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ABSTRACT

The analysis of mutations in genomes are necessary to understand biological functions
of genomes. Among various types of mutations, structure variations (SVs) are large scale
mutations typically larger than 1 kb, and are attracting attentions. Examples of SVs in-
clude large deletions, insertions, inversions, translocations, and copy number variations.
Next generation sequencing (NGS) technologies have made it possible to exhaustively
detect SVs in genomes of thousands of individuals, including patients of cancers and
serious congenital diseases. In addition to NGS technologies, a recent sequencing tech-
nology that can determine thousands of contiguous bases at once is now available. By
using this technology, it would be possible to more easily and accurately obtain genome
sequences in de novo manner.

To understand the impact of SVs on biological functions and infer possible mech-
anisms that caused SVs, it is vital to develop computational methods that accurately
detect existence of SVs and their positions in the genome by using genome sequences
obtained by these sequencing technologies. Because of the importance of SVs, a num-
ber of methods have been already proposed for detecting SVs by using NGS sequences.
Although detected SVs should be further used to analyze their impact on genomes, com-
putational tools that annotate detected SVs have not been as intensively developed as
detection tools. In particular, although SVs are only local information in genomes, com-
putational methods that utilize detected SVs to infer global structure of chromosomes are
not well established. This can hamper our understanding of the effect of SVs, e.g. struc-
tures of proteins or regulations of genes affected by SVs. In addition, accurate detection
of SVs are still difficult problem even with many existing methods, because the length
of NGS sequences are limited to only a few hundred bases and thus detection of SVs
involves finding complex patterns hidden in an enormous number of alignments of NGS
sequences with the reference genome. Determining positions of SVs is obviously more
difficult than determining existence of SVs. Nonetheless, knowing accurate positions of
SVs clarifies the range of genomic sequences affected by SVs, and is also necessary for
inferring the biological significance of SVs or detecting mechanisms that had generated
SVs. Most of existing methods take alignments of NGS sequences and the reference
genome as input, and detect aberrant patterns of alignments as signatures that indi-
cate existence and positions of SVs. Such signatures include aberrant distances and/or
strands of alignments between paired reads obtained by NGS and the reference genome,
aberrant number of aligned NGS sequences in a specific genomic region, and fragmented
alignments. Because these signatures have already exploited, a new signature should
be used to improve the existing methods. Because using NGS sequences to detect SVs
include a computationally intensive step of mapping, i.e. aligning NGS sequences with
the reference genome, accelerating this step is also crucial for exhaustive SV detection.
In this thesis, we address these problems.

First, we address the problem of reconstructing global structures of chromosomes by
using detected SVs. The problem had been previously formulated by Oesper et al. as an
optimization problem on a graph constructed from SVs, which can be solved by calculat-
ing an optimal flow on the graph. However, they did not deeply analyzed computational
complexity of the problem. In addition, the number and the length of chromosomes had
not been considered. We formulate a new problem termed as the chromosome problem
(ChrP) that takes into account the number and the length of chromosomes as well. In
addition, we prove that ChrP is NP-complete by showing that there is an upper bound
on the size of chromosomes in an optimal solution, and by reducing the Hamiltonian Cy-
cle problem to ChrP. We also propose a biologically meaningful restriction on instances
of the problem, termed as the weakly-connected constraint (WCC), and a variation of
ChrP, termed as ChrW. ChrW imposes WCC on instances and removes limitation on the
length of chromosomes. These modifications allow ChrW to be solvable in polynomial-
time. Moreover, to show that removal of limitation of the length of chromosomes is
necessary, another variation of ChrP that only imposes WCC on instances is defined and
is proved to be NP-complete. Our result establishes a theoretical foundation of software
tools emerging for the analysis of global structures of rearranged chromosomes. In
computational experiments, our algorithm that solves ChrW was confirmed to be able to
reduce noise in simulated SV data that include modified copy number variations (CNVs)



or false positive translocations.
Second, we propose a method ChopSticks that accurately predicts positions of ho-

mozygous deletions, which is one of various types of SVs. ChopSticks mainly improves
positions of homozygous deletions detected by finding alignments of paired reads with
aberrant mapping distances. The paired reads with such alignments are called discordant
reads. Positions of deletions calculated by using only discordant reads involve ambiguity.
To reduce this ambiguity and to narrow down positions of boundaries of homozygous
deletions, ChopSticks takes into account normally mapped sequences that have not been
fully exploited by other methods, in addition to discordant reads. We theoretically prove
that the expected distance between true positions and positions predicted by ChopSticks
is close to distances of previous methods applied to NGS sequences with doubled depth
of coverage. Experimental results also witnessed that our method is useful to predict
accurate positions of homozygous deletions detected not only by using discordant reads
but also by detecting drops of copy numbers.

Moreover, toward faster mapping of NGS sequences to the reference genome, we port
widely used mapping programs to a many-core processor Xeon Phi. In a computational
experiment, the performances of the ported programs increased as the number of threads
increased up to at least 60. This result indicates that concurrent execution of tens of
threads on a many-core is promising for future performance improvement.

In this thesis, we also address the problem of detecting SVs by comparing multiple
genome sequences constructed by de novo assembly. Such a method will be useful when
the new technology that can generate long sequences becomes widely available in the fu-
ture. Assuming that the input sequences are concatenations of a hidden set of sequences,
our method infers the hidden sequences from the concatenations. To this end, we de-
fine a class of strings, called disjoint common substrings (DCS’s). DCS’s are similar to
hidden strings and are nonetheless efficiently identified from given concatenations. Our
algorithm identifies all DCS’s in time linear to the total length of given concatenations.
The effectiveness of our method were confirmed by a computational experiment.



論文要旨

ゲノ ムの生物学的機能を理解するためには、 ゲノ ムの変異を解析することが必須である。

様々な変異のう ち、 構造多型 (structural variation, SV) と呼ばれる、 通常 1kbp以上の大

型の変異が、 注目を集めている。 構造多型の例として、 長い配列の欠失、 挿入、 反転、 転

座、 コピー数多型が挙げられる。 次世代シーケンシング (NGS) により 、 個人のゲノ ムに

存在する構造多型 (structural variation, SV) を網羅的に検出することが可能となり 、 癌や

重篤な先天性異常の患者をはじめとする、 数千人規模の個人の SVの解析が可能となった。

しかも、 NGSより もさらに新しい配列決定技術により 、 数千塩基が連続する配列を一度に

読むことが可能となってきている。 この技術により 、 ゲノ ム配列を de novoで決定するこ

とが容易になる。

こう した技術により得られる配列データを用いて、 SVの生物の機能への影響を理解する

とともに、 SV を発生させる機構を推定するために、 SVの存在および SVの位置を正確に

検出する計算手法が不可欠である。 SVは重要なため、 NGS配列に基づき SV を検出する

ための手法が、 既に多数提案されている。 しかし 、 検出された SVはゲノ ムへの影響を解

析するために活用されなければならないが、 見付かった SV を解析するための計算技術は

検出技術ほどには開発が進んでいない。 特に、 SVがゲノ ムの局所的な情報にとどまるにも

拘らず、 検出された SV を用いて染色体の大域的構造を推定する計算手法は、 確立されて

いない。 このことは、 蛋白質の構造や遺伝子の制御に対する SVの影響を調べる際の障害

となり 得る。 さらに、 NGSで得られる配列の長さが数百塩基にとどまることから 、 SV を

検出するためには、 NGS配列の参照ゲノ ム配列の膨大な数のアラインメント に隠された複

雑なパターンを探し出す必要があり 、 多数の手法が存在するにも拘らず、 正確に SV を検

出することはいまだに困難である。 SVの存在だけでなく 、 位置も決めることはさらに困難

である。 にもかかわらず、 SVの正確な位置を知ることは、 SVによって影響を受けるゲノ

ムの範囲を明確化し、 SVの生物学的意味や SVの発生機構を推測するために必要である。

殆どの既存手法は、 NGS配列と参照ゲノ ム配列とのアラインメント を入力とし、 異常なア

ラインメント のパターンを、 SVの存在および位置を示す特徴として利用する。 こう した特

徴には、 距離またはスト ランド に異常があるペアエンド 配列のアラインメント 、 ゲノ ム上

の特定の領域におけるアラインメント の数の異常、 断片化されたアラインメント が含まれ

る。 既存手法がこれらを既に活用しているため、 既存手法を改善にするには新しい特徴を

用いるべきである。 NGS配列を用いて SV を検出する手法は、 NGS配列と参照ゲノ ムの

アラインメント を行なう マッピング処理を含むが、 これは計算負荷の大きな処理であるた

め、 この高速化も SVの網羅的検出に重要である。 本博士論文では、 これらの課題を扱う 。

第一に、 検出された SV を用いて、 染色体の大域構造を再構築する問題を扱う 。 この問

題を Oesperらが SVに基づき構築したグラフ上の最適化問題として定式化しており 、 グラ

フ上で最適なフローを計算することで解を得ることができる。 しかし Oesperらは、 問題の

計算論的な困難さについて深い考察は行なっていない。 しかも、 染色体の数や長さは考慮

されていない。 我々は、 染色体の数や長さも考慮する chromosome problem (ChrP) を定

式化した。 さらに、 ChrPが NP完全であることを、 解として得られる染色体の大きさに上

限があり 、 またよく 知られているハミ ルト ニアン回路問題が ChrPに還元可能であること

を示すことで、 証明した。 さらに我々は、 問題の入力を制約する、 生物学的な意味のある

弱連結性制約 (weakly-connected constraint, WCC)および、 WCCを入力に課すとともに



染色体長の上限を撤廃した新たな問題 ChrWを定義した。 これらの修正により 、 ChrWは

多項式時間で解く ことができる。 さらに、 染色体長の制約を除去することが必要であるこ

とを示すために、 ChrPに WCC を課しただけの問題が NP完全であることを示した。 こ

れらの結果は、 現在開発されつつある、 変異した染色体の大域構造を解析するソフト ウェ

アツールの、 理論的基盤となる。 計算機実験において、 ChrWを解く 提案アルゴリ ズムが、

シミ ュレーショ ンデータにおいてコピー数多型 (CNVs)に発生したノ イズや、 偽陽性の転

座を低減できることを確認した。

第二に、 SVの一種であるホモ接合性の欠失について、 位置の正確な予測を行なう手法で

ある ChopSticks を提案する。 ChopSticksが主に解析対象とするホモ接合性の欠失は、 ペ

アエンド 配列の距離の異常を検出する方法により 検出されるものである。 このよう なペア

エンド 配列は、 discordant readsと呼ばれる。 欠失の位置を discordant readsのみを用いて

計算すると曖昧さが残るが、 この曖昧さを除去し欠失の範囲を限定するために ChopSticks

は正常にアラインメント される concordant readsも併用する。 理論的解析により 、 実際の

欠失の位置と ChopSticksが予想した位置の差の期待値は、 既存手法で配列量を 2倍にし

た場合に近いことを示した。 さらに実験により 、 ChopSticksは discordant readsを用いて

検出された欠失のみならず、 コピー数の減少により 検出された欠失の位置を改善するため

にも使用できることを実証した。

さらに、 NGS配列を参照ゲノ ム配列へマッピングする処理の高速化に向けて、 広く 使わ

れているマッピングプログラムをメニーコアプロセッサ Xeon Phiへ移植した。 計算機実

験では、 スレッド 数を増加させたとき、 少なく とも 60スレッド まで性能が向上した。 この

結果から 、 メニーコアプロセッサ上で数十スレッ ド を並列実行することが、 将来の高速化

に寄与すると期待される。

本博士論文では、 de novoアセンブリ により 得られた複数のゲノ ム配列を相互比較する

ことで、 SV を検出する手法も考察する。 このよう な手法は、 長い配列を一度に決定でき

るシーケンシング技術が広く 普及したときに、 有用になると期待される。 提案手法は、 入

力される文字列が未知の文字列集合の文字列を連結して得られたとの仮定のもとに、 この

未知の文字列集合を推測する。 そのために、 disjoint common substring (DCS) と呼ばれ

る文字列のクラスを定義した。 DCSは、 未知の各文字列に近い文字列であるにもかかわら

ず、 連結された文字列から効率良く 計算できる。 本研究では、 全ての DCS を入力文字列

の長さの総和に対し線形の時間で計算可能なアルゴリ ズムを開発し 、 その有用性を計算機

実験により 確認した。
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Chapter 1

Introduction

1.1 Background and Overview of Existing Works

Next-generation sequencing (NGS) technologies have drastically reduced the cost
of genome sequencing1. Today, NGS technologies are essential tools in genome
analysis, because they enable us to simultaneously obtain sequences of more than
trillions of base pairs at maximum2. NGS technologies enable the characterization
of not only small variations such as single-nucleotide polymorphisms (SNPs) but
also large-scale mutations such as insertions, deletions, tandem duplications, and
inversions. Mutations of these types are collectively called structural variations
(SVs). In addition to NGS technologies, more recent technology [14] can produce
sequences consisting of thousands of bases at once. Such a technology makes de
novo assembly of genomes easier and will be an important tool to detect SVs in
the future. As more genomic sequences have become available, it has become
clear that genomes contain many SVs. In fact, SVs are frequently observed even
in healthy individuals [55, 58, 79]. Because SVs affect much larger portions of
genomes than small variations, e.g. SNPs, they have a great impact on biological
functions [35]. SVs have already been associated with diverse diseases [82]. For
example, the fusion genes BCR-ABL and EML4-ALK play key roles in the devel-
opment of cancer, and it is believed that other recurrent rearrangements remain
to be discovered [6].

To understand functions of genomes affected by SVs from molecular level, it is
necessary to determine each SV as accurate as possible. However, just detecting
SVs is insufficient because each SV is only a local information on a genome.
Structures of chromosomes affected by SVs are still unknown even after individual
SVs are detected. In this thesis, we address problems of detecting and analyzing
SVs. First, we aim to infer global structure of chromosomes from detected SVs
for the purpose of elucidating the organization of genomes. Second, we improve
both accuracy and performance of detecting SVs from NGS sequences. Finally,
we propose an algorithm that compares multiple genome sequences with each
other to detect SVs.

Inferring global structures of chromosomes is difficult when genomes are af-
fected by complex rearrangements. In cancer genomes, many SVs may be con-
centrated in a small region of the genome [8, 50, 78]. It has been suggested
that a single catastrophic mutational event, known as chromothripsis [78], causes
these concentrations. A study of prostate cancer also uncovered a distinct type of
complex rearrangement termed chromoplexy [5, 73], wherein rearrangements are
unclustered but involve multiple chromosomes. Complex genomic rearrangements

1http://www.genome.gov/sequencingcosts/
2http://www.illumina.com/systems/sequencing.ilmn
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have even been observed in germline mutations, resulting in serious congenital
diseases [29, 30]. Oesper et al. [66] proposed a problem of inferring the global
structure of chromosomes from SVs, and developed an algorithm called paired-end
reconstruction of genome organization (PREGO). However, they did not deeply
analyzed the computational complexity of the problem. Medvedev et al. [57] also
considered a similar problem. However, they only considered a case where all
fragments in the reference genome are included in the genome to be analyzed.
Here, the reference genome is known and is a pre-existing sequenced genome of
the same organism, such as the GRCh38 build of the human genome3.

Because of the importance of SVs in functions of the genome, a lot of methods
have been developed for finding SVs [1, 10, 25, 55, 58, 70, 87]. The purpose of
these methods are to detect existence of SVs and to determine their positions as
accurate as possible. Current NGS technologies can sequence paired reads, which
are pairs of reads several hundred bases away from each other. This ability is use-
ful for analyzing SVs. First, paired reads can be aligned with the reference genome
more accurately than single reads. Second, we can analyze structures of genomes
larger than the size of each read. SVs are detected by finding aberrant mapping
patterns of paired reads to the reference genome, which are called signatures [58].
If paired reads have aberrant mapping distances and/or strands, they are likely
caused by SVs. This signature is called Read Pair (RP) [10, 25, 40, 54, 70]. If the
number of reads mapped to a region in the reference genome is extremely smaller
or larger than expected, it is also likely caused by SVs. This signature is called
Read Depth (RD) [1, 8]. If only a part of a read is mapped to some position in
the reference genome and the rest is mapped to other position, again it is likely
caused by SVs. This signature is called Split Read (SR) [87]. If the depth of
coverage is high enough, the sequences around SVs is ultimately determined by
assembling read sequences, a signature called Sequence Assembly (AS). In spite
of various methods that have been proposed, SV detection is still a difficult task.
This is because it requires analysis of hidden complex structures involved in an
enormous number of alignments of paired reads with the reference genome, and is
because read sequences and alignments include unavoidable errors. Therefore, for
example, a false detection rate (FDR) up to 10% had to be tolerated even when
determining just the existence of each SV in the 1000 Genomes Project [79]. It is
obviously more difficult to accurately detect the exact positions of SVs. Never-
theless, high-resolution SV calls are necessary to elucidate the functional impact
of SVs and molecular mechanisms that generate SVs [35]. Moreover, to con-
duct a large-scale analysis, SV detection methods for data with a low depth of
coverage (hereafter simply referred to as coverage) are desirable, because whole
genome sequencing is expensive even with NGS technologies. Most of SV detec-
tion methods involve a step where paired reads obtained by NGS are mapped to
the reference genome. A number of methods have been proposed for this task [24].
However, mapping still remains one of the most computationally intensive task
in the analysis of SVs.

The third generation sequencing [14] is now available and is still being up-
dated. In the future, completely different methods of sequencing, called nanopore
technologies [3], might drastically change the field of sequencing. These new tech-
nologies can determine DNA sequences of thousands of contiguous bases at once.
With this ability, it would be easy to determine genome sequences by de novo
assembly. To exploit sequences obtained in this way for detecting SVs, we have
to compare the obtained sequences with each other and exhaustively detect their

3http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
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common segments and differences. However, it is computationally hard to solve
even a simple problem where the smallest set of common substrings of which
given two strings are concatenations is searched for [48].

1.2 Contribution of This Thesis

This thesis contributes to wide range of computational methods based on NGS
sequences for the analysis of genomes affected by SVs, from inferring global struc-
ture of chromosomes using SVs to mapping NGS sequences to the reference
genome. For the analysis of genome sequences obtained by de novo assembly,
this thesis also proposes a method that compares multiple genome sequences
and detects SVs by identifying shared regions as well as regions specific to each
sequences.

1.2.1 Inferring Chromosome Structures from SVs Detected by NGS

The problem of inferring global structure of chromosomes from SVs was previ-
ously addressed [66], although the computational complexity of the problem was
not deeply considered. Accordingly, it does not provide an theoretical basis on
hardness of the problem and how to develop efficient algorithm. In this the-
sis, we propose the chromosome problem (ChrP) which searches for an optimal
set of chromosomes that are the most consistent with given SVs as well as the
estimated number and length of chromosomes. ChrP is formulated as an opti-
mization problem on a bidirected graph constructed from SVs, which we term as
a chromosomes graph. We also show that the problem is NP-complete by proving
that the size of any solution is bounded by a polynomial expression of the number
of vertices and edges of the chromosome graph, and that the well-known Hamil-
tonian Cycle problem can be reduced to ChrP. Further, a biologically meaningful
restriction of the problem, which is termed as the weakly connected constraint
(WCC), is proposed. For each maximal subgraph in the chromosome graph that
consists of edges corresponding to genomic segments whose copy number is at
least one and edges corresponding to confirmed adjacencies of genomic segments,
WCC requires that the subgraph include at least one end of a chromosome in
the genome to be analyzed. We propose an algorithm that solves a variation
of ChrP that can be solved in polynomial time. The algorithm was evaluated
in computational experiments and it was confirmed that the algorithm reduced
errors in copy numbers or false positive translocations in simulated SV data.

To analyze the effect of SVs on biological functions in detail and to infer the
mechanism that caused detected SVs, the positions of SVs have to be determined
as accurately as possible [35]. Mainly for methods that utilize the RP signature
to detect SVs, we propose a method ChopSticks that improves the resolution of
homozygous deletions. Methods based on the RP signature usually consider only
discordant pairs, which are paired reads whose mapping distances and/or strands
are not as expected. In order to obtain the improved estimates of positions of
SVs, ChopSticks exploits concordant pairs, which are paired reads whose mapping
distances and strands are as expected. A theoretical analysis revealed that by
using concordant pairs the resolution can be improved to the extent similar to
methods based on the RP signature with twice as many NGS sequences. In
computational experiments using simulation data, ChopSticks performed well
not only with methods base on the RP signature but also with a method base
on the RD signature. In experiments using real NGS sequences obtained from
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inbred mice4, ChopSticks also successfully improved the positions of SVs detected
by methods based on the RP signature.

Detection of SVs involves a step that maps NGS sequences to the reference
genome. Toward performance improvement in the future, we used a many-core
processor Xeon Phi to conduct mapping by using 60 processing cores. To obtain
mapping results that have already been well evaluated, we ported two famous
mapping problem, Burrows-Wheeler Aligner (BWA) [43] and Bowtie2 [38], to
Xeon Phi. Because both programs accelerate mapping by using vector operations
implemented only in x86 processors, we ported tens of vector operations to Xeon
Phi. In a computational experiment, the performance of both BWA and Bowtie2
was improved as the number of threads increased thanks to 60 cores implemented
in Xeon Phi. Although mapping by Xeon Phi is still slower than that by CPU,
our results is promising for performance improvement in the future.

1.2.2 Mutual Comparison of Genome Sequences

To detect SVs by comparing genome sequences with each other, we need an
efficient method that identifies common and distinct regions in each genome. Be-
cause it is computationally hard to obtain an optimal solution if the problem
is formulated as an optimization problem [65], we took the following approach.
First, a class of substrings was defined as one that can be determined by com-
paring multiple strings with each other. These substrings were termed as disjoint
common substrings (DCS’s). Second, DCS’s are detected by a linear-time algo-
rithm based on suffix trees. In a computational experiment, the algorithm was
shown to be completed in time linear to the total length of given strings and
performs well for randomly generated DNA sequences.

