

Doctoral Thesis

ECONOPHYSICS METHODS FOR EXOTIC OPTION PRICING: FROM THEORY TO

IMPLEMENTATION (経済物理学のアプローチによる複雑オプションの価

格付け―理論から実装まで―)

Aurelien Cassagnes

ECONOPHYSICS METHODS FOR EXOTIC OPTION

PRICING: FROM THEORY TO IMPLEMENTATION

AURELIEN CASSAGNES

Master Computer Sciences

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF HUMAN AND ENGINEERED ENVIRONMENTAL STUDIES

UNIVERSITY OF TOKYO

2015

Declaration

I hereby declare that this thesis is my original work and it has been written by

me in its entirety. I have duly acknowledged all the sources of information which

have been used in the thesis.

This thesis has also not been submitted for any degree in any university previ-

ously.

Aurelien Cassagnes

February 2015

ii

Acknowledgments

I would like to express my gratitude first to Prof. Yu Chen that granted me the opportunity

and then trusted me to do this Ph.D under his supervision. His optimism and critical inter-

disciplinary insights have been a major help in my work. He managed for three long years

to not laugh at my fuzziest ideas, and waited until they became crisper; for this patience I

would like to thank him deeply. I must also thank him for having the optimal words to lift

my mood prone to swift swings at the hardest point of this Ph.D curriculum.

I would like to express my thanks to Prof. Hirotada Ohashi for his kindness and support.

By providing the necessary environment and technical means to this thesis, he is a major

actor of this thesis and should be thank as such.

I would like to thank also Prof. Ao Ping from the Shanghai SJTU University that allowed

me to enjoy twice their brilliant research group. The discussions I had with Ruoshi Yuan

and Tang Ying have been key for me, therefore I would like to thank them.

Then, I would like to thank all the professors that along my rather peculiar academic ad-

venture contribute to the present results. Maybe the most important professor I had, Prof.

Christian Gboy, a brilliant educator and all around good man. His kindness, simplicity and

unique way to demystify the pompous rhetoric usually surrounding mathematics was the

key to me going into graduate level studies. If it were not for him taking care of left out

students in my hometown, I would just not be writing those lines. He is thanked with all

my heart.

Professor Kenji Doya from Okinawa was also important in the path that led me to this

thesis completion. He took me under his supervision as an engineer and gave me the proper

environment to foster the necessary hunger for pursuing an academic degree in such a pres-

tigious university as the University of Tokyo. I thank him for his kindness and unparalleled

skill to remain humble while being at the same time so brilliant. Professor Jacques Delaunay

from the University of Tokyo who gave me the first taste of a research environment, and

was also my first gateway to Japan that turned out to be such a welcoming place for me. I

also would like to thank him for the informal coffee we shared, providing me opportunities

to vent out some excessive stress en Francais. Professor Pierre Alain Toupance from my

time at IUT.A Lyon has also been key to my current situation. By not punching me when

I asked every questions that could be asked, and then some more, during his math class he

proved to me that no mathematics question is really dumb when you are learning.

iii

iv

Less formally now, I would like to thank the many people that have been as many compan-

ion in my adventure: Alexandre, Asatani, Benoit, Liu, Lolo, Marie, Masako, Mayu, Michel,

Miho, Victor, the Hongo Starbucks, etc.

Finally, I thank my family and my brother Alban to whom this thesis is dedicated. For

their support and for just being there and still standing I thank them.

Contents

List of Figures ix

List of Tables xi

List of Algorithms xii

1 Introduction 1

1.1 The problem of exotic option pricing 1

1.2 Challenges ahead 2

1.3 Mainstream option pricing strategies 3

1.4 The Econophysics approach 5

1.5 Thesis goal 5

1.6 Thesis overview 6

I Theory 8

2 Stochastic Calculus 9

2.1 Probability space 9

2.2 Stochastic process in continuous time 11

2.3 Ito calculus 15

2.3.1 Constructing the Ito integral 16

2.3.2 Ito lemma 20

3 Financial market and derivative 23

3.1 Financial markets 23

3.1.1 Arbitrage and risk neutral measure 25

3.2 Derivatives 27

3.2.1 The use of derivatives 27

3.2.2 A tour of derivative contracts 28

3.3 Black-Scholes model 30

3.3.1 Deriving and solving the Black Scholes equation 31

4 Path Integrals 34

4.1 Wiener path integrals and stochastic processes 34

4.2 The Feynman-Kac formula 39

4.3 Path integrals in quantum mechanics 42

4.3.1 From the Schrodinger formulation 42

v

Contents vi

4.3.2 to the Feynman formulation 43

4.3.3 Connection between the diffusion equation and the Schrodinger equation 45

4.4 Application to option pricing 45

5 Path Integral Pricing of Double Outside Barrier Asian Options 48

5.1 Introduction 48

5.2 Wiener’s path integration 49

5.3 Average price put option with outside up-and-out barrier 50

5.3.1 System description 50

5.3.2 System Propagator 51

5.3.3 Option fair value 53

5.3.4 Results 55

5.4 Average price put option with outside double knock-out barrier 56

5.4.1 System description 56

5.4.2 System Propagator 57

5.4.3 Option fair value 57

5.4.4 Results 59

5.5 Conclusion 59

6 Path Integral Pricing Of Wasabi Options 62

6.1 Introduction 62

6.2 Up-and-in Parisian option 62

6.2.1 System description 63

6.2.2 Parisian propagator 63

6.2.3 Option pricing 66

6.2.4 Results 67

6.3 Wasabi option 68

6.3.1 System description 69

6.3.2 Wasabi propagator 69

6.3.3 Option pricing 70

6.3.4 Results 71

6.4 Conclusion 73

II Implementation 74

7 General Purpose computing on Graphic Processing Units 75

7.1 Parallel computing 76

7.2 GPU architecture 78

7.3 Optimization 83

Contents vii

8 Heterogeneous Computation of Rainbow Option Prices Using Fourier

Cosine Series Expansion 85

8.1 Introduction 85

8.2 Method 86

8.2.1 Option pricing 86

8.2.2 The Fourier cosine series expansion method 87

8.3 GPGPU Implementation 90

8.3.1 Computational load distribution 90

8.3.2 Numerical approximation of Vk1,k2 91

8.3.3 Domain reduction 94

8.4 Results 94

8.4.1 Scalability 95

8.4.2 Relative error 98

8.5 Conclusion 98

9 Shuffle up and deal : accelerating GPGPU Monte Carlo simulation

through recycling 99

9.1 Introduction 99

9.2 Background 100

9.2.1 The Wasabi option 100

9.2.2 Monte-Carlo simulation 101

9.2.3 CUDA 101

9.2.4 Granger causality test 102

9.3 Shuffled Monte Carlo 103

9.3.1 Shuffling pattern 103

9.3.2 Implementation 104

9.4 Results 106

9.4.1 Accuracy 106

9.4.2 Speed 108

9.5 Conclusion and future work 111

10 Conclusion 112

Conclusion 112

10.1 Summary of the thesis 112

10.2 Did we reach our goal ? 113

Appendices 116

A Propagator for two coupled wiener processes with drift using change of

measure 117

Contents viii

B Distribution of X̄T 119

C Simplification of propagator integrals appearing in Wasabi options 121

References 123

List of Figures

1.1 Random paths intermediate distribution 2

1.2 Subset of paths connecting two points 3

1.3 Extract of the American option fair price formula 4

2.1 Brownian paths 14

2.2 Approximation by elementary function 19

3.1 Forward and vanilla option payoff 28

4.1 Brownian path moving through small gates 35

5.1 Image method for restricted propagator 54

5.2 Error benchmarking for single barrier Asian options 55

5.3 Error reduction via interpolation for double barrier Asian options 60

5.4 Error benchmarking for double barrier Asian options 60

6.1 Error benchmark for Parisian option 68

6.2 Error benchmark for Wasabi option 72

6.3 Paths distribution offset for Wasabi option 72

6.4 Error benchmark for quickfixed Wasabi option 73

7.1 Fermi GPU architecture 80

7.2 GPU memory hierarchy 81

7.3 Kernel blocks and threads 82

7.4 Coalesced memory access 83

7.5 Warp divergence 84

8.1 Two dimensional CSR 93

8.2 Speed benchmark for heterogeneous designs varying series length 96

8.3 Speed benchmark for heterogeneous designs varying split ratio 97

8.4 Payoff integrand magnitude 97

ix

List of Figures x

9.1 Top panel: Depiction of the effect of __shfl_up on the threads with low ID. The

squares stand for the content to be swapped in each thread in a warp, different

rows represent the evolution of the content in each thread registers after a call

to __shfl_up. Bottom panel: Illustration of a butterfly swap pattern. In this

example, the content being shuffled around is the thread ID and the different

calls to __shfl_xor occur from top to bottom, with the xor mask being powers

of 2 between 20 and 24. 100

9.2 F-statistic value on the Granger Causality test for the unshuffled and the various

style of shuffling. Ti (resp. Tj) stand for paths generated by thread with ID i

(resp. j). The F-statistic value in cell [Ti, Tj] is for the test FTi→Tj
where only

the results that have a p-value < 0.01 are kept. 104

9.3 Box plots for the MC and SMC implemementation of the Vanilla option pricing

problem. The analytical solution (the black line) is 9.4134 in arbitrary currency

unit. 107

9.4 Box plots for the MC and SMC implemementation of the Geometric Asian option

pricing problem. The analytical solution (the black line) is 5.086 in arbitrary

currency unit. 108

9.5 Top panels: Box plots for the MC and SMC implemementation of the Wasabi

option pricing problem. Bottom panel: Computation time (s) for the MC and

SMC implemementation of the Wasabi option pricing problem. 110

List of Tables

7.1 A Comparison of Maxwell GM107 to Kepler GK107 79

xi

List of Algorithms

7.1 Pixel brightness modification procedure 76

7.2 Pixel brightness modification program 76

7.3 Monte Carlo option pricing procedure 77

7.4 Monte Carlo option pricing program 77

8.1 GPGPU implementation of CSR on a square domain 93

8.2 GPGPU implementation of CSR on a triangular domain 95

9.1 SMC pseudo code 105

xii

Chapter 1
Introduction

1.1 The problem of exotic option pricing

The fast-paced world we live in has faced a transition where the financial system has changed

from being a relatively self contained entity with little need for extra complexity, to a place

where financial agents are highly interconnected and with sometimes diverging motivation,

where increasingly sophisticated tools are required throughout the industry. Those financial

instruments among which the exotic derivatives belong have built-in complexity which is

a specific answer to an investor with very specific need. When investors were in need of

a tool to hedge risk bankruptcy for some risky loans, credit default swap was introduced;

weather derivatives were introduced as a way to protect oneself against extreme weather

events. Complexity in the environment of financial derivatives is a side effect of the ongoing

adjustment between investors challenges and industry propositions.

In this thesis we will focus on the pricing problem for the so-called exotic options. They

are difficult to categorize but, it is usually a term that encompasses all option derivative

contracts whose payoff is path-dependent. One can think about

• Asian options: The payoff of this contract on exercise is dependent on either a geo-

metric, an arithmetic, or even a harmonic average of the asset lifetime prices.

• Barrier options: The payoff, whatever it is specified to be, will be nullified (knock-

out) if the asset reaches a specified level called barrier level. The other flavor is the

“knock-in” option where the payoff is null unless the asset reaches this barrier level.

• Lookback options: The option if exercised at maturity date will pay a function on the

maximum of the asset historical prices.

In other words, the value of an exotic option contract will not only depend on an underlying

security value, but also on the way that this particular value was reached. Because of their

sophisticated payoff structure, they pose considerable challenge when trying to work out

their fair value. The fair value for an option being such that it does not introduce any

riskless profit opportunity for agents in the financial system. Otherwise it would be hard to

argue that the financial world is an efficient system operating in a state of equilibrium.

1

Chapter 1. Introduction 2

It is then of critical importance that any derivative contracts being released for a specific

use case, is delivered along with a pricing formula. Relying on simulation to price options

for which a formula has not been found should only be a temporary solution for they lead

to fewer insights than an analytical formula.

1.2 Challenges ahead

The future evolution of a risky asset can be (to a large extent) modeled as random: one

can know for sure the value of a ton of cocoa as of now, yet be lost as to the price for

the same asset tomorrow. To harness this first technical problem, a set of assumptions are

cast onto the asset dynamic. This leads to a model such as the Black-Scholes model for

the evolution of an asset, a model that we hope is tractable enough to let us work with the

random character of our asset. As can be seen in Fig.1.1 even though all paths are obviously

random we can see that their distribution obeys a rather normal-enough curve. Looking

0.1 0.2 0.3 0.4 0.5 0.6 0.7

2

1

0

1

2

Figure 1.1: A set of risky assets evolving according to Black-Scholes assumptions, and
their intermediate binned distribution.

back at the derivative contract description we can extract the payoff function connected to

this contract. If the payoff can be computed from the underlying asset final price then the

Chapter 1. Introduction 3

challenge is trivial, since our assumed model tells us about discrete tick-time distribution.

However, if the payoff is written in a way that without knowing the whole path we can not

answer “what is the payoff on this asset ?”, then we are left with a major technical challenge:

how can I calculate the probability that an asset take a singular path between the infinitely

many paths that I can draw between two points ? In Fig.1.2, even though any of those

paths posess the same final value, they each would have a different payoff on their minimum

value until expiration !

This is the real challenge, doing computation on individual paths when they are infinitely

many of them and each possibly different in regard to our payoff function.

Figure 1.2: Between two values for a risky asset, said asset can take any number of paths,
here we give a very limited sample of the possible paths.

1.3 Mainstream option pricing strategies

The exotic option pricing problem is connected to more than a single mathematical field or

subfield. Obviously none of those fields can be really said to be disconnected from the rest

and one could argue that they both derive from measure theory, but they are arguably still

quite differentiated enough that we can point them out as standing on their own. We can

cite as relevant to attack the pricing problem:

Chapter 1. Introduction 4

• Probability theory: Using either a martingale approach, or by working out explicitly

the distribution for some functionals it is possible to do computation related to the

expectation of the payoff. Monte Carlo simulation can also be used to compute an

estimation of the fair price when no formula are available, or are computationally

costly.

• Stochastic calculus: A stochastic differential equations describing the evolution of a

function on the stochastic process under consideration is written. Then using the

Markov condition, an ODE or PDE is extracted and solved.

An important share of the relevant literature usually attack the problem from one point of

view and do not mix approach, or at the very least do not attempt to bring in concepts from

outside of those two branches : In [Vec14], the harmonic average option is priced using a

martingale approach; In [LL09] double barrier Parisian options are priced using probability

theory;In [PP09], Rainbow Asian options are priced using stochastic calculus; etc.

They are without argument both powerful, and their reach is not limited to trivial problems.

We however feel that this power comes at the cost of intuition, clarity or even relevance.

What we mean by trading power for relevance is that formula may be derived that will hardly

ever be implemented because of their penalizing complexity. One can see in Fig.1.3, one of

the coefficients required to compute the price of an American option, derived using stochastic

calculus in [Zhu06]; while the final formula itself involves an infinite sum of those terms. This

Figure 1.3: Extract of the American option fair price formula

example illustrates how current approaches sometimes disregard practical considerations

that should, at the contrary, be a major concern. That is not to say that all complex

problems (and pricing an American option is a complex problem) have a simple formula

waiting to be found, yet, how good is a formula that can not be realistically implemented ?

We, on the other hand, embrace a multi-disciplinary approach that aims to go beyond tightly

connected fields of mathematics. Trading some of the rigor of the mainstream approaches

for a boost in relevance and clarity, we will tackle the option pricing problem using insights

available in physics, and applies it when it makes sense to our finance problem. Because

problem of physics have been tested and tested over and over again, the intractable formula

have been widely pruned out. Moreover, the superior intuition that comes by reframing an

abstract probabilistic problem into a physic’s one could hardly be argued.

Chapter 1. Introduction 5

1.4 The Econophysics approach

We will tackle this problem from the theoretical ground up to its efficient implementation

using the interdisciplinary econophysics approach. The econophysics field can be roughly

dated back to 1995, when Eugene H. Stanley coined the term. It describes the field where

physicists and physics-minded researcher aimed to solve problem from economics using

tools and concepts mostly found in physics field. Figuring prominently in econophysics

publications are results derived using statistical physics. For example the explanation of

the so called fat-tail characteristics in index distribution [MS95], or the modeling of ripples

and contamination in market crashes as aftershocks in seismical events[Sor09].

Recently another trend has emerged in econophysics, called rather unofficially “Quantum

finance”[Baa04]. As the name puts it, quantum finance is the attempt to solve or explain

problem from finance using theory and tools from quantum physics. It ranges from ambitious

quantum models of the financial market, where Schrodinger equation replaced the Black-

Scholes equation, in order to account for uncertainty and inefficiency[Hav02],[CPVR10], to

the more practical matter of option pricing using quantum mechanics as popularized by

Baaquie[Baa04][Bel97][BKS00], Linetsky[Lin98] and Dash[J.D88][J.D89]. Baaquie used the

connection between the Schrodinger equation and the diffusion equation that permeates

option pricing theory, in order to work out an Hamiltonian for the problem under study,

then use well developed techniques from quantum mechanics to solve the problem. The

path integral formulation of quantum mechanics is used by Dash, Linetsky and Baaquie to

solve problems where functional integration of the payoff can be better handled.

We should point out that even in this interdisciplinary field, it is usual that implementation

aspects are left out altogether. Unlike computational physics, econophysics is highly focused

on big-data analysis, statistical modeling, behavioral explanation of economics phenomena,

and rarely discuss (if at all) how to efficiently implement the models or formula derived. We

wish to avoid that pitfall and keep an eye on efficient implementation. One could make the

reasonable argument that we push toward computational econophysics in our philosophy.

1.5 Thesis goal

It is usually the case that theoretical publications do not deal with the implementation

of the proposed formula, and alternatively, implementation studies often limit their scope

to the straightforward vanilla derivatives as a benchmark tool. The contributions of this

thesis lie in both the theoretical and implementation space, and pursue this endeavour in

an interdisciplinary fashion.

In the theoretical part, we will demonstrate how particularly suitable quantum mechanics

path integrals are to study path dependent options. By taking as a scope of study com-

plex financial derivatives and deriving formula that lead to an easy implementation we will

Chapter 1. Introduction 6

prove that econophysics is a valid and pragmatically sound framework to work out complex

financial problems. Our first contribution is an improvement and extension on an existing

exotic option pricing formula using path integrals. Our second theoretical contribution is

the design of a new type of exotic option that we price using path integrals, demonstrating

their power and flexibility.

Then the pricing problem in its computational and implementation complexity is studied

for the following reason. When pricing formula are newly derived in a finance publication

and implementation is discussed, it is usually only to state the time it takes to get the

results on a vanilla CPU implementation. There is very limited consideration to improving

the computational speed for their original results. We felt that it is not good enough and

that optimization should be discussed when formula are not straightforward to code. To

reach that goal we decided to use a GPU card as an acceleration device easily affordable

for test purpose and will aim at proposing new insights in the implementation of pricing

formula. We will have two original contributions to present: first a case study of hetero-

geneous CPU/GPU designs is done when price is available in a series form. Then, for the

studies where new formula are introduced and must be benchmarked, we propose a novel

GPU algorithm to speed up Monte Carlo simulations.

1.6 Thesis overview

In the second chapter, the required background from probability theory is introduced.

Stochastic processes are introduced as a suitable tool to describe randomness in financial

assets dynamics. The Wiener process is described along with the stochastic integration in

the Ito interpretation. The defining properties of Ito calculus that will come handy later on

are also showcased.

In the third chapter, an introduction to financial markets is given that concentrates on ex-

otic derivatives. The basic working of such a market is explained, then we concentrate on

describing the features of an exotic option contract. The Black-Scholes model of a market is

introduced along with its philosophy, our work in this thesis will be done inside this model

entirely. Since our theoretical contributions both use path integrals as a major technical

tool to price exotic options, the fourth chapter is devoted to presenting path integrals. From

the Wiener path integral to the Feynman path integral, the potential use for option pricing

are recalled. The fifth and sixth chapters represent our two original theoretical contribu-

tions to econophysics. We build on and improve an existing work targeting single outside

barrier Asian option, extending it to the double barriers case. We also propose an origi-

nal option, the Wasabi option and study its pricing problem. From the seventh chapter

starts the implementation part of this thesis. General Purpose Graphic Processing Units

(GPGPU) as a computation framework for distributed computation is introduced. The rel-

Chapter 1. Introduction 7

evant terminology and concepts are presented along with some code snapshots in order to

be as practical as required The eighth chapter is a case study we conducted on the various

heterogeneous CPU/GPU designs available for a distributed computation when the target

is a basket option and price is available as an series. Empirical evidence are put forward for

an heterogeneous implementation with distribution along the data axis. We conclude our

original contributions by introducing in the ninth chapter a method to speed up the Monte

Carlo simulation that are frequently used for benchmarking the accuracy of a novel pricing

formula. This novel algorithm that we will call “Shuffled Monte Carlo” will be benchmarked

on vanilla products first in order to deliver empirical evidence that our method is sound.

Then it will be used on more involved products such as the Wasabi option where a Monte

Carlo schems is actually justified. Our method using the GPU as a computation target, will

exhibit up to halving of computation time.

The conclusion will summarizes the relevance of our contributions to the field of econophysics

and more generally to computational finance.

Part I

Theory

8

Chapter 2
Stochastic Calculus

The proper way to describe the dynamics of a financial asset with randomness built into

it is using stochastic processes. To be able to handle those concepts first ask us to take a

detour into measure and probability theory, before moving on to the stochastic processes

themselves. So let us start our journey with some definitions pertaining to probability

theory. This chapter is intended to give a rather elementary introduction to stochastic

calculus, therefore some details that we think the readers are already familiar with are left

out, but can be easily found for example in [Shr04]

2.1 Probability space

The first step we will take in building a proper understanding of stochastic processes and

stochastic calculus involves first defining the space in which those objects live. To that

effect we must define a probability space, and introduce the necessary and connected con-

cepts. We do not claim to give a full overview of measure theory but only the subset directly

relevant to our study, readers that want to see the introduced concepts further elaborated

are redirected to [Coh13] for example.

Definition 2.1.1: Sigma Algebra

Let Ω be a set, a σ-algebra F on Ω is the family of subsets of Ω defined by the

following properties:

1. ∅ ∈ F
2. A ∈ F ⇒ AC ∈ F where AC := Ω \ A
3. Ai ∈ F ⇒

⋃∞
i∈NAi ∈ F

Let A be a set and F a σ-algebra on Ω, A is called a measurable set if A ∈ F .

The second property states that a σ-algebra is closed under complementation. The last

property states that a σ-algebra is closed under countable unions. By using property 2

and 3, it is direct that a σ-algebra is also closed under countable intersections.

As an example of a sigma algebra that we will deal with numerous times: the Borel σ-algebra

9

Chapter 2. Stochastic Calculus 10

B is the smallest σ-algebra containing all the open sets in R formed by countable union and

intersection of open sets in R, a set A ∈ B is called a Borel set.

The concept of a sigma algebra is important in that we must restrict ourselves when dealing

with the problem of measuring events in some given space. For space with countably many

events (e.g. rolling a dice) it is easy enough to assign a single value to each such that the

sum is one, but we are faced with challenges when dealing with uncountably many events

(e.g. choosing a real number between 0 and 1). Thus it is of critical importance to be

conservative and careful when working in an uncountable space in which we aim to properly

assign probability to events, and maybe work with a family smaller than a σ-algebra, a

π-system that generate the σ-algebra we are interested into. Readers who want to dig

deeper into those technicalities are redirected to the discussion preceding the Caratheodory

extension theorem in any measure theory textbook.

Let us now define a measure

Definition 2.1.2: Measure

A measure µ is an extended real-valued function defined on the measurable space

(Ω,F) such that

1. µ (∅) = 0

2. µ (A) ≥ 0,∀A ∈ F
3. for {An}∞n=1 a countable, disjoint sequences of An in F , we have:

µ (
⋃∞

n=1An) =
∞∑
n=1

(µ (An))

If µ (Ω) = 1 then the measure is called a probability measure, often written P, and

P (A) is then the probability of event A for A ∈ F

We will need later on to be able to transform measures, and in order to do so we need to

introduce some conditions under which measures are closed under integration with respect

to a measurable function. The content of the Radon Nikodym theorem states the condition

under which it is feasible.

Theorem 2.1.1: Radon Nikodym theorem

Let µ and ν be two measures on the same measurable space, µ is continuous with

respect to ν if

ν (A) = 0⇒ µ (A) = 0 (2.1)

and we write µ≪ ν.

If those measures are σ-finite then there is an a.e unique integrable function h such

that

µ (A) =

∫

A
h (s) ν (ds) (2.2)

h is called the Radon Nikodym derivative of µ with respect to ν and is written

dµ/dν

Chapter 2. Stochastic Calculus 11

Now building on all the concepts introduced so far we can properly define a probability

space.

Definition 2.1.3: Probability space

A probability space is a triplet (Ω,F ,P) with Ω a set, F a σ-algebra on Ω and P a

probability measure on F

As an example in a non discrete space, let us take the experience of picking a real number at

random between 0 and 1, uniformly. Then Ω = [0, 1], take F to be the σ-algebra generated

by borel sets in Ω and P defined as P ([a, b]) = b− a. The measure P just described is often

called Lebesgue measure, and written L.

Definition 2.1.4: Measurable function

With (Ω,F) a measurable space, a real-valued function X : Ω → R is said to be

measurable with respect to F if {s ∈ Ω : X (s) ≤ a} ∈ F ,all a ∈ R. If the space

in question is a probability space then the measurable question is called a random

variable.

Now that we have properly defined what is a random variable and in what kind of space it

lives, we can move on and start building stochastic processes.

2.2 Stochastic process in continuous time

In few words, a stochastic process is merely a dynamic process with randomness built into it.

However on a more precise levels, the mathematical definition though quite concise, entails

many technicalities. Let’s try now to define a stochastic process precisely enough

Definition 2.2.1: Stochastic process

Let (Ω,F ,P) be a probability space , and I a real interval of the form [0, T] or R+.

A measurable stochastic process on R is a collection (Xt)t∈I of R−valued random

variables such that the map

X : I × Ω −→ R,X(t, ω) := Xt(ω)

is measurable with respect to the product σ-algebra B (I)⊗ R

To fix intuition it is rather useful to think of stochastic processes as paths or trajectories,

drawn from a probability space (an example can be seen on Fig.2.1). Hence keeping t fixed

Chapter 2. Stochastic Calculus 12

we have a random variable

ω −→ Xt (ω) ;ω ∈ Ω

Also, with ω fixed, we have a function

t −→ Xt (ω) , t ∈ I

describing the trajectory of our stochastic process. We will often omit the ω argument of

Xt (ω).

We are going now to introduce one of the most fundamental stochastic process, and a

building block used to describe uncertainty in stock market as well as other noisy processes.

Definition 2.2.2: Brownian motion

A standard Brownian motion (or Wiener process) W (t) on the probability space

(Ω,F ,P) verifies

• W (t) has independent and stationary increments, i.e. for 0 ≤ t ≤ T , WT −Wt

has normal distribution N0,T−t and the random variables

Wt1 −Wt0 , ...,Wtn −Wtn−1

are independents for any 0 ≤ t0 < ... < tn

• The joint distribution is given by

P ((Wt1 , ...,Wtn) ∈ B1 × ...×Bn) =

∫

B1

...

∫

Bn

φ (x1, t1)φ (x2 − x1, t2 − t1)

...φ (xn − xn−1, tn − tn−1) dx1dx2...dxn

where φ (x, t) := (2πt)
−1
2 e

−|x|2
2t is the normal distribution density function.

Another useful characterization is that it is a Gaussian process with null mean and

covariance function min (t, s),all its finite-dimensional distributions are multivariate

normal.

Now, the most crucial property that Brownian motion exhibits is connected to quadratic

variation, so let us first define clearly what is quadratic variation

Chapter 2. Stochastic Calculus 13

Definition 2.2.3: Quadratic variation

Let f (x) a function of a real variable, its quadratic variation over [0, t] is the following

limit when it exists

[f, f]t = lim
δn→0,n→∞

n∑

i=1

(
f (tni)− f

(
tni−1

))2 (2.3)

with 0 = tn0 < ... < tnn = t and δn = max1≤i≤n

(
tni − tni−1

)

It is known from any calculus textbook that continuous functions have zero quadratic varia-

tion, that is not true for the Brownian motion. Now we will prove the following proposition

of utmost importance

Proposition 2.2.1: Brownian motion quadratic variation

Brownian motion has a quadratic variation [W,W]t = t a.s

Proof. Let ∆Wti =Wti+1 −Wti and ti ≡ tni := i.2−nt for 0 ≤ i ≤ 2n

E

[
([W,W]t − t)2

]
= E



(

2n−1∑

i=0

(∆Wti)
2 −

2n−1∑

i=0

ti

)2

 = E



(

2n−1∑

i=0

(∆Wti)
2 − ti

)2



=

2n−1∑

i=0

E

[(
(∆Wti)

2 − ti
)2]

=

2n−1∑

i=0

E

[
(∆Wti)

4 − 2t22−2n + 2−2nt2
]

=

2n−1∑

i=0

2t22−2n = 2t22−n → 0 as n→∞

therefore [W,W]t → t in L2(P)

The Wiener process will be the only stochastic process we will be dealing with later on when

working with stochastic representation of the financial market. There are other stochastic

processes available if one is motivated to build a different market representation, e.g. the

Gamma process where increments are not normally but Gamma distributed, or the Poisson

process used in queuing theory . Yet, since most of the tools that we will use later on are

connected to the normality of the Wiener process, we will not elaborate on the other type

of processes.

