR-specific primers, were also trimmed before further analysis. I then separated
the remaining sequence of read one into two different datasets: (1) LTR sequence and (2)
HTLV-1 or human sequence. The former comprises the 27-bp sequence remaining from the
LTR, whereas the latter is composed of the 41-bp or 45-bp HTLV-1 or human sequence. In the
case of multiplexed and non-multiplexed samples, different lengths (that is, 41-bp and 45-bp)
were available for analysis. Both sets were subjected to blast analysis against LTR and HTLV-1
reference sequences with one or two mismatches permitted, respectively. Reads for which the
sequence did not match HTLV-1 were presumed to be human as long as their 27-bp LTR
sequences matched the LTR reference sequence. The resulting human reads were mapped to
the human genome (hg19) using Bowtie 1.0.0 [58]. I employed various parameters of Bowtie
and different lengths of read three to obtain the optimal mapping yield. These conditions were
achieved when a maximum of three mismatches were permitted (-v parameter) and when the
best alignment regarding the number of mismatches was reported (--best parameter). In
addition, use of the same length of read-1 as in read-3 allowed for better mapping results.

The 5′-mapped regions were considered to be the positions of integration sites and reported as
(chromosome: position: (strand)) for example, (chr1:121251270: (-)). In addition, 3′-mapped
regions from read-3 were reported as shear sites for each corresponding position. Information
on the tags, obtained from read-2, was used to determine the size of clones as described in
subsection: Measuring the size of clones by the tag system. Final outputs of our analysis - the
three main reports: R1R3, R1R2, and R1R2R3 - include information on shear sites, tags, and a
combination of tags and shear sites, respectively (Figure 18).
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Removing background noise

Data obtained from next-generation sequencers are not error free[45, 61-64]. There are many
reports on the error rate of Illumina sequencers [65, 66]. Teemu Kivioja et al. recently developed
a system named unique molecular identifiers (UMIs) for quantifying mRNAs and employed
filtering criteria to remove false UMIs generated by sequencing errors [67]. In our study,
consistent with the data of Kivioja et al. [67], the sequencing errors produced false tags with low
frequencies. A filtering system was required to remove those tags, which could affect
interpretation of our clonality data and reduce the accuracy of the clone size measurement. To
minimize the effect of sequencing errors on data interpretation, I tested different filtering
conditions to remove background noise. Here, I report my proven filtering approach (Figure 19).

Considering that tags are designed randomly, each tag has an equal probability of being
observed. Hence, the distribution of tags should be fitted to the zero truncated Poisson
distribution [59, 67]. Therefore, I test data fit to the Poisson distribution to determine the efficacy
of each filtering condition. The distribution of tags for each sample was measured by the R-
package ‘gamlss.tr’ [59], and the correlation coefficient was compared before and after filtering
(Figure 20).

I used a filtering system, which I named the merging approach. The merging approach was
conducted by clustering the tags and allowing only one mismatch so that unique tags, differing
only in one nucleotide (one-mismatch permission), were merged. Subsequently, if the frequency
of observed tag reads (PCR duplicates) was greater than 10, those unique tags were employed
in further analysis. Otherwise, they were considered as artifacts. I referred to this filtering
approach as ‘Join Tag- remove10’ (JT-10) in the Figure legends. To facilitate understanding,
these filtering conditions are illustrated in (Figure 19). I provided the absolute error data for
different filtering conditions in Figure 21.

Mapping, reads coverage, and tag variations

As later described in Materials and methods, incorporating 5-bp random nucleotides
downstream of the region specific for read-1 sequencing primer was necessary to generate
high-quality sequencing reads. These 5-bp random nucleotides were not used for S-1, S-2, S-3,
and S-4 samples, and thus resulted in a low sequence quality. I handled low quality reads by
keeping only the generated sequencing reads that were uniquely mapped, similar to the
strategy of Heng Li et al. [63]. I utilized different mapping software including Bowtie [58] and
Burrows-Wheeler Aligner (BWA). The number of uniquely mapped reads was not significantly
different. Bowtie was used for further analysis owing to convenience and higher speed. Final
mapped reads were: S-1: 2,758,423; S-2: 281,941; S-3: 4,315,531; and S-4: 11,870,957. Owing
to high sequencing quality, the number of uniquely mapped reads was greater for control
samples (Table 3).

Different numbers of generated sequencing reads were analyzed and evaluated. Maximum,
minimum, and average mapped reads of our analyzed samples were [1st T-cnt-1: 27,962,532],
[S-2: 281,941], and 10,485,747, respectively. These numbers are comparable to those of
published methods in which a maximum, minimum, and average mapped reads of 107509,
4659, and 31961 were used [51].

Depending on the purpose of any particular experiment, a high or a low coverage may be
selected. Our data suggest that, although a low coverage (for example S-2: 281,941) can
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provide some estimation of clonality, a higher coverage may ensure a more reliable and
representative picture of clonal composition and isolate a larger number of integration sites.
Based on these data, I recommend use of about 2–3 million mapped reads for each analysis.
Sequencing and mapping errors are intrinsic to NGS data [63, 68-71]. Therefore, occasional
generation of false positive integration sites is unavoidable in this kind of analysis. Considering
all the characteristics in NGS data analysis, I designed the study and analysis steps to avoid
errors as much as possible, and accurately generate and interpret data.

Tags are randomly generated nucleotides incorporated into splinkerette adaptors. Since 7-bp is
the default length of read-2 in Illumina, I had initially used 7-bp tags for optimization (S-1, S-2,
and S-3). Later it became possible to increase the length of read-2 to 8-bp. Therefore, I
analyzed samples with 8-bp tags (S-4, first trial samples, and second trial samples). I also
analyzed 2nd trial samples with both 7-bp and 8-bp tags, and compared the results. The
measured clone sizes were not significantly different, but barely better in the case of 8-bp tags
(data are not shown). Therefore, I used 8 bp as the optimal length for tags in my analysis.
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Figure 18: In-silico analysis work flow. (A) Illumina HiSeq 2000 platform outputs raw data of (Read-1 =
100 bp), (Read-3 = 100 bp), and (Read-2 = 8 bp). Data were analyzed according to this work flow after
checking quality with the FastQC tool. In the case of Read-1, the first 5 bp were trimmed, and the next 5 bp
were used to de-multiplex indexed samples. The downstream 23 bp, which correspond to the LTR primer
(F2), were then removed. The next 27 bp were subjected to a blast search against the LTR reference
sequence. For the blast search reads, the remaining 41/45 bp were subjected to a blast search against an
HTLV-1 reference sequence. Reads were confirmed to be from HTLV-1 was removed, and the sequences
and IDs from the remaining reads which considered as human, were collected. Subsequently, Read-3 with
IDs corresponding to Read-1’s IDs were collected. The first 41/45 bp of Read-3 were trimmed and
collected to have the same length as Read-1. The paired sequences of Read-1 and Read-3 (same
lengths) were mapped against hg19 by Bowtie with -v 3 - -best parameters. The 5′-mapped positions were
considered to be integration sites and the 3′-mapped positions as shear sites. Read-2 information was
used to retrieve the clone size based on tags. Finally, the clone size was computed by combining tag and
shear site information. All the analyses were done by our own Perl scripts, which resulted in the following
reports. Report R1R3: the distribution of unique shear sites per integration site. Report R1R2: the
distribution of unique tags per integration site. Report R1R2R3: the distribution of unique tags and shear
sites per integration site. (B, C) The structure of Read-1 for the non-multiplexed and multiplexed samples.
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A

