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ABSTRACT

In many areas, many formulae which contain fractional derivatives and integrals have
been proposed. Fractional calculus is the field which treats non-integer order calculus.
This fractional calculus is an extended version of integer order calculus, and fractional
calculus has the potential to be utilized in fields which employ integer order calculus.
Actually, fractional calculus is applied to many models which cannot be represented by
integer order calculus, for example, viscosity model, diffusion process, control system,
finance and fractal. This thesis contributes to mainly two models. One is the simulation
of diffusion process which is formulated by using fractional partial differential equations.
This fractional diffusion process appears in the diffusion phenomenon of radioactive ma-
terials, and fractional calculus is used in the prediction of diffusion of materials which
is spilt from Fukushima nuclear power plant. Therefore, there is a need to develop high
accurate numerical computational method to predict where radioactive materials spread
with highly accuracy. The other model is the simulation of control systems. Control sys-
tems include robotics and electronic systems, and fractional calculus enables simulations
of those systems which perform a behavior which integer order calculus cannot simulate.
Hence, by having accurate method, simulations of control systems using fractional cal-
culus can be done precisely and many control systems will utilize fractional calculus for
more appropriate modeling.

For fractional partial differential equations, the finite difference method which seems
to be first order accuracy has been proposed by Mark M. Meerschaert and Charles Tad-
jeran, but the accuracy of the method has not been proven. They also have proposed a
second order accuracy method, but that method means the extrapolation of a first or-
der accuracy finite difference method and does not employ computational method with
second order accuracy formula. For fractional ordinary differential equations, explicit
computational method which applies the predictor corrector method has been proposed
by Kai Diethelm. However, the global accuracy of this method is less than second order
accuracy, and the local accuracy around initial point is lower than the local accuracy
around terminal point. In addition to explicit computational method, implicit computa-
tional method using Gaussian quadrature has been proposed by Seyadahmad Beheshti,
Hassan Khosravian-Arab and Iman Zare, but that method assumes that solution function
must be represented with nondifferentiable function at an initial point. This assumption
does not include the solution function which is represented with differentiable functions,
and the accuracy for differentiable function is not guaranteed.

In this thesis, the author discusses the both of partial differential and ordinary dif-
ferential, and proposes highly accurate numerical computational methods for parabolic
fractional partial differential equations and fractional ordinary differential equations.

Firstly, the author proposes a second order accuracy finite difference method for one
dimensional parabolic fractional partial differential equations, and analyzes its accuracy
and stability. The author shows that the stability of the proposed finite difference meth-
ods depends on some parameters which are coefficients appeared in the scheme, and
proves the condition of stability by using Gerschgorin’s theorem. Next, the author repre-
sents the accuracy of the proposed finite difference method is conditionally second order
accuracy, and if the analytical solution function is not differentiable on boundaries, the
accuracy around boundaries decays. In addition, this thesis discusses how much accuracy
will be lost depending on the analytical solution. The author also develops numerical so-
lutions in the form of polynomial expansion for homogeneous parabolic fractional partial
differential equations to investigate the stability in more detail and to find whether the
analytical solution function has a property which is the condition of accuracy decaying.

Secondly, the author proposes two new numerical computational methods for frac-
tional ordinary differential equations. One is a high accuracy explicit difference method
with predictor-corrector schemes. The accuracy of this method is third order accuracy
and higher than the existing methods. The other computational method is an implicit
method using Gaussian quadrature and Lagrange polynomials. Since the proposed im-
plicit method assumes the solution functions consist of polynomials and can be expanded
to a series around the initial point, this method can compute such differential equations
with a few nodes more accurately than existing methods.



Experimental results indicate the proposed second order accuracy finite difference
method for fractional partial differential equations is actually second order accuracy and
conditionally stable, and the author observes the condition to cause the accuracy decay-
ing from the numerical experiments. In addition, by developing the numerical solutions
in the form of polynomial expansion for homogeneous fractional partial differential equa-
tions, it is observed that the solution cannot be expressed with Fourier series, and the
analytical solution function satisfies the condition of the accuracy decaying. Experimen-
tal results also represent that proposed explicit computational methods for fractional
ordinary differential equations have higher accuracy than the existing method proposed
by Kai Diethelm. For implicit computational method, the author observes that the pro-
posed method is higher accuracy with a few nodes than the existing method proposed by
Seyadahmad Beheshti, Hassan Khosravian-Arab and Iman Zare if the analytical solution
can be represented with polynomials.



論文要旨

多くの分野で非整数階微分と積分を含んだ公式が提案されている。”Fractional calculus”

とは非整数階の微積分を取り扱う分野である。この非整数階微積分は整数階微積分の拡張

版となっており、非整数階微積分は整数階微積分が用いられている分野で活用されうる可

能性がある。現在、非整数階微積分は整数階微積分で表現する事の出来ない多くのモデル

に対し応用されており、例えば、粘弾性体や拡散過程、コントロールシステム、ファイナ

ンス、フラクタルなどに応用されている。本論文は主に二つのモデルに対し貢献する。一

つは非整数階偏微分方程式で定式化された拡散過程のシミュレーションである。この非整

数階拡散過程は放射性物質の拡散現象に現れ、福島原子力発電所から放出された放射性物

質の拡散の予測にも非整数階微積分は用いられている。そのため、高精度でどこに放射性

物質が広がるのか予測するためには高精度な数値計算法が必要である。また、もう一つの

モデルは制御系のシミュレーションである。制御系はロボティクスや電子システムを含み、

非整数階微積分によって整数階微積分ではシミュレートできない振る舞いをするシステム

のシミュレーションが可能となる。したがって、精度の良い手法があれば、非整数階微積

分を使った制御系のシミュレーションが精確に行われ、より最適なモデリングのために多

くの制御系システムが非整数階微積分を活用することになるだろう。

非整数階偏微分方程式に対しては、Mark M. MeerschaertとCharles Tadjeranによって

一次精度と思われる有限差分法が提案されていたが、それが本当に一次精度かは証明され

ていなかった。彼らは二次精度の手法も提案しているが、それは一次精度の有限差分法を

加速させるという手法であり、二次精度の公式を用いたものではない。また非整数階常微

分方程式に対しては、Kai Diethelmによって予測修正子法を応用する陽的な数値計算法が

提案されている。しかしながら、その手法の大域誤差は二次精度以下であり、また、初期

点周りの局所誤差が終端点周りの局所誤差よりも低かった。陽的な手法に加えガウス求積

を用いた陰的な手法も Seyadahmad Beheshtiらによって提案されている。しかしその手

法は解の関数が初期点で微分不可能な関数で表現されなければいけないことを仮定してい

る。この仮定は微分可能な解の関数を含んでおらず、微分可能な関数に対し精度を保証し

ていない。

本論文で、著者は偏微分と常微分の両方について議論し、非整数階偏微分方程式と常微

分方程式に対する高精度数値計算法を提案する。

初めに、著者は一次元非整数階偏微分方程式に対する二次精度有限差分法を提案し、そ

の精度と安定性を解析する。また、提案する有限差分法の安定性はスキームに現れる係数

であるパラメータに依存することを示し、安定性条件を Gerschgorinの定理を用いて証明

する。次に、提案する有限差分法の精度が条件付きで二次精度であることを示し、もし解

析解の関数が境界で微分不可能な場合、境界の周りで精度が劣化することを示す。加えて、

本論文は解析解によってどの程度精度が失われるについても議論する。また、安定性につ

いてより詳細を調査し、解析解が精度劣化の条件となる性質を持つかどうか調べるため、

非整数階拡散方程式に対する多項式展開の形の数値解を導出する。

次に著者は非整数階常微分方程式に対する二つの新しい数値計算法を提案する。一つは

予測子修正子法のスキームを備えた陽的差分法である。この手法の精度は三次精度であり、

既存手法よりも精度が高い。もう一つの数値計算法はガウス求積とラグランジュ多項式を

用いた陰解法である。提案手法は解の関数が多項式で構成されており、初期点周りで展開



されうることを仮定しているため、そのような微分方程式を少ないノードで既存の手法よ

り高精度に計算できる。

実験結果より、非整数階偏微分方程式に対して提案する二次精度有限差分法は実際に二

次精度で条件付きで安定であることが示され、精度劣化を引き起こす条件が判明した。加え

て、非整数階拡散方程式に対する多項式展開の形での数値解を導出することで、解はフー

リエ級数で表現不可能であり、精度劣化の条件を満たすことが示された。また、実験結果

から非整数階常微分方程式に対する提案する陽的計算法は Kai Diethelmによって提案さ

れた既存の手法よりも高精度であることが判明した。陰的計算法に対しては解析解が多項

式で表現できる場合、Seyadahmad Beheshtiらによって提案された既存手法よりも少ない

ノードでより精度良く計算できることが確認できた。
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Chapter 1

Introduction

Calculus has a long history. Newton and Leibniz developed it in 17th century,
and since then calculus is widely used in many fields. Fractional calculus also has
a history, but it is a comparatively new field especially in computer science. It
is said that Abel is the first person who introduces the idea of fractional calcu-
lus, and fractional calculus has firstly appeared in the following Abel’s integral
equation,

f(x) =

∫ x

a

ϕ(y)√
x− y

dy,

where f is a known function and ϕ is an unknown function. In this equation,
x and a denote the height of a starting point and a terminal point respectively,
and f(x) is the time that an object slips down from x to a without friction or
air resistance. The function ϕ is the shape of the slope, and this problem means,
given the time which an object slips down on a slope, what shape is the slope.
This problem is also an application of fractional calculus, and the integral of this
equation is 0.5 order integral. Since this discovery by Abel, many applications of
fractional calculus have been proposed.

Because fractional calculus is the extended version of integer order calculus,
there is a potential to be utilized in the area which utilizes integer order cal-
culus. Actually, after Abel’s research, fractional calculus is applied to various
models which it is difficult to represent by using integer order calculus, for exam-
ple, diffusion process, finance, control system, viscosity model, image processing,
Schrödinger equations, chaos system and fractal.

In this thesis, the author mainly contributes to two applications. One is dif-
fusion process which is represented with fractional partial differential equations.
This diffusion process appears in the phenomenon which the radioactive materials
spread in the air or soil, and the fractional calculus is also used for the predic-
tion of diffusion of radioactive materials which is spilt from Fukushima nuclear
power plant. This thesis contributes to high accuracy prediction by developing
high accuracy and high stability finite difference methods for fractional partial
differential equations. Actually, Y. Hatano made simulations for the diffusion
phenomena of Cs-137 produced by the nuclear meltdown at Chernobyl by using
the author’s proposed finite difference method. As related works, R. Metzler and
J. Klafter have proposed the fractional dynamics to anomalous diffusion based
on fractional calculus[42, 43]. E. Barkai, R. Metzler and J. Klafter have shown
the fractional Fokker-Plank equations describing anomalous diffusion[41, 3]. The
relation between fractional diffusion and Levy stable process has been discussed
by B.J. West, P. Grigolini, R. Metzler and T.F. Nonnenmacher[62, 9]. Fractional
diffusion is also related to porous medium equation[11]. As an application of
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fractional diffusion, finance has been also proposed[52, 34]. The price dynamics
is represented with a random walk. Finance model using fractional calculus is
based on continuous-time random walk and Levy flight models.

This thesis also contributes to the simulation of control systems. The control
system is used in robotics or electronic systems, and requires fractional calculus
to simulate more various behavior and to deal with various situations than using
only integer order calculus[73, 31, 10, 50, 51]. For fractional order control sys-
tems, L. Dorcak has proposed the simulation methods by approximations using
integer order control systems[18]. X. Cai and F. Liu have proposed the numerical
simulation methods using difference methods[6]. To the simulation of fractional
order controller, this thesis contribute by developing high accuracy numerical
computational methods for fractional ordinary differential equation. Given high
accuracy numerical methods, many controllers employ fractional order control
systems, and more optimal modeling will be done for every systems.

Viscosity models are based on Maxwell material using springs and dashpots[35,
61]. The reason why viscosity models employ fractional calculus is fractional dif-
ferentiation depends on the past information unlike integer order differentiation.
Integer order differentiation has only the local meaning, but in fractional differ-
entiation the present condition is influenced by the past condition. This property
expresses well the behavior of viscosity models. In viscosity models, fractional
calculus is widely used, and numerical computational methods have been pro-
posed by H. Nasuno and N. Shimizu[74, 75]. W. Zhang and N. Shimizu also
have proposed the numerical algorithm for viscosity models[64]. The research of
viscosity models are used in the development of dampers or impact absorbers.

In image processing, some studies employ fractional calculus. J. Uozumi and
H. Izumi have used fractional differentiation to emphasize the edge of images[71].
R. Marazzato and A.C. Sparavigna also have proposed the tool for astronomical
image analysis[37]. Fractional differentiation enable detection of edges and faint
objects, so this property is useful for observation of the image about galaxy.

Fractional calculus is utilized also in Schrödinger equations. N. Laskin has
mentioned fractional quantum mechanics derived from the fractality of the Levy
flight, and this is related to fractional Schrödinger equations[24, 26, 25]. M.
Naber has proposed time fractional Schrödinger equation by applying the non-
locality of fractional differentiation[47]. Not only time fractional but also both
space and time fractional Schrödinger equation also has been proposed[60, 19, 17].
Fractional Hamiltonian also has been proposed by S.I. Muslih, D. Baleanu and E.
Rabei[46]. In addition, S.I. Muslih, O.P. Agrawal and D. Baleanu have suggested
the solution of fractional Schrödinger equations in the form of Mittag-Leffler
function[45]. D. Baleanu, Alireza K. Golmankhaneh and Ali K. Golmankhaneh
have proposed the solution in the form of rapidly convergent infinite series[2].

Fractional calculus also appears in chaos systems and fractal. H. Takayasu has
discussed the connection between fractional differentiation and fractal[72]. In his
book, he pointed out that the fractional Brownian motion which B.B Mandelbrot
and J. W. Van Ness have proposed[36] is related with fractional differentiation.

As mentioned above, recently various application of fractional calculus are
proposed in many fields. Then, what is fractional calculus? Fractional calculus
has some definitions, and every definition is an extended version of integer or-
der calculus. Some definitions extends the calculus order to a complex number.
The following Riemann-Liouville definition is the most widely used in fractional
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calculus,

aD
q
xf(x) =

1

Γ(−q)

∫ x

a

f(u)

(x− u)1+q
du, q < 0

aD
q
xf(x) =

[
d

dx

]⌈q⌉ 1

Γ(⌈q⌉ − q)

∫ x

a

f(u)

(x− u)1+q−⌈q⌉du, q > 0.

There are three significant properties of this definition of fractional calculus com-
paring to integer order calculus. One is the singularity of the integral kernel. Sec-
ond property is that fractional differentiation also needs an interval like integral.
This character means that fractional differentiation is not local phenomenon, and
the calculation of fractional derivative needs the past information. This property
fits the property of viscosity models. Third property is to give a singularity to a
differentiated function. These three properties make the numerical computation
of fractional calculus difficult. Therefore, because of these difficulties, a few re-
search of fractional calculus has been done in the field of numerical computational
methods comparing to integer order calculus.

The computation of fractional differential and integral is more difficult than
that of integer order calculus. However, it is not impossible to calculate numer-
ically. For fractional differentiation and integration, K.B. Oldham has proposed
the difference method with seemingly second order accuracy[49]. This method
is based on Grunwald-Letnikov definition, but the author has proved its accu-
racy can be lower than the second order accuracy in his master thesis[57]. In
addition, the author develops second order and fourth order accuracy difference
methods and proves the accuracy of those methods and first order accuracy differ-
ence method in his master thesis. These high accuracy finite difference methods
are employed also in this thesis, so the author introduce the outline of those
methods in Chapter 4. In addition to finite difference formula, T. Okayama
and S. Murashige have proposed a numerical computational method using au-
tomatic differentiation and double exponential formula[69]. However, there is a
few paper about the numerical computational methods for fractional differentia-
tion and integration. Because, the idea of fractional calculus comes from mainly
applications or engineering fields, not mathematical or computational science.
Therefore, there are more papers about the numerical computational methods
for fractional differential equations which are near to applications than fractional
differentiation and integration.

For space-fractional partial differential equations, M.M Meerschaert and C.
Tadjeran have proposed finite difference methods[39, 40, 38, 56]. They have
proposed first order accuracy finite difference methods, but the accuracy of the
method has not been proved. In addition, they also propose the second order
accuracy finite difference method. This method does not employ second order
accuracy difference formula, but improves the accuracy by using extrapolation
methods. Y. Zhang also has proposed a finite difference method, and analyzes the
stability and convergence of his method[65]. E. Sousa has analyzed the stability of
finite difference methods by using Von Neumann stability analysis[54]. Stability
conditions of finite difference methods have been also discussed by R. Scherer, S.L.
Kalla, L. Boyadjiev and B. Al-Saqabi[53]. As another numerical solving method,
matrix transform method has been proposed by M. Ilic, F. Liu, I. Turner and
V. Anh[21, 22]. This method is based on Fourier expansion, and is compared
with finite difference method[63, 23]. In addition to space-fractional differential
equations, time-fractional differential equations have been studied[20, 29]. Those
papers treats the analytical solutions, but P. Zhuang and F. Liu have proposed fi-
nite difference methods for time-fractional differential equations[67]. D.A. Murio
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also has proposed a finite difference method and shows that his method is first or-
der accuracy[44]. Y. Lin and C. Xu have proposed scheme using spectral method
in space and finite difference formula in time with O(h2−α) where α is fractional
calculus order[28]. Here, numerical solving methods for fractional partial differ-
ential equations are introduced, but the analytical solution is also discussed. O.P.
Agrawal has expressed the analytical solution in bounded domain by using sine
function and Mittag-Leffler function[1]. In contrast, F. Mainardi has considered
the analytical solution in unbounded domain[32, 33]. The analytical solution in
infinite domain is introduced mainly by Laplase transform and Green function.

