博士論文

重合性蛋白質の設計に基づく
機能性蛋白質高次構造体の創製

松長 遼

目次

第一章	序詣		
1.1.	自己	2.組織化分子としての蛋白質	
1.2.	生物	7材料としての蛋白質	
1.3.	人口	_蛋白質線維	6
1.4.	人口	〔蛋白質高次構造体	
1.5.	蛋É	日質を構成成分として用いるヒドロゲル	
1.6.	本研	Ŧ究の方針	
1.7.	化膿レンサ球菌の線毛		
1.8.	"分子間"自発的イソペプチド結合形成		
1.9.	分子	- 設計戦略および研究目的	11
第二章	実騎	美手法	
2.1.	本章	重の目的	
2.2.	発現	見ベクターの構築	
2.3.	発現	見および精製	
2.3.	1.	PS およびその誘導体と GFP の細胞質発現と精製	
2.3.2.		Isopeptag 含有ペプチドの発現精製	
2.3.	3.	GST-E3 の発現精製	
2.3.	4.	C-Cpro の発現精製	
2.3.	5.	PelB-PS、Exl-PS、Exl-K3-PS、Exl-PS-E3、TorA-PSの発現精製.	32
2.4.	重合	トサンプル調製	
2.5.	SDS	S ポリアクリルアミドゲル電気泳動(SDS-PAGE)	
2.6.	Wes	stern blotting	
2.7.	Asy	mmetric flow field flow fractionation (AF4)	
2.7.	1.	原理	
2.7.	2.	実験方法	
2.8.	示差	ē走査熱量測定(Differential scanning calorimetry; DSC)	
2.8.	1.	原理	
2.8.	2.	実験方法	
2.9.	円偏	ā光二色性(Circular dichroism; CD)	
2.9.	1.	原理	
2.9.	2.	実験方法	
2.10.	厉	頁子間力顕微鏡(Atomic force microscopy; AFM)	
2.10).1.	原理	
2.10).2.	実験方法	

2.11.	蛍光分析	36
2.12.	表面プラズモン共鳴法(Surface plasmon resonance; SPR)	37
2.12	2.1. 原理	37
2.12	2.2. 実験方法	37
2.13.	C-Cpro 修飾ポリアクリルアミドゲルの作製	37
第三章	Protein shackle の基礎的分子設計および物性解析	39
3.1.	本章の目的	40
3.2.	Protein shackle 設計戦略概要	40
3.3.	ジスルフィド結合による蓋の固定	41
3.4.	大腸菌細胞質発現および精製	42
3.5.	酸化還元環境による反応制御	43
3.6.	反応の pH および酸化還元剤依存性	44
3.7.	反応の経時変化	45
3.8.	分子量分布	46
3.9.	二次構造と熱安定性	46
3.10.	ポリマーの形態	48
3.11.	本章のまとめ	49
第四章	Protein shackle の発現方法検討	50
4.1.	本章の目的	51
4.2.	発現用大腸菌株の検討	51
4.3.	重合阻害蛋白質の共発現	52
4.4.	培地上清への発現の検討	53
4.4.	1. Sec 経路を用いた発現	53
4.4.	2. Tat 経路を用いた発現	57
4.5.	本章のまとめ	59
第五章	Protein shackle サブユニット間界面が重合反応機構と形態に与える影響の解析	60
5.1.	本章の目的	61
5.2.	結晶構造における Spy0128 サブユニット間界面	61
5.3.	変異体の二次構造	62
5.4.	変異体の重合反応速度	62
5.5.	Isopeptag 含有ペプチド存在下における重合反応速度	62
5.6.	酸化環境における PS モノマーの分子状態	64
5.7.	変異体の熱安定性	65
5.8.	変異体ポリマーの形態	67
5.9.	本章のまとめ	68

第六章	機能性高次構造体の構築	69	
6.1.	本章の目的	70	
6.2.	Protein shackle の N 末端への緑色蛍光蛋白質の融合	70	
6.3.	分子認識性ペプチドの重合による結合能の向上	71	
6.4.	ポリアクリルアミドゲルへの Protein shackle ポリマーの固定化	73	
6.5.	本章のまとめ	75	
第七章	結論	76	
参考文南	参考文献		
謝辞	射辞		

第一章

1.1. 自己組織化分子としての蛋白質

蛋白質はポリペプチド鎖により構成される。蛋白質が機能性分子としてはたらくために は、この鎖を組織化することが必要である。すなわち、1本のポリペプチド鎖が折りたたま れる「フォールディング」、複数の折りたたまれたサブユニットが集まって構造体を形成す る「オリゴマー形成」等を経ることで蛋白質は種々の機能を獲得する(図1)。

蛋白質のフォールディングには、シャペロンとよばれる折りたたみ補助分子が必要にな ることもある。しかしながらアンフィンセンのドグマとして知られるように、基本的にポ リペプチド鎖はアミノ酸配列から一意的に、自発的に熱力学的に安定な構造へと折りたた まれる。この折りたたまれた構造はきわめて精緻であり、X線結晶構造解析や NMR により 明らかにされてきたように隣接する原子同士は Å オーダーの関係性で配置される。無数の 局所的な相互作用により、全体構造が規定される。このようにしてできた蛋白質構造はそ の配列により多様性に富んでおり、蛋白質の特徴である「特異性」を生み出す要因となっ ている。

図 1 ヘモグロビンの自己組織化 (PDB: 1FDH)

1.2. 生物材料としての蛋白質

蛋白質は生命活動の基礎となる多機能性分子である。生体反応を触媒する酵素や異物を 認識して免疫反応を誘起する抗体、巧みな構造変化によって運動を生み出す収縮蛋白質な ど多種多能な役割を担った蛋白質が生体中で活躍している。

そのなかで、力学的な強靭性をもたらす生物材料を担う蛋白質も存在する。たとえば、 ヒトの毛髪では、酸型と塩基型の 2 種類のケラチン蛋白質が会合を重ねてケラチン繊維と なり^{1,2}、デスモプラキン等の細胞接着蛋白質と結合する³。さらに KAP とよばれる蛋白質 群がその周囲を取り囲み³、ジスルフィド結合やイソペプチド結合によって各蛋白質どうし が架橋することで強靭な繊維である毛髪が形成される。また、ザリガニの外骨格は有機物 質であるキチンと無機物質である炭酸カルシウムが層状に積み重なって構成されているが、 その界面には蛋白質が存在しキチン繊維と結合して炭酸カルシウムの結晶成長を制御する 4.5ことで、両者の長所を兼ね備えた強靭で軽量な有機無機ハイブリッド材料をつくり出し ている。

このように蛋白質は生物材料中で多様な役割を担っている。したがって、生物を模倣し て蛋白質を材料として利用すれば、蛋白質の有する特異な機能を応用したユニークな材料 を創製することが可能になると期待できる。

1.3. 人工蛋白質線維

近年、蛋白質の有する自己組織化能や特異的分子認識能を利用して人工的に高次構造体 を作製する試みが盛んになされている。このような方法のメリットは、特別な装置を必要 とせずに、均一で精緻な構造体を得られる点である。

このうち最も単純な形態は一次元構造体、すなわち線維である。

材料創製を指向した自己組織化蛋白質線維の研究は、単純な数+アミノ酸残基からなる ペプチドの分野において最も進んでいる 6。この分野は大きく分けると、アミロイド形成ペ プチド、αヘリックス形成ペプチド、両親媒性ペプチド、コラーゲン様ペプチド等に分けら れる。このような線維に対して各種修飾を施すことで、線維を機能化させることができる。

その一例が Woolfson らの開発した SAF とよばれるペプチド線維である ⁷⁻¹⁰。SAF は 2 種類の約 30 残基のペプチドから構成される。このペプチドは両者を混合することではじめ て、コイルドコイル構造からなる直径約 50 nm、長さ数十 µm の線維を形成する。この線 維に特異的に非共有結合するようなペプチドタグを用いたり¹¹、ペプチド末端にアジドを修 飾することでクリックケミストリーを用いたり¹² することで、機能性分子や金属ナノ粒子 を結合することが可能である。

しかしながらペプチド由来の線維には固有の問題点が存在する。このような線維は単純 な二次構造の繰り返しであり、一般の蛋白質のような複雑な三次構造をとり得ない。それ ゆえに線維自体に機能を持たせたり、特異的な分子認識場として利用したりすることは困 難である。また、ペプチドよりも修飾した分子の方が大きく嵩高い場合、修飾により線維 構造が不安定になりうる。さらに、修飾可能サイトが過剰であるため、周期的な分子配置 は不可能である。

上記のような問題点のない蛋白質線維を創製するためには、明確な三次構造を有するモ ノマーユニットを重合することが必要である。これには二つの方法論が存在する。一つは 天然の線維形成蛋白質を利用する方法、もう一つは線維を形成するような蛋白質を人工的 に設計する方法である。

前者の例としては、Ostrov らによって報告された大腸菌の細胞質内線維蛋白質を利用した修飾線維¹³が挙げられる。真核生物におけるチューブリンのホモログである FtsZ は細胞 分裂に必要とされ、GTP 存在下で in vitro でも重合することが知られている¹⁴。そこで Ostrov らは FtsZ に金属結合ペプチドなどを遺伝子融合することにより、周期的に機能性ペ プチドが並んだ線維を作製した。また、Lu らは大腸菌に、機能性ペプチドを融合した組換 え Curli線毛蛋白質の発現を制御するリボレギュレーターを導入し、複数種類の組換え線毛 蛋白質の発現量を誘導物質により制御し、ブロック共重合体様の人工線毛を大腸菌により 産生させることに成功した¹⁵。

後者の例としては、林崎らによって開発された Nanolego¹⁶が挙げられる。これは、超好 熱古細菌の蛋白質相互作用の系統的解析の末に選ばれた相互作用する蛋白質ペアを「ナノ レゴ素子」とし、それらを組み合わせた蛋白質を設計することで自己組織化構造体を構築 するという戦略のもとに開発された。その結果、混合することで結合を形成して組織化す る蛋白質ペアの取得に成功した。

化学修飾によって重合性蛋白質を設計する方法も考案されている。林らのグループはへ ム蛋白質に化学修飾を施すことによって線状構造体を形成する分子を開発¹⁷⁻¹⁹している。

また、プロテアーゼによる切断をトリガーとして、N 末端と別のサブユニットの C 末端 が結合して重合するような蛋白質も開発されている²⁰。

1.4. 人工蛋白質高次構造体

二次元構造体、すなわち層状構造体の報告例は線維に比べて少ない。そのうちの数例を 紹介する。Mao らは、線毛を大腸菌から切り離して精製し、その溶液にピメリン酸やヘキ サメチレンジアミン等の誘導物質を添加することで、線毛がゆっくりと集合して誘導物質 に応じた層状の構造体を形成することを発見した²¹。Tezcan らは金属イオン結合サイトを 蛋白質の適切な位置に設けることで、金属イオンの結合が蛋白質間の結合を促し層状構造 体を形成されることを報告した²²。金属イオンと設計蛋白質の混合割合やpH を変化させる ことで、構造体が結晶状構造やナノチューブ状構造に変化することが明らかになり、さら にこれらの高次構造体は熱や有機溶媒にも安定であることが示された²³。また、Noble らは、 対称性を有する蛋白質を組み合わせて適切なリンカーにより融合することで、設計通りの 一次元、二次元集合体が実際に得られることを報告した²⁴。

続いて、三次元蛋白質集合体について述べる。近年、精緻な構造を有する三次元蛋白質 集合体についての報告が相次いでなされている。Baker らはコンピュータを利用した設計 により、球状や立方体状の構造体を二種類のサブユニットから正確に作製できることを報 告した²⁵。Woolfson らはコイルドコイルを形成するペプチドを適切に配置して設計し、か ご状構造体を形成することに成功した²⁶。また、Yeates らは天然の二種類の多量体形成蛋 白質をリンカーで繋ぎ合わせることにより、かご状の中空立方体構造を作製した²⁷。

現状では、一部を除き新規な構造体の創製についての報告に留まり、作製した構造体に 特異な機能を付与した例は多くない。

1.5. 蛋白質を構成成分として用いるヒドロゲル

水溶液中で高分子が広範なネットワーク構造を形成すると、高分子網目中に水が捕捉さ れてヒドロゲルが生じる。蛋白質から構成されるヒドロゲルとしては、卑近な例として豆 腐やゆでたまごが挙げられる。これらは蛋白質が変性し会合して生じる凝集体中に水が捕 捉されることで形成される。

近年、細胞培養足場やバイオセンサー等への応用を目指し、ヒドロゲルネットワーク中 に蛋白質を含有させて機能性材料を創製する研究が盛んに行われている。

宮田らは、抗体と抗原を高分子鎖中に固定化し架橋点としたヒドロゲルを作製した²⁸。こ のゲルに抗原を含む溶液を浸すと、高分子鎖中に固定化された抗原と競合してフリーの抗 原が抗体に結合することで架橋構造が失われ、体積変化が生じることが示された。また、 Murphy らは、高分子主鎖構造中にカルモジュリンを導入することによって、リガンド依存 的に大きく体積が変化するヒドロゲルを作製した²⁹。カルモジュリンはカルシウムイオンに 結合すると伸長構造から収縮構造へと大きく構造変化するため、ヒドロゲルもカルシウム イオンに応答して体積が変化する。

蛋白質の特異的な相互作用を利用した二液混合型ヒドロゲルの創製についても数多く報告されている 30-34。Li らはコイルドコイルを形成するペプチド対をそれぞれポリペプチド鎖の複数個所に導入した二種の蛋白質を用意し、それらを混合することでヒドロゲルを構築した 30。また、Chen らは強固な三量体を形成する蛋白質の末端に、相互作用する蛋白質とそのペプチドリガンドをそれぞれ融合した蛋白質対を用意し、それらを混合することでヒドロゲルを構築した 35。なお、この設計蛋白質中にはペプチドリガンドに結合する部位も設けられており、異種蛋白質の固定も可能であることも示された。

Tang らは、コイルドコイルの形成による架橋に加え、N 末端と C 末端に導入した Cys 間の分子間架橋により、硬さがほとんど変化せずに強靭さが向上したヒドロゲルを構築し た 36。分子鎖が伸長したことにより絡み合いの効果が増大したために強靭性が向上したと考 察されている。また、Li らは、あえてアンフォールディングしやすい不安定なドメインを 直列につないだ蛋白質を化学架橋させることで強靭なヒドロゲルを作製した 37。ゲルを引っ 張った際に力を受ける部位をより分散させて破断しづらくなるため、強靭性が生じること が示された。

1.6. 本研究の方針

以上のように現在までに、ナノ材料からマクロ材料に至るまで蛋白質の高次構造体創製 に関する多種多様な研究がなされており、それぞれの系に異なる特性が存在する。このよ うな背景のもと、本研究では独自の特性をもつ蛋白質高次構造体の創製を目指した。具体 的に、以下に示すような設計方針をとることにした。

▶ 安定な三次構造を有する蛋白質を重合させることで線維を作製する。

- 凝集しにくく安定な線維を作製するため、生体線維の構成要素となる蛋白質を基にした設計を行う。
- ▶ 反応の制御を可能にする。
- 遺伝子融合による機能化が可能で、さらなる高次構造体、機能性構造体へ応用可能な 系とする。

以上の方針に基づき、我々はレンサ球菌の線毛蛋白質に着目した。

1.7. 化膿レンサ球菌の線毛

化膿レンサ球菌 *Streptococcus pyogenes* (Group A streptococcus; GAS) は、さまざまな 疾患を引き起こすグラム陽性の病原菌である^{38,39}。GAS を含むグラム陽性菌の幅広い種に は線毛とよばれる毛髪様の線維が存在する⁴⁰。GAS の線毛は、宿主細胞への接触を媒介す る役割をもつ可能性が強く示唆され^{41,42}、バイオフィルム形成とも関連がある⁴²ことも知 られている。

グラム陽性菌の線毛の主骨格は蛋白質の複数のサブユニット(Major pilin)から構成され、 これに1つか2つのサブユニット(Minor pilin)が結合する⁴³。Pilin どうしが共有結合して 線毛を形成し、形成された線毛は細胞壁のペプチドグリカンに共有結合される^{44,45}。

Pilin は、N 末端のシグナル配列や C 末端の細胞壁選別シグナル(Cell wall sorting signal; CWSS)などのグラム陽性菌の表面蛋白質に典型的な特徴を有する。細胞質で合成されたポ リペプチドは細胞膜を Sec 経路により通過し、それと共に N 末端シグナルペプチドが除去 される。次に、House-keeping sortase とよばれる膜結合トランスペプチターゼが CWSS

図 2: Spy0128 結晶構造 (PDB: 3B2M)

のLPXTGモチーフを認識して、細胞壁のペプチドグリカンに繋がれる⁴⁵。

グラム陽性菌における線毛構成蛋白質の重合には、専用の Sortase ファミリートランスペ プチターゼが必要である。この Sortase は、Pilin に存在する CWSS モチーフの Thr と、 隣接する Pilin サブユニットに存在する特定の Lys のε-アミノ基とのペプチド結合の形成を 触媒する ^{46,47}。

GAS 線毛を構成する Pilin は、分子内イソペプチド結合とよばれる特殊な架橋構造を有 する。これは Kang らが M1 株の Major pilin である Spy0128 の結晶構造中に最初に発見 した ⁴⁸ (図 2)。Spy0128 においては N ドメインと C ドメインとよばれる 2 つのドメイン に 1 つずつ存在する。イソペプチド結合はフォールディングの過程で自発的に形成され、 構造の安定化に大きく寄与する。結合は Lys-Asn 間で形成され、結合形成には触媒残基で ある Glu と疎水的環境が必須である。円二色性偏光 (CD) による熱安定性測定によると、 野生型の Spy0128 の *T*m は 85 ℃であるが、片方のイソペプチド結合を持たない変異体で は *T*m が約 30 ℃低下する ⁴⁹。このように大きな熱安定化効果が得られる要因はイソペプチ ド結合の配置にある。N ドメイン、C ドメインはそれぞれイムノグロブリン様のβ型フォー ルドであるが、各ドメインの最初のβストランドと最後のβストランド間をイソペプチド結 合により架橋するため、非常に安定で変性しにくい構造となっている。

1.8. "分子間"自発的イソペプチド結合形成

Howarth らは、分子内イソペプチド結合を形成する、Asn を含む C 末端のβストランド (Isopeptag) と Lys を含む残りの部分で Spy0128 を 2 つに分割し、それぞれを別々に発 現・精製して試験管内で混合すると、野生型の構造を再生するようにして自発的に 2 分子 間で共有結合を形成することを明らかにした ⁵⁰ (以降 Isopeptag システムと表記する)(図 3)。Isopeptag はわずか 16 残基からなるペプチドであるが、広範囲の pH、温度環境にお いて特異的な結合形成能力を有することが明らかにされている。この反応は不可逆で安定 であることから、さまざまな応用が期待されている。

図 3: Spy0128 と Isopeptag システムの模式図

1.9. 分子設計戦略および研究目的

我々は Spy0128 のアミノ酸配列を利用して、Isopeptag システムによる分子間イソペプ チド結合により自発的に重合し数珠状の線維を形成する蛋白質を設計することにした。こ の戦略を採用する利点として以下のような点が挙げられる。

- ▶ 非常に安定な共有結合による架橋のため、力学的に安定な線維を形成できる。
- ➢ Isopeptag システムの相互作用場が非常に小さいため、相互作用および反応の制御が容易である可能性が高い。
- ▶ 化学修飾の必要がない。
- ▶ Spy0128 が非常に安定な三次構造を有する。
- ➢ Spy0128 は会合構造を形成しないような生体線維を由来としているため、ポリマーが 凝集しにくい可能性が高い。
- 構造的な観点から考えて、末端に遺伝子レベルで機能性蛋白質を融合してもサブユニ ット間相互作用および線維物性に大きく影響を与えない可能性が高い。

この戦略により以下の研究目的を達成することを目指した。

- ▶ 環境に依存した重合能を有する蛋白質の設計を行う。
- 発現・精製から反応条件の最適化までを総合的に行い、反応機構の正確な理解に基づき厳密に反応を制御できるような系の構築を目指す。
- 形成される線維について形態的および熱力学的性質の評価を行い、材料としての有用 性を多角的に検証する。
- ▶ 機能性蛋白質の融合による機能性高次構造体を創製する。

第二章

実験手法

2.1. 本章の目的

本研究で用いた実験材料および実験手法について詳しく記す。高度な測定・解析手法についてはその原理を簡潔に説明する。

2.2. 発現ベクターの構築

化膿レンサ球菌 M1 株由来 Spy0128 をコードする遺伝子は、大腸菌発現用にコドンの最 適化を行ったうえ、タカラバイオ社に全合成を依頼した。

緑色蛍光蛋白質 GFP の遺伝子は pWaldo-GFPe ベクター⁵¹から得た。

各発現ベクターは、KOD -Plus- polymerase (TOYOBO) や KOD -Plus- Neo polymerase (TOYOBO) を用いて PCR 法により増幅した遺伝子を各ベクターにライゲーションする 方法、もしくは KOD -Plus- Mutagenesis Kit (TOYOBO) や QuikChange Site-Directed Mutagenesis Kit (Agilent Technologies) を用いた変異導入法により作製した。

以下に各発現ベクターの由来および遺伝子配列、アミノ酸配列を示す。

• PS

ベクター

pColdII (タカラバイオ)