1.3 Organization of This Thesis

The remaining part of this thesis is organized as follows. In Chapter 2, we
formulate the problem of inferring global structures of chromosomes from SVs.
We also prove that the problem is NP-complete and propose its restricted version
solvable in polynomial time. In Chapter 3, we propose a new method ChopSticks
that improves the resolution of SVs detected by other SV detection methods. In
Chapter 4, we explain how genome mapping can be performed in a many-core
processor Xeon Phi. In Chapter 5, we address the problem of comparing multiple
strings and detect their common and distinct substrings. Finally, in Chapter 6,
we conclude this thesis.

4http://jaxmice.jax.org/type/inbred/index.html
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Chapter 2

Inferring Global Structures of Chromosomes

When genomic rearrangements are complex, enumerating only individual SVs
is insufficient for elucidating the global structure of chromosomes, i.e., how the
segments in a reference genome are extracted and ordered in an unknown target
genome.

We address the problem of inferring the global structure of chromosomes
based on SV data, which refer to aberrant adjacencies of genomic regions and
copy number variations (CNVs) in this thesis. By solving this problem, we can
determine the order of the genomic regions in the target genome. This order
affects the structure of proteins if the genomic regions contain coding regions,
and regulation of genes if the genomic regions include promoters or enhancers.
In addition, raw SV data could be corrected by inferring the global structure
of chromosomes because an optimal global structure would ignore false positive
detection of aberrant adjacencies or correct wrongly estimated copy numbers.
The task of inferring chromosomes is formulated as an optimization problem on a
graph, which we term as a chromosome graph. Our contributions are summarized
as follows:

• To infer the global structure of chromosomes, we formulate a computational
problem that takes into account the number and length of chromosomes, as
well as aberrant adjacencies and CNVs caused by genomic rearrangements.
By taking SV data as the input, relatively low-depth NGS sequencing can
be used.

• We prove that the problem is NP-complete.

• We propose a biologically meaningful restriction that makes the problem
solvable in polynomial time. We also present an algorithm that solves the
restricted problem.

Contents of this chapter are mainly from published work in [85].

2.1 Related Works

2.1.1 Copy Number and Adjacency Genome Reconstruction Problem

Oesper et al. [66] presented a pioneering work that aimed to infer the global
structure of chromosomes from SV data. They formulated the copy number and
adjacency genome reconstruction problem. Their formulation is based on graphs
that they termed interval-adjacency graphs. These graphs are essentially the same
as our chromosome graphs, except that we used bidirected graphs [16, 56] while
they used alternating paths to exclude paths on the graph that do not correspond
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to chromosomes. They also implemented an efficient algorithm called paired-
end reconstruction of genome organization (PREGO) to solve their problem and
obtained promising results. Our work includes the following results that were not
addressed by Oesper et al. First, we present a formulation that takes into account
the number and length of chromosomes determined experimentally. Second, we
prove that the problem is NP-complete. Finally, we propose a variation of the
problem that can be solved in polynomial time.

2.1.2 de novo assembly

The aim of de novo sequence assembly is to reconstruct target genomes from
raw NGS sequences [9, 19, 46, 56, 61, 67, 74, 88]. It includes a step to order
fragments of genomes obtained by assembling NGS sequences. The step is usu-
ally implemented as an optimization problem, involving searching for paths on a
graph that cover all vertices or all edges corresponding to substrings of genome
sequences [56, 61]. By contrast, we allow some vertices and edges to be ignored
because some portions of the reference genome might not appear in the target
genome.

2.1.3 Reference Assisted Assembly

Reference-assisted assembly [28], also known as comparative assembly [68], aims
at ordering segments of an unknown target genome by using known genomes of
other organisms. By contrast, we order segments so that the chromosomes in the
solution are most consistent with the SV data and the experimentally determined
number and length of chromosomes.

2.1.4 Permutations of Integers

Methods based on permutations of integers [18] compare two genomes represented
by two sequences of integers corresponding to genes or markers in the genome.
Instead of using such sequences, we exploit SV data.

2.1.5 Cycle Optimization Problems

As explained in Section 2.5, we reduce the problem of inferring the global struc-
ture of chromosomes to the problem of finding an optimal cycle on a bidirected
graph. We mention two problems that searches for an optimal cycle on a graph,
although the cycle to be searched for in these problems is different from that in
our problem.

The Rural Postman Problem (RPP) is a well-known classical problem on
graphs. Let G = (V,E) be a graph that is either undirected, directed, or bidi-
rected, where V is a set of vertices and E is a set of edges. We assign a non-
negative integer value |e| to each edge e ∈ E. Let r be a cycle on G. We define
a cost function w(r) as follows:

w(r) =
∑

m(r,e)>0

|e|m(r, e).

Definition 2.1 (Rural Postman Problem (RPP)). Suppose that we are given a
graph G = (V,E) and a subset E′ of edges E. Then, find a cycle r with the
smallest w(r) from all cycles that pass each edge in E′ at least once.
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Figure 2.1: Thick vertical lines represent chromosomes in the reference genome,
circles represent breakpoints, small black boxes represent NGS reads, solid curved
lines represent paired reads, dashed curved lines represent split reads, and thin
solid oblique lines represent aberrant adjacencies. Aberrant adjacencies are de-
tected by using two types of NGS reads abnormally mapped to the reference
genome: discordant pairs (three pairs from above), and split reads (two pairs
from below).

Edges in E′ are called required edges. RPP for undirected and directed graphs
is NP-complete [41]. If a cycle finding problem includes RPP as a subproblem,
the problem is NP-hard.

The Chinese Postman Problem (CPP) is also a well-known problem on graphs.
CPP is a special case of RPP such that E′ = E. Unlike RPP, CPP can be
solved in polynomial time for directed and undirected graphs [2, 80]. Medvedev
and Brudno [56] proposed an algorithm that solve CPP for bidirected graphs
in O(|E|2 log(|V |) log(|E|)) time, which is achieved by exploiting the Gabow’s
algorithm that solves the minimum cost bidirected flow problem [56, 16]. We
borrow the idea of using bidirected graphs and Gabow’s algorithm to solve our
problem. Kundeti et al. [33] also proposed an algorithm that solves CPP for
bidirected graphs. Their algorithm is efficient for typical instances. However,
their algorithm is inefficient for general bidirected graphs.

2.2 Assumed Experimental Data

We assume the following experimental data as input.
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2.2.1 Aberrant Adjacencies

In the target genome, distant segments in the reference genome may be adjacent
because of rearrangements (Figure 2.1). Such aberrant adjacencies are detected
by using NGS technologies as follows. First, NGS technologies can generate
read pairs that are a few hundred bases apart from each other in the target
genome. If two reads of a pair are not mapped to the reference genome with
the expected orientations and mapped distance, the pair is called a discordant
pair and is likely to be caused by SVs [10, 25, 70]. Second, if the alignment of a
read and reference genome is split into more than one portion, such a split read
also indicates a rearrangement [87]. A breakpoint is a position at a boundary of
a rearrangement. Here, we ignore small differences between the real breakpoints
and their estimations.

2.2.2 Copy Numbers

The number of occurrences of a subsequence in the reference genome may change
because of rearrangements. This phenomenon results in copy number variations
(CNVs). Traditionally, CNVs have been analyzed by using DNAmicroarrays [55].
Several recent methods detect CNVs by finding changes in the depth of coverage
of NGS sequences [1, 8]. Although tumor samples are usually a mixture of normal
cells and various tumor cells, the copy numbers of a cancer cell can still be
estimated by single-cell analysis [63]. In this thesis, for the sake of conciseness,
the boundaries of CNVs are also called breakpoints.

2.2.3 Number of Chromosomes and Truncations

Identifying chromosomes and finding aberrant chromosomes by microscopy is an
important part of clinical diagnostics [26]. The number of chromosomes, denoted
by nN in this thesis, is available after inspection. Throughout this thesis, we
assume that nN ≥ 1. In addition, we also take into account the number of
chromosomal truncations, which we denote as nT . Chromosomal truncations are
detected as a decrease in copy numbers without aberrant adjacencies. We consider
nN and nT to improve the inference of the global structure of chromosomes from
SV data.

2.2.4 Chromosome Length

The length of chromosomes can be estimated experimentally from flow kary-
otyping, and, approximately, from microscopic images [27]. Here, the estimated
length is denoted by λi for 1 ≤ i ≤ NL, where NL(≥ nN ) is the maximum possible
number of chromosomes.

2.3 Problem Definition

Any instance of our problem is modeled as a graph that we term a chromosome
graph. The graph contains elements derived from the reference genome and exper-
imental data. Each vertex corresponds to a location in the reference genome. In
addition, each edge corresponds to either a segment in the reference genome, an
adjacency of flanking segments in the reference genome, or an aberrant adjacency
in the target genome caused by rearrangements.

We assume that the target genome is a set of chromosomes, each of which is
a concatenation of segments in the reference genome. Each chromosome in the
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Figure 2.2: Thick vertical edges represent edges in ES that correspond to seg-
ments in the reference genome, oblique edges represent edges in EL that corre-
spond to aberrant adjacencies. Vertices surrounded by dashed lines belong to V5,
VM , and V3, read from the bottom of the graph to top.

target genome is represented as a path on the graph, and these paths explain how
segments in the reference genome are incorporated into the target genome. The
goodness of the estimated target genome is measured by a cost function, and we
search for an optimal set of chromosomes that minimizes this cost function.

We first define a graph that contains some of elements described above. Then,
we extend the graph to a chromosome graph. Finally, we present the formal
definition of the problem.

2.3.1 Prototype chromosome graph

We first construct an undirected graph called a prototype chromosome graph,
G = (V,E) (Figure 2.2). Let NC be the number of chromosomes of the reference
genome and ni be the number of breakpoints in the i-th chromosome of the
reference genome. Then, V contains the following vertices.

• Vertices corresponding to breakpoints:

VM = {vi,j |1 ≤ i ≤ NC , 1 ≤ j ≤ ni}.

• Vertices corresponding to the beginning of chromosomes in the reference
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genome:
V5 = {vi,0|1 ≤ i ≤ NC}.

• Vertices corresponding to the end of chromosomes in the reference genome:

V3 = {vi,ni+1 |1 ≤ i ≤ NC}.

Then, we define V = V5 ∪ V3 ∪ VM .
Next, we define a set of edges, E. We make the following two types of edges.

• Edges corresponding to segments between two breakpoints that are next to
each other in the reference genome. For each 1 ≤ i ≤ NC and 0 ≤ j ≤ ni,
we make an edge ei,j = (vi,j , vi,j+1).

• Edges corresponding to aberrant adjacency of two segments in the reference
genome. Let NA be the number of detected aberrant adjacencies. For the
k-th aberrant adjacency (1 ≤ k ≤ NA) that links positions corresponding
to vi1,j1 and vi2,j2 , we make an edge eLk = (vi1,j1 , vi2,j2).

Then, we define

ES = {ei,j |1 ≤ i ≤ NC , 0 ≤ j ≤ ni},

EL = {eLk|1 ≤ k ≤ NA},

E = ES ∪ EL.

2.3.2 Chromosome graph

In a prototype chromosome graph, a path might visit two edges in EL contigu-
ously. Such a path does not correspond to a real chromosome. To exclude such
a path we use a technique similar to that of Oesper et al. [66]. Although Oesper
et al. [66] used alternating paths, their formulation can be represented by using
a bidirected graph whose edges have directions at both ends [56, 60]. We directly
define our graph by using a bidirected graph (Figure 2.3). Let d(e, v) ∈ {+,−}
be the direction of an edge e at a vertex v, and −d(e, v) be the opposite direction
of d(e, v).

• Each vertex vi,j ∈ VM is split into two vertices v+i,j and v−i,j . The set VM is
redefined as

VM = {v−i,j , v
+
i,j |1 ≤ i ≤ NC , 1 ≤ j ≤ ni}.

Vertices in V5 and V3 are renamed so that

V5 = {v−i,0|1 ≤ i ≤ NC},

V3 = {v+i,ni+1
|1 ≤ i ≤ NC}.

• An edge ei,j = (vi,j , vi,j+1) ∈ ES is reconnected to v−i,j and v+i,j+1. In

addition, d(ei,j , v
−
i,j) = − and d(ei,j , v

+
i,j+1) = +.

• Let e ∈ EL be an edge connected to vi,j in the prototype chromosome
graph. If e corresponds to an aberrant adjacency involving the segment
that stretches toward vi,j+1, e is reconnected to v−i,j and d(e, v−i,j) is set to

’+’. Otherwise, e is reconnected to v+i,j and d(e, v+i,j) is set to ’−’.

• We add the following set of new edges:

ER = {êi,j = (v+i,j , v
−
i,j)|1 ≤ i ≤ NC , 1 ≤ i ≤ ni}.

Directions are set so that d(êi,j , v
+
i,j) = − and d(êi,j , v

−
i,j) = +.

The modified graph represents a chromosome graph.

10



V

V3

VM

eL1

eL3

eL5 eL4

eL2

v3,0
˗

v3,1

e3,0

+

v3,1
˗

v3,2

e3,1

+

v3,2
˗

v3,3

e3,2

+

v3,3
˗

v3,4

e3,3

+

v1,0
˗

v1,1
e1,0

+

v1,1
˗

v1,2
e1,1

+

v1,2
˗

v1,3

e1,2

+

v2,0
˗

v2,1

e2,0

+

v2,1
˗

v2,2

e2,1

+

v2,2
˗

v2,3

e2,2

+

ê1,1

ê1,2

ê2,1

ê2,2

ê3,1

ê3,2

ê3,3

V5

Figure 2.3: Thin vertical edges represent edges in ER. Arrowheads represent the
’+’-direction, whereas ends of edges without arrowheads represent ’−’-direction.

2.3.3 Paths and Chromosomes

A path c = v1e1v2e2v3 . . . elvl+1 on a chromosome graph G is an alternating
sequence of vertices and edges, which has the following properties:

• The first and the last of c are vertices.

• Any subsequence of the form ekvkek+1 (1 ≤ k ≤ l) means that d(ek, vk) =
−d(ek+1, vk).

A path c is said to visit an edge e if c contains e. Similarly, c is said to visit a
vertex v if c contains v. When a path is written as a sequence of vertices and
edges, for simplicity, we omit the notation of the vertices if they are clear. Let
C = {c1, c2, . . . , c|C|} be a multi-set of paths on G. We define C as a multi-set
so that more than one identical path can exist. In addition, let m(c, e) be the
number of times c visits an edge e, and m(C, e) =

∑

ci∈C m(ci, e). A cycle is a
path whose first and last vertices are identical and the directions of the first and
the last edges at the vertex are opposite. A chromosome on G is a path whose
first and last edges are both in ES .

2.3.4 Copy Numbers and Lengths

Two integers are assigned to each e ∈ E. First, n(e) for e ∈ ES represents an
experimentally estimated copy number of the corresponding segment in the ref-
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erence genome. Second, |e| for e ∈ ES represents the length of the corresponding
segment in the reference genome. For e ∈ EL ∪ ER, we set n(e) and |e| to 0.
The length of a path c is defined as |c| =

∑

e∈E |e|m(c, e). To simply describe all
properties of e together, we use the following notation:

e = 〈d(e, v1)v1, d(e, v2)v2, n(e), |e|〉.

2.3.5 Upper Bound on Parameters

Campbell et al. [8] presented examples of amplified regions in cancer cells. The
copy numbers were less than 100 in these regions. Therefore, we assume that the
copy numbers are in at most hundreds. We also assume that short repeat elements
are masked in advance in order to exclude segments that appear spuriously. Based
on the details given above, we assume that nN , nT , and n(e) for e ∈ ES are all
less than a fixed constant U . The value of U does not have to be determined
because U is only used in the analysis of computational complexity.

2.3.6 Formulation of the Problem

To find an optimal set of chromosomes, we define an optimization problem over
a chromosome graph. We define a cost function to be used as a target function
of the optimization problem. This function imposes costs on the number of
chromosomes, the number of chromosomal truncations, and the number of visits
to edges, penalizing for deviations from those that are experimentally expected.

Let C = {c1, c2, . . . , c|C|} be a multi-set of chromosomes on G, and wN (C) be
the cost of the difference between nN and |C|. Also let Tr(C) be the number of
ends of chromosomes in VM , and wT (C) be the cost of the difference between nT

and Tr(C). In addition, w(e, x) for e ∈ ES is defined as the cost when e is visited
x-times. For e ∈ EL ∪ ER, w(e, x) is set to 0.

We assume that wN (C), wT (C), and w(e, x) for e ∈ ES monotonically increase
as ||C|−nN |, |Tr(C)−nN |, and |x−n(e)| increase, respectively. Then, we define
the cost function W (C) as follows:

W (C) = wN (C) + wT (C) +
∑

e∈E

w (e,m(C, e)) . (2.1)

We assume that each term is 0 if and only if

|C| = nN ,
Tr(C) = nT ,

m(C, e) = n(e) for e ∈ ES .











(2.2)

With these notations, we formulate the problem of inferring the global structure
of chromosomes as follows:

Definition 2.2 (Chromosome problem (ChrP)). Suppose that we are given a
chromosome graph G = (V,E), a cost function W (C), and parameters λi (1 ≤
i ≤ NL), where NL is the maximum possible number of chromosomes. Then, find
a multi-set of chromosomes C on G that minimizes W (C) under the constraint
that |ci| ≤ λi for ci ∈ C.

2.4 NP-completeness of ChrP

Although a similar problem was proposed previously [66], its computational com-
plexity was not analyzed. We show that ChrP is computationally hard.
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Figure 2.4: Straight arrows represent non-excessive edges, while jagged lines rep-
resent sequences of excessive edges.

Theorem 2.1. ChrP is NP-complete.

To show that Theorem 2.1 holds, we first present an upper bound on the size
of an optimal solution of ChrP to show that ChrP is in NP. Then, we prove that
ChrP is NP-hard.

Lemma 2.1. Let G = (V,E) be a chromosome graph. Also, let C be a multi-set
of chromosomes on G that minimizes W (C) such that |ci| ≤ λi for ci ∈ C. Then,
C has at most U(4|V |+ 1)(|E|+ 1) edges.

Proof. Let c ∈ C be a chromosome in C. We define an edge e in c as non-
excessive if e ∈ ES and m(C, e) ≤ n(e), and excessive otherwise. Let tc be
the number of non-excessive edges visited by c. If tc > 0, c can be written as
c = p1e1p2e2 . . . etcptc+1, where ek (1 ≤ k ≤ tc) is a non-excessive edge and pk
(1 ≤ k ≤ tc+1) is a possibly empty path that contains only excessive edges
(Figure 2.4). If pk contains a cycle as its subpath, the cycle can be removed to
decrease W (C), a contradiction. Accordingly, pk does not contain a cycle. This
implies that pk visits at most 2|V | vertices and, thus, 2|V | edges. Therefore, at
most, 4|V | excessive edges are visited for each non-excessive edge. Note that a
non-excessive edge e can be visited, at most, n(e)-times. Therefore,

∑

c∈C tc ≤
∑

e∈ES
n(e).

Chromosomes such that tc = 0 can exist only if they contribute to the decrease
of the first or the second term of W (C) defined by (2.1). Accordingly, the number
of such chromosomes is, at most, nN + nT . In addition, a chromosome c, such
that tc = 0, does not contain any cycles because such a cycle can be removed to
decrease W (C). Therefore, at most, c visits 2|V | vertices and, thus, 2|V | edges.

Consequently, C contains, at most, 2|V |(nN + nT ) + (4|V |+1)
∑

e∈ES
n(e) ≤

U(4|V |+ 1)(|E|+ 1) edges.

Lemma 2.2. The problem ChrP is in NP.

Proof. Once an optimal solution C is given, whether or not W (C) is greater
than a given constant can be determined in O(|V ||E|) time by Lemma 2.1.

Lemma 2.3. The problem ChrP is NP-hard.

Proof. The Hamiltonian Cycle problem (HC) is a problem of finding a cycle that
visits each vertex of a graph exactly once, and is a well-known NP-complete
problem [17]. Here, we reduce HC to ChrP. Consider HC on a directed graph
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Figure 2.5: In this graph, solid edges are constructed for each vertex in a graph
H of HC, whereas dashed edges correspond to edges in H.

H = (V ′, E′), where V ′ = {v′1, v
′
2, . . . , v

′
|V ′|} is a set of vertices and E′ is a set of

edges. We construct a chromosome graph G = (V,E) from H (Figure 2.5), where

V =
⋃

1≤i≤|V ′|

{v−i,0, v
+
i,1, v

−
i,1, v

+
i,2, v

−
i,2, v

+
i,3}

is a set of vertices, and E = ES ∪EL ∪ER is a set of edges. Here, ES consists of

e1,0 = 〈−v−1,0,+v+1,1, 1, 1〉,

e1,1 = 〈−v−1,1,+v+1,2, 2, 1〉,

e1,2 = 〈−v−1,2,+v+1,3, 1, 1〉,

ei,0 = 〈−v−i,0,+v+i,1, 0, 1〉 (2 ≤ i ≤ |V ′|),

ei,1 = 〈−v−i,1,+v+i,2, 1, 1〉 (2 ≤ i ≤ |V ′|),

ei,2 = 〈−v−i,2,+v+i,3, 0, 1〉 (2 ≤ i ≤ |V ′|).

ER consists of

êi,1 = 〈−v+i,1,+v−i,1, 0, 0〉 (1 ≤ i ≤ |V ′|),

êi,2 = 〈−v+i,2,+v−i,2, 0, 0〉 (1 ≤ i ≤ |V ′|).

EL consists of

ei′:i = 〈−v+i′,2,+v−i,1, 0, 0〉 ((v′i′ , v
′
i) ∈ E′).

In addition, we set nN = 1, nT = 0, and λi = |V ′| + 3 for any i. Then, we
prove that H has a Hamiltonian cycle if, and only if, ChrP on G has a solution
C such that W (C) = 0. Suppose that h is a Hamiltonian cycle on H. Let c be a
chromosome that begins with e1,0ê1,1e1,1 and then visits ei′:iei,1 in the order that
edges (vi′ , vi) appear in h from i′ = 1, and finally ends with e1,1ê1,2e1,2. Then, a
set of a single chromosome C = {c} satisfies W (C) = 0 and |c| = |V ′|+ 3 ≤ λ1.
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Conversely, let C be a solution of ChrP that satisfiesW (C) = 0. Because (2.2)
holds, |C| = 1, Tr(C) = 0, and m(C, e) = n(e). Let c be the only chromosome in
C. Because n(e1,1) = 2 and n(ei,1) = 1 for 2 ≤ i ≤ |V ′|, a path that visits vertices
v′i ∈ V ′ in the order that ei,1 appears in c is a Hamiltonian cycle on H.