For fractional ordinary differential equations, various numerical solving meth-
ods are proposed. As explicit numerical computational methods, predictor cor-
rector method has been proposed by K. Diethelm, N.J. Ford, A.D. Freed and Y.
Luchko[13, 14, 15, 12]. This method is stable for various conditions, but the ac-
curacy is less than second order accuracy. To improve the accuracy, the method
using Gauss-Jacobi quadrature has been proposed by L. Zhao and W. Deng[66].
Another numerical solving method is linear multi-step method. C. Lubich has in-
troduced linear multi-step methods to Volterra integral equations[30], which can
be used also for fractional ordinary differential equations. R. Lin and F. Liu also
have proposed linear multi-step methods and have analyzed their stability[27].
For fractional ordinary differential equations, implicit numerical computational
methods have been also proposed. S. Beheshti, H. Khosravian-Arab and I. Zare
propose an implicit method using Jacobi polynomial which is a kind of orthogonal
polynomials[4]. This method assumes that the analytical solution is represented
by non-differentiable function around an initial point. Because of that, the accu-
racy for a differentiable function is not better than other methods. T. Okayama
has proposed the method using double exponential transform[48]. However, this
method assumes only linear equations and does not consider the case of non-linear
equations. Moreover, the experimental results of this method are not shown.

In this thesis, the author discusses fractional partial and ordinary differen-
tial equations, and proposes high accuracy numerical computational methods for
those two equations.

Firstly, the author proposes second order accuracy finite difference methods
for one-dimensional and two-dimensional fractional partial differential equations,
and analyzes the accuracy and stability. The proposed finite difference methods
have a parameter in the schemes, and it is proved that the stability depends on
the value of the parameter. In addition, the author proves the optimal value of
the parameter. The stability analysis of the proposed scheme is done by using
Gerschgorin’s theorem. Therefore, proposed schemes do not impose any assump-
tion to the analytical solution of fractional partial differential equations like Von
Neumann stability analysis. Next, the author shows that the proposed finite dif-
ference methods have second order accuracy, and if the analytical solution can
be expanded with low degree polynomials around boundaries, the accuracy will
decay. The author also shows this accuracy decaying is caused by the approxima-
tions to fractional differential with one point difference formula. In addition, the
author discusses how much the accuracy will be lost depending the analytical so-
lution, and shows how the accuracy decaying occurs with some examples. Lastly,
the author develops the numerical solutions in the form of polynomial expansion
for homogeneous parabolic fractional partial differential equations to investigate
what shape the analytical solution is and how much the accuracy decaying hap-
pens. Moreover, the author shows that the analytical solution for homogeneous
parabolic fractional partial differential equations also can be expanded with or-
thogonal functions as the analytical solution for integer order partial differential
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equations are expanded with sine and cosine functions in Fourier expansion.
For fractional ordinary differential equations, the author proposes new high

accuracy explicit numerical methods like Runge-Kutta methods. This proposed
methods are higher accuracy than existing numerical computational methods,
and can calculate with any order accuracy by approximating high degree terms.
Moreover, the author analyzes the stability of these methods. In addition to
explicit methods, the author also proposes an implicit numerical computational
method using Lagrange polynomials, and try experiments of a method using
double exponential transform. The method using double exponential transform
has higher accuracy than any existing methods with the same number of dis-
cretized points, and the method using Lagrange polynomials employs Gauss-
Jacobi quadrature and computes high accuracy with a few number of discretized
points for the analytical solution which is represented with low degree polynomi-
als.

The organization of this thesis is as follows. This thesis states preliminaries
after introduction. In Chapter 2, definitions of fractional calculus are introduced
and some properties of fractional calculus are shown with examples. Addition-
ally, the author develops the fractional partial differential equations from Levy
flight model. Also in preliminary, the author establishes the problems which this
thesis treats. In Chapter 3 about related work, the author introduces six studies
relating to this thesis. Six studies are explained in detail in order to compare to
the author’s research. In Chapter 4, our proposed difference formulae for frac-
tional differentiation and integration are explained with examples and numerical
experiments. In Chapter 5, finite difference methods for fractional partial dif-
ferential equations are discussed. This chapter includes the explanation how to
apply difference formulae to finite difference methods, and the stability analysis
is also represented in this chapter. Next, the numerical solutions in the form of
polynomial expansion are introduced. In this Chapter 6, the author suggests new
numerical computational methods for homogeneous parabolic fractional partial
differential equations by using fractional sine and cosine. Chapter 7 treats numer-
ical computational methods for fractional ordinary differential equations. This
chapter includes both the explicit and the implicit methods. In the last chapter
of conclusion, the author summarizes his research, and discusses the future tasks.
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Chapter 2

Preliminary

2.1 Gamma function and some properties

Gamma function is an extension of factorial. Fractional calculus utilizes this
property to connect integer to fractional number. Gamma function is defined by

Γ(x) =

∫ ∞

0
tx−1e−tdt.

Gamma function has three significant properties for fractional calculus and for
this thesis. First property is given by

Γ(x) = (x− 1)Γ(x− 1).

From this property, the factorial of integer is computed. Second property is the
summation of ratios of gamma functions, which is given by

N−1∑
j=0

Γ(j − q)

Γ(j + 1)
= −1

q

Γ(N − q)

Γ(N)

where q is an arbitrary real number. This expression is used in order to compute
the accuracy order of our proposed methods. One of the definitions of fractional
calculus contains this summation of ratios of gamma functions, so this appears
often in the expressions about fractional calculus. Third property is asymptotic
expansion of gamma functions[58]. For N → ∞, this is given by

Γ(N − q)

Γ(N)
= N−q

[
1 +

q(q + 1)

2N
+
q(q + 1)(q + 2)(3q + 1)

24N2

+
q2(q + 1)2(q + 2)(q + 3)

48N3
+O

(
1

N4

)]
.

Γ(N + α)

Γ(N + β)
= Nα−β

[
1 +

(α− β)(α+ β − 1)

2N
+O

(
1

N2

)]
where q, α and β are arbitrary real numbers. By using this property, we can
exchange the exponent number and a ratio of gamma functions for the limit
N → ∞. Therefore, these expressions also often appear in the proof about our
proposed formulae.

2.2 Definition of fractional calculus

Fractional differentiation and integration have several definitions, and this section
introduces definitions which are used in this thesis. Let q be the differential and
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integral order. The fractional calculus operator means differential for q > 0 and
integral for q < 0. In addition, q = 0 means identity transform. Then, the
fractional integral operator is defined as

aD
q
xf(x) =

1

Γ(−q)

∫ x

a

f(u)

(x− u)1+q
du, q < 0

where a is a constant. However, fractional differential is defined with two ways.
The most general definition is the following Riemann-Liouville definition which
is also introduced in Chapter 1,

R
aD

q
xf(x) =

[
d

dx

]⌈q⌉ 1

Γ(⌈q⌉ − q)

∫ x

a

f(u)

(x− u)1+q−⌈q⌉du, q > 0.

Note that R in the above expression is the initial of Riemann-Liouville. This def-
inition indicates that the numerical computation methods of fractional calculus
are more difficult than that of integer order calculus. There are three properties
about this definition different from integer order calculus. One is singularity of
integral kernel. Because of the singularity, the kernel diverges at an end point of
integral. This singularity makes it impossible that we use the same methods to
that of integer order calculus to calculate integration. In integer order calculus,
the rectangular rule or the trapezoidal rule are used, but those methods cannot
calculate fractional integral accurately. Second property is that fractional differ-
entiation is defined as an operator on an interval like integral. This means the
past information and states affect the present states, and this property is utilized
in the simulation of viscosity models. Third property is that the differentiated
and integrated function get a singularity by fractional calculus. If fractional
differential or integral is applied to the function which is continuous and differen-
tiable, that function is changed to the function having a non-differentiable point.
Actually, by applying fractional differential to a constant function f(x) = C, we
have

R
aD

q
xC =

[
d

dx

]⌈q⌉ 1

Γ(⌈q⌉ − q)

∫ x

a

C

(x− u)1+q−⌈q⌉du

=

[
d

dx

]⌈q⌉ 1

Γ(⌈q⌉ − q)

C(x− a)⌈q⌉−q

⌈q⌉ − q

=
C(x− a)−q

Γ(1− q)
.

As we see, the differentiated function has a singularity at the initial point x = a.
This property makes us to treat not only polynomials but real number degree
functions like f(x) = (x− a)p where p is arbitrary real number.

Next definition is the following Caputo definition as

C
aD

q
xf(x) =

1

Γ(⌈q⌉ − q)

∫ x

a

f (⌈q⌉)(u)

(x− u)1+q−⌈q⌉du, q > 0.

Note that the C in the above expression denotes that this operator is Caputo
definition. Caputo definition is defined as operating fractional integral after
integer order differential. The difference between Riemann-Liouville definition
and Caputo definition appears for the function f(x) = C. That is, R

aD
q
xC =

C(x − a)−q/Γ(1 − q) and C
aD

q
xC = 0. However, Caputo definition also gives a
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singularity to a function, for example, f(x) = (x − a)p for p > q. From these
defintions, we have convenient formulae as

R
aD

q
xf(x) = D⌈q⌉

aD
q−⌈q⌉
x f(x),

C
aD

q
xf(x) = aD

q−⌈q⌉
x D⌈q⌉f(x).

This means that Riemann-Liouville definition and Caputo definition are given by
exchanging the order of calculus, and the properties of these two definitions are
really alike. The integrals included in these two definitions are integrated from
left to right in x axis, but there are definitions which integrate from right to left.
This left side fractional integral is defined as

xD
q
bf(x) =

1

Γ(−q)

∫ b

x

f(u)

(u− x)1+q
du.

Moreover, left side fractional differentials are also defined as

R
xD

q
bf(x) = D⌈q⌉

xD
q−⌈q⌉
b f(x)

C
xD

q
bf(x) = xD

q−⌈q⌉
b D⌈q⌉f(x)

These left side operators are also utilized in applications, and especially fractional
partial differential equations which are introduced later in this thesis employ these
operators. Last definition is Grunwald-Letnikov definition as

G
aD

q
xf(x) = lim

N→∞

h−q

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)
f(x− jh)

where h = (x−a)/N . Note that G in the above expression denotes this operator is
Grunwald-Letnikov definition. This definition has the same form between integral
and differential, and expresses both fractional integral and differential in one
formula. This definition is given by the generalization of the definition of integer
order derivative. Actually, first, second and n-th order derivatives are defined as

f ′(x) = lim
h→0

f(x)− f(x− h)

h

f ′′(x) = lim
h→0

f(x)− 2f(x− h) + f(x− 2h)

h2

f ′′′(x) = lim
h→0

f(x)− 3f(x− h) + 3f(x− 2h)− f(x− 3h)

h3

...

f (n)(x) = lim
h→0

1

Γ(−n)hn
n∑

j=0

Γ(j − n)

Γ(j + 1)
f(x− jh).

Here, we put h = (x − a)/N . Because the values of Γ(j − n)/ (Γ(−n)Γ(j + 1))
equal to 0 for j ≤ n+ 1, we have

f (n)(x) = lim
N→∞

h−n

Γ(−n)

N−1∑
j=0

Γ(j − n)

Γ(j + 1)
f(x− jh).

By generalizing n to real number q, the above formula equals to Grunwald-
Letnikov defitnition. In addition, K.B. Oldham has been proved that Grunwald-
Letnikov definition and Riemann-Liouville definition are the same[49]. Left side
Grunwald-Letnikov definition is defined as

G
xD

q
bf(x) = lim

N→∞

h−q

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)
f(x+ jh)
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where h = (b− x)/N .

2.3 The basic properties of fractional calculus

This section explains basic properties of fractional calculus. Firstly, the author
shows the fractional derivative of exponentiation functions. By Riemann-Liouville
definition, power functions are differentiated as

R
aD

q
x(x− a)p =

[
d

dx

]⌈q⌉ 1

Γ(⌈q⌉ − q)

∫ x

a

(u− a)p

(x− u)1+q−⌈q⌉du,

where p > −1. By applying changing variables for v = (u− a)/(x− a), we have

=

[
d

dx

]⌈q⌉ 1

Γ(⌈q⌉ − q)

∫ 1

0
(x− a)

vp(x− a)p

(x− a)1+q−⌈q⌉(1− v)1+q−⌈q⌉dv.

This integral is a beta function, and it holds

=

[
d

dx

]⌈q⌉ 1

Γ(⌈q⌉ − q)
(x− a)p−q+⌈q⌉Γ(p+ 1)Γ(⌈q⌉ − q)

Γ(p+ 1 + ⌈q⌉ − q)
.

Therefore, we have

R
aD

q
x(x− a)p =

Γ(p+ 1)

Γ(p+ 1− q)
(x− a)p−q.

This formula holds for fractional integral q < 0 in the same way. In addition, the
derivative to f(x) = (x− a)q−1 becomes 0 as

R
aD

q
x(x− a)q−1 = 0.

Therefore, the following function is identity to fractional derivatives R
0D

q
x,

f(x) =
xq−1

Γ(q)
+
x2q−1

Γ(2q)
+
x3q−1

Γ(3q)
+ · · · .

Next, let us consider the fractional integral operator −∞D
q
x for q < 0. By operat-

ing this fractional integral to an exponential function, we find the common point
to integer order calculus as

−∞D
q
xe

ax =
1

Γ(−q)

∫ x

−∞

eau

(x− u)1+q
du.

By applying changing variables v = x− u, we have

=
1

Γ(−q)

∫ ∞

0

eax−av

v1+q
du.

This is Laplase transform, and it holds

=
eax

Γ(−q)
Γ(−q)
a−q

= aqeax.

In the same way, it holds for fractional derivative, and f(x) = ex is the identity
function to the fractional calculus operator R

−∞D
q
x and C

−∞D
q
x for arbitrary q.

This result indicates that the continuity of fractional calculus and integer order
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calculus for exponential functions, and the effectivity of functional transform for
fractional calculus operator. In fact, Fourier transform and Mellin transform are
used to analyze fractional calculus. Lastly, we check the additivity of fractional
calculus operator. Generally, it does not hold the additivity,

R
aD

p
x

R
aD

q
xf(x) ̸= R

aD
p+qf(x),

C
aD

p
x

C
aD

q
xf(x) ̸= C

aD
p+qf(x)

for some f(x) and p, q > 0. For example, the additivity does not hold for the
function f(x) = xq−1 in first formula, and does not hold for the function f(x) = 1
in second formula. This property is also big difference from integer order calculus.

Lastly, the author shows two important rules. One is the additivity of frac-
tional integral. As mentioned above, the additivity for fractional derivative does
not hold in general, but the additivity for fractional integral holds.

Theorem 2.3.1 For arbitrary negative real numbers p, q < 0, it holds

aD
p
x aD

q
xf(x) =aD

p+q
x f(x).

Next, the author shows the exchange rule between Riemann-Liouvillde definition
and Caputo definition.

Theorem 2.3.2 For an arbitrary real number q > 0, it holds

R
aD

q
xf(x) =

⌈q⌉−1∑
n=0

f (n)(a)

Γ(1− q + n)
(x− a)n−q +C

a D
q
xf(x).

Proof
By applying integration by parts, we have

R
aD

q
xf(x)

=

[
d

dx

]⌈q⌉ 1

Γ(⌈q⌉ − q)

∫ x

a

f(u)

(x− u)1+q−⌈q⌉du

=

[
d

dx

]⌈q⌉{ 1

Γ(⌈q⌉ − q)

[
−f(u)(x− u)⌈q⌉−q

⌈q⌉ − q

]x
a

+
1

Γ(⌈q⌉ − q)

∫ x

a
f ′(u)

(x− u)⌈q⌉−q

⌈q⌉ − q
du

}

=

[
d

dx

]⌈q⌉{ 1

Γ(⌈q⌉ − q)
f(a)

(x− a)⌈q⌉−q

⌈q⌉ − q
+

1

Γ(⌈q⌉ − q)

∫ x

a
f ′(u)

(x− u)⌈q⌉−q

⌈q⌉ − q
du

}
By applying Leibniz integral rule which is given by

d

dx

∫ b(x)

a(x)
g(x, u)du =

∫ b(x)

a(x)

∂g(x, u)

∂x
du+ b′(x)g(x, b(x))− a′(x)g(x, a(x)),

we obtain

=

[
d

dx

]⌈q⌉−1{ f(a)

Γ(⌈q⌉ − q)
(x− a)⌈q⌉−q−1 +

1

Γ(⌈q⌉ − q)

∫ x

a
f ′(u)(x− u)⌈q⌉−q−1du

}
.

By repeating this, we have

R
aD

q
xf(x) =

⌈q⌉−1∑
n=0

f (n)(a)

Γ(1− q + n)
(x− a)n−q +C

a D
q
xf(x).