An important property of the Wiener process is its martingale property, simply put, expec-

tation of its future whereabout according to where it is now is merely the current position. If

we try for a moment to set aside mathematical rigor, and reframe our discussion in financial

terms: the expectation of a future gain knowing our current position, if the game is not

rigged, should not be better or worse than our current position. It clarifies what is expected

Chapter 2. Stochastic Calculus 14

2 4 6 8 10

Figure 2.1: Example of 50 Brownian trajectories generated by computer

of a fair game. To define it mathematically and precisely we first need to introduce the

concept of a filtration to make sense of the martingale definition

Definition 2.2.4: Martingale

A filtration {Ft}t≥0 on the space (Ω,F) is a family of σ-algebras Ft ⊆ F such that

0 ≤ t < T ⇒ Ft ⊂ FT

A stochastic process Xt on (Ω,F ,P) is a martingale w.r.t a filtration {Ft}t≥0 and a

measure P if the following holds

1. Xt is Ft-measurable for all t

2. E [|XT |] <∞
3. E [XT |Ft] = Xt for all T ≥ t

The third property is obviously where we drew our analogy with a fair financial market.

The filtration that will be used is the one generated by the Brownian motion itself: Ft =

σ{Ws; s ≤ t} contains the history of the process up until time t.

Let us prove right now that the Wiener process has the martingale property, as it helps

fixing concept introduced up until now. Let 0 ≤ s ≤ t

Proof.

E [Wt|Fs] = E [Wt +Ws −Ws|Fs] = E [Wt −Ws|Fs] + E [Ws|Fs] = 0 +Ws =Ws (2.4)

Chapter 2. Stochastic Calculus 15

where the second to last equality uses the measurability of Ws, the independence of Wt−Ws

and Fs, and finally the normality of increments. The Brownian motion has a lot more of

different and interesting properties but since they will barely pertain to us, we will not

elaborate more and instead redirect interested readers to [KS91].

Another rather theoretical point should be explained here, for it will prove to be relevant

in option pricing. It may happen that some calculations are cumbersome with respect to

the measure that is currently under study, therefore it may make sense for some case to

change the measure, then do a simpler equivalent computation. Additionally, we may be in

a situation where for theoretical reason we would like to remove a drift component from a

Wiener process. This leads us to the following version of the Girsanov theorem

Theorem 2.2.1: Girsanov’s theorem

Let Zλ
t be the exponential martingale associated to the L2 process λ by

Zλ
t = ε




t∫

0

λdWs


 := exp


−

t∫

0

λsdWs −
1

2

t∫

0

|λs|2ds


 (2.5)

and consider the measure P̃ defined by

dP̃

dP

∣∣∣∣
Ft

= Zλ
t (2.6)

we have the result that the process

W̃t =Wt +

t∫

0

λsds (2.7)

is a P̃-Brownian motion.

2.3 Ito calculus

Starting with the motivation to introduce models of financial market that takes into account

the randomness of price behaviour, we introduced stochastic processes. Now we need some

rules to do anything with said stochastic processes. The calculus for stochastic processes is

obviously different from the regular calculus involving only deterministic functions. That

being said we still have to demonstrate why it differs and lay out the some fundamental

rules. This section and the next one are devoted to such a task.

If we have some deterministic functions f (X) and X (t) and f has a derivative then
∂f
∂t = ∂f

∂X
∂X
∂t by regular calculus chain rule. However, if X (t) were to be a stochastic

Chapter 2. Stochastic Calculus 16

process of the Ito type (we will make clear later on what is meant by a Ito process)then the

usual chain rule does not apply any more.

Kiyoshi Ito (清 伊藤,1915-2008) was the first one to figure a way to extend the methods of

calculus to stochastic processes by deriving a chain rule formula that applied to stochastic

processes[Ito44]. We now define what is a Ito process and then actually proves that it is

well defined, before laying out the formula for chain rule in stochastic settings

Definition 2.3.1: Ito process

Let Wt be a Brownian motion on (Ω,F ,P), an Ito process X (t) ≡ Xt on the same

space is a stochastic process of the form

Xt = X0 +

t∫

0

µ (s, ω) ds+

t∫

0

σ (s, ω) dWs (2.8)

with the following integrability conditions

P




t∫

0

σ (s, ω)2 ds <∞,∀t ≥ 0


 = 1 (2.9)

P




t∫

0

|µ (s, ω) |ds <∞,∀t ≥ 0


 = 1 (2.10)

and the stochastic integral
t∫
0

σ (s, ω) dWs is taken in the Ito sense.

For brevity sake, the differential form of the Ito process is often favored keeping in mind

that only the integral form in (2.8) is well defined

dXt = µ (t, ω) dt+ σ (t, ω) dWt

It remains to make sense of what is actually an Ito integral, and its construction will lead

us to a deeper understanding of what is really peculiar (among other things) to stochastic

calculus.

2.3.1 Constructing the Ito integral

We want to define properly the following Ito integral

I (t) :=

t∫

0

σ (s, ω) dWs (2.11)

Chapter 2. Stochastic Calculus 17

The first step is to start proving its existence for a simple enough class of integrands, then

show that a larger class of function can be approximated by the simpler ones. The exposition

follows [Øks03] and [All07].

Assume that a square integrable simple process σ (s, ω) posses the following elementary

representation

σ (t, ω) =
∑

j

ej (ω)1[tj ,tj+1) (t) (2.12)

with tj ≡ tnj := j.2−nt for 0 ≤ j ≤ 2n and ej (ω) are Ftj -measurable random variables

(except for e0 that is constant since it is the same for every paths). The Ito integral for

elementary function of the form described by (2.12) is defined as

t∫

0

σ (s, ω) dWs =

2n−1∑

j=0

ej (ω)
[
Wtj+1 −Wtj

]
(ω) (2.13)

We would like now to extend the integral definition to a more interesting class of integrands

by approximating them with the elementary functions we just described. Since at one point

we will have to do a limiting operation and check for convergence, we need to have some

bound on the integral. Hence to continue any further we need the following theorem

Theorem 2.3.1: Ito isometry for simple functions

The Ito integral as defined in (2.13) obeys the following isometry

E







t∫

0

σ (s, ω) dWs




2

 = E




t∫

0

σ2 (s, ω) ds


 (2.14)

Proof. Writing again ∆Wj for Wtj+1 −Wtj , and omitting the ω argument

E







t∫

0

σ (s) dWs




2

 = E






2n−1∑

j=0

ej∆Wj




2
 = E


∑

j

e2j∆W
2
j


+2E


∑

i 6=j

eiej∆Wj∆Wj




(2.15)

We look first at the cross-terms. Taking i < j then eiej∆Wi is Fti-measurable, while ∆Wj

is independent of Fti , thus E [eiej∆Wj∆Wj] = E [eiej∆Wj]E [∆Wj] = 0 , since increments

have null expectations.

Now in the first sum, e2j is Ftj -measurable and the increment ∆Wj is independent of Ftj ,

thus we also have E

[
e2j∆W

2
j

]
= E

[
e2j

]
E

[
∆W 2

j

]
= E

[
e2j

]
(tj+1 − tj).

Chapter 2. Stochastic Calculus 18

Plugging in those results yield

E


∑

j

e2j∆W
2
j


+ 2E


∑

i 6=j

eiej∆Wj∆Wj


 =

∑

j

E
[
e2j
]
(tj+1 − tj) = E




t∫

0

σ2 (s, ω) ds




(2.16)

Suppose we want to extend the Ito integral to a continuous square integrable function

σ (t, ω), the way to proceed is to build simple processes σn (t, ω) approximating σ (t, ω) (see

for illustration Fig.2.2, demonstrate that their Ito integral form a Cauchy sequence in L2 (P),

then since this space is complete [Coh13] the Ito integral of σ (t, ω) will be defined as the

existing limit.

Let’s start by defining the simple process

σn (t, ω) :=
2n−1∑

j=0

σ (tj , ω)1[tj ,tj+1) (t) (2.17)

with its Ito integral defined by (2.13), then

‖
t∫

0

σn (s, ω) dWs −
t∫

0

σm (s, ω) dWs‖L2 = E







t∫

0

σn (s, ω) dWs −
t∫

0

σm (s, ω) dWs




2



= E







t∫

0

(σn (s, ω)− σm (s, ω)) dWs




2

 = E




t∫

0

((σn (s, ω)− σm (s, ω)))2 ds




≤ 2E




t∫

0

((σn (s, ω)− σ (s, ω)))2 ds


+ 2E




t∫

0

((σm (s, ω)− σ (s, ω)))2 ds




→ 0 as n,m→∞ since σ (t, ω) is continuous for all ω

(2.18)

The Ito integral
t∫
0

σ (s, ω) dWs is taken to be the limit in L2 (P) of this Cauchy sequence.

Chapter 2. Stochastic Calculus 19

1 2 3 4 5

5

10

15

1 2 3 4 5

5

10

15

1 2 3 4 5

5

10

15

Figure 2.2: Approximation of an arbitrary function (blue line) by piecewise constant simple
function (black line and circles), where the partition gets more refined from top to bottom.

Chapter 2. Stochastic Calculus 20

Definition 2.3.2: Ito integral for general integrand

Let σ (t, ω) be adapted to {Ft}, B×F-measurable and square integrable, then its Ito

integral is defined as

I (t) :=

t∫

0

σ (s, ω) dWs = lim
n→∞

t∫

0

σn (s, ω) dWs (2.19)

with {σn} a sequence of elementary functions such that

E




t∫

0

((σn (s, ω)− σ (s, ω)))2 ds


→ 0 in L2 (P) as n→∞ (2.20)

It satisfies the following property

1. The paths of I (t) are continuous w.r.t its upper limit

2. For each t, I (t) is Ft-measurable

3. I (t) is a martingale, it has null expectation

4. (Ito isometry) E
[
I2 (t)

]
= E

[
t∫
0

σ2 (s, ω) ds

]

Proof for any of those properties and others can be found in [Shr04] for example.

2.3.2 Ito lemma

Now that we have a proper definition for an Ito process, we would like to do calculus on

it. As we said earlier, Ito calculus obeys different rules than regular calculus. To start

with we would like to see for a function f(X) with Xt an Ito process, what happens when

Xt → Xt+∆t. For a differentiable deterministic function, sure enough df(X) = f ′(X)dX,

however as we saw earlier Brownian motion has non-zero quadratic variation and this will

matter here.

Chapter 2. Stochastic Calculus 21

Lemma 2.3.1: Ito lemma

Let Xt be an Ito process of the form

dXt = µ (t, ω) dt+ σ (t, ω) dWt (2.21)

If f (t, x) is C2 ([0,∞) × R), then Yt := f (t,Xt) is an Ito process, and

dYt =
∂f

∂t
(t,Xt) dt+

∂f

∂x
(t,Xt) dXt +

1

2

∂2f

∂x2
(t,Xt) dX

2
t (2.22)

in differential form where the following rules apply

dt.dt = dWt.dt = 0, dWt.dWt = dt (2.23)

In integral form and with all rules applied, Ito lemma yields

f (Xt, t) = f (X0, 0)+

t∫

0

(
∂f

∂s
(s,Xs) + µ

∂f

∂x
(s,Xs) +

σ2

2

∂2f

∂x2
(s,Xs)

)
ds

+

t∫

0

µ
∂f

∂x
(s,Xs) dWs

(2.24)

Remember that only the integral form is well defined, the differential is preferred for short-

ness of exposition.

This lemma is essential to any of the relevant computation involving Ito processes, and as

an example let us start with the following stochastic differential equation (SDE)

dSt = St (µdt+ σdWt)

(
≡ dSt

St
= µdt+ σdWt

)
(2.25)

that models the return of an asset St, where µ is a constant rate of return, and σ is a

constant volatility parameter describing the random shocks. Since it does bear resemblance

to a logarithmic derivative, we apply the Ito lemma to f(s, t) = log (s)

df =

(
µs

s
− σ2s2

2s2

)
dt+

σs

s
dWt =

(
µ− σ2

2

)
dt+ σdWt (2.26)

therefore

log (St) = log (S0) +

(
µ− σ2

2

)
t+ σWt ⇒ St = S0 exp

((
µ− σ2

2

)
t+ σWt

)
(2.27)

Equation (2.27) describes a geometric Brownian motion, used in the Black-Scholes model

to describe a risky asset.

This example, apart from demonstrating the usefulness of Ito lemma, was also the first SDE

Chapter 2. Stochastic Calculus 22

encountered so far.

Definition 2.3.3: Stochastic differential equation

An equation of the form

dXt = µ (Xt, t) dt+ σ (Xt, t) dWt (2.28)

where µ (Xt, t) and σ (Xt, t) are given, and Xt is unknown is called a stochastic

differential equation (SDE).

Conditions for existence and uniqueness are essentially of growth type on the coefficients and

can be found in [Øks03]. An important property of solution to SDE is that they are Markov

processes[Shr04], and their conditional expectation have a martingale representation. More

precisely we have

Theorem 2.3.2: Markov property for solution of SDE

Let X (u) be a solution to (2.28) with initial condition given at t = 0. Denote by

g (t, x) = Et,xh (XT) (2.29)

the expectation (for initial condition Xt = x) of a Borel measurable function h.

Then for 0 ≤ t ≤ T
E
[
h (XT)

∣∣Ft

]
= g (t,Xt) (2.30)

Furthermore the stochastic process g (t,Xt) is a martingale.

Chapter 3
Financial market and derivative

In this chapter our aim is to introduce the core of the financial theory relevant to this thesis.

As such it will be mainly concentrated on the derivative market and even more especially on

the challenge of pricing exotic options. Though to reach that point we have to make some

detours and introduce some more general points relative to the market in general.

The chapter will be structured as such. we will describe a financial market first in an abstract

then in a more mathematical fashion, this will lead us to the presentation of the derivative

contracts. We will then continue this exposition by the presentation of the Black-Scholes

model which will be the setting in which our theoretical work takes place. Finally we will

present what is meant by the challenge of option pricing.

3.1 Financial markets

A financial market is where a buyer and a seller meets to discuss terms of goods (or services)

they want to trade[Hul08]. It can be commodities, stocks, currency, options, etc. The major

segmentation is between two main type of markets

1. Capital markets

• Equity market

• Debt market

• Derivative market

• Indexes

2. Money markets

• Cash time deposits

• Treasury bills

• Deposit certificate

• Eurodollars deposits

23

Chapter 3. Financial market and derivative 24

This study is focused on the buying and selling of derivatives, which can be seen to belong

to the capital market. A derivative is defined as a financial instrument whose value depends

on the value of another. The asset on which the value of the derivative is based is often

called the underlying.

For derivative products, the market where both parties meet (physically or not) can be

either a future exchange or an over the counter market. The first one is the place where

standardized derivative contract are traded, for example the Chicago Mercantile Exchange.

For more specific and complex products, the exchange take place on “over the counter”

market. On this market, financial institutions and corporate clients meet to design contracts

that answer to specific needs from the investors. Thus we see here a major explanation for the

increasingly complexity of financial instruments, as the market evolve the special requests

for tailor made products increase and with it, the sophistication of financial products.

An important concept related to financial market is the one of market equilibrium and

market efficiency. It can be traced back to pioneering work by Louis Bachelier (1870-1946),

while in more modern era the study by Samuelson [Sam65]bears critical importance. The

market efficiency hypothesis states that when a market is at its equilibrium point where

assets reached their fair price, all necessary information is embedded in an asset price and

any displacement from said equilibrium must be random up to a drift [CLM97]. New

information and unexpected events do change the market equilibrium and move the market

prices to a new equilibrium state, rather than an equilibrium is forever the same and random

events can not change it. The type of information embedded in the price of an asset leads to

different form (weak vs. strong) form of market efficiency hypothesis. Whether this double

hypothesis (of efficiency and a particular equilibrium) is true or not, is a matter of discussion

for economists and will not be our concern here. We mention it here, since the concept of

arbitrage explained later on is connected to the efficiency of a market.

A metric associated to any financial instrument is the risk. Obviously any investor buying

a risky asset at time t (say a stock with price S (t)) and holding it for a duration T expects

to make profit out of it, a return R, to compensate for the associated risk

R =
S (t+ T)− S (t)

T
(3.1)

and typically the greater the risk, the greater should be the expected return on this asset.

Mathematically the risk associated with the asset S, called volatility σ in the financial world

is measured by

σ2 = E
[
R− R̄

]
(3.2)

where R̄ is the expected return as opposed to R the actual return. So the volatility is just

the standard deviation of an asset return. If any asset is considered to be risk-free, then

it should have the same return as a reference risk free asset (typically government issued

treasury bill) growing at a so called “risk free rate”.

Chapter 3. Financial market and derivative 25

3.1.1 Arbitrage and risk neutral measure

A popular saying when efficient market hypothesis is discussed is the famous “there should

be no free lunch with vanishing risk”. It is rather sound, one could hardly argue that a

market could be efficient if without an initial investment one could lock in a sure profit.

This leads to the notion of arbitrage free market. Arbitrage opportunity actually acts as

a mechanism by which the market could revert to equilibrium. Since investors identifying

an arbitrage opportunity, say a under-priced stock, would trade in this stock and drive the

price higher where arbitrage would vanish.

The mathematical definition of an arbitrage follows

Definition 3.1.1: Arbitrage strategy

Let V (t) be a portfolio strategy then V is an arbitrage strategy if ∃t > 0 such that

V (0) = 0 and P [Vt ≥ 0] = 1 while P [Vt > 0] > 0 (3.3)

The proper definition of an admissible portfolio strategy can be found in [Pas11], since we

will not focus on the replication problem we will not elaborate on portfolio. The definition

is otherwise self explanatory.

We continue the mathematical description of a financial market with the following theorem

[Shr04] that makes the connection between arbitrage and the existence of a specific measure

Theorem 3.1.1: First fundamental theorem of asset pricing

P̃ is a risk-neutral measure (equivalent martingale measure) if

1. P̃ is absolutely continuous with respect to the real world measure P, i.e. they

agree on their null sets.

2. Under P̃ the discounted stock price is a martingale.

First fundamental theorem of asset pricing: If a market has a risk-neutral

measure, then it is arbitrage free

It is necessary to discount with respect to a rate R (t) in order to account for the time value

of money: a payoff obtainable in the future has a lesser value thatn if it were available right

now. Therefore we will see often stick the term exp

[
−

T∫
t
R (s) ds

]
to an expected payoff.

The relevance of the risk-neutral measure, and hence the relevance of the no arbitrage

condition, to the problem of pricing the option contract is now made explicit by the following

formula

Chapter 3. Financial market and derivative 26

Proposition 3.1.1: Risk neutral pricing formula

Let P̃ be a risk-neutral measure, V (T) the payoff at time T of a derivative security

and R (t) the interest rate of the money market, we have

V (t) = Ẽ


e

−
T∫
t

R(s)ds
V (T) |Ft


 (3.4)

this formula is of paramount importance in the martingale approach to option pricing. Also

it allows to easily reach an expectation form, and we will see later in Section 4.2 how it can

then be exploited by the Feynman-Kac formula. Now an example can be helpful in seeing

how risk neutral measure can be found, take a stock whose price process S (t) follows the

dynamic

dSt = St (µdt+ σdWt)⇒ St = S0 exp

[(
µ− σ2

2

)
t+ σWt

]
(3.5)

which is a GBM as seen in (2.27). This process is used in the Black Scholes model since

it assumes only positive values which is a realistic assumption about stock prices. Under

real-world probability measure P, we have

E
[
e−rtSt|F0

]
= S0e

(µ−r)t 6= S0 (3.6)

therefore because the drift term does not cancel out, St is not a martingale. Now, if we

switch to an equivalent probability measure P̃ defined by the exponential martingale

dP̃

dP

∣∣∣∣
Ft

= ε




t∫

0

µ− r
σ

dWs


 ≡ exp

[
− t
2

(
µ− r
σ

)2

−
(
µ− r
σ

)
Wt

]
(3.7)

then according to Girsanov theorem 2.2.1, W̃t = Wt +
µ−r
σ t is a P̃ -Brownian motion. Now

under the new measure

E
[
e−rtSt|F0

]
= e−rtE

[
S0 exp

[(
µ− σ2

2

)
t+ σWt

] ∣∣∣∣F0

]

= S0e
−rtẼ

[
exp

[(
µ− σ2

2

)
t+ σ

(
W̃t −

µ− r
σ

t

)] ∣∣∣∣F0

]

= S0Ẽ

[
exp

[
−1

2
σ2t+ σW̃t

] ∣∣∣∣F0

]

= S0e
−σ2t

2 Ẽ

[
exp

[
σW̃t

] ∣∣∣∣F0

]

= S0e
−σ2t

2 e
σ2t
2

= S0

(3.8)

Therefore we saw that by using a particular “risk-neutral” measure instead of the “real world”

Chapter 3. Financial market and derivative 27

measure it was possible to reach a martingale form for the discounted asset price process.

Thus there is at least one risk neutral measure, which allows us to say that this particular

description of the market is arbitrage free. And we can then use this measure to get the fair

price for some class of derivatives using the formula in proposition 3.1.1. Change of measure

is an especially prevalent technique in the martingale approach to option pricing as we will

show later on.

3.2 Derivatives

A derivative, as the name suggests, is a security whose value depends on an underlying secu-

rity value. Such a security could be a stock, a bond, a currency, an index, etc. Derivatives

are traded mainly between two places: on a public exchange, or over-the-counter (OTC).

Public exchanges comprise places like the Chicago Board of Options Exchange (CBOE), the

American Stock and Options Exchange (AMEX), the Chicago Board of Trade(CBOT), the

Korea Exchange which is the largest (in transaction volume) in the world, and other places.

Over-the-counter derivatives are always traded directly between the two interested parties,

typically a financial institution and a corporate client. Exotic derivatives are almost always

traded in an OTC manner.

According to the Bank for international settlements statistics[oIS14], the OTC derivative

market notional amounts outstanding was valued around 710 trillion dollars in December

2013.

3.2.1 The use of derivatives

The most general uses of derivatives are hedging and speculation.

Hedging is a general term used to cover techniques employed to reduce risks associated

with holding position in a contract, or even more broadly, unforeseeable risks (e.g. weather

extreme events). In the later case, let us think about a Japanese company that will need

to buy some amount of goods coming from France 6 months from now, the EUR/JPY

currency exchange rate is fine as of today but is highly fluctuating and therefore there is

a high risk that it will rise over a sustainable threshold. The company decides to lock-in

the current rate by purchasing some contracts that allow the exchange 6 months from now

Euro for Yen, at the writing day’s rate. If 6 months from now, the rate did rise then the

company effectively lock a profit. If however the rate fell, then the company would have

been better off not purchasing those contracts. The initial goal not being to make a profit,

then the actual evolution does not really matter to the company hedging risk. Hedging

also occurs within a portfolio when some instruments are included in order to offset the

random fluctuations of other instruments in this portfolio. In a perfectly hedged portfolio,

fluctuations of participating instruments perfectly cancel out, leading to a portfolio whose

Chapter 3. Financial market and derivative 28

dynamics is deterministic, therefore free from risk associated to random movements.

Speculation is another broad term that describes situation where one enters a contract in

order to make a profit from the stock moving in an expected direction. If one expects a

stock S, today valued at 100$ to go down in the future, then one can purchase the right

to sell in the future at the current value: 100$. If the price does indeed go down, say to

80$, then the holder of those contracts will purchase stocks on the market at 80$ and use

its contract to sell them at 100$, thus making a 20$ benefit on each contract he holds.

80 100 120 140

10

20

30

40

50

80 100 120 140

10

20

30

40

50

80 100 120 140

40

20

20

40

80 100 120 140

40

20

20

40

A) B)

C) D)

Figure 3.1: Behaviour of the payoff function for some derivatives, for each panel the strike
has been set at 100 (in arbitrary unit), the horizontal axis is the stock value at expiration
while the vertical axis is the payoff value. Panel A: Call option, B: Put option, C: Long
forward, D: Short forward.

3.2.2 A tour of derivative contracts

We will give here some descriptions of very popular and straightforward derivatives, while

visual examples for their payoffs is available on .

Future contracts are contracts traded on public exchange such as the CBOT or the

CME. This highly standardized contract is an agreement to buy or sell a specified asset at

a prescribed future date at a certain price. The party buying is said to have a long position

(to be long), while the party agreeing to sell the asset is said to have a short position in the

contract (to be short). The exchange is in charge of matching the buyer and the seller, it also

takes under the task of clearing house dealing with margin requirements, daily settlements

[Hul08]. Future contracts must usually specify: the asset, the contract size , the delivery

Chapter 3. Financial market and derivative 29

arrangements, the delivery months, price quotes.

Forward contracts share the same purpose, and most of the characteristics of the Fu-

ture contracts. However unlike a future contract, a forward is traded directly OTC, in order

to account for scenarii where standardized features do not meet an investor special needs.

An option contract is a derivative that gives the holder, the right and no obligation, to

buy (Call option) or sell (Buy option) an asset at a future exercise date for a certain price.

The party writing the option is short, while the party purchasing the contract is long. The

immediate difference between an option and a future, is the added perks of not exercis-

ing the contract if it were not beneficial. The other striking difference between the former

derivatives and an options is the vastness of subtype when it comes to describing options.

The axis along which classification occurs are the exercise type and the payoff function. An

option can either have a fixed exercise date, then they are called European options, if an

option can be exercised at any time then it is called American. In between, with a set of

exercise dates to chose from is the Bermudan option. The spectrum lying on the payoff axis

is not that self contained. The first distinction is made between path dependent option and

independent. For example an option written on an underlying asset St that pays at exercise

date T : max0<t<T [St − 100$], is path dependent since the payoff function needs the whole

history of the path to be computed. However a payoff like [ST − 100$] just needs the price

at exercise date T and does not care about how it reached that particular value. It is mainly

among the path dependent (a subset of the exotic options) that lies complexity in options,

and we give here some example of exotic options

• Barrier option: knocks in/out if an asset price crosses a defined threshold.

• Asian option: pays a function of the average of the asset price over its lifetime.

• Lookback: pays a function on the max/min of the asset until exercise date.

• Rainbow option: payoff is written on the best worst performance of a set of underliers.

For an option, two major challenges arise: the pricing problem and the hedging problem.

The pricing problem is concerned with finding the fair value (arbitrage free) for an option.

It can be straightforward for Vanilla (e.g. simple non path dependent) options, to nearly

analytically untractable for the exotic case. The hedging problem is concerned with hedging

the risk associated with holding or writing an option, it can consist of rebalancing the ratio

of assets we hold in a portfolio to more complex techniques. Since we are in this work only

concerned with the so-called pricing problem of exotic options we will not elaborate on the

hedging problem.

We are now going to introduce the model in which our options live and show how the pricing

problem arise and can be solved easily for Vanilla options.

Chapter 3. Financial market and derivative 30

3.3 Black-Scholes model

The Black-Scholes model is the result of the work by Robert Merton, Fischer Black and

Myron Scholes, published in 1973[BS73]. It describes, under certain assumptions, a PDE

describing the time evolution for the price of an option. The original model assumptions

were the following

1. The rate of return r on a risk free asset is constant and known.

2. The log of the return for an asset price process St is modeled by a brownian motion,

with constant drift µ (the expected return on stock) and constant volatility σ
dSt

ST
= µdt+ σdWt

3. The stock does not pay dividend.

The first assumption just requires that the rate of return for, say a government issued bond,

is constant. This is not actually true as rates fluctuate over time, however since options

are usually not hold over a lengthy period (usually one year), the rate will not vary much

therefore the assumption is not that coercive. The second assumption means that while the

price itself is log-normally distributed, the returns are normally distributed. The assumption

of a constant volatility is however quite restrictive as it limits severely complex dynamics

such as volatility clustering[Man63] and has been the impetus for the development of a

variety of other stochastic volatility models: Heston model[Hes93], CEV model[Cox75],etc.

The last assumption is not restrictive and will just change the drift term if accounted for.

Under those assumptions they found that the option fair value V (., .) for an option written

on St satisfies
∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (3.9)

We will show in the following subsection a way to derive this PDE. Meanwhile, let us point

out the following important proposition[JYC09] that will allows us to use proposition 3.1.1

for option pricing

Proposition 3.3.1: The Black-Scholes model is complete

In the Black Scholes mode there is an equivalent risk free measure P̃

dP̃

dP

∣∣∣∣Ft = ε




t∫

0

µ− r
σ

dWs


 (3.10)

furthermore, this measure is unique. Then the risk free dynamics is given by

dSt
ST

= rdt+ σdWt (3.11)

Chapter 3. Financial market and derivative 31

As we can see, the effect of switching to the risk neutral measure is to replace the original

drift term µ with the risk free rate r.

3.3.1 Deriving and solving the Black Scholes equation

The first derivation we give here is based on the well-known (any textbook) portfolio argu-

ment. Let V (S, t) be the value of an option written on S at time t. Based on the Ito lemma

then the differential of V is

dV =

(
∂V

∂t
+
σ2

2
S2 ∂

2V

∂S2
+ µS

∂V

∂S

)
dt+ σS

∂V

∂S
dWt (3.12)

We build a portfolio Π made of one option and −∆ stock, ∆ being decided at the beginning

of a “dt increment” then held constant over this increment (i.e. admissible strategy). The

differential of the portfolio is

dΠ = dV −∆dS (3.13)

Plugging (3.12) and the definition for dS in (3.13) yields

dΠ =

(
∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ µS

∂V

∂S
−∆µS

)
dt+ σS

(
∂V

∂S
−∆

)
dWt (3.14)

Here we can see that by taking ∆ = ∂V
∂S , the stochastic component vanishes and our port-

folio becomes deterministic. Then, by arbitrage argument we can show that this riskless

(deterministic) portfolio should not grow faster than the risk free rate, otherwise one could

lock in a sure profit. Therefore we should have

dΠ = rΠdt (3.15)

equating (3.14) and (3.15), we have

rΠdt =

(
∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ µS

∂V

∂S
−∆µS

)
dt

⇔r
(
V − ∂V

∂S
S

)
=
∂V

∂t
+
σ2S2

2

∂2V

∂S2

⇔rV − ∂V

∂S
rS − ∂V

∂t
− σ2S2

2

∂2V

∂S2
= 0

(3.16)

rearranging and changing signs around yields the Black Scholes equation (3.9). Let’s note

that the equation does not contain the drift parameter µ, therefore its value is independent

of its growth rate, also, the share ∆ of the stock to hold has been seen to be equal to ∂V
∂S .