Theorem 2.1 directly follows Lemma 2.2 and 2.3.

2.5 Polynomial-time Solvable Variation

We propose a variation of ChrP that is solvable in polynomial time. For e ∈ E,
it is highly likely that m(C, e) ≥ 1 if e is supported by a large number of paired
reads. Therefore, it is worth considering a variation in which some edges must
appear in the target genome. We refer to the edges as required edges. In addition,
because chromosomal truncations can be detected, it is also worth considering
a variation in which we know where the ends of the chromosomes of the target
genome exist in the reference genome. Because the definition ofW (C) is abstract,
we focus on a cost function such that

wN (C) = QN ||C| − nN |,
wT (C) = QT |Tr(C)− nT |,
w(e, x) = |e||x− n(e)|,











(2.3)

where QN and QT are constants given as parameters. The values of QN and
QT are tuned in advance so that known global structures of genomes are well
reconstructed.

2.5.1 Weakly Connected Constraint

Let G = (V,E) be a general bidirected graph. A subgraph g of G is a weakly
connected component if g is a connected component when all directions are re-
moved [77]. In addition, g is maximal if g is not a subgraph of a larger weakly
connected component. For a subset E′ of E, we define CC(G,E′) as a set of
maximal weakly connected components of a graph induced from G by removing
the edges not in E′.

Definition 2.3 (Weakly connected constraint (WCC)). Let G = (V,E) be a
chromosome graph. Also let VW and EW be subsets of V and E, respectively.
Each g ∈ CC(G,EW ) is good if g contains at least one vertex in VW . Then, G
satisfies the weakly connected constraint (WCC) if all g ∈ CC(G,EW ) are good.

We use WCC by setting VW to a set of vertices that correspond to ends of
chromosomes in the target genome, EW = {e ∈ E|e is required}. See Figure
2.6 for an example. An instance that satisfies WCC can be obtained as follows.
First, VW is obtained by finding the positions of chromosomal truncations, as
well as the ends of the chromosomes of the reference genome that remain in the
target genome. Because a chromosome that does not include detected ends can
be in a solution, VW does not need to contain all ends of chromosomes in the
target genome. We assume that nT ≥ |VW |. Next, if g ∈ CC(G,EW ) is not good,
edges e ∈ E on some path connecting g and good g′ ∈ CC(G,EW ) are added
to EW . To do this, if possible, we experimentally confirm that e is required if
e ∈ E. Finally, if some g ∈ CC(G,EW ) that are not good still remain, edges in
g are forcibly removed from EW by setting n(e) to 0 if e ∈ ES or by changing e
not required if e ∈ EL ∪ ER.
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Figure 2.6: Gray circles are vertices in VW and thick arrows are edges in EW .

Definition 2.4 (Chromosome problem with WCC (ChrW)). Let G = (V,E)
be a chromosome graph that satisfies WCC with respect to some VW ⊂ V and
EW ⊂ E. Then, find a set C of chromosomes on G such that each vertex in VW

is an end of some c ∈ C, m(C, e) > 0 for e ∈ EW , and C minimizes W (C) when
(2.3) is satisfied.

Theorem 2.2. The problem ChrW can be solved in O(|E|2 log |V | log |E|) time.

We show how ChrW can be solved in polynomial time in the rest of this
section.

2.5.2 Circular Chromosome Graph

RPP and CPP are useful for the purpose of analyzing computational complexity
of problems related to graphs and developing efficient algorithms. However, in
ChrW we have to cope with multiple chromosomes on a chromosome graph and
a cost imposed on the number of chromosomes, which are out of the scope of
RPP and CPP. To bridge them, we construct graphs called circular chromosome
graphs.

Definition 2.5 (Circular chromosome graph). Let G = (V,E) be a chromosome
graph, and let vN and vT be new vertices. In addition, let EN be a set of the
following edges: for 1 ≤ i ≤ NC ,

et(v
−
i,0) = 〈−vN ,+v−i,0, 0, 0〉,

et(v
+
i,ni

) = 〈−vN ,−v+i,ni
, 0, 0〉,

et(v
+
i,j) = 〈−vT ,−v+i,j , 0, 0〉 (1 ≤ j ≤ ni),

et(v
−
i,j) = 〈−vT ,+v−i,j , 0, 0〉 (1 ≤ j ≤ ni),
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Figure 2.7: The problem of optimizing multiple chromosomes is converted to the
problem of finding a cycle on this graph. For simplicity, we omitted et(·), except
for the leftmost chromosome in the reference genome.

and

eT = 〈−vN ,+vT , nT , QT 〉,

eN = 〈+vN ,+vN , nN , QN 〉.

The graph G̃ = (V ∪ {vN , vT }, E ∪ EN ) is called a circular chromosome graph.

See Figure 2.7 for an example.

2.5.3 Circulation on a Bidirected Graph

Let G = (V,E) be a bidirected graph, and av,e for v ∈ V and e ∈ E be an integer
such that

av,e =



























2 if e has two ‘+’-ends at v,
1 if e has only one ‘+’-end at v,
−1 if e has only one ‘−’-end at v,
−2 if e has two ‘−’-ends at v,
0 if e is not connected to v.

Also let bv be an integer defined for each v ∈ V , Z be the set of non-negative
integers, and l(e) and u(e) be two non-negative integers assigned to each edge
e ∈ E called a lower bound and an upper bound, respectively. Unless otherwise
specified, in this study l(e) = 0 and u(e) = ∞.

Definition 2.6. A bidirected flow (biflow) [16, 56] is a mapping f : E → Z such
that

l(e) ≤ f(e) ≤ u(e) for each e ∈ E, (2.4)
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∑

e∈E

av,ef(e) = bv for each v ∈ V . (2.5)

The cost of f is defined as wG(f) =
∑

e∈E w(f, e), where w(f, e) is a cost of f
on e ∈ E. A biflow f is optimal if f minimizes wG(f). A circulation is a biflow
such that bv = 0 for any v ∈ V .

When w(e, f) = |e|f(e), Gabow’s algorithm [16] calculates an optimal biflow
in O(|E|2 log |V | log(maxe∈E{u(e)})) time. In order to relate a circulation to a
cycle on a bidirected graph, we propose the following lemma.

Lemma 2.4. Let f be a circulation of a bidirected graph G = (V,E).

1. There exists a multi-set R of cycles on G such that

m(R, e) = f(e) for each e ∈ E. (2.6)

Conversely, there exists a circulation f that satisfies (2.6) for any multi-set
R of cycles on G.

2. Let h(G) be the number of connected components of G when all edges e such
that l(e) = 0 are removed from G. Then, cycles in R can be merged into,
at most, h(G) cycles.

3. The merged cycles can be obtained in O(
∑

e∈E f(e)) time if f is given.

Proof. First, we prove that R exists. Although a similar result is known as the
flow decomposition theorem [2], we prove this for completeness and for illustrating
the algorithm that calculates R. Consider a path r formed by the algorithm
FindCycle shown in Figure 2.8. During the algorithm, (2.5) holds for all vertices
except for u0, u. Therefore, a new edge e′ in Step 7 always exists until u0 is
reached. Because |V | is finite, r eventually reaches u0 and forms a cycle. If r
reaches u0 with an edge with ’+’-end at u0, there remains an edge e with ’−’-end
at u0 such that f(e) > 0 because of (2.5). Accordingly, the FindCycle algorithm
can continue. If r never reaches u0 with an edge with ’−’-end, it contradicts with
(2.5).

By repeating the FindCycle algorithm until f(e) = 0 for all e ∈ E, we obtain
a multi-set R of cycles such that m(R, e) = f(e) for each e ∈ E. In addition, R
can be obtained in O(

∑

e∈E f(e)) time. Conversely, let R be a set of cycles on G.
Then, f(e) = m(R, e) is clearly a circulation.

Next, let g be one of connected components generated by removing all edges
e such that l(e) = 0 from G, and Rg ⊂ R be a multi-set of cycles such that
each r ∈ Rg shares at least one edge with g. We show that the cycles in Rg

can be merged into a single cycle when |Rg| ≥ 2. Suppose that all vertices in
some r1 ∈ Rg are never visited by other cycles in Rg. Then, g is not weakly
connected because each edge in g must be in some cycle in R and therefore in Rg,
a contradiction. Therefore, some vertex v in r1 is also in another cycle r2 ∈ Rg.
Then, r1 and r2 can be merged into a single cycle vr1vr2v. By repeating the
merging, all cycles in Rg can be merged into a single cycle.

All cycles in R sharing vertices can be merged in O (
∑

r∈R

∑

e∈E m(r, e)) =
O(

∑

e∈E f(e)) time. Then, the number of cycles is at most h(G) because there
are only h(G) connected components.
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1 e := an edge that satisfies f(e) > 0
and has at least one ’+’-end.

2 u0 := a vertex at a ’+’-end of e.
3 u := a vertex at another end of e.
4 r := u0eu.
5 repeat
6 f(e) := f(e)− 1.
7 e′ := an edge that satisfies f(e′) > 0 and

has a direction different from e at u.
8 u := another end of e′.
9 r := re′u.
10 e := e′.
11 until u = u0 and e have ’−’-end at u.

Figure 2.8: Algorithm FindCycle. This algorithm finds a cycle r that consists of
edges e such that f(e) > 0, and changes f(e) to f(e)−m(r, e).
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Figure 2.9: Schematic illustrations of dualized edges. A: A case where d(e1, v1) =
+ and d(e1, v2) = −. B: d(e1, v1) = d(e1, v2) = +. C: d(e1, v1) = d(e1, v2) = −.

2.5.4 Cost Optimization for Each Edge

To optimize the cost defined by (2.3) using a flow on a circular chromosome
graph, we use a method similar to one that calculates an optimal flow when each
edge has convex cost functions [2]. Although the method [2] uses edges with
negative lengths, our method presented here only uses edges with non-negative
lengths. Let G = (V,E) be a bidirected graph, |e| and n(e) be non-negative
integers defined for e ∈ E, and e1 be an edge in E. Also, let v1 and v2 be vertices
at the ends of e1. We define that to dualize e1 is to replace e1 with the following
two edges

e′1 = 〈d(e1, v1)v1, d(e1, v2)v2, 0, |e1|〉,

ē′1 = 〈−d(e1, v1)v1,−d(e1, v2)v2, 0, |e1|〉,

and to set l(e′1) = max{l(e1), n(e1)} and u(ē′1) = max{0, n(e1) − l(e1)}. See
Figure 2.9 for examples. The edge e′1 is used to represent the flow of the same
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direction as e1, while ē′1 is used to penalize the decrease of the flow of e1 from
n(e1).

Lemma 2.5. Let G be a bidirected graph, and f be a biflow on G whose cost is
defined as follows:

wG(f) =
∑

e∈E

|e||f(e)− n(e)|.

Also, let G′ be the bidirected graph generated by dualizing some of edges e ∈ E,
and f ′ be a biflow on G′ whose cost is defined as follows:

wG′(f ′) =
∑

e∈E′

|e|f ′(e), (2.7)

where E′ is a set of edges in G′. Then, an optimal biflow f on G that minimizes
wG(f) can be calculated in O(|E|) time, provided that an optimal biflow f ′ on G′

that minimizes wG′(f ′) is given.

To prove Lemma 2.5, we use the following lemma.

Lemma 2.6. Let G = (V,E) be a bidirected graph, e1 ∈ E be an edge, |e1| and
n(e1) be non-negative integers, and f be a biflow on G whose cost function is

wG(f) =
∑

e∈E−{e1}

w(f, e) + |e1||f(e1)− n(e1)|, (2.8)

where w(f, e) is a cost of f on e. Also let G′ = (V,E′) be the bidirected graph
generated by dualizing an edge e1 in G, where E′ = E∪{e′1, ē1

′}−e1. In addition,
let f ′ be a biflow on G′ whose cost function is

wG′(f ′) =
∑

e∈E−{e1}

w(f ′, e) + |e1|f(e
′
1) + |e1|f(e

′′
1). (2.9)

Then, an optimal biflow f on G that minimizes wG(f) can be calculated in O(1)
time, provided that an optimal biflow f ′ on G′ that minimizes wG′(f ′) is given.

Proof. First, we show that for any f ′, there exists a biflow f such that

wG(f) = wG′(f ′)− |e1|n(e1) (2.10)

and let Z be a set of non-negative integers. Consider the following mapping
f : E → Z:

f(e) = f ′(e) for e 6= e1, (2.11)

f(e1) = f ′(e′1)− f ′(ē′1). (2.12)

We prove that f is a biflow on G because (2.4) and (2.5) holds. If v is not a
vertex at an end of e1, (2.5) clearly holds. If v is a vertex at an end of e1,

av,e1f(e1) = av,e1f
′(e′1)− av,e1f

′(ē′1)

= av,e′1f
′(e′1) + av,ē′1f

′(ē′1).

The first equality holds because of (2.12), and the second one holds because ē′1
has directions opposite to those of e1. Therefore, because f ′ is a biflow on G′,

∑

e∈E

av,ef(e) =
∑

e∈E′

av,ef
′(e1) = bv. (2.13)
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In addition, we prove (2.10). If f ′(e′1) ≥ n(e1) + x and f ′(ē′1) ≥ x for some
x > 0, wG′(f ′) can be decreased by subtracting x from f ′(e′1) and f ′(ē′1), which
represents a contradiction. Therefore,

f ′(e′1) = n(e1) or f
′(ē′1) = 0. (2.14)

In both cases,

|f(e1)− n(e1)| = |f ′(e′1)− f ′(ē′1)− n(e1)|

= f ′(e′1) + f ′(ē′1)− n(e1). (2.15)

From (2.8), (2.9), and (2.15), (2.10) holds. On the other hand, from definition of
e′1 and ē′1, f(e1) = f ′(e′1)− f ′(ē′1) ≥ max{l(e1), n(e1)} −max{0, n(e1)− l(e1)} ≥
l(e1). Therefore, f

′ satisfies (2.4).
Second, suppose that f on G is given. We show that there exists a biflow f ′

on G′ that satisfies (2.10). Consider a mapping f ′ : E′ → Z defined by (2.11)
and

f ′(e′1) = max{f(e1), n(e1)},

f ′(ē′1) = max{0, n(e1)− f(e1)}.

Note that f ′(e′1) ≥ max{l(e1), n(e1)} = l(e′1) and f ′(ē′1) ≤ max{0, n(e1)−l(e1)} =
u(ē′1). Therefore, f

′ satisfies (2.4).
If f(e1) ≥ n(e1), f

′(e′1) = f(e1) and f ′(ē′1) = 0. If f(e1) ≤ n(e1), f
′(e′1) =

n(e1) and f ′(ē′1) = n(e1)− f(e1). In both cases, (2.12) and (2.14) hold. Because
(2.12) holds and f is a biflow on G, (2.13) holds, and thus, f ′ is a biflow on G′.
In addition, (2.12) and (2.14) imply (2.15). Therefore, (2.10) holds.

Because f and f ′ can be calculated from each other in O(1) time so that
(2.10) holds, f that minimizes wG(f) can be calculated in O(1) time if f that
minimizes wG′(f ′) is given.

Now we prove Lemma 2.5.

Proof. Let E∗ be a subset of E, and GE∗ be the bidirected graph generated by
dualizing edges in E∗. Also, let fE∗ be an optimal biflow on GE∗ that minimizes
the following cost function:

w(fE∗) =
∑

e∈E∗∗

|e|fE∗(e) +
∑

e∈E−E∗

|e||fE∗(e)− n(e)|,

where E∗∗ is a set of edges generated by dualizing edges in E∗.
In addition, let fE∗−{e1} be an optimal biflow on the graph in which edges

in E∗ − {e1} are dualized for some e1 ∈ E∗. From Lemma 2.6, fE∗−{e1} can be
calculated from fE∗ in O(1) time. Therefore, f can be calculated from f ′ by the
algorithm in Figure 2.10 in O(|E|) time.

2.5.5 Circulation Corresponding to an Optimal Solution of ChrW

Let n(eN ) = nN and n(eT ) = nT . Also, let G̃
′ be the bidirected graph generated

from G̃ by dualizing edges in ES ∪ {eN , eT }, and f be a circulation on G̃ whose
cost is defined as follows:

wG̃(f) =
∑

e∈E∪EN

|e||f(e)− n(e)|. (2.16)

We set l(et(v)) for v ∈ VW and l(e) for e ∈ EW to 1 because these edges have to
be visited in the solution.
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1 E∗ := {e ∈ E|e is dualized}.
2 fE∗ = f ′.
3 repeat
4 Arbitrarily choose e1 ∈ E∗.
5 Calculate fE∗−{e1} from fE∗ .

6 E∗ := E∗ − {e1}
7 fE∗ := fE∗−{e1}.

8 until E∗ is empty.
9 Output fE∗ .

Figure 2.10: An algorithm that calculates an optimal biflow f on G.
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Figure 2.11: An example of a circular chromosome graph in which edges are
dualized.

Lemma 2.7. For any multi-set C of chromosomes on G, there is a circulation
f on G̃ such that

wG̃(f) = W (C). (2.17)

Conversely, for any circulation f on G̃ that minimizes wG̃(f), there is a multi-
set C of chromosomes on G that satisfies (2.17). In addition, C can be calculated
in O(

∑

e∈E∪EN
f(e)) time.

Proof. First, we show that for any multi-set C of chromosomes onG, there exists a
circulation f on G̃ that satisfies (2.17). Let End(v) be the number of chromosomes
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that begin or end with v. Consider the following f :

f(e) = m(C, e) for e ∈ E,
f(et(v)) = End(v) for v ∈ V,
f(eN ) = |C|,
f(eT ) = Tr(C).

Then, f is a circulation on G̃ because f satisfies (2.4) and (2.5). Because
|e| = 0 for e ∈ EL ∪ ER ∪ {et(v)|v ∈ V },

wG̃(f) =
∑

e∈ES

|e||f(e)− n(e)|+ |eN ||f(eN )− n(eN )|+ |eT ||f(eT )− n(eT )|

=
∑

e∈ES

|e||m(C, e)− n(e)|+ |QN ||C − nN |+ |QT ||Tr(C)− nT |

= W (C).

Therefore, f satisfies (2.17).
Conversely, let f be a circulation on G̃ that minimizes wG(f). We show how

to construct a multi-set C of chromosomes on G that satisfies (2.17).
First, we construct a set R of cycles such that m(R, e) = f(e) for any edge e

in G̃. Because of Lemma 2.4, This can be done in O(
∑

e∈E∪EN
f(e)) time.

Second, we merge cycles in R. Let E+ = {e ∈ E ∪ EN |l(e) ≥ 1 or n(e) ≥ 1}.
Note that CC(G̃, E+) has only one weakly connected component because of WCC.
This implies that all cycles that contain edges in E+ can be merged into a single
cycle. Note that any r ∈ R contains at least one edge in E+, because otherwise
r can be removed to decrease wG(f). Therefore, all cycles in R can be merged
into a single cycle r̃.

Finally, let C be a multi-set of paths generated by removal of vN , vT , and
edges in EN from r̃. Because c ∈ C is connected to edges in EN in r̃, the first
and last edge of c is in ES due to the directions of these edges. Accordingly, c is
a chromosome. Therefore, C is a multi-set of chromosomes on G.

All of these steps can be completed in O(
∑

e∈E∪EN
f(e)) time. In addition,

we observe that the following equations hold:

|C| = f(eN ),

Tr(C) = f(eT ),

m(C, e) = f(e) for e ∈ ES .

Therefore, C satisfies (2.17).

2.5.6 Polynomial-time Algorithm

Based on the discussion so far, an optimal set of chromosomes can be calculated
in O(|E|2 log |V | log |E|) by the following algorithm.

1. Construct a circular chromosome graph G̃ from G. This requires O(|V |)
time.

2. Construct a dualized circular chromosome graph G̃′ by dualizing eN , eT ,
and the edges of G̃ in ES . This requires O(|E|) time.

3. Calculate an optimal circulation f ′ on G̃′ where w(e, f ′) = |e|f ′(e) for
each edge e in G̃′ by Gabow’s algorithm [16]. By Lemma 2.1, setting
u(e) = U(4|V |+ 1)(|E|+ 1) does not affect the solution. Therefore, f ′ can
be calculated in O(|E|2 log |V | log(maxe∈E{u(e)})) = O(|E|2 log |V | log |E|)
time.
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4. Calculate an optimal circulation f on G̃ from f ′. This requires O(|E|) time
by Lemma 2.5.

5. Construct a set of chromosomes C that satisfies W (C) = wG̃(f), which
exists by Lemma 2.7. This requires O(

∑

e∈E f(e)) = O(|V ||E|) time by
Lemma 2.1.

6. Output C.

2.6 Computational Experiment

Our algorithm for ChrW was evaluated in computational experiments with two
data sets. The first data set is simulated data of which all translocations, CNVs,
adjacencies in the target genomes, and ends of chromosomes of the target genomes
are known. Therefore, we could use them so that instances of the ChrW satisfied
WCC and the inferred genomes were evaluated by comparing them with the true
target genome. The second data set is a data set of real SV data converted from
the data of the International Cancer Genome Consortium (ICGC) [13].

2.6.1 Implementation

For implementation, we require an algorithm that can calculate an optimal cir-
culation on the bidirected graph. Although Gabow’s algorithm can calculate an
optimal biflow in polynomial time, no efficient implementation is currently known.
Therefore, we used the GNU Linear Programming Kit (GLPK)1 to calculate an
optimal circulation.

The rest of the algorithm were implemented with C++ language. The pa-
rameters QN , QT were set to 1 × 107, 5 × 107, respectively. Edges e ∈ ES was
assumed to be required if n(e) > 0.

2.6.2 Experiment with Simulated Data

Simulation

To evaluate our algorithm by using SV data whose target genome is known, a set
of simulated SV data was generated as follows by using random numbers.

1. Determine three parameters n, PT and PL. The first parameter n is the
number of chromosomes to be generated. The second parameter PT affects
the number of truncations, while the third parameter PL affects the number
of translocations.