□
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2.4 Derivation of fractional partial differential equations

2.4.1 Fourier transform for tempered distributions

In this subsection, suppose the Fourier transform to fractional differentiation and
integration operators. Fourier transform to fractional operator is the essential to
develop fractional partial differential equations from heavy tailed probabilistic
distribution. By having Fourier transform to fractional operator, fractional par-
tial differential equations are developed from a probability density function like
diffusion equations. To know how to get equations is important to know how to
apply equations to physical phenomena. However, there is no paper including the
detail of Fourier transform to fractional operator and how to develop equations.
Therefore, in this subsection let us consider how to obtain Fourier transform to
fractional operator. This Fourier transform is not the same to Fourier transform
in general meaning, because fractional operator includes a non-integral function.
However, if the function is tempered distribution, Fourier transform can be ap-
plied to it. Firstly, Fourier transform is defined with the following notations
as

F {f(x);w} = f̂(w) =

∫ ∞

−∞
f(x)e−ixwdx.

Then, Fourier transform to fractional operator is shown by the following theorem.

Theorem 2.4.1 For arbitrary q > 0, it holds

F
{
C
−∞D

q
xf(x);w

}
=
{
R
−∞D

q
xf(x);w

}
= (iw)qf̂(w),

F
{
C
xD

q
∞f(x);w

}
=
{
R
xD

q
∞f(x);w

}
= (−1)⌈q⌉(−iw)qf̂(w).

Proof
Firstly, we prove that F

{
C
∞D

q
xf(x);w

}
= (iw)qf̂(w). Let g(x) be

g(x) =

{
x⌈q⌉−1−q

Γ(⌈q⌉−q) , x > 0

0, x ≤ 0.

Then, from the convolution of Fourier transform, we have

F
{
C
−∞D

q
xf(x);w

}
= F

{
1

⌈q⌉ − q

∫ x

−∞

f (⌈q⌉)(u)

(x− u)1+q−⌈q⌉du;w

}

= F

{∫ ∞

−∞
f (⌈q⌉)(u)g(x− u)du;w

}
= (iw)⌈q⌉f̂(w) · ĝ(w).

Here, in general Fourier transform, to transform a function, the function must be
integrable as ∫ ∞

−∞
|f(x)|dx < M

where M is a constant. However, the function g is not integrable in the above
sense. Therefore, we have to consider Fourier transform in the meaning of dis-
tributions or generalized functions. To apply Fourier transform to the function
g, we introduce three ideas of functions[70, 55]. One is the rapidly decreasing
function which is introduced in the following definition.
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Definition 2.4.2 If a function f satisfies the following conditions, the function
f is a rapidly decreasing function,

f ∈ C∞(R)
sup
x

|xmDnf(x)| <∞

where m, n are arbitrary positive integers.

Next, we define semi-norm for a rapidly decreasing function f as

Definition 2.4.3

pm(f) =
∑

α+k≤m

sup
x
(1 + |x|2)k|Dαf(x)|

where k, α are arbitrary positive integer.

Lastly, we define tempered distribution as

Definition 2.4.4 If a function f satisfies the following two conditions, the func-
tion f is tempered distribution.

1.

∫ ∞

−∞
f(x)cϕ(x)dx = c

∫ ∞

−∞
f(x)ϕ(x)dx,∫ ∞

−∞
f(x)(ϕ(x) + ψ(x))dx =

∫ ∞

−∞
f(x)ϕ(x)dx+

∫ ∞

−∞
f(x)ψ(x)dx,

2.

∣∣∣∣∫ ∞

−∞
f(x)ϕ(x)dx

∣∣∣∣ ≤ Cpm(ϕ)

where c is a constant, ϕ and ψ are rapidly decreasing functions, and C > 0.

By using the above definitions, it is indicated that the function g is a tempered
distribution. To suppose the inner product between the function g and a rapidly
decreasing function ϕ, we have∫ ∞

−∞

x⌈q⌉−1−q

Γ(⌈q⌉ − q)
ϕ(x)dx

= lim
ϵ→0

∫ ∞

ϵ

x⌈q⌉−1−q

Γ(⌈q⌉ − q)
ϕ(x)dx.

Here, apparently, the above formula satisfies the condition 1. Since limx→∞ ϕ(x) =
0, by applying integral by part, we have

= −
∫ ∞

0

x⌈q⌉−q

Γ(⌈q⌉+ 1− q)
ϕ′(x)dx.

Then, by taking absolute values and dividing the integral into two parts, the first
integral is ∣∣∣∣∣

∫ ∞

1

x⌈q⌉−q

Γ(⌈q⌉+ 1− q)
ϕ′(x)dx

∣∣∣∣∣
≤

∫ ∞

1

(1 + x2)

Γ(⌈q⌉+ 1− q)
ϕ′(x)dx

=

∫ ∞

1

1

(1 + x2)

(1 + x2)2

Γ(⌈q⌉+ 1− q)
ϕ′(x)dx

≤ π

Γ(⌈q⌉+ 1− q)
sup
x
(1 + x2)2ϕ′(x).
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Figure 2.1: Complex integral

The second integral is ∣∣∣∣∣
∫ 1

0

x⌈q⌉−q

Γ(⌈q⌉+ 1− q)
ϕ′(x)dx

∣∣∣∣∣
≤

∫ 1

0

1

Γ(⌈q⌉+ 1− q)
ϕ′(x)dx

≤ 1

Γ(⌈q⌉+ 1− q)
sup
x
ϕ′(x).

Therefore, it is proved that the function g is a tempered distribution. Then, the
function g is not integrable, but applicable to Fourier transform in the meaning
of distribution as the following theorem[70, 55].

Theorem 2.4.5 Fourier transform to a tempered function f(x) is defined as∫ ∞

−∞
F {f(x);w}ϕ(w)dw =

∫ ∞

−∞
f(x)F {ϕ(w);x} dx

where ϕ is a rapidly decreasing function.

This theorem is proved by using Fubini’s theorem. Since Fourier transform to
tempered functions is defined, let us apply it to the function g. Given a rapidly
decreasing function ϕ(x), we have∫ ∞

−∞
F {g(x);w}ϕ(w)dw

=

∫ ∞

−∞
ϕ(w)

∫ ∞

0
e−iwx x⌈q⌉−1−q

Γ(⌈q⌉ − q)
dxdw.

By changing variable for iwx = y, we have

=

∫ ∞

−∞

ϕ(w)

Γ(⌈q⌉ − q)
(iw)q−n lim

R→∞

∫ iR

0
e−yy⌈q⌉−1−qdydw. (2.1)

Here, we make complex integral as Figure 2.1. By changing variables for y = reiθ,
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the integrals I1, I2, I3, I4 are computed as

I1 = lim
R→∞

∫ iR

0
e−yy⌈q⌉−1−qdy

I2 = lim
R→∞

i

∫ 0

π/2
exp(−Reiθ)(Reiθ)⌈q⌉−qdθ = 0

I3 = lim
R→∞

∫ 0

R
e−yy⌈q⌉−1−qdy = −Γ(⌈q⌉ − q)

I4 = lim
r→0

i

∫ π/2

0
exp(−reiθ)(reiθ)⌈q⌉−qdθ = 0.

Since exponential functions exp(−R) decrease more rapidly than the increase of
R⌈q⌉−q for R → ∞, it holds I2 = 0. I3 can be calculated from the definition of
gamma functions, and we have I3 = −Γ(⌈q⌉ − q). In addition, it holds I4 = 0 for
r → 0. Then, there is no residue inside of the integral circuit. Therefore, it gets
I1 + I2 + I3 + I4 = 0, and we have I1 = Γ(⌈q⌉ − q). By putting the value of the
integral I1 to Formula (2.1), Fourier transform to the function g is given as∫ ∞

−∞
F {g(x);w}ϕ(w)dw =

∫ ∞

−∞
ϕ(w)(iw)q−⌈q⌉dw

⇒ F {g(x);w} = (iw)q−⌈q⌉.

Consequently, Fourier transform to fractional operator is obtained as

F
{
C
−∞D

q
xf(x);w

}
= (iw)⌈q⌉f̂(w)(iw)q−⌈q⌉

= (iw)qf̂(w).

The other also can be proved in a similar way.

Fourier transform to fractional operator is defined as above. In the next sub-
section, we develop fractional partial differential equations from a probability
density function by using Fourier transform.

2.4.2 Heavy tailed distribution and fractional partial differential equa-
tions

Many papers introduce that the fractional partial differential equations are com-
ing from heavy tailed distribution[68, 9, 8], but none of papers actually shows
how equations are developed from the distribution. The author explains how
equations are obtained from heavy tailed distribution by using Fourier trans-
form. Firstly, let f(x) be an even function as f(x) = f(−x) and be a probability
density function satisfying ∫ ∞

−∞
f(x)dx = 1.

This probability density function expresses the probability which a particle moves
from 0 to x. That is, the probability which a particle moves from 0 to 1 is f(1).
Next, let P (x, t) denote the number of particles at position x and time t. Then,
after tiime dt, the distribution of particles changes as

P (x, t+ dt) =

∫ ∞

−∞
f(x− y)P (y, t)dy.
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Then, let the function P (x, t) be analytical and we apply Taylor expansion to
P (x, t) and changing variables as,

P (x, t) + dt
∂P (x, t)

∂t
+

(dt)2

2

∂2P (x, t)

∂t2
+ · · ·

=

∫ ∞

−∞
f(u)P (x− u, t)dy

=

∫ ∞

−∞
f(u)

{
P (x, t)− u

∂P (x, t)

∂x
+
u2

2!

∂2P (x, t)

∂x2
− u3

3!

∂2P (x, t)

∂x2
+ · · ·

}
du

= P (x, t) +
1

2!

∂2P (x, t)

∂x2

∫ ∞

−∞
u2f(u)du+

1

4!

∂4P (x, t)

∂x4

∫ ∞

−∞
u4f(u)du+ · · · .

Here, the integral of the second term in the last expression denotes the second
moment or the variance of f(x), and the integral of the third term denotes the
fourth moment or the kurtosis of f(x). If 2 ·n-th moment of f(x) is proportional
to (dx)n, the above formulae equal to diffusion equations for dt → 0. However,
some probability density function has the infinite variance, for example, Cauchy
distribution. For such a probability density function whose variance is infinite,
the behavior of particles are represented by fractional partial equations. Let us
consider the following probability density function

f(x) =
q · dt
2

(
(dt)

1
q + |x|

)−1−q
, 0 < q < 2.

This function is heavy tailed and integrable as∫ ∞

−∞
f(x)dx

=
q · dt
2

∫ 0

−∞

(
(dt)

1
q − x

)−1−q
dx+

q · dt
2

∫ ∞

0

(
(dt)

1
q + x

)−1−q
dx

=
q · dt
2

[
1

q

(
(dt)

1
q − x

)−q
]0
−∞

+
q · dt
2

[
−1

q

(
(dt)

1
q + x

)−q
]∞
0

= 1.

Its variance is infinite as∫ ∞

−∞
x2f(x)dx

=

∫ 0

−∞
x2
q · dt
2

(
(dt)

1
q − x

)−1−q
dx+

∫ ∞

0
x2
q · dt
2

(
(dt)

1
q + x

)−1−q
dx.

By applying changing variables, it holds

=
q · dt
2

∫ ∞

(dt)1/q

(
(dt)

1
q − u2

)2
u−1−qdu+

q · dt
2

∫ ∞

(dt)1/q

(
(dt)

1
q − v

)2
v−1−qdv

= q · dt
∫ ∞

(dt)1/q
(dt)

2
q u−1−q − 2(dt)

1
q u−q + u1−qdu

= ∞.

Therefore, the behavior of particles which moves on this distribution cannot be
represented by diffusion equations. Then, in the same way to diffusion equations,
let P (x, t) be the number of particles at x and t, and we have

P (x, t+ dt) =

∫ ∞

−∞
f(x− y)P (y, t)dy.
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By taking convolution of Fourier transform, we have

P̂ (x, t+ dt)

= P̂ (x, t)

∫ ∞

−∞
e−iwxf(x)dx

= P̂ (x, t)

[∫ 0

−∞
e−iwx q · dt

2

(
(dt)

1
q − x

)−1−q
dx

+

∫ ∞

0
e−iwx q · dt

2

(
(dt)

1
q + x

)−1−q
dx

]
As mentioned above, the fractional calculus order is restricted as 0 < q < 2,
but firstly let us assume that 1 < q < 2. By applying integral by part, the first
integral is∫ 0

−∞
e−iwx q · dt

2

(
(dt)

1
q − x

)−1−q
dx

=

[
e−iwxdt

2

(
(dt)

1
q − x

)−q
]0
−∞

+ (iw)

∫ 0

−∞
e−iwxdt

2

(
(dt)

1
q − x

)−q
dx

=
1

2
+

[
(iw)e−iwx dt

2(q − 1)

(
(dt)

1
q − x

)1−q
]0
−∞

+(iw)2
∫ 0

−∞
e−iwx dt

2(q − 1)

(
(dt)

1
q − x

)1−q
dx

=
1

2
+

(iw)

2(q − 1)
+ (iw)2

∫ 0

−∞
e−iwx dt

2(q − 1)

(
(dt)

1
q − x

)1−q
dx.

The second integral can be converted in a similar way as∫ ∞

0
e−iwx q · dt

2

(
(dt)

1
q + x

)−1−q
dx

=

[
e−iwx−dt

2

(
(dt)

1
q + x

)−q
]∞
0

− (iw)

∫ ∞

0
e−iwxdt

2

(
(dt)

1
q + x

)−q
dx

=
1

2
+

[
(iw)e−iwx dt

2(q − 1)

(
(dt)

1
q + x

)1−q
]∞
0

+(iw)2
∫ ∞

0
e−iwx dt

2(q − 1)

(
(dt)

1
q + x

)1−q
dx

=
1

2
− (iw)

2(q − 1)
+ (iw)2

∫ ∞

0
e−iwx dt

2(q − 1)

(
(dt)

1
q + x

)1−q
dx.

Next, we compute the integral as∫ 0

−∞
e−iwx

(
(dt)

1
q − x

)1−q
dx

=

∫ (dt)1/q

−∞
e−iwx

(
(dt)

1
q − x

)1−q
dx−

∫ (dt)1/q

0
e−iwx

(
(dt)

1
q − x

)1−q
dx.

By applying changing variables for y = (dt)1/q − x and using the definition of
gamma function, we obtain

=

∫ ∞

0
eiwy−iw(dt)1/qy1−qdy −

∫ (dt)1/q

0
e−iwx

(
(dt)

1
q − x

)1−q
dx

= e−iw(dt)1/qΓ(2− q)(−iw)q−2 +O
(
(dt)

2
q
−1
)
.
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In a similar way, it holds∫ ∞

0
e−iwx

(
(dt)

1
q + x

)1−q
dx

= e−iw(dt)1/qΓ(2− q)(iw)q−2 +O
(
(dt)

2
q
−1
)
.

Therefore, we have

P̂ (x, t+ dt)

= P̂ (x, t) + dt
∂P̂ (x, t)

∂t
+

(dt)2

2!

∂2P̂ (x, t)

∂t2
+ · · ·

= P̂ (x, t)

[
1 +

(iw)2dt

2(q − 1)

{
e−iw(dt)1/qΓ(2− q)(−iw)q−2

+e−iw(dt)1/qΓ(2− q)(iw)q−2 +O
(
(dt)

2
q
−1
)}]

.

Then, by taking dt→ 0, it holds

∂P̂ (x, t)

∂t
= P̂ (x, t)

−Γ(1− q)

2
{(−iw)q + (iw)q} .

Fractional partial differential equation for 1 < q < 2 is obtained by applying
inverse Fourier transform as

∂P (x, t)

∂t
=

−Γ(1− q)

2
{−∞D

q
xP (x, t) +xD

q
∞P (x.t)} .

Here, Γ(1 − q)/2 is a positive value. Next, let us consider for 0 < q < 1. In a
similar way, by applying Fourier transform, we have

P̂ (x, t+ dt)

= P̂ (x, t)

∫ ∞

−∞
e−iwxf(x)dx

= P̂ (x, t)

[∫ 0

−∞
e−iwx q · dt

2

(
(dt)

1
q − x

)−1−q
dx

+

∫ ∞

0
e−iwx q · dt

2

(
(dt)

1
q + x

)−1−q
dx

]
.

By taking integral by part, the first integral is∫ 0

−∞
e−iwx q · dt

2

(
(dt)

1
q − x

)−1−q
dx

=
1

2
− (−iw)

∫ 0

−∞
e−iwxdt

2

(
(dt)

1
q − x

)−q
dx.

The second integral is computed as∫ ∞

0
e−iwx q · dt

2

(
(dt)

1
q + x

)−1−q
dx

=
1

2
− (iw)

∫ ∞

0
e−iwxdt

2

(
(dt)

1
q + x

)−q
dx.

In a similar way to the case 1 < q < 2, we have∫ 0

−∞
e−iwx

(
(dt)

1
q − x

)−q
dx

= e−iw(dt)1/qΓ(1− q)(−iw)q−1 +O
(
(dt)

1
q
−1
)
,
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and we have ∫ ∞

0
e−iwx

(
(dt)

1
q + x

)−q
dx

= e−iw(dt)1/qΓ(1− q)(iw)q−1 +O
(
(dt)

1
q
−1
)
.