The various derivatives of V with respect to S and t are called greeks[Pas11] and describe

the sensitivity of the option price to variation of underlying asset value.

To solve the Black Scholes equation (3.9), say for a call option written at time t for an

Chapter 3. Financial market and derivative 32

exercise date T , a strike price K with a payoff that is max (ST −K, 0) we need the boundary

conditions

V (0, T) = 0

lim
ST→∞

V (ST , T) = S

V (ST , T) = max (ST −K, 0)

(3.17)

we start with the transformation U ← e−rtV , after simplification (3.9) becomes

∂U

∂t
+
σ2S2

2

∂2U

∂S2
+ rS

∂U

∂S
= 0 (3.18)

then we use x← ln (S) , s← T − t

∂u

∂s
=

(
r − σ2

2

)
∂u

∂x
+
σ2

2

∂2u

∂x2
(3.19)

now we make the substitutions y ← x+ r − σ2

2 , τ ← s yields

∂u

∂τ
=
σ2

2

∂2u

∂y2
(3.20)

the terminal condition in the payoff is now an initial condition. Solving this diffusion pde

in the usual fashion leads to the fair price for a call option

V (S, t) = SΦ



ln
(
S
K

)
+
(
r + σ2

2

)
(T − t)

σ
√

(T − t)


− e−r(T−t)KΦ



ln
(
S
K

)
+
(
r − σ2

2

)
(T − t)

σ
√

(T − t)




(3.21)

where Φ (x) is the normal cumulative distribution function.

The second method we present to derive the Black Scholes PDE will appeal to a martingale

argument. We know from proposition 3.1.1 that the fair price (under risk-neutral measure)

for our option can be written

Ẽ
[
e−rTV (ST)

∣∣Ft

]
(3.22)

from theorem 2.3.2 we know that there is a function g such that

g(t, St) = Ẽ
[
e−rTV (ST)

∣∣Ft

]
(3.23)

Chapter 3. Financial market and derivative 33

Computing its differential, plugging in the definition for dS and using Ito’s lemma yields

dg = e−rT (−rV dt+ dV)

= e−rT

[
−rV dt+ Ttdt+ VS

(
Srdt+ SσdW̃t

)
+
σ2S2

2
dt

]

= e−rT

[(
Vt + SrVS +

σ2S2

2
− rV

)
dt+ SσVSdW̃t

]
(3.24)

Since the process g(t, St) is a martingale, hence a driftless process, we must have

−rV + Vt + SrVS +
σ2S2

2
= 0 (3.25)

rearranging terms yields the Black Scholes PDE.

Chapter 4
Path Integrals

In this chapter we will describe the path integral concepts that will be relevant to this

thesis and our work on option pricing. Since it is a field in and of itself, we will have to

severely limit the exposition but readers can find further development in [FH12],[MC01] and

[Kle09]. We will start by first giving an intuitive description of the path integral and its

connection with Brownian motion with an orientation towards physics. Then we will lay

out the technical concepts as originally introduced by Norbert Wiener (1894-1964) to model

the Brownian motion. We will discuss the fundamental Feynman-Kac theorem before con-

tinuing our journey into physics with the description of path integral in quantum mechanics.

The fundamental property of a quantum system is that is is described only probabilistically.

The position of a quantum particle for example, and that is in contrast with classical me-

chanics is given as a distribution. It can be found in many states and each of those states

is more or less likely. The probabilistic component is what makes some concepts and tools

from quantum mechanics and stochastic process overlapped. We will finish this chapter by

introducing the application of path integral to finance.

4.1 Wiener path integrals and stochastic processes

We already described some aspects of the Brownian motion in section 2.2 from the view-

point of probability theory. This time around we will start our discussion with some physics

consideration. Since the work of Albert Einstein (1879-1955)[Ein05] it is known that Brow-

nian particles density W (x, t) obeys a diffusion equation (in one dimension here to avoid

cumbersome notation)
∂W (x, t)

∂t
= D

∂2W (x, t)

∂x2
(4.1)

for a diffusion constant D, in this chapter we will take for reasons explained later on D ≡
σ2/2. Normalized fundamental solution to (4.1) with i.c lim

t→0
W (x, t) = δ (x− x0) for an

34

Chapter 4. Path Integrals 35

0

0.2

0.2

0.4

t

a
1

b
1

a
2

b
2

a
3

b
3

a
4

b
4

a
5

b
5

Figure 4.1: Example of two Brownian paths passing through a succession of gates, at some
times 0 = t0 < t1 < ... < t5.

initial position x0 is well known to be [Eva98]

W (x, t) =
θ (t)√
4πDt

exp

[
− x2

4Dt

]
(4.2)

which is just a form of the Gaussian distribution. Since the Brownian motion is homo-

geneous both in space and time, the transition density P (y, T |x, t0) describing the prob-

ability to reach y at time T starting from x at time t0, only depends on the difference

(T − t0) and |y−x|. Therefore we’ll write interchangeably P (y, T |x, t0) and W (y, T |x, t0) :=
W (|y − x|, T − t0). As an example and to illustrate our introduction, the probability that

a standard (starting at 0) Brownian particle Xt be at time t > 0 anywhere in the interval

[a, b] is given by

P (Xt ∈ [a, b] |X0 = 0) =

b∫

a

1√
4πDt

exp

[
− x2

4Dt

]
(4.3)

Obviously there are many (infinitely many) Brownian paths that pass through this interval

at time t, as can be seen on Fig. 4.1. If we were to be interested in a particular path (say

the black one in the figure aforementioned) we need to be able to distinguish paths, and we

can do that by increasing the number of gates to cross, by increasing the number of gates

Chapter 4. Path Integrals 36

we pin further and further the path along the way until we completely prescribe the path.

The Chapman Kolmogorov equation will be helpful in handling probability of such com-

pound events

Definition 4.1.1: Chapman Kolmogorov equation

For a Markov process Xt , whose transition density is given by P (y, T |x, t) we have

the following equality

P (z, T |x, t) =
+∞∫

−∞

P (z, T |y, s)P (y, s|x, t) dy (4.4)

Since non overlapping increments are independent, the probability of the compound events

factorize in products of single event probability and we have

P (Xt1 ∈ [a1, b1] ,Xt2 ∈ [a2, b2] , ...,Xtn ∈ [an, bn])

=

b1∫

a1

W (x1, t1) dx1

b2∫

a2

W (|x2 − x1|, t2 − t1) dx2 × ...×
bn∫

an

W (|xn − xn−1|, tn − tn−1) dxn

(4.5)

If one increases the number of gates [ai, bi] to be crossed by the Brownian particle and as a

result let ∆t := ti+1−ti → 0, then we recover the stochastic process continuously depending

on t we are interested in. The probability that the Brownian particle wanders through the

infinite number of gates of “length” dx that we specify is then the probability of a specific

trajectory, looking at the integrands

P [x (t) ∈ [A,B]]

=

∫

C{0,0;[A,B],t}

lim
∆ti→0
N→∞

exp

[
−

N∑

i=1

(xi − xi−1)
2

2σ2 (ti − ti−1)

]
N∏

i=1

dxi√
2σ2 (ti − ti−1)

=

∫

C{0,0;[A,B],t}

lim
∆ti→0
N→∞

exp

[
− 1

2σ2

N∑

i=1

(
xi − xi−1

ti − ti−1

)2

∆ti

]
N∏

i=1

dxi√
2σ2∆t1

≡
∫

C{0,0;[A,B],t}

exp


− 1

2σ2

t∫

0

ẋ2 (s) ds




N∏

i=1

dx(s)√
2σ2ds

=
1√

2πσ2t

B∫

A

exp

(
− x2

2σ2t

)
dx

(4.6)

the symbol C{x, 0; y, t} is formally used to specify the set of paths that starting from x at

time t = 0, will reach y at time t. Equation 4.6 is the first example of a path integral,

Chapter 4. Path Integrals 37

an infinite dimensional integral where the integrand represents short-time Gaussian-like

transition. Practically the time interval [0, t] between the start and end points is sliced

x = xt0=0 < ... < xtN+1=t = y and intermediary points are integrated over using the

Gaussian density. Alternatively and to echo concepts introduced in section 2.1, the path

integral can be conceived as an integration using the Wiener measure over a subset of

the functional infinite dimensional space of continuous non differentiable trajectories[MC01]

obeying some prescribed conditions.

Definition 4.1.2: Wiener measure

The (pinned) wiener measure dWx (τ) is formally defined as

dWx (τ) := exp


− 1

2σ2

t∫

0

ẋ2 (τ) dτ




t∏

τ=0

dx (τ)√
2πσ2dτ

(4.7)

where σ2 is a constant related to the volatility or variance of the path. The integrand

term in the exponential is referred to as the Lagrangian.

This measure is meant to be taken as the limit for N intermediate points Xi, N →∞
of the following finite dimensional integrals

1

(2πσ2∆t)(N+1)/2

∞∫

−∞

∞∫

−∞

...

∞∫

−∞

exp

[
−1

2σ2∆t

N∑

i=0

(xi+1 − xi)2
]
dxN ...dx2dx1 (4.8)

where ∆t := tN−t0
N+1 → 0, x0 is the starting point at t = t0, and xN+1 the end point at

time tN .

The transition probability is then the following path integral using the Wiener mea-

sure

W (|xt − x0|, t) ≡ P (xt, t|x0, 0) =
∫

C{x0,0;xt,t}

dWx (τ) (4.9)

Needless to say that it is necessary to lay properly the theoretical foundation of the path

integral, and present the wiener measure, however the reader should be advised that we will

hardly need to go to such a low level and see later on that some important shortcuts or

equivalences can be taken.

We are going to go through an example to see that the computation is not as cumbersome as

it may seem, let us compute the probability that a brownian particle starting at 0, returns

Chapter 4. Path Integrals 38

at 0 at time t, so here x0 = xN+1 = 0, and (t− 0) = (N + 1)∆t.

P (0, t|0, 0) =
∫

C{0,0;0,t}

dWx (τ)

= lim
∆t→0

1

(2πσ2∆t)(N+1)/2

∞∫

−∞

...

∞∫

−∞

exp

[
−1

2σ2∆t

N∑

i=0

(xi+1 − xi)2
]
dxN ...dx1

= lim
∆t→0

1

(2πσ2∆t)(N−1)/2

∞∫

−∞

...

∞∫

−∞

exp

[
−

N−2∑

i=0

(xi+1 − xi)2
2σ2∆t

]{

×
∞∫

−∞

exp
[
−(xN+1−xN)2−(xN−xN−1)

2

2σ2∆t

]

2πσ2∆t
dxN

}
dxN−1...dx1

= lim
∆t→0

1

(2πσ2∆t)(N−2)/2

∞∫

−∞

...

∞∫

−∞

exp

[
−

N−3∑

i=0

(xi+1 − xi)2
2σ2∆t

]{

×
∞∫

−∞

exp
[
− (xN+1−xN−1)

2

2σ2(2∆t)
− (xN−1−xN−2)

2

2σ2∆t

]

√
2πσ2∆t

√
2πσ2 (2∆t)

dxN−1

}
dxN−2...dx1

(4.10)

clearly a recursion process takes place: at the first integration over xN , ǫ → 2ǫ, after the

second integration 2ǫ→ 3ǫ...

After N integrations there is no longer any dependence on N , and we are left with

P (0, t|0, 0) =
exp

[
− (xN+1−x0)

2

2σ2(N+1)ǫ

]

√
2πσ2 (N + 1) ǫ

plugging in (N + 1) ǫ = t and x0 = xN+1 = 0

P (0, t|0, 0) = 1√
2πσ2t

(4.11)

Obviously we did know that result and did not to carry on the task with such a heavy

tool, but it helps to see that there is a proper definition that lays at the foundation of path

integration.

Let us summarize our discussion to fix ideas. We started by describing a Brownian particle

trajectory between 0 and t, first by recalling that the transition density describing Brownian

motion obeyed a diffusion equation. From the solution to the diffusion equation, we delved

deeper into the intermediate trajectories by time slicing [0, t] and pinning its coordinate at

some intermediate times ti, relying on (4.4) to join the slices. In the end and by increasing

the number of ti until it covers the [0, t] interval, we described a stochastic process in the

Chapter 4. Path Integrals 39

sense of definition 2.2.1: the Wiener process. It should become increasingly clearer to the

reader, at least on an intuitive level, that there is a deep connection between stochastic

processes, path integrals and partial differential equations (PDE).

Hence let us make that more explicit by pointing out the second equivalence relations

between path integrals and PDE

Proposition 4.1.1: Fokker Planck equation

To each path integral of the form

P (xt, t|x0, 0) =
∫

C{x0,0;xt,t}

dWx (τ) (4.12)

describing a transition probability, corresponds a Fokker Planck PDE

∂P

∂t
+
∂ (µP)

∂xt
− 1

2

∂2
(
σ2P

)

∂x2t
= 0 (4.13)

written on the Ito process Xt (≡ xt)

dXt = µ (t,Xt) dt+ σ (Xt, t) dWt (4.14)

Let us give an example of how to use this equivalence. Suppose we are interested in the

probability that a Brownian particle with constant drift µ and volatility σ starting from 0

reaches the point y at time t. The SDE is

dXt = µdt+ σdWt (4.15)

then according to proposition 4.1.1 the transition probability obeys

∂P

∂t
=
σ2

2

∂2P

∂x2t
− µ∂P

∂xt
, (4.16)

which is just a convection diffusion PDE. To solve, introduce moving coordinates ξ = x−µt
and η = t, yielding the diffusion equation Pη = σ2/2Pξξ whose solution we know to be (4.2).

All that is left is to revert back to original variables, apply normalizing and initial conditions

to get the solution

P (y, t|0, 0) =
exp

[
−(y−µt)2

2σ2t

]

√
2πσ2t

(4.17)

4.2 The Feynman-Kac formula

In the previous section we introduced the theoretical foundation upon which path integrals

were built. And although it was necessary, the real potential of path integrals will be made

Chapter 4. Path Integrals 40

more explicit in this section. Up until now, we did not really discuss Wiener integral of

functionals, limiting ourselves to the mere integration of the Wiener measure.

What if we are interested in the following Wiener integral (describing the expectation w.r.t.

the Wiener measure) ∫

C{x0,0;xt,t}

F [x (τ)] dWx (τ) (4.18)

for a functional F on x (τ) ? We could follow the time-slicing method as introduced in the

previous section and define simple functionals Fn that approximate in a piecewise constant

fashion the functional F

Fn[x (τ)] :=

+∞∫

−∞

...

+∞∫

−∞

Fn (x1, ..., xn)1{x(t1)=x1,...,x(tn)=xn}dx1...dxn

In :=

∫

C{x0,0;xt,t}

Fn [x (τ)] dWx (τ)

(4.19)

then since those simple functionals form a vector space with a well defined norm [MC01]1,

we can discuss their convergence and define the limit if the space is complete

∫

C{x0,0;xt,t}

F [x (τ)] dWx (τ) := lim
n→∞

In (4.20)

For obvious reasons, this construction poses some integrability constraints on the type of

functionals available.

For an important class of functionals we have the following theorem[Kac66] from Mark

Kac(1914-1984) and Richard Feynman(1918-1988) that alleviates the need to perform the

(infinitely many) integrations

1Although the cited text does not mention the completeness of such a space, it alludes to the fact that
simple functionals are dense in the space of continuous function we are interested in

Chapter 4. Path Integrals 41

Theorem 4.2.1: The Feynman-Kac formula

For V (x) lower bounded and C2 on R, its expectation rewritten under a path integral

form W (xt, t|x0, 0)

E


e

−
t∫
0

V (x(s))ds
|X0 = x0


 =

∫

C{x0,0;xt,t}

exp


−

t∫

0

V (x (s)) ds


 dWx (τ) (4.21)

is the fundamental solution to the Bloch PDE

∂W

∂t
=
σ2

2

∂2W

∂x2t
+ µ

∂W

∂xt
− V (xt)W , with W (xt, t|x0, T) = δ (xT − x0) (4.22)

written on the Ito process

dXt = µdt+ σdWt (4.23)

Proof for theorem 4.2.1 can be found in the original paper by Kac[Kac66]. The V (x)

function is often termed potential for reason made clearer when discussing path integrals in

the quantum mechanics setting, another interpretation for V (x) is that of a killing term for

the diffusion Xt.

We will work now a simple example of the use of the Feynman-Kac formula: take V (x) =

α2x2 for a drifltess (µ = 0) Ito process starting at 0, then the path integral

W (xt, t|0, 0) :=
∫

C{0,0;xt,t}

exp


−α2

t∫

0

x2τdτ


 dWx (τ) (4.24)

is the solution to

∂W

∂t
(xt, t) =

σ2

2

∂2W

∂x2t
(xt, t)− α2x2tW (xt, t) with i.c W (xt, t) |t=0 = δ (xt) (4.25)

From table of worked-out PDEs[Pol01], applying normalizing and initial conditions, we find

W (xt, t|0, 0) =
√

α

π sinh (αt)
e−αx2

t coth(αt) (4.26)

If it were not for the Feynman-Kac formula, the evaluation of the path integral (4.24) would

require a time-slicing approach and the use of the Gelfand-Yaglom method[GY60]. We will

give in chapter 6 a more powerful example of the application of Feynman-Kac formula for

the pricing of time occupation derivatives.

Chapter 4. Path Integrals 42

4.3 Path integrals in quantum mechanics

The path integral formulation of quantum mechanics proposed by Richard Feynman, de-

scribes the probability amplitude between two points in space time as a functional integral

over all the possible paths, each one being weighted by an adequate measure. This is to

be contrasted with the classical mechanics where the path that is followed by particle is

completely determined by solving the Euler Lagrange equations, and is found to be the one

that minimizes the classical action.

4.3.1 From the Schrodinger formulation

One of the most traditional way quantum mechanics is introduced is through the Schrodinger

formulation of quantum mechanics. In this formulation, the main object of interest is the

state function Ψ(t), describing the state of a quantum system2. At our level, the state

function will describe the existence of a quantum particle whose degree of freedom we are

interested in, is its position x. The fundamental object to introduce next, when interested

in the dynamics of our quantum particle, is the Hamiltonian operator H. The Hamiltonian

operator is the one in charge of describing at a later time T a state function given at time

t < T through the linear Schrodinger equation (here time-dependent)

∂Ψ

∂t
=
−i
~
HΨ (4.27)

with formal solution

Ψ(T) = e−i(T−t)H/~Ψ(t) (4.28)

The time independent version of the Schrodinger equation takes the eigenvalue equation

form

EΨ = HΨ (4.29)

with E the energy of the state Ψ. The importance of the time independent equation lies

partially in the fact that solution to the time dependent equation can be built as an infinite

sum of solution to the independent one [Gri05]. The Hamiltonian operator is customarily of

the form T +V with T a kinetic term of differential form and V a potential term, describing

the force acting on the quantum particle. As an example the Hamiltonian for a free particle

2Mathematically the state function is a member of an Hilbert space, ensuring some nice property (e.g.
existence of complete orthonormal basis) when working within. Note that solutions to the time independent
Schrodinger equation form a complete orthonormal basis[Baa04], therefore solution to the time dependent
Schrodinger equation since they live in the same space can be written w.r.t. those basis vectors

Chapter 4. Path Integrals 43

(absence of any potential term) with mass m is

Hfree = −
~2

2m

∂2

∂x2
(4.30)

and the solution to

− ~2

2m

∂2

∂x2
= EΨ (4.31)

with E ∈ R+ is found to be

ΨE = C1e
i
√

2mE/~2x + C2e
−i
√

2mE/~2x (4.32)

where C1,2 are constant to be found after normalization3 . Another textbook example would

be the Hamiltonian for a particle trapped inside a well with infinitely high wall at position

x = 0 and x = a is described by

Hwell = −
~2

2m

∂2

∂x2
+ V (x) (4.33)

with

V (x) = 0 if 0 < x < a and V (x) = +∞ otherwise (4.34)

the infinite potential effectively preventing the particle from ever crossing it the barrier.

Even though it does not constitute any kind of challenge to solve it 4, we will not work out

the solution here since it is outside of the scope of this thesis.

4.3.2 to the Feynman formulation

A fundamental object in the Schrodinger flavor of quantum mechanics was the Hamiltonian

operator, describing how states evolve in time. However, in the Feynman formulation of

quantum mechanics, it is the Lagrangian L (ẋ, x, t) that occupies the center of attention. It

is based on the Lagrangian that the so-called propagator is built. The propagator5 is the

object responsible for weighing possible paths in time for the quantum particle under study,

when working in the path integral formulation of quantum mechanics. One is often not

too far-off by thinking of a propagator as the transition function described in Wiener path

integral.

3based on its interpretation as a probability, and integrated over all final states |Ψ(x)|2 must evaluate to
unity.

4Once we write down the continuity condition of Ψ everywhere, and ∂Ψ everywhere except at the wall.
Additionally Ψ(0) = Ψ(a) = 0...

5also called Kernel or Green function(for it is the fundamental solution to Schrodinger equation) in some
texts

Chapter 4. Path Integrals 44

Definition 4.3.1: Propagator

For a quantum particle describing a path x (t), with massm and subject to a potential

energy V (x, t), the Lagrangian L (ẋ, x, t) and the classical action S [a, b] read

L (ẋ, x, t) =
m

2
ẋ2 − V (x, t)

S [a, b] =
tb∫

ta

L (ẋ, x, t) dt
(4.35)

the action functional being taken on path such that x (ta) = xa and x (tb) = xb.

The propagator describing the probability amplitudea for this system K (b, a) is de-

fined by

K (b, a) :=

∫
e

i
~
S[a,b]Dx (t) (4.36)

where Dx (t) means the summation over all paths obeying the boundary conditions

x (ta) = xa and x (tb) = xb (4.37)

aIn quantum mechanics, the propagator gives out complex results, and have therefore no interpre-
tation as classic probability, they are usually called probability amplitude. It is the squared of the
modulus of the propagator value that has an usual probabilistic interpretation.

Let us try right away the definition with the easiest example at our hand, the free particle

V = 0. The probability amplitude between the endpoints x (ta) = xa and x (tb) = xb is

given by the path integral

K (b, a) :=

∫
exp


 i
~

tb∫

ta

m

2
ẋ2dt


Dx (t)

= lim
∆t→0

(m

2πi∆t

)N/2
∞∫

−∞

...

∞∫

−∞

exp

[
im

2~∆t

N−1∑

i=0

(xi+1 − xi)2
]
dx1...dxN−1

(4.38)

the second equality being the usual time-slicing approach to path integrals. Performing the

Gaussian integrals in the same fashion as in (4.10), finally yields the result for the propagator

of a free particle

K (b, a) =

√
m

2πi~ (tb − ta)
exp

[
im (xb − xa)2
2~ (tb − ta)

]
(4.39)

The final result bears striking resemblance with the transition probability for a Brownian

particle with volatility ∝ m. In effect let us apply the following substitution rules: ~ =

Chapter 4. Path Integrals 45

1,m = 1/σ2, t→ −it, then (4.39) becomes

1√
2πσ2 (tb − ta)

exp

[
− (xb − xa)2
2σ2 (tb − ta)

]
(4.40)

This is the well known result[FH12] that a propagator in imaginary time (Wick rotation)

recovers the result we derived in the Wiener path integral theory. This is the reason why

we referred to the functional in Feynman-Kac formula as a potential term, while the Wiener

measure is related to the Kinetic term of a free particle with mass 1/σ2, both making a proxy

Lagrangian. A deeper discussion of the resemblance of the Wiener measure to a Lagrangian

can be found in [MC01] or [EBT99].

4.3.3 Connection between the diffusion equation and the Schrodinger

equation

Starting with the Schrodinger equation as discussed in 4.3.1

i~
∂ψ (x, t)

∂t
= − ~2

2m

∂2ψ (x, t)

∂x2
+ V (x, t)ψ (x, t) ≡ Hψ (x, t) (4.41)

for an Hamiltonian operator H acting on wave function Ψ

H :=

[
− ~2

2m

∂2

∂x2
+ V (x, t)

]
(4.42)

Taken as a function of its final point b the propagator K (b, a) satisfies (4.41)[FH12]. With

the additional condition that K (b, a) = 0 for tb < ta and lim
tb→ta

K (b, a) = δ (xb − xa), the

propagator K (b, a) is actually the Green function of (4.41).

Analogy between the Wiener integral/diffusion equation and Feynman integral/Schrodinger

equation can be made even clearer by applying the same set of subsitution rules as before

~ = 1,m = 1/σ2, t→ −it to a free particle V = 0, then

i~
∂ψ (x, t)

∂t
= − ~2

2m

∂2ψ (x, t)

∂x2
⇒ ∂ψ (x, t)

∂t
= −σ

2

2

∂2ψ (x, t)

∂x2
(4.43)

the Schrodinger equation becomes, at least formally, a diffusion equation.

4.4 Application to option pricing

The body of work inside the Econophysics field aimed to using path integral methods for

option pricing can be traced back to seminal papers by John Dash[J.D88][J.D89]. The

author motivates the recourse to path integrals by the prevalence of pricing models where

diffusion equations arise, and the ease to rewrite them under path integral forms. Since

Chapter 4. Path Integrals 46

as we saw all throughout this chapter, there is a close connection between diffusion-like

PDE and path integrals. Thus it is rather easy to switch between the most convenient

representations for one problem.To us, it is the many analogies between quantum mechanics

probabilistic description of phenomenon and financial assets stochastic dynamics, whether

expressed in the propagator form or in the Schrodinger equation, that constitute the most

cogent argument for the use of path integrals methods in finance.

A non exhaustive overview of the available works targeting the use of path integrals in

finance is

• Theoretical and introductions to the framework can be found in [Lin98],[EBT99],[Baa04].

• Exotic options pricing publications are discussed in [LLT11],[CCO14a],[CCO14b],[DLT10]

• Stochastic volatility models are studied in [Bel97],[BKS00]

• Computational aspects are discussed in [RCT02],[Mat00]

In the present thesis we are uniquely interested in the second matter: exotic option pricing.

The path integrals methodology used to address such a challenge vary from problems to

problems but we are going to give here of the outline, for a vanilla option

1. Write a SDE for the asset dynamics

2. Rewrite the SDE under path integral form

3. Solve the path integral to get the propagator

4. Use the propagator as a pricing kernel along with the payoff function

The general approach we follow for a more complex products remains however similar the

difference between trivial vanilla product and exotic is the nature of the payoff. In the

vanilla case it is merely a function of the final price and thus does not participate in the

path integral while for exotic case the payoff is a functional and thus must be accounted

for in the path integral Lagrangian term. An example of this approach will be given in

chapter 5 while it will be shown in chapter 6 that for time-occupation derivatives it may be

more sensible to start from the Feynman-Kac formula and solve the Bloch PDE.

Regarding our vanilla example, assume a stock S whose price obeys the following dynamic

dSt = St(rdt+ σdWt) (4.44)

using Ito lemma on f(x) = ln (x) yields for the log price process Xt := ln (St/S0)

dXt = µdt+ σdWt ,
(
µ := r − σ2

2

)
(4.45)

Chapter 4. Path Integrals 47

Here the Lagrangian takes the following form

L (ẋ, x, t) =
(ẋ− µ)2

2σ2
(4.46)

We previously derived the propagator for such a process in (4.16) where it was found to be

W (XT , T |0, 0) =
∫

C{0,0;XT ,T}

e
−

T∫
0

L(ẋ,x,t)dt
dWx (t) =

exp
[
−(XT−µt)2

2σ2T

]

√
2πσ2T

(4.47)

We write a European call on this asset with the following parameters: maturity T , risk-free

rate r, strike and initial price K = S0, the payoff function is max (ST −K, 0). We can get

the fair price C for this option by using the risk neutral formula and the propagator as a

pricing kernel in the following manner

C = e−rTE [max (ST −K, 0)]

= e−rT

+∞∫

−∞

max (ST −K, 0)W (XT , T |0, 0) dXT

= e−rT

+∞∫

lnK/S0

(ST −K)W (XT , T |0, 0) dXT

= e−rT


S0

+∞∫

lnK/S0

eXT

exp
[
−(XT−µt)2

2σ2T

]

√
2πσ2T

−K
+∞∫

lnK/S0

exp
[
−(XT−µt)2

2σ2T

]

√
2πσ2T

dXT




(4.48)

which after simplification can be rewritten

S0Φ

(
ln
(
S0
K

)
+ T

(
µ+ σ2

)

σ
√
T

)
− e−rTKΦ

(
ln
(
S0
K

)
+ µT

σ
√
T

)
(4.49)

Φ (·) being the normal distribution CDF.

The result derived just here is the same that could have been obtained from solving the

Black-Scholes PDE, confirming the general validity of the path integral approach in the

context of option pricing.

Chapter 5
Path Integral Pricing of Double Outside Barrier

Asian Options

5.1 Introduction

The introductions chapters preceding this one have prepared the stage for the study of the

exotic option pricing problem, by introducing the relevant tools and concepts. In this chap-

ter we will study the pricing problem for a rather involved class of exotic options, Asian

options with an added barrier restriction on an additional asset. As we hinted at in the

introduction of this thesis there are different framework and toolbox that one can use when

addressing the pricing of options derivatives, since there are many angles available to at-

tack the option pricing problem: from rather abstract purely probabilistic consideration, or

from formulation as partial differential equations[Pas11][Kwo08], then again by re-casting

the problem in the framework of functional integration[J.D88][J.D89][Lin98][EBT99]. The

powerful gateway acting as a pivotal tool to switch from and to those different representa-

tions of the same problem being the Feynman-Kac formula[Kac66], that permits to express

the solution to a Bloch type partial differential equation (related to convection diffusion

equation) as a path integral. The worked out solution will posses all characteristics of a

transition probability density or propagator (e.g. its normalisation, its vanishing for nega-

tive time), which is a necessary element when considering risk-neutral pricing. In effect,the

transition probability density of the system under consideration can broadly be regarded as

a pricing kernel for the integration one solve when writing the expectation of a payoff.