B Chromosome Strand Position Tags PCR
duplicates

1 chr 1 - 121251270 ACATGCTA 24

2 chr 1 - 121251270 ACAATCTA 32

3 chr 1 - 121251270 ACATTCTG 22

4 chr 1 - 121251270 ACATACTA 11

5 chr 1 - 121251270 ACATTCTA 28

6 chr 1 - 121251270 CTAGAGGT 39

7 chr 1 - 121251270 CTATAGGT 27

8 chr 1 - 121251270 CAGAAGGC 12

9 chr 1 - 121251270 AAGAACGC 12

10 chr 1 - 121251270 AAGAAGGC 56

Chromosome Strand Position Tags PCR
duplicates

1 chr 1 - 121251270 ACATGCTA-ACAATCTA-ACATTCTG-
ACATACTA-ACATTCTA 117

2 chr 1 - 121251270 CAGAAGGC-AAGAACGC-AAGAAGGC 80
3 chr 1 - 121251270 CTAGAGGT-CTATAGGT 66

Merge the tags with one mismatch

Merging tags

Removing tags with PCR duplicates of less than 10
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If the external PCR products were not diluted
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from analysis (Figure 6)
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the background noise

Bar graphs of the observed clone sizes
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The frequency of unique tags before filtering: 10 The frequency of unique tags after filtering: 3

Figure 19.
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Chromosome Strand Position Shear site Tag Frequency
chr12 - 94976747 94976704 CGTGTCGG 2745
chr12 - 94976747 94976702 CCACACAC 2598
chr12 - 94976747 94976705 TCAATCCA 2598
chr12 - 94976747 94976701 TAAGCCGC 2569
chr12 - 94976747 94976701 TGACTAGC 2453
chr12 - 94976747 94976704 ATCCCTCG 2421
chr12 - 94976747 94976694 GTTTTCGG 2412
chr12 - 94976747 94976696 GGGGTCCG 2367
chr12 - 94976747 94976680 CCGACACC 2309
chr12 - 94976747 94976674 ACTACGAC 2295

chr12 - 94976747 94976639 CAGTCTGA 1
chr12 - 94976747 94976692 AATGGAAG 1
chr12 - 94976747 94976687 GACACTAC 1
chr12 - 94976747 94976673 AAAGGGTA 1
chr12 - 94976747 94976694 AGCATGGC 1

1%

Mode of
distribution

Remove noise

27

Figure 19

Figure 19: The filtering system for removing background noise
(A) After completing the data analysis as described in Figure 18 we performed a
workflow, which included: (1) removing the background noise, (2) fitting data to the
Poisson distribution, and (3) preparing graphs of the observed clone sizes. Filtering was
done separately for each clone. The background noise was removed by merging tags
that differed by one nucleotide (one mismatch permission). Tags with less than ten PCR
duplicates were then removed. In the case of the second trial’s control samples 1-4 for
which the external PCR products were not diluted, tags with PCR duplicates less than
1% of the mode of distribution, were removed (See Supplementary Figure S6, Additional
file 1). (B) A simple diagram of merging tags is presented. (C) The external PCR
products were not diluted in the second trial (control samples 1-4). For these samples, in
addition to the merging approach, tags with PCR duplicates less than 1% of the mode of
distribution were removed. Mode of the above depicted distribution is 2745 (indicated in
red typeface). In such distribution, tags with a frequency less than 27 (1% of 2745) were
removed.

C
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The second trial-combinations

2nd T-cnt-1 2nd T-cnt-2 2nd T-cnt-3 2nd T-cnt-4

The second trial: combinations

Figure 20.

2nd T-cnt-1 2nd T-cnt-2 2nd T-cnt-3 2nd T-cnt-4

Figure 20: Testing of the data fit to the Poisson distribution
The efficacy of filtering was determined by checking the fit to the Poisson
distribution. Distribution of tags for each sample was analyzed by R-
package “gamlss.tr”, and the correlation coefficient before filtering has
been compared to that after filtering.
(A) The second trial: tags only.
(B) The second trial: the combination of tags and shear sites.
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Figure 21: Evaluating the accuracy of clonality analysis for differing conditions
The method was evaluated by calculating “absolute error”, which is further described in
Results and discussion, Fig. 5, and Fig. 3. Absolute error was calculated for different
conditions including: (a) raw sequence reads, (b) shear sites, (c) only tags, and (d)
combination of tags and shear sites. In the case of tags only and combinations, both
the non-filtered data and the data filtered with the “merging” approach (JT-10 and JT-
10-1%) are provided. (A) Absolute errors of the first trial. (B) Absolute errors of the
second trial.

Figure 21
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Sample Status PVL
(%) Barcode Total reads Reads from

5'LTR
Reads from

3’LTR

Reads uniquely
mapped to

Human genome
S-1 AC 7.56 No 101,697,565 37,429,937 64,267,628 2,758,423
S-2 SM 9.01 No 102,690,388 38,344,138 64,346,250 281,941
S-3 SM 31.15 No 96,569,010 31,068,714 65,500,296 4,315,531
S-4 Acute 32.56 No 111,838,665 34,456,523 77,382,142 11,870,957

1st T-cnt-1 TLom1/Acute 100 No 135,665,814 58,159,788 77,506,026 27,962,532
1st T-cnt-2 TLom1/Acute 100 No 108,939,606 46,902,164 62,037,442 22,456,195
1st T-cnt-3 TLom1/Acute 100 No 105,244,134 44,280,981 60,963,153 20,294,502
1st T-cnt-4 TLom1/Acute 100 No 92,804,419 38,245,287 54,559,132 19,736,034
2nd T-cnt-1 TLom1/Acute 100 ACAGT 20,653,487 8,877,796 11,775,691 3,580,966
2nd T-cnt-2 TLom1/Acute 100 GGCTA 31,909,311 13,607,338 18,301,973 5,937,997
2nd T-cnt-3 TLom1/Acute 100 TTACG 15,686,210 6,774,110 8,912,100 2,683,504
2nd T-cnt-4 TLom1/Acute 100 GCTAC 22,110,335 9,443,089 12,667,246 3,950,379

Table 3.

Table 3. Sample information and mapping results
Sample information including the disease status, PVL, barcodes, total sequencing
reads, and numbers of reads from 5’-LTR, reads from 3’-LTR, and reads uniquely
mapped to human genome are presented in this table. Sequencing errors have not
included here. The first eight samples were sequenced in separate lanes, and the
remaining four samples were barcoded and sequenced in one lane of HiSeq 2000. In
silico analysis was done by our own Perl scripts, and the sequencing reads were
mapped to Hg19 by Bowtie-1 with -v 3 - -best parameters and the same length of read-
1 and read-3 were used for mapping. See (Figure 3. Preparing the control system) for
more information regarding the last eight samples. PVL of TL-om1 and the control Acute
sample were 100% and 100.42%, respectively. In the main manuscript we referred to
values of PVLs rounded to zero decimal places: 8%, 9%, 31%, 33%, and 100%. 8-bp
random tags were used for all samples except S-1, S-2 and S-3 for which 7-bp tags
were used (see Supplementary Notes). Raw sequencing data have been deposited in
the Sequence Read Archive with access number of [SRP038906].
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PCR-southern experiments

I used PCR-southern to provide reference data about the relative size of the major clone in
sample S-4 because I believed this classical approach had less bias than the other conventional
methods. Because HTLV-1-infected clones contain the same LTR sequence, they are
detectable using a common LTR probe by PCR-southern. Size of clones was estimated by the
strength of the bands detected from each specific clone. Furthermore, I compared the relative
size of clones as measured by PCR-southern with that obtained using the Shear site or tag
system. Relative size of clones based on PCR-southern data was similar to that of my tag
system, which validated the accuracy of my tag system. The following is the detailed information
obtained from the PCR-southern experiments (Figure 22).

Two bands detected from S-4 were sequenced: the upper band from chromosome X [83705328
(-), the Blue clone] and the lower band the amplification of the 5-LTR-containing part of the
HTLV-1 genome. No bands were detected from the Red clone [the second clone of S-4;
chromosome 14: 30655896(+)].

I compared the quantitative size of the clones measured by shear site and tag system with the
qualitative estimation of clone size based on PCR-southern data.

The shear sites data showed that the Blue clone was 2.6 times larger than the Red clone. If the
size estimation by shear sites (222 vs. 87 for Blue vs. Red, respectively) was accurate, a weak
band should at least be detected from the red clone using PCR-southern methods. However,
this method detected a strong monoclonal band from the Blue clone, and no band from the Red
clone. This was consistent with the tag data, which estimated the size of the Blue clone to be
12.8 times larger than the Red clone (2675 vs. 209 for Blue vs. Red, respectively).