Therefore, we have

P̂ (x, t+ dt)

= P̂ (x, t) + dt
∂P̂ (x, t)

∂t
+

(dt)2

2!

∂2P̂ (x, t)

∂t2
+ · · ·

= P̂ (x, t)

[
1− dt

2

{
e−iw(dt)1/qΓ(1− q)(−iw)q

+e−iw(dt)1/qΓ(1− q)(iw)q +O
(
(dt)

1
q
−1
)}]

.

By taking dt→ 0, it holds

∂P̂ (x, t)

∂t
= P̂ (x, t)

−Γ(1− q)

2
{(−iw)q + (iw)q} .

Fractional partial differential equation for 0 < q < 1 is also obtained by applying
inverse Fourier transform as

∂P (x, t)

∂t
=

−Γ(1− q)

2
{−∞D

q
xP (x, t) +xD

q
∞P (x.t)} .

In contrast to the fractional partial differential equations for 1 < q < 2, Γ(1−q)/2
is a negative value. This means that this equation is more similar to advection
equations than diffusion equations.

2.5 Integer order diffusion equations and Von Neumann stability
analysis

The idea of stability is really important for finite difference methods. If a fi-
nite difference method is unstable, the error of numerical solution diverges and
numerical solution does not converge. Von Neumann stability analysis is one of
methods to analyze the stability of finite difference methods for partial differential
equations, and it appears in later chapter. In this section, the author introduces
the integer order diffusion equations and how to analyze its stability by using
Von Neumann stability analysis. Firstly, the following equation is the diffusion
equation

∂u(x, t)

∂t
= C

∂2u(x, t)

∂x2
, 0 ≤ x ≤ L, 0 ≤ t ≤ T

where C is a diffusion coefficient. Let us consider to solve the above diffu-
sion equation with an initial condition u(x, 0) = u0(x) and boundary conditions
u(0, t) = a, u(L, t) = b. Here, we approximate time derivative with forward
difference and space derivative with central difference. Then, we have

u(x, t+ ht)− u(x, t)

ht
= C

u(x− hx, t)− 2u(x, t) + u(x+ hx, t)

h2x

where ht, hx are grid sizes for time and space respectively. Let Nx and Nt be the
numbers of grids, and satisfy hx = L/Nx and ht = T/Nt. By approximation as
u(j · hx,m · ht) ≃ Um

j , we have the following difference equations as

Um+1
j − Um

j = r
{
Um
j−1 − 2Um

j + Um
j+1

}
(2.2)
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where r = Cht/h
2
x. In the matrix form, the above formulae are represented with

matrices as
1
r 1− 2r r

. . .
. . .

. . .

r 1− 2r r
1




Um
0

Um
1
...

Um
Nx−1

Um
Nx

 =


Um+1
0

Um+1
1
...

Um+1
Nx−1

Um+1
Nx

 .

Here, Von Neumann stability analysis assume the special solution of Fourier series
as

Um
j = κm exp(iξjhx) (2.3)

where ξ is the wave number and κ is the amplifier factor. For |κ| ≤ 1, this scheme
is stable. By substituting the expression (2.3) to the difference equations (2.2),
we have

κ = 1 + r {exp(−iξhx)− 2 + exp(iξhx)}
= 1 + r {2 cos(ξhx)− 2}

= 1− 4r sin2
(
ξhx
2

)
.

For arbitrary wave number ξ, it holds 0 ≤ sin2(ξhx/2) ≤ 1. Therefore, from
|κ| ≤ 1, we have

r ≤ 1

2
.

This is the stability condition of the scheme (2.2). In a similar way, it is observed
that the following implicit scheme is unconditionally stable,

Um
j − Um−1

j = r
{
Um
j−1 − 2Um

j + Um
j+1

}
.

2.6 Gerschgorin’s theorem

Gerschgorin’s theorem is a method to estimate the area where the eigenvalues
exist[59]. The author introduces the Gerschgorin’s theorem in the following the-
orem.

Theorem 2.6.1 Let ai,j be the elements of any square matrix A, and let λ be
any eigenvalue of the matrix A. Then, there is a positive integer i such that

|λ− ai,i| ≤
∑
j ̸=i

|ai,j |.

This theorem holds by exchanging the column and row as

|λ− ai,i| ≤
∑
j ̸=i

|aj,i|.

This Gerschgorin’s theorem is used in the matrix method which analyzes the
stability of finite difference methods. The author also uses it to analyze his
proposed methods.
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2.7 Jacobi polynomials and Gauss-Jacobi quadrature

Jacobi polynomials have a similarity to fractional calculus. Actually, some papers
propose numerical methods using Jacobi polynomials and Gauss-Jacobi quadra-
ture. This section introduces the definitions of Jacobi polynomials and Gauss-

Jacobi quadrature. The Jacobi polynomials P
(a,b)
n , n = 0, 1, . . . are given by

P
(a,b)
i (x) =

i∑
m=0

(−1)i−m(1 + b)i(1 + a+ b)i
m!(i−m)!(1 + b)m(1 + b+ a)i

(
x+ 1

2

)m

,

where

(a)k = a(a+ 1) . . . (a+ k − 1), (a)0 = 1.

These Jacobi polynomials are orthogonal polynomials, and for a, b > −1 it holds∫ 1

−1
(1− x)a(1 + x)bP (a,b)

m (x)P (a,b)
n (x)dx

=

{
0 m ̸= n

2a+b+1

n!(2n+a+b+1)
Γ(n+a+1)Γ(n+b+1)

Γ(n+a+b+1) m = n.

From this orthogonality, Jacobi polynomials are used to numerically compute

integrals as Gauss-Jacobi quadrature. Let ξ
(a,b)
i , i = 1, . . . , n be the i-th root of

Jacobi polynomial P
(a,b)
n , then Gauss-Jacobi quadrature is given by∫ 1

−1
(1− x)a(1 + x)bf(x)dx ≃

n∑
i=1

ω
(a,b)
i f(ξ

(a,b)
i )

where ω
(a,b)
i , i = 1, . . . , n are Gauss-Jacobi quadrature weights defined as

ω
(a,b)
i = −2n+ a+ b+ 2

n+ a+ b+ 1

Γ(n+ a+ 1)Γ(n+ b+ 1)

Γ(n+ a+ b+ 1)(n+ 1)!

2a+b

P
(a,b)′
n (ξ

(a,b)
i )P

(a,b)
n+1 (ξ

(a,b)
i )

.

This Gauss-Jacobi quadrature has a similar form to fractional calculus operator
for b = 0. Therefore, the author proposes the implicit numerical methods by
using this property.
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Chapter 3

Related works

3.1 Exsiting finite difference methods for fractional partial dif-
ferential equations

For fractional partial differential equations, first order accuracy finite difference
method has been already proposed by M.M. Meerschaert and C. Tadjeran. In
this section, the present author explains their paper published in 2006 titled
”Finite difference approximations for two-sided space-fractional partial differen-
tial equations”[40]. To compare to our proposed methods, this section analyzes
the methods in their paper. In their paper, they consider about the following
fractional partial differential equations,

∂u(x, t)

∂t
= c+(x, t)

R
LD

q
xu(x, t) + c−(x, t)

R
xD

q
Ru(x, t) + s(x, t)

on a finite domain L < x < R, 0 ≤ t ≤ T where functions c+, c−, s are known
functions. In addition, they consider fractional calculus order q satisfies 1 ≤ q ≤ 2
and the functions c+(x, t) ≥ 0 and c−(x, t) ≥ 0. They also assume that an initial
condition u(x, 0) = F (x) and zero Dirichlet boundary conditions as u(L, t) =
u(R, t) = 0.
Firstly, M.M. Meerschaert and C. Tadjeran analyze only the following left-handed
fractional differential equations

∂u(x, t)

∂t
= c(x, t)RLD

q
xu(x, t) + s(x, t)

where c(x, t) ≥ 0 and L ≤ x ≤ R, 0 ≤ t ≤ T . They also define tn = n△t
for 0 ≤ tn ≤ T , and △x = h > 0 is a grid size for spatial domain where
h = (R − L)/K, xi = L + ih for i = 0, . . . ,K so that L ≤ x ≤ R. Next,
they let uni be the numerical approximation to u(xi, tn), and let cni and sni be
cni = c(xi, tn), s

n
i = s(xi, tn) respectively. In their paper, it is written that the

following discretized explicit (Euler) method is unstable

un+1
i − uni
△t

= cni
h−q

Γ(−q)

i∑
k=0

Γ(k − q)

Γ(k + 1)
uni−k + sni .

The proof of unstability is written in their paper published in 2004[39].
In their paper, the scheme which is simply discretized by using Grunwald-

Letnikov definition is unstable, and they mention that finite difference meth-
ods using Grunwald-Letnikov definition to two-sided fractional partial differen-
tial equations is also unconditionally unstable. However, their paper introduces a
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stable scheme which is fixed by using idea of shifted Grunwald-Letnikov definition
in the following proposition.

Proposition 3.1.1 ([40]) The following explicit Euler method is stable if △t/hq ≤
1/(q · cmax), where cmax is the maximum value of c(x, t) over region L ≤ x ≤ R,
0 ≤ t ≤ T ,

un+1
i − uni = βcni

i+1∑
k=0

Γ(k − q)

Γ(−q)Γ(k + 1)
uni−k+1 + sni △t.

Proof
At each time step, we apply a matrix stability analysis to the linear system of
equations, and use the Gerschgorin Theorem to determine a stability condition.

The proposed scheme with Dirichlet boundary conditions can be represented
in a linear system of equations of the form Un+1 = AUn +△tSn where

Un = [un0 , u
n
1 , u

n
2 , . . . , u

n
K ]T

Sn = [0, sn1 , s
n
2 , . . . , s

n
K−1, 0]

T

Here, A is the sum of a lower triangular matrix and a diagonal matrix, and this
scheme is stable if absolute values of all eigenvalues of A are equal or less than
1. The matrix entries Ai,j for i = 1, . . . ,K − 1 and j = 1, . . . ,K − 1 are defined
for gi = Γ(i− q)/(Γ(−q)Γ(i+ 1)) by

Ai,j =


0, j ≥ i+ 2
1 + g1c

n
i β, j = i

gi−j+1c
n
i β, otherwise

while A0,0 = 1, A0,j = 0 for j = 1, . . . ,K, AK,K = 1, AK,j = 0 for j = 0, . . . ,K −
1. Note that for 1 ≤ q ≤ 2 and i ̸= 1 we have gi ≥ 0. This is shown by using
induction. We also have −g1 ≥

∑k=N
k=0,k ̸=1 gk, which follows from the well-known

equality
∑∞

k=0 gk = 0. According to Gerschgorin Theorem, the eigenvalues µ of

the matrix A satisfy |µ−Ai,i| ≤ ri where ri =
∑K

k=0,k ̸=iAi,k. Then, to be stable,
the matrix A must satisfy two conditions Ai,i + ri ≤ 1 and Ai,i − ri ≥ −1. Here,
we have Ai,i = 1− qcni β and

ri =
K∑

k=0,k ̸=i

Ai,k =
i+1∑

k=0,k ̸=i

Ai,k = cni β
i+1∑

k=0,k ̸=i

gi ≤ qcni β

and therefore it holds Ai,i + ri ≤ 1. Then, we also have Ai,i − ri ≥ 1− 2qcni β ≥
1− 2qcmaxβ. Therefore, the stability condition is represented as

β =
△t
hq

≤ 1

qcmax
.

It is proven that their proposed scheme is conditionally stable with the stability
condition β ≤ 1/(qcmx).

□
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Next, they analyze the finite difference methods for two-sided fractional par-
tial differential equations. They propose both implicit and explicit finite differ-
ence methods. The implicit finite difference scheme is introduced as

un+1
i − uni
△t

=
1

hq

[
i+1∑
k=0

Γ(k − q)

Γ(−q)Γ(k + 1)
cn+1
+,i u

n+1
i−k+1 +

K−i+1∑
k=0

Γ(k − q)

Γ(−q)Γ(k + 1)
cn+1
−,i u

n+1
i+k−1

]
+sn+1

i . (3.1)

The explicit finite difference scheme is also introduced as

un+1
i − uni
△t

=
1

hq

[
i+1∑
k=0

Γ(k − q)

Γ(−q)Γ(k + 1)
cn+,iu

n
i−k+1 +

K−i+1∑
k=0

Γ(k − q)

Γ(−q)Γ(k + 1)
cn−,iu

n
i+k−1

]
+sni . (3.2)

They prove that implicit finite difference scheme is unconditionally stable, and
explicit scheme is stable with the stability condition. In this thesis, the present
author introduces stability analysis only for the explicit scheme. The stability
analysis for the implicit scheme is also done in a similar way to explicit scheme.
The detail of its stability analysis can be found in [40]. They mention that the
scheme (3.2) is stable as the following proposition[40].

Proposition 3.1.2 ([40]) The explicit Euler method approximation defined by
(3.2) with 1 ≤ q ≤ 2 is stable if

△t
hq

≤ 1

q(c+max + c−max)
. (3.3)

The proof is similar to Proposition 3.1.1.
They also make numerical experiments about the implicit scheme (3.1), and con-
firm its accuracy. Lastly the present author introduces the experimental results
in their paper. Let q be q = 1.8, and define 0 < x < 2 and 0 < t < 1. Let the
coefficient functions c+(x, t) and c−(x, t) be

c+(x, t) = Γ(1.2)x1.8

c−(x, t) = Γ(1.2)(2− x)1.8,

and let the forcing function s(x, t) be

s(x, t) = −32e−t

[
x2 + (2− x)2 − 2.5

(
x3 + (2− x)3

)
+

25

22

(
x4 + (2− x)4

)]
.

The initial condition is u(x, 0) = 4x2(2−x)2, and boundary condition is u(0, t) =
u(2, t) = 0. In addition, let the analytical solution u(x, t) be u(x, t) = 4e−tx2(2−
x)2. Table 3.1 is the results about maximum errors at t = 1 with various param-
eters. M.M. Meerschaert and C. Tadjeran mention that the results in Tab. 3.1
indicates the error order of the method is O(△t)+O(△x). However, the present
author considers these results do not fully show that error order isO(△t)+O(△x).
The reason is the similar results may happen if errors et derived from time deriva-
tive is O(△t) and has a big coefficient like et = 1000△t, and errors ex derived
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△t △x Maximum Error

0.1000 0.200 0.1417

0.0500 0.100 0.0571

0.0250 0.050 0.0249

0.0125 0.025 0.0113

Table 3.1: Maximum error behavior versus grid size reduction for the example
problem

from space is O(1) and has a small coefficient like ex = 10−10. This means that
errors having big error order is hidden by errors having small error order. There-
fore, the present author suggests we make the experiments for time and space
individually. The measurement of error is discussed in Section 5.1.5.

Although it seems that the experiments are not sufficient, this study by M.M.
Meerschaert and C. Tadjeran is the first research about finite difference methods
for fractional partial differential equations and the stability of schemes is well
analyzed. In addition, the stability condition is proven by using Gerschgorin
Theorem. The present author’s proposed finite difference methods are also ana-
lyzed by using Gerschgorin Theorem, and have common points to schemes which
are introduced in this section. Later, the present author’s experiments are done
with comparison to these schemes.

3.2 Another stability analysis using Von Neumann stability anal-
ysis

In this section, the present author introduces the paper titled ”Finite difference
approximations for a fractional advection diffusion problem” by E. Sousa as a
related work[54]. That paper also treats finite difference methods for fractional
partial differential equations. The biggest difference between that paper and the
paper which is introduced in the above section by M.M. Meerschaert and C.
Tadjeran is the way to analyze the stability. To analyze stability, E. Sousa uses
Von Neumann stability analysis instead of using matrix stability analysis. For
comparison with two stability analysis method, let us look at especially how to
analyze stability by E. Sousa. Firstly, that paper treats the following fractional
partial differential equations

∂u

∂t
+ V

∂u

∂x
= A

(
1

2
+
β

2

)R

a

Dq
x +A

(
1

2
+
β

2

)R

x

Dq
bu.

where 1 < q ≤ 2 and −1 ≤ β ≤ 1. Let Um
j be the approximation of u(xj , tn) at

the mesh points

xj = j△x, j = −N, . . . ,−2,−1, 0, 1, 2, . . . , N,

and tn = n△t, n ≥ 0 where △x denotes the space step size and △t is the time
step size. In addition, Let µq be

µq =
A△t
△xq

.
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Then, the proposed finite difference scheme is

Un+1
j

= Un
j +

µq
2

[
(1 + β)

N+j+1∑
k=0

Γ(k − q)

Γ(−q)Γ(k + 1)
Un
j+1−k

+(1− β)

N−j+1∑
k=0

Γ(k − q)

Γ(−q)Γ(k + 1)
Un
j−1+k

]

where V = 0.
Next, we apply Von Neumann stability analysis for the above scheme to give

the stability conditions. Then, stability condition is shown by the following
proposition[54].

Proposition 3.2.1 ([54]) Let −1 ≤ β ≤ 1 and 1 < q ≤ 2. If the numerical
scheme (3.4) is Von Neumann stable, then µq ≤ 21−q.