When targeting derivatives so-called exotic options, the formulation of the pricing problem

as a functional integral appears to be of particular appeal since we are interested in the

particular path that will be followed by the price process. Path dependent options belong

to the so-called class of exotics products, and exhibits a payoff structure that is connected

to the entire history, the whole path, of the process. Hence, path integrals or functional

integration is, at least in our opinion, a very fruitful and intuitive framework to work in.

It is then only natural to see a growing body of literature dedicated to the application of

path integrations techniques in finance. Although it is often referred to as Feynman path

integrals in the literature[MNM02][FH12], it is then restricted to classical action, or analyt-

48

Chapter 5. Path Integral Pricing of Double Outside Barrier Asian

Options 49

ically continued in imaginary time (Wick’s rotation) to get rid of the oscillatory nature of

the action in quantum mechanics. But then, one is actually considering Wiener functional

integration[Wie21][Wie24]. Thus in this chapter, both terms “path integrals” and “Wiener

integrals” are not meant to be semantically distinguished, and will be used interchangeably.

The specific type of exotic options that will be studied in this chapter, using path inte-

grals of the Wiener type are termed Asian options[Hul08], and more precisely continuously

monitored geometrically averaged Asian options. Since they propose payoffs that depend

on the whole path of the risky asset process, they can effectively provide some protection

against market manipulations close to the option maturity date. Using this process as our

payoff asset, we will study different barrier condition imposed on a distinct but correlated

stochastic process. Such a barrier condition is often called outside barrier in the financial

literature[Zha95], and are rather less studied than the regular type (i.e. the payoff and bar-

rier are imposed on the same asset). Barriers in derivatives are often used to limit exposure

to risk and allow to lower the premium value; since a barrier conditions can only diminish

the possible payoff of an option, it can not be worth more than a similar option without bar-

rier condition. We will study the pricing problem when the barrier condition is of knock-out

type, continuing the work in [DLT10] we will transform the system to an equivalent form

and solve the pricing problem without partitioning paths. Then we will build complexity

by imposing a double outside barrier condition and, to the best of our knowledge, derive an

altogether completely original result for such a complex product.

5.2 Wiener’s path integration

The Wiener path integrals theory was introduced to greater length in chapter 4, yet for ease

of reading we will recall here the reader, briefly, of the original works of Norbert Wiener in

defining path integrals. The so-called conditional Wiener measure[MC01], using the finite-

dimensional approximations (time-slicing approach) ǫ = t/N is defined by

dWx (τ) := exp


− 1

4D

t∫

0

ẋ2 (τ) dτ




t∏

τ=0

dx (τ)√
4πDdτ

(5.1)

t∏

τ=0

dx (τ)√
4πDdτ

:=
1

(4πDǫ)(N+1)/2

+∞∫

−∞

dx1

+∞∫

−∞

dx2 · · ·
+∞∫

−∞

dxN+1 (5.2)

Then, the transition probability1 W (xT |x0) is given by the following conditional Wiener

integral where C{x0, 0;xT , T} is the set of continuous but non differentiable paths with

1Also referred to as propagator, Green function or transition kernel.

Chapter 5. Path Integral Pricing of Double Outside Barrier Asian

Options 50

fixed endpoints x (0) = x0 and x (T) = xT

W (xT |x0) :=
∫

C{x0,0;xT ,T}

dWx (τ) (5.3)

It is worth pointing out here, that this transition density is also the solution to the diffu-

sion equation. Directly relevant to this study on option pricing is the Wiener integral of

functionals F [x (τ)] simply defined as

∫

C{x0,0;xT ,T}

F [x (τ)] dWx (τ) (5.4)

where the finite dimensional approximation is carried on with a Cauchy sequence of simple

functions {Fn} converging to F with respect to the norm

‖Fn − F‖ =
∫
|Fn − F |dWx (τ) (5.5)

5.3 Average price put option with outside up-and-out barrier

5.3.1 System description

Working in the Black Scholes model [BS73], let SX and SY be 2 correlated risky assets

SX,t = SX,0 exp

[(
r − σ2X

2

)
t+ σXW1,t

]

SY,t = SY,0 exp

[(
r − σ2Y

2

)
t+ σY

(
ρW1,t +

√
1− ρ2W2,t

)] (5.6)

where r is the risk-free rate, σX (resp. σY) is the annualised volatility for the asset SX (resp.

SY), and ρ is the correlation between SX and SY . We also define the following up-and-out

barrier condition on SY (t) at level B, while the payoff itself is written on the geometric

average of SX,t with a strike level K. The payoff function can be written as such

H(SX,T , SY,T) =





(
K − SX,0e

1
T

∫ t
0 ln(SX,s)ds

)
+

ifSY,t < B,∀t ∈ [0, T]

0 otherwise

Switching to log variables the two asset dynamics reads

Xt := ln

(
SX,t

SX,0

)
= µXt+ σXW1,t

Yt := ln

(
SY,t
SY,0

)
= µY t+ σY

(
ρW1,t +

√
1− ρ2W2,t

) (5.7)

Chapter 5. Path Integral Pricing of Double Outside Barrier Asian

Options 51

where we introduce the following definitions

lk := ln

(
K

SX,0

)
, lb := ln

(
B

SY,0

)
, µX :=

(
r − σ2X

2

)
, µY :=

(
r − σ2Y

2

)
(5.8)

Introducing the continuously monitored geometric average of X between 0 and t, X̄t

X̄t :=

∫ t

0
Xsds (5.9)

Now it is known that X̄t is normally distributed with mean µX̄t = µX
t
2 and variance

σ2
X̄
t = σ2X

t
3 . Interested reader can find a brief derivation in appendix B. The correlation

between X̄ and Y is found to be ρ̃ = ρ
√
3
2 . Thus we can rewrite the system (5.7) where we

use equality in law to justify the substitution of stochastically equivalent processes Xt ⇒ X̄t

X̄t = µX̄t+ σX̄W1,t

Yt = µY t+ σY

(
ρ̃W1,t +

√
1− ρ̃2W2,t

) (5.10)

5.3.2 System Propagator

The theory of path integration as developed by Norbert Wiener, the functional used in

order to weigh respective paths is, at least formally, equivalent to the classical action of

the system under consideration, where the volatility σ assumes in that case a role that is

analogous to the mass of a particle under consideration. Since we will assume the Black

Scholes assumptions, σ is assumed to be constant.

The Lagrangian for the system (5.10) under Ito interpretation is defined[Lin98] as

L =
1

2

2∑

η=ν=1

Gη,ν (X, t)
[
Ẋ

η
t −A (X, t)η

] [
Ẋ

ν
t −A (X, t)ν

]
(5.11)

where

Xt :=



X̄t

Ȳt


 ,A :=



µX̄

µY


 ,G :=




σ2
X̄

σX̄σY ρ

σX̄σY ρ σ2Y




−1

Integrating (5.11) yields the classical action

AT =

∫ T

0
Ldt = A0 + αT − βX̄T − γYT (5.12)

Chapter 5. Path Integral Pricing of Double Outside Barrier Asian

Options 52

with

A0 :=

∫ T

0

1

2(1− ρ̃2)

(
˙̄X2
t

σ2
X̄

+
Ẏ 2
t

σ2Y
− 2ρ̃ ˙̄XtẎt

σX̄σY

)
dt

α :=
1

2(1− ρ̃2)

(
µ2
X̄

σ2
X̄

+
µ2Y
σ2Y
− 2ρ̃

µX̄µY
σX̄σY

)

β :=
1

σ2
X̄
(1− ρ̃2)

(
µX̄ −

ρ̃σX̄µY
σY

)

γ :=
1

σ2Y (1− ρ̃2)

(
µY −

ρ̃σY µX̄
σX̄

)

(5.13)

Terms that are linear in X̄t and Yt are pulled out of the free action A0 for convenience, and

we will see later in (5.18) that a straightforward algebraic manipulation pulls them back

into the propagator. The correlation between X̄t and Yt makes the problem of finding the

classical action more delicate than otherwise. Thus we employ the following transformation

X̃ ← X̄ − ρ̃Y σX̄
σY

Ỹ ← Y

(5.14)

to effectively uncouple A0 terms, and factorize propagators. Using (5.1) and (5.3) after

transformation, leads to the following path integrals for the barrier-restricted propagator

W
(
X̃T , ỸT |X0 = Y0 = 0

)

W
(
X̃T , ỸT |0, 0

)
=

∫

C{0;xT ,T}

e
−
∫ T
0

˙̃
X2

t

2σ2
X̄
(1−ρ̃2)

dt
dWx (τ)

×
∫

C{0;yT ,T}
Y (t)<lb,∀t∈[0,T]

e
−
∫ T
0

Ẏ 2
t

2σ2
Y

dt
dW y (τ)

(5.15)

Since action terms are at most quadratic in each variable, path integration can be done

exactly[MC01]. The computation of the restricted [−∞; lb] path integral for Y is handled

through reflection method[Goo81]. After reverting back to our original variables X̄t and Yt,

the propagator takes the following form

W
(
X̄T , YT |0, 0

)
=

1

2πσX̄σY T (1− ρ̃2) exp


−

(
X̄T − ρ̃σX̄

σY
YT

)2

2σ2
X̄
(1− ρ̃2)T




×
[
exp

(
− (YT)

2

2σ2Y T

)
− exp

(
−(2lb − YT)2

2σ2Y T

)] (5.16)

Chapter 5. Path Integral Pricing of Double Outside Barrier Asian

Options 53

where the last difference of normal density term is characteristic of barrier discontinuity

resolution through reflection, as can be seen on Fig. 5.1. If one is interested in measuring

the Brownian paths that at any time in their lifetime, at one point crossed the barrier,

one is also measuring the Brownian paths that never crossed the barrier. The problem of

looking at the probability that a Brownian particle moves from X0 to XT without crossing

the barrier is similar to the physic problem of the infinite potential. The problem is solved

by subtracting to the set of all paths from X0 to XT (the term e−Y 2
T) the set of all paths

reflected around a first barrier crossing (the term e(2lb−YT)2). Interested readers can find in

appendix A a derivation of a similar result based on an original change of measure argument.

5.3.3 Option fair value

Under efficient market assumption the fair price P of our newly written option is given by

the discounted expectation (w.r.t risk neutral measure) of the payoff functional, thus leading

to the following integral of the form (5.4)

P = e−rT

∫ lk

−∞

∫ lb

−∞
e−αT+βX̄T+γYT

(
K − SX,0e

X̄T

)
W
(
X̄T , YT |0, 0

)
dX̄TdYT (5.17)

Combining (5.16) and (5.17) and the following identity to bring back linear terms in the

bivariate Gaussian density ψx (µ,Ω) with mean vector µ and covariance matrix Ω

exp
[
w′x
]
ψx (µ,Ω) = exp

[
w′µ+

1

2
w′Ωw

]
ψx (µ+Ωw,Ω) (5.18)

yields the following result for the single outside barrier Asian put option

P = e
−T

(
r+α−

σ2
X̄
2

β−σ2
Y
2

γ−ρ̃σX̄σY βγ

)[
K

(
Ψ1 −

(
B

SY,0

)− ln

(

B
SY,0

)

+σ2
Y +2ρ̃σY σ

X̄
β

2σ2
Y Ψ2

)

− SX,0e
T

(
σ2
X̄
2

+ρ̃σX̄σY γ

)(
Ψ3 −

(
B

SY,0

)− ln

(

B
SY,0

)

+σ2
Y +2ρ̃σY σ

X̄
β

2σ2
Y Ψ4

)]
(5.19)

where Ψi is the bivariate standard cumulative distribution function

Ψi =
1

2π
√

(1− ρ2)

∫ ai

−∞

∫ bi

−∞
exp

[−1
2 (1− ρ2)

(
x2 + y2 − 2ρxy

)]
dydx (5.20)

Chapter 5. Path Integral Pricing of Double Outside Barrier Asian

Options 54

X
T

Y
T

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

X
T

Y
T

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

Figure 5.1: Top panel: Illustration of the correspondence between reflected paths and
crossing paths. Only paths that crossed the barrier at one point can be put in a 1 to 1 pair
with a path reflected around the barrier at the first crossing time (Black and grey paths);
while the blue path does not have a reflected path and will not be discarded.
Bottom panel: Visual representation of the amplitude of barrier restricted propagator
as a function of terminal price XT , YT . Left panel: Single outside barrier placed at level
B = 150, a line has been plotted to indicate where the amplitude falls to 0. As expected it
coincides with the barrier absorption. Right panel: Double outside barrier placed at levels
B+ = 140 and B− = 60, as previously the line shows where the amplitude falls to 0. Lines
indicate approximately where the barrier absorption takes place.

Chapter 5. Path Integral Pricing of Double Outside Barrier Asian

Options 55

evaluated at

a1 :=
lk−(βσ2

X̄
T+γρ̃σX̄σY T)
σX̄

√
T

b1 :=
lb−(γσ2

Y T+βρ̃σX̄σY T)
σY

√
T

a2 :=
lk−

[
βσ2

X̄
T+

(
γ+

lb

σ2
Y

T

)
ρ̃σX̄σY T

]

σX̄

√
T

b2 :=
lb−(lb+γσ2

Y T+βρ̃σX̄σY T)
σY

√
T

a3 :=
lk−[(β+1)σ2

X̄
T+γρ̃σX̄σY T]

σX̄

√
T

b3 :=
lb−[γσ2

Y T+(β+1)ρ̃σX̄σY T]
σY

√
T

a4 :=
lk−

[
(β+1)σ2

X̄
T+

(
γ+

lb

σ2
Y

T

)
ρ̃σX̄σY T

]

σX̄

√
T

b4 :=
lb−[lb+γσ2

Y T+(β+1)ρ̃σX̄σY T]
σY

√
T

SY,0 = 90 SY,0 = 130

ρ

R
e

la
ti
v
e

 e
rr

o
r

ρ

R
e

la
ti
v
e

 e
rr

o
r

40 50 60 70 80 90 100 110 120 130 140 150
0

10

20

30

40

S
Y,0

O
p

ti
o

n
 v

a
lu

e

MC ρ=0.2

ρ=0.2

MC ρ=0.8

ρ=0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0.1

Figure 5.2: Top panel: Option value P with respect to initial control process value SY,0,
with barrier level B = 150. Bottom panel: Relative error to Monte Carlo price with
respect to correlation coefficient ρ ∈ [0.2, 0.8] for SY,0 = 90 and SY,0 = 130. Both panels use
arbitrary currency unit in which the asset is originally quoted.

5.3.4 Results

We benchmarked the accuracy of our analytic formula against a Monte Carlo simulation

using 216 generated paths, and 210 timesteps. Results are plotted in Fig.5.2 for the following

Chapter 5. Path Integral Pricing of Double Outside Barrier Asian

Options 56

set of annualized parameters in their own usual units: risk-free rate r = 0.03, volatility is

σX = σY = .2 the strike level is set at K = 100, the barrier is at B = 150, the maturity is

T = 1, the initial price for the risky asset X is SX,0 = 60. Results are plotted in Fig.5.2 for

two values of the correlation parameter ρ: weakly correlated ρ = 0.2 and highly correlated

ρ = 0.8.

We have the positive result that as correlation increase the maximum relative error between

the Monte Carlo simulation and our result decreases in a quasi-monotonically fashion, with

the precise value depending on the barrier proximity to SY,0. This result is an improvement

over the formula available in [DLT10] that saw major degradation of result accuracy as

correlation increased. Since in our work we did not follow the usual method of separating

the sets of paths with respect to their average value, we also do not meet the caveat of the

barrier canceling the wrong set of paths as explained in their paper. We also reproduce

the expected result that when the probability of knocking out the barrier is negligible, i.e.

SY,0 ≪ B, Monte Carlo and analytical outputs coincide almost perfectly.

Building on those satisfying results, we can move on to a more involved problem that to

best of our knowledge has not been explored so far, the pricing of Asian option with double

outside knock-out barrier.

5.4 Average price put option with outside double knock-out

barrier

5.4.1 System description

We will work here with the two dimensional assets system as described in (5.10) where we

now impose a double knock-out barrier condition on SY,t at level B+ and B−. Now the

payoff takes the following form

H(SX,T , SY,T) =





(
K − SX,0e

1
T

∫ t

0
ln(SX,s)ds

)
+

ifB− < SY,t < B+,∀t ∈ [0, T]

0 otherwise

and much in the trail of the first section we introduce the log-barrier levels

lb+ := ln

(
B+

SY,0

)
, lb− := ln

(
B−

SY,0

)
, lb := ln

(
B+

B−

)
(5.21)

Chapter 5. Path Integral Pricing of Double Outside Barrier Asian

Options 57

5.4.2 System Propagator

Using the same transformation strategy to uncorrelate both variables as the one described

in section 5.3.2, the doubly restricted path integral now takes the following form

W
(
X̃T , ỸT |0, 0

)
=

∫

C{0;XT ,T}

e
−
∫ T

0

˙̃
X2

t

2σ2
X̄
(1−ρ̃2)

dt
dWx (τ)

×
∫

C{0;YT ,T}
lb−<Y (t)<lb+ ,∀t∈[0,T]

e
−
∫ T
0

Ẏ 2
t

2σ2
Y

dt
dW y (τ)

(5.22)

As before the path integral for Xt is one of a free particle, and so it shall yield a propagator

that is simply a Gaussian distribution. Now Yt presents a double barrier, a situation that

is analog to one of a particle confined in an infinite square well. The strategy to handle in

the context of path integrals a double infinite potential corresponding here to our double

barriers situation, was put forward in [Goo81], and the propagator is found from repeated

use of reflection principle

W

(
X̄T , YT |0, 0

)
=

1

2πσX̄σY T (1− ρ̃2) exp


−

(
X̄T − ρ̃σX̄

σY
YT

)2

2σ2
X̄
(1− ρ̃2)T




+∞∑

n=−∞

[
exp

(
−(YT − 2nlb)

2

2σ2Y T

)
− exp

(
−(YT − 2(lb− + nlb))

2

2σ2Y T

)]
(5.23)

Let us note here that the second density term in the infinite sum determines the magnitude

of the un-canceled terms when truncating said sum. This is especially important for assets

that are about to knock out. If SY,0 = B− then the sum vanishes completely as lb− = 0,

which is not the case if the asset knocks out the lower barrier B−. A similar series could be

written where the last exponential term in (5.23) is changed lb− → lb+ which would lead to

the opposite situation.

5.4.3 Option fair value

With the greeks’ shorthands defined in (5.13), the fair price P of our newly written option

is given by

P = e−rT

∫ lk

−∞

∫ l+
b

l−
b

e−αT+βX̄T+γYT

(
K − SX,0e

X̄T

)
W
(
X̄T , YT |0, 0

)
dX̄TdYT (5.24)

Since the series converge absolutely, we are allowed to interchange summation and integra-

tion, and fall back to a path integral similar to (5.19). Define the parameterized solution to

Chapter 5. Path Integral Pricing of Double Outside Barrier Asian

Options 58

(5.24)

P (Λ) := exp

[
−T

(
r + α−

σ2
X̄

2
β − σ2Y

2
γ − ρ̃σX̄σY βγ

)]

×
+∞∑

n=−∞
Ke

2nlb

(
ρ̃
σ
X̄

σY
β+ 1

2
− nlb

σ2
Y

T

)(
Ψ1 (Λ)− e

Λ(2ρ̃
σ
X̄

σY
β+1+2

2nlb−Λ

σ2
Y

T
)
Ψ2 (Λ)

)

− SX,0e
2nlb

(
ρ̃
σ
X̄

σY
(β+1)+ 1

2
− nlb

σ2
Y

T

)(
Ψ3 (Λ)− e

Λ(2ρ̃
σ
X̄

σY
(β+1)+1+2

2nlb−Λ

σ2
Y

T
)
Ψ4 (Λ)

)

(5.25)

where Ψi (Λ) is the CDF of a bivariate normal distribution with unit variance and zero mean

evaluated over the infinite strip parametrized by Λ ∈ {lb− , lb+}

Ψi (Λ) =
1

2π
√

1− ρ̃2

lk−ai

σ
X̄

√
T∫

−∞

l
+
b

−bi

σY

√
T∫

l
−
b

−bi

σY

√
T

exp

[−1
2 (1− ρ̃2)

(
x2 + y2 − 2ρ̃xy

)]
dxdy (5.26)

a1 := βσ2
X̄
T +

(
γ + 2nlb

σ2
Y T

)
ρ̃σX̄σY T

b1 :=
(
γ + 2nlb

σ2
Y
T

)
σ2Y T + βρ̃σX̄σY T

a2 := βσ2
X̄
T +

(
γ + 2nlb+2Λ

σ2
Y T

)
ρ̃σX̄σY T

b2 :=
(
γ + 2nlb+2Λ

σ2
Y T

)
σ2Y T + βρ̃σX̄σY T

a3 := (β + 1) σ2
X̄
T +

(
γ + 2nlb

σ2
Y T

)
ρ̃σX̄σY T

b3 :=
(
γ + 2nlb

σ2
Y T

)
σ2Y T + (β + 1) ρ̃σX̄σY T

a4 := (β + 1) σ2
X̄
T +

(
γ + 2nlb+2Λ

σ2
Y T

)
ρ̃σX̄σY T

b4 :=
(
γ + 2nlb+2Λ

σ2
Y
T

)
σ2Y T + (β + 1) ρ̃σX̄σY T

then the option no-arbitrage value is approximated by a sigmoid-shaped interpolation be-

tween P (lb−) and P (lb+) where we weigh each contribution based on the knock-out barrier

that is closest to SY,0. The motivation behind this interpolation is to compensate the un-

Chapter 5. Path Integral Pricing of Double Outside Barrier Asian

Options 59

canceled terms in the infinite series (5.23) when SY,0 ≅ B+ or SY,0 ≅ B−.

P̃ ≈ P (lb−)

1 + exp

[
−α(SY,0−B−)

B+−B− + α
2

] +


1− 1

1 + exp

[
−α(SY,0−B−)

B+−B− + α
2

]


P (lb+) (5.27)

The α parameter is used in casting [B−;B+] into [−α; +α] yielding the well known S-shaped

logistic curve, usually α = 5 is adequate enough in retrieving said curve. Fig.5.3 shows the

very basic logistic curve we used.

5.4.4 Results

We tested the accuracy of our analytical result against a Monte-Carlo simulation, generating

216 paths for the 2 risky assets, and 210 timesteps. The set of parameters is the same as

found in 5.3.4, where we set the double barrier levels to B− = 60, B+ = 140.

The results derived from our formula are found to be relatively close to the one delivered

by the Monte-Carlo simulation. Relative error is still found to be ≪ 0.1 for a wide range

of SY,0. However as seen from empirical evidence we can not longer claim that relative

error is monotonically decreasing with respect to increased correlation ρ. That is, unless we

disregard assets system about to knock-out upon being signed, i.e. SY,0 ≅ B+ or SY,0 ≅ B−,

as seen on figure 5.4 for |SY,0 −B+| = 10. Explanation for this new behavior can be found

in the impossibility to now exactly cancel the contribution from the infinitely many image

sources and sinks. The infinite sum do converge, however when implementing said sum, we

have to truncate after a reasonable number of terms, which lead to uncanceled residuals.

Those residuals grow in magnitude as SY,0 ≅ B+ or SY,0 ≅ B−.

The smooth interpolation in (5.27) helps to mitigate such residuals impact regardless of the

initial closest discontinuity, but can not remove it completely.

5.5 Conclusion

In this study we have derived two formula for the pricing of simple and double outside

knock-out barrier options with Asian type payoff. By employing a transformation strategy

we derived a stochastically equivalent system. We built a propagator for this system and did

the functional integration without using the usual trick of partitioning the paths. Doing so,

we reduced the error bound to canceling the wrong set of paths when correlation increase.

We saw significant improvement over the hardships faced in previous study. Then we showed

that the same steps could be taken to challenge the double outside barrier problem.

Future study should be aimed at a more detailed theoretical explanation for the different

error profiles as seen in Fig. 5.4, then improve the relative error for options about to knock-

Chapter 5. Path Integral Pricing of Double Outside Barrier Asian

Options 60

S
Y,0

O
p

ti
o

n
 v

a
lu

e

S
Y,0

60 70 80 90 100 110 120 130 140

0

0.2

0.4

0.6

0.8

1

P
lb

+

P
lb

−

W
e

ig
h

t

60 70 80 90 100 110 120 130 140
0

10

20

30

40

MC ρ=0.8

ρ=0.8

MC ρ=0.2

ρ=0.2

Figure 5.3: Top panel: Logistic curve used to weigh the contribution of P (lb+) and
P (lb−) depending on the proximity to the up or down barrier. Bottom panel: Option fair
price as given by a Monte Carlo simulation, versus the analytical result for P̃ , with respect
to the initial price for the barrier asset SY,0. The fair price is computed for weak correlation
(ρ = 0.2), and highly correlated assets (ρ = 0.8).

S
Y , 0

S
Y , 0

SY,0 = 90 SY,0 = 130

ρ= 0.2 ρ= 0.8

0.2 0.4 0.6 0.8
0

0.05

0.1

0.15

0.2

ρ

R
e

la
ti
v
e

 e
rr

o
r

0.2 0.4 0.6 0.8
0

0.05

0.1

0.15

0.2

ρ

R
e

la
ti
v
e

 e
rr

o
r

80 100 120

0

0.05

0.1

0.15

R
e

la
ti
v
e

 e
rr

o
r

80 100 120

0

0.05

0.1

0.15

R
e

la
ti
v
e

 e
rr

o
r

Figure 5.4: Top panel: Relative error between prices obtained through Monte-Carlo
simulation and analytical result in (5.27) with respect to increasing correlation ρ ∈
[0.2, 0.8].Bottom panel: Same relative error now with respect to increasing initial price
SY,0 ∈ [60, 140].For each panel, five terms were used in the approximation of the infinite
sum of (5.23).

Chapter 5. Path Integral Pricing of Double Outside Barrier Asian

Options 61

out upon writing.

Chapter 6
Path Integral Pricing Of Wasabi Options

6.1 Introduction

In this chapter we will use the path integral to study the problem of a subclass of exotic

products, namely the “cumulative Parisian option”. The previous chapter used path inte-

grals technique for a class of exotic products whose complexity is connected to so-called

“topological constraint”. The exotic product in the current chapter has a payoff structure

that is connected to the average amount of time a risky asset price process spends in a

prescribed domain. For this reason this class of exotics is often termed, “occupation time

derivative”. The model of the market used in this study is as was introduced in chapter 3

the Black-Scholes model[BS73]. The application of path integral techniques to the study

of occupation time derivatives has to the best of our knowledge, so far been rather sparse.

By using the Feynman-Kac formula we will derive a closed form for the propagator and

use it to derive the option fair price. After comparison with a Monte Carlo simulation to

ensure the accuracy of our results we will derive an approximation formula for an original

product. The accuracy of our approximation will then be challenged against a Monte Carlo

simulation.

The structure of this chapter is the following. In Section 6.2 we will study the case of the

cumulative Parisian. In Section 6.3 the new “Wasabi option” is introduced and studied.

Finally we draw our conclusion and present some perspectives in Section 6.4.

6.2 Up-and-in Parisian option

The cumulative Parisian option [CJPY97] is an exotic derivative, and yet more specifically

an occupation time derivative. It allows to restrict the condition under which an option

yields a profit. In the cumulative knock-in Parisian case, the option is worthless unless the

option spends a certain ratio of the time to maturity over a specified constant level. We will

hereafter refer to this ratio of time as “Parisian time” and the level of excursion as “Parisian

level”. It generalizes the so-called barrier option which nullifies the contract once the barrier

level is touched. Therefore, one can see that a Barrier option is nothing more than a Parisian

62

Chapter 6. Path Integral Pricing Of Wasabi Options 63

option where the Parisian time → 0. The vanilla option, is also a generalization where the

Parisian time tends to the time to maturity.

6.2.1 System description

Let SX be a risky asset, which under the Black-Scholes assumptions takes the following

form

SXt = SX0 exp

[(
r − σ2

2

)
t+ σWt

]
(6.1)

where r is the risk-free rate, σ is the annualized volatility for SX , and Wt a Wiener process.

The up-and-in Parisian barrier condition on SX is set at level B and Parisian time d. The

payoff is at strike level K. The Parisian up-and-in call option payoff function takes the

following form

[SXT
−K]+ 1




T∫

0

Θ(SXt −B) dt > d


 (6.2)

Passing to log variables and under the Ito interpretation the asset is rewritten

Xt := ln

(
SXt

SX0

)
= µt+ σWt (6.3)

where we introduce the following definitions

k := ln

(
K

SX0

)
, b := ln

(
B

SX0

)
, µ :=

(
r − σ2

2

)
(6.4)

6.2.2 Parisian propagator

In this chapter we will be concerned with the following path integral for a functional of

exponential form and additive

WB (xT , T |x0, 0) =
∫

C{x0,0;xT ,T}

e
−

T∫
0

V (xt)dt
dWx (t) (6.5)

with V (x) ≥ 0. This equation defines a path integral whose solution WB (xT , T |x0, 0) admits

an equivalent PDE form, the so-called Bloch equation [MC01]

[
∂

∂T
−D ∂2

∂x2T
+ V (xT , T)

]
WB (xT , T |x0, 0) = δ (T) δ (xT − x0) (6.6)

That the solution to the path integral (6.5) is also the fundamental solution to (6.6) is

basically the content of the celebrated Feynman-Kac theorem [Kac49].