2. The reference genome of the human genome (version GRCh38) was split
into 205 segments.

3. A set of n chromosomes was generated. Each chromosome is generated as
follows.

(a) A segment generated in Step 2 was randomly chosen.

(b) A direction, which is one of toward the upstream segment and the
downstream segment, was also randomly chosen. Then, go though the
reference genome from the chosen segment.

1http://www.gnu.org/software/glpk/glpk.html
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Figure 2.12: The translocations and copy number variations in a virtual genome
generated by simulation. The outermost numbers 1, 2, . . ., 22 and symbols X,
Y are the names of chromosomes in the reference human genome GRCh38. The
positions along with chromosomes are in mega-bases. The histogram filled in
gray represents copy numbers. Each link connecting two positions on the genome
represents a translocation. For each translocation, an arrowhead is shown at an
end if the translocation connects to the downstream segment at the end. No data
were not shown for chromosomes 21 and Y because no segments in these chro-
mosomes were chonsen in our simulation which depended on random numbers.
Note that if multiple translocations share the same endpoint, an arrow head is
shown whenever at least one of the translocations connects to the downstream
segment. This figure was generated by using Circos [32].
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(c) When a segment was gone through, stop with the probability PT .
Otherwise, jump to randomly chosen segment with the probability
PL. The direction after the jump is also determined randomly.

4. From the generated chromosomes, a set of SV data was generated with data
to satisfy WCC as follows.

(a) Translocations: Each jump at Step 3c was extracted as a translocation.

(b) CNVs: The copy number of each segment was calculated by counting
the number of visits to the segment.

(c) Ends of chromosomes: Their positions in the reference genome were
collected.

(d) Required Edges: Each edge in the chromosome graph was considered
as a required edge if it corresponded to segments with copy numbers
greater than zero or to adjacencies of generated chromosomes.

In our experiment, we set n = 50, PT = 0.05, and PL = 0.2. The result of simula-
tion is shown in Figure 2.12. The generated data set consisted of 50 chromosomes,
86 translocations, 29 truncations. Segments with non-zero copy numbers spanned
2,913,132,812 bp on GRCh38 in total.

Results for Perfect Data

First, we provided our algorithm with the generated SV data as they were. Be-
cause of ambiguity in conversion of a circulation to chromosomes [56, 66], it is
impossible in general to reconstruct the generated chromosomes. However, CNVs
can be optimized because it does not have such ambiguity. Because the generated
SV data was provided as it was, our algorithm can find an optimal solution whose
copy numbers are exactly the same as that of the original simulated genome.

As shown in Figure 2.13, the inferred set of chromosomes had copy numbers
exactly the same as those generated by simulation for all 2,913,132,812 bp. For
81 translocations out of all 86 translocations, the number of usage in the inferred
genome was identical to that of the translocation in the generated data set.

Results for Data with Errors in Copy Numbers

To evaluate the robustness of our algorithm against errors in copy numbers, we
add noises to the generated SV data. We randomly chose n segments with non-
zero copy numbers in the SV data where n = 1, 2, . . . , 20, and modified each of
the copy numbers by one.

As shown in Figures 2.14 and 2.15, the number of segments with incorrectly
inferred copy numbers was almost always less than the number of segments with
noise. From this result, it was confirmed that our algorithm can correct the errors
in copy numbers.

Results for Data with False Positive Translocations

To evaluate the robustness of our algorithm against false positive translocations,
we added n randomly generated translocations from the generated SV data, where
n = 1, 2, . . . , 20. Each additional translocation was generated by randomly choos-
ing two segments with a non-zero copy number in the generated SV data and link-
ing them. The additional translocations were considered as non-required edges
in the chromosome graph.
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Figure 2.13: The translocations and copy number variations in an inferred genome
by using the perfect data without noise. Red links represent translocations used
more in the inferred genome than in the original simulated genome. All copy
numbers were consistent with the original simulated genome. In addition, most of
translocations except were used in the inferred genome exactly the same number
of time as the original simulated data. The inconsistent translocations were
inferred to be used more.

As shown in Figures 2.16 and 2.17, many of the additional translocations were
correctly ignored. This is a promising result, although it would be harder to infer
false positive translocations in real situations because additional translocations
were considered as non-required edges in the chromosome graph while those in the
original simulated genome were considered as required edges. All copy numbers
were inferred correctly. This was because an optimal solution that ignores all
additional translocations exists.

Results for Data with Missing Translocations

To evaluate the robustness of our algorithm against missing translocations, we
removed randomly chosen n translocations from the generated SV data, where
n = 1, 2, . . . , 20.

As shown in Figures 2.18, the number of segments with incorrectly inferred
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Figure 2.14: The accuracy of our algorithm against errors in copy numbers. The
number of segments with different copy numbers from the original simulated
genome is less than the number of modified copy numbers, which indicates the
ability of our method to recover correct copy numbers. The number of incor-
rectly inferred translocations increased as the number of incorrect copy numbers
increased.

copy numbers increased as n increased. In addition, the number of incorrectly
inferred translocations increased faster. This result indicates that inferring the
target genome is difficult when missing translocations exist. Figure 2.19 show an
example of the inferred genomes.

Effect of Considering the Number of Chromosomes and Truncations

To demonstrate the advantage of our method which can take into account the
number of chromosomes and truncations, we conducted two experiments. In the
first experiment, we set QN = QT = 0 to remove the first and second terms of
(2.1). In the second experiment, we set QN = 1 × 107 and QT = 2 × 107 as in
other experiments. In both experiments, we added noise to the SV data of the
original simulated genome by modifying copy numbers of 20 segments and by
adding 20 additional translocations.

As shown in Table 2.1, by taking into account the number of chromosomes
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Figure 2.15: The inferred translocations and copy number variations when copy
numbers were modified for 20 segments. The number of segments with inconsis-
tent copy numbers were less than 20, which indicates that our method recovered
modified copy numbers. However, several translocations were used more in the
inferred genome than in the original simulated genome.

and truncations with the first and second terms of the cost function (2.1), our
method successfully estimated these numbers. In addition, the number of incor-
rect copy numbers and translocations also decreased. Therefore, the effectiveness
of considering the number of chromosomes and truncations was confirmed.
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Figure 2.16: The accuracy of our algorithm against false positive translocations.
Our method correctly ignored many false positive translocations. However, be-
cause all additional translocations were converted to non-required edges in the
chromosome graph, it would be harder to infer false positive translocations in
real situations than in this experiment. The copy number was always exactly
inferred because they were not modified and no translocation was removed.

Table 2.1: The number of inferred chromosomes and truncations when the num-
ber of the first and the second terms of the cost function (2.1) were considered
or were not considered. By setting QN = 1× 107 and QT = 2× 107 to consider
the first and second terms in the cost function (2.1), our method could infer a
set of chromosomes with more accurately estimated number of chromosomes and
truncations.

QN = 1× 107,
simulation QT = 2× 107 QN = QT = 0

chromosomes 50 60 50
truncations 29 53 29
incorrect copy numbers − 20 14
incorrect translocations − 17 13
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Figure 2.17: The inferred translocations and copy number variations when 20
random translocations were added. All of the additional translocations were
correctly ignored. However, five translocations were incorrectly used more in the
inferred genome than in the original simulated genome. As in Figure 2.16, it
would be harder to infer false positive translocations in real situations than in
this experiment.
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Figure 2.18: The accuracy of our algorithm against missing translocations. Both
of incorrectly inferred copy numbers and translocations increased as the number
of missing translocations increased. This result indicates that it is difficult to
infer correct copy numbers and translocations when a lot of translocations are
missing.
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Figure 2.19: The inferred translocations and copy number variations when 20
translocations were removed. Light blue translocations were vanished in the
inferred genome than in the original simulated genome. Both of the inferred
translocations and CNVs included several errors.
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Figure 2.20: The inferred translocations and copy number variations when copy
numbers were modified for 20 segments and 20 translocations were added. Purple
translocations were false positive ones incorrectly inferred to be used. A: The
results of inference when parameters QN and QT were both set to 0. B: The
results of inference when parameters QN and QT were set to 1× 107 and 2× 107,
respectively. The results shown in B had less incorrectly inferred translocations
and CNVs than those shown in A.
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Table 2.2: SV data obtained from ICGC (release 17).

sample ID number of involved chromosomes truncation CNV

SA130868 10 34 8
SA130876 11 39 25
SA130901 13 24 19
SA130903 14 25 6
SA130905 11 15 5
SA130909 10 35 19
SA130911 18 47 21
SA130913 16 26 12
SA130915 14 17 6
SA514938 17 29 13
SA514940 13 43 6
SA514942 13 23 6
SA514946 13 22 7
SA514948 17 28 6
SA514958 12 16 2
SA514959 9 22 6
SA514961 15 54 13
SA514962 14 48 10

2.6.3 Experiment with Real SV Data

Our algorithm was also applied to real SV data. The real SV data were ob-
tained from the open repository of International Cancer Genome Consortium
(ICGC) [13] (release 17). There were 50 project of sequencing cancer genomes
conducted by various countries for various types of cancers. Among them, only
eight projects (BOCA-UK, BRCA-UK, EOPC-DE, OV-AU, PACA-AU, PAEN-
AU, PBCA-DE,PRAD-UK) provided data of both translocations and CNVs.
Each of the eight projects provided SV data of many samples, which amounted
to 653 samples in total. Among them, we chose 24 samples that satisfied the
following conditions.

• Data of both translocations and CNVs were provided.

• Segments with copy numbers did not overlap each other.

• Translocations had valid strand information.

Because the obtained data did not include positions of terminals of chromo-
somes to be inferred and highly likely adjacencies, WCC could not be satisfied.
In addition, copy numbers were provided only limited portions of the reference
genome. To apply our method to these data, we added the following data under
an assumption that the target genomes to be inferred were similar to the reference
genome unless contradicting SV data were provided.

• For each chromosome with any copy number in SV data, copy numbers of
segments without data were set to two.

• All edges in ER were considered to be required.

• All ends of chromosomes in the reference genome were also ends of some
chromosome in the target genome.
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Figure 2.21: An example of inferred genomes for the SV data obtained from
ICGC. This figure shows an inferred genome for sample SA130911. Inferred copy
numbers were equal to the given copy numbers in segments described in the
SV data, or assumed copy numbers in segments not described in the SV data.
However, only a few translocations in the SV data were used and the rest were
removed.

Due to lack of structures of chromosomes for these samples, it is difficult to
appropriately evaluate the results. However, we observed that most of transloca-
tions in SV data were removed in the inferred genomes in this experiment. Figure
2.21 and 2.22 show examples of the inferred genomes. Possible reasons of this
result include (i) the SV data contained a lot of false positive translocations, (ii)
translocations and CNVs in the SV data were inconsistent, (iii) the assumptions
above were not appropriate, and (iv) our method did not work well because of
noise or an unexpected structure of chromosomes that cannot be optimized by
the cost function (2.1). Further analysis would be required.
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Figure 2.22: Another example of inferred genomes for the SV data obtained from
ICGC. This figure shows an inferred genome for sample SA514958. For the SV
data of this sample, no translocation in the SV data was used in the inferred
genome.

37



2.7 Necessity of Restriction on the Length of Chromosomes

In ChrW, we removed restrictions on the length of chromosomes. This relaxation
is necessary to make the problem solvable in polynomial time.

Definition 2.7 (ChrW with restriction on length (ChrL)). ChrW with restriction
on length (ChrL) is the same problem as ChrW, except that the length of each
chromosome ci is bounded by a parameter λi (1 ≤ i ≤ NL), where NL is the
maximum possible number of chromosomes.

Theorem 2.3. The problem ChrL is NP-complete.

Proof. ChrL is in NP because of Lemma 2.1.
Here, we show that the well-known PARTITION problem [17] can be reduced

to ChrL. Let n be a positive integer and S = {i ∈ Z|1 ≤ i ≤ n}. Also, let s(i)
be an integer function defined for i ∈ S such that s(i) > 0, and SΣ =

∑

i∈S s(i).
The problem of finding a subset S′ ⊂ S such that

∑

i∈S′

s(i) =
∑

i∈S−S′

s(i) = SΣ/2

is called the partition problem (hereafter referred to as PARTITION) [17]. It
is well known that PARTITION is NP-complete. We reduce PARTITION to
ChrL by constructing a chromosome graph whose solution for ChrL contains two
chromosomes that correspond to two subsets of a solution of PARTITION.

Let G = (V,E) be a chromosome graph, where

V =
⋃

1≤i≤n+1

{v−i,0, v
+
i,1, v

−
i,1, v

+
i,2, v

−
i,2, v

+
i,3}

is a set of vertices, and E = ES ∪EL ∪ER be a set of edges. Here, ES consists of

ei,0 = 〈−v−i,0,+v+i,1, 1, 9SΣ〉 (1 ≤ i ≤ n),

ei,1 = 〈−v−i,1,+v+i,2, 2, s(i)〉 (1 ≤ i ≤ n),

ei,2 = 〈−v−i,2,+v+i,3, 1, SΣ − s(i)〉 (1 ≤ i ≤ n),

en+1,0 = 〈−v−n+1,0,+v+n+1,1, 2, 9SΣ/2〉,

en+1,1 = 〈−v−n+1,1,+v+n+1,2, n+ 2, 0〉,

en+1,2 = 〈−v−n+1,2,+v+n+1,3, 2, 5SΣ〉.

In addition, ER consists of

êi,1 = 〈−v+i,1,+v−i,1, 0, 0〉 (1 ≤ i ≤ n+1),

êi,2 = 〈−v+i,2,+v−i,2, 0, 0〉 (1 ≤ i ≤ n+1),

and EL consists of

eLi = 〈+v−i,1,−v+n+1,2, 0, 0〉 (1 ≤ i ≤ n),

e′Li = 〈−v+i,2,+v−n+1,1, 0, 0〉 (1 ≤ i ≤ n).

We set λi = 10SΣ for any i ≥ 1, QN = QT = 100SΣ, nN = n + 2, and nT = 0.
See Figure 2.23 for an example. In addition, we set VW to V5 ∪ V3, and EW to E
by making all edges in EL ∪ ER required so that G satisfies WCC.

We show that PARTITION for S has a solution S′ ⊂ S if, and only if,
there exists a solution C of ChrL such that W (C) = 0. First, suppose that
PARTITION has a solution S′. Let rS′ be a cycle generated by merging cycles
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Figure 2.23: An example of a chromosome graph for solving the partition problem
(PARTITION). In this example, n = 4.

en+1,1eLiei,1e
′
Li for i ∈ S′. We define rS−S′ in the same way. Consider a multi-set

C = {c1, . . . , cn+2}, where ci ∈ C is a chromosome on G such that

ci = ei,0êi,1ei,1êi,2ei,2 (1 ≤ i ≤ n),

cn+1 = en+1,0ên+1,1rS′en+1,1ên+1,2en+1,2,

cn+2 = en+1,0ên+1,1rS−S′en+1,1ên+1,2en+1,2.

Then, W (C) = 0 because |C| = n + 2, Tr(C) = 0, and m(C, e) = n(e) for
e ∈ ES . In addition, C visits all required edges. Furthermore, |ci| = 10Σ ≤ λi

for 1 ≤ i ≤ n+ 2.
Conversely, suppose that ChrL for G has an optimal solution C that satisfies

W (C) = 0. Because W (C) = 0, we obtain |C| = n+2, Tr(C) = 0, and m(C, e) =
n(e) for e ∈ E. Because

∑

e∈E |e|n(e) = 10(n + 2)SΣ, |c| = 10Σ for each c ∈ C.
Let ci be a chromosome that begins with ei,0 for 1 ≤ i ≤ n. The other two
chromosomes are denoted by cn+1 and cn+2. Then, c1 begins with e1,0ê1,1e1,1.
Suppose that c1 does not visit ê1,2e1,2. Then, there is a chromosome ci that visits
ê1,2e1,2, whose previous edge has to be e1,1 in ci. Therefore, for some paths p1
and p2,

c1 = e1,0ê1,1e1,1p1 (2.18)

ci = p2e1,1ê1,2e1,2.

Because of (2.18), |c1| = |e1,0| + |ê1,1| + |e1,1| + |p1| = 10SΣ = |e1,0| + |ê1,1| +
|e1,1|+ |ê1,2|+ |e1,2|. Therefore, |p1| = |ê1,2|+ |e1,2|. We modify C so that

c1 = e1,0ê1,1e1,1ê1,2e1,2,

ci = p2e1,1p1.
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The modified C still satisfies the required conditions. After this modification
is repeated for 2 ≤ i ≤ n until no more modifications can be applied, C satisfies
ci = ei,0êi,1ei,1êi,2ei,2 for 1 ≤ i ≤ n. Another chromosome exists that visits ei,1
for each 1 ≤ i ≤ n, which is one of cn+1 and cn+2. Let S

′ = {i|m(cn+1, ei,1) > 0}.
Then,

∑

i∈S′ s(i) = 10SΣ − (9/2 + 5)SΣ = 1/2SΣ. Therefore, S′ is a solution of
PARTITION.

2.8 Discussion

Handling Practical Situations

In addition to segments in the reference genome, our method can handle newly
inserted fragments not in the reference genome. Such a fragment is incorporated
into a chromosome graph as a new chromosome. In particular, an edge e, where
|e| is equal to the length of the fragment, is added to ES , and edges that connect
vertices in a chromosome graph to e are added to EL. If any breakpoints are
contained within the new fragment, vertices and edges are added to VM and ER,
respectively. If a breakpoint corresponds to any aberrant adjacency, edges are
also added to EL.

If a gene duplication has occurred in the target genome, it causes an increased
copy number and aberrant adjacencies flanking the gene. If it is a tandem dupli-
cation, an aberrant adjacency connecting the upstream and downstream segments
of the gene should exist. If these SVs exist in given SV data, any solution to our
problem has to take into account gene duplication.

Limitations

A mixture of many cells cannot be handled because it is difficult to correctly
estimate copy numbers. However, our method may generate meaningful results
for data obtained from multiple cells if the sum of copy numbers is correctly
estimated. In this case, the solution is a mixture of chromosomes of all cells in
the sample, although some of the chromosomes might be fused.

Note that many optimal solutions may exist depending on how an optimal cir-
culation is converted into chromosomes (Figure 2.24). Choosing the right solution
requires additional information such as the mate-pairs of long genomic fragments,
or the result of experiments involving such techniques as fluorescence in situ hy-
bridization (FISH) that indicate whether or not distant genomic segments are in
the same chromosome.

2.9 Summary

We formulated the problem of inferring chromosomes from the aberrant adja-
cencies of genomic regions, copy number variations (CNVs), and the number and
length of chromosomes. The problem, which we term as the chromosome problem
(ChrP), was proved to be NP-complete. However, if an instance of ChrP satisfies
a constraint, which we call a weakly connected constraint (WCC), and if the length
of chromosomes is ignored, the problem can be solved in O(|E|2 log |V | log |E|)
time. We also explained that ignoring upper bounds on the length of chromo-
somes is necessary because another variation of ChrP that bounds the length of
inferred chromosomes is NP-complete.

In computational experiments, our algorithm that solves ChrW could infer
CNVs and false positive translocations. However, it is difficult to cope with
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Figure 2.24: Bold digits represent an optimal circulation
on this graph. The chromosome graph in this figure has
two optimal solutions {e1,0eL1e2,1eL2e1,2, e2,0ê2,1e2,1ê2,2e2,2} and
{e1,0eL1e2,1ê2,2e2,2, e2,0ê2,1e2,1eL2e1,2}. Edges in EN ∪ ED are omitted,
and the flow on each edge in ED has been subtracted from the flow of a
corresponding edge in ES .

missing translocations. It is also necessary to analyze the behavior of our method
for real SV data.
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Chapter 3

Resolution Improvement for Detection of

Structural Variations

In this chapter, we propose a new method called ChopSticks that improves the
resolution of the positions of homozygous deletions detected mainly by methods
based on paired reads with aberrant mapping distances and/or strands. Chop-
Sticks exploits normally mapped paired reads in addition to aberrantly mapped
ones. By using this new independent information, ChopSticks improves the po-
sitions of SVs detected by other methods. We theoretically analyze the im-
provement of the resolution. In addition, we demonstrate the effectiveness of
ChopSticks in computational experiments.

Contents of this chapter are mainly from published work in [86].

3.1 Related Works and Our Contribution

Current computational methods for SV detection based on NGS search for sig-
natures that indicate SVs hidden in NGS sequences and their alignments with
the reference genome. The following are basic signatures used for SV detection
[55, 58, 79].

3.1.1 Read Pair (RP)

If paired reads have aberrant strands or distances, they are likely to be caused by
SVs [10, 25, 70]. Such pairs are called discordant pairs, and normally mapped ones
are called concordant pairs. If strands of a discordant pair are as expected, a larger
distance than expected indicates a deletion, whereas a smaller distance indicates
an insertion. There are several categories of methods that detect discordant pairs
by using mapping distances.

• Threshold-based: A pair with a mapped distance larger or smaller than
a predefined threshold is defined as a discordant pair. The threshold is
µ ± 3σ or µ ± 4σ for BreakDancer [10] and VariationHunter [25] where µ
and σ are mean and standard deviation of mapped distances, or median
fragment size ± 10 median absolute deviations for HYDRA [70].

• Distribution-based: Although the mapped distance of a single pair might
vary by tens or hundreds bases even without SVs, greater (smaller) mapped
distances of many pairs in the same region indicate deletions (insertions).
Such reads can be detected by statistical tests on the distribution of mapped
distances [10, 40]. Paired reads that support SVs detected in this way might
have mapping distances more similar to the expected distance than those
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of other methods. Nonetheless, we still call them discordant pairs in this
thesis to unify the word used to refer pairs that support SVs.

• Graph-based: Marshall et al. [54] proposed a new method CLEVER based
on the graph theory. CLEVER constructs a graph where a node repre-
sents an alignment of a read pair and the reference genome, while an edge
means that connected alignments potentially support the same allele. In
this graph, a clique corresponds to a set of pairs supporting the same allele.
CLEVER detects SVs by finding maximal cliques (max-cliques). CLEVER
has an ability to find more than one max-clique overlaping each other, each
of which supports a different allele. Therefore CLEVER can distinguish
more than one SV located at the same locus, for example, two deletions of
different sizes in a diploid genome.