Proof
If we insert the analytical solution κneijθ into scheme (3.4), we obtain the follow-
ing amplification factor

κ(θ) = 1 +
µq
2

{
(1 + β)

∞∑
k=0

Γ(k − q)

Γ(−q)Γ(k + 1)
ei(1−k)θ

+(1− β)
∞∑
k=0

Γ(k − q)

Γ(−q)Γ(k + 1)
e−i(1−k)θ

}
.

Let us consider θ = 0 and θ = π. For θ = 0, we have

κ(0)

= 1 +
µq
2

{
(1 + β)

∞∑
k=0

Γ(k − q)

Γ(−q)Γ(k + 1)
+ (1− β)

∞∑
k=0

Γ(k − q)

Γ(−q)Γ(k + 1)

}
= 1.

For θ = π, we have

κ(π)

= 1 +
µq
2

{
(1 + β)

∞∑
k=0

Γ(k − q)

Γ(−q)Γ(k + 1)
cos((1− k)π)

+(1− β)

∞∑
k=0

Γ(k − q)

Γ(−q)Γ(k + 1)
cos((1− k)π)

}
.

Since cos((1− k)π) = (−1)k−1, it holds

κ(π)

= 1 +
µq
2

{
−(1 + β)

∞∑
k=0

Γ(q + 1)

Γ(q − k + 1)Γ(k + 1)
− (1− β)

∞∑
k=0

Γ(q + 1)

Γ(q − k + 1)Γ(k + 1)

}

= 1− µq

∞∑
k=0

Γ(q + 1)

Γ(q − k + 1)Γ(k + 1)
.
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Here, the infinite sum is

Γ(q + 1)

Γ(q − k + 1)Γ(k + 1)
= 2q,

and stability condition |κ| ≤ 1 is equivalent to

µq

∞∑
k=0

Γ(q + 1)

Γ(q − k + 1)Γ(k + 1)
≤ 2.

Therefore, we have µq ≤ 21−q.

□

This stability analysis is done in infinite domain.

3.3 Another numerical method for fractional partial differential
equations

In this section, the present author introduces the matrix transform method as
another numerical method for space-fractional partial differential equations with
homogeneous boundary conditions proposed by M. Ilic, F. Liu, I. Turner and
V. Anh[21]. This method interprets the following fractional differential equation
as the matrix representation. Firstly, let us consider the simplest homogeneous
diffusion equation with Dirichlet boundary conditions given by

∂ϕ

∂t
= κ

∂2ϕ

∂x2
, 0 < x < 1,

ϕ(0, t) = 0, ϕ(1, y) = 0,

ϕ(x, 0) = g(x).

By introducing finite difference approximation to the space derivative, we obtain

dϕi
dt

=
κ

h2
(ϕi+1 − 2ϕi + ϕi−1), i = 1, 2, . . . , N − 1

ϕ0 = 0, ϕN = 0

ϕi(0) = g(xi)

where ϕi(t) = ϕ(xi, t), h is the space step size defined as h = 1/N . The above
equation can be approximated by the following system of ordinary differential
equations as

dΦ

dt
= −ηAΦ

where η = κ/h2 and

Φ =

 ϕ1
...

ϕN−1

 , A =


2 −1
−1 2 −1

−1 2 −1
. . .

. . . −1
−1 2

 .

The matrix A is a symmetric positive definite matrix. Therefore, eigenvalues of
A are positive and eigenvectors of A are orthogonal. Initially, we have

Φ(0) = [g(h), g(2h), . . . , g((N − 1)h)]T .
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In their paper, it is written that this mean if the operator T = − ∂2

∂x2 has a matrix
representation m(T ), the diffusion equation becomes

dm(ϕ)

dt
= −κm(T )m(ϕ)

where m(ϕ) is a vector representation of ϕ. In other words, A/h2 is an approxi-
mate matrix representation of T . Therefore, their paper states that the following
fractional partial differential equations with Dirichlet boundary conditions

∂ϕ

∂t
= −κ(−△)

q
2ϕ (3.4)

can be approximated by

∂Φ

∂t
= −ηA

q
2Φ

where

(−△)
q
2 =

1

2 cos
(πq

2

) [RaDq
x +

R
xD

q
b

]
,

and η = κ/hq. Then, how can we develop this transform? Their paper firstly
treats the spectral representation. Let H be the real Hilbert space L(0, L) with
the inner product as

< ϕ1, ϕ2 >=

∫ L

0
ϕ1(x)ϕ2(x)dx.

Then, let us consider the operator T : H → H defined by Tϕ = −d2ϕ
dx2 on

H =
{
ϕ ∈ H;ϕ′ is absolutely continuous, ϕ′, ϕ′′ ∈ L(0, L),B(ϕ) = 0

}
,

where B(ϕ) denotes boundary conditions. Their paper mentions that it is known
that T is a closed, self-adjoint operator whose eigenfunctions {ϕn}∞n=1 become
an orthogonal basis for H. Thus, Tϕn = λnϕn, n = 1, 2, . . . . For any ϕ ∈ H, it
holds

ϕ =

∞∑
n=1

cnϕn, cn =< ϕ, ϕn >,

Tϕ =

∞∑
n=1

λncnϕn.

Lastly, it is written that if ψ is a continuous function on R, then we have

ψ(T )ϕ =

∞∑
n=1

ψ(λn)cnϕn,

provided
∑∞

n=1 |ϕ(λn)cn| < ∞. The present author considers that the expla-
nation about T is not enough and their paper should contain the proof of this
content, especially where the function ψ takes both the operator T and a real
number λn. However, their paper solves Eq.(3.4) by putting ψ(t) = t

q
2 , and shows

this is the reason that Eq.(3.4) can be transformed as

∂Φ

∂t
= −ηA

q
2Φ.
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Then, next the present author introduces how we compute the above equation in
their paper.

Since the matrix A is a symmetric positive definite matrix, the matrix A can
be decomposed by using an orthogonal matrix P as

A = PΛP T

where Λ is the diagonal matrix whose entries are the eigenvalues λn, n = 1, 2, . . . , N−
1 of A. Then, the solution of Eq.(3.4) is given by

Φ(t) = P exp(−ηΛ
q
2 t)P TΦ(0),

where exp(−ηΛ
q
2 t) is the diagonal matrix whose entries are exp(−ηλ

q
2
1 t), exp(−ηλ

q
2
2 t),

. . . , exp(−ηλ
q
2
N−1t). To use this method, we have to compute the decomposition

of the matrix or the q/2-th power of the matrix. Additionally, this method can
be applied only to the equations which have zero Dirichlet boundary conditions,
because the matrix A has a different form. However, this method analytically
calculate the time derivative by using exponential function, so the error of this
method seems to be smaller than other methods. In a later chapter, the present
author makes experiments with this matrix transform method for the comparison.

3.4 Existing numerical computational methods for fractional or-
dinary differential equations

3.4.1 Explicit method

In this section, the present author discusses the related works about existing nu-
merical computational methods for fractional ordinary differential equations. Es-
pecially, in this subsection, the present author introduces the predictor-corrector
method proposed in the paper titled ”A predictor-corrector approach for the
numerical solution of fractional differential equations” proposed by K. Diethelm,
N.J. Ford, A.D. Freed as one of the explicit methods[13]. This method is the most
popular explicit method to solve fractional ordinary differential equations[66, 5],
since Euler methods or Runge-Kutta methods which is popular methods to solve
integer order ordinary differential equations cannot be applied. Fractional dif-
ferentiation is not local phenomena, and has the property that it includes the
past information like integral. Therefore, this property makes it difficult to ap-
ply Euler methods or Runge-Kutta methods to fractional differential equations.
However, by applying fractional integrals, fractional ordinary differential equa-
tions can be converted to fractional integral equations. The predictor-corrector
method is rather alike the numerical methods for integral equations than for dif-
ferential equations. Then, the present author introduces the predictor-corrector
methods and how to be developed.

Here, let us consider the following fractional ordinary differential equations as

C
0D

q
xy(x) = f(x, y(x)) (3.5)

for 0 < q < 2 and 0 < x < T with initial conditions as

y(k)(0) = y
(k)
0 , k = 0, 1, . . . , ⌈q⌉ − 1.

Note that the fractional differential operator in Eq.(3.5) is Caputo definition.
The reason why we do not use Riemann-Liouville definition is written in their
paper. Let us consider the equation with Riemann-Louville definition as

R
0D

q
xy(x) = f(x, y(x)).
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The solution of this equation contains the values of fractional derivatives as initial
conditions. This means we have to deal with the fractional derivatives which does
not have a concrete physical meaning and which we cannot observe in physical
phenomena as initial conditions in applications. However, Eq.(3.5) can be solved
with the initial conditions y(0), y′(0), . . . . This property fits to consider about
applications. Yet, how to solve the fractional ordinary differential equations with
Riemann-Liouville definition is not written, and it is not verified that initial
conditions can be represented with fractional derivatives. Therefore, in later
section, the present author shows how to solve equations and confirm the initial
conditions are expressed with fractional derivatives.

Returning to the story, their paper proposes the numerical method for Eq.(3.5).
The solution of Eq.(3.5) is written as

y(x) =

⌈q⌉−1∑
k=0

y
(k)
0

xk

k!
+

1

Γ(q)

∫ x

0
(x− t)q−1f(t, y(t))dt.

Here, the present author notes that for the time step grid tj as tj = jh, j =
0, 1, . . . , n+ 1, to solve the above equation means to compute y(tn+1) under the
assumption that we already know the values of y(tj), j = 0, 1, . . . , n. Or, to
solve the equation equals to compute y(tj), j = 0, 1, . . . , n + 1 under the initial
conditions. In this section, the present author introduces the explicit method, so
the values of y(tj) are computed step by step. Then, they firstly consider how
to approximate integral in the solution. They apply trapezoidal quadrature with
equally distance nodes tj = jh, j = 0, 1, . . . , n+ 1 as∫ tn+1

0
(tn+1 − z)q−1g(z)dz ≃

∫ tn+1

0
(tn+1 − z)q−1g̃(z)dz.

The function g̃ is the piecewise linear interpolate for g with nodes tj , and we have∫ tn+1

0
(tn+1 − z)q−1g̃(z)dz =

hq

q(q + 1)

n+1∑
j=0

aj,n+1g(tj), (3.6)

where

aj,n+1 =


nq+1 − (n− q)(n+ 1)q, j = 0
(n− j + 2)q+1 − 2(n− j + 1)q+1 + (n− j)q+1, 1 ≤ j ≤ n
1, j = n+ 1

How to compute coefficients aj,n+1 is written in their paper[16]. The present
author also introduces the detail of how coefficients are derived. Let the function
ϕj be as

ϕj(u) =


(u− tj−1)/(tj − tj−1), tj−1 < u < tj
(tj+1 − u)/(tj+1 − tj), tj < u < tj+1

0, otherwise

Then, the coefficients aj,n+1 are given by

aj,n+1 =

∫ tn+1

t0

(tn+1 − u)q−1ϕj(u)du.

The key point of this method is not to approximate the kernel of integral (x−u)q−1

with trapezoidal rule. This method applies trapezoidal rule only to the function.
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As a result, the solution is expressed by using coefficients aj,n+1 as

yh(tn+1) =

⌈q⌉−1∑
k=0

y
(k)
0

xk

k!
+

hq

Γ(q + 2)
f(tn+1, y

P (tn+1))

+
hq

Γ(q + 2)

n∑
j=0

aj,n+1f(tj , y(tj)).

In the above formula, we assume that we already know the values y at tj , j =
0, 1, 2, . . . , n and assume that we do not know the value yh(tn+1). Therefore,
we put the yP (tn+1) as a temporary value. Then, the remaining problem is to
compute yP (tn+1). By applying rectangle rule to integral, we have∫ tn+1

0
(tn+1 − z)q−1g(z)dz ≃

n∑
j=0

bj,n+1g(tj) (3.7)

where

bj,n+1 =

∫ tj+1

tj

(tn+1 − u)q−1du =
hq

q
((n+ 1− j)q − (n− j)q).

By using above formula, we compute yP (tn+1) as

yP (tn+1) =

⌈q⌉−1∑
k=0

y
(k)
0

xk

k!
+

1

Γ(q)

n∑
j=0

bj,n+1f(tj , y(tj)). (3.8)

This algorithm is based on Adams-Bashforth-Moulton method, and they call
this algorithm fractional Adams-Bashforth-Moulton method. They mention that
the stability of the predictor-corrector method is at least as good as Adams-
Bashforth-Moulton method, but there is no proof or analysis of this conjecture.
About the accuracy, it is written as

max
j=0,1,...,N

|y(tj)− yh(tj)| = O(hp)

where

p = min(2, 1 + q)

where C
0D

q
t y(t) ∈ C2[0, T ], q > 0 and h = T/N . The detailed analysis of the

accuracy is shown by K. Diethelm, N.J. Ford and A.D. Freed[14].
Firstly, they analyze the accuracy of quadrature rule which is used in predictor-

corrector method. They show the analysis results for quadrature rule (3.7) in the
following theorem,

Theorem 3.4.1 ([14]) (a)Let z ∈ C1[0, T ]. Then,∣∣∣∣∣∣
∫ tn+1

0
(tn+1 − t)q−1z(t)dt−

k∑
j=0

bj,n+1z(tj)

∣∣∣∣∣∣ ≤ 1

q
||z′||∞tqn+1h.

(b)Let z(t) = tp for some p
∫
(0, 1). Then,∣∣∣∣∣∣

∫ tn+1

0
(tn+1 − t)q−1z(t)dt−

k∑
j=0

bj,n+1z(tj)

∣∣∣∣∣∣ ≤ Cp,qt
q+p−1
n+1 h

where Cp,q is a constant that depends only q and p.
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This theorem means that the quadrature rule (3.7) is the first order accuracy if
the value of tn+1 is independent to h. However, their paper does not refer the
case of accuracy decaying. This means if the value n is independent to h, the
accuracy becomes less than O(h) in the case of (b). Actually, for example, the
accuracy order becomes O(h0.2) for q = 0.1, p = 0.1 and n = 0. Next, they
analyze the quadrature rule (3.6) in a similar way in the form of theorem.

Theorem 3.4.2 ([14]) (a)If z ∈ C2[0, T ] then there is a constant CTr
q depending

only on q such that∣∣∣∣∣∣
∫ tn+1

0
(tn+1 − t)q−1z(t)dt−

k∑
j=0

aj,n+1z(tj)

∣∣∣∣∣∣ ≤ CTr
p ||z′′||∞tqn+1h

2.

(b)Let z ∈ C1[0, T ] and assume that z′ fulfils a Lipschitz condition of order µ for
some µ ∈ (0, 1). Then, there exist some positive constants BTr

q,µ (depending only
on q and µ) and M(z, µ) (depending only on z and µ) such that∣∣∣∣∣∣

∫ tn+1

0
(tn+1 − t)q−1z(t)dt−

k∑
j=0

aj,n+1z(tj)

∣∣∣∣∣∣ ≤ BTr
q,µM(z, µ)tqn+1h

1+µ.

(c)Let z(t) = tp for some p ∈ (0, 2) and θ = min(2, p+ 1). Then,∣∣∣∣∣∣
∫ tn+1

0
(tn+1 − t)q−1z(t)dt−

k∑
j=0

aj,n+1z(tj)

∣∣∣∣∣∣ ≤ CTr
q,pt

q+p−θ
n+1 hθ.

In this theorem, their paper also does not refer the case which the value of n is
independent to N or h, the accuracy decreases. Lastly, they show the accuracy of
the predictor-corrector method by using two theorems in the following Lemma.

Lemma 3.4.3 ([14]) Assume that the solution y of the fractional ordinary dif-
ferential equations is such that∣∣∣∣∣∣

∫ tn+1

0
(tn+1 − t)q−1 C

0D
q
t y(t)dt−

k∑
j=0

bj,n+1
C
0D

q
t y(tj)

∣∣∣∣∣∣ ≤ C1t
γ1
n+1h

δ1

and ∣∣∣∣∣∣
∫ tn+1

0
(tn+1 − t)q−1 C

0D
q
t y(t)dt−

k∑
j=0

aj,n+1
C
0D

q
t y(tj)

∣∣∣∣∣∣ ≤ C2t
γ2
n+1h

δ2

with some γ1, γ2 ≥ 0 and δ1, δ2 > 0. Then, we have

max
0≤j≤N

|y(tj)− yj | = O(hθ)

where θ = min{δ1+q, δ2} and yj is a numerical solution by the predictor corrector-
method at tj.

This theorem means that the accuracy depends on the form of y, C0D
q
t y and f . K.

Diethelm, N.J. Ford and A.D. Freed analyze how the accuracy depends on the
form of functions. As mentioned above, under the assumption C

0D
q
t y(t) ∈ C2[0, T ],

it holds max0≤j≤N |y(tj)− yj | = O(hp) for p = min(2, 1+ q). They also show the
accuracy with another assumption in the following theorem.
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Theorem 3.4.4 ([14]) Let 0 < q < 1 and assume that y ∈ C2[0, T ]. Then, for
1 ≤ j ≤ N we have

|y(tj)− yj | ≤ Ctq−1
j ·

{
h1+q if 0 < q < 1/2
h2−q if 1/2 ≤ q < 1

where C is a constant independent of j and h.