遺伝子配列

<u>アミノ酸配列</u>

MNHKVHHHHHHMENLYFQGTDKDMTITFTNKKDFEVPGGSGGGAKLTVTKNLDLVNSNALIPNTDFT FKIEPDTTVNEDGNKFKGVALNTPMTKVTYTNSDKGGSNTKTAEFDFSEVTFEKPGVYYYKVTEEKI DKVPGVSYDTTSYTVQVHVLWNEEQQKPVATYIVGYKEGSKVPIQFKNSLDSTTLTVKKCVSGTGGD RSKDFNFGLTLKANQYYKASEKVMIEKTTKGGQAPVQTEASIDQLYHFTLKDGESIKVTNLPVGVDY VVTEDDYKSEKYTTNVEVSPQDGAVKNIAGNSTEQETSTDKDMTITFCAK

• E258A

ベクター

pColdII (タカラバイオ)

遺伝子配列

ATGAATCACAAAGTGCATCATCATCATCATCATCATATGGAAAAACCTGTATTTCCAGGGCACCGATAAAG ATATGACCATTACCTTTACCAATAAAAAAGATTTCGAAGTTCCGGGTGGCTCTGGTGGCGGTGCAAA ACTGACCGTTACCAAAAATCTGGATCTGGTTAATAGCAATGCCCTGATTCCGAATACCGATTTTACC TTTAAAATTGAACCGGATACCACCGTGAATGAAGATGGCAATAAATTTAAAGGCGTGGCACTGAATA CCCCGATGACCAAAGTTACCTATACCAATAGCGATAAAGGTGGCAGCAATACCAAAACCGCAGAATA TGATTTTAGCGAAGTGACCTTTGAAAAACCGGGTGTGTATTACTATAAAGTGACCGAAGAAAAAATT GATAAAGTTCCGGGTGTGAGCTATGATACCACCAGTTATACCGTTCAGGTTCATGTTCTGTGGAATG AAGAACAGCAGAAACCGGTTGCAACCTATATTGTGGGGTTATAAAGAAGGTAGCAAAGTTCCGATTCA GTTTAAAAATAGCCTGGATAGCACCACCTGACCGTTAAAAAAATGCGTTAGCGGCACCGGTGGTGAT CGTAGCAAAGATTTTAATTTTGGCCTGACCCTGAAAGCCAATCAGTATTACAAAGCCAGCGAGAAAAAAG TGATGATTGAAAAAACCACCAAAGGTGGTCAGGCACCGGTTCAGACCGAAGCATTGATCAGCT GTATCATTTTACCCTGAAAGATGGCGAAAGCATTAAAGTTACCAATCTGCCGGTTGGTGTTGATTAT GTTGTTACCGCAGATGATTATAAAAGCGAAAAATATACCACCAATGTGGAAGTTTCACCGCAGGATG GTGCCGTTAAAAATATTGCAGGTAATAGCACCGAACAGGAAACCAGCAACCGATTGATAGCACCA TACCTTCTGCGCGAAGTAA

アミノ酸配列

MNHKVHHHHHHMENLYFQGTDKDMTITFTNKKDFEVPGGSGGGAKLTVTKNLDLVNSNALIPNTDFT FKIEPDTTVNEDGNKFKGVALNTPMTKVTYTNSDKGGSNTKTAEFDFSEVTFEKPGVYYYKVTEEKI DKVPGVSYDTTSYTVQVHVLWNEEQQKPVATYIVGYKEGSKVPIQFKNSLDSTTLTVKKCVSGTGGD RSKDFNFGLTLKANQYYKASEKVMIEKTTKGGQAPVQTEASIDQLYHFTLKDGESIKVTNLPVGVDY VVTADDYKSEKYTTNVEVSPQDGAVKNIAGNSTEQETSTDKDMTITFCAK

• ΔSS

<u>ベクター</u> pColdII(タカラバイオ)

遺伝子配列

ATGAATCACAAAGTGCATCATCATCATCATCATATGGAAAACCTGTATTTCCAGGGCACCGATAAAG ATATGACCATTACCTTTACCAATAAAAAAGATTTCGAAGTTCCGGGTGGCTCTGGTGGCGGTGCAAA

<u>アミノ酸配列</u>

MNHKVHHHHHHMENLYFQGTDKDMTITFTNKKDFEVPGGSGGGAKLTVTKNLDLVNSNALIPNTDFT FKIEPDTTVNEDGNKFKGVALNTPMTKVTYTNSDKGGSNTKTAEFDFSEVTFEKPGVYYYKVTEEKI DKVPGVSYDTTSYTVQVHVLWNEEQQKPVATYIVGYKEGSKVPIQFKNSLDSTTLTVKKKVSGTGGD RSKDFNFGLTLKANQYYKASEKVMIEKTTKGGQAPVQTEASIDQLYHFTLKDGESIKVTNLPVGVDY VVTEDDYKSEKYTTNVEVSPQDGAVKNIAGNSTEQETSTDKDMTITFTAK

• P108E

ベクター

pColdII (タカラバイオ)

遺伝子配列

GTTGTTACCGAAGATGATTATAAAAGCGAAAAATATACCACCAATGTGGAAGTTTCACCGCAGGATG GTGCCGTTAAAAATATTGCAGGTAATAGCACCGAACAGGAAACCAGCACCGATAAAGATATGACCAT TACCTTCTGCGCGAAGTAA

アミノ酸配列

MNHKVHHHHHHMENLYFQGTDKDMTITFTNKKDFEVPGGSGGGAKLTVTKNLDLVNSNALIPNTDFT FKIEPDTTVNEDGNKFKGVALNTPMTKVTYTNSDKGGSNTKTAEFDFSEVTFEKEGVYYYKVTEEKI DKVPGVSYDTTSYTVQVHVLWNEEQQKPVATYIVGYKEGSKVPIQFKNSLDSTTLTVKKCVSGTGGD RSKDFNFGLTLKANQYYKASEKVMIEKTTKGGQAPVQTEASIDQLYHFTLKDGESIKVTNLPVGVDY VVTEDDYKSEKYTTNVEVSPQDGAVKNIAGNSTEQETSTDKDMTITFCAK

• W141A

ベクター

pColdII (タカラバイオ)

遺伝子配列

アミノ酸配列

MNHKVHHHHHHMENLYFQGTDKDMTITFTNKKDFEVPGGSGGGAKLTVTKNLDLVNSNALIPNTDFT FKIEPDTTVNEDGNKFKGVALNTPMTKVTYTNSDKGGSNTKTAEFDFSEVTFEKPGVYYYKVTEEKI DKVPGVSYDTTSYTVQVHVLANEEQQKPVATYIVGYKEGSKVPIQFKNSLDSTTLTVKKCVSGTGGD RSKDFNFGLTLKANQYYKASEKVMIEKTTKGGQAPVQTEASIDQLYHFTLKDGESIKVTNLPVGVDY VVTEDDYKSEKYTTNVEVSPQDGAVKNIAGNSTEQETSTDKDMTITFCAK

• PS-L

<u>ベクター</u>

pColdII (タカラバイオ)

遺伝子配列

<u>アミノ酸配列</u>

MNHKVHHHHHHMENLYFQGTDKDMTITFTNKKDAEYPYDVPDYAETVVNGAKLTVTKNLDLVNSNAL IPNTDFTFKIEPDTTVNEDGNKFKGVALNTPMTKVTYTNSDKGGSNTKTAEFDFSEVTFEKPGVYYY KVTEEKIDKVPGVSYDTTSYTVQVHVLWNEEQQKPVATYIVGYKEGSKVPIQFKNSLDSTTLTVKKC VSGTGGDRSKDFNFGLTLKANQYYKASEKVMIEKTTKGGQAPVQTEASIDQLYHFTLKDGESIKVTN LPVGVDYVVTEDDYKSEKYTTNVEVSPQDGAVKNIAGNSTEQETSTDKDMTITFCAK

• P108E-L

ベクター

pColdII (タカラバイオ)

遺伝子配列

AAAGTGACCGAAGAAAAAATTGATAAAGTTCCGGGTGTGAGCTATGATACCACCAGTTATACCGTTC AGGTTCATGTTCTGTGGAATGAAGAACAGCAGAAACCGGTTGCAACCTATATTGTGGGTTATAAAGA AGGTAGCAAAGTTCCGATTCAGTTTAAAAATAGCCTGGATAGCACCACCCTGACCGTTAAAAAATGC GTTAGCGGCACCGGTGGTGATCGTAGCAAAGATTTTAATTTTGGCCTGACCCTGAAAGCCAATCAGT ATTACAAAGCCAGCGAAAAAGTGATGATGATAAAAAACCACCAAAGGTGGTCAGGCACCGGTTCAGAC CGAAGCAAGCATTGATCAGCTGTATCATTTTACCCTGAAAGATGGCGAAAGCATTAAAGTTACCAAT CTGCCGGTTGGTGTTGATTATGTTGTTACCGAAGATGATTATAAAAGCGAAAAATATACCACCAATG TGGAAGTTTCACCGCAGGATGGTGCCGTTAAAAATATTGCAGGTAATAGCACCGAACAGGAAACCAG CACCGATAAAGATATGACCATTACCTTCTGCGCGAAGTAA

アミノ酸配列

MNHKVHHHHHHMENLYFQGTDKDMTITFTNKKDAEYPYDVPDYAETVVNGAKLTVTKNLDLVNSNAL IPNTDFTFKIEPDTTVNEDGNKFKGVALNTPMTKVTYTNSDKGGSNTKTAEFDFSEVTFEKEGVYYY KVTEEKIDKVPGVSYDTTSYTVQVHVLWNEEQQKPVATYIVGYKEGSKVPIQFKNSLDSTTLTVKKC VSGTGGDRSKDFNFGLTLKANQYYKASEKVMIEKTTKGGQAPVQTEASIDQLYHFTLKDGESIKVTN LPVGVDYVVTEDDYKSEKYTTNVEVSPQDGAVKNIAGNSTEQETSTDKDMTITFCAK

• W141A-L

ベクター

pColdII (タカラバイオ)

遺伝子配列

<u>アミノ酸配列</u>

MNHKVHHHHHHMENLYFQGTDKDMTITFTNKKDAEYPYDVPDYAETVVNGAKLTVTKNLDLVNSNAL IPNTDFTFKIEPDTTVNEDGNKFKGVALNTPMTKVTYTNSDKGGSNTKTAEFDFSEVTFEKPGVYYY KVTEEKIDKVPGVSYDTTSYTVQVHVLANEEQQKPVATYIVGYKEGSKVPIQFKNSLDSTTLTVKKC VSGTGGDRSKDFNFGLTLKANQYYKASEKVMIEKTTKGGQAPVQTEASIDQLYHFTLKDGESIKVTN LPVGVDYVVTEDDYKSEKYTTNVEVSPQDGAVKNIAGNSTEQETSTDKDMTITFCAK

• CproE258A

ベクター

pRSF-1b (Novagen)

遺伝子配列

アミノ酸配列

MGAKLTVTKNLDLVNSNALIPNTDFTFKIEPDTTVNEDGNKFKGVALNTPMTKVTYTNSDKGGSNTK TAEFDFSEVTFEKPGVYYYKVTEEKIDKVPGVSYDTTSYTVQVHVLWNEEQQKPVATYIVGYKEGSK VPIQFKNSLDSTTLTVKKCVSGTGGDRSKDFNFGLTLKANQYYKASEKVMIEKTTKGGQAPVQTEAS IDQLYHFTLKDGESIKVTNLPVGVDYVVTADDYKSEKYTTNVEVSPQDGAVKNIAGNSTEQETSTDK DMTI

• PelB-PS

<u>ベクター</u> pET28b(Novagen)

遺伝子配列

ATGAAATACCTATTGCCTACGGCAGCCGCTGGATTGTTATTACTCGCGGCCCAGCCGGCGATGGCTA TGCATCATCATCATCATCATATGGAAAACCTGTATTTCCAGGGCACCGATAAAGATATGACCATTAC CTTTACCAATAAAAAAGATTTCGAAGTTCCGGGTGGCTCTGGTGGCGGTGCAAAACTGACCGTTACC AAAAATCTGGATCTGGTTAATAGCAATGCCCTGATTCCGAATACCGATTTTACCTTTAAAATTGAAC CGGATACCACCGTGAATGAAGATGGCAATAAATTTAAAGGCGTGGCACTGAATACCCCGATGACCAA AGTTACCTATACCAATAGCGATAAAGGTGGCAGCAATACCAAAACCGCAGAATTTGATTTTAGCGAA GTGACCTTTGAAAAACCGGGTGTGTATTACTATAAAGTGACCGAAGAAAAAATTGATAAAGTTCCGG GTGTGAGCTATGATACCACCAGTTATACCGTTCAGGTTCATGTTCTGTGGAATGAAGAACAGCAGAA ACCGGTTGCAACCTATATTGTGGGTTATAAAAGAAGGTAGCAAAGTTCCGATTCAGTTTAAAAATAGC CTGGATAGCACCACCCTGACCGTTAAAAAATGCGTTAGCGGCACCGGTGGTGATCGTAGCAAAGATT TTAATTTTGGCCTGACCCTGAAAGCCAATCAGTATTACAAAGCCAGCAGCAAAAAGTGATGATGAAAA AACCACCAAAGGTGGTCAGGCACCGGTTCAGACCGAAGCAATGATCAGCTGTATCATTTACC CTGAAAGATGGCGAAAGCATTAAAGTACCAATCTGCCGGTTGGTGTTGATTATGTTGTTACCGAAG ATGATTATAAAAGCGAAAAATATACCACCAATGTGGAAGTTTCACCGCAGGATGGTGCCGTTAAAAA TATTGCAGGTAATAGCACCGAACAGGAAACCAGCACCGATAAAGATATGACCATTACCTTCTGCGCG AAGTAA

アミノ酸配列(括弧内は発現過程で切断される)

(MKYLLPTAAAGLLLLAAQPAMA)

MHHHHHHMENLYFQGTDKDMTITFTNKKDFEVPGGSGGGAKLTVTKNLDLVNSNALIPNTDFTFKIE PDTTVNEDGNKFKGVALNTPMTKVTYTNSDKGGSNTKTAEFDFSEVTFEKPGVYYYKVTEEKIDKVP GVSYDTTSYTVQVHVLWNEEQQKPVATYIVGYKEGSKVPIQFKNSLDSTTLTVKKCVSGTGGDRSKD FNFGLTLKANQYYKASEKVMIEKTTKGGQAPVQTEASIDQLYHFTLKDGESIKVTNLPVGVDYVVTE DDYKSEKYTTNVEVSPQDGAVKNIAGNSTEQETSTDKDMTITFCAK

• Exl-PS

ベクター

pET28b (Novagen)

遺伝子配列

アミノ酸配列(括弧内は発現過程で切断される)

(MFKFKKKFLVGLTAAFMSISMFSATASA)

AGPHHHHHHMENLYFQGTDKDMTITFTNKKDFEVPGGSGGGGKLTVTKNLDLVNSNALIPNTDFTFK IEPDTTVNEDGNKFKGVALNTPMTKVTYTNSDKGGSNTKTAEFDFSEVTFEKPGVYYYKVTEEKIDK VPGVSYDTTSYTVQVHVLWNEEQQKPVATYIVGYKEGSKVPIQFKNSLDSTTLTVKKCVSGTGGDRS KDFNFGLTLKANQYYKASEKVMIEKTTKGGQAPVQTEASIDQLYHFTLKDGESIKVTNLPVGVDYVV TEDDYKSEKYTTNVEVSPQDGAVKNIAGNSTEQETSTDKDMTITFCAK

• Exl-K3-PS

ベクター

pET28b (Novagen)

遺伝子配列

ATGTTTAAGTTTAAAAAGAAATTCTTAGTGGGATTAACGGCAGCTTTCATGAGTATCAGCATGTTTT CGGCAACCGCCTCTGCAGCTGGTCCACATCATCATCATCATCATCATATGAAGGTTGCTGCGCTGAAGGA AAAAGTGGCGGCTCTGAAAGAGAAGGTAGCCGCACTGAAAGAAGGTGGTTCCGGTGGCACCGATAAA GATATGACCATTACCTTTACCAATAAAAAAGATTTCGAAGTTCCGGGTGGCTCTGGTGGCGGTGCAA AACTGACCGTTACCAAAAATCTGGATCTGGTTAATAGCAATGCCCTGATTCCGAATACCGATTTTAC CTTTAAAATTGAACCGGATACCACCGTGAATGAAGATGGCAATAAATTTAAAGGCGTGGCACTGAAT ACCCCGATGACCAAAGTTACCTATACCAATAGCGATAAAGGTGGCAGCAATACCAAAACCGCAGAAT TTGATTTTAGCGAAGTGACCTTTGAAAAACCGGGTGTGTATTACTATAAAGTGACCGAAGAAAAAAT TGATAAAGTTCCGGGTGTGAGCTATGATACCACCAGTTATACCGTTCAGGTTCATGTTCTGTGGAAT GAAGAACAGCAGAAACCGGTTGCAACCTATATTGTGGGTTATAAAGAAGGTAGCAAAGTTCCGATTC AGTTTAAAAATAGCCTGGATAGCACCACCCTGACCGTTAAAAAATGCGTTAGCGGCACCGGTGGTGA TCGTAGCAAAGATTTTAATTTTGGCCTGACCCTGAAAGCCAATCAGTATTACAAAGCCAGCGAAAAA TGTATCATTTTACCCTGAAAGATGGCGAAAGCATTAAAGTTACCAATCTGCCGGTTGGTGTTGATTA TGTTGTTACCGAAGATGATTATAAAAGCGAAAAATATACCACCAATGTGGAAGTTTCACCGCAGGAT GGTGCCGTTAAAAATATTGCAGGTAATAGCACCGAACAGGAAACCAGCACCGATAAAGATATGACCA TTACCTTCTGCGCGAAGTAA

アミノ酸配列(括弧内は発現過程で切断される)

(MFKFKKKFLVGLTAAFMSISMFSATASA)

AGPHHHHHHMKVAALKEKVAALKEKVAALKEGGSGGTDKDMTITFTNKKDFEVPGGSGGGAKLTVTK NLDLVNSNALIPNTDFTFKIEPDTTVNEDGNKFKGVALNTPMTKVTYTNSDKGGSNTKTAEFDFSEV TFEKPGVYYYKVTEEKIDKVPGVSYDTTSYTVQVHVLWNEEQQKPVATYIVGYKEGSKVPIQFKNSL DSTTLTVKKCVSGTGGDRSKDFNFGLTLKANQYYKASEKVMIEKTTKGGQAPVQTEASIDQLYHFTL KDGESIKVTNLPVGVDYVVTEDDYKSEKYTTNVEVSPQDGAVKNIAGNSTEQETSTDKDMTITFCAK

• Exl-PS-E3

ベクター

pET28b (Novagen)

遺伝子配列

ATGTTTAAGTTTAAAAAGAAATTCTTAGTGGGATTAACGGCAGCTTTCATGAGTATCAGCATGTTTT CGGCAACCGCCTCTGCAGCTGGTCCACATCATCATCATCATCATATGGAAAACCTGTATTTCCAGGG CACCGATAAAGATATGACCATTACCTTTACCAATAAAAAGATTTCGAAGTTCCGGGTGGCTCTGGT GGCGGTGCAAAACTGACCGTTACCAAAAATCTGGATCTGGTTAATAGCAATGCCCTGATTCCGAATA GGCACTGAATACCCCGATGACCAAAGTTACCTATACCAATAGCGATAAAGGTGGCAGCAATACCAAA ACCGCAGAATTTGATTTTAGCGAAGTGACCTTTGAAAAACCGGGTGTGTATTACTATAAAGTGACCG AAGAAAAAATTGATAAAGTTCCGGGTGTGAGCTATGATACCACCAGTTATACCGTTCAGGTTCATGT TCTGTGGAATGAAGAACAGCAGAAACCGGTTGCAACCTATATTGTGGGTTATAAAGAAGGTAGCAAA GTTCCGATTCAGTTTAAAAATAGCCTGGATAGCACCACCCTGACCGTTAAAAAATGCGTTAGCGGCA CCGGTGGTGATCGTAGCAAAGATTTTAATTTTGGCCTGACCCTGAAAGCCAATCAGTATTACAAAGC ATTGATCAGCTGTATCATTTTACCCTGAAAGATGGCGAAAGCATTAAAGTTACCAATCTGCCGGTTG **GTGTTGATTATGTTGTTACCGAAGATGATTATAAAAGCGAAAAATATACCACCAATGTGGAAGTTTC** ACCGCAGGATGGTGCCGTTAAAAATATTGCAGGTAATAGCACCGAACAGGAAACCAGCACCGATAAA GATATGACCATTACCTTCTGCGCGAAGGGTGGTTCCCGGTGGTGAAGTGGCGGCTCTGGAGAAAGAGG TTGCTGCGCTGGAAAAGGAAGTTGCAGCACTGGAAAAATAA

アミノ酸配列(括弧内は発現過程で切断される)

(MFKFKKKFLVGLTAAFMSISMFSATASA)

AGPHHHHHHMENLYFQGTDKDMTITFTNKKDFEVPGGSGGGAKLTVTKNLDLVNSNALIPNTDFTFK IEPDTTVNEDGNKFKGVALNTPMTKVTYTNSDKGGSNTKTAEFDFSEVTFEKPGVYYYKVTEEKIDK VPGVSYDTTSYTVQVHVLWNEEQQKPVATYIVGYKEGSKVPIQFKNSLDSTTLTVKKCVSGTGGDRS KDFNFGLTLKANQYYKASEKVMIEKTTKGGQAPVQTEASIDQLYHFTLKDGESIKVTNLPVGVDYVV TEDDYKSEKYTTNVEVSPQDGAVKNIAGNSTEQETSTDKDMTITFCAKGGSGGEVAALEKEVAALEK EVAALEK