I compared the clone size data obtained from S-4 with those of S-1. I first considered the size of
the first clone, and then the number of integration sites. S-1 was used as a clone size control.
Consistent with shear site and tag data, PCR-southern did not detect any major band from S-1.
The number of integration sites isolated from each sample (S-1: and S-4) were 1030 and 384,
respectively.

Based on the shear site data, the size of the first clone in the sample S-1 was 209 and that of S-
4 was 222. However, based on the tag data, the size of first clone in the sample S-1 was 393
and that of S-4 was 2675. If the size estimation as modeled from the shear site data were
accurate, I would expect that the sample S-4 should show a smear-like pattern, similar to that of
S-1 on the PCR-southern data. However, the data from the PCR-southern method detected a
monoclonal band from S-4, which was consistent with the data from tag system (i.e., that the
size of the clones from S-1 and S-4 was significantly different) (Figure 22). Taken together, I
believe these data further support the accuracy of clone size as measured by the tag system.



Work flow of PCR-southern

Restriction enzyme digestion

gDNA

F1

External PCR: 30 cycles

To amplify from LTR of HTLV-1

Perform southern blotting by LTR-specific and clone-specific probes

R1

Adaptor ligation

A

Figure 22: Detecting the major clone of S-4 by PCR-southern
Work flow of PCR-southern: restriction enzyme digestion, adaptor ligation, external PCR
amplification and southern blotting. Perform experiments as described in additional
protocols. (B) clones detected by a LTR-specific probe (C) chrx:83705328(-) clone
detected by the clone-specific probe (D) Comparison of the clone size estimated by shear
sites and the tag system with that of PCR-southern.
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Order of samples

① S-4 (10ml)
② S-4 (5ml
③ S-4 (2.5ml)
④ S-4 (1ml)
⑤ Tl-om1 (10ml)
⑥ TL-om1 (5ml)
⑦ HIV cell line (U1) (10ml)
⑧ Normal PBMC (10ml)
⑨ S-1 (10ml)

1     2      3       4       5        6      7       8      9 1     2      3       4       5        6      7       8

Order of samples

① S-4 (10ml)
② S-4 (5ml
③ S-4 (2.5ml)
④ S-4 (1ml)
⑤ Tl-om1 (10ml)
⑥ TL-om1 (5ml)
⑦ HIV cell line (U1) (10ml)
⑧ Normal PBMC (10ml)

Sample Shear
site

Tag
system

PCR- southern Comment

S-1 209 393 A smear-like pattern All  three approaches showed similar results

S-4 222 2675 A strong monoclonal
band

Tag system and PCR-southern : consistent results
Shear sites vs. PCR-southern: controversial results

Approach Blue vs. Red Proportion of Blue vs.
Red

Shear sites 222 vs. 87 2.6 vs.1

Tag system 2675 vs. 209 12.8 vs. 1

Figure 22: Detecting the major clone of S-4 by PCR-southern

LTR-specific probe (7 5-bp)
TGTGTACTAAATTTCTCTCCTGAGAGTGCT
ATAGGATGGGCTGTCGCTGGCTCCGAGCCA
ACGGAGTCGCCGGTA

Detected by LTR-specific probe Detected by clone-specific probe

B C

Blue clone-specific probe (171-bp)
(chrx:83705328 (-) )
GGTGAGATTGCTTTCTTGTAGGCAGTATA
TAGTGGAGTGATGGTTTTTTTTGTTGTTGT
CCATTTAGCCAGTCTATATATTTTAAGTG
GAAAGTTTAATTCATTTATATTCAAAATC
ATAATTGATATGTGAATATTTATTCCTGTC
ATTTTACTAGTTGATTTCTGGTGG

D

Also see Figure 10 and 11
for data of shear sites and tags
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Results-section-1-B

Confirming reproducibility of results using clinical samples

We selected samples from ACs and different subtypes of ATL that had differing PVLs [AC (n =
12), SM (n = 9), Chronic (n = 12), and Acute (n = 10)] (Figure 23). Sample information has been
provided in Table 4. All ACs and some SM patients showed large numbers of small clones with
a uniform distribution pattern. In addition, ACs showed large numbers of integration sites
ranging from 100 to 5000, independent of their PVLs. The number of isolated integration sites
depended on each sample (see Table 4). Based on our analysis, size of clones in most ACs
was >200 infected cells (Figures 10, 11; Table 1). When the clones of ACs were arranged in
descending order, the size of the first and the second largest clone was not significantly different.
Moreover, as expected, both tag and shear site analysis showed similar results because the
clone sizes were below the practical threshold of shear site variations (<250) (Figure 12).

In samples from patients with smoldering ATL, polyclonal and oligoclonal patterns were
observed (Figure 24). In some of these samples the size of clones exceeded the number of
shear site variations, which caused a difference in the clonality patterns observed by the shear
site method and our tag system. The biological significance of the accurate measurement of
clone sizes was further highlighted when we analyzed samples from these patients over time
(results have been described later).

For all of the analyzed chronic samples, the size of the clones, and particularly the major clone,
exceeded the number of shear site variations. Therefore, the shear site method underestimated
the size of clones, and the clonality patterns observed were similar to those of ACs (Figures 24–
26). However, our tag system more accurately measured the size of clones, and monoclonal
patterns or largely expanded oligoclonal patterns were detected from these chronic samples
(Figure 25).

Similarly, in the case of the acute samples, the size of clones was underestimated by the shear
site method; thus, giving rise clonality patterns that were comparable with those of ACs.
However, our tag system accurately detected monoclonal expansion of large clones in these
acute samples (Figure 26).

Taken together, these results show that our method enabled accurate analysis of clinical
samples with complex clonality patterns. Only our Tag system could detect differences in the
clone size of ACs and the different ATL subtypes (Figure 27), which were missed using the
shear site method.

Discussion-section-1-B

Impact on Clinical Diagnosis: How does an accurate clonality assessment aid the
clinician making therapeutic decisions?

Although the preliminary results have limited numbers of analyzed samples, this initial data
suggests different clonality patterns that are specific to AC and to the different subtypes of ATL.
Despite similar PVLs, ACs could be distinguished from patients with SM ATL clonality patterns
(polyclonal vs. a shift towards oligoclonal for AC vs. SM, respectively). The AC clones showed a
uniform distribution pattern with no large differences in clone size; however, clones of the SM
types had non-uniform sizes. Chronic subtypes showed expanded oligoclonal patterns, with a
large shift to monoclonality, and all acute samples harbored a large expanded clone with a high
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absolute number of infected cells. The clonality pattern of the chronic samples was more similar
to the acute than the smoldering types.

Because of their diverse prognosis and clinical manifestations, ATL patients are categorized into
distinct subtypes based on standard clinical criteria: presence of organ involvement, leukemic
manifestation, and levels of lactate dehydrogenase (LDH) and calcium [72]. Currently, distinct
treatment strategies are used for the different subtypes of ATL. Therefore, classifying ATL
patients into distinct subgroups is of a high importance for selecting appropriate therapeutic
interventions [16, 72, 73]. Considering such an intimate link between ATL diagnosis and
treatment, a more robust classification of ATL subtypes mediated by the HTLV-1 clonal
composition is of fundamental clinical significance. Further examination of the clonality patterns
using large numbers of samples is necessary to confirm the relationship between clonality
patterns and ATL subtypes, and to apply these clonality patterns to diagnosis and treatment.