This theorem refers to the accuracy decaying for j = 1. For 0 < q < 1/2, the
accuracy become O(h2q) at the worst. Therefore, to improve the accuracy, they
propose to apply Richardson extrapolation.

In this subsection, the present author introduces the predictor-corrector method
as the explicit numerical method. This method has at most second accuracy, but
the accuracy may decrease depending on the form of y, C

0D
q
t y and f . The stabil-

ity analysis has never been done, so in later chapter, the present author makes
experiments about the stability, in addition to the accuracy, for the comparison
to the present author’s proposed new numerical methods.

3.4.2 Implicit method

Collocation method using Jacobi polynomials

In this subsection, the present author introduces the implicit numerical method
for fractional ordinary differential equations proposed by S. Beheshti, H. Khosravian-
Arab and I. Zare[4]. This method is based on the Jacobi polynomials, and utilizes
the common points between Jacobi polynomials and fractional differentiation. By
assuming that the solution is composed of the combination of Jacobi polynomi-
als which are orthogonal polynomials, the accuracy of solutions depends on the
number of combinations. Therefore, the accuracy is not written with order rep-
resentation or big-O notation like the predictor corrector method. In addition,
there is no reference to the stability of this method in their paper, but the stabil-
ity seems to be high because of the implicit method. The present author firstly
introduces the theorem which is used in the proposed method, and introduces
the detail of this proposed implicit method in the next place. The definitions and
properties of Jacobi polynomial are written in Section 2.7.

S. Beheshti, H. Khosravian-Arab and I. Zare show the relationship between
Jacobi polynomials and fractional calculus in the following theorem.

Theorem 3.4.5 ([4]) For q > 0 and 0 < x < L, it holds

C
0D

q
x

{
xqP

(0,q)
i

(
2x

L
− 1

)}
= giP

(q,0)
i

(
2x

L
− 1

)
where gi = Γ(i+ q + 1)/Γ(i+ 1), i = 0, . . . , n.

Note that the Jacobi polynomial P
(0,q)
i changes not to P

(0,q)
i but to P

(q,0)
i . Next,

the present author shows the proposed method in their paper. This method
targets the following fractional ordinary differential equations as

C
0D

q
xy(x) = f(x, y(x)), 0 < x < L

y(0) = a

y′(0) = b, q > 1

where the fractional calculus order is 0 < q < 2. Then, we approximate y(x) by
using unknown coefficients ci as

ỹn(x) = a+ b∗x+

n∑
i=0

cix
qP

(0,q)
i

(
2x

L
− 1

)
,
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where

b∗ =

{
0, 0 < q ≤ 1
b, 1 < q < 2.

From Theorem (3.4.5), we can approximate C
0D

q
xy(x) as

C
0D

q
xỹn(x) =

n∑
i=

cigiP
(q,0)
i

(
2x

L
− 1

)
.

Then, fractional ordinary differential equations are represented as

n∑
i=

cigiP
(q,0)
i

(
2x

L
− 1

)
= f

(
x, a+ b∗x+

n∑
i=0

cix
qP

(0,q)
i

(
2x

L
− 1

))
.

By multiplying both sides of the above equations by P
(q,0)
k (2x/L− 1)(1− x/L)q

and integrating them in the interval [0, L], we have
n∑
i=

cigi

∫ L

0
P

(q,0)
i

(
2x

L
− 1

)
P

(q,0)
k

(
2x

L
− 1

)(
1− x

L

)q
dx

=

∫ L

0
f

(
x,= a+ b∗x+

n∑
i=0

cix
qP

(0,q)
i

(
2x

L
− 1

))
P

(q,0)
k

(
2x

L
− 1

)(
1− x

L

)q
dx.

By changing variables for x = L(u + 1)/2, using orthogonality and applying
Gauss-Jacobi quadrature, we have

2q+1

2k + q + 1
gkck

=

n∑
j=0

ω
(q,0)
j f

(
ξ̂
(q,0)
j , a+ b∗ξ̂

(q,0)
j +

n∑
i=0

ci(ξ̂
(q,0)
j )qP

(0,q)
i (ξ

(q,0)
j )

)
P

(q,0)
k (ξ

(q,0)
j )

k = 0, 1, . . . , n

where ξ̂
(q,0)
j = L(ξ

(q,0)
j + 1)/2. Note that the above equations in their paper has

a misprint which is corrected in the above expression, so refer to this thesis’s
expression. The above equations have a form of a system of non-linear equations.
Therefore, we can solve about ci by using Newton’s method. There is no remark
in their paper that the number of nodes of Gauss-Jacobi quadrature is the same
to number of Jacobi-polynomials which the solution contains. The present author
considers that the number of nodes of Gauss-Jacobi quadrature can be increased
if the error of quadrature is big. However, the experiments in their paper are
done with the same number.

Lastly, the experimental results in their paper are introduced. Let f(x, y) be
f(x, y) = x/10− y(x), then the exact solution is

y(x) =
x

10
(1− Eα,2(−xα)) + y(0)Eα,1(−xα)

where the function Ea,b(t) is a Mittag-Leffler function given by

Ea,b(t) =
∞∑
k=0

tk

Γ(ak + b)
, a, b > 0.

In addition, initial conditions are y(0) = 1, y′(0) = 0. For fractional calculus
order α = 0.25, 1.5 and L = 6.4, the results are shown in Tab. 3.2 and Tab. 3.3.
These results indicate that the proposed numerical method in their paper actually
calculates the numerical results with high accuracy. In a later chapter, the present
author makes experiments of the proposed method with the comparison to this
method which is introduced in this subsection.
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x n = 10 n = 100

0.8 -2.77D-4 -1.83D-6

1.6 8.89D-4 2.36D-6

2.4 -6.48D-4 1.12D-7

3.2 4.35D-4 -7.88D-7

4.0 -1.71D-4 -1.37D-6

4.8 1.33D-4 3.35D-7

5.6 -5.58D-4 2.10D-6

6.4 -3.50D-3 -2.36D-5

Table 3.2: Errors of the present method
at different x with q = 0.25

x n = 10 n = 50

0.8 -2.46D-5 -8.10D-9

1.6 8.24D-6 -5.63D-9

2.4 -1.19D-5 -7.88D-10

3.2 1.50D-5 1.59D-9

4.0 -1.81D-5 1.80D-9

4.8 2.08D-5 -4.26D-10

5.6 3.39D-6 2.10D-9

6.4 1.43D-4 1.83D-8

Table 3.3: Errors of the present method
at different x with q = 1.5

3.4.3 Collocation method using double exponential transform method

In addition to implicit method using Lagrange polynomials, the present author
introduces the method using double exponential transform method. A method
using double exponential transform method for fractional ordinary differential
equations is ever proposed[48]. However, this method assumes only linear differ-
ential equations. This method is also a collocation method, and assumes that the
solution is given by

yN (t) = y0 +
M∑

i=−N

ci
sin(π(ϕ−1(t)/h− i))

π(ϕ−1(t)/h− i)
+ cM+1ω(t), t0 ≤ t ≤ L (3.9)

where ω(t) is defined by

ω(t) =
t− t0
L− t0

and the function ϕ is defined by

ϕ(x) = exp
(π
2
sinh(x)

)
.

The sampling points sk are defined by

sk =

{
ϕ(kh), k = −N,−(N − 1), . . . ,M,
L, k =M + 1.

Then, we have yN (sk) = y0 + ck for k = −N,−(N − 1), . . . ,M,M + 1. The
solution function is composed of sinc functions. Sinc functions are defined by

sinc(x) =
sin(x)

x
.

This function takes 1 at x = 0 as sinc(0) = 1. Here, a definition is introduced
from the paper[48].

Definition 3.4.6 ([48]) Let α and β be positive constants with α, β ≤ 1. Let
f be a function which is analytical in a simply-connected bounded domain D
including the interval (t0, L), and it holds

|f(z)− f(t0)| ≤ K|z − t0|α

|f(L)− f(z)| ≤ K|L− z|β
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where there exists some positive integer K. Let Mα,β(D) be the set of such func-
tions f . In addition, let d be a positive integer, and define Dd by

Dd = {ζ ∈ C : |Imζ| < d} .

From this definition, this method assume that the solution function must be
analytical, and f(t0) = 0, f(L) = 0. Actually, the summation of the function
(3.9) takes 0 for t = t0, L. In other words, this method does not assume that
the solution function takes infinity in the closed interval [t0, L]. However, if the
solution function satisfies the above definition, the accuracy of this method is
represented with

max
t0≤t≤L

|y(t)− yN (t)| ≤ C log2(N + 1) exp(−πdN/ log(2dN/q))

according to the paper[48]. Here, let us obtain the non-linear system of equa-
tions by using double exponential transform. By applying changing variable to
fractional ordinary differential equations as u = (t0 + vt)/(1 + v), we have

y(t)− y0 =
(t− t0)

q

Γ(q)

∫ ∞

0
(1 + v)−1−qf

(
t0 + vt

1 + v
, y

)
dv.

By applying double exponential transform as v = ϕ(x) = exp
(
π
2 sinh(x)

)
, we

have

y(t)− y0

=
(t− t0)

q

Γ(q)

∫ ∞

−∞
(1 + ϕ(x))−1−qf

(
t0 + ϕ(x)t

1 + ϕ(x)
, y

)
·ϕ(x)π

2
cosh(x)dx. (3.10)

From the paper[48], let the value of M and h be

h =
log(2dN/q)

N

M = N + ⌈ log(q)
h

⌉.

Applying trapezoidal rule, we obtain

ck − y0

=
(sk − t0)

qh

Γ(q)

M−1∑
j=−N+1

(1 + ϕ(jh))−1−qf

(
t0 + ϕ(jh)sk
1 + ϕ(jh)

, yN

)
ϕ(jh)

π

2
cosh(jh)

+
(sk − t0)

qh

2Γ(q)
(1 + ϕ(−Nh))−1−qf

(
t0 + ϕ(−Nh)sk
1 + ϕ(−Nh)

, yN

)
ϕ(−Nh)π

2
cosh(−Nh)

+
(sk − t0)

qh

2Γ(q)
(1 + ϕ(Mh))−1−qf

(
t0 + ϕ(Mh)sk
1 + ϕ(Mh)

, yN

)
ϕ(Mh)

π

2
cosh(Mh)

where k = −N, . . . ,M + 1. By solving this non-linear system of equations, the
coefficients ck are obtained.

Generally, the function v = tanh(π sinh(x)/2) is used for double exponen-
tial transformation. However, for the computation of fractional integral, that
transform tends to make the cancellation of significant digits. To solve this dif-
ficulty, the present author employs the transform as v = exp

(
π
2 sinh(x)

)
in the

experiments of Section 7.4.3. Note that double exponential transform methods
are likely to cause other computational errors. Hence, we have to make a code
attentively.
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Chapter 4

Finite difference formulae for fractional

calculus

4.1 Existing high accuracy finite difference formulae

Before the discussion of the proposed numerical methods for fractional differ-
ential equations, the author presents the existing high accuracy finite difference
formulae proposed in the author’s master thesis[57]. The proposed numerical
methods in this thesis are based on those finite difference formulae, and the high
accuracy of the proposed methods is produced from the high accuracy of those
formulae. Therefore, the author briefly introduces how those formulae are ob-
tained, and makes some experiments to confirm the accuracy. Let the fractional
calculus order q be an arbitrary real number, a be a constant and a function f be
infinitely many times continuously differentiable. Then, the first order accuracy
finite difference formula is given by

R
aD

q
xf(x) =

hq

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)
f(x− jh) +O

(
1

N

)
(4.1)

where h is h = (x− a)/N . This formula is the same to the formula proposed by
K.B. Oldham[49]. However, the author proves that the accuracy of the formula
(4.1) is actually first order accuracy. The second order accuracy formula is given
by

R
aD

q
xf(x)

=
hq

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)

[
f(x− jh) +

qh

2
f ′(x− jh)

]

+
h−q

Γ(−q)
1 + q

2
f(a)N−1−q +O

(
1

N2

)
. (4.2)

This second accuracy formula (4.2) is used in the proposed finite difference meth-
ods and explicit methods for fractional partial and ordinary differential equations
to get high accuracy. The third order accuracy formula and fourth order accuracy
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formula are given by

R
aD

q
xf(x)

=
hq

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)

[
f(x− jh) +

qh

2
f ′(x− jh) +

(3q2 − q)h2

24
f ′′(x− jh)

]

+
h−q

Γ(−q)
1 + q

2
f(a)N−1−q +

h−q

Γ(−q)
(1 + q)(2 + q)(1 + 3q)

24
f(a)N−2−q

+
h1−q

Γ(−q)
(1 + q)(2 + 3q)

48
f ′(a)N−1−q +O

(
1

N3

)
(4.3)

and

R
aD

q
xf(x)

=
hq

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)

[
f(x− jh) +

qh

2
f ′(x− jh)

+
(3q2 − q)h2

24
f ′′(x− jh) +

(q3 − q2)h3

48
f ′′′(x− jh)

]
+

h−q

Γ(−q)
1 + q

2
f(a)N−1−q +

h−q

Γ(−q)
(1 + q)(2 + q)(1 + 3q)

24
f(a)N−2−q

+
h1−q

Γ(−q)
(1 + q)(2 + 3q)

48
f ′(a)N−1−q +

h−q

Γ(−q)
q(1 + q)2(2 + q)(3 + q)

48
f(a)N−3−q

− h1−q

Γ(−q)
(1 + q)2(2 + q)

24
f ′(a)N−2−q − h2−q

Γ(−q)
q(1 + q)2

48
f ′′(a)N−1−q

+O

(
1

N4

)
. (4.4)

Note that all formulae have the accuracy not for h → 0 but for N → ∞. This
means that for N = 1 and h → 0, all formulae do not guarantee their accuracy.
Those formulae are approximation of Riemann-Liouville fractional differential for
q > 0 and fractional integral for q < 0. Next, the author shows how to obtain
those formulae.

Let us assume that fractional calculus order q is q < 0. This means that we
firstly consider the case of fractional integral. Then, fractional integral is defined
as

aD
q
xf(x) =

1

Γ(−q)

∫ x

a

f(t)

(x− t)1+q
dt.

By dividing the integral into N parts and applying changing variables for u =
x− t, we have

= lim
ϵ→0

1

Γ(−q)

∫ h

0

f(x− u)

u1+q
du+

1

Γ(−q)

N−1∑
j=1

∫ (j+1)h

jh

f(x− u)

u1+q
du.

By applying changing variables for u = jh− t and Taylor expansion to function
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g(y) = f(y)/(x− y)1+q, and we have

= lim
ϵ→0

1

Γ(−q)

∫ 0

−h
g(x− h+ t− ϵ)dt+

1

Γ(−q)

N−1∑
j=1

∫ 0

−h
g(x− jh+ t)dt

=
1

Γ(−q)

N−1∑
j=0

∞∑
n=0

g(n)(x− jh)(−1)n
hn+1

(n+ 1)!

=
1

Γ(−q)

N−1∑
j=0

[
f(x− jh)

h−q

jq

∞∑
n=1

∏n
k=1(k − 1 + q)

qjnn!
(−1)n+1

−f ′(x− jh)
h1−q

jq

∞∑
n=1

∏n
k=1(k − 1 + q)

q

n

jn(n+ 1)!
(−1)n+1

+f ′′(x− jh)
h2−q

jq

∞∑
n=2

∏n
k=2(k − 2 + q)

q

n(n− 1)

2jn−1(n+ 1)!
(−1)n+1

−f ′′′(x− jh)
h3−q

jq

∞∑
n=3

∏n
k=3(k − 3 + q)

q

n(n− 1)(n− 2)

6jn−2(n+ 1)!
(−1)n+1

]
+O

(
1

N4

)
.

Here, by using the Lemma 5.5 in the thesis[57], we can also prove that each term
has a unique order as

1

Γ(−q)

N−1∑
j=0

f (m)(x− jh)
hm−q

jq

∞∑
n=1

∏n
k=m(k −m+ q)

q

∏m
l=1(n+ 1− l)

m!jn−m+1(n+ 1)!
(−1)n+1

= O(
1

Nm
).

Then, infinite sums of each term can be folded by applying Taylor expansion.
For example, define ξ(x) as

ξ1(x) =
−1

(1 + x− b)q

where x− b = 1/j. By using this function, the infinite sum in the first term can
be represented as

f(x− j)
h−q

qjq

{
q

j
− q(1 + q)

j22!
+
q(1 + q)(2 + q)

j33!
− . . .

}
= f(x− j)

h−q

qjq

{
ξ′1(b)(x− b) +

ξ′′1 (b)(x− b)2

2!
+
ξ′′′1 (b)(x− b)3

3!
+ . . .

}
= f(x− j)

h−q

qjq
{ξ1(x)− ξ1(b)}

= f(x− j)
h−q

qjq

{
−1

(1 + 1/j)q
+ 1

}
= f(x− j)

h−q

q

{
−(1 + j)−q + j−q

}
The infinite sum in the second term can be folded by using two functions ξ1(x)
and ξ2(x) where

ξ2(x) =
−1

(1 + x− b)q−1
.

38



Then, the infinite sum in the second term can be folded as

−f ′(x− jh)
h1−q

jq

{
1

j2!
− 2(1 + q)

j23!
+

3(1 + q)(2 + q)

j34!
− . . .