• TorA-PS

ベクター

pET28b (Novagen)

遺伝子配列

ATGAACAATAACGATCTCTTTCAGGCATCACGTCGGCGTTTTCTGGCACAACTCGGCGGCTTAACCG TCGCCGGGATGCTGGGGCCGTCATTGTTAACGCCGCGACGTGCGACTGCGGCGCAAGCGGCGCATCA TCATCATCATATGGAAAACCTGTATTTCCAGGGCACCGATAAAGATATGACCATTACCTTTACC AATAAAAAAGATTTCGAAGTTCCGGGTGGCTCTGGTGGCGGTGCAAAACTGACCGTTACCAAAAATC TGGATCTGGTTAATAGCAATGCCCTGATTCCGAATACCGATTTTACCTTTAAAATTGAACCGGATAC CACCGTGAATGAAGATGGCAATAAATTTAAAGGCGTGGCACTGAATACCCCCGATGACCAAAGTTACC TATACCAATAGCGATAAAGGTGGCAGCAATACCAAAACCGCAGAATTTGATTTTAGCGAAGTGACCT TTGAAAAACCGGGTGTGTATTACTATAAAGTGACCGAAGAAAAATTGATAAAGTTCCGGGTGTGAG CTATGATACCACCAGTTATACCGTTCAGGTTCATGTTCTGTGGAATGAAGAACAGCAGAAACCGGTT GCAACCTATATTGTGGGTTATAAAGAAGGTAGCAAAGTTCCGATTCAGTTTAAAAAATAGCCTGGATA GCACCACCCTGACCGTTAAAAAATGCGTTAGCGGCACCGGTGGTGATCGTAGCAAAGATTTTAATTT TGGCCTGACCCTGAAAGCCAATCAGTATTACAAAGCCAGCGAAAAAGTGATGATGAAAAAACCACC AAAGGTGGTCAGGCACCGGTTCAGACCGAAGCAAGCATTGATCAGCTGTATCATTTTACCCTGAAAG ATGGCGAAAGCATTAAAGTTACCAATCTGCCGGTTGGTGTTGATTATGTTGTTACCGAAGATGATTA TAAAAGCGAAAAATATACCACCAATGTGGAAGTTTCACCGCAGGATGGTGCCGTTAAAAATATTGCA GGTAATAGCACCGAACAGGAAACCAGCACCGATAAAGATATGACCATTACCTTCTGCGCGAAGTAA アミノ酸配列(括弧内は発現過程で切断される)

(MNNNDLFQASRRFLAQLGGLTVAGMLGPSLLTPRRATAAQA)

AHHHHHHMENLYFQGTDKDMTITFTNKKDFEVPGGSGGGAKLTVTKNLDLVNSNALIPNTDFTFKIE PDTTVNEDGNKFKGVALNTPMTKVTYTNSDKGGSNTKTAEFDFSEVTFEKPGVYYYKVTEEKIDKVP GVSYDTTSYTVQVHVLWNEEQQKPVATYIVGYKEGSKVPIQFKNSLDSTTLTVKKCVSGTGGDRSKD FNFGLTLKANQYYKASEKVMIEKTTKGGQAPVQTEASIDQLYHFTLKDGESIKVTNLPVGVDYVVTE DDYKSEKYTTNVEVSPQDGAVKNIAGNSTEQETSTDKDMTITFCAK

● Isopeptag 含有ペプチド

ベクター

pGEX-4T-1 (GE Healthcare)

遺伝子配列

ATGTCCCCTATACTAGGTTATTGGAAAATTAAGGGCCTTGTGCAACCCACTCGACTTCTTTTGGAAT ATCTTGAAGAAAAATATGAAGAGCATTTGTATGAGCGCGATGAAGGTGATAAATGGCGAAACAAAAA GTTTGAATTGGGTTTGGAGTTTCCCCAATCTTCCTTATTATATTGATGGTGATGTTAAATTAACACAG

アミノ酸配列(括弧内は精製過程で切断される)

(MSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYIDGDVKLT QSMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLKVDFLSKLPEMLKMF EDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKLVCFKKRIEAIPQIDKYLKSSKYIA WPLQGWQATFGGGDHPPKSDENLYFQ)

GGSTDKDMTITFTNKKDAEWDYKDDDDKATTVHGETVVNGAKLTVTKNLDLVNSNALIPN

• GFP-PS

ベクター

pColdII (タカラバイオ)

遺伝子配列

アミノ酸配列

MNHKVHHHHHHMFSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV PWPTLVTTLTYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTISFKDDGNYKTRAEVKFEGDTLVNR IELKGIDFKEDGNILGHKLEYNYNSHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQQNTPIG DGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELENLYFQGTDKDMTITFTNKK DFEVPGGSGGGAKLTVTKNLDLVNSNALIPNTDFTFKIEPDTTVNEDGNKFKGVALNTPMTKVTYTN SDKGGSNTKTAEFDFSEVTFEKPGVYYYKVTEEKIDKVPGVSYDTTSYTVQVHVLWNEEQQKPVATY IVGYKEGSKVPIQFKNSLDSTTLTVKKCVSGTGGDRSKDFNFGLTLKANQYYKASEKVMIEKTTKGG QAPVQTEASIDQLYHFTLKDGESIKVTNLPVGVDYVVTEDDYKSEKYTTNVEVSPQDGAVKNIAGNS TEQETSTDKDMTITFCAK

• GFP-PS E258A

<u>ベクター</u> pColdII(タカラバイオ)

遺伝子配列

アミノ酸配列

MNHKVHHHHHHMFSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV PWPTLVTTLTYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTISFKDDGNYKTRAEVKFEGDTLVNR IELKGIDFKEDGNILGHKLEYNYNSHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQQNTPIG DGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELENLYFQGTDKDMTITFTNKK DFEVPGGSGGGAKLTVTKNLDLVNSNALIPNTDFTFKIEPDTTVNEDGNKFKGVALNTPMTKVTYTN SDKGGSNTKTAEFDFSEVTFEKPGVYYYKVTEEKIDKVPGVSYDTTSYTVQVHVLWNEEQQKPVATY IVGYKEGSKVPIQFKNSLDSTTLTVKKCVSGTGGDRSKDFNFGLTLKANQYYKASEKVMIEKTTKGG QAPVQTEASIDQLYHFTLKDGESIKVTNLPVGVDYVVTADDYKSEKYTTNVEVSPQDGAVKNIAGNS TEQETSTDKDMTITFCAK

• GFP

ベクター

pColdII (タカラバイオ)

遺伝子配列

ATAACTCACAAATGTATACATCACGGCAGACAAACAAAAGAATGGAATCAAAGCTAACTTCAAAAT TCGCCACAACATTGAAGATGGTTCCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGC GATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCGACACAATCTGCCCTTTCGAAAGATCCCA ACGAAAAGCGTGACCACATGGTCCTTCTTGAGTTTGTAACTGCTGCTGGGATTACACATGGCATGGA TTAG

アミノ酸配列

MNHKVHHHHHHMFSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV PWPTLVTTLTYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTISFKDDGNYKTRAEVKFEGDTLVNR IELKGIDFKEDGNILGHKLEYNYNSHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQQNTPIG DGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMD

• K3-PS

ベクター

pColdII (タカラバイオ)

遺伝子配列

ATGAATCACAAAGTGCATCATCATCATCATATGGAAAACCTGTATTTCCAGGGCAAGGTTGCTG CGCTGAAGGAAAAAGTGGCGGCTCTGAAAGAGAAGGTAGCCGCACTGAAAGAAGGTTCTGGCACCGA TAAAGATATGACCATTACCTTTACCAATAAAAAAGATTTCGAAGTTCCGGGTGGCTCTGGTGGCGGT GCAAAACTGACCGTTACCAAAAATCTGGATCTGGTTAATAGCAATGCCCTGATTCCGAATACCGATT TTACCTTTAAAATTGAACCGGATACCACCGTGAATGAAGATGGCAATAAATTTAAAGGCGTGGCACT GAATACCCCGATGACCAAAGTTACCTATACCAATAGCGATAAAGGTGGCAGCAATACCAAAACCGCA GAATTTGATTTTAGCGAAGTGACCTTTGAAAAACCGGGTGTGTATTACTATAAAGTGACCGAAGAAA AAATTGATAAAGTTCCGGGTGTGAGCTATGATACCACCAGTTATACCGTTCAGGTTCATGTTCTGTG GAATGAAGAACAGCAGAAACCGGTTGCAACCTATATTGTGGGTTATAAAGAAGGTAGCAAAGTTCCG ATTCAGTTTAAAAATAGCCTGGATAGCACCACCCTGACCGTTAAAAAATGCGTTAGCGGCACCGGTG GTGATCGTAGCAAAGATTTTAATTTTGGCCTGACCCTGAAAGCCAATCAGTATTACAAAGCCAGCGA CAGCTGTATCATTTTACCCTGAAAGATGGCGAAAGCATTAAAGTTACCAATCTGCCGGTTGGTGTTG ATTATGTTGTTACCGAAGATGATTATAAAAGCGAAAAATATACCACCAATGTGGAAGTTTCACCGCA GGATGGTGCCGTTAAAAATATTGCAGGTAATAGCACCGAACAGGAAACCAGCACCGATAAAGATATG ACCATTACCTTCTGCGCGAAGTAA

アミノ酸配列(括弧内は精製過程で切断される)

(MNHKVHHHHHHHMENLYFQ)

GKVAALKEKVAALKEKVAALKEGSGTDKDMTITFTNKKDFEVPGGSGGGAKLTVTKNLDLVNSNALI PNTDFTFKIEPDTTVNEDGNKFKGVALNTPMTKVTYTNSDKGGSNTKTAEFDFSEVTFEKPGVYYK VTEEKIDKVPGVSYDTTSYTVQVHVLWNEEQQKPVATYIVGYKEGSKVPIQFKNSLDSTTLTVKKCV SGTGGDRSKDFNFGLTLKANQYYKASEKVMIEKTTKGGQAPVQTEASIDQLYHFTLKDGESIKVTNL PVGVDYVVTEDDYKSEKYTTNVEVSPQDGAVKNIAGNSTEQETSTDKDMTITFCAK

• GST-E3

ベクター

pGEX-4T-1 (GE Healthcare)

遺伝子配列

ATGCACCATCACCATCACCATGGTGGTTCCCCTATACTAGGTTATTGGAAAATTAAGGGCCTTGTGC AACCCACTCGACTTCTTTTGGAATATCTTGAAGAGAAAATATGAAGAGCATTTGTATGAGCGCGATGA AGGTGATAAATGGCGAAACAAAAAGTTTGAATTGGGTTTGGAGTTTCCCAATCTTCCTTATTATATT GATGGTGATGTTAAATTAACACAGTCTATGGCCATCATACGTTATATAGCTGACAAGCACAACATGT TGGGTGGTTGTCCAAAAGAGCGTGCAGAGATTTCAATGCTTGAAGGAGCGGTTTTGGATATTAGATA CGGTGTTTCGAGAATTGCATATAGTAAAGACTTTGAAACTCTCAAAGTTGATTTTCTTAGCAAGCTA CCTGAAATGCTGAAAATGTTCGAAGATCGTTTATGTCATAAAACATATTTAAATGGTGATCATGTAA CCCATCCTGACTTCATGTTGTATGACGCTCTTGATGTTGTTTTATACATGGACCCAATGTGCCTGGA TGCGTTCCCAAAATTAGTTTGTTTTAAAAAACGTATTGAAGCTATCCCACAAATTGATAAGTACTTG AAATCCAGCAAGTATATAGCATGGCCTTTGCAGGGCTGGCAAGCCACGTTTGGTGGTGGCGGCGACCATC CTCCAAAATCGGATGGTGAAGTGGCGGCCTCTGGAGAAAGAGGTTGCTGCGCTGGAAAAGGAAGTGC AGCACTGGAAAATAA

アミノ酸配列

MHHHHHHGGSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYI DGDVKLTQSMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLKVDFLSKL PEMLKMFEDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKLVCFKKRIEAIPQIDKYL KSSKYIAWPLQGWQATFGGGDHPPKSDGEVAALEKEVAALEKEVAALEK

• C-Cpro

ベクター

pColdII (タカラバイオ)

遺伝子配列

ATGGGCAGCAGCCATCATCATCATCATCACGGCAGCGGCCTGGTGCCGCGCGGCAGCGCTAGCATGT CGGACTCAGAAGTCAATCAAGAAGCTAAGCCAGAGGTCAAGCCAGAAGTCAAAGCCTGAGACTCACAT CAATTTAAAGGTGTCCGATGGATCTTCAGAGATCTTCTTCAAGATCAAAAAGACCACTCCTTTAAGA AGGCTGATGGAAGCGTTCGCTAAAAGACAGGGTAAGGAAATGGACTCCTTAAGATTCTTGTACGACG GTATTAGAATTCAAGCTGATCAGACCCCTGAAGATTTGGACATGGAGGATAACGATATTATTGAGGC TCACAGAGAACAGATTGGTGGATGTGCAACCACCGTTCATGGTGAAACCGTTGTTAATGGTGCAAAA CTGACCGTTACCAAAAATCTGGATCTGGTTAATAGCAATGCCCTGATTCCGAATACCGATTTACCT

アミノ酸配列(括弧内は精製過程で切断される)

(MGSSHHHHHHGSGLVPRGSASMSDSEVNQEAKPEVKPEVKPETHINLKVSDGSSEIFFKIKKTTPL RRLMEAFAKRQGKEMDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHREQIGG) CATTVHGETVVNGAKLTVTKNLDLVNSNALIPNTDFTFKIEPDTTVNEDGNKFKGVALNTPMTKVTY TNSDKGGSNTKTAEFDFSEVTFEKPGVYYYKVTEEKIDKVPGVSYDTTSYTVQVHVLWNEEQQKPVA TYIVGYKEGSKVPIQFKNSLDSTTLTVKKKVSGTGGDRSKDFNFGLTLKANQYYKASEKVMIEKTTK GGQAPVQTEASIDQLYHFTLKDGESIKVTNLPVGVDYVVTEDDYKSEKYTTNVEVSPQDGAVKNIAG NSTEQETSTDKDMTI

2.3. 発現および精製

2.3.1. PS およびその誘導体と GFP の細胞質発現と精製

各発現ベクターを用いて大腸菌 BL21 (DE3)の形質転換を行った。ただし、PS-L については、Origami 2 (DE3) (Novagen)の形質転換も行い、発現確認の際に用いた。

発現確認を行う場合は、1.6 mL の 50 µg/ml Ampicillin を含む LB 培地の入った試験管に 植菌し、37 ℃で5時間以上振とう培養した後、3 mL の 50 µg/mL Ampicillin を含む LB 培地の入った試験管に前培養した培地を加えて OD₆₀₀ が 0.4-0.5 になるように調製した。調 製後、Isopropyl β-D-1-thiogalactopyranoside (IPTG) を終濃度 1 mM になるように添加 し、15 ℃で任意の時間振とう培養を行った。1 mL の培地を 4 ℃、7,000 G で 10 分間遠心 分離した。沈殿した菌体を 50 µL のバッファー(20 mM Tris-HCl, 500 mM NaCl, 5 mM Imidazole, pH 7.9)で懸濁し超音波破砕した後、4 ℃、12,000 G で 30 分間遠心分離した。 上清および 50 µL のバッファーで再懸濁した沈殿を、SDS-PAGE のサンプルとした。

大量発現を行う場合は、3 mL の 50 µg/mL Ampicillin を含む LB 培地の入った試験管に植 菌し、37 ℃で5時間以上振とう培養した後、50 µg/mL Ampicillin を含む LB 培地の入っ た羽根つきフラスコに植え継ぎを行った。OD₆₀₀ が 0.4 - 0.5 に達するまで 37 ℃で振とう培 養を行い、その後培地を15 ℃に急冷し、IPTGを終濃度1mMになるように添加して、15 ℃ で振とう培養を行った。

PS、P108E、W141A、PS-L、P108E-L、W141A-L、GFP-PS の場合は、発現誘導後 3 時間振とう培養を行った。培地を4 °C、7,000 G で 10 分間遠心分離した。沈殿した菌体を Binding buffer (20 mM Tris-HCl, 500 mM NaCl, 5 mM Imidazole, pH 7.9)で懸濁し超音 波破砕した後、4 °C、40,000 G で 30 分間遠心分離した。上清を速やかに His-Bind (Novagen) を充てんしたカラムに通し、Binding buffer、Wash buffer (20 mM Tris-HCl, 500 mM NaCl, 20 mM imidazole, 5 mM 酸化型グルタチオン (GSSG), pH7.9) でカラムを洗浄したのち、 Elution buffer (20 mM Tris-HCl, 500 mM NaCl, 200 mM imidazole, 5 mM GSSG, pH 7.9) で目的蛋白質を溶出し、粗精製サンプルとした。粗精製サンプルを Dialysis buffer (50 mM Phosphate buffer, 1 mM GSSG, pH 7.4) で透析し、SEC buffer (50 mM Phosphate buffer, 150 mM NaCl, 1 mM GSSG, pH 7.4) を用いて HiLoad 26/60 Superdex 200 (GE Healthcare) でサイズ排除クロマトグラフィー精製を行った。得られたモノマー溶液は Amicon Ultra-15 (MWCO 30000) (Millipore) を用いて限外ろ過法にて濃縮した。濃縮サ ンプルは液体窒素を用いて速やかに冷凍し-30 ℃で保存した。

K3-PS の場合は、発現誘導後 3 時間振とう培養を行った。培地を 4 ℃、7,000 G で 10 分間遠心分離した。沈殿した菌体を Binding buffer (20 mM Tris-HCl, 500 mM NaCl, 5 mM Imidazole, pH 7.9)で懸濁し超音波破砕した後、4 ℃、40,000 G で 30 分間遠心分離し た。上清を速やかに His-Bind (Novagen)を充てんしたカラムに通し、Binding buffer、 Wash buffer (20 mM Tris-HCl, 500 mM NaCl, 20 mM imidazole, pH7.9) でカラムを洗浄 したのち、Elution buffer (20 mM Tris-HCl, 500 mM NaCl, 200 mM imidazole, pH 7.9) で 目的蛋白質を溶出し、粗精製サンプルとした。粗精製サンプルを TEV プロテアーゼと混合 して Dialysis buffer (50 mM Phosphate buffer, pH 7.4) で透析した。透析後、His-Bind (Novagen)を充てんしたカラムに通し、素通りした画分を得た。SEC buffer (50 mM Phosphate buffer, 150 mM NaCl, 1 mM GSSG, pH 7.4)を用いて HiLoad 16/60 Superdex 200 (GE Healthcare) でサイズ排除クロマトグラフィー精製を行った。得られたモノマー

溶液は Amicon Ultra-15 (MWCO 30000) (Millipore) を用いて限外ろ過法にて濃縮した。 濃縮サンプルは液体窒素を用いて速やかに冷凍し-30 ℃で保存した。

E258A、ASS、GFP-PS E258A、GFP の場合は、発現誘導後 16 時間(ASS のみ 3 時間) 振とう培養を行った。培地を 4 C、7,000 G で 10 分間遠心分離した。沈殿した菌体を Binding buffer (20 mM Tris-HCl, 500 mM NaCl, 5 mM Imidazole, pH 7.9)で懸濁し超音 波破砕した後、4 C、40,000 G で 30 分間遠心分離した。上清を速やかに His-Bind (Novagen) を充てんしたカラムに通し、Binding buffer、Wash buffer (20 mM Tris-HCl, 500 mM NaCl, 20 mM imidazole, pH 7.9) でカラムを洗浄したのち、Elution buffer (20 mM Tris-HCl, 500 mM NaCl, 200 mM imidazole, pH 7.9) で目的蛋白質を溶出し、粗精製サンプルとした。 粗精製サンプルを、PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 1.8 mM KH₂PO₄, pH 7.4) を用いて HiLoad 16/60 Superdex 200 (GE Healthcare) (GFP のみ HiLoad 16/60 Superdex 75 (GE Healthcare)) でサイズ排除クロマトグラフィー精製を行った。得られ たモノマー溶液は Amicon Ultra-15 (MWCO 30000) (Millipore) (GFP のみ Amicon Ultra-15 (MWCO 10000) (Millipore)) を用いて限外ろ過法にて濃縮した。濃縮サンプル は液体窒素を用いて速やかに冷凍し-30 ℃で保存した。

2.3.2. Isopeptag 含有ペプチドの発現精製

GST 融合発現ベクターを用いて大腸菌 BL21 (DE3)の形質転換を行った。50 µg/mL Ampicillin を含む LB 培地の入った試験管に植菌し、37 ℃で5時間以上振とう培養した後、 50 µg/mL Ampicillin を含む LB 培地の入った羽根つきフラスコに植え継ぎを行った。OD₆₀₀ が 0.6 に達するまで 37 ℃で振とう培養を行った後、IPTG を終濃度 0.5 mM になるように 添加して、20 ℃で一晩振とう培養を行った。培地を 4 ℃、7,000 G で 10 分間遠心分離し た。沈殿した菌体を PBS で懸濁し超音波破砕した後、4 ℃、40,000 G で 30 分間遠心分離 した。上清を速やかに Glutathione Sepharose 4 Fast Flow column (GE Healthcare) を 充てんしたカラムに通し、PBS で洗浄したのち、Elution buffer (50 mM Tris-HCl, 10 mM 還元型グルタチオン (GSH), pH 8.0) で目的蛋白質を溶出し、粗精製サンプルとした。粗 精製サンプルを TEV プロテアーゼと混合して Dialysis buffer (50 mM Phosphate buffer, pH 7.4) で透析した。透析後、PBS を用いて HiLoad 16/60 Superdex 75 (GE Healthcare) でサイズ排除クロマトグラフィー精製を行った。得られたペプチド溶液は Amicon Ultra-15 (MWCO 3000) (Millipore) を用いて限外ろ過法にて濃縮した。さらに、HisMag Sepharose Ni Resin (GE Healthcare) を用いて微量に混入した TEV プロテアーゼを除去した。精製 サンプルは液体窒素を用いて速やかに冷凍し-30 ℃で保存した。