Chapter 6. Path Integral Pricing Of Wasabi Options 64

Define the propagator WP (XT , T, λ|X0, 0) for a driftless risky asset Xt that spends λ unit

of time over the constant level b

WP (XT , T, λ|X0, 0) :=

∫

X0→XT
T∫
0

Θ(Xt−b) dt=λ

dWx (t)

=

∫

X0→XT

δ




T∫

0

Θ(Xt − b) dt−λ


 dWx (t)

=

∫

X0→XT

1

2iπ

ǫ+i∞∫

ǫ−i∞

e
p

(
λ−

T∫
0

Θ(Xt−b) dt

)

dp dWx (t)

=
1

2iπ

ǫ+i∞∫

ǫ−i∞

epλ
[∫

X0→XT

e
−p

T∫
0

Θ(Xt−b) dt
dWx (t)

]
dp

(6.7)

As can be seen in the last line, the derivation of the Parisian propagator leads to the

description of a particle going through a finite potential of height p. Denoting, for brevity

sake, by W the Laplace transform of the transition density in the last line, and since by

design X0 = 0. We have, based on the Feynman-Kac formula, the following equivalent PDE

form with p > 0, b > 0 and Θ(·) being the step function

∂W

∂T
=
σ2

2

∂2W

∂X2
T

− pΘ(XT − b)W (6.8)

Taking Ŵ to be the Laplace transform of W with respect to T , the time to maturity

(s+ pΘ(XT − b)) Ŵ −
σ2

2
Ŵ ′′ = δ (XT) (6.9)

splitting the real line in 3 regions: R1 := XT < 0, R2 := 0 < XT < b,R3 := XT > b, the

bounded (W vanishing at infinity) continuous solutions in R1, R2, R3 are respectively

Ae
√

2s
σ

XT

Be
√

2s
σ

XT +Ce−
√

2s
σ

XT

De−
√

2(p+s)

σ
XT

(6.10)

Requiring the continuity of the solution at XT = 0, XT = b and of its derivative at XT = b,

Chapter 6. Path Integral Pricing Of Wasabi Options 65

and based on discontinuity magnitude at XT = 0, we have the following conditions to enforce

A = B + C

Be
√
2s
σ

b + Ce−
√

2s
σ

b = De−
√

2(p+s)

σ
b

A+ C −B = σ

√
2

s
√
sBe

√
2s
σ

b −√sCe−
√

2s
σ

b = −√p+ sDe−
√

2(p+s)

σ
b

(6.11)

Yielding the results for the constants

A =

(
2
√
s (p+ s)− p− 2s

)
e−

2b
√

2s
σ + p

σp
√
2s

B = −

(
−2
√
s (p+ s) + p+ 2s

)
e−

2b
√

2s
σ

σp
√
2s

C =
1

σ
√
2s

D =

√
2e

b
√

2(
√

p+s−√
s)

σ

σ (
√
p+ s+

√
s)

(6.12)

Finally we get the results for the double Laplace transform of the transition density

Ŵ (XT , s) =





e−
√
2s

|XT |
σ −e−

√
2s

(2b−XT)
σ

σ
√
2s

+
√
2e

√
2s

(XT−2b)
σ

σ(
√
p+s+

√
s)

XT < b

√
2e−

√
2s b

σ−
√

2(p+s)
(XT −b)

σ

σ(
√
p+s+

√
s)

XT > b

Rewrite Ŵ (XT , s) for XT < b as

e−
√
2s

|XT |
σ − e−

√
2s

(2b−XT)

σ

σ
√
2s

+
2

σ

∫ ∞

0
exp

[
−
√

2(p + s)y
]
exp

[
−
√
2s

(
2b−XT

σ
+ y

)]
dy

(6.13)

The double inversion on the first two terms is straightforward. For the last integral term

using Fubini’s theorem and the following double Laplace transform property (note that by

design the transition vanishes for λ > T)

L−1L−1{F1 (p+ s)F2 (s)} = f1 (λ) f2 (T − λ)10,T (λ) (6.14)

Chapter 6. Path Integral Pricing Of Wasabi Options 66

Then the double inversion for XT < b is

δ(λ)

[
e−

|XT |2
2σ2T − e−

(2b−XT)2

2σ2T

σ
√
2πT

]
+

∫ ∞

0

y
(
2b−XT

σ + y
)

σπ
√
λ3(T − λ)3

exp


− y2

2(T − λ) −

(
2b−XT

σ + y
)2

2λ


 dy

(6.15)

Rewrite Ŵ (XT , s) for XT > b

2

σ

∫ ∞

0
exp

[
−
√
2s

(
b

σ
+ y

)]
exp

[
−
√
2(p + s)

(
x− b
σ

+ y

)]
dy (6.16)

Using the same property for the double Laplace transform as before leads to

∫ ∞

0

(
y + b

σ

) (
XT−b

σ + y
)

σπ
√
λ3(T − λ)3

exp


−

(
y + b

σ

)2

2(T − λ) −

(
y + XT−b

σ

)2

2λ


 dy (6.17)

Finally we have the following result for the propagator (6.7)

WP (XT , T, λ|0, 0) = Θ (b−XT)

[
δ(λ)


e−

X2
T

2σ2T − e−
(2b−XT)2

2σ2T

σ
√
2πT




+

∫ ∞

0

y
(
y + 2b−XT

σ

)

σπ
√
λ3(T − λ)3

exp


− y2

2(T − λ) −

(
y + 2b−XT

σ

)2

2λ


 dy

]

+Θ(XT − b)
[∫ ∞

0

(
y + b

σ

) (
y + XT−b

σ

)

σπ
√
λ3(T − λ)3

exp


−
(
y + b

σ

)2

2(T − λ) −

(
y + XT−b

σ

)2

2λ


 dy

]

:= Θ (b−XT)W
−
P (XT , T, λ|0, 0) + Θ (XT − b)W+

P (XT , T, λ|0, 0)

(6.18)

both integrals can be worked out and their complete expression is given in appendix C.

6.2.3 Option pricing

Define C (SX0 , T,K,B, d) to be the fair price of a call option with initial price SX0, maturity

T , strike K, Parisian level B and Parisian time d, then based on the risk neutral pricing

formula [Shr04], where Eµ means that the expectation is to be taken for a Wiener process

undergoing a drift µ, the second equality being the result of an application of the Cameron-

Chapter 6. Path Integral Pricing Of Wasabi Options 67

Martin-Girsanov theorem [Pas11]

C (SX0 , T,K,B, d) = Eµ

[
e−rT [SXT

−K]+ 1 [Θ (SXT
−B) > d]

]

= e
−T

(
r+ µ2

2σ2

) +∞∫

−∞

∫

X0→XT

e
µXT
σ2
[
SX0e

XT −K
]
+
1 [Θ (XT − b) > d] dWx (τ) dXT

(6.19)

Introducing the propagator derived in (6.18)

C (SX0 , T,K,B, d) = e
−T

(
r+ µ2

2σ2

) +∞∫

k

T∫

d

(
SX0e

XT −K
)
WP (XT , T, λ|0, 0) dλ dXT

= e
−T

(
r+ µ2

2σ2

)[
SX0

T∫

d

(b∫

k∧b

e
XT

(
µ

σ2+1
)

W−
P (XT , T, λ|0, 0) dXT

+

+∞∫

k∨b

e
XT

(
µ

σ2+1
)

W+
P (XT , T, λ|0, 0) dXT

)
dλ−K

T∫

d

(b∫

k∧b

e
µXT
σ2 W−

P (XT , T, λ|0, 0) dXT

+

+∞∫

k∨b

e
µXT
σ2 W+

P (XT , T, λ|0, 0) dXT

)
dλ

]

(6.20)

For completeness sake we want to point out the following obvious relation

C− (SX0 , T,K,B, T − d) = C (SX0 , T,K)− C (SX0 , T,K,B, d) (6.21)

with C− (SX0 , T,K,B, T − d) a variant where the time under the Parisian level is counted,

and C (SX0 , T,K) is the fair price for a Vanilla option written on the same parameters.

6.2.4 Results

We benchmarked our results against a Monte Carlo simulation, generating 216 paths , with

214 timesteps. We use the following set of parameters: T = 1, σ = .2, r = .03, B = 110 in an

arbitrary currency unit, and we let the other parameters, i.e Parisian time d and the initial

asset price SX0, vary. As can be seen on the Fig. 6.1, the results obtained through Monte

Carlo simulation and the ones derived through our analytical formula agree perfectly.

To no one surprise maybe, the option value is decreasing with respect to an increasing d,

since the measure of paths that trigger the payoff itself decreases. Otherwise put:

{C{x0, 0;xT , T} :
(T∫

0

Θ(Xt − b) dt > d1
)
} ⊆ {C{x0, 0;xT , T} :

(T∫

0

Θ(Xt − b) dt > d2
)
}

Chapter 6. Path Integral Pricing Of Wasabi Options 68

70 75 80 85 90 95 100 105 110

0

2

4

6

8

10

12

14

16

Initial price

O
p

ti
o

n
 p

ri
c
e

MC d=0.25

Analytics d=0.25

MC d=0.5

Analytics d=0.5

MC d=0.75

Analytics d=0.75

Figure 6.1: The Parisian option fair price (in arbitrary currency unit) with regards to
both the initial asset price SX0, and the Parisian time d. MC stands for the results obtained
through a Monte Carlo simulation, while analytics are the results obtained using our exact
formula derived in Section 6.2.3.

for d1 ≤ d2.
The results we derive using our analytic formula match the ones obtained with the Monte

Carlo simulation, which was expected since in our derivation no approximation was made

at any point. Building on those encouraging results we move on to an original product, not

studied so far to the best of our knowledge.

6.3 Wasabi option

We introduce now an original exotic occupation time derivative. In addition to the Parisian

condition, we let the payoff be a function of the geometric average of the asset price. This

payoff feature is usually referred to as “Asian option”. Our original product embedding

both Parisian and Asian features will thereafter be called “Wasabi1 option” for short. Past

its theoretical interest, the appeal of this original derivative is to both exhibit the positive

features of each separate option, yet to be usually cheaper than both of them.

1From the eponymous 2001 French-Japanese movie

Chapter 6. Path Integral Pricing Of Wasabi Options 69

6.3.1 System description

Let us introduce the continuously monitored geometric average of SXT
between t = 0 and

t = T , and its log-variable counterpart X̄T

S̄XT
:= SX0 exp

(
1

T

∫ T

0
ln (SXs) ds

)

X̄T := ln

(
S̄XT

SX0

) (6.22)

The Wasabi payoff, with level B and time d is then of the following form

[
S̄XT

−K
]
+
1




T∫

0

Θ(SXt −B) dt > d


 (6.23)

Computation of the option price would entail to derive an exact expression for the following

propagator, where the paths have been partitioned according to the final value for the

average X̄T . Note that since X̄T can be negative, the Fourier transform representation for

the Dirac Delta is required, leading to an imaginary term in the potential.

WW

(
XT , X̄T , T, λ|0, 0, 0

)
:=

+∞∫

−∞

eiqX̄T

2π

ǫ+i∞∫

ǫ−i∞

epλ

2iπ

[∫

X0→XT

e
−

T∫
0

pΘ(Xt−b)+iq
Xt
T

dt
dWx(t)

]
dp dq

(6.24)

because the path integral has an equivalent Airy equation form we feel that the compu-

tational cost for an exact expression would be prohibitively high. Costly enough that it

would discourage its adoption by financial practitioners. Therefore in the following section

we propose an approximation and study its accuracy in section 6.3.4.

6.3.2 Wasabi propagator

It is known that the first two moments for the geometric average of the log-price can be

exactly derived [KV90]. More explicitly, with r the risk-free rate, σ the annualized volatility

for the asset SX , we can write the following equations regarding the dynamics of our two

processes

Xt =

(
r − σ2

2

)
t+ σWX,t := µt+ σWX,t

X̄t =

(
r − σ2

6

)
t

2
+

σ√
3

(
ρWX,t +

√
1− ρ2WX̄,t

)
:= µ̄t+ σ̄

(
ρWX,t +

√
1− ρ2WX̄,t

)

(6.25)

Chapter 6. Path Integral Pricing Of Wasabi Options 70

where ρ the correlation between Xt and its average X̄t is known to be equal to
√
3/2. We

proceed now to uncorrelate both processes

X̃t ← Xt

¯̃
Xt ← X̄t − ρ

σ̄

σ
Xt

(6.26)

In the transformed system the Wasabi propagator factorizes into a Parisian propagator for

the process X̃t and a free propagator for ¯̃
Xt

WW

(
XT , X̄T , T, λ|0, 0

)
=WP

(
X̃T , T, λ|0, 0

)
W
(
¯̃
XT , |0

)
(6.27)

which after reverting to our original variables lead to the following expression for our Wasabi

propagator

WW

(
XT , X̄T , T, λ|0, 0

)
=

e
−

(

X̄T− σ̄ρXT
σ

)2

2σ̄2(1−ρ2)T

√
2πσ̄2 (1− ρ2)T

(
Θ(b−XT)

[
δ(λ)


e

− X2
T

2σ2T − e−
(2b−XT)2

2σ2T

σ
√
2πT




+

∫ ∞

0

y
(
y + 2b−XT

σ

)

σπ
√
λ3(T − λ)3

exp


− y2

2(T − λ) −

(
y + 2b−XT

σ

)2

2λ


 dy

]

+Θ(XT − b)
[∫ ∞

0

(
y + b

σ

) (
y + XT−b

σ

)

σπ
√
λ3(T − λ)3

exp


−

(
y + b

σ

)2

2(T − λ) −

(
y + XT−b

σ

)2

2λ


 dy

])

(6.28)

The integrals can yet again be translated to a simpler form available in appendix C.

6.3.3 Option pricing

We derive here a fair price for the Wasabi call option. Following a path similar to the one

paved in section 6.2.3.Define C (SX0 , T,K,B, d) to be the fair price of a Wasabi call option

with initial price SX0 , maturity T , strike K, Wasabi level B and time d, then based on the

Chapter 6. Path Integral Pricing Of Wasabi Options 71

risk neutral pricing formula [Shr04]

C (SX0 , T,K,B, d) = Eµ

[
e−rT

[
S̄XT

−K
]
+
1 [Θ (SXT

−B) > d]
]

= e−rT

+∞∫

−∞

∫

X0→XT

e−αT+γX̄T+βXT

[
SX0e

X̄T −K
]
+
1 [Θ (XT − b) > d] dWx (τ) dXT

= e−T (r+α)

[
SX0

T∫

d

(+∞∫

k

b∫

k∧b

eX̄T (1+γ)+βXT
e
−

(

X̄T − σ̄ρXT
σ

)2

2σ̄2(1−ρ2)T

√
2πσ̄2 (1− ρ2)T

W−
P (XT , T, λ|0, 0) dX̄T dXT

+

+∞∫

k

+∞∫

k∨b

eX̄T (1+γ)+βXT
e
−

(

X̄T − σ̄ρXT
σ

)2

2σ̄2(1−ρ2)T

√
2πσ̄2 (1− ρ2)T

W+
P (XT , T, λ|0, 0) dX̄T dXT

)
dλ

−K
T∫

d

(+∞∫

k

b∫

k∧b

eγX̄T+βXT
e
−

(

X̄T − σ̄ρXT
σ

)2

2σ̄2(1−ρ2)T

√
2πσ̄2 (1− ρ2)T

W−
P (XT , T, λ|0, 0) dX̄T dXT

+

+∞∫

k

+∞∫

k∨b

eγX̄T+βXT
e
−

(

X̄T − σ̄ρXT
σ

)2

2σ̄2(1−ρ2)T

√
2πσ̄2 (1− ρ2)T

W+
P (XT , T, λ|0, 0, 0) dX̄T dXT

)
dλ

]

(6.29)

with the following constants definition

α :=
µ2

σ2 + µ̄2

σ̄2 − 2(µµ̄ρ)
σ̄σ

2 (1− ρ2) , β :=
µ− µ̄ρσ

σ̄

(1− ρ2)σ2 , γ :=
µ̄− µσ̄ρ

σ

σ̄2 (1− ρ2)
(6.30)

As demonstrated in C, the integrals in the Parisian propagator reduce to erfc (·) evalua-

tion, the remaining integrals converge quickly enough that it takes less than 5 seconds to

numerically evaluate on a Xeon 3.20GHz.

6.3.4 Results

We benchmarked our results against a Monte Carlo simulation, generating 216 paths , with

214 timesteps. We use the following set of parameters: T = 1, σ = .2, r = .03, B = 110 in an

arbitrary currency unit, and we let the other parameters, i.e Wasabi time d and the initial

asset price SX0 , vary. We also plot the option values for a plain Vanilla option written on

the same maturity and strike price. The results can be seen on Fig. 6.2

The approximation leads to an error resulting from the joint use of path partitioning and

decorrelation step. Since the paths that trigger the knock-in condition are bound to spend

an important share of the time to maturity over an upward level, they ultimately possess

a distribution that is skewed compared to the paths normally distributed according to the

Chapter 6. Path Integral Pricing Of Wasabi Options 72

distribution of the average. The shift in the distribution of the subset of triggering paths

relatively to the distribution of X̄T can be seen on Fig. 6.3. Therefore the payoff when

triggered is taken over an asset whose distribution is off. On Fig. 6.3, the discrepancy in dis-

tributions overall location parameters arising as a result of the decorrelation is made obvious.

70 75 80 85 90 95 100 105 110

0

2

4

6

8

10

12

14

16

18

Initial price

O
p

ti
o

n
 p

ri
c
e

Vanilla

MC d=0.25

Analytics d=0.25

MC d=0.5

Analytics d=0.5

MC d=0.75

Analytics d=0.75

Figure 6.2: The Wasabi option fair price (in arbitrary currency unit) with regards to
both the initial asset price SX0 , and the Wasabi time d. MC stands for the results ob-
tained through a Monte Carlo simulation, while analytics are the results obtained using our
approximation formula derived in section 6.3.3.

-0.2 0.0 0.2 0.4 0.6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

-0.2 0.0 0.2 0.4 0.6

1

2

3

4b=0.0 b=0.1

Figure 6.3: Comparing the final price distribution for the subset of paths of XT triggering
the payoff (therein displayed as bins) and for X̄T (red line), when the Wasabi time is taken
to be d = 0.5. The left panel is for a Wasabi level at b = 0.0, while the right panel is for
b = 0.1.

It would be trivial to account for this offset by manually widening the distribution of X̄T ,

for example by doing the substitution σ̄ = σ/
√
2 instead of σ̄ = σ/

√
3 and doing that we

would almost recover the same quality of results than seen for the cumulative Parisian case,

Chapter 6. Path Integral Pricing Of Wasabi Options 73

as visible on Fig. 6.4. However, until it can be more rigorously justified, it should not be

elevated to anything more than a “quick fix”.

70 75 80 85 90 95 100 105 110

0

2

4

6

8

10

12

14

16

18

Initial price

O
p

ti
o

n
 p

ri
c
e

MC d=0.25

QuickFixed d=0.25

MC d=0.5

QuickFixed d=0.5

MC d=0.75

QuickFixed d=0.75

Figure 6.4: The Wasabi option fair price (in arbitrary currency unit) with regards to both
the initial asset price SX0 , and the Wasabi time d, when considering a change of volatility
from σ̄ = σ/

√
2 to σ̄ = σ/

√
3. MC stands for the results obtained through a Monte Carlo

simulation, while “QuickFixed” are the results obtained using our approximation formula
derived in section 6.3.3 and the aforementioned substitution.

6.4 Conclusion

In this paper, we show how the path integral framework allows to reformulate the problem

of occupation time derivatives into a form that is easily solvable through the Feynman-Kac

theorem. Using this gateway, we derived the propagator and used it to solve the cumulative

Parisian option. After confirming against a Monte Carlo simulation that the results were

exact, we proposed to study a completely original product, that we called Wasabi option.

Since the propagator complex form hinted at computationally prohibitive exact solution, we

proposed an approximation using the previously derived Parisian propagator. We checked

the relative error of our approximation against a Monte Carlo simulation and proposed an

explanation to the origin of results discrepancy, while at the same time demonstrating the

efficiency of an easy workaround. Future works should be aimed at improving the current

approximation while keeping in check the computational burden.

Part II

Implementation

74

Chapter 7
General Purpose computing on Graphic

Processing Units

In the first part of this thesis we demonstrated the relevance of Econophysics methods when

it comes to the theoretical component of the option pricing problem. Moving past the point

of theory and looking at the implementation task, we are faced with a different challenge:

Given a pricing formula, how to efficiently compute the price of an exotic option ? Our

metrics to judge efficiency are rather common: accuracy, speed, ease of implementation.

In this thesis we study the distribution to a Graphic Processing Unit (GPU) device and pro-

pose some improvements. The choice of a GPU accelerated simulation is a choice that has

seen some consideration in the Econophysics community[Pre11a], for its readier availability

when compared to a CPU-cluster and the major performance improvement it can exhibit

over a single CPU architecture.

General-purpose Computing on Graphic Processing Units (GPGPU) is a term that encom-

passes techniques and concepts relevant to the use of GPU in simulations or computations.

It makes use of the massively parallel architecture of modern GPUs to alleviate CPUs load

on tasks where data-parallelism is important[DW10], and provides rather customarily speed

up tenfolds when compared with a traditional CPU implementation1 . To be able to lever-

age this computational power, a programming environment is needed. NVIDIA impulsed

a massive interest for GPGPU when they released CUDA[NVI] in 2007 as a programming

framework for their G80 GPU. They released libraries, compilers, debugging tools, etc. A

complete development chain, based on C, that makes programming for a GPU a relatively

affordable task for one already acquainted with distributed challenges. Each release of a

CUDA platform brings new functionality that are then sorted in Compute Capability (CC)

from the original 1.0 to currently 5.0. In our study we will be using the CUDA terminology

and concepts, since we target NVIDIA GPUs and our implementations are exclusively done

using CUDA.

Our presentation of GPGPU will be organized as such: we will first introduce the philosophy

behind parallel computation , then we will describe the architecture of a GPU device. Then

1The 100x performance gap is rather humorous, and hardly demonstrate anything more than one reluc-
tance with doing proper CPU optimization[LKC+10]

75

Chapter 7. General Purpose computing on Graphic Processing Units 76

we will finish our tour by discussing some common optimizations and the bottlenecks they

address.

7.1 Parallel computing

The formula derived to price exotic options range from straightforward closed form to mul-

tiple integrations, and for benchmarking purpose, Monte Carlo simulations. Therefore for

the less trivial computation the motivation to decrease the pricing computation time is fully

justified. An alternative to running a computing task on a faster hardware is to run a sub-

task on more hardwares with the requirement that subtasks combine in the end to give a

similar result. This approach, that is splitting a complex task in computation sub entities

and distribute them onto many computing devices is known as parallel computing.

The axis along which the splitting occurs introduce a first level of differentiation in the

design space of parallel implementations. Parallelism can be introduced along the data axis

or the functional axis: the first leads to data parallelism , while the second is known as task

parallelism. Data parallelism is a type of code that is best suited when the larger problem

shows one task that is iterated over a set of data. As an example, let us think about the

task that is to increase brightness in a picture. What it boils down to for the first pixel is

Algorithm 7.1 Pixel brightness modification procedure

procedure IncreaseBrightness(i) ⊲ Increase brightness of pixel i
NewBrightnessV alue =Read(Pixel[i],BrightnessValue)
NewBrightnessV alue = NewBrightnessV alue+ 1
Save(Pixel[i],NewBrightnessValue)

end procedure

then the same processing is done on the next pixel, and this goes on until the last pixel.

Therefore, if we have to process a million pixels, running alg. 7.2 sequentially would take a

Algorithm 7.2 Pixel brightness modification program

i = 0
for i < NbPixels do

IncreaseBrightness(i)
i = i+ 1

end for

million times the cost of calling the IncreaseBrightness procedure. If we had a million com-

puting unit however, each unit could run a single iteration and be done with the task. To

drive the point futher, task that involves a set of operation being carried on repeteadly and

independently over a data space is said to exhibit data parallelism and can be parallelized

quite simply: split the data to be processed in N × k slices, require N computing devices

to each process k slices.

Chapter 7. General Purpose computing on Graphic Processing Units 77

A different approach can be taken in parallelizing a task, when said task involves a sequence

of subtasks that can be done independently from one another. Let us take an example: a

Monte Carlo simulation to price exotic options. For one path the computation is merely

building a random trajectory and finally returning the payoff on this particular path as de-

scribed in alg. 7.3, and the whole simulation is the average of many calls to this procedure,

as available in alg. 7.4.

Algorithm 7.3 Monte Carlo option pricing procedure

procedure TrajectoryPricing

i = 0
for i<NbTimesteps do

UpdateTrajectory(CurrentUnderlierPriceValue)
UpdateStateVariables(StateVariables[]) ⊲ Excursion time, Average price, etc.
i = i+ 1

end for
end procedure
return CalculatePayoff(CurrentUnderlierPriceValue,StateVariables[])

Algorithm 7.4 Monte Carlo option pricing program

i = OptionV alue = 0
for i < NbPaths do

OptionV alue = OptionV alue + TrajectoryPricing

i = i+ 1
end for
OptionV alue = OptionV alue/NbPaths

Since in this example any of the task of generating a path and computing its payoff can be

executed independently without any temporal dependency, we can describe the problem as

exhibiting a high level of task parallelism. In fact the only part of the program that is not

parallelized is the sum and averaging. Distribution is straightforward, require each comput-

ing resources to take in charge the pricing for a ratio of the total paths to compute. Task

parallelism is less straightforward than data parallelism in term of implementation when

thinking about our GPU target hardware. Among other reasons, if tasks execute different

code from one another then the code grow rapidly in complexity; also the different tasks

may be highly imbalanced in term of computational complexity and some resources may be

left idle while more complex tasks complete. This problem is less critical in data parallelism

design since all units execute the same job, on different slice of data, thus we can expect

every resource to return roughly at the same time.

Chapter 7. General Purpose computing on Graphic Processing Units 78

7.2 GPU architecture

The evolution of CPU has been mainly the story of higher clock rate for a long time, each

generation promising better performance through a faster clock. Yet, as CPU reached a

4GHz rate, the heat requires special cooling solution to address the so-called “power wall”.

Rather than increasing the clock rate, Intel and others opted to increase the number of

cores. However to profit from this architecture, the software designers have to take into

account the multiple threads that are now able to execute simultaneously. Modern GPU

architectures follow the many-core trajectory of microprocessor design, where the focus is

mainly on the execution throughput of parallel applications. The always increasing number

of “cores”, and embedded special units at each generation allow for transparent scalability

and reduced execution time.

The difference2 in CPU and GPU architectures arise in part from the difference in the func-

tions they serve. CPU must allow for the seemingly parallel execution of many heavy and

complex applications, keeping the apparent sequentiality even when executing out-of-order

instructions. Such features are possible only at the expense of an important share of avail-

able resources dedicated to control logic. Control logic being the part of the program that is

in charge of automatically performing tasks in an execution sequence, statically or dynam-

ically decided. More importantly, since CPU are expected to perform large and complex

instructions, eg. Very Long Instruction Word (VLIW), an important amount of cache mem-

ory3 is provided in order to reduce latency attached to data and instruction access. Current

GPUs even if they start to provide some amount of cache memory, still do not reach the

size available on CPUs.

Streaming processors and multiprocessors A typical NVIDIA GPU card consists of

a number of SM (Streaming Multiprocessors), and each SM4 is comprised of a number of SP

(Streaming processors). The SPs execute code simultaneously in steps of (currently) 32 SPs.

Streaming processors inside a SM shared a set of on-chip resources such as shared memory,

registers, etc. The warp scheduler and dispatcher in each SM is in charge of scheduling and

dispatching threads to SP. More precisely threads are scheduled for execution as bundle of

threads5 typically set to 32 threads. A typical and simplified Fermi GPU architecture is

2Following Flynn’s taxonomy, CPU in majority follows MIMD model while NVIDIA GPU follows the
SPMD approach

3We recall here that caching is the act of keeping a local copy of a work variable, typically in a very fast
type of memory, in order to limit requests to distant slower memory. After the first read request of variable
X from global memory, it is cached and subsequent requests concerning X are then processed at cache level.
This is not different from the use of cache on CPU architecture.

4called SMX on Maxwell architecture and SMM on Kepler architecture

5called warps in the CUDA world

Chapter 7. General Purpose computing on Graphic Processing Units 79

shown on figure 7.1, while numerical values and how it compares with previous generation

is displayed in tbl. 7.1.

Table 7.1: A Comparison of Maxwell GM107 to Kepler GK107

GPU GK107 (Kepler) GM107 (Maxwell)

CUDA Cores 384 640

Base Clock 1058 MHz 1020 MHz

GPU Boost Clock N/A 1085 MHz

GFLOP/s 812.5 1305.6

Compute Capability 3 5

Shared Memory / SM 16KB / 48 KB 64 KB

Register File Size / SM 256 KB 256 KB

Active Blocks / SM 16 32

Memory Clock 5000 MHz 5400 MHz

Memory Bandwidth 80 GB/s 86.4 GB/s

L2 Cache Size 256 KB 2048 KB

TDP 64W 60W

Transistors 1.3 Billion 1.87 Billion

Die Size 118 mm2 148 mm2

Manufactoring Process 28 nm 28 nm

Memory Clock 5000 MHz 5400 MHz

Memory Bandwidth 80 GB/s 86.4 GB/s

L2 Cache Size 256 KB 2048 KB

TDP 64W 60W

Transistors 1.3 Billion 1.87 Billion

Die Size 118 mm2 148 mm2

Manufactoring Process 28 nm 28 nm

Memory model Memory hierarchy on a NVIDIA GPU card relies on a classical tradeoff

size versus speed: the fastest memory can only hold a small amount of data, while slower

memory hold in the gigabyte order of data. The fastest type of memory available is the

register, currently 4x64kb on a Maxwell 750ti . Registers are typically used to hold variables

that are local to a thread. Each thread has its own allocated set of registers. The next fastest

type of memory is shared memory. As indicated by its name this memory is shared

Chapter 7. General Purpose computing on Graphic Processing Units 80

Figure 7.1: A simplified Fermi architecture, where L1 stands for “Level 1 cache”, Sh.M for
“Shared memory”, SD for “Scheduler and dispatcher unit” and SFU for “Special Function
Unit”.

among all threads in a block. It is the most efficient way to share data among cooperating

threads. Some tuning allows for a partitioning of the shared memory in prefered ratio of L1

cache/shared memory, which may come in handy for special optimization needs. Registers

and shared memory are called “on-chip” memories, physically integrated to the SP, which

explains their speed.