3.1.2 Read Depth (RD)

If coverage changes at some position in the genome, this indicates a copy number
variation [1, 8].

3.1.3 Split Read (SR)

If an alignment of a read and the genome includes only a part of the read, this
indicates existence of a SV and a position of a breakpoint [87]. Here, a breakpoint
is the boundary between a region affected by some SV and its unaffected flanking
region.

3.1.4 Sequence Assembly (AS)

If the coverage is sufficient, assembling NGS sequences around an SV reveals the
exact sequence around the SV and the positions of breakpoints [46, 70].

3.1.5 Our Contribution

The most popular signature used to detect SVs is threshold-based RP. Methods
based on this signature can detect SVs from a small number of discordant read
pairs; therefore threshold-based RP methods can be applied to low-coverage data.
However, threshold-based RP methods localize SVs only to regions surrounded
by discordant read pairs, thus causing some ambiguity. For RD methods, the
problem of resolution is much bigger. Because RD methods involve calculation
of coverage in windows of a fixed size, its resolution cannot be finer than the
window size. Methods based on the SR signature can determine positions of
breakpoints up to base-pair-level (bp-level) resolution if there are reads covering
the breakpoints. However, such reads might not exist, in particular when coverage
is low, because of unevenness of coverage or repeat elements to which reads cannot
be aligned uniquely. Moreover, because such a split alignment is shorter than a
read itself, careful analysis is required to avoid spurious matches. If coverage is
sufficiently high, AS methods would ultimately reveal the exact positions of SVs
at bp-level resolution. Although extremely deep sequencing can be conducted
by targeted sequencing[51], it is still expensive to obtain paired reads of high
coverage over the entire genome so that assembly can be performed. In fact, a
previous study has indicated that the sensitivity of AS methods is rather low (see
the supplementary table 6B of Mills et al. [58]).

Because these signatures have their own advantages and disadvantages, it
is desirable to combine more than one method [55]. In fact, several methods
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that use more than one signature have also been proposed [23, 89]. In combined
approaches, we should integrate SV signatures that are independent of each other.
ChopSticks exploits concordant pairs, which have not been fully exploited so far,
as an additional independent signature for the purpose of improving the resolution
of the positions of detected SVs.

3.2 Strategy for Resolution Improvement

3.2.1 Expectation of Resolution

We define a discordant read as a read of a discordant pair and a concordant read
as that of a concordant pair. Among the two reads of a pair, the one mapped
upstream is called an upstream read and the other is called a downstream read in
this thesis. Let c be the depth of coverage. Assume that the positions of read
pairs are uniformly random over the genome, and that the length r of each read
is a fixed constant. Let q(c) be the probability that there is no read pair whose
upstream read begins at a given base in the genome. Suppose that there are N
read pairs uniquely mapped to a genomic sequence of length G. According to a
classical analysis [36],

q(c) =

(

1−
1

G

)N

≈ e−N/G = e−c/2r. (3.1)

Hereafter, we just write q instead of q(c) for simplicity. In threshold-based
RP approaches, the position of an upstream end of a deletion is determined by
the upstream discordant read that is the closest to the breakpoint. Let b be the
position of an upstream end of a deletion, ∆b be the distance between b and the
closest upstream discordant read, and d be the distance between paired reads.
We assume that d is a constant.

Lemma 3.1. Let E[∆b|b, c] be the expectation of ∆b given that b is detected and
the coverage is c. Then,

E[∆b|b, c] =
1− q

1− qd+1
S(q, d), (3.2)

where

S(q, d) =
d

∑

j=0

jqj =
q − (d+ 1)qd+1 + dqd+2

(1− q)2
.

Proof. Because the resolution at downstream ends of deletions can be estimated
symmetrically, we only analyze the resolution at upstream ends. Let Pb be the
probability that a breakpoint b is successfully included in a deletion call by a
threshold-based RP method. If b is detected, there exists an upstream discordant
read within d bases from b. Therefore,

Pb = 1− qd+1.

We derive the expected distance between the true ends of deletions and the
predicted ones in a manner similar to Bashir’s analysis[6]. For 0 ≤ j ≤ d, Bashir
et al. defined Aj as an event in which b is detected and an upstream read of a
discordant pair is exactly j bases upstream of b. The probability that Aj occurs
is

Pr(Aj) = (1− q)qj .
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Figure 3.1: Resolution improvement by exploiting concordant read pairs.
Schematic illustration of the key idea of our method ChopSticks. Unlike con-
ventional SV detection methods based only on discordant pairs whose mapped
distances were not close to the expectation, ChopSticks uses concordant read
pairs as well. There is a chance that there is a concordant read closer to the
boundary of the deleted region (breakpoint) than any discordant reads. Such a
concordant read localizes the predicted position of the breakpoint, and therefore
it contributes to achieving a high resolution. In this figure, b is the upstream end
of a true deletion, ∆b is the distance between the upstream end of a true deletion
and that of a deletion call by threshold-based read-pair (RP) methods. Similarly,
∆′

b is defined for our method. The expected values of ∆b and ∆′
b are given by

Equations (3.2) and (3.4), respectively.

Consequently,

E[∆b|b, c] =
1

Pb

∑

0≤j≤d

j Pr(Aj) =
1− q

1− qd+1
S(q, d). (3.3)

3.2.2 Expectation of Improved Resolution

We can obtain better resolution by using concordant reads in addition to discor-
dant reads, because there is a chance that there exists a concordant read closer
to b than any upstream discordant read (Figure 3.1). Such a read can contribute
to the localization of the position where b can exist.

Lemma 3.2. Let ∆′
b be the distance between b and the closest read in the upstream

of b, and let E[∆′
b|b, c] be the expectation of ∆′

b given that b is detected and the
coverage is c. Then,

E[∆′
b|b, c] =

1

1− qd+1

(

(1− q2)S(q2, d)− qd+1(1− q)S(q, d)
)

. (3.4)

Proof. Let A′
j be an event wherein b is detected and the closest read upstream

of b is exactly j bases apart. When A′
j occurs, there are two mutually exclusive

cases: (i) at least one of the closest reads is an upstream discordant read or (ii)
all the closest reads are concordant reads. In the latter case, we have to consider
the joint probability of the following events.

• A concordant read exists at j bases upstream of b, the probability of which
is 1− q.

• No read nearer than the closest concordant read exists, the probability of
which is q2j .
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Figure 3.2: Expected resolutions of ChopSticks and threshold-based RP methods.
The expected resolution of our method (E[∆′

b|b, c]) is shown by a thick red line,
that of threshold-based RP methods (E[∆b|b, c]) is shown by a thin solid black
line, and that of threshold-based RP methods with double coverage (E[∆b|b, 2c])
is shown by a dashed black line. The difference between E[∆′

b|b, c] and E[∆b|b, 2c]
is also shown by a dotted blue line. As the coverage goes away from zero, the
resolution obtained by our method quickly outperforms that of normal RP meth-
ods. It is also clear that the resolution of our method is very close to that of
threshold-based RP methods with double coverage. The difference approaches
zero when coverage approaches zero or infinity, as indicated by the blue dotted
line. E[∆b|b, c], E[∆′

b|b, c], and E[∆b|b, 2c] are given by Equations (3.2), (3.4),
and (3.7), respectively. In this figure, d = 200 and r = 100.

• No discordant read exists at j bases upstream of b, the probability of which
is q.

• There must exist an upstream read of discordant pairs whose alignment ends
in a region that is j + 1 to d bases upstream of b so that b is successfully
included in a deletion call, the probability of which is 1− qd−j .

Therefore,

Pr(A′
j) = (1− q)q2j + (1− q)q2jq(1− qd−j)

= (1− q2)q2j − qd+1(1− q)qj .

Consequently,

E[∆′
b|b, c] =

1

Pb

∑

0≤j≤d

j Pr(A′
j)

=
1

1− qd+1

(

(1− q2)S(q2, d)− qd+1(1− q)S(q, d)
)

. (3.5)

As shown in Figure 3.2, the expected resolution of our method is significantly
superior to that of threshold-based RP methods, which only use discordant pairs.
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The achieved resolution is quite close to that of threshold-based RP methods but
with double coverage, which we confirmed theoretically.

Theorem 3.1. The expectation E[∆′
b|b, c] is a weighted sum of E[∆b|b, 2c] and

E[∆b|b, c]. To be more precise, the following equation holds:

E[∆′
b|b, c] = (1 + qd+1)E[∆b|b, 2c]− qd+1E[∆b|b, c]. (3.6)

Proof. From Equation (3.1), E[∆b|b, 2c] can be obtained by replacing q with q2

in Equation (3.2):

E[∆b|b, 2c] =
1− q2

1− q2(d+1)
S(q2, d). (3.7)

From Equations (3.2), (3.4), and (3.7), Equation (3.6) can be obtained.

When c → 0, E[∆b|b, 2c] and E[∆b|b, c] approach d/2, which is the ex-
pected resolution when a deletion is detected with only one read pair. Therefore
E[∆′

b|b, c] also approaches d/2 when c → 0. On the other hand, when c approaches
infinity, E[∆′

b|b, 2c] approaches E[∆b|b, 2c] because qd+1 → 0. In summary,

Theorem 3.2. E[∆′
b|b, c] is asymptotically equal to E[∆b|b, 2c] when c → 0 or

c → ∞.

Proof. First, we consider a case where c → 0. Because q → 1 by Equation (3.1),

S(q, d) →
d

∑

j=0

j =
d(d+ 1)

2
.

Besides,
1− q

1− qd+1
=

1

1 + q + q2 + · · ·+ qd
→

1

d+ 1
.

Therefore, all of E[∆′
b|b, c], E[∆b|b, 2c], and E[∆b|b, c] approach d/2 by Equation

(3.6). On the other hand, when c → ∞, qd+1 approaches 0. In consequence,
the right hand side of Equation (3.6) approaches E[∆b|b, 2c] when c → 0 or
c → ∞.

3.2.3 Trimming of Deletion Calls to Improve Resolution

If all regions existing in the reference genome were covered by at least one read
and there were absolutely no reads mapped to regions of homozygous deletions,
the resolution of deletion calls could be quite easily improved by just trimming
the ends of deletion calls that are covered by alignments of reads. Obviously,
such a simple assumption does not hold in practical situations. First, coverage
might be zero even in regions that actually exist in the genome, because no reads
are obtained therein owing to the unevenness of the coverage or because reads
cannot be uniquely mapped owing to repeat elements. Second, there might exist
erroneous alignments in deleted regions because of incidental sequence similarity.
Therefore, we developed the algorithm ChopSticks to carefully trim the ends of
deletion calls (Figure 3.3). ChopSticks recognizes high-coverage regions close to
the ends of deletion calls even if they are fragmented, and it repeatedly excludes
the high-coverage regions from deletion calls. ChopSticks uses two parameters,
k and f . The k parameter is a threshold used to distinguish high-coverage re-
gions from low-coverage ones, and f determines the threshold of joint coverage
of regions excluded from a deletion call.
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Figure 3.3: Overview of trimming algorithm of ChopSticks. Schematic illustra-
tion of the trimming algorithm of ChopSticks. ChopSticks trims ends of deletion
calls that are not likely to be parts of deletions, according to their coverage. First,
it trims high-coverage regions at the ends of deletion calls. Here, a high-coverage
region is a region whose coverage is greater than a given parameter k. Second, it
recognizes a high-coverage region separated by a low-coverage region and trims
these regions if their joint coverage is deeper than kf , where f is another param-
eter. The second step is repeatedly conducted until the joint coverage becomes
less than kf .

ChopSticks repeatedly recognizes a high-coverage region in a deletion call that
is likely a continuation of a high-coverage region outside the deletion. We show
in Figure 3.4 the trimming algorithm executed by ChopSticks for upstream ends.
Here is a brief description of the algorithm:

Line 2: Skip a high-coverage region at the end of the deletion call.

Lines 6–9: Go through a low-coverage region.

Lines 10–13: Go through a high-coverage region.

Line 14: If the joint coverage is low, exit the loop.

Line 17: Trim regions which the algorithm has gone through.

Trimming of the downstream ends is conducted symmetrically.
Our implementation of ChopSticks is available on the Internet1.

1https://github.com/toyasuda/ChopSticks
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1 x := 0
2 while(x < L and c[x] ≥ k) { x := x+ 1 }
3 y := x
4 while(x < L) {
5 s := 0
6 while(c[x] < k and x < L){
7 s := s+ c[x]
8 x := x+ 1
9 }

10 while(c[x] ≥ k and x < L){
11 s := s+ c[x]
12 x := x+ 1
13 }
14 if(s/(x− y) < kf) goto Line 17
15 y := x
16 }
17 Trim the first y bases of the deletion call

Figure 3.4: Pseudo code of trimming algorithm. Pseudocode of the trimming
algorithm of ChopSticks. Here, L is the length of the deletion call being processed,
k is a threshold used to discriminate high-coverage regions from low-coverage
ones, and f is a parameter that determines the threshold of the coverage of
regions to be trimmed. The variable x represents the position of the base being
examined, and the variable y represents the length of a region to be trimmed.
The value c[x] is the coverage at the x-th base in the deletion call, while s keeps
the sum of c[x] values.

3.3 Computational Experiment

ChopSticks is especially valuable when target SVs are expected to be homozygous
as those of inbred mice2 whose genomes are homozygous at virtually all loci.

To evaluate the power of ChopSticks in improving the resolution of deletion
calls, we conducted computational experiments. Let the upstream difference of
a deletion call be x− y, where x is the position of the upstream end of the true
deletion and y be that of the deletion call. Similarly, let the downstream difference
of a deletion call be y′−x′, where x′ is the position of the downstream end of the
true deletion and y′ is that of the deletion call. By definition, the closer to zero
a difference is, the better. A positive difference value indicates that the called
breakpoint is outside the true deletion, whereas a negative value indicates that
it is inside the true deletion.

3.3.1 Data for Computational Experiments

To evaluate ChopSticks, the results of ChopSticks have to be compared with the
positions of true deletions. Therefore we need NGS reads of a genome whose SVs
against the reference genome are known up to bp-level resolution. We evaluated
ChopSticks using the following two data sets.

Simulated NGS Reads

We artificially introduced deletions and insertions into the mm9 reference genome
and then generated simulated NGS reads using the modified genome. To obtain

2http://jaxmice.jax.org/type/inbred/index.html
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Figure 3.5: Distribution of deletion lengths in our simulation.

data as realistic as possible, we built a simulated genome sequence using SV
annotations generated by Quinlan et al. [70], which are available from the dbVar
database under accession no. nstd19. First, we deleted regions annotated as
deletions in nstd19 from the mm9 reference genome sequence of chromosome
1. We show the distribution of lengths of deletions in Figure 3.5. Second,
we inserted fragments consisting of randomly chosen bases so that the number
and the distribution of lengths of inserted fragments were the same as those of
deletions, assuming that the genome to be analyzed and the reference genome
are affected symmetrically by deletions and insertions. Third, we introduced
random single nucleotide substitutions with a probability of 1.0 × 10−4 at each
base. Finally, we generated paired reads from the modified genome sequence so
that the read length was 100 bp and the average and the standard deviation of
distances of paired reads were 200 bp and 50 bp, respectively. We generated four
sets of simulated NGS reads whose depth of coverage were 2, 5, 10, 15, and 20,
respectively.

Real Illumina Reads of DBA/2J

We generated our own bp-level deletion calls by using publicly available Sanger
reads of the DBA/2J strain. From the NCBI trace archive, we retrieved all
7,998,826 Sanger reads of whole-genome shotgun sequencing for the DBA/2J
strain. We mapped these Sanger reads to chromosome 1 of mm9 by using
MegaBLAST [90], and we searched for Sanger reads that were split into two
parts and aligned uniquely on the same strand and in the right order. There
were 763 reads that indicated deletions whose lengths were at least 50 bp. By
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Figure 3.6: Distribution of deletion lengths detected with Sanger reads.

merging redundant ones, we obtained 525 deletion calls. We show the distribution
of lengths of these deletions in Figure 3.6. Among these, 83 deletions overlapped
with single BreakDancer deletion calls, each of which in turn overlapped with our
deletion calls. We evaluated ChopSticks by using these 83 deletion calls. Our
deletion calls based on Sanger reads are in the dbVar database under accession
no. nstd70. NGS sequences of the DBA/2J strain generated by Quinlan et al.
are available in the SRA database [72] under accession no. SRA010027.

3.3.2 Mapping to the Genome

We mapped paired reads to the mm9 reference genome sequences of Mus mus-
culus using BWA version 0.5.9[45] with default parameters. The target genome
sequences involved in our experiment included all chromosomes of mm9 except
chromosome Y, assuming cases where a female mouse was analyzed [59, 70].

Simulated NGS Sequences

To focus on uniquely mapped reads for BreakDancer, MoDIL, CLEVER, and
ChopSticks, we removed paired reads if the mapping quality (MAPQ) score was
zero for at least one of the two reads of a pair. For CNVnator and Pindel, we
used the result of BWA without filtering. We show the total length of reads and
the number of aligned reads in Table 3.1.
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Table 3.1: On the third row, we only counted read pairs whose reads were both
mapped uniquely.

Number of reads
Depth of coverage Total number of bases all mapped

2 394,391,200 3,943,912 3,677,398
5 985,978,000 9,859,780 9,194,942
10 1,971,956,000 19,719,560 18,391,288
15 2,957,934,000 29,579,340 27,587,970
20 3,943,912,000 39,439,120 36,783,348

Table 3.2: Summarized statistics of NGS reads of the DBA/2J strain [70] and
their alignments to mm9.

Total number of bases 13,050,980,662
Number of reads 330,462,408
Reads of uniquely mapped pairs 149,021,716
Reads of uniquely mapped pairs (chromosome 1) 10,316,525

Real DBA/2J Sequences

We split the data set of NGS reads into 275 parts, and we mapped each of them
with an independent BWA process and merged the results. Then we removed
reads whose MAPQ score was zero for at least one of the two reads of a pair. We
show the total length of reads and the number of aligned reads in Table 3.2.

3.3.3 Simulated Reads

In the first experiment, we evaluated ChopSticks with simulated NGS reads for
which all SVs were known up to bp-level resolution. SV analysis was conducted
by using SV detection tools from each of categories described at the beginning
of this chapter: BreakDancer[10] of threshold-based RP methods, MoDIL[40]
of distribution-based RP methods, CLEVER[54] of graph-based RP methods,
CNVnator[1] of RD methods, and Pindel[87] of SR methods. After that, we
applied ChopSticks to their results.

Before applying ChopSticks, we examined the ability of SV detection tools to
detect 460 deletions in chromosome 1 of the simulated mouse genome. We say
that a deletion call is correct if it overlaps exactly one true deletion while the
true deletion in turn overlaps exactly one deletion call. We show the number of
called and correct SV calls in Table 3.3. We also show their recall (the number of
correct deletion calls divided by the number of true deletions) and precision (the
number of correct deletion calls divided by the number of all deletion calls) in
Figure 3.7. The recall of BreakDancer and CLEVERwas relatively good for all
of tried coverage values, whereas the recall of Pindel was satisfactory only when
coverage was high. The recall of MoDIL was low for all coverage values tried.
Although almost all deletions called by these methods were correct, CNVnator
generated numerous false positives (Table 3.3). Because ChopSticks is developed
to correct breakpoints outside true deletions, we counted the number of deletion
calls that cover the whole of true deletions. As shown in Figure 3.9, most of
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Figure 3.7: Recall and precision of results of SV detection tools. BreakDancer and
CLEVER achieved relatively good recall for all coverage, while recall of MoDIL
was low. Although recall of CNVnator was not bad, its precision was low. The
recall of an SR method Pindel was good when coverage was high, but it was
insufficient when coverage was low.

the deletion calls by MoDIL, CNVnator, and Pindel covered the whole of true
deletions. However, a significant portion of BreakDancer and CLEVER results
did not cover the whole of true deletions. Note that ChopSticks is harmless to
these deletion calls because ChopSticks does not trim them when there are no
alignments in true deletions.

Next, we applied ChopSticks to the results of SV detection tools. After that,
we examined how well the resolution of deletion calls was improved. We tested
ChopSticks for k = 1, 2, . . . , 5 and f = 0.1, 0.2, . . . , 1.0. We evaluated differences
at both the upstream and downstream ends of deletions and found that the results
were similar. Therefore we only present the results at upstream ends.

Resolution Improvements for BreakDancer Deletion Calls

As shown in Figure 3.10, the resolution of deletion calls was clearly improved by
using ChopSticks. The original BreakDancer results was successfully corrected,
which is also clear in Figure 3.11. When coverage was low, the resolution was well
improved for small k values. When coverage was high, the resolution was also
improved for large k values. Therefore, when the coverage is high, we recommend
using large k values to ignore erroneous alignments. As shown in Figure 3.12,
ChopSticks worked well regardless of deletions length.
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Figure 3.8: CLEVER results improved by ChopSticks. Box-and-whisker plots of
upstream differences of deletion calls obtained by CLEVER and those improved
by ChopSticks. The differences were successfully corrected. Note that a signifi-
cant portion of breakpoints predicted by CLEVER were inside the true deletion.
Nonetheless, ChopSticks selectively trimmed predicted breakpoints outside true
deletions, and left those inside untouched.

Resolution Improvements for MoDIL Deletion Calls

As shown in Figure 3.13, the resolution of deletion calls was also improved by
using ChopSticks. We omitted evaluation of MoDIL for coverage=20 because
MoDIL was very slow. (See Section 3.2).

Resolution Improvements for CLEVER Deletion Calls

The resolution of deletion calls was also improved by using ChopSticks. As men-
tioned above, deletion calls of CLEVER do not always cover the whole of true
deletions. Nonetheless, as shown in Figure 3.8 and 3.14, ChopSticks success-
fully improved resolution of CLEVER results by selectively correcting predicted
breakpoints outside true deletions.