2.3.3. GST-E3 の発現精製

発現ベクターを用いて大腸菌 BL21 (DE3)の形質転換を行った。50 µg/mL Ampicillin を 含む LB 培地の入った試験管に植菌し、37 ℃で 5 時間以上振とう培養した後、50 µg/mL Ampicillin を含む LB 培地の入った羽根つきフラスコに植え継ぎを行った。OD₆₀₀ が 0.6 に 達するまで 37 ℃で振とう培養を行った後、IPTG を終濃度 0.5 mM になるように添加して、 20 ℃で一晩振とう培養を行った。培地を 4 ℃、7,000 G で 10 分間遠心分離した。沈殿し た菌体を PBS で懸濁し超音波破砕した後、4 ℃、40,000 G で 30 分間遠心分離した。上清 を速やかに Glutathione Sepharose 4 Fast Flow column (GE Healthcare) を充てんした カラムに通し、PBS で洗浄したのち、Elution buffer (50 mM Tris-HCl, 10 mM GSH, pH 8.0) で目的蛋白質を溶出し、精製サンプルとした。得られた精製溶液は Amicon Ultra-15 (MWCO 10000) (Millipore) を用いて限外ろ過法にて濃縮した。濃縮サンプルは液体窒素 を用いて速やかに冷凍し-30 ℃で保存した。

2.3.4. C-Cpro の発現精製

SUMO 融合発現ベクターを用いて大腸菌 BL21 (DE3)の形質転換を行った。50 µg/mL Ampicillin を含む LB 培地の入った試験管に植菌し、37 ℃で5時間以上振とう培養した後、 50 µg/mL Ampicillin を含む LB 培地の入った羽根つきフラスコに植え継ぎを行った。OD₆₀₀ が 0.4 - 0.5 に達するまで 37 ℃で振とう培養を行い、その後培地を 15 ℃に急冷し、IPTG を終濃度 0.5 mM になるように添加して、15 ℃で一晩振とう培養を行った。培地を 4 ℃、 6,000 G で 10 分間遠心分離した。沈殿した菌体を Binding buffer (20 mM Tris-HCl, 500 mM NaCl, 5 mM Imidazole, pH 7.9)で懸濁し超音波破砕した後、4 ℃、40,000 G で 30 分 間遠心分離した。上清を速やかに His-Bind (Novagen) を充てんしたカラムに通し、Binding buffer、Wash buffer (20 mM Tris-HCl, 500 mM NaCl, 20 mM imidazole, pH7.9) でカラ ムを洗浄したのち、Elution buffer (20 mM Tris-HCl, 500 mM NaCl, 200 mM imidazole, pH7.9) でカラ ムを洗浄したのち、Elution buffer (20 mM Tris-HCl, 500 mM NaCl, 200 mM imidazole, pH7.9) でカラ ムを洗浄したのち、Elution buffer (20 mM Tris-HCl, 500 mM NaCl, 200 mM imidazole, pH7.9) でカラ ムを洗浄したのち、Elution buffer (20 mM Tris-HCl, 500 mM NaCl, 200 mM imidazole, pH7.9) でカラ ムを洗浄したのち、Elution buffer (20 mM Tris-HCl, 500 mM NaCl, 200 mM imidazole, pH7.9) で見ち なたかしたかうしたのち、Elution buffer (20 mM Tris-HCl, 500 mM NaCl, 200 mM imidazole, pH7.9) であう ムを洗浄したのち、Elution buffer (20 mM Tris-HCl, 500 mM NaCl, 200 mM imidazole, pH7.9) では前く自賃を溶出し、粗精製サンプルとした。粗精製サンプルを Ulp1 と混合し て Dialysis buffer (20 mM Tris-HCl, 200 mM NaCl, pH 8.0) で透析した。透析後、His-Bind (Novagen) を充てんしたカラムに通し、素通りした画分を精製サンプル。得られた精製 溶液は Amicon Ultra-15 (MWCO 10000) (Millipore) を用いて限外ろ過法にて濃縮した。 濃縮サンプルは液体室素を用いて速やかに冷凍し-30 ℃で保存した。

2.3.5. PelB-PS、Exl-PS、Exl-K3-PS、Exl-PS-E3、TorA-PS の発現精製

各発現ベクターを用いて大腸菌 BL21 (DE3)の形質転換を行った。50 µg/mL Kanamycin を含む LB 培地の入った試験管に植菌し、37 °C で 4 時間程度振とう培養した後、50 µg/mL Kanamycin 含む Terrific broth*の入った羽根つきフラスコに植え継ぎを行った。OD₆₀₀ が 0.5 に達するまで 37 °C で振とう培養を行った後、IPTG、Glycine、Triton X-100 を適当量 添加して、適当な温度で振とう培養を行った。

精製を行う場合は、培地を4 ℃、7,000 G で 20 分間遠心分離した。上清を 0.8 µm フィ ルターでろ過したのち、Ni Sepharose excel (GE Healthcare) を添加し、28 ℃で 1 時間 穏やかに混和した。レジンをオープンカラムに移し、Binding buffer (20 mM Tris-HCl, 500 mM NaCl, 5 mM imidazole, pH7.9)、Wash buffer (20 mM Tris-HCl, 500 mM NaCl, 20 mM imidazole, pH7.9)でカラムを洗浄したのち、Elution buffer (20 mM Tris-HCl, 500 mM NaCl, 500 mM imidazole, pH 7.9) で目的蛋白質を溶出し、精製サンプルとした。

*Terrific broth の組成(1 L) Tryptone 12 g Yeast extract 24 g Glycerol 4 ml KH₂PO₄ 2.31 g K₂HPO₄ 12.54 g

2.4. 重合サンプル調製

保存サンプルを室温で溶解後、2 倍量のアセトンを加えて混和した。4 ℃、12,000 G で 遠心分離し、上清を取り除き、減圧環境下で 15 分間程度沈殿を乾燥させた。乾燥させた沈 殿を任意の反応バッファーで溶解し、反応サンプルとした。もしくは、保存サンプルを限 外ろ過法により任意の反応バッファーへの溶媒交換を行い、反応サンプルとした。反応バ ッファーは特に断りのない限り、50 mM Gly-NaOH, 5 mM DTT を用いた。反応は室温で 行った。

2.5. SDS ポリアクリルアミドゲル電気泳動 (SDS-PAGE)

各サンプルは、5 μL の蛋白質溶液と 12 μL のサンプルバッファー (80 mM sodium dodecyl sulfate (SDS), 62.5 mM Tris-HCl, 8% grycerol)、2 μL の 1 mg mL⁻¹ bromophenol blue 溶液 (10% grycerol を含む)、1 μl の 2-mercaptoethanol を混合して、5 分間煮沸する ことにより調製した。各サンプルを 0.1% SDS を含むポリアクリルアミドゲルにロードし、 150 V で 70-90 分間電気泳動を行った。電気泳動後のゲルは、0.5% Coomassie brilliant blue R-250 溶液を用いて染色を行うか、続けて Western blotting を行った。

2.6. Western blotting

SDS-PAGE ゲルを Transfer buffer (3.0 mg mL⁻¹ Tris, 14.4 mg mL⁻¹ glycine, 20% methanol)に浸したのち、セミウェット法によりニトロセルロースメンブレンに転写を行った。SNAP i.d. (Merck Millipore) もしくは SNAP i.d. 2.0 (Merck Millipore) を用いて、転写したメンブレンのブロッキング、抗体反応、洗浄操作を行った。ブロッキングは 0.3% スキムミルク、抗体は HRP が融合された抗 His-tag 抗体、His-probe (H-3) (Santa Cruz Biotechnology) を用いた。メンブレン表面を ECL Western Blotting Detection Reagents (GE Healthcare) に 1 分間浸し、よく試薬を除去してから、ImageQuant LAS 4000 mini (GE Healthcare) を用いて化学発光を検出した。

2.7. Asymmetric flow field flow fractionation (AF4)

2.7.1. 原理

AF4 は、粒径による拡散係数の違いを利用して流れの特性を利用して構造体を粒径に応じて分離する手法である⁵²。図4(a)に分離チャネルの模式図を示す。分離チャネルには、検出器へと向かう Channel flow(右方向)とメンブレン(限外ろ過膜)を通過する方向に向かう Crossflow(下方向)二種類の流れの方向が存在する。チャネル内の上下方向は狭いため、Channel flow は層流の流速分布を示す。すなわち、中心が最も流速が大きく、壁(メンブレン)側に近づくほど流速が小さくなる。また、分離チャネル内の構造体は Crossflow によりメンブレン側に押し付けられるが、粒径が大きいほど、拡散係数が小さいために濃

図 4: AF4-MALS の原理 (a) AF4 による分離の模式図。(b) Debye プロットの説明図。

度分布がメンブレン側により偏る。このため、粒径の小さい構造体ほど早く溶出され、大きい構造体ほど遅く溶出される。Crossflowの大きさはリアルタイムで変化させることができ、そのプログラムの設計により 1 回の測定で広範な大きさの構造体を分離することが可能になる。

溶出液の分析は、UV 検出器と Multi angle light scattering (MALS) 検出器により行う。 UV 検出器により 280 nm の吸光度を測定することで蛋白質の濃度を算出し、それと MALS の各角度のシグナル強度から、Debye プロットを作成して重量平均分子量を算出する ⁵³。 希薄な条件において算出に用いる基本関係式を以下に示す。

$$\frac{K^*c}{R(\theta)} = \frac{1}{M_w} \left\{ 1 + \frac{16\pi^2}{3\lambda^2} \langle r_g^2 \rangle sin^2 \left(\frac{\theta}{2}\right) \right\}$$

ここで、 $R(\theta)$ は角度 θ における過剰散乱強度の還元散乱強度、cはサンプル濃度(mg mL⁻¹)、 M_w は重量平均分子量(g mol⁻¹)、 < r_g^2 >は平均二乗慣性半径、Kは光学パラメータで $4n^2n_0^2(dn/dc)^2/[\lambda_0^4N_A]$ 、 n_0 は溶媒の屈折率、dn/dcは屈折率の濃度増分(蛋白質は通常 0.186 mL g⁻¹としてよい)、 N_A はアボガドロ数、 λ_0 は真空中での入射光の波長を示す。

この式から、横軸に $\sin^2(\theta/2)$ 、縦軸に $K^* c/R(\theta)$ をプロットすると、近似直線の縦軸切片 の逆数が M_w となり、傾きから $r_g^2>$ が求まることがわかる (図 4 (b))。ただし、通常の蛋 白質の大きさでは小さすぎるため、

2.7.2. 実験方法

Wyatt Eclipse separation system (Wyatt) を用いて測定を行った。メンブレンには、5 kDa カットオフの再生セルロースメンブレンを用いた。ポリマーを測定する際は、1.5 mL min⁻¹の Focus flow でサンプルを注入・濃縮した後、Crossflow を最初の5分間で1.5 mL min⁻¹から 0.5 mL min⁻¹、次の5分間で0.5 mL min⁻¹から0.2 mL min⁻¹、最後の10分間で

0.2 mL min⁻¹から 0.0 mL min⁻¹へと直線的に減少させた。モノマーを測定する際は、3.0 mL min⁻¹の Focus flow でサンプルを注入・濃縮した後、Crossflow を最初の 2 分間は 3.0 mL min⁻¹に固定し、その後の 15 分間で 3.0 mL min⁻¹から 0.0 mL min⁻¹へと直線的に減少させた。Channel flow は 1.0 mL min⁻¹に固定した。各測定にはおよそ 200 µg の蛋白質を用いた。移動相には PBS を用いた。UV 曲線および分子量は ASTRA(Wyatt)を用いて解析を行った。分子量分布の計算には、8 h 重合サンプルは 7.5 min から 12.0 min、16 h 重合サンプルは 8.0 min から 15.0 min、24 h 重合サンプルは 8.0 min から 15.5 min の溶出ピークを用いた。

2.8. 示差走查熱量測定(Differential scanning calorimetry; DSC)

2.8.1. 原理

DSC は、温度を上昇させながら系の比熱を連続的に測定する手法であり、相転移やコン ホメーション変化によって生じる熱の測定に用いられる 54。DSC 装置の中には、断熱され た 2 つのセル、参照セルと試料セルが存在する。参照セルはバッファー、試料セルはサン プル溶液で満たした状態で、エネルギーを与えて温度を上昇させる。吸熱的な転移が生じ る間は転移を引き起こすためにエネルギーが消費されるので、試料セルの温度は参照セル の温度よりも下がる。この差が検知され、相殺するためのエネルギーが試料セルへと供給 される。このエネルギーが、加熱によって引き起こされた状態変化に伴うエネルギーに相 当する。したがって、測定した蛋白質濃度が既知の場合、温度を横軸とした熱容量曲線が 得られる。この曲線中に観察されるピークの中点にあたる温度が変性中点温度 T_m 、ピーク の積分値が ΔH_{cal} となる。

2.8.2. 実験方法

MicroCal VP-Capillary DSC (MicroCal) を用いて測定を行った。ポリマーサンプルは、 反応バッファーに溶解した 100 μ M のモノマー溶液を、PS、PS-L については 16 時間、そ の他については 48 時間反応させたものを用いた。PBS に溶解したモノマー濃度約 25 μ M に調製したサンプルを測定に供した。昇温速度は 1 K min⁻¹で行った。測定データは Origin ソフトウェア (MicroCal) によって解析した。熱力学パラメータ T_m 、 ΔH_{cal} を得るために、 バッファーの寄与を差し引き、蛋白質濃度による標準化を行った後、2 状態転移モデルでフ ィッティングを行った。

2.9. 円偏光二色性(Circular dichroism; CD)

2.9.1. 原理 55

直線偏光とは、電場の振動方向が一定である光のことである。直線偏光は 2 つの同じ大きさの円偏光成分(反時計回り(L)、時計回り(R))に分解することができる。測定試料に直線偏光を通すと、L、R 成分の吸収の程度が異なる場合に楕円偏光を生成する。CD 装
置はこの両成分の差を観測して、楕円率θに変換して出力する。CD シグナルは、試料中に 光学活性な発色団を有する場合に観察される。

蛋白質の二次構造を解析する場合は、遠紫外領域のスペクトルが用いられる。代表的な 例としては、α-ヘリックスでは 222nm と 208 nm 付近に負のバンド、190nm 付近に正の バンドが、β-シートでは 217 nm 付近に負のバンド、195-200nm 付近に正のバンドが観察 される。多くの蛋白質ではこれらの重ね合わせのスペクトルが得られ、そこから二次構造 の推定を行う。

2.9.2. 実験方法

J-820 (JASCO)を用いて測定を行った。ポリマーサンプルの調製は DSC 測定の場合と 同様に行った。PBS に溶解した 0.25 mg mL⁻¹のサンプルの測定を行った。光路長 2 mm の 石英セルを用いた。スペクトルは、resolution; 0.1 nm、average time; 4 s、scan speed; 200 nm min⁻¹、温度; 20 ℃の条件で測定を行い、250 nm から 205 nm の間を 4 回スキャンし、 その平均を得た。温度変化測定では、1 K min⁻¹の速さで 20 ℃から 90 ℃まで昇温し、222 nm のシグナルを 0.1 K 間隔で得た。得られた変性曲線は、装置付属のソフトウェアで 2 状 態転移のモデルにフィッティングし、熱力学的パラメータ T_m 、 ΔH_{VH} を得た。

2.10. 原子間力顕微鏡(Atomic force microscopy; AFM)

2.10.1. 原理

AFM は走査型プローブ顕微鏡 (Scanning probe microscopy; SPM) の一種である ⁵⁶。 SPM とは、試料ステージスキャナーとプローブを接近または接触させ、スキャナーを動か すことで、プローブに加わった物理量変化を検出器が観測して試料表面の状態を測定する 装置のことである。AFM においては、先端に尖った針が付いたカンチレバーというプロー ブにより、試料とプローブの間にはたらく力が測定される。

2.10.2. 実験方法

MutiMode 8 (Bruker)を用いて測定を行った。反応バッファーに溶解した 200 μM のモ ノマー溶液を 5 日間反応させたものを測定サンプルとして用いた。各サンプルは 50 mM Tris-HCl (pH 8.0)を用いて約 10 nM まで希釈し、マイカ基板上にのせた。5 分後、サンプ ル溶液を窒素ガススプレーによって除去した。基板を Milli-Q で数回洗浄し、窒素ガススプ レーにより乾燥させた。乾燥させた基板を ScanAsyst モードによって走査した。

2.11. 蛍光分析

GFP、GFP-PSの蛍光強度は F-2500(日立)を用いて測定した。光路長1cm、光路幅2mmの石英キュベットを用いた。励起波長は500nmに設定し、515nmの蛍光強度を測定した。室温で測定を行い、3回行った測定の平均値を得た。ポリマーサンプルは、100 μM

の GFP-PS を反応バッファーで 24 時間反応させ、PBS で希釈したものを使用した。

2.12. 表面プラズモン共鳴法(Surface plasmon resonance; SPR)

2.12.1. 原理

SPR は、プラズモン共鳴を利用して、センサーチップに固定化した分子と溶液中の分子 の間にはたらく相互作用をラベルフリーでリアルタイムで測定する手法である 57。センサー チップ上には、デキストランの結合した金薄膜が蒸着されており、このデキストランに分 子間相互作用を測定したい分子の片方を固定化する。また、マイクロ流路を通じてもう一 方の分子を含む試料溶液をセンサーチップに接するように送液する。裏側の金薄膜表面に 光が全反射するように当てられると、反射光中に強度が減少する部分が観察される。この 部分の現れる角度は、センサーチップ表面の質量によって変化する。この角度変化を質量 変化として検出することで、センサーチップ上の結合イベントをリアルタイムで測定する ことができる。

2.12.2. 実験方法

Biacore T200 (GE Healthcare)を用いて測定を行った。センサーチップには Sensor Chip NTA を用いた。各サイクルのはじめに GST-E3 を 2000 RU 程度になるように固定化した。 測定バッファーには、10 mM HEPES, 150 mM NaCl, 50 µM EDTA, 4 mM imidazole, 0.05 % Tween 20 (pH 7.4)を用い、30 µL min⁻¹の速度で流した。Imidazole は K3-PS と nitrilotriacetic acid (NTA) との非特異的な相互作用を軽減させるために添加した。センサ ーチップの再生は、10 mM HEPES, 150 mM NaCl, 0.35 M EDTA, 0.05 % Tween 20 (pH 8.3)、次いで 50 mM NaOH を送液することにより行った。測定データは、Ni²⁺が NTA に 結合した状態のブランクフローセルにアナライトを流したレスポンス、次いで GST-E3 が 結合したフローセルにバッファーを流したレスポンスを差し引いて補正を行った。 180 s に おけるレスポンスは PS サブニットの濃度に対してプロットし、以下の式でフィッティング を行った。

$$R = R_{max} \times \frac{K_A C}{1 + K_A C}$$

ここで、Rは 180 s におけるレスポンス、 R_{max} は理論的最大レスポンス、 K_{A} は結合平衡 定数、Cは PS サブユニット濃度である。解析は装置付属のソフトウェアにより行った。

2.13. C-Cpro 修飾ポリアクリルアミドゲルの作製

C-Cpro 溶液に終濃度 100 mM になるように DTT を添加して室温で 10 分程度還元処理 を行った。この溶液に *N*,*N*⁴methylene-bisacrylamide を終濃度 80 mM になるように添加 し、室温で 1 時間程度反応させた。Amicon Ultra-0.5 (MWCO 10000) (Millipore) を用い て限外ろ過法にて未反応の試薬を除去し、50 mM Gly-NaOH pH 9.0 に溶媒交換した。 この修飾 C-Cpro 溶液と 30(w/v)% Acrylamide/Bis mixed solution (37.5:1)を用いて、任 意の C-Cpro およびアクリルアミド濃度になるように混合した。過硫酸アンモニウム (APS) を終濃度 0.07(w/v)%、*N,N,N*?*N*²tetramethylethane-1,2-diamine (TEMED) を終濃度 0.07(v/v)%になるように混合液に添加し、重合反応を室温で1時間程度行った。その際、界 面が空気に触れないように 50% イソプロパノールを反応液に重層した。

生成したヒドロゲルを取り出し、50 mM Gly-NaOH pH 9.0 で洗浄した。調製した Protein shackle 反応液にヒドロゲルを混和させ、ヒドロゲルへの Protein shackle への固定化を行った。反応後は、50 mM Gly-NaOH pH 9.0 でヒドロゲルを洗浄した。

第三章

Protein shackleの 基礎的分子設計 および物性解析

3.1. 本章の目的

本章では基礎的な Protein shackle の分子設計を確立し、その物性を詳細に明らかにする ことを目指す。

3.2. Protein shackle 設計戦略概要

Spy0128 は図 5 に示すようにイムノグロブリン様ドメインを 2 つ有する蛋白質である。 図 5 (b)に示した通り、表面電荷に大きな偏りは見られず、全体として負の電荷を帯びてい る (pI = 5.6) ことが、線毛が凝集しにくい原因の一つであると考えられる。分子内イソペ プチド結合は N ドメインと C ドメインに 1 つずつ存在するが、本研究で利用するのは後者 の結合(Lys179-Asn303)である。Howarth らは、イソペプチド結合を形成する Asn を含 む図 5 (a)の黒点線枠内のストランドに相当する部分を Isopeptag と命名して、これをマル トース結合蛋白質(MBP)と融合して発現精製し、さらにそのストランドの一部を切除し てイソペプチド結合を形成できないようにした分子種も発現精製して、両者を混合すると 共有結合を形成することを報告した ⁵⁰(図 3)。