}
= −f ′(x− jh)

h1−q

jq

{(
1

1
− 1

2

)
1

j
−
(
1

2!
− 1

3!

)
(1 + q)

j2
+

(
1

3!
− 1

4!

)
(1 + q)(2 + q)

j3
− . . .

}
= −f ′(x− jh)

h1−q

jq

{
1

1

1

j
− 1

2!

(1 + q)

j2
+

1

3!

(1 + q)(2 + q)

j3
− . . .

}
−f ′(x− jh)

h1−q

jq−1

{
−1

2

1

j2
+

1

3!

(1 + q)

j3
− 1

4!

(1 + q)(2 + q)

j4
− . . .

}
.

Here, by substituting with ξ1(x) and ξ2(x), we have

= −f ′(x− jh)
h1−q

qjq

{
ξ′1(b)(x− b) +

ξ′′1 (b)(x− b)2

2!
+
ξ′′′1 (b)(x− b)3

3!
+ . . .

}
−f ′(x− jh)

h1−q

(q − 1)qjq−1

{
ξ′′2 (b)(x− b)2

2!
+
ξ′′′2 (b)(x− b)3

3!
+
ξ′′′′4 (b)(x− b)4

4!
+ . . .

}
= −f ′(x− jh)

h1−q

qjq
{ξ1(x)− ξ1(b)}

−f ′(x− jh)
h1−q

(q − 1)qjq−1

{
ξ2(x)− ξ2(b)− ξ′2(b)(x− b)

}
= −f ′(x− jh)

h1−q

qjq

{
−1

(1 + 1/j)q
+ 1

}
−f ′(x− jh)

h1−q

(q − 1)qjq−1

{
−1

(1 + 1/j)q−1
+ 1− q − 1

j

}
= −f ′(x− jh)

h1−q

q

{
−(1 + j)−q + j−q

}
−f ′(x− jh)

h1−q

(q − 1)q

{
−(1 + j)1−q + j1−q − (q − 1)j−q

}
In a similar way, we can fold the infinite sums. Then, fractional integral can be
approximated as

aD
q
xf(x)

= h−q
N−1∑
j=0

[
f(x− jh)

(j + 1)−q − j−q

Γ(1− q)

]
+O

(
1

N

)
, (4.5)

aD
q
xf(x)

= h−q
N−1∑
j=0

[
f(x− jh)

(j + 1)−q − j−q

Γ(1− q)

+hf ′(x− jh)

{
−(j + 1)−q

Γ(1− q)
+

(j + 1)1−q

Γ(2− q)
− j1−q

Γ(2− q)

}]
+O

(
1

N2

)
, (4.6)
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aD
q
xf(x)

= h−q
N−1∑
j=0

[
f(x− jh)

(j + 1)−q − j−q

Γ(1− q)

+hf ′(x− jh)

{
−(j + 1)−q

Γ(1− q)
+

(j + 1)1−q

Γ(2− q)
− j1−q

Γ(2− q)

}
+h2f ′′(x− jh)

{
(j + 1)−q

2!Γ(1− q)
− (j + 1)1−q

Γ(2− q)
+

(j + 1)2−q

Γ(3− q)
− j2−q

Γ(3− q)

}
+O

(
1

N3

)
, (4.7)

aD
q
xf(x)

= h−q
N−1∑
j=0

[
f(x− jh)

(j + 1)−q − j−q

Γ(1− q)

+hf ′(x− jh)

{
−(j + 1)−q

Γ(1− q)
+

(j + 1)1−q

Γ(2− q)
− j1−q

Γ(2− q)

}
+h2f ′′(x− jh)

{
(j + 1)−q

2!Γ(1− q)
− (j + 1)1−q

Γ(2− q)
+

(j + 1)2−q

Γ(3− q)
− j2−q

Γ(3− q)

}
+h3f ′′′(x− jh)

{
− (j + 1)−q

3!Γ(1− q)
+

(j + 1)1−q

2!Γ(2− q)
− (j + 1)2−q

Γ(3− q)

+
(j + 1)3−q

Γ(4− q)
− j3−q

Γ(4− q)

}]
+O

(
1

N4

)
. (4.8)

The above formula (4.8) is essential to calculate fractional integral numerically.
In fact, a part of formula (4.8) is used in the predictor-corrector method proposed
by K. Diethelm, N.J. Ford, A.D. Freed[13]. The first term in the formula (4.8)
can be transformed to the first order accuracy method (3.8) which is used in the
predictor-corrector method. By changing counting order, we have

h−q
N−1∑
j=0

f(x− jh)
(j + 1)−q − j−q

Γ(1− q)

= h−q
N−1∑
j=0

f(a+ h+ jh)
(N − j)−q − (N − 1− j)−q

Γ(1− q)
.

By applying Taylor expansion, we have

= h−q
N−1∑
j=0

f(a+ jh)
(N − j)−q − (N − 1− j)−q

Γ(1− q)
+O

(
1

N

)
.

By converting constants as −q := q, N−1 := n, a := t0, x := tn, h := (tn−t0)/n,
the above formula equals to the first order accuracy formula (3.8) in the predictor-
corrector method. In a similar way, the second order accuracy formula (3.6) in the
predictor-corrector method is also developed from the formula (4.8). In addition,
the third order accuracy formula and higher order accuracy formulae also can be
constructed.

The formula (4.8) can compute fractional integral accurately, but cannot com-
pute fractional differential. Actually, for j = 0 and q > 0, that formula diverges.
To avoid this divergence and to change that formula for the computation of frac-
tional differential, we compare it to a ratio of gamma functions. The detail is
written in Lemma 5.8 in the thesis[57]. The author introduces that lemma.
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Lemma 4.1.1 If function f is infinitely many times continuously differentiable
and analytical on x, it holds∣∣∣∣∣∣ h

−q

Γ(−q)

N−1∑
j=0

f(x− jh)

{
−(j + 1)−q

q
+
j−q

q
− Γ(j − q)

Γ(j + 1)

}∣∣∣∣∣∣ = O

(
1

N

)
This lemma means that the formula (4.8) can be converted into a ratio of gamma
functions. By applying this lemma, we obtain the fourth order accuracy formula
(4.4). When we develop this formula, we assume that fractional calculus order q
is negative. However, this formula also can compute fractional differential in the
meaning of Riemann-Liouville definition. This fact can be verified by applying
integer order differential to both sides. For example, the first order accuracy
formula is given by [

d

dx

]
aD

q
xf(x)

= aD
1+q
x f(x)

=

[
d

dx

]
h−q

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)
f(x− jh)

=
−q
N

h−q−1

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)
f(x− jh)

+
h−q

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)

N − j

N
f ′(x− jh).

By applying Taylor expansion to f ′(x− jh), we have

=
h−q−1

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)

[
−q
N
f(x− jh)

+
N − j

N

{
f(x− jh)− f(x− (j + 1)h) +

h2

2
f ′′(x− jh) +O

(
1

N3

)}]
Here, the terms about h2f ′′(x − jh)/2 and O(1/N3) are the first order O(1/N)
as

h−q−1

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)

N − j

N

{
h2

2
f ′′(x− jh) +O

(
1

N3

)}
= O

(
1

N

)
Therefore, we have

=
h−q−1

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)

[
N − j − q

N
f(x− jh)− N − j

N
f(x− (j + 1)h)

]
+O

(
1

N

)

=
h−q−1

Γ(−q)

N−1∑
j=0

f(x− jh)

[
N − j − q

N

Γ(j − q)

Γ(j + 1)
− N − j + 1

N

Γ(j − 1− q)

Γ(j)

]

−h
−1−q

Γ(−q)
Γ(N − 1− q)

Γ(N)

f(a)

N
+O

(
1

N

)
=

h−q−1

Γ(−q)

N−1∑
j=0

Γ(j − 1− q)

Γ(j + 1)
f(x− jh)

{
q + q2

N
+ (−1− q)

}
+O

(
1

N

)

=
h−q−1

Γ(−q − 1)

N−1∑
j=0

Γ(j − 1− q)

Γ(j + 1)
f(x− jh) +O

(
1

N

)
.
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By repeating this operation, we have arbitrary degree fractional differential. In
a similar way, it is verified that the formula (4.2), the formula (4.3) and the
formula (4.4) are respectively second order accuracy, third order accuracy and
fourth order accuracy for fractional differential.

4.2 Numerical experiments

In this section, let us check the accuracy of formulae which are proposed in the
thesis[57]. The experiments are done with the following five formulae.

R1
a Dq

xf(x) =
h−q

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)
f(x− jh) (4.9)

R2
a Dq

xf(x)

=
h−q

Γ(−q)

N−1∑
j=0

Γ(j − q)

Γ(j + 1)

[
f(x− jh) +

q

2
{f(x− jh)− f(x− (j + 1)h)}

]
+

h−q

Γ(−q)
1 + q

2
f(a)N−1−q (4.10)

1
aD

q
xf(x) = h−q

N−1∑
j=0

f(x− (j + 1)h)
(j + 1)−q − j−q

Γ(1− q)
(4.11)

2
aD

q
xf(x) = h−q

N−1∑
j=0

[
f(x− jh)

{
−j−q

Γ(1− q)
+

(j + 1)1−q − j1−q

Γ(2− q)

}

−f(x− (j + 1)h)

{
−(j + 1)−q

Γ(1− q)
+

(j + 1)1−q − j1−q

Γ(2− q)

}]
(4.12)

3
aD

q
xf(x)

= h−q
N−2∑
j=0

[
f(x− jh)

(j + 1)−q − j−q

Γ(1− q)

+
3f(x− jh)− 4f(x− (j + 1)h) + f(x− (j + 2)h)

2

·
{
−(j + 1)−q

Γ(1− q)
+

(j + 1)1−q − j1−q

Γ(2− q)

}
+ {f(x− jh)− 2f(x− (j + 1)h) + f(x− (j + 2)h)}

{
(j + 1)−q

2!Γ(1− q)

− (j + 1)1−q

Γ(2− q)
+

(j + 1)2−q − j2−q

Γ(3− q)

}]
+h−q

[
f(a+ h)

N−q − (N − 1)−q

Γ(1− q)

+

{
3f(a+ h)− 4f(a+

h

2
) + f(a)

}{
−N−q

Γ(1− q)
+
N1−q − (N − 1)1−q

Γ(2− q)

}
+

{
2f(a+ h)− 4f(a+

h

2
) + 2f(a)

}{
N−q

2!Γ(1− q)

− N1−q

Γ(2− q)
+
N2−q − (N − 1)2−q

Γ(3− q)

}]
(4.13)
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The formula (4.9) is the first order accuracy, and has the form which is elimi-
nated the limitation from Grunwald-Letnikov definition. Therefore, this formula
is sometimes called Grunwald-Letnikov formula. The formula (4.10) is the second
order accuracy formula, and is given by applying Taylor expansion to f ′(x−jh) in
the formula (4.2). Before the introduction of this second order accuracy formulae
in the thesis[57], the second order accuracy formula which can compute not only
fractional integral but fractional differential has never found. By some transfor-
mation to the formula (4.10), the author’s proposed finite difference methods will
be developed. The formula (4.11) is first order accuracy formula, and given by
applying Taylor expansion to the formula (4.5). This formula is equivalent to
the formula (3.8) which is used in the predictor-corrector method. The formula
(4.12) is the second order accuracy, and is given by applying Taylor expansion to
f ′(x − jh) in the formula (4.6). This formula is equivalent to the formula (3.6)
in the predictor-corrector method. From this, we can see that the formulae (4.5)
and (4.6) are the general form of the formulae which is used in the predictor-
corrector method. The last formula (4.13) is a third order accuracy formula, and
is obtained by applying Taylor expansion as

hf ′(x− jh) =
3f(x− jh)− 4f(x− (j + 1)h) + f(x− (j + 2)h)

2
+O

(
1

N3

)
,

j = 0, 1, . . . , N − 2

h2f ′′(x− jh) = {f(x− jh)− 2f(x− (j + 1)h) + f(x− (j + 2)h)}+O

(
1

N3

)
,

j = 0, 1, . . . , N − 2

hf ′(a+ h) = {3f(a+ h)− 4f(a+
h

2
) + f(a)}+O

(
1

N3

)
,

h2f ′′(a+ h) = {2f(a+ h)− 4f(a+
h

2
) + 2f(a)}+O

(
1

N3

)
.

This formula will be used in the author’s proposed numerical methods for frac-
tional ordinary differential equations. The formulae (4.11), (4.12) and (4.13) can
compute only fractional integral and the fractional calculus order q must be q < 0.

The first experiments deal with the following function

f(x) = 1− x+ x2 − x3 + x4

where a = 0. The analytical result is given by

0D
q
xf(x) =

x−q

Γ(1− q)
− x1−q

Γ(2− q)
+

2x2−q

Γ(3− q)
− 6x3−q

Γ(4− q)
+

24x4−q

Γ(5− q)
.

The experiments are done with various q and N .
Figure (4.1) shows the errors of each numerical method for q = 0.3 at x = 2

with the function f . The formula (4.9) and the formula (4.10) calculate with the
first and second order accuracy respectively. Figure (4.2) also shows the errors
for q = 1.3 at x = 2 with the function f . The results indicate each numerical
methods calculate with the expected accuracy. Figure (4.3) and Figure (4.4) are
the results of errors for q = −0.3 and q = −1.3 respectively at x = 2 with the
function f . All numerical methods calculate with the expected accuracy also in
integrals.

The second experiments deal with the following function

g(x) = 1− x0.2 + x0.4 − x0.6 + x0.8 − x
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Figure 4.1: Errors for q = 0.3 at x = 2 Figure 4.2: Errors for q = 1.3 at x = 2

Figure 4.3: Errors for q = −0.3 at x = 2 Figure 4.4: Errors for q = −1.3 at x = 2

where a = 0. This function is not differentiable at x = 0. The analytical result
is given by

0D
q
xg(x) =

x−q

Γ(1− q)
− Γ(1.2)x0.2−q

Γ(1.2− q)
+

Γ(1.4)x0.4−q

Γ(1.4− q)

−Γ(1.6)x0.6−q

Γ(1.6− q)
+

Γ(1.8)x0.8−q

Γ(1.8− q)
− x1−q

Γ(2− q)
.

The experiments are done with various q and N .
Figure 4.5 shows the errors produced by the formulae 4.9 and 4.10 for q = 0.3

at x = 2 with the function g. The results indicate that the errors of the formula
4.9 is the first order accuracy, and the errors of the formula 4.10 is 1.2 order
accuracy. This means that the accuracy order of the formula 4.10 decays from
the second order to 1.2 order. The reason is the function g is not differentiable
at x = a = 0. If we numerically differentiate the function which is not smooth at
x = a, the accuracy of numerical methods may decay and the expected accuracy
order may be not obtained. Figure 4.6 also shows the results of accuracy decaying
for q = 1.3 with the function g. The results in Figure 4.7 and Figure 4.8 show
that the accuracy decaying is also caused for fractional integral. This phenomenon
also happens for the formulae 4.10 and 4.13. However, this phenomenon is also
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Figure 4.5: Errors for q = 0.3 at x = 2 Figure 4.6: Errors for q = 1.3 at x = 2

Figure 4.7: Errors for q = 0.3 at x = 2 Figure 4.8: Errors for q = 1.3 at x = 2

common to integer order integral. Figure (4.9) shows the errors of trapezoidal
rule at x = 2 with the function g. This means this result is for q = 1. The
expected accuracy order of trapezodal rule is the second order, but the results
have only 1.2 order. From this experiment, we see that this accuracy decaying
happens not only in fractional calculus but in integer order calculus. Then, how
much does the accuracy decay? Experiments indicate that the accuracy order
decrease to 1 + p order if the differentiated function f(x) is f(x) = tp for non-
integer p. K. Diethelm, K. Ford and N.J. Freed also point out that the accuracy
order of the formula (4.12) decrease from 2 to 1+p for the differentiated function
f(x) = tp[14]. However, there is not any detail of the proof which how much
the accuracy decays. Generally, it seems to be difficult to prove how much the
accuracy decays. For example, let us consider to integrate the function z(x) = xp
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Figure 4.9: Errors of trapezoidal rule at x = 2

from 0 to 1 by using trapezoidal rule. Then, for non-integer 0 < p < 1, we have∫ 1

0
xpdx− h

2

N−1∑
j=0

(jh)p + ((j + 1)h)p

=
1

1 + p
+
h

2
(Nh)p − h

N∑
j=1

(jh)p

=
1

1 + p
+

1

2N
−
(

1

N

)1+p N∑
j=1

jp

=

(
1

N

)1+p
N1+p

1 + p
+
Np

2
−

N∑
j=1

jp


=

(
1

N

)1+p N∑
j=1

j1+p − (j − 1)1+p

1 + p
+
jp − (j − 1)p

2
− jp

=

(
1

N

)1+p N∑
j=1

(
1

3!
− 1

2 · 2!

)
p(p− 1)

j2−p
−
(
1

4!
− 1

2 · 3!

)
p(p− 1)(p− 2)

j3−p
· · · .