The next generation study on ATL risk factors

Anticipated results

Examine the accuracy of method by analyzing clinical samples

Asymptomatic
Carriers(ACs)

Polyclonal

ATL Patients

Monoclonal

Numbers of
detectable integration sites

Clone size
Large numbers
of small clones

Asymptomatic
Carriers(ACs)

Smoldering Chronic Acute

Monoclonal
Polyclonal Oligo/monoclonal?

n=12 n= 9 n = 12
n = 10

Poly/oligoclonal

Figure 23: Analyzing clinical samples.
I anticipated that ACs would show polyclonal patterns with large numbers of small clones.
Also, a decrease in the numbers of integration sites and an increase in the size of clones, in
other words, a transition to a monoclonal pattern were expected from ATL patients. I used
these anticipated results to evaluate the next analysis.
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0 2000 4000 6000 8000 10000

Asymptomatic
Carriers(ACs) Smoldering

polyclonal
Large numbers of small clones

A uniform distribution pattern

AC-1

AC-2
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Some of
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oligo poly

Figure 24: analyzing clinical samples from ACs and SM patients.
ACs and some of the SM patients showed large numbers of small clones with a uniform
distribution pattern.
As expected In these cases, tags and shear sites showed similar results.
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Figure 25: analyzing clinical samples from chronic patients.
In the case of chronic samples, because shear sites underestimated the size of clones,
The clonality patterns were so similar to those of ACs. However, by our tag system,
monoclonal patterns or largely expanded oligoclonal patterns were detected from chronic
samples.
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Figure 26: analyzing clinical samples from acute patients.
Also In the case of acute samples, the size of clones was underestimated by shear sites,
and clonality patterns were comparable to those of ACs. However the tag system
accurately detected monoclonaly expanded large clones in Acute samples.
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Clonality patterns demonstrated by my tag system

By accurate measurement of clonality
Only Tag system could detect differences

in the clonality patterns of ACs and different ATL subtypes

Polyclonal

Poly/oligoclonal

Oligo/monoclonal

Monoclonal

My method enables accurate analysis of clinical samples with complex clonality patterns

Figure 27: A summary of clonality of ACs and different subtypes of ATL.
only the Tag system could detect differences in clone size of ACs and different ATL subtypes.
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Results-section-1-C

Examination of the accuracy of my new method by monitoring of clonality alterations
over time

To examine the accuracy of my new method for monitoring clonality, I analyzed four sets of rare
sequential samples over time. Here I present these initial results that include the following sets
of patients:

 Set 1: ACs with no change in clinical status.
 Set 2: SM patients who remained SM over time compared to those who progressed to a

chronic state
 Set 3: One AC who changed to acute ATL
 Set 4: Patients before and after medical therapy

In ACs with no change of clinical status (set 1), the clonality pattern remained polyclonal over
the time course of analysis. Thousands of small clones were detected at each time point, and
hundreds of observed clones were identically detected over both time points (Figure 28).

In set 2, I analyzed two groups of patients with SM ATL, some who progressed and some who
remained progression free. Similar clonality patterns were detected by the shear site method
from both groups. However, my tag system found largely expanded clones that were specific to
the progressed smoldering samples (Figure 29).

In set 3, I sequentially monitored the clonality of an AC that changed over to chronic and
eventually acute ATL over a time course of 6 years. The major clones of the leukemic state
were already dominant in the early state of being AC. The clonality pattern of this patient in the
AC state was significantly different from that of a typical AC, suggesting that the early detection
of an expanded clone may help to predict the prognosis of infected individuals (Figure 32).

In addition, I monitored the effect of therapy on the dynamics of clonality (set 4). I could detect
both stable clones and fluctuating clones after chemotherapy (Figure 31).

In summary, monitoring of clinical samples over time suggested the importance of my method in
generating biologically meaningful information.

Set 1 detected large numbers of small clones that survived over time in patients that remained
ACs, while Set 2 confirmed the presence of large clones only in samples that showed
progression. Set 3 allowed for the earlier detection of a leukemic clone and its effect on the
prognosis of infected individuals, while Set 4 revealed the presence of stable and fluctuating
clones after therapy.

Discussion-section-1-C

Impact on Prognosis and Prevention: Demand for an effective prognostic indicator of
ATL onset

In a pilot study, I obtained data from four SM patients over a time course of 4 years. Two of the
samples were without progression in disease status (t1 = SM, t2 = SM), while the other two
samples progressed into the chronic stage over time (t1 = SM, t2 = Chronic). I detected a
significant difference between the clonality patterns of the two groups independent of their PVL.
Progression-free samples manifested polyclonal or oligoclonally expanded clones with low
numbers of infected cells, while the progressed samples manifested a monoclonal or largely
expanded oligoclonal pattern. I also examined the effect of therapy on clonality patterns and the
prognosis of different patients. For this purpose, I monitored the clonality patterns of patients
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before and after treatment. Most of the samples harbored a stable major clone before and after
relapse. However, I could find fluctuating large clones (change in order and size of some large
clones) in some chronic patients before and after treatment.

Although still preliminary, this data suggests that the clonality patterns can potentially be used to
evaluate the prognosis of patients. Thus, I recommend expanding this into a large-scale
genomic project. This analysis may be helpful in clinical decision-making, such as determining
the most appropriate and timely therapeutic interventions, based on the clonality status of
patients. The information from previous studies on HTLV-1 clonality and my own data suggest
that ACs harbor a polyclonal population of HTLV-1 infected cells, whereas ATL patients show
monoclonal patterns. Thus, changes in the clonality pattern and onset of a clonal expansion of
HTLV-1-infected cells may a risk indicator of progression into ATL. Comparing the clonality
patterns of the infected cells of patients who progress from AC to ATL is expected to provide
highly critical information on the clonality alterations, associated with the transition from the AC
to ATL state. Using the changes in the clonal composition of infected individuals as a prognostic
indicator appears to be beneficial for early detection of ATL onset, and, in turn, ATL prevention.
Accurate monitoring of clonality patterns among infected individuals may help us to differentiate
progressive and non-progressive clonality patterns and assessments of the risk of disease
development. For this purpose, I propose undertaking a cohort study, similar to that of JSPFAD
on PVLs, to be conducted on the clonality patterns of sequential samples from individuals over
time.
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Figure 28: Set-1 samples
In ACs with no change of clinical status, clonality pattern was also remained as
polyclonal over time. Thousands of small clones were detected at each time point,
and hundreds of observed clones were identically detected over both time points.
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Figure 29: Set-2 samples
In the set-2, I analyzed two groups of progressed and non-progressed smoldering samples.
Similar clonality patterns were detected by shear sites from both groups.
However my tag system found largely expanded clones, specific to progressed smoldering
samples. The absolute number of infected cells in each clone seems to play significant roles.
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Figure 30: Set-3 samples
In the set-3, I sequentially monitored clonality of an AC who changed to chronic and eventually
Acute ATL over a time course of 6 years.
The major clones of leukemic state were already dominant in early state of being AC.
The clonality pattern of this patient in state of AC was significantly different from that of a typical
AC. Such kind of earlier detection of expanded clone and may help to predict prognosis of infected
individuals.
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The effect of therapy on dynamics of clonality
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Figure 31: Set-4 samples
I monitored the effect of therapy on dynamics of clonality.I could detect both stable clones
and fluctuating clones following chemotherapy.
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Results -Section-2

Following analysis of samples for their clonality, based on the integration sites of the provirus, I
proceed to more in-depth characterization of clones based on their mutation patterns.

My initial data on integration of site-based clonality suggested that a number of mapped reads
of the human flanking regions in ATL patients was lower than that in ACs, particularly in the
acute ATL samples, where a large clone typically occupied >97% of the PVL. The number of
reads with at least one reported alignment was 142618 (3.57%), and that of reads that failed to
align was 3857382 (96.43%) (Figure 32). To find the reason for the non-mapped reads, I used
this sample for further analysis. I took the human flanking regions before mapping and clustered
by cd-hit, then performed multiple alignments and constructed a phylogenetic tree, based on the
mutation patterns of the flanking human region of integration site data (approximately 50–100
bp in length) (Figure 32). Although the data are still preliminary and need further confirmation, I
think that there are intraclonal mutations associated with each clone. ATL is known for harboring
chromosomal abnormalities; however, comprehensive characterization of these mutation
patterns has not been conducted [74, 75]. With these new insights, I decided to clarify the
mutation patterns associated with the cells in each specific HTLV-1 clone.

For this purpose I am going to take advantage of my method for clonality analysis, based on
integration site data, and link that data with the mutation profiling of each clone. The process I
will use is outlined in Figures 33 and 34.