Slower than shared memory is local memory, where local means “local to a thread”. It is

used when the amount of registers is insufficient (so-called register spilling), and to resolve

some indexing issues. It is not fast with any regards since it is not cached and is actually a

part of the global memory. Finally the slowest but biggest memory available on GPU cards,

is the global memory implemented using DRAM. It is available for read and write by any

threads in any blocks on the GPU, and also available to the CPU. This is typically where

the input data are written by the CPU, read by the GPU, then saved after processing by

the GPU and read back from the CPU. Input parameters can also be placed in constant

memory which is a cached read-only memory, also read from constant memory can be

efficiently broadcasted to other requesting threads. Hence it is a low latency high bandwidth

type of memory useful for pricing model parameters.

Chapter 7. General Purpose computing on Graphic Processing Units 81

Figure 7.2: Stylised memory architecture of a GPU device, arrows indicate read or write
access. Host side is typically the CPU while the device side is the GPU.

Grid, block and thread We now take a higher point of view to describe in a more

conceptual fashion how work load is assigned to a GPU and its SM/SP. The code that is

effectively running on a GPU is usually self contained in a procedure, that the CPU will

ask the GPU to execute. This procedure once running on the GPU can obviously call other

sub-procedures if needed6, but let us consider the case of a single procedure being called.

This entry point is called a kernel. When the CPU requests a kernel launch, a configuration

of grid/block/thread must be specified. We will describe from the bottom to the top what

it means. Each instance of a kernel run is assigned to a thread, and threads run (locally to

a SP) in locked step as a warp of 32 threads7. Usually the mapping is one thread handling

the processing of one input data. In the case of alg. 7.2, the cpu will map one thread to one

instance of the kernel in alg. 7.1. Kernel launch of hundreds of thousands threads is not a

rare number in practical applications. Threads are assigned for execution on a SP, and do

not migrate until completion. At a higher level threads are bundled in blocks. It is the

block level that is assigned to a SM and the number of blocks that can be executed on a

SM depends on resources availability. At the highest level blocks are bundled in grid.

To summarize: kernels are executed as a multidimensional grid of blocks, where blocks are

themselves multidimensional arrays of threads. Each of this thread represents an instance of

the kernel, working on its own share of the input data. The relevance for more than a single

dimension at each level can be demonstrated for computation where the data map more

6However recursion is wildly unsupported

7The need for warp arise from the fact that there is usually one control unit (for cost reduction and power
consumption purpose) decoding the instruction and feeding the result to the SPs. Each of those SPs are
controled by the same instruction yet each of them execute differently only because the operands in their
registers are different. Close to SIMD in Flynn’s taxonomy

Chapter 7. General Purpose computing on Graphic Processing Units 82

elegantly to a 2D or 3D space, such as matrix processing or computer graphics. Figure 7.3

shows a simplified overview of this hierarchy.

An important performance metric that is directly influenced by the block/threads con-

Figure 7.3: Two-level hierarchy between blocks and threads created at grid launch time.
Here we restrained ourselves to a two-dimensional example for ease of reading.

figuration of the kernel launch is the so-called occupancy. It is defined as the number of

warps running concurrently on a SM, divided by the maximum number of concurrent warps

allowed on a SM. A high occupancy rate means that the schedulers mostly find warps to

schedule for execution when the current one hits a stall point (e.g. load request, dependent

operands not available, etc.). It can also be impacted by resource limits: in the limit case,

if a single warp need the full amount of registers available on the SM, then at any time

only a single warp can be executing (and frequently not stalling). Since it may impact the

block/threads configuration one chose, we should point here that by design, synchronization

between threads is only allowed inside a block. One reason to constrain locality of synchro-

nization, constraint that goes along with locality of resource assignment, is to allow blocks

to execute in any order relatively to each other. The beneficial outcome is that hardware

with different set of resources can execute the same code without change (referred to as

transparent scalability).

One may wonder what is the point of creating more threads that there are actual computing

resources ? A major reason is the latency hiding that it may procures. Since load request

from global memory are slow to complete, the scheduler once the request has been issued

will swap out the threads that issued the request and schedule for execution other available

threads (by bundle of 32, a warp). It is a far better strategy than simply waiting idle that

the long-latency request complete and continuing with the original threads. Obviously we

need a high number of threads in order to achieve latency hiding, and the cost for “con-

text” switching should be low. The first point is why we argued that a large number of

threads is a favorable option, the second is ensured by NVIDIA so-called zero overhead

thread scheduling.

Chapter 7. General Purpose computing on Graphic Processing Units 83

7.3 Optimization

Figure 7.4: Uncoalesced versus Coalesced memory access schematic depiction. On the
L.H.S (Uncoalesced memory access): Both threads request data from global memory, since
both datum are far away from each other, two read request are generated and only 25% of
each returned data are used, effectively wasting a major share of the bandwidth. On the
R.H.S (Coalesced memory access): When neighbor threads request datum that sits nearby
in global memory, GPUs detect a coalesced memory access and issue a single read request.
After returning the whole line of data, each thread can now process their data in half the
time that would take two read requests.

Reducing execution time is a topic that asks for a deep grasp of low-level architecture con-

cept. However and even though we do not pretend to exhaustivity here, since optimization

is a major measure of GPGPU relevance, we will provide the reader with some good-practice

that help in reducing execution time.

One of the main bottleneck in GPU computation is global memory access, it is intrinsically

a high latency request[DW10], and as such that should be the first place one should try to

look for improvements. To see how we can optimize access to global memory, we must first

explain how a read request from global memory is processed. We will do so by discarding

some technical points irrelevant to our discussion, and redirect interested readers to [DW10].

We said earlier that accessing global memory was a slow process, then it makes sense that in

order to improve access rate, modern GPUs typically load not just the requested data, but

also the data directly adjacent to it in global memory space. This builds on a major concept

in computer architecture called spatial and sequential locality [Den]. This concept ar-

Chapter 7. General Purpose computing on Graphic Processing Units 84

Figure 7.5: Simplified depiction of warp divergence, with a warp made of 2 threads. On
the R.H.S, we see threads diverging on their evaluation of the predicate x < 5

gues that typically, input elements are accessed in a linear sweep-like fashion. Since GPUs

are capable of detecting when some nearby threads (executing in a same warp) are request-

ing nearby data from memory (so-called coalesced memory access), they are also capable of

issuing a single read request instead of 4 if 4 threads are working on 4 adjacent datum in

memory. Here we see that there lies an important room for optimization in insuring that

close-by threads access close-by data in global memory. We provide a simplified picture of

coalesced versus uncoalesced memory access, available in fig. 7.4.

Another source of performance cripple is the so-called warp divergence. We said earlier that

threads were executing inside a SP in pack of threads called warp. The exact number of

threads that constitute a warp may vary in the future, it is usually 32. For our discussion,

and ease of exposure we will just picture warp of 2 threads. Threads in a warp are supposed

to be executing in locked step, the same kernel instructions. Such a model is called SIMD

(Single Instruction Multiple Data). If two threads in a warp are forced to take different

execution paths (e.g a conditional statement if evaluate to different results for different

threads), the execution is sequentialized. As a result, the total cost of execution for this

particular part is the sum of each diverging paths. It is then of critical importance for

performance consideration that threads in a warp do not diverge. To go back to a warp of

32 threads, if all threads diverge then the degree of parallelism is null and does not improve

one bit over a fully sequential code. Finally, threads that sit in different warps can execute

alternative statements without performance penalty. We give a graphical depiction of this

phenomenon in figure 7.5.

Chapter 8
Heterogeneous Computation of Rainbow Option

Prices Using Fourier Cosine Series Expansion

8.1 Introduction

The option pricing problem is connected to the estimation of a no-arbitrage price for finan-

cial derivatives. For simple enough products such as European Vanilla Options, closed-form

solutions exist and are mostly the results of the celebrated Black-Scholes formula [BS73].

More involved problems such as the pricing of American, Exotic or high dimensional deriva-

tives, often rely on transform methods such as the Fourier, Laplace or Gauss to handle

their increasing complexity[CMS99][DGM09][BY03]. Readers interested in a more complete

and technical introduction to the financial asset pricing theory including American options

pricing using Markov Chain approximation are redirected to [Pro01][Sim11]. Because of

increasingly complex products that are handled on a daily basis by the financial industry,

tangentially occurring with the rise of big data problematics, requirements in sheer compu-

tational force are expected to increase over time.

General-purpose computing on graphic processing units (GPGPU) is a term that encom-

passes techniques and concepts relevant to the use of GPU in distribution of computational

load. GPUs traditionally used for the rendering of graphics on home computers are, by

design, many-cores architectures fit for distributed computing. As such they proved to be

viable hardware platforms for computationally heavy tasks with significant data-parallelism.

It has been shown to provide speed-up factor customarily tenfolds when compared with

a traditional standalone CPU implementation [DW10]. For computational finance it can

mean for example, splitting the generation of Monte Carlo paths among idle cores in the

hope to divide by the same factor the required execution time [TB10]. It is a popular alter-

native to the very costly grid and cluster or supercomputer solutions, an alternative that

proved viable enough to generate a vast literature in fields as diverse as econophysics[Pre11b],

computational chemistry[PDY10], pattern recognition[LSLM10], etc.

While a lot of the available literature so far has focused on comparing “pure CPU” with

“pure GPU” implementation [ZO09][BZ12][PGLD11], in this paper we expand the solution

85

Chapter 8. Heterogeneous Computation of Rainbow Option Prices Using

Fourier Cosine Series Expansion 86

perimeter in order to leverage over all available resources. We will propose several heteroge-

neous distributed GPU/CPU designs for the Fourier-cosine series expansion (COS) pricing

of Rainbow options[RO12]. Said derivatives take into account more than a single asset into

their dynamics, yet we can maintain a rather vanilla taste to the payoff structure. There-

fore its non-trivial dimensionality and tractability of computations proves to be appealing

enough for benchmarking load-balancing scheme. We point out to the reader that analytic

solution is available for both the option price and the various coefficients that we will build.

As we can easily check results against said closed forms, its suitability as a benchmark tool

is further justified. By leaving the decision of an optimal load balancing ratio at runtime to

the system, we will see major improvements in pricing speed and ease of portability.

The remainder of this paper is organized as follows: Section 8.2 describes the Fourier cosine

series expansion method in the context of option pricing. We present our heterogeneous

designs and various optimizations in section 8.3. Section 8.4 presents the results and finally

in section 8.5 we give the conclusion of our study and discuss some future directions.

8.2 Method

8.2.1 Option pricing

Options are financial derivative instruments, contracts, that give their holders the right

(but not the obligation) to buy or sell the underlying asset(s) at a prescribed date, at a

determined price.

Therefore the contract need to specify at least: an underlying asset (also called underlier),

an exercise date (so-called maturity) T , and the exercise price (so-called strike price) K.

An option is said to be European if it is exercisable only on maturity date, Bermudan if

there is a discrete set of exercisable dates, and called American if it can be exercised at any

time before maturity. Call options give a right to buy, while Put options give a right to

sell the underliers both at the prescribed strike price [Pas11][Hul08]. Such derivatives are

called Vanilla options since they represent the most simple instruments one can think of.

Rainbow (also called Basket) options discussed in this paper belong to the subclass of Exotic

options, since they represent more complex and structured products. Rainbow options are

written on a basket of more than one underlier, where the dynamics of underlying assets

are allowed to be correlated[Hul08]. We will deal in this paper exclusively with European

Rainbow option. The dimensionality of the process aggregated dynamics makes it a more

complex task to determine a fair price for such a type of option.

The calculation of a fair (also called no-arbitrage) price for an option is a problem which

is tightly bound to the type of the options and its payoff (i.e the value of the option at

Chapter 8. Heterogeneous Computation of Rainbow Option Prices Using

Fourier Cosine Series Expansion 87

expiry). Obviously increasingly structured derivatives allow for richer payoff functions. For

simple enough products (e.g European Put/Call following geometric Brownian motion),

the determination of a no-arbitrage price amounts to solving the following Black-Scholes

equation with prescribed boundary conditions [BS73][Pas11]

σ2S2

2
∂SSC(t, S) + rS∂SC(t, S) + ∂tC(t, S) = rC(t, S) (8.1)

where σ is the volatility of the asset price process S(t), r the risk-free rate and C(t, S) the

fair price of the option. Closed form solution are available for relatively vanilla products and

interested readers can find it in any textbooks or in the seminal paper of Black and Scholes

[BS73]. American options pricing is a problem that belongs to the class of “free boundary

problem” and as such it is a far more complex task than European option pricing [BA05].

Popular techniques to solve the optimal stopping problem that is connected to the pricing

of American options are (among others) binomial methods [CRR79], Monte Carlo methods

[LS01] and Markov Chain methods [Sim11]. Transform methods applicable to Rainbow

option pricing will be introduced in this section, other methods based on approximation of

moments are more thoroughly reviewed in [KdKKM04].

8.2.2 The Fourier cosine series expansion method

The main idea behind the COS method and more generally of all methods relying on Fourier

Transform, is that the characteristic function of the underlier dynamics for a wide class of

assets is explicitly known while the probability density function (hereafter referred to as

density function) itself might not be available. This is true for exponential Levy processes

such as CGMY (Carr, Geman, Madan, and Yor) processes, Merton model, and for other

affine-diffusion processes of non-Levy types. Models which do not fulfill Black-Scholes model

requirements (e.g the Heston model has a non constant volatility) no-arbitrage price can

not be simply obtained as the solution to Black-Scholes equation.

COS method introduced in the series of papers [FO08][RO12] relies on similar arguments

as the ones motivating use of Fourier transform methods, but use a cosine series expansion

instead of the traditional Fourier transform. The first motivation for using a series expansion

is mainly in the speed of convergence to exact results, the order of which is at least geometric

for entire functions[Boy01], i.e. without singularities (poles or branch points) in the complex

plane except possibly at ∞ . The more well-behaved the function is, the faster the series

converge and the less terms are required in the series expansion. The second motivation

that particularly interests us here is the flexibility regarding distribution of computation.

We derive first here an expression for the COS for arbitrarily high dimension n, which,

to the best of our knowledge was not available so far in the literature. Analytical results

were derived so far up to dimension three in [RO12]. The no-arbitrage price at time t0
with maturity T for a European Rainbow option over a n-dimensional log-asset process

Chapter 8. Heterogeneous Computation of Rainbow Option Prices Using

Fourier Cosine Series Expansion 88

Xt = (X1
t , · · · ,Xn

t) is given by the discounted expectation of the payoff function under risk-

neutral measure, the so-called discounted Feynman-Kac formula [Shr04], where we chose

without loss of generality t0 = 0,

C (x, T) = e−rT Ẽ[g (XT) | x]

= e−rT

∫
· · ·
∫

Rn

g (y) f (y | x) dy
(8.2)

Here we used a tilde to denote that we work under risk-neutral measure P̃r, g (.) is the

payoff function, C is the option fair price, x =
(
x1t , · · · , xnt

)
is the current log asset price,f

is the conditional density function of X and r is the risk-free rate. For simplicity purpose

and without loss of generality we use here a hypercube integration domain [a, b]n, where

a and b are chosen according to the shape of the density function available through the

cumulants. For a more detailed discussion on the choice of a and b see for example [FO08]

or [Pas11]. Truncating the integration range and expanding the density function in cosine

series we rewrite the option price S0 as

C (x, T) ≅ e−rT

∫
· · ·
∫

[a,b]n
g (y) f (y | x) dy

= e−rT

∫
· · ·
∫

[a,b]n
g (y)

[∞∑′

k1=0

· · ·
∞∑′

kn=0

Ak1,··· ,kn(x) cos (φ1(y1)) · · · cos (φn(yn))
]
dy1···n

(8.3)

with the following definitions

φi(x) := kiπ
x− a
b− a

dy1···n := dy1 · · · dyn
∞∑

i=0

′
ui :=

u0
2

+

∞∑

i=1

ui

We point out here that {Ak1,··· ,kn} are the coefficients of the Fourier cosine expansions of

f (y | x). Now exchanging the integrations and sums operations, we rewrite C (x, T) and

define {Vk1,··· ,kn}

C (x, T) = e−rT

(
b− a
2

)n ∞∑′

k1=0

· · ·
∞∑′

kn=0

Ak1,··· ,kn(x)Vk1,··· ,kn(T) (8.4)

Vk1,··· ,kn (T) :=

(
2

b− a

)n ∫
· · ·
∫

[a,b]n
g (y) cos (φ1 (y1)) · · · cos (φn (yn)) dy1···n (8.5)

Chapter 8. Heterogeneous Computation of Rainbow Option Prices Using

Fourier Cosine Series Expansion 89

We now approximate {Ak1,··· ,kn}

Ak1,··· ,kn (x) =

(
2

b− a

)n ∫
· · ·
∫

[a,b]n
f (y|x) cos (φ1(y1)) · · · cos (φn(yn)) dy1···n (8.6)

≅

(
2

b− a

)n ∫
· · ·
∫

Rn

f (y|x) cos (φ1(y1)) · · · cos (φn(yn)) dy1···n (8.7)

Now repeated use of the following two equalities

cos (a) cos (b) =
cos (a+ b) + cos (a− b)

2

cos (θ) = ℜ
[
eiθ
]

yields

Ak1,··· ,kn (x) ≅

(
1

b− a

)n 2∑

i1=1

· · ·
2∑

in=1

ℜ
{
ϕlevy

(
k1π

b− a,
(−1)i1 k2π
b− a , · · · , (−1)

in knπ

b− a

)

× exp

[
iφ1 (x1) + (−1)i1 iφ2 (x2) · · ·+ (−1)in iφn (xn)

]}

(8.8)

with ϕ (u | x) = eix
′
uϕlevy (u) and ϕlevy = exp

(
iµ′u− 1

2u
′Σu

)
is the characteristic function

for a n-variate normal distribution, with Σ the covariance matrix, µ the mean vector and

u′ stands for the transpose of u. Finally after truncating the n infinite sums after m terms,

the price of an option at t0 with maturity T is

C (x, T) ≅

(
e−rT

2m−1

) m−1∑′

k1=0

· · ·
m−1∑′

kn=0

Ak1,··· ,kn (x)Vk1,··· ,kn (T) (8.9)

It is then immediate that results in [RO12] are obtained by setting n = 2 or n = 3. Since we

will deal in this paper exclusively with a two dimensional rainbow call option of European

type exercise, we shall give here a more tractable expression for the option price in that

particular case

C (x, T) =
e−rT

2

n−1∑′

k1=0

n−1∑′

k2=0

Ak1,k2 (x)Vk1,k2 (T)

=
e−rT

2

n−1∑′

k1=0

n−1∑′

k2=0

(
ℜ
[
ϕ

(
k1π

b− a ,
+k2π

b− a | x
)
exp (iφ1 (x1) + iφ2 (x2))

+ ϕ

(
k1π

b− a,
−k2π
b− a | x

)
× exp (iφ1 (x1)− iφ2 (x2))

])
Vk1,k2 (T)

(8.10)

Chapter 8. Heterogeneous Computation of Rainbow Option Prices Using

Fourier Cosine Series Expansion 90

with

Vk1,k2 (T) ≡
4

(b− a)2
∫ ∫

[a,b]2
max

(√
ey1
√
ey2 −K,0

)
cos

(
k1π

y1 − a
b− a

)

× cos

(
k2π

y2 − a
b− a

)
dy1dy2

(8.11)

8.3 GPGPU Implementation

We will now look at different strategies regarding computational load balancing between

GPU and CPU, and give some directions concerning optimization. In the different heteroge-

neous implementation designs of the model, we focus on two key indicators: efficiency (with

respect to speed) and accuracy of the result. Those two indicators will be evaluated with

respect to the number N of terms in each dimension of the COS and with respect to the

different integration schemes. We defined efficiency here as min(T imeToCompletion)
T imeToCompletion .

8.3.1 Computational load distribution

The first choice regarding implementation design is with regard to which axis (e.g. among

functions or data) we wish to split the problem, keeping in mind that the computational load

is mainly located in the Vk1,k2 coefficients computation where numerical approximation of a

double integral is involved. For fairness of comparison and efficiency concern, every major

loop on CPU side is parallelized using OpenMP [Boa08]. We present here four original

heterogeneous CPU/GPU designs and two purely homogeneous ones (i.e full CPU and full

GPU) that will be used later-on for comparisons.

• D0: Computation of Vk1,k2 is done by the GPU while Ck1,k2 are computed on host

side.

• D1: Computation of Vk1,k2 is done by the CPU while Ck1,k2 are computed on device

side. It is obviously the symmetric design of D0.

• D2: The GPU is in charge of the computation of [RN,N] × [1, N] coefficients in the

2D space [Vk1,k2×Ck1,k2], with 0 < R < 1 the GPU load ratio, while the CPU handles

the computation of the remaining [1, (1−R)N]× [1, N] coefficient.

• D3: This design takes the same distribution approach as D2 but reduces the domain

of integration from a square domain to a triangular one as will be explained in section

3.3

• D4: Full CPU (all coefficients are computed by the CPU).

• D5: Full GPU (all coefficients are computed by the GPU).

Chapter 8. Heterogeneous Computation of Rainbow Option Prices Using

Fourier Cosine Series Expansion 91

The severe imbalance that we can foresee in computation of Vk1,k2 and Ck1,k2 lead us to

think that the functional distribution embedded in D0 and D1 may have scalability issues.

Indeed as we increase the number of coefficients, computational load bound to Vk1,k2 will

outweigh the one bound to Ck1,k2. However, what we plan to achieve is to balance out CPU

and GPU computation time, thus minimizing idle time on both devices simultaneously.

The GPU load ratio R that controls how much of the total computational load should go to

the GPU is ultimately a to-be-tuned parameter, though we can predict that optimal value

should ultimately be found around

GPU peak throughput

(GPU + CPU) peak throughput

This prediction holds for kernel that achieve peak performance and when both host and

device sides perform the same computation, or comparable with respect to required time.

Building on that idea, we here implement a simple performance calibration phase during

which a small chunk of identical computation is sent to both CPU and GPU. On return,

respective times to completion are compared and a split ratio is automatically decided.

This flexible way to decide the suitable load balancing ratio should allow us to achieve best

performance when targeting different hardware platform, without the need to re-tune the

software.

The only global memory accesses are done at the beginning of the kernel execution to read

the constant model parameters, then the final access to global memory is to write back

final results on completion. There is no need to communicate between work-items during

computation and no need for synchronization between work-items either. As we see the

problem is a typically embarrassingly parallel problem.

8.3.2 Numerical approximation of Vk1,k2

In the original paper [RO12] the authors proposed to use the two-dimensional discrete co-

sine transform(2D-DCT) to evaluate the coefficients Vk1,k2 for its ease of implementation and

mainstream availability regarding APIs. We make here the choice to write an implementa-

tion of two-dimensional composite Simpson rule (2D-CSR) for its higher order accuracy. We

will discuss a way to efficiently implement it on GPU and then propose a domain reduction

to speed up the computation of Vk1,k2.

The CSR approximation relies on a spatially discretized grid with equidistant points where

the integrand is evaluated, as such it belongs to the class of Newton-Cotes formula. The

integral is approximated by a weighted sum of the integrand value at those points

I ≈ (b− a)2
9M2

i=M∑

i=0

j=M∑

j=0

wi,jf (xi, yj) (8.12)

Chapter 8. Heterogeneous Computation of Rainbow Option Prices Using

Fourier Cosine Series Expansion 92

where I is the exact value of Vk1,k2, wi,j is the [i, j] entry in the v′ × v matrix with v =

[1, 2, 4, 2, · · · , 4, 2, 1] and v [i] is the weight assigned to the ith point in a 1D-CSR. It is well

known that the 2D-CSR is of order O(4) whereas a 2D-DCT method is only order O(2)

[VSR06]. From an implementation-oriented point of view the trade-off is mainly located in

the increased complexity due to selecting the correct sampling weights based on the point

position in the domain. A trivial implementation on CPU would run a nested loop to cover

the domain and discriminate between weights based on the index of sampled points. Then,

using modulo operation on the 2D index the correct weighting factor can be easily retrieved.

We want to avoid both conditional statements and the modulo operator since it is well known

that they tend to hurt computational performance on GPU. Conditional statements because

they lead easily to warp divergence, and modulo operations because they are known to be a

very costly arithmetic operation on early generation GPUs [GHK+11]. Without pretending

here to exhaustivity, we feel compelled to briefly describe how warp divergence arises since

it is one of the main contribution of this paper to propose an implementation free of any

divergence.

GPUs implement an execution model called SIMD (Single Instruction Multiple Data). In

this particular model, sets of threads called warps are supposed to be executing, in locked

step, the same instructions of the GPU code. If two threads in a warp are forced to take

different execution paths (e.g a conditional statement if evaluates to different results for

different threads), the flow of execution is sequentialized. As a result, the total cost of

execution for this particular part is the sum of each diverging paths. It is then of critical

importance for performance consideration that threads in a warp do not diverge.

The algorithm we proposed for the 2D-CSR on GPU is free of any conditional statements,

and as such do not let warp divergence cripple execution time. Profiling of our application

with the tool “Compute Visual Profiler” by NVIDIA confirmed a 0% divergent branches as

expected.

Our implementation on GPU of the 2D-CSR in pseudo-code is given in Alg. 8.1, a graphic

overview of the process is given by Fig. 8.1.

It is worthwhile to note that in alg. 8.1, as we go around the domain in a block-wise fashion,

we unroll the loop by a factor 2 in each direction, thus reducing the necessary number of

comparison and loop increment by the same factor. Loop unroll is a well known source

of speed up. By reducing the number of iteration of the loop we reduce the logical and

arithmetical operations embedded in loop.

Chapter 8. Heterogeneous Computation of Rainbow Option Prices Using

Fourier Cosine Series Expansion 93

Algorithm 8.1 GPGPU implementation of CSR on a square domain

Require: [a, b]2: spatial domain of integration.
M : odd number of discretizing points in each dimension.
f(·): integrand defined in Vk1,k2

Ensure: 2D-CSR approximation of Vk1,k2 over a square area
Result← f(a, a)− f(a, b)− f(b, a) + f(b, b)
for i = 1 to M − 1 step 2 do

Result+ = 4
[
f(ai, a) + f(a, ai) − f(ai, b) − f(b, ai)

]
+ 2

[
f(ai+1, a) + f(a, ai+1) −

f(ai+1, b)− f(b, ai+1)
]

for j = 1 to M − 1 step 2 do
Result+ = 16f(aj , ai) + 8

[
f(aj+1, ai) + f(aj, ai+1)

]
+ 4f(aj+1, ai+1)

end for
end for
Result× = (b−a)2

9M2

Figure 8.1: A graphic overview of two-dimensional composite Simpson’s rule on a toy (5×
5)domain. Numbers correspond to weights affected to the sampled point in this particular
step. Square in the same grey scale are sampled in the same loop iteration. For efficiency
purpose steps B and C are merged together in the loop iterations.A: We first proceed by
sampling the edge points of the square domain, outside of any loop. B : We then proceed
inside the domain sampling 4 adjacent points in each iteration of the inner loop, going up to
and including the right and top border. C : We finally proceed on the border strip sampling
8 points at a time on the left and bottom border, while correcting the weights affected to
points on the top and right border. D : The combination of steps A,B and C yield the
correct weights for each sampled points.

Chapter 8. Heterogeneous Computation of Rainbow Option Prices Using

Fourier Cosine Series Expansion 94

8.3.3 Domain reduction

It is direct that by rewriting Vk1,k2, the integrand is vanishing over a major part of the

domain

Vk1,k2 =
4

(b− a)2
∫ ∫

[a,b]2
max

(√
ey1+y2 −K, 0

)
cos

(
k1π

y1 − a
b− a

)
cos

(
k2π

y2 − a
b− a

)
dy1dy2

=
4

(b− a)2
∫ b

a

∫ b

2 ln(K)−y2

(√
ey1+y2 −K

)
cos

(
k1π

y1 − a
b− a

)
cos

(
k2π

y2 − a
b− a

)
dy1dy2

(8.13)

This is basically just a consequence of the all-or-nothing nature of the payoff function. Same

conclusion can be intuitively drawn by plotting level curves of the absolute value of the in-

tegrand in the square domain [a, b] × [a, b] , as can be seen in Fig. 8.4. Therefore we can

increase speed even further if we avoid evaluating the integrand over the whole area where

it is known to be vanishing; the integration domain is then no longer a square and can

be accurately approximated by a triangular domain with vertices in Cartesian coordinates

(a, b) , (b, a) , (b, b). We also point out here that by using this modified domain, the accuracy

of results should be improved for the following reason. We are going to skip over part of

the domain where the integrand is vanishing, but also the part where it is extremely small

(≈< 1e − 6) by neglecting a small strip around the vanishing border. The minimum bor-

der is now 2 log(K) − (a + ih + ǫ), where ǫ can be tuned on demand by offline analysis of

the payoff magnitude structure, or as a first step, by visually plotting the integrand as in

Fig. 8.4. Now, it is known from [DW10] that when working with simple precision arith-

metics, adding up a large number of small values may lead to round off errors that turn

out to be prohibitively large. Our modified triangular domain should lessen this artifact too.

Since Alg. 8.1 was written to run efficiently over a square domain, it can no longer be used

without adjustments. We propose here a simple modification of 1D-CSR and use iterated

quadrature over 1D for evaluating the 2D integral in Vk1,k2. Rigorous argument for the

validity of this approach relies on Fubini’s theorem.

Algorithm 8.1 is now modified and takes the form of Alg. 8.2 where we find it easier to

work with the spatially discretizing step h rather than the number M of integration points

8.4 Results

The CPU side code is written in C++ using the OpenCL1.1 C++ wrapper, GPU side code

is written using OpenCL C99. The code running on the host side is parallelized further

using OpenMP spreading to 8 threads. The GPU we used is a NVIDIA TeslaC2070 and the

CPU we used is an Intel Xeon X5647 2.93GHZ. Performance results are averaged over 10

Chapter 8. Heterogeneous Computation of Rainbow Option Prices Using

Fourier Cosine Series Expansion 95

Algorithm 8.2 GPGPU implementation of CSR on a triangular domain

Require: [a, b]2 is the spatial domain of integration.
h is assumed to be the same for each dimension.
f(·) is the integrand defined in Vk1,k2.
K is the strike price

Ensure: 2D-CSR approximation of Vk1,k2 over a triangular area
for i← 1 to b−a

h do
Compute coordinate of left boundary
LeftBnd = 2 log(K)− (a+ ih)
InnerResult+ = f(LeftBnd, b− ih) + f(b, b− ih) + 2f(b− h, b− ih)
for j = 1 to b−a

h − 1 step 2 do
InnerResult+ = 4f(LeftBnd+ jh, b − ih) + 2f(LeftBnd+ (j + 1)h, b − ih)

end for
end for
Result+ = h

(
h
3 × InnerResult

)

runs with the same set of parameters. We use here the parameters set I in [RO12] for which

analytical results exist and yield a fair price ≈ 8.88 in arbitrary domestic currency unit.