そこで我々は、Spy0128から C 末端の Isopeptag を切り離して N 末端に融合したような 分子種を作製することができれば、図 6 (a)に示すように Isopeptag システムを介して相互 作用し、自発的に重合するような性質を有する分子になるのではないかと考えた。しかし ながら、この場合発現直後から重合が開始され、反応を制御することが困難であると考え られる。このため、C 末端に「蓋」としてペプチド配列を融合し、溶媒環境の調節により活 性を制御することを目指した。

具体的には、N 末端から His-tag、TEV プロテアーゼ認識配列、Isopeptag、リンカー、 C 末端欠損 Spy0128、蓋という順番で構成されるアミノ酸配列の発現ベクターを構築した (図 6 (b))。

(a)

図 5: Spy0128 の結晶構造(PDB: 3B2M) (a) リボン図。(b) 表面電荷。

図 6: 分子設計 (a) イメージ図。(b) 配列。

リンカーは長短2種類を用意した。短い方の配列は KDFEVPGGSGGGA (13 残基) で、 長い方の配列は KDAEYPYDVPDYAETVVNGA (20 残基) とした。

3.3. ジスルフィド結合による蓋の固定

蓋の配列は結合ポケットに合うように、もとのストランド由来の配列を用いることにした。ただし、以降に述べるようないくつかの変異を加えている。まず、イソペプチド結合を形成しないように Asn303 (野生型 Spy0128 における残基番号で表記する。以降同様。)を Ala へと変異させた。また、蓋が環境変化によって容易に外れるようにするために、ストランドの C 末端が Lys304 になるように長さを削った。さらに、以下に述べるような意図から Thr302 を Cys に変異させた。

蓋によって反応を制御するためには、環境応答的に蓋の開閉を制御する必要がある。そ こで、可逆的な共有結合で蓋を固定することにした。具体的には、Isopeptag が挿入される 間隙を、蓋とそれと隣り合うストランドに導入した Cys 側鎖間のジスルフィド結合で架橋 するようなコンストラクトを作製することにした。

図 7: Protein shackle C ドメインモデル構造

ジスルフィド結合形成残基の予測には bridgeD (http://biodev.cea.fr/bridged/)という web プログラムを利用した ⁵⁸。多数ある変異残基ペア候補のうち、イソペプチド結合形成部位近 傍にジスルフィド結合を形成することが予想される、K180C と T302C (図 7) という変異 を導入したコンストラクトを作製することにした。

このように設計したモノマーを Protein shackle と命名した。以降、短い方のリンカーを 有するコンストラクトを PS、長い方のリンカーを有するコンストラクトのことを PS-L と よぶ。

3.4. 大腸菌細胞質発現および精製

コールドショック発現用の pCold ベクター (タカラバイオ) に遺伝子を組み込み PS の発 現ベクターを構築した。このベクターを用いて大腸菌 BL21 (DE3)株の形質転換を行い、PS の細胞質発現を試みた。大腸菌の細胞質は還元状態にあるため、 発現直後から重合反応が 開始される。このため、発現誘導後は通常よりも短時間で培養を行った。発現確認の結果、 PS は可溶性画分に発現することが示された (図 8 (a))。超音波破砕後、速やかに金属キレ ートアフィニティークロマトグラフィー精製を行い (図 8 (b))、次いでサイズ排除クロマト グラフィー精製によりモノマーを取得した (図 8 (c), (d))。

PS-L を含む他のコンストラクトについても同様に発現精製を行った。

この手法では、細胞質内で重合反応が生じてしまうためモノマーを効率的に取得するこ とが困難である。この問題点を克服するための発現手法の検討の結果については章を改め、 第4章に詳細を記述した。

(a) 発現誘導後3hおよび5hのSDS-PAGEによる発現確認。超音波破砕後、遠心により可溶性画分と不溶性画分に分離して確認した。矢印はモノマーのバンド位置を示している。(b) Ni アフィニティークロマトグラフィーによる精製過程のSDS-PAGEによる確認。
 (c) サイズ排除クロマトグラフィーのクロマトグラム。HiLoad 26/60 Superdex 200を用いた。(d) 精製モノマーのSDS-PAGEによる確認。

3.5. 酸化還元環境による反応制御

精製した PS モノマーおよびその変異体(詳細は後述) E258A とΔSS(100 μM)を室温 で 16 h、酸化環境と還元環境に置いて反応性を確認した(図 9 (a))。その結果、PS は酸化 環境でもわずかに反応が観察されるものの、還元環境で重合反応が大きく促進されること が明らかになった。イソペプチド結合の形成に必須の Glu258⁴⁸を Ala に変異させた変異体 (E258A)は酸化還元環境にかかわらずまったく重合せず、ジスルフィド結合を形成する 残基をもとの Spy0128 の残基に再変異した変異体(ΔSS)は酸化還元環境にかかわらず重 合が進行した。したがって、重合はイソペプチド結合の形成によって進行し、ジスルフィ ド結合により重合反応が制御されることが示された。

還元環境で3h反応させたのち、8h酸化環境に置いたところ重合が進行する様子は確認 されなかったが、再び8h還元環境に置くと重合反応は進行した(図9(b))。したがって、 酸化還元環境の制御により重合反応の進行を制御できることが示された。

図 9:酸化還元環境による Protein shackle の反応制御 (a) PS、E258A、ASS の 16h反応サンプルの SDS-PAGE。M:精製モノマー(反応前)、 O:酸化環境反応サンプル、R:還元環境反応サンプル。(b)酸化還元環境の切り替え。 1:精製モノマー(反応前)、2:3h還元環境反応サンプル、3:2の後8h酸化環境反応サ ンプル、4:3の後8h還元環境反応サンプル。

3.6. 反応の pH および酸化還元剤依存性

pH を 7-10 の間で変化させ、2 種類の還元剤を用いて、反応性の比較を行った。100 μM、 室温で 16 時間反応させ、SDS-PAGE で重合状態の確認を行った(図 10 (a))。

その結果、反応の至適 pH は 8-9 で、還元剤には還元型グルタチオン(GSH)よりもジチオ スレイトール(DTT)を用いた方が反応速度は向上することが示された。還元剤による反 応性の差は、両者の還元ポテンシャルの差を反映したものだと考えられる。

続いて、酸化剤、還元剤の濃度依存性について調べた(図 10 (b))。酸化剤として酸化型 グルタチオン(GSSG)を用いた。その結果、酸化剤の濃度依存性についてはわずかに確認 されたものの、還元剤の濃度依存性は本実験の濃度領域(1-10 mM)では観察されなかっ た。

この結果より、反応バッファーには、50 mM Gly-NaOH pH 9、還元剤には DTT を用いることにした。

図 10: 重合反応の pH・酸化還元剤依存性

(a) pH、還元剤を変化させた反応サンプルの SDS-PAGE。M: 精製モノマー(反応前)、 pH 7: 50 mM リン酸-クエン酸バッファー、pH 8: 50 mM Tris-HCl、pH 9, 10: 50 mM Gly-NaOH、-: 還元剤非添加サンプル、DTT: 5 mM DTT 添加サンプル、 GSH: 5 mM GSH 添加サンプル。(b) 酸化還元剤の濃度依存性。M: 精製モノマー(反応前)、C: 酸 化還元剤非添加サンプル、GSSG: GSSG 添加サンプル、DTT: DTT 添加サンプル。バッ ファーは 50 mM Gly-NaOH pH 9 を用いた。

3.7. 反応の経時変化

PS および PS-L を室温、100 µM で反応させて、反応の経時変化を確認した(図 11)。その結果、どちらのコンストラクトも速度論的に反応が進行し、ほぼ同様の速度で反応することが示された。

図 11: 反応の経時変化

(a) PS の反応経時変化 SDS-PAGE。(b) PS-L の反応経時変化 SDS-PAGE。それぞれ反応開始後 0、1、3、6、10、24 h 後のサンプルを用いた。

45

3.8. 分子量分布

SDS-PAGE では高分子領域のバンドが重なり分離が不可能であるため重合度の分布を解 析することは難しい。そこで、Asymmetric flow field flow fractionation(AF4)を用いて 分離を行い、溶出液の UV 測定と Multi-angle light-scattering(MALS)測定により分子 量を決定することで、分子量分布を測定することにした。AF4 では、粒子径の大きい分子 ほど遅く溶出される。

100 μM の PS を 8 、16、24 h 重合させたサンプルの測定を行った(図 12)。溶出曲線 において、重合時間が長くなるほど溶出時間が遅くなった(図 12 (a))。すなわち、速度論 的に重合が進行して平均粒子径が増大していることを示唆している。これは、SDS-PAGE による反応速度解析の結果と一致している。さらに、溶出曲線から分子量分布を計算した ところ、いずれも高分子量側に裾の長いなだらかな分布が得られ、重合時間が進むにつれ て高分子量側に分布がシフトした(図 12 (b))。これは縮合重合の分子量分布の特徴であり、 PS の反応対がどちらも常に活性を有していることが示唆された。

図 12: AF4-MALS による分子量分布測定 (a) 溶出曲線および分子量曲線。(b) (a)より計算された分子量分布。

3.9. 二次構造と熱安定性

PSとPS・Lのモノマーとポリマーについて、円二色性偏光(CD)スペクトル測定を行った(図 13 (a))。両者のモノマーとポリマーはともにβシート構造に特徴的な 216 nm 付近に 負の極大を有するような形状を得た。ただし、極大値となる波長およびピークの高さがず れており、反応により若干の二次構造変化が生じていることが確認された。

続いて、PSのみについて 20 ℃から 90 ℃まで温度変化させて 222 nm の CD 値を測定 し (図 13 (b))、算出された変性中点温度 (T_m)とファントホッフエンタルピー変化 (ΔH_{VH}) およびそのモノマーとポリマーの差 (ΔT_m 、 $\Delta \Delta H_{VH}$)を表 1 に示した。 T_m 、 ΔH_{VH} ともにポ リマーの方が大きくなっており、重合反応により熱安定化することが示唆された。

図 13: CD 測定

(a)CD スペクトル測定。(b) 222 nm CD 値温度変化測定。

示差走査熱量測定(DSC)を用いて、熱安定性を測定した(図 14)。算出された T_m および熱測定エンタルピー変化 ΔH_{cal} を表1にCDから算出されたパラメータと共に示した。モノマーの熱容量曲線は複雑な形状でベースラインを正確に決定することができなかったのでパラメータの算出は行うことができなかった。ただし、PSモノマーの最初の変性ピークの中点温度はおよそ 64 ℃であり、ポリマーの T_m 71℃よりもかなり低いことは明らかである。したがって、重合反応によって熱安定化することがDSCからも示された。また、PS-Lは、PSよりもわずかに安定であることが示唆された。

PS ポリマーの測定において CD と DSC で得られたパラメータを比較すると、 T_m については 0.7 $^{\circ}$ Cしかずれていない。一方で、 ΔH_{VH} と ΔH_{cal} の差はやや大きいという結果を得た。 これは変性過程がファントホッフの式で想定される単純な二状態転移のモデルで記述できない可能性を示唆しており、段階的な変性状態が存在している可能性が示された。

		CD (<i>n</i> = 4)					DSC (<i>n</i> = 1)	
		<i>T</i> _m (°C)	ΔT_{m} (°C)	ΔH_{VH} (kcal mol ⁻¹)	$\Delta\Delta H_{VH}$ (kcal mol ⁻¹)	<i>T</i> _m (℃)	ΔH_{cal} (kcal mol ⁻¹)	
PS	モノマー	65.9 ± 0.5	4.3	61 ± 2	130	ND	ND	
	ポリマー	70.2 ± 0.3		191 ± 11		70.9	220	
PS-L	モノマー					ND	ND	
	ポリマー					71.2	248	

表 1: 熱力学パラメータ

*CD 測定のパラメータは平均値±標準偏差で表示している。

*ND = not determined

3.10. ポリマーの形態

原子間力顕微鏡(AFM)を用いてポリマーの形態解析を行った。マイカ基板表面にサン プル溶液を浸して蛋白質を吸着させたのち、溶液を取り除き乾燥させて測定を行った。

図 15 (a)に PS ポリマーを吸着させた基板を 4 µm 四方で測定を行ったときの像を示す。 長さが数百 nm で湾曲した形状の構造体が多数確認された。これを以降、Nanochain とよ ぶ。この像中の Nanochain を 5 つ拡大して図 15 (b)に示す。それぞれ曲率半径が異なり、 また S 字状に湾曲したものも存在する。すなわち、Nanochain は柔軟であることが示唆さ れた。天然の線毛は比較的伸長した構造をしているのにもかかわらず湾曲している原因と しては、モノマー間の架橋位置が異なるために配置が特定の方向に偏っているためである 可能性がある。

図 15 (c)に PS ポリマーを吸着させた基板を 200 nm 四方のサイズで測定したときの像の うち 150 nm 四方を切り抜いた像を示す。この像中の Nanochain は周期的なくびれのよう な構造を有している。すなわち、Nanochain が実際にモノマーが直列に繋がって構成され ている様子が明らかになった。

図 15: PS ポリマーの AFM 測定

(a) PS ポリマーの高さプロファイル (4 μm×4 μm)。(b) (a)より拡大表示した 5 つの Nanochain。(c) Nanochain の高さプロファイル (150 nm×150 nm)。

図 16: PS-L ポリマーの AFM 高さプロファイル (4 µm×4 µm)

図 16 に PS-L ポリマーを吸着させた基板を 4 µm 四方で測定を行ったときの像を示す。 基本的には PS ポリマーの像と変わらないが、円状に並んだように見える Nanochain が多 数観察された。これは吸着や乾燥の際に生じたアーティファクトであると考えているが詳 細は不明である。

いずれの像においても Nanochain の高さは 1 nm 程度であったが、結晶構造から予測される高さは 2-3 nm である。この原因としては、AFM が高さを過小評価する傾向にある ⁵⁹ 可能性や、乾燥のために Nanochain が変形しているという可能性が挙げられる。また、先行研究において、セレウス菌 *Bacillus cereus* の線毛の AFM 測定による高さ測定を行った際に、結晶構造から 3 nm の高さが予想されるにもかかわらず 1 nm 未満になるという報告も存在する ⁶⁰ため、この Nanochain は PS ポリマー由来の構造体であると結論できる。

3.11. 本章のまとめ

本章では、Protein shackleの基礎的な分子設計を行い、その物性を明らかにした。

Protein shackle は、Isopeptag システムを利用した共有結合により重合する蛋白質であ る。ジスルフィド結合で固定された蓋により活性ポケットが被覆され、酸化還元環境の変 化により反応性を制御することが可能となるように設計された。実際に、還元環境におい て重合反応が促進され、酸化還元環境の変化により可逆的に反応の進行を制御することが 可能であることが示された。また、重合は速度論的に進行し、縮合重合に特徴的な高分子 量側に裾の長い分子量分布となることが明らかになった。

Protein shackle ポリマーは高い熱安定性を示し、柔軟な線維状構造体を形成することが 明らかになった。

リンカーの長さを変えた2種類の Protein shackle を用いたが、物性に大きな差異はなかった。

第四章

Protein shackle の 発現方法検討

4.1. 本章の目的

Protein shackle を材料として利用するためには、高効率で大量に合成する手段を確立す る必要がある。本章では、モノマーの効率的取得を目指した発現方法の改良について検討 する。

4.2. 発現用大腸菌株の検討

Protein shackle は還元環境において重合する蛋白質である。したがって、大腸菌の還元 的な細胞質環境で Protein shackle は発現直後から重合が進行してしまう。そのため、モノ マーの状態でより多くの収量を実現するためには発現誘導後短時間で菌体回収を行う可能 性がある。発現量自体は非常に多いので、発現したあと細胞質中で重合してしまうものや 長時間培養すれば発現するであろう潜在的発現産物を無駄にしてしまい非常に非効率であ る。

そこで、細胞質が酸化的である大腸菌株を利用することにした。Origami 2 (DE3)は K-12 株由来の大腸菌株で、チオレドキシンリダクターゼ(TrxB) とグルタチオンリダクターゼ

(Gor)に変異が加えられて不活化されている。この還元酵素の変異によって、細胞質はより酸化的でジスルフィド結合を形成しやすい環境となっている。これにより、発現量の少ないペリプラズム発現を強いられていたジスルフィド結合を有する蛋白質を細胞質内で発現させることが可能である。このような遺伝子変異を有する大腸菌株によって、Fab 抗体 ⁶¹や一本鎖抗体(scFv)⁶²などの細胞質発現が確認されている。

実際に、Origami 2 (DE3)を用いて PS-L の発現確認を行い、BL21 (DE3)と比較した(図 17)。その結果、やや重合速度が抑えられているようにも見えるが、期待に反してどちらの

図 17: PS-L の発現確認

BL21 (DE3)と Origami 2 (DE3)について発現誘導後 3、5、7h 後の培養液を回収し、超 音波破砕して可溶性画分と不溶性画分に分けて泳動した。M:精製モノマー。 菌株を用いた場合にも細胞質内で重合は進行していた。さらに、Origami 2 (DE3)を用いて 大量培養も試みたが、少量培養の場合と異なり PS-L の発現はほとんど確認されなかった。 振とうの方法に問題があると考えられるが、重合抑制効果があまり期待できないためにこ れ以上の条件検討は行わず、この菌株を用いる方法は断念した。

4.3. 重合阻害蛋白質の共発現

Isopeptag に対する結合性を示し、かつイソペプチド結合は形成しないような蛋白質を設計し、それを細胞質内で Protein shackle と共発現すれば Protein shackle の重合反応と競合して重合を抑制することが可能ではないかと考えた。

そこで、Isopeptag 結合形成反応に必須の触媒残基である Glu258 を Ala に変異させた Spy0128 由来の Isopeptag 結合蛋白質 CproE258A を設計した。この蛋白質をコードする 遺伝子を pRSF-1b ベクター (Novagen) に挿入した。このプラスミドベクターは、Protein shackle の発現に利用している pCold ベクターとは異なる複製起点を有しており、2 種類の 抗生物質を用いた選択により両者を安定に大腸菌内に共存させることが可能である。

PS 発現ベクターと CproE258A 発現ベクター両者を用いて BL21 (DE3)の形質転換を行い、培養を行った。その結果、大腸菌の増殖および発現速度は PS 発現ベクターのみを用いた場合(図 8 (a))よりも遅くなるものの、一晩培養した菌体中にもモノマーが高い割合で 蓄積されており、顕著な重合阻害効果が確認された(図 18 (a))。

この菌体から PS の Ni アフィニティークロマトグラフィー精製を行った。PS を精製する ことはできたが、His-tag が融合されていないにもかかわらず無視できない量の CproE258A が同時に溶出されてきた(図 18 (b))。CproE258A がコンタミネーネーション してしまうと、特に重合が進んで未反応の Isopeptag 反応対の濃度が薄くなったときに大

図 18: CproE258A の共発現

(a)発現確認。発現誘導後0、3、16h後の培養液を回収し、超音波破砕して可溶性画分 と不溶性画分に分けて泳動した。(b) PSのNiアフィニティークロマトグラフィー精製。 きく重合反応の更なる進行を阻害してしまう恐れがある。分子量が PS と近いためサイズ排 除クロマトグラフィーによる分離は困難である。したがって、この手法を用いて発現を行 う場合は、Ni アフィニティークロマトグラフィー精製の洗浄工程を改良するか、 CproE258A にタグを付けて異なるアフィニティー精製を追加する必要がある。

4.4. 培地上清への発現の検討

4.4.1. Sec 経路を用いた発現

ジスルフィド結合を有する蛋白質の大腸菌での発現を試みる場合、最も一般的な手段は シグナルペプチドを N 末端に融合して、Sec 経路を介して目的蛋白質をペリプラズム画分 へ分泌させる方法である。ペリプラズムは酸化的環境であり、誤ったジスルフィド結合を 修正する機構も備わっているため、ジスルフィド結合を有する蛋白質の異種発現に適して いる。

現在までに大腸菌による異種分泌発現に利用されたシグナルペプチドは多数存在する (表 2)。シグナルペプチドは、2-10 アミノ酸の正電荷を有する N ドメイン、10-20 アミノ 酸の疎水的な H ドメイン、シグナルペプチダーゼに認識されて切断される C ドメインから 構成される。

表 2: 異種蛋白質大腸菌分泌発現で利用される代表的なシグナルペプチド ⁶⁴ N ドメインを太字、C ドメインを下線で表示する。

シグナルペプチド名	アミノ酸配列
PelB (pectate lyase B) from <i>Erwinia carotovora</i>	MKY LLPTAAAGLLLLAAQ <u>PAMA</u>
OmpA (outer-membrane protein A)	MKKT AIAIAVALA <u>GFATVAQA</u>
StII (heat-stable enterotoxin 2)	MKKNIAFLLASMFVFSIA <u>TNAYA</u>
Endoxylanase from <i>Bacillus sp.</i>	MFKFKKKFLVGLTAAFMSISMFS <u>ATASA</u>
PhoA (alkaline phosphatase)	MKQSTIALALLPLLFT <u>PVTKA</u>
OmpF (outer-membrane protein F)	MMKRNILAVIVPALLVA <u>GTANA</u>
PhoE (outer-membrane pore protein E)	MKKS TLALVVMGIVA <u>SASVQA</u>
MalE (maltose-binding protein)	MKIKTGARILALSALTTMMF <u>SASALA</u>
OmpC (outer-membrane protein C)	MKVK VLSLLVPALLVA <u>GAANA</u>
Lpp (murein lipoprotein)	MKATK LVLGAVILGST <u>LLAG</u>
LamB (λ receptor protein)	MMITLRKLPLAVAVAA <u>GVMSAQAMA</u>
OmpT (protease VII)	MRAKLLGIVLTT <u>PIAISSFA</u>
LTB (heat-labile enterotoxin subunit B)	MNKVKCYVLFTALLS <u>SLYAHG</u>