To retrieve the genomic abnormalities, associated with each clone, I will use a combination of
long and short sequencing reads. Long sequencing reads allow for coverage of larger distances
from the site of integration, and are necessary for my analysis. For this purpose, I will use
Nanopore technology, a third generation sequencing technology that generates long reads up to
50–100 kbp. To overcome sequencing errors, I will combine the long reads with short reads of
high sequences as shown in Figure 33. From this, I will reconstruct the genome at a single cell
level by overlapping sequencing reads. Before conducting any amplification, I will incorporate
barcoding tags to each DNA fragment to remove amplification bias and retrieve the original
frequency of starting fragments.

To capture the integration site of interest, I need to design a custom sequencing system.
Because a long captured target DNA is also necessary, commercially available kits were not
suitable. Companies providing capturing services can only capture fragments of 500 bp;
therefore, I have designed my own capture system as described in Figures 33 and 34. I am now
ready to proceed with the actual analysis of the samples.



Construct phylogenetic tree based on the mutation patterns of flanking Human
region of integration site data (~up to 100-bp length).
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Figure 32: integration site analysis of a patient with a very low mapped reads
(A) Patient information, integration site and clone size data, and mapping yield.
(B) Mutation profile of this sample and phylogenetic tree of mutation variations.
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Genomic abnormalities
associated with each specific clone

Retrieve the original genome of each single cell from bulk of DNA

HTLV-1 Genome
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1. Barcoding the starting gDNA before any further manipulation
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Figure 33: How to investigate genomic abnormalities associated with each specific clone
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Retrieve the original genome of each single cell

Link to data of integration sites
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A link between Integration site analysis and intraclonal heterogeneity
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Figure 34:
workflow of making a link between integration sites data and mutation profiling
of each clone
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Final Discussion

I approached to the concept of clonal expansion in cancer while using ATL as an appropriate
model. I employed HTLV-1 integration sites as markers to uniquely characterize every single
infected cell in each clone. My novel method of assessing clonality (the tag system) has enabled
accurate measurement of the absolute numbers of infected cells in each clone (clone size) for
the first time.

The two main characteristics of ATL cells include the site of integration and mutation profiling of
the cells, which allows for monitoring the clonal composition of ATL from two different
perspectives. In the present thesis I mainly investigated integration site mediated clonality
analysis which provided enough and accurate information to further elucidate a clear image
from clonal composition of ATL. Using this system of accurate monitoring, I was able to detect
clonal dynamics and alterations of clonality sequentially over time as well as at independent
time points. This accurate and comprehensive information is expected to lead to a more
accurate molecular diagnosis or aiding in the prediction of prognosis for HTLV-1 infected
individuals, as well as clarifying the mechanisms underlying multistep leukemogenesis of ATL.

I have provided details of the method design, optimized experiment protocols, and in-silico data
processing workflow. I published the first part of data including development of methodology
and its validation by analyzing eight control samples with known integration sites and clone
sizes, and four clinical samples. (Firouzi et al )[29]. I subjected the samples to deep sequencing
so that they had enough read coverage for each integration site and to ensure accurate
measurement of clone size. I proved my methodology to be reliable for isolating large numbers
of integration sites and to be accurate for quantifying clone size. Because the tag system could
provide a sufficient number of variations regardless of clone size, it enabled accurate
measurements of the clone size. Preliminary experiments on the clinical samples with differing
PVLs and disease status showed different clonality patterns specific to AC and different ATL
disease subtypes. S-1 was selected to represent still-healthy but infected individuals (ACs), S-2
and S-3 to represent indolent types of ATL, and S-4 to represent a typical aggressive type of
ATL. Despite similar PVLs, S-1 and S-2 could be distinguished based on clonality patterns
(polyclonalvs. a shift towards oligoclonal): S-1: AC, 8% PVL, and S-2: SM, 9% PVL. The clones
of AC showed a uniform distribution pattern with no large difference in clone size; clones of S-2,
however, had non-uniform size. S-2 and S-3 (S-3: SM, 31% PVL) are both smoldering subtypes
of ATL progression with differing PVLs (9% vs.31%) and showed similar clonality patterns but a
different number of infected cells in each clone. S-3 and S-4 had similar PVL (S-4: acute, 33%
PVL) but exhibited different clonality patterns: oligoclonal for S-3 (three or four relatively large
clones at the top surrounded with other clones) vs. monoclonal for S-4 (a large major clone
surrounded with some small clones in the background). After ranking the clones in order of
descending size, I noted that the size of the largest clone in the acute sample was 10 times that
of the next clone (tags: (chr X:83705328 (-)) = 2675 vs. (chr 14: 30655896 (+)) = 209). Relative
size of the major clone (chr X: 83705328 (-)) was also confirmed by another method (PCR-
southern) (detailed information is provided in results-section 1). Samples with distinct disease
status (AC, SM, and acute) manifested different clone sizes, but S-1 vs. S-2 (0.60 vs. 0.67) and
S-3 vs. S-4 (0.84 vs. 0.80) could not be discriminated based on their oligoclonality index (the
index that introduced by Gilet et al). Therefore, it can be inferred that, with an accurate
measurement of clone size (particularly absolute number of infected cells), the application of
this method will aid in the discrimination of ATL subtypes.
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Moreover, taking advantage of my new method to detect clonality (Firouzi et al. Genome
Medicine)[29], I further analyzed a greater number of samples from asymptomatic carriers and
different the subtypes of ATL. ACs and some SM patients showed large numbers of small
clones with uniform distribution patterns, while the absolute number of infected cells in analyzed
ACs was significantly lower than other subtypes. In most cases, the number of infected cells in
the largest clones of ACs was >300 infected cells. Samples from ACs showed large numbers of
integration sites, ranging from 100 to 5000. Independent of PVL, the numbers of isolated
integration sites were intrinsic to each sample. In general, the number of detected integration
sites was higher in ACs than in ATL patients.

In the case of SM patients, polyclonal or oligoclonal patterns were detected, with absolute
numbers of infected cells more than ACs but less than chronic samples. Chronic samples
showed expanded oligoclonal patterns or monoclonal patterns, while the absolute number of
infected cells was typically less than acute samples. Acute patients showed monoclonal
patterns, with most harboring a single large clone among a background of very small clones.
The numbers of detected background small clones differed depending on each sample.

In samples whose absolute numbers of infected cells exceeded 250, which is the theoretical
limit of the number of different shear sizes able to be produced, the shear site method (Gillet et
al.)[18] underestimated the clone size, while my new tag system more accurately measured the
size of clones. Consequently, the relative measurement and statistical estimation of the clone
size by Melamed et al. and Gillet at al. was unable to find differences in clonality among the
different subtypes of ATL, while my method allowed for discrimination between ACs and the
different subtypes of ATL. Therefore, with an accurate measurement of clone size, my method
is able to aid in the discrimination of ATL subtypes. The results presented in this thesis suggest
a possible association between disease status and clonality patterns. Hence HTLV-1-infected
individuals may be able to be classified into different groups, based on their clonality patterns,
ultimately affecting their diagnosis, choice of therapy, and prognosis.

To further validate my methodology and its accuracy, I analyzed rare sequential samples that
were collected over time. The four sets of sequential samples, which were analyzed, included
patients with AC and no change in disease status (set 1), SM samples with progression and
without progression in disease status (set 2), samples from a patient initially with AC who
progressed to ATL over time (set 3), and samples from patients before and after therapy (set 4).

I detected a large number of integration sites from ACs over time. Even with low PVLs
averaging 1%, my method detected hundreds to thousands of integration sites. Each infected
individual displayed a proportion of clones that were constantly detected over time, while new
integration sites were also detected over time. These new integration sites may be because of
newly emerging clones generated from new infections; however, this still needs further
validation.

I detected dynamic clonal alterations in samples of patients with SM, chronic, and acute ATL.
While some clones kept growing over time, some were undetectable or lost, and some clones
shrunk, while others remained stable. If the newly detected integration sites were isolated
accurately by a reproducible manner, it can be suggested that they are newly emerging clones
generated due to new infections. Sequential detection of common clones or newly isolated
clones in ACs and the different subtypes of ATL only suggest the possibility for the presence of
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both persistent and newly emerging clones. However, to have a correct conclusion, this issue
should be further examined and validated.