Resolution Improvements for CNVnator Deletion Calls

Because RD methods call SVs by examining coverages in windows of a fixed
size, the positions of breakpoints predicted by the RD methods have unavoidable
ambiguity and they might be either inside or outside true deletions. Because
ChopSticks assumes that predicted breakpoints are outside true deletions, we
applied ChopSticks after we expanded deletion calls of CNVnator at both ends
by the window size. As shown in Figure 3.15, the results of CNVnator were
successfully improved. This result indicates that ChopSticks is also available for
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Figure 3.9: Number of deletion calls covering the whole of true deletions. Solid
lines and circles show the number of all deletion calls generated by each tool,
whereas dashed lines and ’+’ symbol show the number of deletion calls covering
the whole of true deletions. Most of deletion called of MoDIL, CNVnator (ex-
panded by the window size), and Pindel covered the whole of true deletions. Many
CLEVER results did not always contain the whole of true deletions, while median
of the distribution of predicted breakpoints was close to the true breakpoints as
shown in Figure 3.8. BreakDancer results for high coverage data did not always
contained true deletions either. Predicted breakpoints of BreakDancer approach
true breakpoints as the depth of coverage increases, and sometimes intruded into
true deletions when coverage was high.

RD methods in addition to RP methods.

Results of ChopSticks applied to Pindel deletion calls

Owing to the SR signature that allows Pindel to detect SVs at bp-level resolution,
the positions of breakpoints obtained with Pindel were quite accurate. When
ChopSticks was applied to the results of Pindel, the results became slightly worse
than the original Pindel results, as shown in Figure 3.16, although differences
remained close to zero in most cases. Note that the recall of Pindel was not
satisfactory when coverage is low, as shown in Figure 3.7. ChopSticks is useful
in cases where deletions missed by Pindel are analyzed.

3.3.4 Real Illumina Reads of DBA/2J

In the second experiment, we evaluated ChopSticks using the real NGS sequences
of Quinlan et al. [70]. The sample was taken from a female mouse of the DBA/2J
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Table 3.3: The values to the left of ”/” are the numbers of correct deletion calls,
where a correct deletion call is the one that overlaps with exactly one true deletion,
which, in turn, only overlaps with the deletion call; the values to the right of
”/” are the numbers of all deletion calls. BreakDancer and CLEVER results
were good in both sensitivity and specificity. CNVnator generated numerous
false positives, while Pindel suffered from low coverage. MoDIL missed lots of
deletions.

Depth of coverage
SV caller 2 5 10 15 20

BreakDancer 259/260 426/427 453/456 455/458 455/458
MoDIL 1/1 27/27 96/96 129/130 –/–

CLEVER 398/462 449/525 454/491 454/478 454/466
CNVnator 326/1,258 354/952 422/1,127 447/1,211 451/1,258
Pindel 85/85 317/317 436/438 450/454 456/456

strain, whose genome contains SVs against the reference genome of the C57BL/6J
strain [59]. The read sequences were available from the NCBI Sequence Read
Archive (SRA) database [72]. The accession number of the read sequences is
SRA010027. To evaluate the results of ChopSticks, we need bp-level SV annota-
tions of DBA/2J as well. Therefore we generated deletion calls at bp-level resolu-
tion using Sanger reads in a manner similar to that of Quinlan et al. See Methods
for details. Our deletion calls will soon be available at the dbVar database under
accession no. nstd70.

We tried the five SV detection tools used in the previous experiment, and
found that MoDIL, CNVnator and Pindel missed the most of deletions detected
with Sanger reads. These methods seemed to suffer from the low depth of cov-
erage and short read lengths. Therefore, we hereafter only describe results of
ChopSticks applied to BreakDancer and CLEVER results.

Resolution Improvements for BreakDancer Deletion Calls

Figure 3.17 shows the differences between BreakDancer results and those im-
proved by using ChopSticks. As the previous experiment where simulated NGS
reads were used, the differences obtained with real NGS reads were reduced. The
median and differences less than the median clearly shifted toward zero, which
is also clear in Figure 3.18. Although ChopSticks trimmed some deletion calls
into those based on Sanger reads when k = 1 or k = 2 and f was small, this
problem quickly disappeared as k or f became larger. No correlation between
deletion lengths and the performance of ChopSticks were observed (r2 = 0.021).
Although we generated 525 deletion calls by using Sanger reads, only 83 of them
were found by BreakDancer. There were at least two reasons for this difference.
First, it is difficult to find small deletions because read pairs spanning small dele-
tions might not be recognized as discordant pairs. Second, a lot of deletion calls
based on Sanger reads had fewer than two NGS-read pairs spanning them. Such
deletion calls would be missed because BreakDancer deletion calls must be sup-
ported by at least two pairs when the default parameters are used, in order to
reduce false positives. For this data set, 82 of all 83 deletion calls generated by
BreakDancer contained deletions predicted with Sanger reads.
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Figure 3.10: BreakDancer results improved by ChopSticks. Box-and-whisker
plots of upstream differences of deletion calls obtained by BreakDancer and those
improved by ChopSticks. The red, green, blue, light blue, and magenta boxes
correspond to k values of 1, 2, 3, 4, and 5, respectively, and the rightmost yel-
low box corresponds to the original results of BreakDancer. Among boxes of the
same color, from left to right, f = 0.1, 0.2, . . ., 1.0. Brown horizontal dashed lines
indicate the values of 25%, 50%, and 75% tiles of differences of original deletion
calls from below to above, respectively. The results in this figure indicate that
ChopSticks clearly improved the resolution of the original BreakDancer results.
When the coverage was low, small k values were effective in improving the res-
olution. When coverage was high, the resolution was also improved for large k
values. Therefore, when the coverage is high, we recommend using large k values
to avoid erroneous alignments of NGS reads and the genome. We omitted the
results for coverage=15 because they were similar to those for coverage=20.

Resolution Improvements for CLEVER Deletion Calls

CLEVER detected much more (347) deletions than BreakDancer. The results of
CLEVER were also improved by ChopSticks as shown in Figure 3.19, where the
peak around zero became stronger. However, it was difficult for ChopSticks to
correct positions of breakpoints when they were away from those predicted with
Sanger reads by hundreds of bases.

3.3.5 Parameters for SV Detection Methods and Evaluation of Their
Results

We executed BreakDancer with default parameters, and Pindel with an expected
template size of 432 bp because the median fragment size was 432 bp according
to Quinlan et al. [70]. For CNVnator, we tested three window sizes: 50 bp, 100
bp, and 200 bp. Because the recall of window size 50 bp outperformed those of
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Figure 3.11: Distribution of differences of BreakDancer results and those im-
proved by ChopSticks. The distribution of differences of ChopSticks results con-
centrated around zero, whereas that of BreakDancer results had long tail in 0–50
bp. Here, k = 2, f = 0.5, and coverage=5. Each frequency corresponds to the
number of differences in bins of 2 bp.

window sizes 100 bp and 200 bp for our simulated data when coverage was 2,
we used results of window size 50 bp for evaluation. Because CLEVER tends to
generate deletion calls duplicatedly with slightly different positions, we chose the
best one for those overlapping with true deletions in order to estimate the upper
limit of the accuracy of CLEVER. We divided the chromosome 1 of mm9 into 5.1
Mbp fragments where franking fragments share 0.1Mbp and applied MoDIL to
each fragments, because MoDIL was quite slow as reported previously [54]. We
omitted evaluation of MoDIL for coverage=20. To compare the positions of true
and predicted deletions, BEDTools [71] were used.

3.4 Summary

We have presented a new method called ChopSticks to improve the resolution of
predicted positions of deletions. The key idea is to exploit both concordant read
pairs and discordant ones. According to our theoretical analysis, the resolution
of our method is quite similar to that of threshold-based RP methods but with
double coverage. In an experiment on simulated NGS reads, ChopSticks clearly
improved the results of BreakDancer, MoDIL, CLEVER, and CNVnator. Al-
though the resolution of Pindel results is quite high, ChopSticks works well even
for low-coverage data where recall of Pindel is not sufficient. The effectiveness
of ChopSticks was also confirmed by performing an experiment on real Illumina
reads. Despite a number of methods proposed for detecting SVs [55, 58, 79],
there is no one-stop method that simultaneously achieves high sensitivity, high
specificity, high resolution, and robustness for low-coverage data. Therefore a
combination of SV detection methods is required, and ChopSticks can play an
important role because it uses new independent information ignored in other
methods.
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Figure 3.12: Scatter plot of deletion lengths and differences of deletion calls. No
correlation between deletion lengths and differences of differences of ChopSticks
was observed (r2 = 0.056). ChopSticks worked well regardless of deletion lengths.
Here, k = 2, f = 0.5, and coverage=5.
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Figure 3.13: MoDIL results improved by ChopSticks. Box-and-whisker plots of
upstream differences of deletion calls obtained by MoDIL and those improved by
ChopSticks. The format of this plot is exactly the same as that in Figure 3.10,
except that results for coverage=15 were shown instead of those for coverage=20.
The results in this figure indicate that ChopSticks can also improve the resolution
of MoDIL results.
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Figure 3.14: Distribution of differences of CLEVER results and those improved
by ChopSticks. The distribution of differences of BreakDancer results had long
tail in 0–50 bp, whereas that improved by ChopSticks concentrates around zero.
Here, k = 2, f = 0.5, and coverage=5. Each frequency corresponds to the number
of displacements in bins of 2 bp.
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Figure 3.15: CNVnator results improved by ChopSticks. Box-and-whisker plots
of upstream differences of deletion calls obtained by CNVnator and those im-
proved by ChopSticks. The format of this plot is exactly the same as that in
Figure 3.10. We expanded the original deletion calls of CNVnator outward by
the window size (50 bp) because ChopSticks assumes that predicted breakpoints
are outside true deletions. The results in this figure indicate that ChopSticks can
improve the resolution of CNVnator results if predicted positions of breakpoints
are within a few hundreds of bases from true breakpoints.
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Figure 3.16: Pindel results improved by ChopSticks. Box-and-whisker plots of
upstream differences of deletion calls obtained by Pindel and those modified by
ChopSticks. The format of this plot is exactly the same as in Figure 3.10. The
results in this figure indicate that ChopSticks should not be applied to the Pindel
results because the resolution of the Pindel results is already quite high.
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Figure 3.17: BreakDancer results for DBA/2J reads improved by ChopSticks.
Box-and-whisker plots of upstream and downstream differences of deletion calls
obtained by BreakDancer and those improved by ChopSticks. The results in this
figure indicate that ChopSticks can improve the resolution of deletion calls for
real sequences. Although ChopSticks trimmed upstream ends of deletion calls too
much when k = 1 or k = 2 and f was small, such problems quickly disappeared
for greater k and f values.
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Figure 3.18: Distribution of differences of BreakDancer results and those im-
proved by ChopSticks. The distribution of differences of BreakDancer results
had long tail in 0–400 bp, whereas that improved by ChopSticks concentrates
around zero and frequencies in the long tail were reduced. Here, k = 2, f = 0.5.
Each frequency corresponds to the number of differences in bins of 20 bp.
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Figure 3.19: Distribution of differences of CLEVER results and those improved by
ChopSticks. ChopSticks corrected some of breakpoints predicted by CLEVER so
that the peak at zero became stronger. However, the distribution of differences of
CLEVER results had long tail in 0–3000 bp and it was difficult for ChopSticks to
correct such large differences. Here, k = 2, f = 0.5. Each frequency corresponds
to the number of differences in bins of 20 bp.
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Chapter 4

Genome Mapping by a Many-core Processor

For sequence analysis based on NGS, it is necessary to compare NGS sequences
and the reference genome, detect positions on the genome where each NGS se-
quence is derived from, and find the differences between NGS sequences and the
reference genome. This process, called mapping, is indispensable for various anal-
ysis. For example, detection of single nucleotide polymorphisms (SNPs) or struc-
tural variations (SVs) needs a mapping step [79]. Because an enormous amount
of NGS sequences need to be analyzed, fast mapping methods are required.

In addition to acceleration of mapping by fast software tools [44, 24], ac-
celeration by hardware has a great impact. As predicted by Moore’s Law, the
performance of computers has been steadily increasing. However, improving the
performance of a single processing core has become quite difficult these days.
Computing performance has therefore recently been improved mainly by increas-
ing the number of processing cores. For high-performance computing (HPC),
using GPUs (graphics processing units) is attracting attention and has achieved
great success. Such an approach, called general-purpose computing on GPUs (or
GPGPU for short), has also been applied to sequence alignment [31, 47, 52].
However, a lot of complex optimization techniques are required to maximize the
performance of GPGPU. Rewriting software programs for GPGPU is therefore a
hard task.

In 2012, Intel Corp. released a coprocessor called Xeon Phi, which contains
60 processing cores and can execute 240 threads simultaneously. Each core has
an x86-architecture-based design, which is widely used in PCs and servers. This
design is a unique advantage of Xeon Phi, because the same programming model
for widely used x86 processors can be applied for Xeon Phi. In addition, Xeon Phi
has high peak performance. It has computing performance of 1 TFLOPS with
a single board. The fastest supercomputer at Top500 in June 20131, Tianhe-2
of China, contains 48,000 Xeon Phi’s and offered 33.86 PFLOPS. Moreover, a
research that aims to apply Xeon Phi to sequence alignment has recently been
reported [34].

To accelerate mapping of NGS sequences, we ported two famous mapping
tools, Burrows-Wheeler Aligner (BWA) [43] and Bowtie2 [38], to Xeon Phi. The
aim of porting is to obtain exactly the same mapping results of BWA and Bowtie2
on Xeon Phi as on x86 processors within a much shorter time. As shown below,
it was experimentally confirmed that the performances of the ported BWA and
Bowtie2 went up drastically when the number of threads increased. Although
their peak performances had to be improved, this study is the first step towards
the acceleration of mapping by using Xeon Phi.

Contents of this chapter are mainly from published work in [84].

1http://www.top500.org/lists/2013/06/
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Table 4.1: Major incompatibilities of vector operations supported by Xeon Phi
and x86

difference Xeon Phi x86(SSE2)

vector number of registers 32 8
register bit width of elements 32 bits 16 or 8 bits

number of elements 16 8 or 16
alignment of memory 32-byte aligned 16-byte aligned
address (vectors containing

16-bit integers),
16-byte aligned
(vectors containing
8-bit integers)

saturation operations No Yes
result of comparison mask register vector register

4.1 Incompatibilities between Xeon Phi and x86

BWA and Bowtie2 both use Farrar’s algorithm [15] to reduce processing times.
This algorithm accelerates a well-known dynamic programming (DP) algorithm
for sequence alignment [75, 21], which calculates the optimal alignment of two
sequences. Farrar’s algorithm exploits vector operations of x86 processors, called
Streaming SIMD Extension 2 (SSE2). A single instruction of SSE2 can conduct
one of arithmetic operations, comparison operations, logical operations, etc. for
vectors containing multiple integers. Because Farrar’s algorithm is used, the
source codes of BWA and Bowtie2 include tens or hundreds of SSE2 operations.
Although Xeon Phi also supports vector operations, they are not compatible with
those of x86. The differences between vector operations of Xeon Phi and x86 are
summarized in Table 4.1. To port BWA and Bowtie2 to Xeon Phi, all vector
operations of x86 must be converted to those of Xeon Phi.

Moreover, the sort function of the C++ standard template library (STL),
used by Bowtie2, has an incompatibility between Xeon Phi and x86 (Figure 4.1).
This incompatibility must also be eliminated to obtain exactly the same mapping
results.

4.2 Resolving Incompatibilities

The incompatibilities between x86 and Xeon Phi were overcome as explained in
the following. To implement vector operations, compiler intrinsics were used in
the ported programs as in the original BWA and Bowtie2.

4.2.1 Incompatibilities of Vector Registers

Bit Width of Vector Elements The bit width of vector elements is 32 bits
on Xeon Phi, which is wider than the bit width on x86 (8 or 16 bits). Because any
8-bit or 16-bit integer can be represented by a 32-bit integer, 32-bit operations
were used instead of 8-bit or 16-bit operations.

However, a result of calculation by a 32-bit operation differs from that by an
8-bit or 16-bit operation when overflow occurs. This difference was resolved by
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sort result
of x86

sort result
of Xeon Phi

Figure 4.1: An example of inconsistent results obtained by the sort function in
STL. In this example, a set of integer pairs were sorted. Each pair consisted of a
coordinate on the genome and a score. Many pairs had the same scores (−4 or
−5). Because only scores were considered during the sort, the orders of the pairs
with the same score were different. For example, the 12-th pair in the x86 result
appeared as the 5-th result in the Xeon Phi result (red pairs). The 5-th pair in
the x86 result and the 12-th pair in the Xeon Phi result do not appear in another
(blue and green pairs). This difference caused different outputs of Bowtie2 on
Xeon Phi and on x86.

00 00 12 34

32 bits

16 bits

1234 12

8 bits

00 00 00 12

32 bits
32 bits ó 16 bits 32 bits ó 8 bits

down-
conversion

up-
conversion

down-
conversion

up-
conversion

vector
element
in a vector
register
of Xeon Phi

vector
element
stored in
memory

Figure 4.2: Up-conversion and down-conversion supported by Xeon Phi. Both
types of conversion change the bit width of each element to fit it to the new
vector. If the new bit width is too small to store the element, the element is
replaced by the maximum or the minimum value that can be represented by the
new bit width.
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Figure 4.3: Memory access of a vector containing eight 16-bit integers or sixteen
8-bit integers. Because the memory address of such a vector has to be 32-byte
aligned on Xeon Phi, a vector containing eight 16-bit integers is copied from or
to a 16-byte aligned address by using a buffer that is 32-byte aligned.

emulating saturation operations as described later.

Alignment of Memory Addresses Xeon Phi can store a vector contain-
ing 32-bit integers in a vector on memory containing 8-bit integers or 16-bit
integers by reducing the bit width of each element. This mechanism is called
down-conversion (Figure 4.2). The memory address for a vector containing 8-bit
integers must be 16-byte aligned, while the address for vectors containing 16-bit
integers must be 32-byte aligned. Similarly, up-conversion converts a vector con-
taining 8-bit or 16-bit integers on memory into a vector containing 32-bit integers
in a vector register. The address of an up-converted vector on memory has to be
aligned in the same manner as that of a down-converted one.

In the original source codes of BWA or Bowtie2, a memory address for a
vector containing 16-bit integers may not be 32-byte aligned. This is not allowed
in Xeon Phi codes. To resolve this problem, the following method (Figure 4.3)
was adopted for minimizing the codes to be modified, because memory addresses
of vectors are 16-byte aligned in the original source codes. Suppose that a vector
containing eight 32-bit integers that emulates a vector containing eight 16-bit
integers is to be stored. First, a buffer with enough size is prepared. Second, the
vector containing 32-bit integers is stored in this buffer as a vector containing
16-bit integers by down-conversion. Third, the stored vector is loaded as a vector
containing sixteen 8-bit integers. Finally, the loaded vector is stored in the final
destination as a vector containing sixteen 8-bit integers that is an exact copy of
the vector stored in the buffer. Loading a vector was similarly implemented.

Bits Shared by 16-bit and 8-bit Elements A vector register of x86 is 128-
bit wide and can be used as either a vector containing eight 16-bit integers or a
vector containing sixteen 8-bit integers (Figure 4.4A). Both vectors share all bits
in a 128-bit vector register. Therefore, two 8-bit elements c1 and c2 in Figure
4.4A, for example, are stored in the same bits as a 16-bit element b1. To obtain
higher performance by exploiting this fact, Bowtie2 uses a programming practice

68



a
16

a
15

a
9

a
8

a
1

b
8

b
1

c
16

c
15

c
9

c
8

c
1

32 bits

16 bits

b
8

b
7

b
6

b
5

b
4

b
3

b
2

b
1

c
16
c
15
c
14
c
13
c
12
c
11
c
10
c
9
c
8
c
7
c
6
c
5
c
4
c
3
c
2
c
1

B: vector register of Xeon Phi

A: vector register of x86
128 bits

512 bits

Figure 4.4: Structures of vector registers of Xeon Phi and x86. A: In the vector
register of x86, a 16-bit element bi (1 ≤ i ≤ 8) shares the same bits with 8-bit
elements c2i−1 and c2i. B: In the vector register of Xeon Phi, a 32-bit element in
a vector, ai (1 ≤ i ≤ 16), is used to emulate both of 16-bit elements bi and 8-bit
elements ci in this study.

that sets two flanking 8-bit elements to the same integer k at once by setting
one 16-bit element to an integer 256k + k. In our modified program ported to
Xeon Phi, however, vectors containing 16-bit integers and those containing 8-bit
integers share bits differently (Figure 4.4B). Accordingly, such a programming
practice of Bowtie2 was removed.

4.2.2 Emulation of Saturation Operations

Saturation operations are variations of arithmetic operations. When positive
overflow occurs, the result of a saturation operation is replaced with the maximum
integer represented by the same bit width. Similarly, when negative overflow
occurs, the result of a saturation operation is replaced with the minimum integer.
Because Xeon Phi does not support saturation operations, they were emulated
in the following ways.

Max Operations and Min Operations A max operation generates a new
vector whose elements are larger elements of those at the same positions in two in-
put vectors. A min operation similarly generates a new vector containing smaller
elements. Because saturation operations forcedly replace results of arithmetic
operations with the maximum or the minimum integer represented by the same
bit width when overflow occurs, a max operation or a min operation was in-
serted just after arithmetic operations to emulate this replacement. In the case
of vectors containing signed 16-bit integers, for example, the modified operation
is explained with the following mathematical expressions. Let a and b be input
vectors, c be an output vector, and xi be the i-th element in a vector x, where x is
one of a, b, and c. By using these notations, the modified operation for addition
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Figure 4.5: Schematic illustration of saturation operations and emulation using
max and min operations. The result of a saturation operation of n bits is replaced
with the largest integer that can be represented by n bits if the result of the
operation is larger than the largest integer. Similarly, the result of a saturation
operation of n bits is replaced with the smallest integer that can be represented
by n bits if the result of the operation is smaller than the smallest integer. We
emulated this operation by using max and min operations of Xeon Phi.

is represented by the following expression:

ci := min{215 − 1, ai + bi}.

Here, it is assumed that bi ≥ 0 for all i. Similarly, for subtraction,

ci := max{−215, ai − bi}.

See Figure 4.5 for a schematic illustration.