8.4.1 Scalability

The imbalance between the load on the computations of Vk1,k2 and computations of Ck1,k2

render a functional distribution to CPU and GPU of those coefficients (D1) inefficient in

regard to scalability. Evidence of this imbalance is made obvious on Fig. 8.2 when looking

at the scalability curve with respect to N. This imbalance prevents D1 to be of any use

past N = 16, and it actually does not scale any better than the pure CPU design D4. This

can be explained empirically by the fact that since the major load is located in computing

Vk1,k2 there is small to no gains in “distributing” this load to the CPU. We can also see clear

empirical evidence that every heterogeneous designs we proposed (excluding D1), not only

run faster than the pure GPU design D5, but also scale strictly better. The speed-up factor

between D2 and D3 as can be seen on Fig. 8.2 is not as big as one could imagine first, since

we must take into account that it is no longer possible to manually unroll the loop in each

dimension, but only in one as can be seen in the inner-loop of Alg. 8.2.

All curves from Fig. 8.2 can be fitted as cNk with c a constant ≪ 1 and k ≅ 2 illus-

trating that the code is roughly scaling as O
(
N2
)
. For illustration purpose, we give here

the fitting curves for D1 and D3 (Fitted curves and residues are plotted on Figure 8.2)

D1 ≅ 2.6× 10−3N2.022,D3 ≅ 4× 10−4N1.961

Chapter 8. Heterogeneous Computation of Rainbow Option Prices Using

Fourier Cosine Series Expansion 96

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

N

T
im

e
 t
o

 c
o

m
p

le
ti
o

n
 (

s
)

D
0

D
1

D
2

D
3

D
4

D
5

0 200 400 600 800 1000

10
0

10
2

N

T
im

e
 t
o

 c
o

m
p

le
ti
o

n
 (

s
)

0 200 400 600 800 1000

10
0

10
2

N

T
im

e
 t

o
 c

o
m

p
le

ti
o

n
 (

s)

0 200 400 600 800 1000

10
0

10
2

N

T
im

e
 t

o
 c

o
m

p
le

ti
o

n
 (

s)

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

N

R
e

s
id

u
a

ls
 (

s
)

0 200 400 600 800 1000
−0.4

−0.2

0

0.2

0.4

0.6

N

R
e

si
d

u
a

ls
 (

s)

0 200 400 600 800 1000

−0.1

0

0.1

0.2

N

R
e

si
d

u
a

ls
 (

s)

D1 D3 D5

Figure 8.2: Top panel:Speed performance and scalability behavior of heterogeneous com-
putational designs with respect to N , the number of terms in each dimension of the series
expansion. Middle panel: Fitted quadratic scalability curves for D1,D3 and D5 where
points N = 2i, i ∈ [1..10] were used. Bottom panel: Residual errors of the quadratic fitting
as represented on the middle panel for the same designs. For all panels R = R∗ = 0.82 was
used as a load-balancing value.

Figure 8.3 shows that performance degraded rather rapidly when diverging from an optimal

GPU load ratio R∗ ≈ 0.82, this is under the ratio derived from technical considerations only

GPU peak throughput

(CPU +GPU) peak throughput
≅ .9 (8.14)

though as we said earlier, this optimal value is theoretically achievable only under perfect

condition rarely found in hardware at use. However, R as automatically decided during

the performance calibration phase by comparing the relative time to completion (T.T.C) of

small computation chunk sent to the GPU and to the CPU was found to be extremely close

(|R −R∗| ≈ 1%) to the optimal one

GPU T.T.C computation chunk

(CPU +GPU) T.T.C computation chunk
≅ .835 (8.15)

Chapter 8. Heterogeneous Computation of Rainbow Option Prices Using

Fourier Cosine Series Expansion 97

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R

E

ci
e

n
cy

 (
%

)

32

64

128

256

512

Figure 8.3: Efficiency of design D3 as a function of the GPU load ratio R. Vertical dashed
black line indicates R value automatically selected by our calibration phase whereas the red
one stands for ideal value derived from technical specifications.

Y
1,T

Y
2

,T

2 3 4 5 6 7

2

3

4

5

6

7

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.020.040.060.080.1
0

0.005

0.01

0.015

0.02

0.025

h

R
e

la
ti

v
e

 e
rr

o
r

(%
)

Full domain

Reduced domain

0.040.050.060.07
10

−20

10
−15

10
−10

10
−5

10
0

B)A)

Figure 8.4: A:Magnitude of integrand for [Y1,T , Y2,T] ∈ [a, b] in arbitrary currency unit. B:
Relative error of option price using a full square domain versus using the reduced domain
with respect to the discretization step h. 64 terms in each dimension of the series expansion
have been used

Figure 8.3 confirms that automatic decision of the load balancing ratio R is not only simple

enough to implement, but also yields performance close to the optimal ones. Performance

decreased faster when under-using the GPU capacity than when over-using it, as expected

Chapter 8. Heterogeneous Computation of Rainbow Option Prices Using

Fourier Cosine Series Expansion 98

from the tolerance of GPU architecture to massive load [DW10]. For small N (eg. N ≤ 32),

it is best to have (1−R)N = 8 the physical numbers of threads available on our CPU. Let

us also point out that for very small N , such as N ≤ 8 it becomes relevant to compile the

kernel in an off-line manner since the cost of compilation now start to weigh too much in

an otherwise quick computation.

To summarize we can say that the design D3 that offer a balanced distribution of com-

putational load while reducing the costly task of integration is the one that performed best.

Unsurprisingly the scheme that achieved the worst performance (over ten times slower) was

the pure CPU design D4.

8.4.2 Relative error

Numerical experiments results as displayed on Fig. 8.4.B show that accuracy is improved

by using a reduced domain, when comparing with the full domain. Relative errors are given

as the normalized distance from the computed price to the correct one = | C̃−C
C | where C̃

is the calculated price and C is the exact one (i.e 8.88077 in arbitrary currency unit), also

available in [RO12]. The explanation for the observed accuracy improvement stems from

the reduction that we achieved on the required number of integrand evaluations on the

domain; and as such, the slower accumulation of round-off errors. It is well known that

single precision calculation is prone to fast accumulation of round-off errors and as such, it

is a critical optimization that as few calculations as possible are done.

8.5 Conclusion

Building on previous works, we first derived a general formula for n-dimensional COS. Fo-

cusing on two dimensional options we achieved a major speed-up from a pure CPU im-

plementation to a pure GPU one, and improved the speed even further by designing an

heterogeneous CPU/GPU implementation that leverages over all available computational

resources. We extracted the best design from the proposed ones. The ratio of computational

load to be distributed to CPU and to GPU was showed to be easily decidable at runtime,

and ultimately very close to the best ratio as found from experimentation. We also proposed

a simple enough way to reduce the integration domain from a square to a triangle and as

such reduced the burden for a kernel which is already Computation-bound on GPU. A two-

dimensional CSR algorithm designed to execute rapidly on GPU has also been presented

that exhibits no warp divergence and embeds some degree of loop unroll by-design. Further

works should be directed to find a more flexible way to balance the computational load

between available resources in an online fashion.

Chapter 9
Shuffle up and deal : accelerating GPGPU Monte

Carlo simulation through recycling

9.1 Introduction

When concerned with deriving a fair price for an option contract, in the non-trivial cases,

one often have to resort to numerical techniques such as Monte Carlo simulations or finite

element methods. The Monte-Carlo (MC) methods is especially suited for products deemed

path-dependents such as Asian options, barrier options, etc. Also, since at its heart, MC

methods require to build a massive amount of paths independent from one another, it

is a technique that lend itself fairly well to parallelization. Techniques to accelerate MC

convergence are usually based on variance reduction consideration, while the computational

time can itself be reduced by accelerating the very generation of random numbers. The

technique we propose here does not belong to either of those optimizations, and relies

more on exploiting a computational gap between the creation and the recycling of random

numbers. Put simply, if it is significantly easier to recycle a number than create a new one,

there is a potential opportunity for major speed-up.

General-purpose computing on graphic processing units (GPGPU) stands for techniques and

concepts relevant to the use of GPU as a platform for heavy computation. GPUs, since they

were designed to handle the parallel workloads associated with graphics rendering, exhibit

many-cores architectures where each core itself hosts numerous computation engines. As

such they proved to be an especially fit hardware target for computationally heavy tasks

exhibiting significant data-parallelism.

The remainder of this chapter is organized as follows. In section 9.2, we will briefly introduce

the technical background necessary to our study: the path dependent product that we will

be working with, so called “Wasabi option”. The application of Monte Carlo integration to

the option pricing problem, then the Granger causality test that we use to help us in our

selection step. We will also introduce the CUDA framework. In the following section 9.3

we will present our implementations on GPU, discussing pattern and period of shuffling.

Section 9.4 presents the results evaluated with respect to speed and accuracy and finally we

99

Chapter 9. Shuffle up and deal : accelerating GPGPU Monte Carlo

simulation through recycling 100

__shfl_down __shfl_up

__shfl_xor

Figure 9.1: Top panel: Depiction of the effect of __shfl_up on the threads with low ID.
The squares stand for the content to be swapped in each thread in a warp, different rows
represent the evolution of the content in each thread registers after a call to __shfl_up.
Bottom panel: Illustration of a butterfly swap pattern. In this example, the content being
shuffled around is the thread ID and the different calls to __shfl_xor occur from top to
bottom, with the xor mask being powers of 2 between 20 and 24.

will conclude and introduce our future work in the last part 9.5.

9.2 Background

9.2.1 The Wasabi option

Working in the Black-Scholes market model [BS73], the Wasabi option is a product whose

payoff involves two path-dependent state variables: the geometric average of the asset price

and the excursion length over a predetermined level. More explicitly, for an underlier with

value St at time t, the payoff function H(·) of the Wasabi option is

[
S0e

(1
T

∫ T
0 ln(St) dt) −K

]
+

1{
(
T∫
0

Θ(St−B) dt>d

} (9.1)

where K is the strike price, T the maturity date, B the so-called Wasabi level and d the

Wasabi time. It knocks in under the condition that the asset spends an amount of time over

d, in the region St > B.If the condition is realized it delivers a call on the Geometric average

of the asset. Therefore it can be said that it merges the Asian payoff, the first factor in (9.1),

and the Parisian condition,the second factor in (9.1), into a single derivative product.

In [?], the authors propose a pricing formula that requires the computation of double inte-

grals, which even without posing analytical difficulties may be better handled with the use

Chapter 9. Shuffle up and deal : accelerating GPGPU Monte Carlo

simulation through recycling 101

of Monte Carlo methods to simulate asset random paths.

9.2.2 Monte-Carlo simulation

The use of Monte-Carlo methods for option pricing is well documented and further details

can be found in [Gla04], we will just give here an overview of the philosophy. Starting with

the following geometric Brownian motion modeling the asset dynamics

St = S0 exp

[(
r − σ2

2

)
t+ σWt

]
(9.2)

whose discretized 0 = t0 < ... < ti < ... < tN = T version is

Sti+1 = Sti exp

[(
r − σ2

2

)
∆t+ σ

√
∆tZi+1

]
(9.3)

with ∆t ≪ 1 the timestep, r the risk-free rate, σ the annual volatility, and Zi a standard

normal variable independent of Zj for i 6= j. Using the recursion formula (9.3), we can

generate a sample paths for the underlying asset, updating the state variables along the

way. The payoff Hi is then calculated on this ith paths using (9.1) and finally the option

value H̃ is approximated based on the law of large numbers with

H̃ =
1

M

M∑

i=0

Hi (9.4)

with M the number of simulated paths. As is well known from MC theory, the error scales

as
1√
M

(9.5)

(independently of the problem dimensionality), therefore a high number of paths simulations

may be required for problems where accuracy is critical.

Particularly attractive to us is the fact that each payoff can be computed independently

from each others which leads to particularly straightforward parallelization onto many cores

architectures.

9.2.3 CUDA

CUDA is a now mainstream framework developed by CUDA [NVI] mainly in C/C++, to

handle the programming for GPU for non-graphic related computation. The GPU origi-

nally destined for the gaming industry have seen a major interest as a platform for general

computation. For all intents and purpose, we can consider the GPU as a stream processors

running a Kernel in parallel on many SMM each of them holding a large number of cores.

For SIMD problems, the straightforward mapping is one thread handling the processing of

Chapter 9. Shuffle up and deal : accelerating GPGPU Monte Carlo

simulation through recycling 102

an input/output element. Here, one thread is responsible for the generation of one trajec-

tory. A technical aspect particularly pertaining to our analysis is the granularity in which

threads are executed in-step once elected for execution. Threads are bundled in group of

32 called a warp in CUDA terminology, and a warp is the limit in which we can use the

shuffle instruction. Paraphrasing again, data can not be shuffled between threads that be-

longs to different warps. This limitation has the positive side-effect that we can assure that

threads/paths with ID further than 32 away will be as uncorrelated as they would be in a

traditional MC simulation.

The shuffle instructions we keep referring to are “__shfl, __shfl_up, __shfl_down, __shfl_xor”

Cuda instructions, available for platforms with cc 3.x. They allow data to be shuffled be-

tween registers, without any trip to local memory and as such exhibit satisfying speed. They

are mainly used to improve speed for reduce and broadcast operations. The different shuffle

types distinguish themselves by the way the source thread ID is retrieved: __shfl asks

explicitly for a thread ID inside the lane, __shfl_up(resp. down) retrieves the ID just over

(resp. under) the caller ID, and __shfl_xor does a bitwise XOR between the caller and the

given parameter ID.

As we stated in the introduction, our motivation in proposing the shuffled Monte-Carlo tech-

nique is to exploit a computational gap between generating random numbers and merely

shuffling them. In our benchmarks, generating 216 random numbers using the MRG32k3a

generator takes 16.3319s while shuffling the same volume of number using __shfl_up takes

only 0.356s.

9.2.4 Granger causality test

One way to quantify the causal relationship between time series is the Granger causality

test introduced in [Gra69]. This statistical test allows one to measure how past values of

a time series X add to the predictive power of an univariate regression of the time series,

where lagged values are deemed meaningful based on F-statistics. It is intuitively based on

the idea that ’X (Granger)causes Y if knowing the past of X helps predict the future of Y ’.

For illustration, let us write X and Y under the following bivariate (for generality) autore-

gressive form

X(t) =

p∑

j=1

AXX,jX(t− j) +
p∑

j=1

AXY,jY (t− j) + ξX(t)

Y (t) =

p∑

j=1

AY Y,jX(t− j) +
p∑

j=1

AY X,jY (t− j) + ξY (t)

(9.6)

with ξX(t), ξY (t) the residual prediction errors for time series X and Y , and p is the order

of the model. X causes Y if the variance of ξX(t) is reduced by keeping in some Y terms in

Chapter 9. Shuffle up and deal : accelerating GPGPU Monte Carlo

simulation through recycling 103

the first equation. The same argument holds to quantify causality in the reverse direction,

looking now at the variance of ξY (t). Finally, the magnitude of the causal influence, FX→Y

of X on Y is measured by

FX→Y = ln
var
(
ξXR(XY)

)

var (ξXU)
(9.7)

where ξXR(XY) is derived from a restricted model setting AXY,j = 0,∀j in the first line

of (9.6) and ξXU originates from the full model. As before the same derivation holds to

quantify in the reverse direction, setting AY X,j = 0,∀j in (9.6), etc.

9.3 Shuffled Monte Carlo

As was briefly touched upon in the previous section, simulating a single path (among the N

total paths)requires the generation of M random numbers (more precisely pseudo random

numbers), where M is traditionally very large. Then the total number of random numbers

generated for a simulation is N ×M . We propose here to interject some shuffling of random

numbers among threads currently running on a SM instead of generating fresh ones (we

will thereafter refer to this implementation as Shuffled Monte Carlo, or SMC). Since there

are no access to global memory after Kernel launch and before reading the results back, we

point out that ultimately the kernel will be compute-bound.

The motivation for SMC lies behind the speed of a shuffle operation relatively to the creation

of a new random numbers. The downside being that in doing so, a correlation to be measured

is introduced between neighboring (w.r.t. SM) paths, therefore the shuffle should remain

marginal. We define the shuffling period (SP) to be the number of random numbers actually

generated before a shuffling sequence occurs. Hereafter and for brevity sake, when we write

SMC27, we actually refer to the shuffled Monte Carlo implementation with shuffling period

SP = 27.

9.3.1 Shuffling pattern

Along with the period of shuffling, the other critical point is the pattern of said shuffling. In

section 9.2.3 we introduced the 4 built-in flavors available in Cuda, obviously we should base

our choice on the pattern that minimize the correlation or causal dependence introduced

between paths. Since the number of possible patterns is in the order of (32!)M , we must

reduce our empirical study to something we can study and implement in a reasonable fashion.

We present in figure 2 the results on the Granger causality test[Gra69] for a sequence of 5

shuffles interjected after generating 27 random numbers, repeated over 216 timesteps. As

can be seen on figure 2, the test correctly picks up the directionality component for the

various patterns in which the shuffle occurs. The Xor exhibits the prototypical hierarchical

dependency pattern that we expected, while the Down and Up shuffles demonstrate an

Chapter 9. Shuffle up and deal : accelerating GPGPU Monte Carlo

simulation through recycling 104

obvious limitation of such a trivial implementation, that we explain right after.

The threads with an ID equal to 31, upon calling __shfl_down can not receive anything

from a superior thread, since as we pointed earlier, shuffles occur within a warp that host 32

threads. Therefore when the thread 31 calls __shfl_down, it actually recovers the content

of its own variable. The thread with ID 30 which received the content of ID 31 on the first

call, will receive once again the same content on the second call, since thread 31 recovered its

own register. Therefore we see that there is a strip (whose width is connected to the shuffle

length SL) of threads on the superior side of the warp lane that is bound to exhibit a high

correlation in the direction IDi → IDi−1. The same argument holds for thread with low

ID and __shfl_up. To fix ideas, a visual representation is available regarding __shfl_up

and __shfl_down in figure 9.1.

Unshuffled

10 20 30

10

20

30

10 20 30

10

20

30

XOR

10 20 30

10

20

30

Down

10 20 30

10

20

30

Up

0

1

2

3

4

0

10

20

30

40

0

100

200

300

400

0

100

200

300

400

T
i

T
j

T
i

T
j

T
i

T
j

T
i

T
j

Figure 9.2: F-statistic value on the Granger Causality test for the unshuffled and the
various style of shuffling. Ti (resp. Tj) stand for paths generated by thread with ID i (resp.
j). The F-statistic value in cell [Ti, Tj] is for the test FTi→Tj

where only the results that
have a p-value < 0.01 are kept.

9.3.2 Implementation

Regarding the generation of random number itself, relying on CURAND, we have the choice

to use the following generators

Chapter 9. Shuffle up and deal : accelerating GPGPU Monte Carlo

simulation through recycling 105

• XORWOW: Xor-shift added, Marsaglia sequences [Mar03]

• MRG32k3a: 32-bit combined multiple recursive generator with two components of

order 3

• MTGP32: Mersenne twister for graphic processors [SM13]

• Philox_4x32_10: Counter based parallel RNG[SMDS11]

where the trade-off lies between speed, memory footprint, and quality of pseudo random

numbers.We will use for the scope of this study the “MRG32k3a” generator.

Finally the SMC implementation looks as such

Algorithm 9.1 SMC pseudo code

Require:
N : Number of timesteps.
SP : Generating period.
SL: Shuffling length

Ensure: Result← H(ST)
for i = 1 to N/(SL+ SP) do

for j = 1 to SP do
RNb = curand_normal(&localState)
x∗ = exp(Drift+RNb ∗ V ol)
AvgX+ = log(x)
if x > b then

ExcursionT ime+ = dt
end if

end for
for j = 1 to SL do

RNb = shfl__xor(RNb, 1 << j)
x∗ = exp(Drift+RNb ∗ V ol)
AvgX+ = log(x)
if x > b then

ExcursionT ime+ = dt
end if

end for
end for
if ExcursionT ime > d and exp(AvgX/N) > k then

H ← exp(AvgX/N) − k
else

H ← 0
end if

where b and k are the log-variables counterpart to B and K. Since both SL and SP are

hard-coded #define values, the compiler has no problem unrolling the loops on #pragma

unroll.

Chapter 9. Shuffle up and deal : accelerating GPGPU Monte Carlo

simulation through recycling 106

9.4 Results

The GPU used is the GeForce GTX 750Ti, a relatively cheap gaming GPU targeting per-

sonal desktop, hosting 5 SMs(640 cores) and 2GB of GDDR5. The code is compiled using

the CUDA 6.0 [NVI] and Visual Studio 2012 build chain for Windows, we turned on the

highest level of optimization and did the computation with single precision fast maths. We

build our unidimensional blocks out of 512 threads, thus the number of blocks is N%512.

We present our results for two main implementations, and some variations. The first is the

traditional Monte Carlo (MC) simulation where every random numbers has been freshly

generated with the CURAND library using a curandStateMRG32k3a generator, all simula-

tions run over M = 218 timesteps. The traditional MC will serve as a baseline to measure

the performance of our shuffling technique, both in terms of accuracy and speed. Unsurpris-

ingly, the second set of measures displayed thereafter belongs to our SMC implementation

where the shuffling pattern is a XOR butterfly swap, for reasons explained in section 9.3.

We benchmarked SMC for varying period of shuffling

• SMC3: SP=3, SL=5

• SMC11: SP=11, SL=5

• SMC27: SP=27, SL=5

The limit SL = 5 is a result both of the XOR choice as a shuffling pattern, and the limit of

32 for the size of threads participating in a swap.

9.4.1 Accuracy

First and foremost, we need to check our scheme accuracy against two problems admitting

an analytical solution: the Vanilla and the Geometric Asian option. This will help up to

put forward enough empirical evidence that SMC does not introduce any artifacts in the

MC convergence property. Therefore, the first set of error-checking will involve the pricing

of a Vanilla option. For this simpler case than the Wasabi evoked before, the payoff is just

[ST −K]+ and admits a fairly straightforward difference of Gaussian CDFs.

The parameters are

• maturity T : 1 year

• annual risk-free rate r: 0.03

• annualized volatility σ: .2

• strike price K: 100

• initial price S0: 100

Chapter 9. Shuffle up and deal : accelerating GPGPU Monte Carlo

simulation through recycling 107

8 10 12 14 16 18 20
6

7

8

9

10

11

12

Number of paths

O
p

ti
o

n
 p

ri
c
e

MC

8 10 12 14 16 18 20
6

7

8

9

10

11

12
SMC3

Number of paths

O
p

ti
o

n
 p

ri
c
e

8 10 12 14 16 18 20
6

7

8

9

10

11

12

Number of paths

O
p

ti
o

n
 p

ri
c
e

SMC11

8 10 12 14 16 18 20
6

7

8

9

10

11

12

Number of paths

O
p

ti
o

n
 p

ri
c
e

SMC27

Figure 9.3: Box plots for the MC and SMC implemementation of the Vanilla option pricing
problem. The analytical solution (the black line) is 9.4134 in arbitrary currency unit.

We present in figure 9.3 a set of box plots summarizing 10 runs for a number of generated

paths between 27 and 220, for both MC and SMC with different periods. We do not find any

non accidental, and qualitative shift between the distributions of a traditional MC imple-

mentation and our SMC. If any, the MC3 which is the implementation using the shuffling

in the most intensive fashion actually looks as close to the analytical solution as the MC

implementation. One can see from Fig. 9.3 that the period of shuffling has the biggest

impact on the distance to the correct price for simulations that involve a low number of

simulated trajectories. For simulation involving 214 paths, SMC with a period 3 exhibit a

relative error defined as |SMC−MC|
MC that is ≈ 0.03 while the SMC with a period of 27 is off

by approximatively 0.02 for the same number of trajectories. Once we move past 217 paths

the error does not exceed 0.01, and this for any shuffling period. Therefore, depending on

the precision required by the target simulation a large number of paths can be required, but

then again, this is a feature built in MC theory itself and is not a limitation introduced by

our shuffling technique.

We continue our proof of concept, by running the same tests on a Geometric Asian op-

tion. This option, while it is path dependent and therefore fully justify using MC, still

admits an analytical solution that take the same form as the Vanilla case. The payoff this

time is
[
S0e

(1
T

∫ T

0
ln(St) dt) −K

]
+

and the parameters set remains the same as in the Vanilla

simulation. The results are available in the various box plots of figure 9.4 for MC and the

various SMC. As for the previous Vanilla case, but this time on a path dependent product,

Chapter 9. Shuffle up and deal : accelerating GPGPU Monte Carlo

simulation through recycling 108

2 4 6 8 10 12 14
3

4

5

6

Number of paths

O
p

ti
o

n
 p

ri
c
e

MC

2 4 6 8 10 12 14
3

4

5

6

Number of paths

O
p

ti
o

n
 p

ri
c
e

SMC11

2 4 6 8 10 12 14
3

4

5

6

Number of paths

O
p

ti
o

n
 p

ri
c
e

SMC3

2 4 6 8 10 12 14
3

4

5

6

Number of paths

O
p

ti
o

n
 p

ri
c
e

SMC27

Figure 9.4: Box plots for the MC and SMC implemementation of the Geometric Asian
option pricing problem. The analytical solution (the black line) is 5.086 in arbitrary currency
unit.

we feel that the visual evidence put forward in figure 9.4 are solid enough to justify us

when we say that the shuffling introduced in our SMC implementations do not break MC

convergence property.

Now that we checked that the SMC implementation we propose in this study do not intro-

duce errors of higher magnitude than the traditional MC scheme using products admitting

closed form analytical solution. We now move on to our real target: the Wasabi option,

introduced in section 9.2.1, where we will see in terms of speed up the major interest of

the SMC technique; for sake of coherency we will also display the accuracy benchmark for

the SMC pricing of Wasabi option in the next section. They will confirm the comments

we made in the current section, and therefore are merely introduced for the most curious

readers.

9.4.2 Speed

The Wasabi pricing parameter set is as such

• maturity T : 1 year

Chapter 9. Shuffle up and deal : accelerating GPGPU Monte Carlo

simulation through recycling 109

• annual risk-free rate r: 0.03

• annualized volatility σ: .2

• strike price K: 100

• initial price S0: 100

• wasabi level B: 100

• wasabi time d: .5

Readers interested in the analytical solution involving multiple numerical integrations are

redirected to [CCO14b]. We present here the results of our timing benchmark for the same

target platforms as the ones considered in section 9.4.1. We will however limit the speedup

study to the only Wasabi case, that is our target. Other and simpler products exhibit similar

speedup behavior and therefore are omitted.

As can be observed in figure 9.5, the goal we set ourselves is properly achieved for any number

of paths, meaning that the SMC exhibit lower computation time for any number of computed

paths. This is mainly due, as we claimed earlier, to the differential in computational cost

between __shfl_xor() and curand_normal().

The speed-up with respect to the MC implementations are respectively

• ≅ 1.14 (SMC27)

• ≅ 1.32 (SMC11)

• ≅ 1.97 (SMC3)

Evidently enough, for a low volume of computed trajectory the relative gain is hardly

noticeable: computing 8192 paths take 1.25s for the basic MC while it takes .66s for the

SMC3. However once we reach the 105 computed paths the gain is important enough to

make our strategy relevant: for 218 paths the computation time is 65.37s for the basic MC

while it takes the SMC3 only 33.15s. Therefore we feel that our approach is best suited to

simulations where a very large volume of simulated trajectories is required.

Computational time scales linearly as a ×m+ ε where a, ε are implementation dependent

and listed above for sake of completeness

• MC : a ≅ .00025, ε = .45615

• SMC27 : a ≅ .00022, ε = .40837

• SMC11 : a ≅ .00018, ε = .4066

• SMC3 : a ≅ .00012, ε = .27524

Chapter 9. Shuffle up and deal : accelerating GPGPU Monte Carlo

simulation through recycling 110

0 1 2 3 4 5 6 7 8 9 10 11

x 10
5

0

50

100

150

200

250

300

Number of paths

C
o

m
p

u
ta

ti
o

n
 t
im

e
 (

s
)

MC

SMC3

SMC11

SMC27

2 4 6 8 10 12 14

3.5

4

4.5

5

5.5

6

6.5

Number of paths

O
p

ti
o

n
 p

ri
c
e

MC

2 4 6 8 10 12 14

3.5

4

4.5

5

5.5

6

6.5

Number of paths

O
p

ti
o

n
 p

ri
c
e

SMC3

2 4 6 8 10 12 14

3.5

4

4.5

5

5.5

6

6.5

Number of paths

O
p

ti
o

n
 p

ri
c
e

SMC27

2 4 6 8 10 12 14

3.5

4

4.5

5

5.5

6

6.5

Number of paths

O
p

ti
o

n
 p

ri
c
e

SMC11

Figure 9.5: Top panels: Box plots for the MC and SMC implemementation of the Wasabi
option pricing problem. Bottom panel: Computation time (s) for the MC and SMC imple-
mementation of the Wasabi option pricing problem.

Chapter 9. Shuffle up and deal : accelerating GPGPU Monte Carlo

simulation through recycling 111

9.5 Conclusion and future work

In this study we proposed a novel and simple way to fasten MC simulation by recycling a

fraction of generated random numbers for other trajectories under construction. We built

this idea into a GPGPU implementation called Shuffled Monte-Carlo and study two factors:

the pattern and period of shuffling. We elected to implement a butterfly XOR swap pattern

based on its ease of implementation and score on causality test. The results both in terms

of speed and accuracy were demonstrated to be satisfying enough to motivate this study.