I analyzed samples from patients with SM ATL; one subset of these patients progressed over
the time course, while the other subset remained stable. Comparison of the clonality measures
of the shear site strategy (Gillet et al.) with my new tag method (Firouzi et al.) showed that the
shear sites strategy could not detect differences in clone sizes between these two groups, while
I was able to observe different clonality patterns from progressed and non-progressed SM
patients. Non-progressed SM patients who remained SM over time showed polyclonal or
oligoclonal patterns with low numbers of infected cells in each clone. Progressed SM patients
who changed over to chronic ATL showed largely expanded oligoclonal or monoclonal patterns
with high numbers of infected cells in each clone. These data suggest that measurement of
clonality may be useful in predicting the prognosis of HTLV-1 infected individuals.

In this study, I was also able to analyze the rare samples from an AC who finally progressed to
acute ATL over the time span of 6 years. The major clone detected during the acute state was
already dominant when the patient was AC. The clonality pattern of this patient at AC was
abnormally monoclonal, differing from typical ACs who have polyclonal patterns. From these
data, I inferred that accurate measurement of the clone size may help to predict the probability
of progression years before developing ATL. In addition, although the size of clones was
abnormally large when the patient was in AC stage, it took approximately 6 years to develop
into the acute state. This suggests the possibility of additional hits necessary to develop into
ATL. I hypothesize that expansion of a clone increases the probability of accumulating genetic
abnormalities within the expanded clone.

Sets of samples before and after therapy were also analyzed in this thesis. In the first case, the
most abundant clone did not change in size following therapy, but was stable over time. In case
2, the abundance and order of clones changed after treatment, suggesting the presence of both
stable and fluctuating clones.

Taken together, my data shows that an accurate measurement of clone size is essential to
obtain biologically significant information from the clonal composition of infected individuals.

Provirus integration site-mediated clonality analysis holds the promise to allow us to reach the
final goal of demonstrating the genetic abnormalities, associated with individual clones. In
analyzing information from ACs and ATL samples, I found that many acute samples had low
mapping quality, despite identical sequencing read and analysis conditions with other samples.
Using multiple alignments of these reads, I found similarities that led us to hypothesize that the
low uniquely mapping reads in the acute samples is due to a high frequency of mutation around
the site of integration.

ATL is an aggressive malignancy with many chromosomal abnormalities reported [74, 75].
Because I found mutations even in the flanking regions of integration sites, I hypothesize that
mutation rates must be high in the genome of ATL cells. To further investigate this, I propose to
combine my current method for clonality analysis using on provirus integration sites with a
mutation profile of each specific clone obtained by target sequencing, exome sequencing, and
whole genome sequencing. This analysis will enable us to further characterize ATL clone, and
holds promise of clarifying the multiple steps leading to development of ATL; and answer the
question that “When, where and at which step clonal expansion and transformation occurs?”
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In conclusion, I took advantage of next-generation sequencing technology, a tag system, and an
in-silico analysis pipeline to develop and internally validate a new high-throughput methodology.
The method was proved to accurately measure the size of clones by analyzing control samples
with already known clone sizes and clinical samples. I also discussed the novelty, significance,
and applications of my method, and compared it with the only existing high-throughput method
devised by Gillet et al. [18]. Employing our new methodology and the analysis of an appropriate
pool of samples provided by JSPFAD[76] will be helpful not only for diagnosis and prediction but
also for elaborated understanding of the underlying mechanism of ATL development. The
methodology described here could be adapted to investigate and quantify other genome-
integrating elements (such as proviruses, transposons, and vectors in gene therapy). In
addition, the tag system can be used for quantifying DNA/RNA fragments in RNA expression
[67] or in metagenomics for determining the size of bacterial populations.

Figure 35.  Accurate monitoring of clonal compositions suggested the critical roles of the
clone size in the fate of each clone, clinical status and prognosis of infected individuals.
Monitoring of clinical samples suggested the importance of our method for generating biologically
meaningful information. My data suggested different clonality patterns specific to AC and different
subtypes of ATL. In this thesis I proposed clinical application of my methodology for diagnosis
and predicting prognosis of infected individuals.  I will further validate the observed results and I
will also try to reveal intraclonal composition of clones by making a link between IS-based
clonality data and clone specific mutation profiles. I hope my data shed light on the mechanism of
ATL development and be beneficial for discovering treatment of ATL patients.



Experimental design, Material and Methods

Our clonality analysis method included two main aspects: (1) wet experiments, and (2) in silico
analysis (Figure 18-19). Detailed protocols of the wet experiments are included in this section.
The in silico analysis is further described in Results and discussion.

NGS data have been deposited in the Sequence Read Archive of NCBI with access number of
(SRP038906).

Wet experiments

Biological samples: specimens and cell lines

Specimens: In total five clinical samples were provided by a biomaterial bank of HTLV-1 carriers,
JSPFAD [76, 77]. The clinical samples were a part of those collected with an informed consent
as a collaborative project of JSPFAD. The project was approved by the Institute of Medical
Sciences, the University of Tokyo (IMSUT) Human Genome Research Ethics Committee.
Information about the disease status of samples was obtained from JSPFAD database in which
HTLV-1-infected individuals were diagnosed based on the Shimoyama criteria [78]. In brief,
genomic DNA from PBMCs was isolated using a QIAGEN Blood kit. PVLs were measured by
real-time PCR using the ABI PRISM 7000 Sequence Detection System as described in [35].

Cell lines: An IL2-dependent TL-Om1 cell line [38, 79] was maintained in RPMI 1640 medium
supplemented with 10% heat-inactivated fetal calf serum (GIBCO), 1% penicillin-streptomycin
(GIBCO), and 10 ng/mL IL2 (R&D systems). The same conditions as those of patient samples
were used to extract DNA and measure PVL.

Illumina-specific library construction

I employed a library preparation protocol specifically designed to isolate HTLV-1 integration
sites. The final products in the library that I generated contained all the specific sequences
necessary for the Illumina HiSeq 2000 platform (Figure 36). These products included a 5′-flow
cell binding sequence, a region compatible with read-1 sequencing primer, 5-bp random
nucleotides, 5-bp known barcodes for multiplexing samples, HTLV-1 long terminal repeat (LTR),
human or HTLV-1 genomic DNA, a region compatible with read-2 and read-3 sequencing
primers, 8-bp random tags, and a 3′-flow cell binding sequence from 5′ to 3′, respectively (Figure
36).

Incorporating the 5-bp random nucleotides downstream of the region compatible with the read-1
sequencing primer was critical and resulted in high-quality sequence data. I used a library
designed without the first 5-bp of random nucleotides as input for the HiSeq 2000 sequencer in
our first samples (S-1, S-2, S-3, and S-4). Because all fragments began with the same LTR
sequence, clusters generated in the flow cells could not be differentiated appropriately. These
samples resulted in low-quality sequence data (see Additional file 1: Notes). Designing the first
5-bp randomly resulted in high-quality sequence data for the remaining samples because
clusters were differentiated with no problem during the first five cycles of sequencing (data not
shown).

My library construction pipeline comprised the following four steps:

(1) DNA isolation: DNA was extracted as described above, and the concentration of extracted
DNA was measured with a NanoDrop 2000 spectrophotometer (Thermo Scientific). I
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recommend using 10 μg of DNA as the starting material. However, in practice there are some
rare clinical samples with limited DNA available. In order to be able to handle those samples,
the method was also optimized for 5 μg and 2 μg of starting DNA.

(2) Fragmentation: According to the protocol provided later in section of DNA fragmentation, the
starting template DNA was sheared by sonication. The resulting fragments represented a size
range of 300 to 700 bp as checked by an Agilent 2100 Bioanalyzer and DNA 7500 kit (Figure
1B). (Figure 10B).

(3) Pre-PCR manipulations: Four steps of end repair, A-tailing, adaptor ligation, and size
selection were performed as described in Additional file 1: Notes.

(4) PCR: To amplify the junction between the genome and the viral insert, I used nested-
splinkerette PCR (a variant of ligation-mediated PCR[80, 81] (Figure 36).