Down-conversion Down-conversion replaces any 32-bit element in a vector
register with the maximum or the minimum integer represented by the bit width
of the vector stored, if the element cannot be represented by the bit width. The
rule of replacement is the same as that of saturation operations. Therefore, down-
conversion was used to emulate a saturation operation if the result of a saturation
operation was immediately stored in the memory.

4.2.3 Comparison Operations

Both Xeon Phi and x86 support comparison operations, which compare each
element of two vectors one by one. In x86, the results of a comparison oper-
ation is stored in a vector, whose element is set to −1 if a specified condition
is satisfied and to 0 otherwise. For example, the equality of elements in two
vectors (1, 2, 3, 4, 5, 6, 7, 8) and (1, 2, 3, 4, 4, 3, 2, 1) is represented by a new vec-
tor (−1,−1,−1,−1, 0, 0, 0, 0). Xeon Phi, on the contrary, stores the results of a
comparison operation in a special register, called a mask register (Figure 4.6). A
mask register is 16-bit wide. Each bit in the register corresponds to a comparison
result of each pair of corresponding elements in two compared vectors. Because
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of vectors if equality of two vectors is tested.

of this difference, all operations that depend on the comparison results had to be
rewritten.

Interestingly, the most of comparison operations in the original Bowtie2 codes
compare identical vectors and determine their equality, resulting in a vector whose
elements are all −1. In other words, comparison operations are used for the
purpose of filling vectors with −1. Such comparison operations were replaced
with a macro mm512 set1 epi32, which sets all elements in a vector to a given
integer (Figure 4.7).
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4.2.4 Other Incompatible Vector Operations

In spite of the above-described rewriting, there were extra x86 instructions not
implemented in Xeon Phi. These instructions were rewritten as follows.

Filling a Vector with a Given Integer Instruction mm insert epi16 sets
a single specified element in a vector to a given integer. On the other hand,
instruction mm shufflelo epi16 swaps four rightmost elements in a vector con-
taining eight 16-bit integers. They are not implemented in Xeon Phi and cannot
be easily replaced even with multiple instructions. However, these two instruc-
tions were always used together for the purpose of setting all elements in a vector
to a given single integer. Therefore, they were replaced with a single macro
mm512 set1 epi32 that conducts the desired operation.

Shifting Vector Elements to the Left When applied to a vector a, instruc-
tion mm slli si128 modifies each element in a as follows:

ak :=

{

ak−i if k − i ≥ 1,
0 otherwise,

(4.1)

where i and k are non-negative integers such that 1 ≤ i, k ≤ 16. When i = 1, for
example, a vector (a16, a15, a14, . . . , a2, a1) becomes (a15, a14, a13, . . . , a1, 0).

Because i is always one in the source code of BWA and Bowtie2, the instruc-
tion was emulated with the following two steps. First, all elements except the
rightmost one are appropriately set by instruction mm512 permutevar epi32 ,
which sets each element in a vector to any element in the same vector. In this
step, a vector (a16, a15, a14, . . . , a2, a1) is modified to be (a15, a14, a13, . . . , a1, a1).
Second, the rightmost element is set to zero by copying the rightmost element in
a vector whose elements are all zeros. A mask register was used to implement
this copy operation.

Shifting Vector Elements to the Right Similarly, mm srli si128 modifies
each element in a as follows:

ak :=

{

ak+i if k + i ≤ n,
0 otherwise,

(4.2)

where n is the number of elements in a. Unlike mm slli si128, mm srli si128

is also used when i 6= 1 in the source codes of BWA and Bowtie2. However,
mm srli si128 is used only in the following two cases.

1. Setting all elements except the rightmost one to zero:

To emulate the operation in this case, the rightmost element was copied to
a vector whose elements are all zeros by using a mask register.

2. Choosing the largest element in a vector:

A single macro mm512 reduce max epi32 of Xeon Phi, which conducts the
desired operation by itself, was used.

4.2.5 Sort Function of STL Library

The sort function and other functions called by the sort function were extracted
from the source code of STL. The extracted functions were then integrated into
the source code of Bowtie2. This integration produced exactly the same mapping
results on Xeon Phi as on x86.
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Table 4.2: Processing times for ERR246054. Bowtie2 did not work with 480
threads. All times are in seconds.

no. of processing time ratio
threads Bowtie2 BWA Bowtie2 BWA

1 8261 9723 1.0 1.0
4 2060 2516 4.0 3.9
8 1038 1295 8.0 7.5
16 534 688 15.5 14.1
30 312 395 26.5 24.6
60 220 231 37.6 42.1
120 860 207 9.6 47.0
240 2401 268 3.4 36.3
480 N/A 280 N/A 34.7

4.3 Results of Evaluation

The ported BWA and Bowtie2 programs were evaluated on a Linux server with
Xeon Phi 5110P (60 cores, 1.053 GHz, 8 GB RAM). NGS sequence data used
for evaluation were those of a Japanese person (ERR246054) sequenced in the
1000 Genomes Project [79]. They consisted of 1,809,507 pairs of NGS sequences
whose length was 100 bases each. Processing times of BWA and Bowtie2 for
1, 4, 8, 16, 30, 60, 120, 240, and 480 threads were measured. Whenever the
executed process finished normally, the mapping results were exactly the same
as the results obtained by the original BWA and Bowtie2 on x86 processors.

To obtain mapping results, BWAmust be invoked two times with aln subcom-
mand, and once with sampe subcommand. Because aln subcommand is much
more time consuming than sampe subcommand, we focused on the processing
time of aln subcommand and evaluated its processing time as that of BWA.

The processing times of mapping ERR246054 sequences onto chromosome 1 by
the ported BWA and Bowtie2 are shown in Figures 4.8 and 4.9 and listed in Table
4.2. The performances went up almost proportionally to the number of threads
(up to 30 threads), and peaked when 60 or 120 threads were used. However,
using more than 120 threads deteriorated the performance. One possible reason
is that the amount of communications between cores and the memory exceeded
the capacity of the internal ring bus of Xeon Phi when 120 or more threads were
used. It can thus be concluded that while Xeon Phi has 60 cores that can execute
four threads each, the number of threads executed by each core should be one or
two to get the best performance on Xeon Phi for BWA and Bowtie2.

Meanwhile, a quad-core x86 CPU, Core i7 920 2.67GHz, did the same task by
using eight threads in 145 and 190 seconds for Bowtie2 and BWA, respectively.
Accordingly, this study is only the first step towards acceleration of genome
mapping by using Xeon Phi.

4.4 Discussion and Summary

Two well-known mapping tools, BWA and Bowtie2, were ported to a many-core
processor Xeon Phi. Primary obstacles in porting BWA and Bowtie2 were incom-
patibilities of vector operations used in these programs. These incompatibilities
were circumvented by emulating vector operations of x86 processors with those
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Figure 4.8: Processing times for ERR246054.

of Xeon Phi. In a computational experiment, it was confirmed that the more
threads were used up to 60 threads, the higher the performances of ported pro-
grams were. The peak performances for BWA and Bowtie2 were observed when
120 and 60 threads are used, respectively. These results imply that using tens of
threads on the many-core processor Xeon Phi is very much promising for acceler-
ating mapping. In addition, the ported programs successfully generated exactly
the same mapping results as the original BWA and Bowtie2.

In the future, the performances of BWA and Bowtie2 on Xeon Phi are ex-
pected to be further improved by three ways. First, fully exploiting computation
power of Xeon Phi; for example, using all 32 vector registers at once (Figure
4.10). In this study, only vector operations of x86 that has eight 128-bit vector
registers were emulated. Second, using Xeon Phi with x86 processors in a coordi-
nated manner. This enables x86 processors and Xeon Phi to execute steps that fit
their respective architectures. Because the latest x86 processors are faster than
Xeon Phi for single-threaded processes, steps that cannot be concurrently exe-
cuted should be done on x86 processors. Third, improving the rewritten code; for
example, removing max operations and min operations when results of mapping
are not affected by removal.

74



0 100 200 300 400

0
10

20
30

40

number of threads

ra
tio

 o
f i

m
pr

ov
em

en
t

Bowtie2
BWA(aln)

Figure 4.9: Performance improvement for ERR246054.
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study.
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The hardware of Xeon Phi will also be updated. The current release of Xeon
Phi, codenamed Knights Corner, is only the first product of a lineup of many-core
processors. It adopts a ring bus that becomes a bottleneck when a large amount
of data is moved between cores and the memory. As new designs come out, the
architecture of Xeon Phi will evolve to provide low-latency and high-bandwidth
communications between cores and the memory.
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Chapter 5

Mutual Comparison of Strings

Let T be a set of hidden strings and S be a set of their concatenations. We con-
sider the problem of inferring T from S when only S is given. Solving this problem
is useful for the analysis of rearrangements of assembled genomes. Because new
sequencing technologies[3, 14] will enable us to determine long sequences con-
sisting of thousands of bases at once, de novo assembly would be much easier in
the future. Our problem can be applied to compare assembled genomes and to
elucidate their common and different regions. Another motivation is the analysis
of cDNA sequences. A gene might have more than one cDNA sequence by in-
serting or deleting alternative segments. This phenomenon is prevalent in many
organisms [53]. Usually, alternatively spliced sequences are detected by aligning
them with the reference genome [37]. Nonetheless, methods that require as input
only cDNA sequences would be useful because not all organisms have had their
genomic sequences determined.

To clarify the problem, we show a small example.

Example 5.1. Suppose that we are given S = {S0, S1, S2}, where

S0 = ACGGTCTAGAATAGCAGGCTCGTCCTATGGCATTTT,
S1 = CATCTGGTAGCAGGCTCGTCCTATCCAAGTAAAGGAC,
S2 = CATCTGGTAAGTGGGCCGTCCTAT.

These are concatenations of strings in a set T = {Ti|0 ≤ i < 8}, where

T0 = ACGGTCTAGAAT, T1 = AGCAGGCTC,
T2 = GTCCTAT, T3 = GGCATTTT,
T4 = CATCTGGT, T5 = CCAAGT,
T6 = AAAGGAC, T7 = AAGTGGGCC.

In fact, S0, S1 and S2 can be rewritten as:

S0 = T0T1T2T3, S1 = T4T1T2T5T6, S2 = T4T7T2.

We aim to infer T from S.

We propose a fast and scalable algorithm for inferring T from S. Our approach
is based not on optimization but on finding common substrings and splitting
them. Our contributions are summarized as follows. First, we formally define a
class of strings called disjoint common substrings (DCS’s) that can be determined
only from S and a positive integer parameter. Each of DCS’s corresponds to a
string in T or a concatenation of strings in T that always occur adjacent in the
same order in S. Second, we propose an algorithm that identifies all DCS’s by
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all-to-all comparison of strings in S. This algorithm can be completed in O(L)
time regardless of |S|, where L is the sum of the lengths of all strings in S. These
contributions enable us to efficiently decompose multiple strings into non-trivial,
non-overlapping substrings.

Contents of this chapter are mainly from published work in [83]1.

5.1 Related Works

5.1.1 Elementariness

If we formulate the problem as an optimization problem, it is difficult to give
an efficient algorithm to obtain a solution. Let |S| and |T | respectively be the
cardinalities of S and T . Néraud [65] considered the problem of determining, for
a given set S of strings and an integer k, whether there exists a set T of strings
such that S ⊆ T ∗ and |T | ≤ k. Néraud proved that this problem is NP-complete
even when k = |S| − 1; that is, it is NP-complete to determine the existence of
T that is smaller than S.

5.1.2 Maximum Common Substring Problem

Lopresti and Tomkins [48] studied the problem of comparing two strings by ex-
tracting a multi-set of substrings and placing them into correspondence. They
proved that, when substrings in the multi-set do not overlap each other in given
strings whereas they cover the whole of the given strings, finding the smallest
such multi-set is NP-complete. This problem is called the minimum common
substring problem (MCSP) [20]. It was also proved that a restricted variant of
MCSP called k-MCSP, where each symbol in the given strings occurs at most k
times in each given string, is NP-hard for k ≥ 2 [20]. Thus, several approximation
algorithms have been proposed for MCSP [11, 12, 20]. In addition, Lopresti and
Tomkins [48] proposed polynomial time algorithms for cases where the constraints
on multi-sets of substrings were relaxed. However, these algorithms compare only
two strings. Any extension for more than two strings would be computationally
much harder. taking into account that obtaining the optimal multiple sequence
alignment (MSA) is NP-hard [4, 81] whereas the optimal alignment of two strings
can be obtained in polynomial time [64, 76]. However, a method scalable to |S|
is preferable for reducing computation time and and even for accuracy, since
the more strings we compare, the more chance we have to find strings in T by
exploiting differences among strings in S.

5.1.3 Multiple Sequence Alignment

For practical uses, a lot of MSA programs have been available [7]. Unfortunately,
their purpose is not to decompose given strings into substrings of which given
strings are concatenations, but to obtain alignments by finding similar regions.

5.2 Preliminaries

Let N be the cardinality of S, and L be the sum of the lengths of all strings
in S. We denote by Σ a finite alphabet of which strings in S consist, by Σ∗

1The copyright of the material in this chapter is retained by the Information Processing
Society of Japan (IPSJ). This material is published on this web site with the agreement of the
author and the IPSJ. All Rights Reserved, Copyright (C) Information Processing Society of
Japan.
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Figure 5.1: MCS(S, l) for Example 5.1. Here, l = 6. Strings m1, m2, m3, S0,
S1, and S2 are MCS’s. They are all maximal, that is, they lose some of their
occurrences if they are extended to either the left or right.

the set of possibly empty strings, and by Σ+ the set of non-empty strings. For
a string s ∈ Σ∗, the length of s is denoted by |s|. When s = s1s2s3 for some
s1, s2, s3 ∈ Σ∗, they are respectively called a prefix, a substring, and a suffix of s.
Each of them is proper if it is not identical to s. When s is a substring of Si ∈ S
beginning at the j-th position of Si, we say that s occurs at (i, j) or that (i, j)
is an occurrence of s. Let Occ(s) be the set of all occurrences of s ∈ Σ+. For an
integer k, we define Occ(s) + k = {(i, j + k)|(i, j) ∈ Occ(s)}. An empty set is
denoted by ∅.

Let STree(S) be a generalized suffix tree [22] of all strings in S. Each string
in S is appended a distinct termination symbol at its right end [22]. A path-label
of a node v in STree(S) is the concatenation of edge labels from the root to v.
We denote by p(v) the string obtained by removing any termination symbol from
the path-label of v. Let L(i, j) be the leaf of STree(S) that represents the j-th
suffix of Si ∈ S.

We capture common substrings in S as maximal common substrings defined
below.

Definition 5.1 (MCS). A string m ∈ Σ+ is a maximal common substring (MCS)
for S and l, if m is a substring of some Si ∈ S and has the following properties:

(M1) |m| ≥ l.

(M2) Occ(m) 6= Occ(ms) for any s ∈ Σ+.

(M3) Occ(m) 6= Occ(sm) + |s| for any s ∈ Σ+.

Let MCS(S, l) be the set of all MCS’s for S and l.

We show MCS(S, l) for Example 5.1 in Figure 5.1. MCS’s are a natural
extension of maximal repeats [22]. MCS’s can exist in an arbitrary number of
given strings, and can be identified in O(L) time in the same way to identify
maximal repeats. MCS’s were also known to as core blocks [42]. However, to
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Figure 5.2: The boundary set B(S, l) for Example 5.1. Each circle at the j-th
position of Si indicates that (i, j) ∈ B(S, l).

emphasize that MCS’s are common substrings in S and to simplify the exposition,
we use this name and definition. We also use the following class of substrings.

Definition 5.2. RightMCS(S, l) is a set of non-empty strings, each of which is
a substring of some Si ∈ S and satisfies (M1) and (M2).

RightMCS(S, l) is a natural extension of strings considered in the DNA con-
tamination problem[22]. All strings in RightMCS(S, l) can be found in O(L)
time as p(v) of nodes v in STree(S) such that |p(v)| ≥ l [22]. Note that any r ∈
RightMCS(S, l) is a suffix of some MCS. In fact, there exists some m ∈ MCS(S, l)
such that Occ(m) + |m| = Occ(r) + |r| for any r ∈ RightMCS(S, l).

5.3 Definition of DCS’s

In Figure 5.1, m1(=CGTCCTAT) is an MCS shared by all of S0, S1, and S2 of
Example 5.1, while m2(=TAGCAGGCT CGTCCTAT) is shared by only S0 and S1.
This suggests that there is a string in T shared by all of S0, S1, and S2, and on
its left, there is another shared by only S0 and S1. To infer both of them, we
should split m2 at a boundary of m1. We generalize this inference.

Definition 5.3 (Boundary set). The boundary set for S and l, denoted by
B(S, l), is defined as follows:

B(S, l) = BL(S, l) ∪ BR(S, l),

where
BL(S, l) =

⋃

m∈MCS(S,l)

Occ(m),

BR(S, l) =
⋃

m∈MCS(S,l)

(Occ(m) + |m|).

In Figure 5.2, we show B(S, l) for Example 5.1. By using boundary sets,
we infer strings in T as substrings of given strings that do not cross over any
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Figure 5.3: DCS(S, l) for Example 5.1. DCS’s, indicated by hatched areas, do
not cross over any boundaries of MCS’s. All of T0, . . . , T7 except T5 and T6 are
captured almost as a whole. However, There are unavoidable ambiguities at their
boundaries.

boundaries of MCS’s. It is these substrings that are identified by our method to
infer strings in T .

Definition 5.4 (DCS). A string e ∈ Σ+ is a disjoint common substring (DCS)
for S and l, if e is a substring of some Si ∈ S and has the following properties:

(D1) |e| ≥ l.

(D2) For any (i, j) ∈ Occ(e) and any integer k such that 1 ≤ k < |e|, (i, j + k) 6∈
B(S, l).

(D3) B(S, l) ∩ (Occ(e) + |e|) 6= ∅.

(D4) B(S, l) ∩Occ(e) 6= ∅.

Let DCS(S, l) be the set of all DCS’s for S and l.

Intuitively, (D2) means that e does not contain any boundaries of MCS’s in
its middle. In addition, (D3) and (D4) mean that e is maximal among those that
satisfy (D2). In Figure 5.3, we show DCS(S, l) for Example 5.1.

The choice of the parameter l is important. Suppose that a random string
of length L is generated by concatenating symbols independently chosen from
Σ with the same probability. Then, the expected number of identical pairs of
substrings of length l is no more than E = L2/(2|Σ|l). To avoid matches only
by chance, it is recommended to set l so that E is sufficiently small. Since our
algorithm that identifies DCS(S, l) runs fast as shown later and since l is the only
parameter, it is easy to determine the value of l by try and error. The value
of l can also be easily determined by try and error, because our algorithm that
identifies DCS(S, l) runs fast as shown later and because l is the only parameter
of our algorithm.
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Note that inference of T cannot be perfect as long as we are given only S.
Some ambiguities are unavoidable. In particular, it is impossible to determine
boundaries of strings in T in general. In addition, strings in T that always occur
adjacent in the same order in S would be fused.

5.4 Algorithm That Identifies DCS’s

Since a DCS is not always a path-label or p(v) of a node v in STree(S), STree(S)
cannot be directly used to identify DCS(S, l). We We introduce a class of strings
that bridge DCS(S, l) and STree(S).

Definition 5.5. Let H(S, l) be a set of strings such that any h ∈ H(S, l) has the
following properties:

(H1) h ∈ RightMCS(S, l).

(H2) For any proper prefix s of h, s 6∈ RightMCS(S, l).

(H3) B(S, l) ∩Occ(h) 6= ∅.

Then, the following lemma hold.

Lemma 5.1. Any e ∈ DCS(S, l) is a prefix of some h ∈ H(S, l) such that
Occ(e) = Occ(h).

Proof. Let s ∈ Σ∗ be the longest such that Occ(e) = Occ(es). We prove that
es ∈ H(S, l), claiming that es satisfies (H1)–(H3).

(H1) Since |es| ≥ |e| ≥ l, es satisfies (M1). Because s is the longest such that
Occ(e) = Occ(es), es satisfies (M2). Therefore es ∈ RightMCS(S, l), and
thus es satisfies (H1).

(H2) The proof is by contradiction. Suppose that some r ∈ RightMCS(S, l) is
a proper prefix of es. If |e| ≤ |r|, e is a prefix of r. Then, Occ(e) ⊇
Occ(r) ⊇ Occ(es). Since r satisfies (M2), Occ(r) 6= Occ(es). This implies
Occ(e) 6= Occ(es), which contradicts the definition of s. Therefore |r| < |e|,
implying that r is a proper prefix of e. Since Occ(r) ⊇ Occ(e), for some
(i, j) ∈ Occ(e), (i, j+|r|) ∈ Occ(r)+|r|. BecauseOcc(r)+|r| = Occ(m)+|m|
for some m ∈ MCS(S, l), (i, j + |r|) ∈ B(S, l). Therefore e does not satisfy
(D2), which contradicts the definition of e. Consequently, such r cannot
exist. Hence es satisfies (H2).

(H3) Since e satisfies (D4), B(S, l) ∩ Occ(es) = B(S, l) ∩ Occ(e) 6= ∅. Thus es
satisfies (H3).

The string es is h claimed in the lemma.

By Lemma 5.1, the definition of DCS(S, l) can be transformed as follows.

Lemma 5.2. For a non-empty substring e of some Si ∈ S, e ∈ DCS(S, l) if and
only if e satisfies (D1)–(D3) and the following condition:

(D5) For some h ∈ H(S, l), e is a prefix of h.

In other words, (D4) can be replaced with (D5).
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Proof. By Lemma 5.1, any e ∈ DCS(S, l) satisfies (D5). For the converse, let e
be a non-empty substring of some Si ∈ S that satisfies (D1)–(D3) and (D5). By
the condition (D5), e is a prefix of some h ∈ H(S, l). Then, Occ(e) ⊇ Occ(h).
Since h satisfies (H3), Occ(e) ∩ B(S, l) ⊇ Occ(h) ∩ B(S, l) 6= ∅. Accordingly, e
satisfies (D4) and therefore e ∈ DCS(S, l).

By Lemma 5.2, we can identify DCS(S, l) by the following algorithm.