Sec 依存経路について簡潔に説明する ⁶³。リボソームで合成途中のポリペプチドのシグナ ル配列を認識して SecA、SecB が結合し、SecYEG トランスロコンへ目的ポリペプチドを 輸送する。トランスロコンは ATP を消費して、ポリペプチドを細胞質からペリプラズムに 分泌する。この際にシグナルペプチドはシグナルペプチダーゼによって切断される。この とき、ポリペプチドはほどかれた状態である。ポリペプチドはペリプラズムに分泌されて からフォールディングする。

異種発現によってペリプラズムに発現された蛋白質は、ペリプラズムに留まるか、外膜 を透過して細胞外へと分泌される。これはシグナルペプチドと分泌される蛋白質の性質に 依存する⁶⁴。細胞外へ分泌された場合には、菌体処理は不必要であり、プロテアーゼによる 分解もされにくいという利点がある。このため、ペリプラズムに発現された蛋白質を細胞 外へと分泌させるために、さまざまな手法が提案されている。

その一つが、培地中に外膜の強度を弱めて透過性を高めるような試薬を添加する方法で ある。グリシン(Gly)やTriton X-100を添加した場合に効果的に細胞外への分泌が促進さ れるという報告が数例なされている ⁶⁵⁻⁶⁷。

そこで、Protein shackle を細胞外、すなわち培地に分泌させることを目指した。この手 法の最大の利点としては、ペリプラズムおよび培地はともに酸化環境であり、かつ培地中 に分泌されると低濃度に希釈されるので、Protein shackle の重合を大きく抑えられる可能 性があることが挙げられる。さらに、ペリプラズムは小さいため、培地への分泌を促した 方が収量の観点からも期待できる。具体的には N 末端にシグナルペプチドを融合してペリ プラズムへの分泌発現を行い、試薬添加により細胞外へと分泌させることを目指した。

はじめに、シグナルペプチドとして PelB を用いた。PelB はもっとも一般的なシグナル ペプチドでさまざまな蛋白質の発現に利用されている。PelB を PS の N 末端に融合したベ クター (PelB-PS)を構築し、形質転換した大腸菌を Terrific broth を用いて培養した。37 ℃ で OD₆₀₀ が 0.6 になるまで培養し、終濃度 0.1 mM になるように IPTG を添加して発現誘導 を行い、その後は 28 ℃で連続培養を行った。発現誘導後 40 h 培養を行った後、各条件に おける発現の様子を SDS-PAGE の CBB 染色と抗 His-tag 抗体による Western blotting に より確認した (図 19)。その結果、Gly や Triton X-100 を添加しない状態においても PS は 培地上清に分泌されることが示された。ただし、発現量は少なく、分解物と考えられるバ ンドが確認された。

そこで PelB の代わりに、バチルス菌 *Bacillus sp*.由来の Endoxylanase 分泌シグナル (以降 Exl と表記する)を試した (Exl-PS)。Exl は 2000 年にはじめて大腸菌の異種発現用途に用いられ、高密度培養によって Alkaline phosphatase の収量が培地1 L あたり 5.2 gに達することが報告されている ⁶⁸。37 ℃で OD₆₀₀ が 0.5 になるまで培養し、3 種類の濃度をふって IPTG を添加して発現誘導を行い、その後は 28 ℃で連続培養を行った。発現誘導後 40 h 培養を行った後、各条件における発現の様子を SDS-PAGE の CBB 染色と抗 His-tag 抗体による Western blotting により確認した (図 20)。その結果、この場合は菌体内にも

上段: CBB 染色 SDS-PAGE、下段: Western blotting (抗 His-tag 抗体による検出)。

上段: CBB 染色 SDS-PAGE、下段: Western blotting (抗 His-tag 抗体による検出)。

PS は残存しており、これを Gly 添加により菌体外へ分泌させることができることが明らか になった。図 20 の実験は、図 19 よりも 5 倍希薄なサンプルを用いて SDS-PAGE サンプル の調製を行っている。それを考慮すると、PelB を用いた場合よりもやや発現量が向上して いることが示唆された。また、分解物のバンドもかなり小さくなった。IPTG 濃度による発 現量の顕著な変化は確認されなかった。

続いて、培養温度および末端への機能性ペプチドの融合による影響を検討した(図 21)。 誘導時に添加する IPTG は終濃度 0.2 mM、Gly は 1%で行った。温度は 20 ℃、25 ℃、37 ℃ の 3 条件で行った。末端への融合は、N 末端に K3 ペプチド(21 残基)を融合した K3-PS

(Exl-K3-PS)、C 末端に E3 ペプチド (21 残基) を融合した PS-E3 (Exl-PS-E3) を用意 した。その結果、PS と PS-E3 は 25 ℃で最も良好な発現を示し、20 ℃ではほとんど発現 が観察されず、37 ℃では培地上清への発現量が大きく低下した。一方、K3-PS はどの条件 においてもまったく発現が確認できなかった。

K3-PS の発現が確認できなかった原因について考察する。Sec 経路では、フォールディ ングされていない状態で目的蛋白質を細胞質からペリプラズムへと輸送する。したがって、 速くフォールディングする性質のある蛋白質は、フォールディングによって輸送を阻害し、 結果としてペリプラズムへの発現量が低下することが知られている⁶⁹。特に PS は N ドメ インに分子内イソペプチド結合を有しており、一度この結合が形成されてしまうと Sec ト ランスロコンを通過することは不可能になる。ゆえに、N 末端にペプチドを融合した場合 には合成速度が輸送速度を上回り、トランスロコンを通過する前にフォールディングが完 了してイソペプチド結合が形成されてしまい、発現が停止してしまうと考えられる。

以上より、Sec 経路を利用した発現方法は、特にN末端に機能性蛋白質を融合した Protein shackle の発現には不適当である可能性が高いと判断した。

図 21: Exl 融合 PS、K3-PS、PS-E3 の発現確認 Western blotting (抗 His-tag 抗体による検出)。

比較的発現の良好だった PS-E3 を大量培養して精製することにした。一般的に、培地上 清に発現した蛋白質は、硫安沈殿を行いバッファーに置換してから精製を行うことが多い。 しかしながら、作業が煩雑のためこの手順を省略し、直接 Ni アフィニティークロマトグラ フィー精製を行うことにした。

通常使用している Ni レジンを培地上清に加えて混和したところ、Ni²⁺イオンが脱離して しまった。そこで、Ni²⁺イオンが非常に強く結合しているレジン (Ni Sepharose excel、GE ヘルスケア)を用いることにした。これを培地上清に加えて混和し、レジンを回収してイ ミダゾールによる溶出を行った。その結果、わずかにダイマー、トライマーも存在するが、 非常に純度の高い PS-E3 を得ることができた (図 22)。

図 22: Exl 融合 PS-E3 の培地上清からの Ni アフィニティークロマトグラフィー精製

4.4.2. Tat 経路を用いた発現

Tat 経路は、Sec 経路とは異なり、フォールディングの完了した蛋白質をペリプラズムに 輸送する経路である。大腸菌では、N末端に融合したシグナルペプチドを認識して TatABC 複合体がペリプラズムへと目的蛋白質を輸送する⁷⁰。現在までに、Tat 経路を利用して大腸 菌による異種蛋白質発現を行った例が複数報告されている⁷¹⁻⁷⁴。Sec 経路とは反対の特性を 有することから、この経路による Protein shackle の発現を試みた。

そこで、PSのN末端にTorAシグナルペプチド(MNNNDLFQASRRRFLAQLGGLTV AGMLGPSLLTPRRATAAQA)を融合した発現ベクター(TorA-PS)を構築し、形質転換 した大腸菌をTerrific brothを用いて培養した。37 °Cで OD₆₀₀が 0.5 になるまで培養し、 終濃度 0.1 mMになるようにIPTGを添加して発現誘導を行い、その後は28 °Cまたは37 °C で連続培養を行った。発現誘導時に終濃度 1%になるように Glyを添加したものも用意した。 発現誘導後一晩培養を行った後、各条件における発現の様子を SDS-PAGE の CBB 染色と 抗 His-tag 抗体による Western blotting により確認した(図 23)。その結果、いずれの条件においても培地上清にはほとんど発現は確認されなかった。前項と同様の方法により、 微弱な発現が確認された 28 ℃培養、Gly 添加の条件における培養上清から PS を精製した (図 24)。収量は微量であり、さらにモノマーに対応するバンドが二重になった。これはシ グナルペプチダーゼによるシグナルペプチドの切断が不十分であることを示唆している。

したがって、この方法での Protein shackle の発現は不適当であると判断した。不溶性画 分に重合体が多く確認されたことから、ペリプラズムへの輸送速度が発現速度に追いつか ず、細胞質内で重合が生じてしまったと考えられる。今後、Tat 経路で発現を試みる場合に は、Tat システムを過剰発現した大腸菌を用いる方法 ^{74, 75} などにより輸送速度を向上させ ることで発現量が向上する可能性がある。

図 23: TorA 融合 PS の発現確認

上段: CBB 染色 SDS-PAGE、下段: Western blotting (抗 His-tag 抗体による検出)。

図 24: TorA 融合 PS の培地上清から Ni アフィニティークロマトグラフィー精製

4.5. 本章のまとめ

本章では、Protein shackle モノマーを効率的に取得するための発現精製方法の改良に取り組んだ。

はじめに、細胞内が酸化的な大腸菌株を用いて発現を行ったが、大きな重合抑制効果は 確認されなかった。

続いて、重合阻害蛋白質を共発現する手法を試したところ、モノマーを大腸菌細胞質内 に多く蓄積させることに成功した。しかしながら、2種類のベクターの共存する大腸菌を用 いたためか、生育が遅く、Protein shackle の発現速度も低下した。また、重合阻害蛋白質 が Protein shackle に一部結合したまま精製サンプルに残存してしまうため、さらなる精製 が必要になる。

最後に、細胞外分泌経路を用いて培地上清に Protein shackle を発現させる方法を試みた。 実際に Sec 経路により培地上清へと分泌された Protein shackle モノマーを高純度で精製す ることに成功した。しかしながら、発現量は十分ではなく、N 末端へのペプチドの融合に より分泌が完全に阻害されたことから汎用性に劣る。

本論文の他の章で用いた蛋白質は、本章で開発した手法を用いずに取得した。今後モノ マーを大量に取得する必要がある場合は、本章を参考にして発現手法を検討することが期 待される。

第五章

Protein shackle サブユニット間界面が 重合反応機構と形態に 与える影響の解析

5.1. 本章の目的

(a)

本章では、Isopeptag システムとは直接的には関係がない Protein shackle サブユニット 間の界面に焦点を当て、その反応速度とポリマーの形態への影響について検証する。

5.2. 結晶構造における Spy0128 サブユニット間界面

超遠心分析により、Spy0128 は溶液中ではモノマーとして存在することが明らかにされている ⁷⁶。一方、結晶構造中において Spy0128 は直列に配置されており、その界面は約 850 Å²の大きさで、非常に構造相補性が高いことが明らかにされている ⁴⁸ (図 25 (a))。反対に、並列方向の相互作用はほとんど存在していない。したがって線毛は、Sortase によって架橋された Spy0128 が直列に配置されることで構成されると考えられている。

もしこのような界面間の相互作用が存在するのであれば、Protein shackle のポリマーの 形態や、間接的に重合速度に影響を与える可能性がある。そこでこの界面間の相互作用を 減弱させるような変異体を作製し、その反応性や物性を精査することにした。

Pro108 は疎水的な相互作用界面の中心に位置している(図 25 (b))。この位置に変異を加 えることで界面が大きく乱され、相互作用を減弱させることができると考えられる。そこ で、P108E という変異を導入することにした。Glu は嵩高く、また電荷を有する側鎖を有 するアミノ酸であるため、Pro とは大きく性質が異なり、界面間の相互作用が大きく弱まる ことを期待した。

Trp141 は隣り合うサブユニットの Arg188 とカチオン-π相互作用している(図 25 (b))。 この残基に変異を加えることで、この特異的な相互作用を消失させることができる。そこ で W141A という変異を導入することにした。

PS に対する変異体は、そのまま P108E、W141A とそれぞれ表記し、PS-L に対する変 異体は P108E-L、W141A-L と表記する。

図 25: Spy0128 サブユニット間界面 (PDB: 3B2M) (a) 結晶構造における Spy0128 の配置。(b) Pro108 と Trp141 の位置。

5.3. 変異体の二次構造

各変異体は、第二章および第三章に示した PS の発現精製方法に則って調製した。 調製した変異体が正常にフォールディングしていることを確認するために、各変異体の モノマーとポリマーの CD スペクトル測定を行った(図 26)。その結果、各変異体のスペク トルは変異導入前(図 13)と同じような特徴を有しており、変異による構造への影響は大 きくない可能性が示唆された。

図 26: 各変異体の CD スペクトル (a) P108E と W141A。(b) P108E-L と W141A-L。

5.4. 変異体の重合反応速度

3.7.で行った実験と同様の条件で、SDS-PAGE で各変異体の反応速度を解析した(図 27)。 その結果、各変異体は変異導入前(図 11)よりも重合速度が著しく低下することが明らか になった。この結果から、「界面に導入した変異残基が界面間相互作用を阻害して反応速度 が低下した」という可能性が示唆されるが、一方で「変異により構造が崩れて Isopeptag 結合ポケットの活性が低下したために反応速度が低下した」という可能性も残される。

また、PS-L 変異体、特に W141A-L において、オリゴマーバンドに交じって由来不明の バンドが出現していた。これについては 5.8. において改めて考察する。

5.5. Isopeptag 含有ペプチド存在下における重合反応速度

もし変異によって Isopeptag 結合ポケットの活性が低下する場合は、単体の Isopeptag に対する反応性も等しく低下するはずである。これを確認するために、PS とその変異体に対して、Isopeptag 配列を含んだペプチドを過剰量添加した状態で重合反応を行うという実験を行った。Isopeptag は 16 残基から構成されるが、これだけだと SDS-PAGE での検出が難しく、PS と Isopeptag の複合体のバンドと PS のバンドの移動度が識別しにくい可能

図 28: Isopeptag 含有ペプチド存在下における重合反応の経時変化(SDS-PAGE) Isopeptag 含有ペプチドを、図中では Isopeptag と省略して表記した。

性がある。そのため、主に C 末端側に余分な配列を付加した 60 残基の Isopeptag 含有ペプ チドを利用した。このペプチドのモル濃度が PS のモル濃度の 10 倍になるように設定した 条件下で重合反応を行い、SDS-PAGE で反応の様子を解析した(図 28)。

その結果、反応開始2h後のSDS-PAGE像から明らかなように、変異体のIsopeptag含 有ペプチドに対する反応性はPSとほとんど変わらないことが示された。すなわち、変異に よってIsopeptag結合ポケットの活性は損なわれていないことが明らかになった。

さらに、驚くべきことに、PS は 10 倍量の競合ペプチドが存在するという条件にもかか わらず、重合反応が顕著に進行した。もし Isopeptag への反応性が、PS 末端に融合されて いるものに対しても、ペプチドに融合されているもの対しても変化しないのであれば、10 倍量存在するペプチドに対してほとんどの Isopeptag 結合ポケットが反応し、重合反応は 停止するはずである。重合が顕著に進行したということから、Isopeptag 結合ポケットが PS 末端に融合された Isopeptag をより強く認識して反応したことが強く示唆される。した がって、サブユニット間界面の相互作用が重合反応の進行を促進していることが示された。

5.6. 酸化環境における PS モノマーの分子状態

前項までに、重合反応におけるサブユニット間界面の相互作用の寄与が示唆されたが、 重合反応がほとんど進行しない酸化環境においてもこの相互作用が生じて会合体を形成す るか否かを確かめることにした。この相互作用は Spy0128 の超遠心分析によっても確認さ れなかった ⁷⁶ことから、より高感度の分析手法を用いる必要がある。

そこで、Asymmetric flow field flow fractionation (AF4) という手法を用いた。AF4 は 樹脂を用いずに、分離チャネル空間における流れの状態のみで粒子径に応じた分離を比較 的短時間 (10-30 min) で行うことができるので、弱い会合体を解離させることなく分離す ることが可能である。解離定数が μ M よりも大きいような弱い会合体を検出できるとされ ている ⁷⁷。実際に、抗体のエンドソームからのリサイクリングに関与する IgG/FcRn/HSA やシグナル伝達に関与する FGF21/FGFR/β-Klotho などの弱い 2 者、3 者間の会合を AF4 により検出し結合量論比を決定した例が報告されている ^{77, 78}。

PSとその変異体のモノマー溶液を、還元剤を含まない緩衝液を用いてAF4により分離し、 溶出液をリアルタイムでUV検出器とMulti angle light scattering (MALS)により分析し た(図 29)。PSモノマーは、右に裾の長い非対称なピークにより溶出された。遅く溶出さ れる構造体ほど粒子径が大きいので、主たる構造体よりも大きいサイズの構造体がモノマ ー溶液中に存在していることが示唆される。さらに、MALSによって算出された重量平均 分子量のプロットは右上がりになった。ピークの立ち上がりはおよそ 30 kDa であり、モノ マーの分子量である 35 kDa とほぼ一致した。ここから分子量が上昇し続け、かつ溶出曲線 が非対称であることから、オリゴマーの形成が示唆された。酸化環境のため Isopeptag シ ステムの反応による共有結合でつながった会合体はほとんど形成されないので、このオリ ゴマーは非共有結合性の会合体であると考えられる。一方変異体では、分子量プロットは 右上がりではあるが、溶出曲線がほぼ対称形になり、会合体の形成が大きく抑制されたこ

図 29:モノマー溶液の AF4-MALS による溶出曲線および分子量プロット

とが示唆された。すなわち、サブユニット間界面の変異によって会合体の形成が抑制され たことから、この会合はこの面と面の相互作用により生じたものであると結論できる。

5.7. 変異体の熱安定性

P108E と W141A について、20 ℃から 90 ℃まで温度変化させて 222 nm の CD 値を測 定した (図 30)。算出された T_m と ΔH_{VH} およびそのモノマーとポリマーの差 (ΔT_m 、 $\Delta \Delta H_{VH}$) を表 3 に示した。 ΔT_m に関しては、P108E では PS よりも小さく、W141A では PS よりも 大きくなり、変異体間で異なる挙動を示した。したがって、変性温度の観点からはサブユ ニット間界面の相互作用が安定化に寄与しているとはいえない。しかしながら、 $\Delta \Delta H_{VH}$ に 関しては、両変異体ともに PS よりも小さくなっている。したがって、ポリマーにおいて変 異導入した箇所がサブユニット間界面の相互作用に寄与している可能性が示唆された。

図 30: 222 nm CD 值温度変化測定

続いて、DSCの測定を行った(図 31)。P108E、W141Aに加えてP108E-L、W141A-L についても測定した。算出された T_m および ΔH_{cal} を表 3 に CD から算出されたパラメータ と共に示した。PS、PS-L と同様にモノマーのベースラインが複雑のため、モノマーのパラ メータ算出は行わなかった。PS と P108E、W141A の T_m に関してはいずれも CD の Tm と比較して 0.7 ℃だけ高いという良い相関が得られた。一方で、P108E と W141A の ΔH_{cal} に関しては CD より算出した ΔH_{VH} と大きく差が生じており、変異体の変性過程は単純な二 状態変性ではないことが示唆された。

PS、PS・L の変異体について、それぞれの変異前のパラメータとの差を比較する。PS と 比較して、P108E は T_m が 1.6 \mathbb{C} 、 ΔH_{cal} が 9 kcal mol⁻¹、W141A は T_m が 2.5 \mathbb{C} 、 ΔH_{cal} が 18 kcal mol⁻¹低下した。一方、PS・L と比較して、P108E・L は T_m が 1.2 \mathbb{C} 、 ΔH_{cal} が 19 kcal mol⁻¹、W141A・L は T_m が 2.0 \mathbb{C} 、 ΔH_{cal} が 29 kcal mol⁻¹低下した。つまり、リンカー を長くすることにより、サブユニット間界面への変異による T_m の低下幅は抑制され、反対 に ΔH_{cal} の低下幅はより大きくなった。どのような原因によりこのような T_m と ΔH_{cal} の対照 的な変化が生じるのかは不明であるが、少なくともポリマー中でサブユニット間どうしの 相互作用が存在して、ポリマーの安定性に影響していることが明らかになった。