Future study should concentrate on proposing a heterogeneous implementation of our SMC

technique. We feel that two possible heterogeneous architectures may improve the current

SMC implementation but ultimately should be empirically demonstrated. The most straight-

forward and easy to implement would be to decide a ratio r based on CPU/GPU + CPU

computational throughput and distribute rM paths to the CPU and (1− r)M to the GPU.

No synchronization and no memory transfer occur until kernel completion. The second archi-

tecture to be tested, would introduce a third phase in the path building: a load phase. The

CPU would be focused on filling multiple buffers with RNbs, and triggering asynchronous

memory transfer onto the GPU. Since the memory engine can execute load instructions in

parallel with the computation engine on recent GPUs, we feel that some improvements are

still available for the taking. It would also reduce the amount of correlation introduced

between paths. However we are still very conscious of the fine tuning that it might require

regarding synchronization points between CPU and GPU.

Another axis of study finally concerns the shuffling patterns available. We considered here

only the most direct ones, but one may be more curious and takes on the study more

exotic shuffling, and their impact on accuracy and speed. However deeper theoretical re-

sults regarding the connection between the pattern/period of shuffling, and the correlation

introduced seems to us problem hardly tractable as of now.

Chapter 10
Conclusion

10.1 Summary of the thesis

The present work has been focusing on the problem of exotic options pricing, where both

the theoretical and the implementation sides of the problem have been considered.

The theoretical part of this thesis occupies chapter 2 throughout to chapter 6, and has been

devoted to providing new formula for some quite complex financial derivative instruments.

The derivation of those formula using econophysics as a working framework would serve to

prove the relevance of econophysics methods along with the more traditional probabilistic

angle of attack.

Chapter 2 was devolved to introducing the necessary theoretical concepts connected to the

calculus of stochastic processes that will be used to model financial risky assets; the critically

important properties of the Wiener process/Brownian motion were introduced.

In chapter 3 a background on the financial market was provided, broke down and we singled

out the financial derivatives as our target of study. Complex derivatives known as exotic

options were presented and the problem of option pricing was discussed for it is the main

target of the present thesis. The Black-Scholes model being the model in which our study

takes place was introduced in the same chapter.

The principal tool we used throughout the theoretical part of this thesis in order to ad-

dress the option pricing problem was the path integral method as originally developed by

Weiner and Feynman. Therefore an introduction to this technical framework was provided

in chapter 4, along with some equivalent formulation of path integral equations and partial

differential equations. Since path integration is a tool that has been greatly championed by

quantum physicists, the path integral formulation of quantum mechanics is also discussed

in the same chapter.

We improved over an existing pricing formula for the outside barrier Asian option in chapter

5. Using path integrals we solved the problem and benchmarked the accuracy of our solu-

tion, it was found to reduce the error when compared to previous study[DLT10]. We did

not limit ourself to improving over the existing formula but studied the problem of adding

112

Chapter 10. Conclusion 113

another barrier condition to the payoff structure. We wrote the path integral representation

of this pricing problem and the connection with the physics problem of a particle in a box

was drawn. We solved it , the solution taking the form of a sum of normal cumulative distri-

bution functions. The solution accuracy was benchmarked, with respect to both correlation

and initial asset proximity to barriers, and was found to fall well within acceptable range.

The path integral framework was fully exploited in the following chapter, no.6, where we

studied the problem of the Parisian option. We showed how it related to a path integral

describing the motion of a particle in a potential, a problem rather common in the physics

field. Once we wrote the path integral representation of our pricing problem, we used the

Feynman-Kac formula to work with the equivalent partial differential equation and solve it.

Benchmarking was found to yield accurate results while the formula did not exhibit penal-

izing computational cost. Using the newly derived path integral results, we proposed then

a new type of option that we baptized “Wasabi option” that builds on top of the Parisian

option. As we mentioned that we do not aim at deriving formula unsuitable for implemen-

tation, we argued a method to simplify the pricing problem by introducing a second process

into the system. We studied its accuracy and found an efficient if inelegant way to reduce

the error margin. In the end the error was found to be nothing short of negligible.

The implementation part of our thesis covers chapter 7,8 and 9.

The necessary technical background covering general purpose computing on graphic pro-

cessing units (GPGPU) was introduced in chapter 7. We started by the most general con-

sideration regarding distribution computation and parallelizable problem, before describing

the general hardware architecture of a GPU card. The single program multiple data model

which is the one used when programming for GPU is introduced along with the CUDA

programming platform. We then discuss in more detail how CUDA handle the distribution

of computational workload onto the GPU with a case study. Taking a basket option as the

target we benchmarked various heterogeneous architectures to select a superior one. Finally

in the last chapter we proposed an original Monte Carlo scheme targeting the GPU with

the goal to improve its running time, when compared with the traditional Monte Carlo

simulation.

10.2 Did we reach our goal ?

We recall the goal that we set ourselves in the present thesis and our driving motivation:

to exhibit sufficient proof that beyond the usual probabilistic/stochastic approach to op-

tion pricing there was room for another interdisciplinary approach. We argued that using

insights from physics we could solve pricing problems in an intuitive fashion and derive

formula that led themselves to efficient implementation. We also aimed at improving or

proposing original implementation of pricing formula with a special consideration for speed.

Chapter 10. Conclusion 114

How well did we succeed on those two fronts?

• Demonstrate Econophysics methods adequacy to the exotic option pricing

problem

– Improved the results for simple outside barrier Asian options

– Derived an original result for the double outside barrier Asian options

– Derived the propagator for the Parisian option

– Designed a Wasabi product and priced it

The original work we conducted in chapters 5 and 6 have been both derived using path

integral techniques as found in the physics fields, more especially in quantum physics. Even

though the original was rather abstract and could easily have led to the common obtuse

formula found in mathematical publication, we used intuition and straightforward physics

consideration to reach our results. The formula derived were either a finite sum of plain

normal cumulative distribution function, or quickly converging sum of similar terms.

Therefore in regards to putting forward enough evidence that econophysics and path integral

methods specifically were well adapted to the study of the option pricing problem, we think

that our original results are an unquestionable proof. On the most exotic products, the

Wasabi option, that we devised in order to test how far we could go while keeping an easy-

to-implement formula, we feel that arguments could be made either way. It is ultimately to

the reader to decide if a term that is a numerical integration of the error function is a costly

operation, then one should decide if summing four of those terms is arbitrary complex. We

think that this is well within the acceptable computational cost of useful pricing formula.

• Propose optimized GPGPU implementation

– Case studied the problem of heterogeneous CPU/GPU distribution of computa-

tion workload

– Designed an original and fast variation “shuffled Monte Carlo” on traditional

Monte Carlo simulation

The empirical study we conducted on a heterogeneous CPU/GPU target architecture is

an alternative that is receiving as of today too few attention. We however, in this study,

optimized both CPU and GPU and had them working together to yield a faster answer

than both a pure CPU and a pure GPU solution. We also want to point out that on the

contrary to a lot of implementation papers, we did not chose a vanilla product as of our

Chapter 10. Conclusion 115

scope of study. By selecting a formula that is not straightforward to implement we feel that

the claims we make can not be argued on a relevancy ground. To discuss technical points:

we optimized the numerical scheme used with respects to GPU constraints, we limited the

amount of hard coded parameters that is often used in order to yield faster results, at the

detriment of re-usability, by doing the load balancing in an online fashion. The results we

obtained justified the design of an heterogenous solution by exhibiting faster results than

our other benchmarked implementation.

Then we moved on to accelerate Monte Carlo simulation. That could seem paradoxical since

we claimed we used econophysics as a way to derive analytical formula that we could study

and implement fairly easily. Yet, when one derive a new formula and would like to test its

validity, Monte Carlo simulation seems to be the most efficient way to do so. Therefore we

see Monte Carlo simulation as a test to pass in order to justify validity of our results. This

is the reason why we aimed at also improving computation time for Monte Carlo simulation.

By proposing an original recycling technique to reduce the generation of random numbers

on GPU via shuffling, we could reduce the necessary computation time from 12% to 50%.

In the end, we think that the various techniques we proposed on the implementation side

fulfilled our goal of studying design past beyond the tradition CPU vs. GPU , and also at

proposing powerful technique to reduce the computation time.

Appendices

116

Appendix A
Propagator for two coupled wiener processes with

drift using change of measure

In this section we derive the propagator for a system of coupled drifting wiener processes

using a change of measure argument to reduce the problem to uncoupled and driftless

processes. Starting with the following SDEs under probability measure P.

dXT = µXdt+ σXdWX,T

dYT = µY dt+ σY

(
ρdWX,T +

√
1− ρ2dWY,T

) (A.1)

After applying the following transformation to XT and YT



dX̃T

dỸT


 =




1
σX

0

−ρ

σX

√
1−ρ2

1

σY

√
1−ρ2






dXT

dYT




we are left with

dX̃T =
µX
σX

dt+ dWX,T

dỸT =

(
µY σX − ρµXσY
σY σX

√
1− ρ2

)
dt+ dWY,T

(A.2)

Now we define a new probability measure QX , where QX ≪ P and P≪ QX , by its Radon-

Nikodym derivative
dQX

dP

∣∣∣∣
FT

:= e
−T
2

(
µX
σX

)2
−
(

µX
σX

)
WX,T (A.3)

similarly for QY

dQY

dP

∣∣∣∣
FT

:= e
−T
2

(
µY σX−ρµXσY

σY σX

√
1−ρ2

)2

−
(

µY σX−ρµXσY

σY σX

√
1−ρ2

)
WY,T

(A.4)

117

Chapter A. Propagator for two coupled wiener processes with drift using

change of measure 118

where FT is the natural filtration for [XT , YT].

Now from Cameron-Martin-Girsanov theorem we know that

dX̃T =
µX
σX

dt+ dWX,T = dW̃X,T (A.5)

where

dW̃X,T = dWX,T +

(
µX
σX

)
dt (A.6)

is a standard Wiener process under QX . Similarly for ỸT

dỸT =

(
µY σX − ρµXσY
σY σX

√
1− ρ2

)
dt+ dWY,T = dW̃Y,T (A.7)

with

dW̃Y,T = dWY,T +

(
µY σX − ρµXσY
σY σX

√
1− ρ2

)
dt (A.8)

a standard Wiener process under QY . Since X̃T and ỸT are now driftless and uncorrelated

it is direct that

WQX

(
X̃T |0

)
=

e
−X̃2

T
2T√
2πT

WQY

(
ỸT |0

)
=

e
−Ỹ 2

T
2T√
2πT

(A.9)

The original transition probability for XT and YT under P is retrieved by first multiply-

ing through with the inverse Radon-Nikodym derivatives, where we used the fact that our

process has joint Gaussian distribution to justify the leap from uncorrelatedness to indepen-

dence

WP

(
X̃T , ỸT |0, 0

)
=WQX

(
X̃T |0

) dP

dQX

∣∣∣∣
FT

WQY

(
ỸT |0

) dP

dQY

∣∣∣∣
FT

(A.10)

then reverting back to the original variables



XT

YT


 =



σX 0

σY ρ σY
(
1− ρ2

)






X̃T

ỸT




leads to the usual result where we dropped the understood P measure subscript

W (XT , YT |0, 0) =
1

2πσXσY T
√

1− ρ2
exp

(−1
2(1− ρ2)

[(
XT − µXT
σX
√
T

)2

+

(
YT − µY T
σY
√
T

)2

− 2ρ (XT − µXT) (YT − µY T)
σXσY T

]) (A.11)

Appendix B
Distribution of X̄T

In this appendix we derive the distribution of the continuously monitored geometric average

X̄T :=
1

T

T∫

0

Xtdt (B.1)

where

Xt = µt+ σ

t∫

0

dW t (B.2)

is normally distributed N
(
µT, σ2T

)
. Starting with the expectation

E
[
X̄T

]
= E


 1

T

T∫

0

(µt+ σWt) dt




=
µT

2
+
σ

T
E




T∫

0

Wtdt




=
µT

2
+
σ

T
E




T∫

0

(T − t) dW t




=
µT

2

(B.3)

where the last equality follows by null expectation of the Ito Integral. We now move on to

finding the variance of X̄T

Var
[
X̄T

]
=
σ2

T 2
Var




T∫

0

Wtdt




=
σ2

T 2
E




T∫

0

(T − t)2 dt




=
σ2T

3

(B.4)

119

Chapter B. Distribution of X̄T 120

where Ito isometry was used between the first and second line.

Let us point out here that

E
[
X̄T

]
=

E [XT]

2
,Var

[
X̄T

]
=

Var [XT]

3
(B.5)

Since X̄T is a linear functional of a Gaussian process, only the first two moments are

necessary. Therefore the distribution of X̄T is now fully characterized.

Appendix C
Simplification of propagator integrals appearing in

Wasabi options

In this appendix we give an equivalent form to the definite integrals in the propagator (6.18)

expression as mere evaluation of erfc(·), computationally less costly than relying on numer-

ical integration schemes. In order to do so we will make repetitive use of the following

definite integral equality for δ > 0

∫ +∞

0

(
αx2 + βx+ γ

)
e−(δx

2+µx+η) dx

=
e−η

8δ5/2

[
2
√
δ(2βδ − αµ) +√πeµ2

4δ erfc
(

µ

2
√
δ

)(
2δ(α + 2γδ) + αµ2 − 2βδµ

)] (C.1)

First we look at the following integral

∫ ∞

0

(
y + b

σ

) (
y + XT−b

σ

)

σπ
√
λ3(T − λ)3

exp


−

(
y + b

σ

)2

2(T − λ) −

(
y + XT−b

σ

)2

2λ


 dy (C.2)

appearing in the propagator expression (6.18) for XT > b is then equal to

e−
(XT −2b)2

2λσ2

√
2πσ3T 5/2


σ(2b −XT)

√
2λT

T − λ −
√
π
(
(XT − 2b)2 − σ2T

)
e

(XT −2b)2(T−λ)

2λσ2T erfc


2b−XT

σ
√

2λT
T−λ






(C.3)

Similarly the integral

∫ ∞

0

y
(
y + 2b−XT

σ

)

σπ
√
λ3(T − λ)3

exp


− y2

2(T − λ) −

(
y + 2b−XT

σ

)2

2λ


 dy (C.4)

121

Chapter C. Simplification of propagator integrals appearing in Wasabi

options 122

appearing in the propagator expression (6.18) for XT < b is found to be equal to

(b−XT)(−bλ+ 3bT − 2TXT + λXT) + λσ2T√
2πλσ3T 5/2

exp

(
b(2XT − 3b)

2λσ2
− (b−XT)

2

2σ2T

)

× erfc

(
−bλ+ 2bT − TXT + λXT

σ
√

2λT (T − λ)

)
− (b−XT) (2T − λ)
πσ2T 2

√
λ(T − λ)

exp

(
(b−XT)

2

2λσ2
− b2

2σ2(T − λ)

)

(C.5)

therefore the expression for the propagator (6.18) can be rewritten under the equivalent

form

WP (XT , T, λ|0, 0) = Θ (b−XT)

[
(b−XT)(−bλ+ 3bT − 2TXT + λXT) + λσ2T√

2πλσ3T 5/2

exp

[
b(2XT − 3b)

2λσ2
− (b−XT)

2

2σ2T

]
erfc

(
−bλ+ 2bT − TXT + λXT

σ
√

2λT (T − λ)

)
− (b−XT) (2T − λ)
πσ2T 2

√
λ(T − λ)

× exp

[
(b−XT)

2

2λσ2
− b2

2σ2(T − λ)

]]
+Θ(XT − b)

[
exp

[
− (XT−2b)2

2λσ2

]

√
2πσ3T 5/2

(
σ (2b−XT)

√
2λT

T − λ

−√π
(
(XT − 2b)2 − σ2T

)
exp

[
(XT − 2b)2(T − λ)

2λσ2T

]
erfc


2b−XT

σ
√

2λT
T−λ



)]

(C.6)

References

[All07] E. Allen. Modeling with Itô Stochastic Differential Equations. Mathematical

Modelling: Theory and Applications. Springer, 2007.

[BA05] Giovanni Barone-Adesi. The saga of the american put. Journal of Banking

and Finance, 29(11):2909 – 2918, 2005.

[Baa04] B.E. Baaquie. Quantum Finance. Cambridge University Press, 2004.

[Bel97] Belal E. Baaquie. A path integral approach to option pricing with stochastic

volatility: Some exact results. J. Phys. I France, 7(12):1733–1753, 1997.

[BKS00] B. E. Baaquie, L. C. Kwek, and M. Srikant. Simulation of Stochastic Volatility

using Path Integration: Smiles and Frowns. eprint arXiv:cond-mat/0008327,

August 2000.

[BMMN06] G. Bormetti, G. Montagna, N. Moreni, and O. Nicrosini. Pricing exotic options

in a path integral approach. Quantitative Finance, 6(1):55–66, 2006.

[Boa08] OpenMP Architecture Review Board. Openmp application program interface

version 3.0, May 2008.

[Boy01] John P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Books on

Mathematics, 2001.

[BS73] Fischer Black and Myron S Scholes. The pricing of options and corporate

liabilities. Journal of Political Economy, 81, 1973.

[BY03] Mark Broadie and Yusaku Yamamoto. Application of the fast gauss transform

to option pricing. Manage. Sci., 49(8):1071–1088, 2003.

[BZ12] Cornelis W. Bowen Zhang, Oosterlee. Acceleration of option pricing technique

on graphics processing units. Concurrency and Computation: Practice and

Experience, 2012.

[CCO14a] Aurelien Cassagnes, Yu Chen, and Hirotada Ohashi. Path integral pricing of

outside barrier asian options. Physica A: Statistical Mechanics and its Appli-

cations, 394(0):266 – 276, 2014.

[CCO14b] Aurelien Cassagnes, Yu Chen, and Hirotada Ohashi. Path integral pricing of

wasabi option in the black-scholes model. Physica A: Statistical Mechanics

and its Applications, 413(0):1 – 10, 2014.

123

References 124

[CJPY97] Marc Chesney, Monique Jeanblanc-Picqué, and Marc Yor. Brownian excur-

sions and parisian barrier options. Advances in Applied Probability, pages

165–184, 1997.

[CLM97] J.Y. Campbell, A.W.C. Lo, and A.C. MacKinlay. The Econometrics of Finan-

cial Markets. Princeton University Press, 1997.

[CMS99] Peter Carr, Dilip B. Madan, and Robert H Smith. Option valuation using the

fast fourier transform. Journal of Computational Finance, 2:61–73, 1999.

[Coh13] D.L. Cohn. Measure Theory: Second Edition. Birkhäuser Advanced Texts

Basler Lehrbücher. Springer New York, 2013.

[Cox75] J. Cox. Notes on option pricing i: Constant elasticity of diffusions., 1975.

[CPVR10] Mauricio Contreras, Rely Pellicer, Marcelo Villena, and Aaron Ruiz. A quan-

tum model of option pricing: When black–scholes meets schrödinger and its

semi-classical limit. Physica A: Statistical Mechanics and its Applications,

389(23):5447 – 5459, 2010.

[CRR79] John C. Cox, Stephen A. Ross, and Mark Rubinstein. Option pricing: A

simplified approach. Journal of Financial Economics, pages 229–263, 1979.

[Den] Peter J. Denning. The locality principle. Commun. ACM.

[DGM09] Daniel Dufresne, Jose Garrido, and Manuel Morales. Fourier inversion formulas

in option pricing and insurance. Technical Report 3, 2009.

[DLT10] J.P.A. Devreese, D. Lemmens, and J. Tempere. Path integral approach to

asian options in the black–scholes model. Physica A: Statistical Mechanics

and its Applications, 389(4):780 – 788, 2010.

[DW10] Kirk David and Hwu Wen, mei. Programming Massively Parallel Processors:

A Hands-on Approach. Morgan Kaufmann, 1st edition, 2010.

[EBT99] Marco Rosa-Clot Eleonora Bennati and Stefano Taddei. A path integral ap-

proach to derivative security pricing: I. formalism and analytical results. In-

ternational Journal of Theoretical and Applied Finance, 1999.

[Ein05] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme

geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen.

Annalen der Physik, 322:549–560, 1905.

[Eva98] L.C. Evans. Partial Differential Equations. Graduate studies in mathematics.

American Mathematical Society, 1998.

[FH12] R.P. Feynman and A.R. Hibbs. Quantum Mechanics and Path Integrals:

Emended Edition. Dover Publications, Incorporated, 2012.

References 125

[FO08] Fang Fang and Cornelis W. Oosterlee. A novel pricing method for european

options based on fourier-cosine series expansions. SIAM J. Sci. Comput.,

31(2):826–848, 2008.

[GHK+11] Benedict R. Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry, and Dana

Schaa. Heterogeneous Computing with OpenCL. 2011.

[Gla04] P. Glasserman. Monte Carlo Methods in Financial Engineering. Applications

of mathematics : stochastic modelling and applied probability. Springer, 2004.

[Goo81] Mark Goodman. Path integral solution to the infinite square well. American

Journal of Physics, 49(9):843–847, 1981.

[Gra69] C. W. J. Granger. Investigating causal relations by econometric models and

cross-spectral methods. Econometrica, 37(3):pp. 424–438, 1969.

[Gri05] D.J. Griffiths. Introduction to Quantum Mechanics. Pearson international

edition. Pearson Prentice Hall, 2005.

[GY60] I. M. Gelfand and A. M. Yaglom. Integration in functional spaces and its

applications in quantum physics. Journal of Mathematical Physics, 1(1):48–

69, 1960.

[Hav02] Emmanuel E Haven. A discussion on embedding the black–scholes option

pricing model in a quantum physics setting. Physica A: Statistical Mechanics

and its Applications, 304(3–4):507 – 524, 2002.

[Hes93] SL Heston. A closed-form solution for options with stochastic volatility with ap-

plications to bond and currency options. Review of Financial Studies, 6(2):327–

343, 1993.

[Hul08] J.C. Hull. Options, Futures, and Other Derivatives. Pearson Prentice Hall,

7th edition, 2008.

[Ito44] Kiyoshi Ito. Stochastic integral. Proceedings of the Imperial Academy,

20(8):519–524, 1944.

[J.D88] J.Dash. Path integrals and options - i. CNRS preprint, 1988.

[J.D89] J.Dash. Path integrals and options - ii. CNRS preprint, 1989.

[JYC09] M. Jeanblanc, M. Yor, and M. Chesney. Mathematical Methods for Financial

Markets. Springer Finance. Springer, 2009.

[Kac49] M. Kac. On distributions of certain wiener functionals. Transactions of the

American Mathematical Society, 65(1):pp. 1–13, 1949.

[Kac66] M. Kac. Wiener and integration in function spaces. American Mathematical

Society. Bulletin. New Series, (72), 1966.

References 126

[KdKKM04] M. Krekel, J. de Kock, R. Korn, and T. K. Man. An analysis of pricing methods

for basket options. Wilmott magazine, pages 82–89, 2004.

[Kle09] H. Kleinert. Path Integrals in Quantum Mechanics, Statistics, Polymer

Physics, and Financial Markets. EBL-Schweitzer. World Scientific Publish-

ing Company, Incorporated, 2009.

[KS91] I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus. Grad-

uate Texts in Mathematics. Springer New York, 1991.

[KV90] A.G.Z. Kemna and A.C.F. Vorst. A pricing method for options based on

average asset values. Journal of Banking and Finance, 14(1):113 – 129, 1990.

[Kwo08] Yue-Kuen Kwok. Mathematical Models of Financial Derivatives. Springer,

2008.

[Lin98] Vadim Linetsky. The path integral approach to financial modeling and options

pricing. Computational Economics, 11(1-2):129–63, 1998.

[LKC+10] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun

Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas

Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep Dubey. Debunk-

ing the 100x gpu vs. cpu myth: An evaluation of throughput computing on

cpu and gpu. SIGARCH Comput. Archit. News, 38(3):451–460, June 2010.

[LL09] CÉLINE LABART and JÉRÔME LELONG. Pricing double barrier parisian

options using laplace transforms. International Journal of Theoretical and

Applied Finance, 12(01):19–44, 2009.

[LLT11] L. Z. J. Liang, D. Lemmens, and J. Tempere. Path integral approach to the

pricing of timer options with the duru-kleinert time transformation. Phys. Rev.

E, 83:056112, May 2011.

[LS01] FA Longstaff and ES Schwartz. Valuing american options by simulation: a

simple least-squares approach. Review of Financial Studies, 14(1):113–147,

2001.

[LSLM10] Yongchao Liu, Bertil Schmidt, Weiguo Liu, and Douglas L. Maskell. Cuda-

meme: Accelerating motif discovery in biological sequences using cuda-enabled

graphics processing units. Pattern Recogn. Lett., 31(14):2170–2177, 2010.

[Man63] Benoit Mandelbrot. The Variation of Certain Speculative Prices. The Journal

of Business, 36:394, 1963.

[Mar03] George Marsaglia. Xorshift rngs. Journal of Statistical Software, 8(14):1–6, 7

2003.

References 127

[Mat00] A. Matacz. Path Dependent Option Pricing: the path integral partial averag-

ing method. eprint arXiv:cond-mat/0005319, May 2000.

[MC01] A. Demichev M. Chaichian. Path Integrals in Physics: Volume I Stochastic

Processes and Quantum Mechanics. Taylor and Francis, 2001.

[MNM02] Guido Montagna, Oreste Nicrosini, and Nicola Moreni. A path integral way

to option pricing. Physica A: Statistical Mechanics and its Applications,

310(3–4):450 – 466, 2002.

[MS95] Rosario N. Mantegna and H. Eugene Stanley. Scaling behaviour in the dynam-

ics of an economic index. Nature, 376(6535):46–49, 1995.

[NVI] NVIDIA. Cuda toolkit.

[oIS14] Bank of International Settlments. Derivatives statistics, 2014.

[Øks03] B. Øksendal. Stochastic Differential Equations: An Introduction with Applica-

tions. Hochschultext / Universitext. U.S. Government Printing Office, 2003.

[Pas11] Andrea Pascucci. PDE and Martingale Methods in Option Pricing. Springer,

2011.

[PDY10] Victor B. Putz, Jarn Dunkel, and Julia M. Yeomans. Cuda simulations of

active dumbbell suspensions. Chemical Physics, 375, 2010.

[PGLD11] Ying Peng, Bin Gong, Hui Liu, and Bin Dai. Option pricing on the gpu with

backward stochastic differential equation. In Parallel Architectures, Algorithms

and Programming (PAAP), 2011 Fourth International Symposium on, 2011.

[Pol01] A.D. Polyanin. Handbook of Linear Partial Differential Equations for Engi-

neers and Scientists. Taylor & Francis, 2001.

[PP09] Bin PENG and Fei PENG. Pricing rainbow asian options. Systems Engineering

- Theory & Practice, 29(11):76 – 83, 2009.

[Pre11a] T. Preis. Gpu-computing in econophysics and statistical physics. The European

Physical Journal Special Topics, 194(1):87–119, 2011.

[Pre11b] T. Preis. Gpu-computing in econophysics and statistical physics. The European

Physical Journal Special Topics, 194(1):87–119, 2011.

[Pro01] Philip Protter. A partial introduction to financial asset pricing theory. Stochas-

tic Processes and their Applications, 91(2):169 – 203, 2001.

[RCT02] MARCO ROSA-CLOT and STEFANO TADDEI. A path integral approach

to derivative security pricing ii: Numerical methods. International Journal of

Theoretical and Applied Finance, 05(02):123–146, 2002.

References 128

[RO12] M. Ruijter and C. Oosterlee. Two-dimensional fourier cosine series expansion

method for pricing financial options. SIAM Journal on Scientific Computing,

34(5):B642–B671, 2012.

[Sam65] Paul A Samuelson. Proof that properly anticipated prices fluctuate randomly.

Industrial management review, 6(2):41–49, 1965.

[Shr04] Steven E. Shreve. Stochastic calculus for finance. II. Springer Finance.

Springer-Verlag, 2004.

[Sim11] Jean-Guy Simonato. Computing american option prices in the lognormal

jump–diffusion framework with a markov chain. Finance Research Letters,

8(4):220–226, 2011.

[SM13] Mutsuo Saito and Makoto Matsumoto. Variants of mersenne twister suitable

for graphic processors. ACM Trans. Math. Softw., 39(2):12:1–12:20, February

2013.

[SMDS11] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel

random numbers: As easy as 1, 2, 3. In Proceedings of 2011 International Con-

ference for High Performance Computing, Networking, Storage and Analysis,

SC ’11, pages 16:1–16:12, New York, NY, USA, 2011. ACM.

[Sor09] D. Sornette. Why Stock Markets Crash: Critical Events in Complex Financial

Systems. Princeton University Press, 2009.

[TB10] Xiang Tian and Khaled Benkrid. High-performance quasi-monte carlo financial

simulation: Fpga vs. gpp vs. gpu. ACM Trans. Reconfigurable Technol. Syst.,

3(4):26:1–26:22, 2010.

[Vec14] Jan Vecer. Asian options on the harmonic average. Quantitative Finance,

14(8):1315–1322, 2014.

[VSR06] Semyon V. Tsynkov Victor S. Ryaben’kii. A Theoretical Introduction to Nu-

merical Analysis. Chapman and Hall/CRC, 1st edition, 2006.

[Wie21] Norbert Wiener. The average of an analytic functional and the brownian

movement. Proceedings of the National Academy of Sciences of the United

States of America, 7(10):pp. 294–298, 1921.

[Wie24] Norbert Wiener. The average value of a functional. Proceedings of the London

Mathematical Society, s2-22(1):454–467, 1924.

[Zha95] Peter G. Zhang. A unified formula for outside barrier options. Journal of

financial engineering, 4, 1995.

[Zhu06] Song-Ping Zhu. An exact and explicit solution for the valuation of american

put options. Quantitative Finance, 6(3):229–242, 2006.

References 129

[ZO09] Bowen Zhang and Cornelis W. Oosterlee. Option pricing with cos method on

graphics processing units. In Parallel Distributed Processing, 2009. IPDPS

2009. IEEE International Symposium on, pages 1–8, 2009.

	title