Algorithm: GET-DCS(S, l)

Step 1: Construct STree(S).
Step 2: Identify RightMCS(S, l) and MCS(S, l).
Step 3: Identify B(S, l).
Step 4: Identify H(S, l).
Step 5: Identify DCS(S, l).

Steps 1 and 2 can be completed in O(L) time [22].

Step 3: Identify B(S, l)

Clearly, BL(S, l) can be identified by a depth-first traversal on STree(S). Let
us focus on BR(S, l). After initializing a set B to ∅, a depth-first traversal on
STree(S) is conducted. For any L(i, j) encountered, we add (i, j+ l) to B if there
is a node v such that p(v) ∈ RightMCS(S, l) and |p(v)| = l on the path from the
root to L(i, j). When this process is completed, B = BR(S, l).

We show that this method correctly identifies BR(S, l). If (i, j) is added to B,
(i, j) ∈ Occ(r)+ |r| for some r ∈ RightMCS(S, l). Since some m ∈ MCS(S, l) ex-
ists such that Occ(r)+|r| = Occ(m)+|m|, (i, j) ∈ BR(S, l). For the converse, sup-
pose that (i, j) ∈ BR(S, l). Then, (i, j− l) ∈ Occ(r) for some r ∈ RightMCS(S, l)
such that |r| = l.

Lemma 5.3. Let r be a suffix of some m ∈ MCS(S, l) such that |r| = l. Then,
r ∈ RightMCS(S, l).

Proof. Since |r| = l, r satisfies (M1). We prove that r satisfies (M2). By contra-
diction, suppose that Occ(r) = Occ(rs) for a string s ∈ Σ+. Since r is a suffix of
m wherever m occurs, Occ(m) = Occ(ms). Therefore m does not satisfy (M2),
which contradicts the assumption that m ∈ MCS(S, l). Accordingly s cannot
exist, hence r satisfies (M2). Consequently, r ∈ RightMCS(S, l).

Step 4: Identify H(S, l)

We identify H(S, l) by discarding any p(v) from RightMCS(S, l) if p(v) does not
satisfy any one of (H2) or (H3), where v is a node in STree(S).

Step 5: Identify DCS(S, l)

By Lemma 5.2, DCS(S, l) can be obtained by searching for substrings that satisfy
(D1)–(D3) and (D5). To avoid exhaustive search, we use variables λ(h) for each
h ∈ H(S, l), and a table of pointers.

Definition 5.6 (Pointer table). P [i, j] (0 ≤ i < N, 0 ≤ j < |Si|) is a pointer
such that:

• P [i, j] → λ(h) if (i, j) ∈ Occ(h) for some h ∈ H(S, l), where P [i, j] → λ(h)
means P [i, j] points to λ(h),
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Algorithm: PREFIX-DCS(S, l)
for i := 0 to N − 1 begin
x := 1, j := |Si| − 1
repeat

if P [i, j] → λ(h) then λ(h) := min{x, λ(h)}
x := x+ 1
if (i, j) ∈ B(S, l) then x := 1
j := j − 1

until j < 0
end

Figure 5.4: The algorithm PREFIX-DCS(S, l) executed in Step 5 of GET-
DCS(S, l). Each Si ∈ S is scanned from right to left by decreasing j one by
one. When min{x, λ(h)} is evaluated in the inner-most loop, x is the length
of the longest string s that occurs at (i, j) and satisfies (i, j + k) 6∈ B(S, l) for
1 ≤ k < |s|.

ACGGTCTAGAA GGCATTTT

CATCTGG

m1
m2

m3

S2

S1

S0

maximal common substring

AGCAGGCT

A

AGCAGGCT

T

T

T

CCAAGT AAAGGAC

AGTGGGC GTCCTAT

GTCCTAT

GTCCTAT

C

C

C

CATCTGG

element of 
boundary set

λ(GGCATTTT)

λ(CCAA...GGAC)

λ(CGTCCTAT)

λ(GCAG...CTAT)
λ(ACGG...TTTT)

λ(TAGC...CTAT)

λ(CATCTGGTA)

λ(AGTG...CTAT)

12345678123456781234567891234567891011

123456789101112131234567812345671234567 12

123456781234567123456789

x=

x=

x=

(MCS)

Figure 5.5: Behavior of the algorithm PREFIX-DCS(S, l) for strings of Example
5.1. Digits below S0, S1 and S2 indicate the values of x when min{x, λ(h)} is
evaluated. Hatched areas indicate positions where P [i, j] is not a null pointer.

• P [i, j] is a null pointer otherwise.

We conduct the following procedures.

1. Each P [i, j] is initialized to a null pointer.

2. To set up the pointer table, conduct a depth-first traversal on STree(S).
For each L(i, j), P [i, j] is set so that P [i, j] → λ(p(v)) if there is a node v
such that p(v) ∈ H(S, l) on the path from the root to L(i, j).

3. For each h ∈ H(S, l), λ(h) is initialized to |h|.

4. The algorithm PREFIX-DCS(S, l) in Figure 5.4 is applied. For any h ∈
H(S, l), PREFIX-DCS(S, l) sets variables λ(h) to the lengths of prefixes of
h that satisfy (D2) and (D3). We show the behavior of PREFIX-DCS(S, l)
for strings of Example 5.1 in Figure 5.5.
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Table 5.1: Summary statistics of DCS’s and T1.

DCS’s T1
number of strings 96,955 97,217
average length (bases) 142.3 144.9
average occurrences 3.71 3.70

When PREFIX-DCS(S, l) is completed, for each h ∈ H(S, l), the prefix of h
whose length is λ(h) is a DCS if λ(h) ≥ l. All Steps 1–5 can be completed in
O(L) time. Therefore, we have the following result.

Theorem 5.1. There is an algorithm that identifies DCS(S, l) in O(L) time,
where L is the sum of the lengths of all strings in S.

5.5 Computational Experiments

We evaluated GET-DCS(S, l) by computational experiments. We say that e ∈
DCS(S, l) is consistent with a string t ∈ T if and only if |Occ(e)| = |Occ(t)|
and the overlap of e and t occupies at least 90% of both e and t wherever e or
t occurs. Let nOK be the number of strings in DCS(S, l) consistent with some
t ∈ T . Below recall means nOK/|T |, while precision means nOK/|DCS(S, l)|. We
used a Linux server with Opteron(tm) 252 processors.

Although the primary target of this thesis is the analysis of SVs, it is difficult
to apply GET-DCS(S, l) for long genome sequences because it consumes a large
amount of memory because it uses suffix trees and it cannot tolerate sequencing
errors and small variations. Therefore, we evaluated GET-DCS(S, l) by using
simulated or real cDNA sequences.

5.5.1 Randomly Generated Strings

First, we tested GET-DCS(S, l) against randomly generated strings. Let T1 be
a set of 97,217 random strings consisting of A, T, G, and C, whose lengths were 50–
240 bases and 145 bases on average. We applied GET-DCS(S, l) to 40,000 strings,
each of which was a concatenation of nine strings of T1. These parameters were
determined to simulate the scale of coding sequences of Homo sapiens estimated
with draft genomic sequences [37]. However, we used small T0 to see the ability of
GET-DCS(S, l) to detect strings in T0 when they have enough chances to occur
with different strings in T0. The lengths of strings in S were 1,305 bases on
average, and the lengths of the 40,000 strings were 5.218 × 107 bases in total.
We set l to 30. As shown in Table 5.1, the summary statistics of DCS(S, l) and
T1 were very close. As shown in Table 5.2, the result was quite accurate. We
examined DCS’s that were not consistent with any strings in T1. There were 258
groups of strings in T1 that always occurred adjacent in S in the same order. In
addition, there were DCS’s shortened to less than 90% of corresponding strings
in T1.

To demonstrate the scalability of our implementation of GET-DCS(S, l), we
measured the increase in computation time while the number of given strings was
increased. As shown in Figure 5.6, the computation time increased only linearly.
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Table 5.2: Consistency of DCS’s against T1.

nOK recall precision

96,198 0.9895 0.9922
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Figure 5.6: Increase in computation time to identify DCS(S, l) while the number
of given strings was increased.

5.5.2 Transcriptome of Homo sapiens

Next, we tested our method against all cDNA sequences of Homo sapiens in the
RefSeq database [69] of release 28. Although sequence differences were reconciled
to finished genomic sequences in this database [69], they still contain plenty of
complex features of real cDNA sequences. We removed consecutive A’s at the end
of each sequence to exclude poly(A) tails. There were 25,199 sequences, whose
lengths were 3,050 bases on average and 7.686 × 107 bases in total. We set l to
30. It took 826 seconds for GET-DCS(S, l) to identify DCS(S, l) from S. For
23,777 sequences out of the 25,199 sequences, positions of exons and alternative
ends of exons were available2. Let T2 be a set of strings obtained by splitting
the 23,777 sequences at alternatively spliced positions. After merging substrings
corresponding to exons which always occurred adjacent together in S, a set of
the substrings, denoted by T2, was used for evaluation of DCS’s in the 23,777
sequences. In this experiment, alternative ends of exons were treated in the same
way as independent exons.

As shown in Table 5.3, DCS’s in the 23,777 sequences were much shorter
than strings in T2 on average, while the number of DCS’s was much larger than
|T2|. As shown in row (A) of Table 5.4, the result was not satisfactory. Major
causes of problems are sequence variations such as SNPs, repeated elements,

2http://www.ncbi.nlm.nih.gov/mapview/

86



Table 5.3: Summary statistics of DCS’s and T2.

DCS’s T2
number of strings 51,811 29,833
average length (bases) 1,004 1,813
average occurrences 1.70 1.57

Table 5.4: Consistency of DCS’s against T2.

nOK recall precision

(A) 21,803 0.7308 0.4208
(B) 23,798 0.7977 0.6278

and family genes sharing long identical regions irrelevant to alternative splicing.
To partly circumvent these problems, we merged DCS’s that always occurred
adjacent in the same order and removed DCS’s that occurred at least twice in a
sequence Then, we obtained an improved result shown in row (B) of Table 5.4.
One direction to overcome the third problem is to combine information of more
than one DCS. When two sequences in S share a DCS, investigating whether
they share other DCS’s is a way to discriminate DCS’s irrelevant to alternative
splicing. Another way to screen out erroneous DCS’s is to examine whether the
order of DCS’s is preserved in more than one sequence in S.

5.5.3 Comparison with MSA Program POA

We compared the accuracy of our method with that of an MSA program POA [39].
Although we tried several MSA programs, all except POA suffered from weak
similarities between irrelevant substrings. As a test data set, we picked up 21
cDNA sequences of the cAMP-responsive element modulator (CREM) gene from
the data set of the previous experiment. Their lengths were 41,535 bases in total.
We set the mismatch parameter of POA to a huge negative value (−106). For
GET-DCS(S, l), we set l to 20.

As shown in Table 5.5, results of our method and that of POA were quite
consistent with to exons of the gene, although exons 7 and 8′ were fused since
they always occurred together. Both methods wrongly dropped 10 bases at 5’-
end of exons 14′ and 14′′ due to their identical 10-base prefixes. POA added the
10 bases to the 3’-ends of exons 13 and 14′, while our method excluded these 10
bases from any DCS since they are ambiguous. It took only 0.035 seconds for our
method to obtain the result, while it took 97.797 seconds for POA. Our method
were about 2800 times faster. Note that POA had to be repeatedly executed to
find parameters that enabled POA to produce satisfactory results.

5.6 Summary

We considered the problem of inferring a set T of hidden strings from a set S of
their concatenations, and proposed a linear time algorithm. If there is possibility
that given sequences are concatenations of an unknown set of strings, it is worth
trying our method to identify such set of strings.
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Table 5.5: Results of our method and POA against the CREM gene. The exons
8, 11 and 14 had alternative ends, which were treated as independent exons. For
example, exon 8 was divided into 8′ and 8′′. Lengths of extra bases not in exons
are in parentheses.

length overlap with overlap with
exon of exons DCS’s POA substrings

1 321 320(0) 321(0)
2 108 108(0) 108(0)
3 98 97(0) 98(0)
4 124 122(0) 122(0)
5 265 263(0) 263(0)
6 110 109(0) 109(0)
7–8′ 98+143 241(1) 241(1)
8′′ 571 570(0) 570(0)
9 189 187(0) 188(0)
10 88 86(0) 87(0)
11′ 198 196(0) 198(0)
11′′ 43 40(0) 42(0)
12 36 33(0) 35(0)
13 157 154(0) 157(10)
14′ 402 389(0) 392(10)
14′′ 1302 1292(0) 1292(0)
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(A) Exons of the CREM gene
NM 001881.2

1 4 78’ 8”

NM 181571.1
2 34 78’ 9 13 14”

NM 182717.1
10 13 14’ 14”

NM 182718.1
1013 14”

NM 182719.1
10 13 14”

NM 182720.1
1013 14’ 14”

NM 182721.1
11’13 14’ 14”

NM 182722.1
11’ 13 14’ 14”

NM 182723.1
11’ 13 14’ 14”

NM 182724.1
11’13 14”

NM 182725.1
11’ 13 14”

NM 182769.1
6 78’ 9 13 14”

NM 182770.1
6 78’13 14”

NM 182771.1
5 78’ 9 13 14”

NM 182772.1
5 78’13 14”

NM 182850.1
1 13 14”

NM 182853.1
1 13 14’ 14”

NM 183011.1
34 78’ 9 13 14’ 14”

NM 183012.1
34 78’13 14’ 14”

NM 183013.1
1 34 78’ 13 14’ 14”

NM 183060.1
2 4 78’13 14”

0 1000 2000 3000
[bases]

(B) DCS’s identified by our method
NM 001881.2

1 4 7-8’ 8”

NM 181571.1
2 34 7-8’ 9 13 14”

NM 182717.1
10 13 14’ 14”

NM 182718.1
1013 14”

NM 182719.1
10 13 14”

NM 182720.1
1013 14’ 14”

NM 182721.1
11’13 14’ 14”

NM 182722.1
11’ 13 14’ 14”

NM 182723.1
11’ 13 14’ 14”

NM 182724.1
11’13 14”

NM 182725.1
11’ 13 14”

NM 182769.1
6 7-8’ 9 13 14”

NM 182770.1
6 7-8’13 14”

NM 182771.1
5 7-8’ 9 13 14”

NM 182772.1
5 7-8’13 14”

NM 182850.1
1 13 14”

NM 182853.1
1 13 14’ 14”

NM 183011.1
34 7-8’ 9 13 14’ 14”

NM 183012.1
34 7-8’13 14’ 14”

NM 183013.1
1 34 7-8’13 14’ 14”

NM 183060.1
2 4 7-8’13 14”

0 1000 2000 3000
[bases]

(C) Substrings obtained by POA
NM 001881.2

1 4 7-8’ 8”

NM 181571.1
2 34 7-8’ 9 13 14”

NM 182717.1
10 13 14’ 14”

NM 182718.1
1013 14”

NM 182719.1
10 13 14”

NM 182720.1
1013 14’ 14”

NM 182721.1
11’13 14’ 14”

NM 182722.1
11’ 13 14’ 14”

NM 182723.1
11’ 13 14’ 14”

NM 182724.1
11’13 14”

NM 182725.1
11’ 13 14”

NM 182769.1
6 7-8’ 9 13 14”

NM 182770.1
6 7-8’13 14”

NM 182771.1
5 7-8’ 9 13 14”

NM 182772.1
5 7-8’13 14”

NM 182850.1
1 13 14”

NM 182853.1
1 13 14’ 14”

NM 183011.1
34 7-8’ 9 13 14’ 14”

NM 183012.1
34 7-8’13 14’ 14”

NM 183013.1
1 34 7-8’13 14’ 14”

NM 183060.1
2 4 7-8’13 14”

0 1000 2000 3000
[bases]

Figure 5.7: (A) Exons of the CREM gene, (B) DCS’s identified by GET-
DCS(S, l), and (C) substrings obtained by POA. Numbers over substrings of
sequences indicate corresponding exons. Since there are no spaces, numbers 11′′

and 12 are not shown.
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Chapter 6

Conclusions

The next-generation sequencing (NGS) technologies enabled us to exhaustively
detect structural variations (SVs). Continuing technological innovations in DNA
sequencing will, in future, provide predictions of even more SVs. However, detect-
ing SVs is still a difficult problem. In addition, each SVs are local phenomena
in genomes and only detecting SVs is not sufficient to reveal global structure
of chromosomes. This thesis addressed wide range of problems required in the
analysis of SVs.

First, this thesis formulated the problem of inferring global structures of chro-
mosomes as the chromosome problem (ChrP). This is an optimization problem
to search for an optimal set of chromosomes that minimizes a cost function that
takes into account the number of chromosomes and detected SVs. In addition,
the length of each chromosome is bounded by the estimated length. ChrP was
proved to be NP-complete. We also proposed a biologically meaning restriction
on instances of the problem, which we term as the weakly connected constraint
(WCC). By using WCC, we defined a variation of ChrP, termed as ChrW. In-
stances of ChrW is restricted by WCC and the length of chromosomes is not
bounded. We proposed an algorithm that solves ChrW in polynomial time by
reducing the problem into a cycle-finding problem on a bidirected graph. We also
considered another variation, termed as ChrL, which is the same as ChrW except
that the length of chromosomes are bounded as ChrP. Because ChrL is NP-
complete, it is clear that removing upper bounds on the length of chromosomes
is necessary to make ChrW solvable in polynomial time. This work provides a
theoretical basis for the development of practical computational tools that are
emerging for use in the analysis of the global structure of chromosomes based on
SVs. In computational experiments with simulated SV data, our algorithm that
solves ChrW was confirmed to be able to mitigate noise added to simulated SV
data, where noise contains modified CNVs or false positive translocations. It was
also confirmed that considering the number of chromosomes and truncations was
effective to infer an accurate set of chromosomes. However, it was difficult to
handle missing translocations. In addition, further evaluation for real SV data is
necessary.

Second, in order to accurately detect breakpoints, i.e. positions of boundaries
of SVs, this thesis proposed a new method ChopSticks which improves the reso-
lution of breakpoints of homozygous deletions by exploiting paired reads whose
mapping distances and strands are normal. When the depth of coverage ap-
proaches zero or infinity, the resolution of our method approaches to that of RP
methods with doubled amount of NGS sequences. In computational experiments
with simulated NGS sequences, ChopSticks successfully improved the resolution
of BreakDancer [10], MoDIL [40], CLEVER [54], and CNVnator [1]. In com-
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putational experiments with real NGS sequences, ChopSticks also successfully
improved the resolution of BreakDancer and CLEVER.

Third, because mapping NGS sequences to the reference genome is a necessary
and computationally intensive step of most SV detection methods, we conducted
mapping with a many-core processor Xeon Phi toward performance improvement
in the future. Because a lot of programs that map NGS sequences to the refer-
ence genome have already been proposed, developing a new program may confuse
users. Therefore, we decided to port two widely used programs, Burrows-Wheeler
Aligner (BWA) [45] and Bowtie2 [38], to Xeon Phi. A major obstacle of porting
was incompatibility of vector operations between Xeon Phi and x86 processors for
which BWA and Bowtie2 are originally developed. We replaced 8-bit operations
and 16-bit operations with 32-bit operations, and overcame other incompatibil-
ities one by one. We also circumvented an incompatibility found in the sort

function in the standard template library (STL). In computational experiments,
the performance of ported programs was almost proportional to the number of
thread increases up to 60. This result was promising because the many-core
architecture of Xeon Phi turned out to suit to mapping NGS sequences to the
reference genome. Although the peak performance was still inferior to that of a
normal x86 CPU, we believe that the improvement of the ported program and
the architecture of Xeon Phi will achieve better performance in the future.

Finally, in order to compare assembled genomic sequences for the purpose of
detecting SVs, it is necessary to identify common substrings and substrings spe-
cific to each string that resulted from rearrangements. Therefore, we addressed
a problem in which a set T of strings are inferred from a set S of their concate-
nations. We defined a set DCS(S, l) of strings each of which corresponds to a
string in T or a concatenation of strings in T that always occur adjacent in the
same order, where l is a positive integer parameter. In addition, we developed an
algorithm that identifies DCS(S, l). We proved that DCS(S, l) can be identified
within O(L) time by comparing strings in S, where L is the sum of the lengths
of all strings in S. In a computational experiment, a set of 40,000 randomly
generated strings were successfully decomposed into substrings of which they are
concatenations. In addition, the cDNA sequences of the human CREM gene were
also decomposed into exons only with minor errors by our method about 2,800
times faster than by a multiple sequence alignment (MSA) program POA, while
other MSA programs suffered from weak similarities between different exons.

Future Directions

As a future work, we would like to improve the proposed methods so that they
can be applied to a wide range of real data.

First, inference of the global structure of chromosomes currently requires that
given instances satisfy WCC to calculate an optimal solution in polynomial time.
Because SV data do not usually include data to satisfy WCC, additional data
have to be collected by examining raw NGS sequences again or by conducting
additional biological experiments. To overcome this problem, we need a method
that infers ends of chromosomes and highly probable adjacencies of segments in
the target genome from SV data. Another direction is to develop an approxima-
tion algorithm that are available to instances that do not satisfy the proposed
WCC. Handling missing translocations is another problem that should be over-
come. It is also necessary to further evaluate the effectiveness of our algorithm
for real SV data.
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Second, because ChopSticks is currently available to only homozygous dele-
tions, it should be improved so that it can cope with other types of SVs. By
adding a step that distinguishes homozygous deletions from heterozygous ones
and to apply ChopSticks to the former, ChopSticks can be used in applications
where organisms other than inbred mice are analyzed.

Third, as we explained in Chapter 4, the performances of BWA and Bowtie2
on Xeon Phi are expected to be further improved by three ways: (i) by fully
exploiting computation power of Xeon Phi, e.g. vector registers not used in this
study, (ii) by using Xeon Phi with x86 processors in a coordinated manner, and
(iii) by improving our ported codes.

Finally, to apply the algorithm that identifies DCS(S, l) to a large-scale real
data, the algorithm have to tolerate sequencing errors and sequence variations
in genomes, as well as repeated elements and identical regions of sequences of
different genes. Because the algorithm involves construction of a suffix tree for
given strings, eliminating consumption of memory is also preferable to be applied
to long genome sequences. The latter improvement would be achieved by using
the technique of compressed full-text indexes [49, 62].
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