図 31: DSC 測定

表 3: 熱力学的パラメータ

		CD (<i>n</i> = 4)					DSC (<i>n</i> = 1)	
		7 _m (°C)	$\Delta T_{\rm m}$ (°C)	$\Delta H_{\rm VH}$ (kcal mol ⁻¹)	$\Delta\Delta H_{\rm VH}$ (kcal mol ⁻¹)	<i>T</i> _m (°C)	ΔH_{cal} (kcal mol ⁻¹)	
PS	モノマー	65.9 ± 0.5	4.3	61 ± 2	- 130	ND	ND	
	ポリマー	70.2 ± 0.3		191 ± 11		70.9	220	
P108E	モノマー	64.8 ± 0.1	3.8	69 ± 1	- 80	ND	ND	
	ポリマー	68.6 ± 0.1		149 ± 12		69.3	211	
W141A	モノマー	62.6 ± 0.1	5.1	94 ± 1	- 73	ND	ND	
	ポリマー	67.7 ± 0.1		167 ± 5		68.4	202	
PS-L	モノマー					ND	ND	
	ポリマー						248	
P108E-L	モノマー					ND	ND	
	ポリマー					70.0	229	
W141-L	モノマー					ND	ND	
	ポリマー					69.2	219	

*CD 測定のパラメータは平均値±標準偏差で表示している。

*ND = not determined

5.8. 変異体ポリマーの形態

P108E と W141A のポリマーの形態を AFM により解析した。マイカ基板表面にサンプ ル溶液を浸して蛋白質を吸着させたのち、溶液を取り除き乾燥させて測定を行った。

その結果、いずれのサンプル中にも、明確に線維といえるような構造体は確認されず、 粒子様の構造が数多く確認された(図 32 (a), (c))。一部、三日月状の構造体が観察された が(図 32 (b), (d))、変異前(図 14)と比較して径が太くかつ一定ではない。これは、図 32 (e)に示すように、ポリマーを構成するサブユニットがジグザグ状に配置されたために、 AFM の水平分解能の限界からこのように観察されたのだと考えられる。したがって、サブ ユニット間界面の相互作用を破壊することによって、サブユニットが直列に整列されにく くなり、線維構造を保てなくなった可能性が示唆された。したがって、5.4.において PS-L 変異体の反応サンプルに由来不明のバンドが出現した理由は、線維構造を保てなくなった ためにポリマーの頭と尾が接近して結合した環状構造体が形成されたことが原因である可 能性がある。

図 32: 変異体ポリマーの AFM 測定

(a) P108E ポリマーの高さプロファイル (4 μm×4 μm)。(b) (a)より拡大表示した 5 つの 構造体。(c) W141A ポリマーの高さプロファイル (4 μm×4 μm)。(d) (c)より拡大表示 した 5 つの構造体。(e) 構造体が一定しない径を有していない理由を考察した模式図。

5.9. 本章のまとめ

本章では、結晶構造において確認されたサブユニット間の相互作用の重合反応およびポ リマー構造に与える影響を明らかにした。

はじめに、相互作用界面を精査し、界面に1残基の変異を加えた各2種類のPSおよび PS-L変異体を作製した。

変異によって反応速度が減少し、かつ変異前の PS だけが競合ペプチドの存在下でも顕著 に重合したことから、サブユニット間界面の相互作用が反応速度を向上させていることが 示された。さらに AF4-MALS の解析により、PS モノマー溶液中に非共有結合によるオリ ゴマーが存在し、変異体ではその形成が大きく抑制されていることが示され、実際にサブ ユニット間相互作用による会合体が形成されていることが示唆された。

CD および DSC における熱安定性測定により、変異した残基がポリマー構造中の相互作 用に貢献している可能性が示唆された。

AFM による形態観察より、変異体のポリマーは線維状の構造をとらないことが明らかに なり、サブユニット間界面の相互作用がサブユニットを整列させて線維状構造を形成させ ていることが示された。

第六章

機能性高次構造体の構築

6.1. 本章の目的

Protein shackle を材料して応用するために、機能性分子を修飾する手段を確立する。さらに、その修飾手段を利用して機能性分子を融合することで、ユニークな特性を有する高次構造体を創製する。

6.2. Protein shackle の N 末端への緑色蛍光蛋白質の融合

機能性ペプチドや機能性蛋白質を Protein shackle に融合することで Protein shackle を 機能化し、重合することで機能性高次構造体を創製することを目標とした。そのためのモ デルとして、N 末端に緑色蛍光蛋白質(GFP、分子量 26 kDa)を融合した PS(GFP-PS) を設計した(図 33 (a))。N 末端側に融合した理由は、PSのN 末端のβストランドが分子内 イソペプチド結合により固定されており、多少の張力にも PS がアンフォールドすることな く耐えられると期待したためである。実際に、Single molecule force spectroscopy という 手法を用いて Spy0128 を両末端から引っ張る実験を行ったところ、800 pN もの力をかけ てもアンフォールドしなかったという報告⁷⁹が存在することから、PS が力学的に非常に安 定な足場蛋白質になることが期待される。

設計した GFP-PS を PS と同様の方法で調製した。精製した GFP-PS モノマーおよびイ ソペプチド結合に必須の残基を変異させた変異体 GFP-PS E258A(100 μM)を室温で 16 h、 酸化環境と還元環境に置いて反応性を確認した(図 33 (b))。その結果、GFP-PS は PS よ りも反応速度は遅いものの、還元環境で重合反応が大きく促進されることが明らかになっ た。また、GFP-PS E258A は酸化還元環境にかかわらず重合しなかったことから、分子間 イソペプチド結合による重合であることが確認された。続いて、GFP-PS の反応の経時変化 を確認したところ、PS と同様に速度論的に反応が進行することが示された(図 33 (c))。

図 33: GFP-PS の設計と反応性

(a) GFP-PS の設計模式図。(b) GFP-PS と GFP-PS E258A の 16 h 反応サンプルの
SDS-PAGE。M: 精製モノマー(反応前)、O: 酸化環境反応サンプル、R: 還元環境反応
サンプル。(c) GFP-PS の反応経時変化 SDS-PAGE。

図 34: GFP-PS の蛍光能

(a) GFP-PS モノマーおよびポリマーの紫外線照射下の蛍光の様子。(b) GFP、GFP-PS モノマー、GFP-PS ポリマー溶液の GFP サブユニットに対する 515 nm 蛍光強度のプロ ット。

GFP-PS の重合前後における蛍光能を比較した。図 34 (a)に示すように、目視では重合前 後で蛍光能はまったく変化せず、重合後も蛍光能を保たれていた。定量的に比較を行うた めに、GFP を対照サンプルとして、GFP-PS のモノマーおよびポリマーについて、GFP サ ブユニットのモル濃度に対する蛍光強度をプロットし、検量線を作成してその傾きを蛍光 能として比較した(図 34 (b))。その結果、GFP の傾きは 79.5 μ M⁻¹ (R^2 = 0.994)、GFP-PS モノマーは 85.5 μ M⁻¹ (R^2 = 0.997)、GFP-PS ポリマーは 89.3 μ M⁻¹ (R^2 = 0.997) となり、 重合により GFP の蛍光能は損なわれないことが明らかになった。

以上より、N 末端への機能性蛋白質の融合は PS の修飾手段として有効であることが示された。

6.3. 分子認識性ペプチドの重合による結合能の向上

IgG は抗原結合部位を分子内に 2 つ有することで、多数の抗原が隣接して存在する部位 への見かけの結合力を向上させている。この作用を、Avidity 効果や多価効果とよぶ⁸⁰。こ の作用を狙って、特に改変抗体において、多価の抗原結合部位を有するような分子が多数 提案されている⁸¹。Protein shackle は重合によって簡便に多価の結合ユニットを設けるこ とができるため、弱い結合能(Affinity)しか有さない結合ユニットの見かけの結合能 (Avidity)を重合によって向上させることが可能ではないかと予想した。

これを証明するためのモデルとして、コイルドコイルヘテロダイマーの相互作用を利用 することにした。VAAL K3(以下 K3と表記する)と VAAL E3(以下 E3と表記する)は それぞれ 21 残基のアミノ酸から構成される人工ペプチドであり、4 μM の Affinity で相互

(a)
作用してコイルドコイルヘテロダイマーを形成することが知られている⁸²。K3 を PS の N 末端に融合した蛋白質(K3-PS)と、E3 を GST の C 末端に融合した蛋白質(GST-E3)を 作製した。GST-E3 をセンサーチップに固定化し、K3-PS 溶液を重合度の異なる状態で添 加してその相互作用を表面プラズモン共鳴法(SPR)により検出することにした(図 35 (a))。

K3-PS は、それぞれ 0、3、16 h 重合させた平均重合度の異なる 3 種類のサンプルを用意 した(図 35 (b))。モノマーユニットの濃度が 31.3 nM の場合のセンサーグラムを図 35 (c) に示す。この濃度条件においては、濃度依存的に重合時間の長い、すなわち平均重合度の 大きいサンプルほど強くセンサーチップに結合することが明らかになった。具体的には、 K3-PS 溶液添加 180 s 後の SPR レスポンスが、16 h 重合サンプルは 0 h 重合サンプル (モ

図 35: K3-PS の相互作用特性

(a) SPR 実験模式図。(b) 相互作用実験に用いた各サンプルの SDS-PAGE。(c) モノマー ユニットの濃度が 31.3 nM のときのセンサーグラム。(d) K3-PS サブユニット濃度に対 する添加 180 s 後の規格化 SPR レスポンス。各プロットをシグモイド曲線でフィッティ ングし、得られた *R*max によりレスポンスを規格化した。

ノマー)の 5.1 倍となった。この K3-PS 溶液添加 180 s 後の SPR レスポンスを濃度を変化 させてプロットした(図 35 (d))。このプロットは一般にシグモイド曲線を示し、その中点 が解離平衡定数 Ko に相当する濃度となる。モノマーサンプルは、濃度を上昇させてもレス ポンスが頭打ちにならかったことから信頼度は低いが、フィッティングを行ったところそ の中点はおよそ 4 μM となった。先行研究により超遠心分析で測定された K3 と E3 の Ko は 4 μM であり、この値はおおよそ信頼できるものであると考えられる。一方、3 h、16 h 重合サンプルのシグモイド中点はこの順に低濃度側へシフトし、16 h 重合サンプルの中点 濃度はおよそ 0.4 μM となった。すなわち、見かけの結合能は 10 倍上昇したと結論できる。

以上のように重合による結合能の上昇は証明できたものの、その上昇幅は期待よりも小 さかった。その原因としては、コイルドコイル形成ペプチドはヘテロダイマーを形成しや すいように設計されているがホモ相互作用も起こりうるため、ポリマーにおいてペプチド の有効濃度が上昇して分子内で相互作用してしまい、表面に提示されたペプチドが少なく なった可能性が考えられる。また、コイルドコイル形成はフォールディングを含む動的な 結合であるために、抗体抗原相互作用のような大きな構造変化を伴わない相互作用とは効 果が異なる可能性もある。したがって、今後この手法の有用性を改めて検討する際には、 大きな構造変化を伴わない特異的な相互作用を利用する必要があると考えられる。

6.4. ポリアクリルアミドゲルへの Protein shackle ポリマーの固定化

酵素は穏和な条件下で高効率・高選択的に反応を触媒することから、有用物質生産に広 く利用されている。酵素を固定化する研究は古くから盛んになされている^{83,84}。酵素を固 定化する利点としては、反応産物との分離が容易であることや、酵素の安定性が高まるこ となどが挙げられる。

酵素の固定化方法としては、大きく分けて以下の3種類の方法が存在する。

- ① 物理吸着や静電相互作用、共有結合を通じて直接担体に結合させる方法
- ② 酵素の存在下で構造体の形成を行い、その孔の中に酵素を閉じ込める方法
- ③ 酵素どうしを架橋して不溶性の粒子とする方法

ポリアクリルアミドゲルはあらゆる反応条件下でも安定であることから、酵素固定化の 担体として適しているとされている⁸⁵。しかしながら、②の方法により酵素固定ヒドロゲル を調製すると、酵素活性が大きく損なわれてしまうことが知られている⁸⁶。これは、アクリ ルアミドモノマーや重合開始・促進剤である過硫酸アンモニウム(APS)、*N,N,N',N*^{*} tetramethylethane-1,2-diamine(TEMED)が酵素と反応して不活性化させてしまうこと が原因とされている。特に、Cys は酵素活性部位に存在することが多く、かつアクリルアミ ドと反応しやすいことから、このような酵素は不活性化しやすいと考えられる。

そこで、Isopeptag と反応するような蛋白質を②のような方法で先にポリアクリルアミド ゲルに固定化し、その後このゲルをよく洗浄してから目的酵素を融合した Protein shackle を反応させれば、酵素が不活性化することなくポリアクリルアミドゲルに固定化できるの ではないかと予想した。さらに、Protein shackle は重合可能なため、担体との相互作用点 が少なくても多くの固定化量を実現できることからも有用であると考えられる。この手法 は、広い意味で①、②、③の混合型であると考えられる。

予め固定化する蛋白質として、N 末端に Cys を有する Isopeptag 結合蛋白質 (C-Cpro) を設計した。N 末端に Cys を有する蛋白質をそのまま大腸菌で発現すると、開始 Met が切 断されない、Cys 側鎖が化学修飾を受けるという報告がなされている ⁸⁷ ため、SUMO-tag を N 末端に融合した状態で発現を行い、in vitro において SUMO 特異的プロテアーゼ Ulp1 により SUMO-tag を切断することで N 末端に Cys を有する C-Cpro を調製することにした。 Cys 側鎖のチオール基を *N*,*N*⁻methylene-bisacrylamide と反応させることでアクリルアミ ド基を修飾し、アクリルアミドゲル反応液に混合して共重合させることで、ポリアクリル アミドゲルネットワークへの固定化を行う (図 36 (a))。

C・Cproの発現精製を行い、高純度の C・Cpro を取得した(図 36 (b))。DTT による還元処 理を行った後、室温で大過剰の *N*,*N*⁴methylene-bisacrylamide と 1 h 反応させ、未反応の 試薬を限外ろ過によって除去した。この修飾 C・Cpro 溶液を用いて、6.3% アクリルアミド、 7.7 mg mL⁻¹ C・Cpro を含む反応液を調製した。また、C・Cpro を含まない 6.3% アクリルア ミド溶液も用意した。これらの反応液に APS と TEMED を添加して混合し、室温で 1 h 程 度静置したところ、ヒドロゲルが生成した。これらのヒドロゲルを緩衝液で洗浄したのち、 約 2 倍体積量の Protein shackle 反応液 (30 µM GFP-PS, 70 µM PS) に 5 h 浸した。この 反応液には GFP-PS が含まれているので、その蛍光能から固定化の有無が判断できる。反 応液から取り出した直後のヒドロゲルは、図 36 上段のように両者とも蛍光能が確認された。 しかしながら、これらのヒドロゲルを緩衝液で一晩穏やかに洗浄したところ C・Cpro を修飾 したヒドロゲルのみが強い蛍光能を維持していた (図 36 下段)。したがって、C・Cpro を介 したポリアクリルアミドゲルへの PS の修飾が可能であると示された。

PS を利用したヒドロゲルへの機能性蛋白質の修飾が可能であることが示されたため、今後は実際に酵素を修飾してその機能や物性を精査することが期待される。

UV イルミネータ(365 nm)にて撮影した。

6.5. 本章のまとめ

本章では、Protein shackle を材料として利用することを目指して Protein shackle の機能化を行った。

はじめに、GFP を Protein shackle の N 末端に融合したコンストラクトが GFP の蛍光能 を維持したまま重合可能であることが示され、N 末端への機能性蛋白質の融合が可能であ ることが明らかになった。

N 末端に分子認識性のペプチドを融合した Protein shackle を重合したところ、標的分子 への見かけの結合能が向上することが明らかになった。したがって、検出試薬となりうる 低親和性の分子認識素子を Protein shackle を足場として重合することで、標的分子の密集 した部位への結合能を簡便に向上させることができる可能性が示された。

さらに、酵素の穏和な条件での担体への固定化を目指し、Protein shackle をポリアクリ ルアミドゲルに修飾する方法を開発した。今後、この手法を用いて酵素を実際に修飾する ことで有用性を検討する必要がある。

第七章

蛋白質は主として 20 種類のアミノ酸から構成される生体高分子である。生命の誕生以来 進化の過程を経て、多様な配列から生じる多様な構造により多様な機能が創出されてきた。 現状では、安定性や生産コスト等の問題により蛋白質を材料として利用できる可能性は大 きく制限されているが、それでもなお蛋白質の生み出すユニークな機能は酵素や医薬品と しての応用だけに留めておくには勿体ないほどの潜在的能力を有している。

本研究では、蛋白質の新たな可能性を追求することを目指して、直列に重合する蛋白質を設計してその物性を詳細に解析し、機能性高次構造体の構築を行った。

第三章では、重合性蛋白質 Protein shackle の基本設計を確立し、その反応性と物性を明 らかにした。Protein shackle はレンサ球菌の線毛構成蛋白質である Spy0128 を基にして設 計された。Spy0128 は分子内イソペプチド結合を有し、2 つのパーツに分解してから混合 することでこの共有結合を分子間に形成することができる(Isopeptag システム)。 Isopeptag に相当する Spy1028 の C 末端の部分を N 末端へと移設することで、この性質を 利用して自発的に重合するように意図した。さらに、空いた C 末端の Isopeptag 結合ポケ ットを、代わりに C 末端に融合したペプチドの蓋で覆った。この蓋はジスルフィド結合で 固定されており、酸化環境で反応を阻害するが、還元環境では解離して反応が可能になる。 こうして設計された蛋白質は実際に酸化還元環境の変化により重合活性の制御が可能であ り、速度論的に不可逆に重合が進行することが示された。重合は両反応対が常に活性を有 するために、なだらかな分子量分布を示した。ポリマーは変性中点温度 70 ℃程度の熱安定 な構造体であり、柔軟な線維状構造(Nanochain)を示すことが明らかになった。

第四章では、Protein shackle の発現方法について検討した。Protein shackle は大腸菌の 細胞質内に発現させる通常の発現方法では、重合が細胞質内で速やかに進行してしまうた め、モノマーとして大量に精製することが極めて困難である。そこで、大腸菌株の検討や 重合阻害蛋白質の共発現、培地上清への発現を試みた。いくつかの方法で良い結果が得ら れたが、従来の方法を置き換えるまでのメリットは得られなかった。しかしながら、この 章で得られた結果は、今後の発現方法改良への重要な示唆を与える知見である。

第五章では、Protein shackle において重合反応に直接関与しないサブユニット界面間の 相互作用が、反応速度やポリマーの形態に与える影響について検証した。Protein shackle の骨格である Spy0128 は結晶構造中で直列に相互作用して配置されており、これは線毛に おけるサブユニットの配置を示唆している。この界面の相互作用に重要であると判断した 残基に変異を加えて変異体を作製した。この変異体は変異前の Protein shackle と比較して、 Isopeptag 結合ポケットの活性は保っているにもかかわらず、重合速度は大きく減少するこ とが示された。さらに、Isopeptag 含有ペプチドが大過剰の条件下でも変異前の Protein shackle は顕著に重合が進行したことから、サブユニット界面間の相互作用が Protein shackle の反応を促進していることが明らかになった。さらに、実際に溶液中で弱くこのよ うな相互作用による会合体が生じていることも示された。また、変異体ポリマーは線維状 ではなく粒子様の構造になることが示され、サブユニット間界面の相互作用はポリマーの 形態にも大きく影響を与えることがわかった。

第六章では、Protein shackle を材料へ応用することを目指して、Protein shackle を利用 した機能性高次構造体を構築した。はじめに、GFP を Protein shackle の N 末端に融合し た蛋白質を作製し、この蛋白質が実際に蛍光能を維持したまま重合したことから、融合す る機能性蛋白質がその機能を保持したまま重合可能であることを示した。続いて、Protein shackle に融合した分子認識性ペプチドが、重合によってそのターゲットへの結合能を向上 させることを証明した。最後に、ポリアクリルアミドゲルに Isopeptag 反応性蛋白質を固 定化し、ヒドロゲル形成後に Protein shackle を反応させることで穏和に機能性蛋白質を固 定化することが可能であることを示した。

以上より、Protein shackle の設計と物性解析が完了し、機能性高次構造体への応用可能 性が示されたといえる。Protein shackle によりポリマーの特徴を以下に示す。

- ▶ 反応制御が可能である。
- ▶ 直径 2-3 nm の柔軟な線維状構造体を形成する。
- ▶ 10 nmの周期構造を形成する。
- ▶ 高い熱安定性と溶解性を有する。
- ▶ 機能性蛋白質の融合が可能である。

これらの特徴を活かすような機能性高次構造体を作製することが今後の課題となる。 Protein shackleは、いわば蛋白質における「Glycine」であり、側鎖を有した「アミノ酸」 のバリエーションを構築して、それらの共重合体としての「蛋白質」を構築することが最 終目標となる。それを達成するためのいくつかの具体的な課題を以下に示す。

重合の順番を制御する

現在は何種類かのモノマーを混合して共重合させても、その順番はランダムになっ ているものと考えられる。Isopeptag 反応対の他に、別の特異性を有する反応対を用意 すれば交互共重合が達成できると考えられる。この場合、同時に自己重合を起こさな くなるので、モノマーの取得もより容易になると考えられる。ただし、まったく異な る反応対を導入する場合サブユニット界面間の相互作用が消失するために線維状構造 を保てなく恐れがあるので、Isopeptag 反応対の一部を改変して特異性を変換するのが 最も望ましい。

重合度を制御する

現在は重合度分布が広くなっているため、均一性の低いポリマー溶液しか調製する ことができない。試みは成功しなかったが、N 末端の Isopeptag が反応することによ り Protein shackle の N ドメインが構造変化し、さらにそれが C ドメインに伝播され ることで C ドメインの結合ポケットが活性化されることを目指した設計にも取り組ん だ。このような機能を有する分子は活性末端を限定することができることから、リビ ング重合のように狭い分子量分布のポリマーが得られることが期待される。