I confirmed that the technique specifically amplifies HTLV-1 integration sites; since there was no
non-specific amplification neither from human endogenous retroviruses nor from an exogenous
retrovirus such as HIV (Figure 38).

Information on oligonucleotides, including adaptors and primers, and the LTR and HTLV-1
reference sequences [82] are provided in Table 4. The final PCR products were sequenced
using the HiSeq 2000 platform (Results-section-1-A). Data from Samples of results-section-1-B
and -C were obtained by HiSeq 2500 platform.

Wet experiments were performed according the following protocols, and compatible with
Illumina. Following Abbreviations were used:

Catalog Number: #; Reaction: rxn; and Milli-Q water: MQ

DNA fragmentation

Shear starting DNA fragments using following equipments and operation settings.

Equipments: Covaris™ S220 System (Applied Biosystems ®) #4465653.

Micro Tube (6×16mm) Round bottom glass tube, AFA fiber with Snap-Cap, Covaris #520045.

Sample: 10g DNA in 100l MQ. Sonication conditions are similar to Gillet et al.[18] [18].

Set the following operation settings for Covaris:

Cycle 1 Cycle 2

Duty cycle 20% 5%

Intensity 5 3

Cycles per burst 200 200

Time 5 sec 90 sec

Temperature 6-8°C 6-8°C
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Check the size of fragments by Agilent 2100 Bioanalyzer Instruments- Agilent DNA 7500 Kit
according to the instructions of manufacturer. This product should represent a size range of
300-700 bp (Figure 10B).

End repair and 5’-phosphorylation (for 1 rxn)

End repair converts 3’- and 5’- protruding ends of DNA fragments to blunt ends.

T4 DNA polymerase fills in the 5’overhangs to form blunt ends .It has 5’3’polymerase activity
and 3’5’exonuclease activity, and does not have any 5’3’exonuclease function.

Klenow enzyme removes 3’overhangs with a 3’5’exonuclease activity. It does not have any
5’3’exonuclease activity.

T4 polynucleotide kinase catalyses the transfer of gamma-phosphate from ATP to 5’-OH
group of single/double strand DNAs/RNAs. This enzyme phosphorylates the fragments at 5’-end,
and makes them ready for ligation reaction.

Set up the following end repair reaction.

Component l per tube Information

Sample 100 The product of Sonication

MQ 43

T4 DNA polymerase (5U/l) 3 Takara (#2040A)

10x DNA polymerase buffer 20 Takara (#2040A)

ATP (10 mM) 20 Takara (#4041)

dNTP mix (25 mM) 8 Invitrogen (#10297-018)

Klenow enzyme (5U/l) 1 Takara (#2140A)

T4 polynucleotide kinase (10U/l) 5 NEB (#M0201L)

Total 200 Incubate at 20°C for 30 min.

Clean up with PCR purification kit (Qiagen #28104) and elute in 67l MQ.
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A-tailing (for 1X rxn)

Klenow fragment exo- is the large fragment of DNA polymerase-I with a 5’3’ polymerase
activity without any 3’5’exonuclease activity. This enzyme leaves a single base 3’-overhang.
Set up the following reaction:

Component l per tube Information

Sample 67 The product of end repair

NEB buffer 2 10

dATP (1 mM) 20 Takara (#4026)

klenow fragment exo- (15U) 3 NEB (#M0212S)

Total 100 Incubate at 37°C for 30 min

Clean up with Qiaquick PCR purification kit (Qiagen #28104), and elute in 60l MQ.

Adaptor ligation

Adaptors were designed compatible with Illumina (Figure 36). Adaptor mixture was prepared as
described previously [81]. The sequences of adaptors are provided in Table 4. Split the product
of A-tailing into 2 tubes of 30l then set up the following reaction in a 500 l thin-layer PCR tube.

Component l per tube Information

Sample 30 The product of A-tailing

Adaptor mix (25 M) 4 HPLC purified oligonucleotides

T4 DNA ligase buffer (10x) 5 NEB (#M1801)

T4 DNA ligase enzyme (3U/l) 5 NEB (#M1801)

MQ 6

Total 50 Incubate at 20°C for 2 hours

Clean up with MiniElute PCR purification kit (Qiagen #28004), and elute in 20l MQ.

Size selection

Size selection is a necessary sample preparation step to remove adaptors carried over from the
ligation reaction. Carried over adaptors work as PCR primers, thus interferes the tag data, and
lead to a final tag distribution without any sign of PCR amplification (data not shown).
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Perform following size selection steps to remove carried over adaptors:

 Prepare a polyacrylamide gel (10% TBE PAGE: 2 mm thick). Pre run 100 volt for 15 min
 Load 100 bp DNA ladder and 20l of samples in the wells.
 Run 160 volt for 60 min
 Stain with Ethidium bromide (EtBr) (100 ml 0.5x TBE + 5l EtBr) for 10 min.
 Cut the gel from 200-bp to 1000-bp.
 Slice the gel fragment and inset into a 1.5 ml tube which has a pore at the bottom.
 Centrifuge at 12000 rpm for 8 min.
 Add 700l of 1x LoTE buffer and centrifuge at 12000 rpm for 2 min.
 Add 1x LoTE buffer up to 2 ml, and Incubate at 65°C for 15 min in a water bath.
 Apply on the Colum (Costar Spin-X centrifuge TUBE Filters 0.22m pore CA membrane,

#8160).
 Use Millipore Amicon Ultra Centrifugal Filters, 0.5 ml, 100K # UFC 510024 to purify and

concentrate (repeat 4 times, each time 500l supernatant).
 Wash the filter twice with 500 l MQ.
 End up with purified DNA in 20 l MQ.

PCR

Although inverse-PCR has been a widely used approach for isolating integration sites, it is
relatively inefficient when compared with other PCR-based approaches. It has been reported
that splinkerette PCR has become the most widely accepted technique for the amplification of
viral and transposon insertion sites [83, 84]. I used a nested-splinkerette PCR to amplify the
junction between the human genome and the HTLV-1 insertion (Figure 36). Information on the
sequence of primers is available in Table 4. Perform external and nested PCR as described
below

External PCR

Component l per tube Information

Template DNA 20 The product of size selection

Primer F1 (10 M) 2

Primer R1 (10M) 2

10x buffer I 5

Accuprime taq high fidelity (5U/l) 0.2 Invitrogen (#12346-094)

MQ 20.8

Total 50
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Set the ramping of thermo cycler to 1.9°C /sec.

PCR conditions Temperature Time Cycling

Initial denaturation 94°C 5 min 1 cycle

Denaturation 94°C 50 sec 25 cycles

Combined annealing & extension 68°C 3 min 25 cycles

Final extension 68°C 10 min 1 cycle

Hold @ 4°C

Mix PCR products of the same sample 50+50+50l total: 15l.

Clean up with Qiaquick PCR purification kit (Qiagen #28104), and elute in 150l MQ.

*(optional) Use 1 µl of 10-fold diluted the external PCR for nested PCR.

Nested PCR

Component l per
tube

Information

DNA 1 *Input from product of external PCR

Primer P1F2 (10M) 2

Primer NFCB (10M) 2

10x buffer I 5

Accuprime taq high fidelity(5U/l) 0.2 Invitrogen (#12346-094)

MQ 39.8

Total 50

Set the ramping of thermo cycler to 1.9°C /sec.

PCR conditions Temperature Time Cycling

Initial denaturation 94°C 5 min 1 cycle

Denaturation 94°C 50 sec 30 cycles

Combined annealing & extension 68°C 3 min 30 cycles

Final extension 68°C 10 min 1 cycle

Hold @ 4°C

Clean up with Qiaquick PCR purification kit (Qiagen #28104), and elute in 50l MQ.
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Check the size distribution and concentration of PCR products by Agilent 2100 Bioanalyzer 

Instruments using Agilent DNA 7500 Kit according to the instructions of manufacturer, and 

conduct sequencing by Illumina HiSeq platform. 