また、1)で述べた2種類の分子による共重合の系を確立できれば、固相合成により均 ーのポリマーが得られると考えられる。この場合は、反応速度をより向上させ、各ス テップの反応率を100%に近づける必要がある。

3) 濃厚溶液における Nanochain の物性を明らかにする

本論文では Protein shackle の物性を詳細に解析したが、重量濃度 1%未満の希薄溶 液中における解析に留まっている。コラーゲンやケラチン等の生物材料の骨格となる ような蛋白質はより高濃度の、線維同士が密に相互作用するような状態で存在する。 一般に、異方性を有する構造体は濃度を上昇させると液晶状態になるといわれている。 そのような規則的な配向性を示したときに、どのような性質を発現するのかは大変興 味深い。

4) どのような機能性蛋白質を融合するのか

本論文ではGFPと分子認識性ペプチドを機能性蛋白質として融合した。ポリアクリ ルアミドゲルへの修飾に関しては、本論文ではモデルとしてGFPを修飾したが、実際 は酵素を修飾することを想定しており、今後は酵素を修飾した場合の酵素固定化ヒド ロゲルの特性を明らかにする必要がある。

また、ポリマー間を架橋するような互いに相互作用するような蛋白質対を融合すれ ば、ヒドロゲルのようなマクロな物性が変化した構造体を得ることができると考えら れる。さらに、無機材料や表面抗原を認識するような蛋白質を共重合すれば、接着性 の材料としての応用が可能になると期待される。

5) 大量調製系を構築する

Protein shackle を材料として利用するためには、当然ながら低コストで大量に調製 できる系の確立が必須である。第四章で大腸菌発現系の改良を試みたが、十分とはい えない結果だった。Protein shackle の由来である Spy0128 はグラム陽性菌から Sec 輸送経路で分泌される蛋白質である。グラム陽性菌の *Brevibacillus* を用いた発現系は Sec 経路による分泌経路による大量発現が可能であるとされており、試してみる価値は あると考えている。その他にも、Tat 経路を用いた微生物発現系なども盛んに開発され ており、最適な発現精製系を模索していく必要がある。

以上の課題の他にも、様々な着眼点からさらなる研究を展開することが可能である。本 研究が、他の蛋白質材料分野の研究を刺激し、当該分野を一層盛り上げられるような今後 の展開につながることを大いに期待している。

参考文献

- Ishii, D. et al. Stepwise Characterization of the Thermodynamics of Trichocyte Intermediate Filament Protein Supramolecular Assembly. *Journal of Molecular Biology* 408, 832-838 (2011).
- Godsel, L., Hobbs, R. & Green, K. Intermediate filament assembly: dynamics to disease. *Trends in Cell Biology* 18, 28-37 (2008).
- Matsunaga, R. et al. Bidirectional binding property of high glycine-tyrosine keratin-associated protein contributes to the mechanical strength and shape of hair. *Journal of Structural Biology* 183, 484-494 (2013).
- Yamamoto, Y. et al. Effects of Peptides on CaCO₃ Crystallization: Mineralization Properties of an Acidic Peptide Isolated from Exoskeleton of Crayfish and Its Derivatives. Crystal Growth & Design 8, 4062-4065 (2008).
- Kumagai, H. et al. CaCO₃/Chitin hybrids: recombinant acidic peptides based on a peptide extracted from the exoskeleton of a crayfish controls the structures of the hybrids. *Faraday Discussions* 159, 483-494 (2012).
- Woolfson, D. & Mahmoud, Z. More than just bare scaffolds: towards multi-component and decorated fibrous biomaterials. *Chemical Society Reviews* 39, 3464-3479 (2010).
- 7. Pandya, M. et al. Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis. *Biochemistry* **39**, 8728-8734 (2000).
- Smith, A., Banwell, E., Edwards, W., Pandya, M. & Woolfson, D. Engineering increased stability into self-assembled protein fibers. *Advanced Functional Materials* 16, 1022-1030 (2006).
- Papapostolou, D. et al. Engineering nanoscale order into a designed protein fiber. *Proceedings of the National Academy of Sciences of the United States of America* **104**, 10853-10858 (2007).
- Banwell, E. et al. Rational design and application of responsive α-helical peptide hydrogels. *Nature Materials* 8, 596-600 (2009).
- Mahmoud, Z., Grundy, D., Channon, K. & Woolfson, D. The non-covalent decoration of self-assembling protein fibers. *Biomaterials* 31, 7468-7474 (2010).
- Mahmoud, Z., Gunnoo, S., Thomson, A., Fletcher, J. & Woolfson, D. Bioorthogonal dual functionalization of self-assembling peptide fibers. *Biomaterials* 32, 3712-3720 (2011).
- 13. Ostrov, N. & Gazit, E. Genetic Engineering of Biomolecular Scaffolds for the

Fabrication of Organic and Metallic Nanowires. *Angewandte Chemie-International Edition* **49**, 3018-3021 (2010).

- Lowe, J. & Amos, L. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203-206 (1998).
- 15. Chen, A. et al. Synthesis and patterning of tunable multiscale materials with engineered cells. *Nature Materials* **13**, 515-523 (2014).
- 16. Usui, K. et al. Nanoscale elongating control of the self-assembled protein filament with the cysteine-introduced building blocks. *Protein Science* **18**, 960-969 (2009).
- Oohora, K. et al. Chemically Programmed Supramolecular Assembly of Hemoprotein and Streptavidin with Alternating Alignment. Angewandte Chemie-International Edition 51, 3818-3821 (2012).
- Kitagishi, H. et al. Self-Assembly of One- and Two-Dimensional Hemoprotein Systems by Polymerization through Heme-Heme Pocket Interactions. *Angewandte Chemie-International Edition* 48, 1271-1274 (2009).
- Kitagishi, H. et al. Supramolecular hemoprotein linear assembly by successive interprotein heme-heme pocket interactions. *Journal of the American Chemical Society* 129, 10326-10327 (2007).
- Phillips, J., Millership, C. & Main, E. Fibrous Nanostructures from the Self-Assembly of Designed Repeat Protein Modules. Angewandte Chemie-International Edition 51, 13132-13135 (2012).
- Cao, B., Xu, H. & Mao, C. Controlled Self-Assembly of Rodlike Bacterial Pili Particles into Ordered Lattices. *Angewandte Chemie-International Edition* 50, 6264-6268 (2011).
- 22. Brodin, J. et al. Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. *Nature Chemistry* **4**, 375-382 (2012).
- Brodin, J., Carr, J., Sontz, P. & Tezcan, F. Exceptionally stable, redox-active supramolecular protein assemblies with emergent properties. *Proceedings of the National Academy of Sciences of the United States of America* 111, 2897-2902 (2014).
- Sinclair, J., Davies, K., Venien-Bryan, C. & Noble, M. Generation of protein lattices by fusing proteins with matching rotational symmetry. *Nature Nanotechnology* 6, 558-562 (2011).
- 25. King, N. et al. Accurate design of co-assembling multi-component protein nanomaterials. *Nature* **510**, 103-108 (2014).
- Fletcher, J. et al. Self-Assembling Cages from Coiled-Coil Peptide Modules. *Science* 340, 595-599 (2013).

- 27. Lai, Y. et al. Structure of a designed protein cage that self-assembles into a highly porous cube. *Nature chemistry* **6**, 1065–1071 (2014).
- Miyata, T., Asami, N. & Uragami, T. A reversibly antigen-responsive hydrogel. Nature 399, 766-769 (1999).
- 29. Sui, Z., King, W. & Murphy, W. Protein-based hydrogels with tunable dynamic responses. *Advanced Functional Materials* **18**, 1824-1831 (2008).
- Lv, S., Cao, Y. & Li, H. Tandem Modular Protein-Based Hydrogels Constructed Using a Novel Two-Component Approach. *Langmuir* 28, 2269-2274 (2012).
- Yang, J., Xu, C., Wang, C. & Kopecek, J. Refolding hydrogels self-assembled from N-(2-hydroxypropyl)methacrylamide graft copolymers by antiparallel coiled-coil formation. *Biomacromolecules* 7, 1187-1195 (2006).
- Grove, T., Osuji, C., Forster, J., Dufresne, E. & Regan, L. Stimuli-Responsive Smart Gels Realized via Modular Protein Design. *Journal of the American Chemical* Society 132, 14024-14026 (2010).
- 33. Foo, C., Lee, J., Mulyasasmita, W., Parisi-Amon, A. & Heilshorn, S. Two-component protein-engineered physical hydrogels for cell encapsulation. *Proceedings of the National Academy of Sciences of the United States of America* 106, 22067-22072 (2009).
- Sun, F., Zhang, W., Mahdavi, A., Arnold, F. & Tirrell, D. Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry. *Proceedings of the National Academy of Sciences of the United States of America* 111, 11269-11274 (2014).
- Guan, D. et al. Two-Component Protein Hydrogels Assembled Using an Engineered Disulfide-Forming Protein-Ligand Pair. *Biomacromolecules* 14, 2909-2916 (2013).
- Tang, S., Glassman, M., Li, S., Socrate, S. & Olsen, B. Oxidatively Responsive Chain Extension to Entangle Engineered Protein Hydrogels. *Macromolecules* 47, 791-799 (2014).
- 37. Fang, J. et al. Forced protein unfolding leads to highly elastic and tough protein hydrogels. *Nature Communications* **4** (2013).
- Cunningham, M. Pathogenesis of group A streptococcal infections. *Clinical Microbiology Reviews* 13, 470-511 (2000).
- Musser, J. & DeLeo, F. Toward a genome-wide systems biology analysis of host-pathogen interactions in group A Streptococcus. *American Journal of Pathology* 167, 1461-1472 (2005).
- 40. Mora, M. et al. Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. *Proceedings of the National Academy*

of Sciences of the United States of America 102, 15641-15646 (2005).

- 41. Abbot, E. et al. Pili mediate specific adhesion of *Streptococcus pyogenes* to human tonsil and skin. *Cellular Microbiology* **9**, 1822-1833 (2007).
- 42. Manetti, A. et al. *Streptococcus pyogenes* pili promote pharyngeal cell adhesion and biofilm formation. *Molecular Microbiology* **64**, 968-983 (2007).
- Mandlik, A., Swierczynski, A., Das, A. & Ton-That, H. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. *Trends in Microbiology* 16, 33-40 (2008).
- 44. Swaminathan, A. et al. Housekeeping sortase facilitates the cell wall anchoring of pilus polymers in *Corynebacterium diphtheriae*. *Molecular Microbiology* 66, 961-974 (2007).
- Budzik, J., Oh, S. & Schneewind, O. Cell Wall Anchor Structure of BcpA Pili in Bacillus anthracis. Journal of Biological Chemistry 283, 36676-36686 (2008).
- Ton-That, H. & Schneewind, O. Assembly of pili on the surface of *Corynebacterium diphtheriae*. *Molecular Microbiology* 50, 1429-1438 (2003).
- 47. Budzik, J. et al. Amide bonds assemble pili on the surface of bacilli. *Proceedings of the National Academy of Sciences of the United States of America* 105, 10215-10220 (2008).
- 48. Kang, H., Coulibaly, F., Clow, F., Proft, T. & Baker, E. Stabilizing isopeptide bonds revealed in Gram-positive bacterial pilus structure. *Science* **318**, 1625-1628 (2007).
- Kang, H. & Baker, E. Intramolecular Isopeptide Bonds Give Thermodynamic and Proteolytic Stability to the Major Pilin Protein of *Streptococcus pyogenes*. Journal of Biological Chemistry 284, 20729-20737 (2009).
- Zakeri, B. & Howarth, M. Spontaneous Intermolecular Amide Bond Formation between Side Chains for Irreversible Peptide Targeting. *Journal of the American Chemical Society* 132, 4526-4527 (2010).
- Waldo, G., Standish, B., Berendzen, J. & Terwilliger, T. Rapid protein-folding assay using green fluorescent protein. *Nature Biotechnology* 17, 691-695 (1999).
- 52. Giddings, J. Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. *Science* **260**, 1456-1465 (1993).
- 53. Wyatt, P. Light scattering and the absolute characterization of macromolecules. Analytica Chimica Acta **272**, 1-40 (1993).
- 54. Privalov, P. & Potekhin, S. Scanning microcalorimetry in studying temperature-induced changes in proteins. *Methods in Enzymology* **131**, 4-51 (1986).
- Kelly, S., Jess, T. & Price, N. How to study proteins by circular dichroism. Biochimica Et Biophysica Acta-Proteins and Proteomics 1751, 119-139 (2005).

- Hansma, H. & Pietrasanta, L. Atomic force microscopy and other scanning probe microscopies. *Current Opinion in Chemical Biology* 2, 579-584 (1998).
- Homola, J., Yee, S. & Gauglitz, G. Surface plasmon resonance sensors: review. Sensors and Actuators B-Chemical 54, 3-15 (1999).
- Pellequer, J. & Chen, S. Multi-template approach to modeling engineered disulfide bonds. *Proteins-Structure Function and Bioinformatics* 65, 192-202 (2006).
- 59. VanNoort, S., VanderWerf, K., DeGrooth, B., VanHulst, N. & Greve, J. Height anomalies in tapping mode atomic force microscopy in air caused by adhesion. Ultramicroscopy 69, 117-127 (1997).
- Hendrickx, A. et al. Isopeptide bonds of the major pilin protein BcpA influence pilus structure and bundle formation on the surface of *Bacillus cereus*. *Molecular Microbiology* 85, 152-163 (2012).
- Venturi, M., Seifert, C. & Hunte, C. High level production of functional antibody Fab fragments in an oxidizing bacterial cytoplasm. *Journal of Molecular Biology* 315, 1-8 (2002).
- Jurado, P., Ritz, D., Beckwith, J., de Lorenzo, V. & Fernandez, L. Production of functional single-chain Fv antibodies in the cytoplasm of *Escherichia coli. Journal of Molecular Biology* 320, 1-10 (2002).
- Bechtluft, P., Nouwen, N., Tans, S. & Driessen, A. SecB-A chaperone dedicated to protein translocation. *Molecular Biosystems* 6, 620-627 (2010).
- 64. Choi, J. & Lee, S. Secretory and extracellular production of recombinant proteins using *Escherichia coli*. *Applied Microbiology and Biotechnology* **64**, 625-635 (2004).
- Jang, K., Seo, J., Song, K., Kim, C. & Rhee, S. Extracellular secretion of levansucrase from Zymomonas mobilis in Escherichia coli. Bioprocess Engineering 21, 453-458 (1999).
- 66. Kaderbhai, N. et al. Glycine-induced extracellular secretion of a recombinant cytochrome expressed in *Escherichia coli*. *Biotechnology and Applied Biochemistry* 25, 53-61 (1997).
- 67. Yang, J., Moyana, T., Mackenzie, S., Xia, Q. & Xiang, J. One hundred seventy-fold increase in excretion of an FV fragment-tumor necrosis factor alpha fusion protein (sFV/TNF-α) from *Escherichia coli* caused by the synergistic effects of glycine and Triton X-100. Applied and Environmental Microbiology **64**, 2869-2874 (1998).
- Choi, J., Jeong, K., Kim, S. & Lee, S. Efficient secretory production of alkaline phosphatase by high cell density culture of recombinant *Escherichia coli* using the *Bacillus sp* endoxylanase signal sequence. *Applied Microbiology and Biotechnology* 53, 640-645 (2000).

- Collier, D. & Bassford, P. Mutations that improve export of maltose-binding protein in SecB⁻ cells of *Escherichia coli*. *Journal of Bacteriology* **171**, 4640-4647 (1989).
- Muller, M. & Klosgen, R. The Tat pathway in bacteria and chloroplasts. *Molecular Membrane Biology* 22, 113-121 (2005).
- 71. Thomas, J., Daniel, R., Errington, J. & Robinson, C. Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in *Escherichia coli*. *Molecular Microbiology* **39**, 47-53 (2001).
- 72. DeLisa, M., Tullman, D. & Georgiou, G. Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. *Proceedings of the National Academy of Sciences of the United States of America* 100, 6115-6120 (2003).
- Fisher, A. et al. Exploration of twin-arginine translocation for expression and purification of correctly folded proteins in *Escherichia coli*. *Microbial Biotechnology* 1, 403-415 (2008).
- 74. Albiniak, A. et al. High-level secretion of a recombinant protein to the culture medium with a *Bacillus subtilis* twin-arginine translocation system in *Escherichia coli. FEBS Journal* 280, 3810-3821 (2013).
- 75. Matos, C. et al. High-yield export of a native heterologous protein to the periplasm by the tat translocation pathway in *Escherichia coli*. *Biotechnology and Bioengineering* **109**, 2533-2542 (2012).
- 76. Solovyova, A. et al. Solution structure of the major (Spy0128) and minor (Spy0125 and Spy0130) pili subunits from *Streptococcus pyogenes*. *European Biophysics Journal With Biophysics Letters* **39**, 469-480 (2010).
- 77. Pollastrini, J., Dillon, T., Bondarenko, P. & Chou, R. Field flow fractionation for assessing neonatal Fc receptor and Fcγ receptor binding to monoclonal antibodies in solution. *Analytical Biochemistry* **414**, 88-98 (2011).
- 78. Yie, J. et al. Understanding the Physical Interactions in the FGF21/FGFR/β-Klotho Complex: Structural Requirements and Implications in FGF21 Signaling. *Chemical Biology & Drug Design* 79, 398-410 (2012).
- Alegre-Cebollada, J., Badilla, C. & Fernandez, J. Isopeptide Bonds Block the Mechanical Extension of Pili in Pathogenic Streptococcus pyogenes. Journal of Biological Chemistry 285, 11235-11242 (2010).
- Mammen, M., Choi, S. & Whitesides, G. Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. *Angewandte Chemie-International Edition* 37, 2755-2794 (1998).
- 81. Cuesta, A., Sainz-Pastor, N., Bonet, J., Oliva, B. & Alvarez-Vallina, L. Multivalent

antibodies: when design surpasses evolution. *Trends in Biotechnology* **28**, 355-362 (2010).

- Litowski, J. & Hodges, R. Designing heterodimeric two-stranded α-helical coiled-coils Effects of hydrophobicity and α-helical propensity on protein folding, stability, and specificity. *Journal of Biological Chemistry* 277, 37272-37279 (2002).
- Sheldon, R. Enzyme immobilization: The quest for optimum performance. Advanced Synthesis & Catalysis 349, 1289-1307 (2007).
- 84. Sheldon, R. & van Pelt, S. Enzyme immobilisation in biocatalysis: why, what and how. *Chemical Society Reviews* **42**, 6223-6235 (2013).
- 85. Pizarro, C., FernandezTorroba, M., Benito, C. & GonzalezSaiz, J. Optimization by experimental design of polyacrylamide gel composition as support for enzyme immobilization by entrapment. *Biotechnology and Bioengineering* **53**, 497-506 (1997).
- 86. Ansorge-Schumacher, M., Slusarczyk, H., Schumers, J. & Hirtz, D. Directed evolution of formate dehydrogenase from *Candida boidinii* for improved stability during entrapment in polyacrylamide. *FEBS Journal* **273**, 3938-3945 (2006).
- 87. Gentle, I., De Souza, D. & Baca, M. Direct production of proteins with N-terminal cysteine for site-specific conjugation. *Bioconjugate Chemistry* **15**, 658-663 (2004).

発表論文

Matsunaga, R., Yanaka, S., Nagatoishi, S. & Tsumoto, K. Hyperthin nanochains composed of self-polymerizing protein shackles. *Nature Communications* **4**, 2211 (2013).

謝辞

本研究は、著者が東京大学大学院新領域創成科学研究科博士課程在学中に、同大学工学 系研究科津本浩平教授のご指導のもとに行ったものです。

本研究を遂行するにあたり、ほとんどが想定通りにはならなかった多数のアイデアを実 行することを認め、ノートチェックではそれ以上に多数の有益なアイデアを提供して下さ り、研究へのモチベーションを常に与えていただいた津本浩平教授に多大な感謝の意を送 らせていただきます。

本論文審査の副査としてご指導をいただきました東京大学大学院新領域創成科学研究科 伊藤耕一教授、富田野乃准教授、産業技術総合研究所本田真也教授、東京理科大学薬学部 和田猛教授に深く御礼を申し上げます。

原子間力顕微鏡を利用させていただくにあたり、ご指導やご協力を頂きました東京大学 大学院工学系研究科片岡一則教授、長田健介特任准教授、安楽泰孝助教、Theofilus Agrios Tockary博士に深く感謝いたします。

「Protein shackle」の命名者であり、研究者としての姿勢を教えていただき、多くの励ましの言葉をいただいたJose Manuel Martinez Caaveiro主幹研究員に多大なる感謝の意を表します。

研究内容、特に定量的な議論に関して的確なご指導を賜り、また研究発表に躊躇する私 の背中を押してくださった長門石曉助教に深く感謝いたします。

本研究を始めるにあたって親身にご指導いただき、異なる観点から数多くの興味深いご 意見を下さった谷中冴子博士に心よりお礼申し上げます。

何気ない雑談の中から本研究の核心となる反応制御のアイデアをいただき、また6年間同 じ研究室で過ごした同期の田代晋也氏に深く感謝いたします。

人も場所も移りゆくなかでも、変わらず楽しく快適な研究生活と親身なご指導をいただ きました津本研究室関係者の皆様方に深い感謝の意を申し上げます。

突然の博士課程進学を認めて応援してくれた両親、不規則な生活のなかで献身的に支え

てくれた妻に心より感謝いたします。

最後に、学会で出会い研究について議論していただいた皆様、別々の道に進みながらも たまに集まって楽しい時間を提供してくれた友人、その他大学院生時代にお世話になった すべての方々に深く御礼を申し上げます。