 

Additional supporting protocols:  

Restriction enzyme digestion, adaptor ligation, external PCR, nested PCR, and southern blotting 

Restriction enzyme digestion 

Set up following reaction: 

Incubate at 37℃ overnight (12-16h). Heat inactivate the digested DNA at 65℃ for 20 minutes. 

 

Adaptor Ligation 

The sequence of adaptors: 

Long-strand adaptor (61nt) 

CGAAGAGTAACCGTTGCTAGGAGAGACCGTGGCTGAATGAGACTGGTGTCGACACTAGTG

G 

Short-strand adaptor (48nt) 

GATCCCACTAGTGTCGACACCAGTCTCTAATTTTTTTTTTCAAAAAAA 

 Contains hairpin and GATC 5' overhang 

‘Long-strand adaptor ‘and’ Short-strand adaptor’ need to be purified by HPLC.  

 

 

 

 

 

 

Component μl per tube   

Genomic DNA 10 2 g 

Sau3A1 enzyme (5U/l) 4 10 units 

10XNEB buffer1.1 4  

MQ 22  

Final volume 40  
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Adaptor ligation reaction

Component μl per tube

DNA 6 Sau3AI-digested product (300ng)

Adaptor mix (25 μM) 1 HPLC purified oligonucleotides

T4 DNA-ligase (20 U μl) 0.5 NEB (#M1801)

10× T4 DNA-ligase buffer 4 NEB (#M1801)

MQ 28

Final volume 40

Incubate the ligation reaction at 20 °C for 2 hours.

Clean up with PCR purification kit (Qiagen #28104) and elute in 50l MQ.

External PCR

Component l per tube Information

Template DNA 20 The product of ligation

Primer F1 (10M) 2

Primer R1 (10M) 2

10x buffer I 5

Accuprime taq high fidelity (5U/l) 0.2 Invitrogen (#12346-094)

MQ 20.8

Total 50

Set the ramping of thermo cycler to 1.9°C /sec.

PCR conditions Temperature Time Cycling

Initial denaturation 94°C 5 min 1 cycle

Denaturation 94°C 50 sec 30 cycles

Combined annealing & extension 68°C 3 min 30 cycles

Final extension 68°C 10 min 1 cycle

Hold @ 4°C

Clean up with Qiaquick PCR purification kit (Qiagen #28104), and elute in 50l MQ.

*(optional) Use 1 µl of 10-fold diluted the external PCR for nested PCR.
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Nested PCR

Component l per
tube

Information

DNA 1 *Input from product of external PCR

Primer F2 (10M) 2

Primer R2 (10M) 2

10x buffer I 5

Accuprime taq high fidelity(5U/l) 0.2 Invitrogen (#12346-094)

MQ 39.8

Total 50

Set the ramping of thermo cycler to 1.9°C /sec.

PCR conditions Temperature Time Cycling

Initial denaturation 94°C 5 min 1 cycle

Denaturation 94°C 50 sec 30 cycles

Combined annealing & extension 68°C 3 min 30 cycles

Final extension 68°C 10 min 1 cycle

Hold @ 4°C

PCR-southern

I conducted a PCR-southern as described followings.

Sample preparation:

Digest 2g of gDNA by Sau3AI restriction enzyme according to aforementioned protocol.

Perform adaptor ligation as described above. Amplify the ligation product by 30 cycles of an
external PCR using LTR-specific (F1) and adaptor-specific (R1) primers.

F1:  TACCGGCGACTCCGTTGGCT

R1:  CGAAGAGTAACCGTTGCTAGGAGAGACC

Electrophorese the PCR products on a 3% TAE agarose gel, and then transfer on a nylon
membrane (Biodyne® Nylon Transfer Membranes (B) of Pall cooperation) for 6 hours. Wash the
membrane by 2x Saline Sodium Citrate (SSC) buffer on a shaker at room temperature for 10
min.



80

Prepare following probes, and then label them using TaKaRa BcaBEST Labeling Kit (cat No.
6046) according to the manufacturer’s instructions.

[α-32P] dCTP, 0.250 mCi (NEG-513H) was purchased from Perkin Elmer.

LTR-specific (75-bp)

TGTGTACTAAATTTCTCTCCTGAGAGTGCTATAGGATGGGCTGTCGCTGGCTCCGAGCCAA
CGGAGTCGCCGGTA

Blue clone-specific (chr-x) probe (171-bp)

GGTGAGATTGCTTTCTTGTAGGCAGTATATAGTGGAGTGATGGTTTTTTTTGTTGTTGTCCA
TTTAGCCAGTCTATATATTTTAAGTGGAAAGTTTAATTCATTTATATTCAAAATCATAATTGAT
ATGTGAATATTTATTCCTGTCATTTTACTAGTTGATTTCTGGTGG

Red clone-specific (chr-14) probe (196-bp)

GCTCACAGTATTAGAGTGGGTTACATTTTAAGTAGAAAAACATTTGGTTATATCATTGTCCTT
ATAGCATGATTCTGACTTATTTGCATAAACAAATATTTATGTTCTTGTTTATGTATTTTTGTAA
AACAATATCTATAGGAAAAGTAGGCCTATCCTATAAACCCCCGGAAGGGAAGGTTGATTCA
GACACAGT

Pre-hybridize the membrane at 65°C for 12 hours and hybridize it at 65°C for 12 hours (on a
rotator).

Use 2x10^6 cpm of the labeled probes for hybridization.

Wash the hybridized membrane as followings.

All buffers must contain 0.1% SDS.

2x SSC: at 65°C, 10 min, repeat 3 times

0.5x SSC: at 65°C, 10 min, repeat 3 times

0.2x SSC: at 65 °C, on a shaker water bath for 30 min.

0.1x SSC: at 65°C, on a shaker water bath for 30 min.

Expose the membrane on Carestream Health X-OMAT AR (XAR) Autoradiography Film
(KODAK 1651454) for about 3-4 hours. Process the exposed film using FPM 800A, Fuji Film
instrument.
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Figure 36 . Outline of the library preparation for sequencing
(A) Design of primers and the hairpin adaptors leads to specific amplification from
integration sites. F1 is the LTR-specific primer with a sequence complementary to the
bottom strand of the target DNA. R1 is the adaptor-specific primer with a sequence
identical to that of the adaptor. This primer can only undergo amplification until the
second cycle of PCR, when the complementary strand is produced by amplification from
the F1 primer. After amplification of the target region in external PCR, 1 µl of this product
is used as the starting material for nested PCR. Alternatively, the external PCR product
is diluted 10-fold, and 1 µl is used for nested PCR.
(B) The final product, ready for sequencing, includes the following regions:
FCB = flow cell binding sequence: 3’-/5’-
Read 1: compatible with the read-1 sequencing primer (5’-read)
Read 2: compatible with the read-2 sequencing primer (8-bp tag read)
Read 3: compatible with the read-3 sequencing primer (3’-read)
5N: 5-bp random nucleotides
MB: 5-bp known multiplexing barcodes including: [barcode 1: ACAGT], [barcode 2:
GGCTA], [barcode 3: TTACG], and [barcode 4: GCTAC]
Tag: 8-bp randomly generated nucleotides
Amplified target region: Fragments, amplified from 5’-LTR or 3’-LTR, harbor a portion of
HTLV-1 genome or the flanking human genome, respectively. Subsequent in silico
analysis of sequencing data discriminates the flanking human genome from HTLV-1
genome (see Figure 6).
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1. 100-bp DNA ladder
2. U1
3. OM-10
4. ACH2
5. Normal PBMC
6. TL-Om1

7. U1
8. OM-10
9. ACH2
10. Normal PBMC
11. TL-Om1
12. 100-bp DNA ladder
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Figure 38.
Checking the specificity of technique for isolation of HTLV-1 integration sites by conventional
nested- splinkerette PCR using positive and negative controls
The specificity of method was examined by conventional nested-splinkerette PCR. I analyzed 3 cell
lines from HIV (U1, OM10.1 and ACH-2) as a control for exogenous retroviruses. Neither bands nor
any smear-like pattern were detected in any of them. gDNA of normal PBMC and TL-Om1 were used
as negative and positive controls respectively.
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Table-4: required oligo nucleotides and sequencing information
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