Here, the infinite summations
∑∞

j=1 j
p−k, k = 2, 3, . . . are Riemann zeta func-

tions, and converge to constants. Therefore, the above expression has the order
O(1/N1+p) for N → ∞. However, this accuracy decaying is not significant in in-
teger order calculus, because integer order calculus tends to assume smooth func-
tions and differentiated and integrated functions are also smooth. In contrast,
fractional calculus gives the singularity to functions, and we have to assume the
non-smooth functions as f(x) = tp.
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Chapter 5

Fractional partial differential equations

5.1 Space-fractional partial differential equations

5.1.1 Our proposed finite difference method for fractional partial dif-
ferential equations

In this section, the author discusses the finite difference methods for space-
fractional differential equations. As the author introduced in Chapter 2, space-
fractional differential equations express a diffusion process whose particles have
an infinite variance. Therefore, to solve these equations, we can simulate such
a diffusion process and predict physical phenomenon which is controlled by the
process which is not represented with integer order calculus. The finite difference
method is one of the numerical solving methods for fractional partial differential
equations, and is popular method because of easiness of coding. However, to use
that method, we have to care about not only accuracy but stability. If we use
unstable methods, the error is amplified and the solution diverges. Although the
stability is a significant factor, we cannot make stable methods simply by sub-
stituting difference formulae. In addition, there are two kinds of finite difference
methods in general, explicit methods and implicit methods. Explicit methods
mean that we can compute the solutions without solving equations, and we can
calculate the solutions with easy arithmetic operations. In contrast, implicit
methods mean that we have to solve equations for each time step. Therefore, if
the size of problem is very large, it takes longer time to solve by using implicit
methods than explicit methods in the same time steps. This property sometimes
does not fit some applications. However, there is also property that implicit meth-
ods are generally more stable than explicit methods. Hence, this thesis propose
both explicit and implicit finite difference methods.

In this thesis, the author treats the following one dimensional space-fractional
partial differential equation as

∂u(x, t)

∂t
=
C

2

[
R
LD

q
xu(x, t) +

R
xD

q
Ru(x, t)

]
, (5.1)

and the following two dimensional space-fractional partial differential equation
as

∂u(x, y, t)

∂t

=
C

2

[
R
LXD

q
xu(x, y, t)

+R
xD

q
RXu(x, y, t) +

R
LYD

q
yu(x, y, t) +

R
yD

q
RY u(x, y, t)

]
. (5.2)

Space-fractional partial differential equations express diffusion phenomena whose
particles follow random walk with heavy tailed distribution. The derivation of
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Figure 5.1: Grids

fractional partial differential equations are written in Chapter 2. From the deriva-
tion, it is obvious that the range of the fractional order q is limited as 0 < q < 2
and the constant C is defined as C < 0 for 0 < q < 1 and C > 0 for 1 < q < 2.
Sometimes equations have the force term f like

∂u(x, t)

∂t
=
C

2

[
R
LD

q
xu(x, t) +

R
xD

q
Ru(x, t)

]
+ f(x, t).

There are many kinds of boudary conditions for partial differential equations,
but this thesis treats only Dirichlet boundary conditions. Dirichlet boundary
conditions are defined as the solution function takes a constant at boundaries
like u(L, t) = a, u(R, t) = b.

Finite difference methods calculate numerical solutions at each grid. In this
thesis, we assume the grid in Figure 5.1. This grid is for one dimensional par-
tial differential equations, but partial differential equations on two dimensional
space will be discussed as well. Red line denotes the initial condition and green
lines denote the boundary conditions. Let Nx and Ny be the grid number for
space with x axis and y axis respectively, and let Nt be the grid number for
time. In addition, let hx be the grid size for space as (R − L)/Nx, and let ht
be the grid size for time as T/Nt where T is a constant. Let Um

j be an approx-
imate solution to u(jhx,mht). For two dimensional equations, Let Um

j,k be an
approximate solution to u(jhx, khy,mht). Let f

m
j and fmj,k be the approximation

of the force term f(jhx,mht) for one-dimensional problem and f(jhx, khy,mht)
for two-dimensional problem respectively.

The existing finite difference methods, which is explained in Chapter 3, have
been proposed by M.M. Meerschaert and C. Tadjeran[40]. The existing explicit
scheme (3.2) is given by

Um+1
j − Um

j

ht

=
1

hqx

C

2

[
j+1∑
i=0

Γ(i− q)

Γ(−q)Γ(i+ 1)
Um
j−i+1 +

Nx−j+1∑
i=0

Γ(i− q)

Γ(−q)Γ(i+ 1)
Um
j+i−1

]
+fmj (5.3)
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where 1 < q < 2. The stability condition is ht ≤ hqx/(Aq). The existing implicit
scheme (3.1) is given by

Um+1
j − Um

j

ht

=
1

hqx

C

2

[
j+1∑
i=0

Γ(i− q)

Γ(−q)Γ(i+ 1)
Um+1
j−i+1 +

Nx−j+1∑
i=0

Γ(i− q)

Γ(−q)Γ(i+ 1)
Um+1
j+i−1

]
+fm+1

j . (5.4)

where 1 < q < 2. This scheme is unconditionally stable. The accuracy of both
scheme is O(ht)+O(hx). This means that the accuracy is the first order for time
and space, and depends on both the time and the space step sizes. In contrast,
all the author’s proposed schemes have the accuracy order O(ht) + O(h2x). The
accuracy about time step can be improved with existing methods in the same way
of finite difference methods for integer order differential equations. Our proposed
explicit method for one dimensional equation is given by

Um+1
j − Um

j

ht

=
C

2

[
h−q
x

Γ(−q)

j−1∑
i=0

Γ(i− q)

Γ(i+ 1)

{
4s+ q

4
Um
j+1−i + (1− 2s)Um

j−i +
4s− q

4
Um
j−1−i

}

+
h−q
x

Γ(−q)

Nx−j−1∑
i=0

Γ(i− q)

Γ(i+ 1)

{
4s+ q

4
Um
j−1+i + (1− 2s)Um

j+i +
4s− q

4
Um
j+1+i

}

+
h−q
x

Γ(−q)
Γ(j − q)

Γ(j + 1)

4s+ q

4
Um
1 +

h−q
x

Γ(−q)
Γ(Nx − j − q)

Γ(Nx − j + 1)

4s+ q

4
Um
Nx−1

+h−q
x

{
j−q

Γ(1− q)
− Γ(j − q)

Γ(1− q)Γ(j)
− Γ(j − q)

Γ(−q)Γ(j + 1)

4s+ q

4

}
Um
0

+h−q
x

{
(Nx − j)−q

Γ(1− q)
− Γ(Nx − j − q)

Γ(1− q)Γ(Nx − j)
− Γ(Nx − j − q)

Γ(−q)Γ(Nx − j + 1)

4s+ q

4

}
Um
Nx

]
+fmj (5.5)

for j = 1, 2, . . . , Nx − 1. As a significant property, this scheme has a parameter
s, and the stability of the scheme depends on the value of s. This scheme can
be represented by using matrices as U⃗m+1 = (E + A)U⃗m + f⃗m where U⃗m =
(Um

0 , U
m
1 , . . . , U

m
Nx

)T and f⃗m = (fm0 , f
m
1 , . . . , f

m
Nx

)T and the matrix E is an iden-
tity matrix. The entries ai,j of the matrix A are defined as

A =



0 0 0 . . . 0 0
a1,0 a1,1 a1,2 . . . a1,Nx−1 a1,Nx

a2,0 a2,1 a2,2 . . . a2,Nx−1 a2,Nx

...
...

...
. . .

...
...

aNx−1,0 aNx−1,1 aNx−1,2 . . . aNx−1,Nx−1 aNx−1,Nx

0 0 0 . . . 0 0


.

Here, the entries ai,j for i = 1, 2, . . . , Nx − 1, j = 1, 2, . . . , Nx − 1 are symmetric
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and given by

an,n =
Cr

2

[
2g0(1− 2s) + 2g1

4s+ q

4

]
an,n+1 = an+1,n =

Cr

2

[
g0

4s+ q

4
+ g0

4s− q

4
+ g1(1− 2s) + g2

4s+ q

4

]
an,n+2 = an+2,n =

Cr

2

[
g1

4s− q

4
+ g2(1− 2s) + g3

4s+ q

4

]
an,n+3 = an+3,n =

Cr

2

[
g2

4s− q

4
+ g3(1− 2s) + g4

4s+ q

4

]
...

an,n+k = an+k,n =
Cr

2

[
gk−1

4s− q

4
+ gk(1− 2s) + gk+1

4s+ q

4

]
...

for n = 1, 2, . . . , Nx − 1 where r = ht/h
q
x and gk = Γ(k − q)/(Γ(−q)Γ(k + 1)).

The author’s proposed implicit method for one dimensional equation is given by

Um
j − Um−1

j

ht

=
C

2

[
h−q
x

Γ(−q)

j−1∑
i=0

Γ(i− q)

Γ(i+ 1)

{
4s+ q

4
Um
j+1−i + (1− 2s)Um

j−i +
4s− q

4
Um
j−1−i

}

+
h−q
x

Γ(−q)

Nx−j−1∑
i=0

Γ(i− q)

Γ(i+ 1)

{
4s+ q

4
Um
j−1+i + (1− 2s)Um

j+i +
4s− q

4
Um
j+1+i

}

+
h−q
x

Γ(−q)
Γ(j − q)

Γ(j + 1)

4s+ q

4
Um
1 +

h−q
x

Γ(−q)
Γ(Nx − j − q)

Γ(Nx − j + 1)

4s+ q

4
Um
Nx−1

+h−q
x

{
j−q

Γ(1− q)
− Γ(j − q)

Γ(1− q)Γ(j)
− Γ(j − q)

Γ(−q)Γ(j + 1)

4s+ q

4

}
Um
0

+h−q
x

{
(Nx − j)−q

Γ(1− q)
− Γ(Nx − j − q)

Γ(1− q)Γ(Nx − j)
− Γ(Nx − j − q)

Γ(−q)Γ(Nx − j + 1)

4s+ q

4

}
Um
Nx

]
+fmj (5.6)

for j = 1, 2, . . . , Nx−1. The matrix representation of the scheme (5.6) is expressed
as (E−A)U⃗m = U⃗m−1+ f⃗m. The entries of the matrix A are the same to that of
the explicit scheme (5.5). For two dimensional fractional partial equations (5.2),
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the author proposes the following explicit scheme

Um+1
j,k − Um

j,k

ht

=
C

2

[
h−q
x

Γ(−q)

j−1∑
i=0

Γ(i− q)

Γ(i+ 1)

{
4s+ q

4
Um
j+1−i,k + (1− 2s)Um

j−i,k +
4s− q

4
Um
j−1−i,k

}

+
h−q
x

Γ(−q)

Nx−j−1∑
i=0

Γ(i− q)

Γ(i+ 1)

{
4s+ q

4
Um
j−1+i,k + (1− 2s)Um

j+i,k +
4s− q

4
Um
j+1+i,k

}

+
h−q
y

Γ(−q)

j−1∑
i=0

Γ(i− q)

Γ(i+ 1)

{
4s+ q

4
Um
j,k+1−i + (1− 2s)Um

j,k−i +
4s− q

4
Um
j,k−1−i

}

+
h−q
y

Γ(−q)

Ny−j−1∑
i=0

Γ(i− q)

Γ(i+ 1)

{
4s+ q

4
Um
j,k−1+i + (1− 2s)Um

j,k+i +
4s− q

4
Um
j,k+1+i

}

+
h−q
x

Γ(−q)
Γ(j − q)

Γ(j + 1)

4s+ q

4
Um
1,k +

h−q
x

Γ(−q)
Γ(Nx − j − q)

Γ(Nx − j + 1)

4s+ q

4
Um
Nx−1,k

+h−q
x

{
j−q

Γ(1− q)
− Γ(j − q)

Γ(1− q)Γ(j)
− Γ(j − q)

Γ(−q)Γ(j + 1)

4s+ q

4

}
Um
0,k

+h−q
x

{
(Nx − j)−q

Γ(1− q)
− Γ(Nx − j − q)

Γ(1− q)Γ(Nx − j)
− Γ(Nx − j − q)

Γ(−q)Γ(Nx − j + 1)

4s+ q

4

}
Um
Nx,k

+
h−q
y

Γ(−q)
Γ(k − q)

Γ(k + 1)

4s+ q

4
Um
j,1 +

h−q
y

Γ(−q)
Γ(Ny − k − q)

Γ(Ny − k + 1)

4s+ q

4
Um
j,Ny−1

+h−q
y

{
k−q

Γ(1− q)
− Γ(k − q)

Γ(1− q)Γ(k)
− Γ(k − q)

Γ(−q)Γ(k + 1)

4s+ q

4

}
Um
j,0

+h−q
y

{
(Ny − k)−q

Γ(1− q)
− Γ(Ny − k − q)

Γ(1− q)Γ(Ny − k)
− Γ(Ny − k − q)

Γ(−q)Γ(Ny − k + 1)

4s+ q

4

}
Um
j,Ny

]
+fmj (5.7)

This scheme also can be represented with the matrix representation as Ûm+1 =
(E +A)Ûm + f̂m for

Ûm = (Um
0,0, U

m
1,0, U

m
2,0, . . . , U

m
Nx,0, U

m
0,1, U

m
1,1, . . . , U

m
Nx,1, U

m
0,2, . . . )

T

and f̂m = (fm0,0, f
m
1,0, . . . ). The matrix A is constructed with submatrices Âi,j as

A =



0 0 0 . . . 0 0

Â1,0 Â1,1 Â1,2 . . . Â1,Ny−1 Â1,Ny

Â2,0 Â2,1 Â2,2 . . . Â2,Ny−1 Â2,Ny

...
...

...
. . .

...
...

ÂNy−1,0 ÂNy−1,1 ÂNy−1,2 . . . ÂNy−1,Ny−1 ÂNy−1,Ny

0 0 0 . . . 0 0


.
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Then, the non-diagonal submatrices Âi,j for i ̸= j are diagonal matrices as

Ân,n+1 = Ân+1,n =
Cry
2

[
g0

4s+ q

4
+ g0

4s− q

4
+ g1(1− 2s) + g2

4s+ q

4

]
· E

Ân,n+2 = Ân+2,n =
Cry
2

[
g1

4s− q

4
+ g2(1− 2s) + g3

4s+ q

4

]
· E

Ân,n+3 = Ân+3,n =
Cry
2

[
g2

4s− q

4
+ g3(1− 2s) + g4

4s+ q

4

]
· E

...

Ân,n+k = Ân+k,n =
Cry
2

[
gk−1

4s− q

4
+ gk(1− 2s) + gk+1

4s+ q

4

]
· E

...

where ry = ht/h
q
y, n = 1, 2, . . . , Ny − 1. The entries ai,j of the diagonal subma-

trices Â is defined as

an,n =
Crx
2

[
2g0(1− 2s) + 2g1

4s+ q

4

]
+
Cry
2

[
2g0(1− 2s) + 2g1

4s+ q

4

]
an,n+1 = an+1,n =

Crx
2

[
g0

4s+ q

4
+ g0

4s− q

4
+ g1(1− 2s) + g2

4s+ q

4

]
an,n+2 = an+2.n =

Crx
2

[
g1

4s− q

4
+ g2(1− 2s) + g3

4s+ q

4

]
an,n+3 = an+3.n =

Crx
2

[
g2

4s− q

4
+ g3(1− 2s) + g4

4s+ q

4

]
...

an,n+k = an+k.n =
Crx
2

[
gk−1

4s− q

4
+ gk(1− 2s) + gk+1

4s+ q

4

]
...

where rx = ht/h
q
x, where n = 1, 2, · · · , Nx − 1. The implicit scheme for two

dimensional equations is also constructed in a similar way as

(E −A)Ûm = Ûm−1 + f̂m. (5.8)

The characteristic of the author’s proposed schemes is the existence of the param-
eter s. The stability of the author’s proposed schemes depends on the parameter
q and s. This means that the parameter s should be chosen depending on the
fractional calculus order q. The relation between the stability and the parameter
s will be discussed in the next subsection.

All these schemes which the author proposes are made with the second order
accuracy formula (4.2). However, the most important problem is how to introduce
the second order accuracy formula (4.2) to schemes. In any form, the scheme
which uses the formula (4.2) is the second order accuracy for space grid size.
This means that one can create a formula of second order accuracy in space
dimension by using the formula (4.2). For example, the following implicit scheme
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also has the accuracy order O(ht) +O(hx),

Um
j − Um−1

j

ht

=
C

2

[
h−q
x

Γ(−q)

j−1∑
i=0

Γ(i− q)

Γ(i+ 1)

{
2− q

2
Um
j−i +

q

2
Um
j+1−i

}

+
h−q
x

Γ(−q)

Nx−j−1∑
i=0

Γ(i− q)

Γ(i+ 1)

{
2− q

2
Um
j+i +

q

2
Um
j−1+i

}

+
h−q
x

Γ(−q)
1 + q

2

Γ(j − 1− q)

Γ(j)
Um
0

+
h−q
x

Γ(−q)
1 + q

2

Γ(Nx − j − 1− q)

Γ(Nx − j)
Um
Nx

]
+fmj . (5.9)

This scheme utilizes the following second order accuracy formula, which is trans-
formed from the formula (4.2) by using Taylor expansion,

R
LD

q
xu(x)

≃ h−q
x

Γ(−q)

N−1∑
i=0

Γ(i− q)

Γ(i+ 1)

{
2− q

2
u(x− ihx) +

q

2
u(x− (i− 1)hx)

}

+
h−q
x

Γ(−q)
1 + q

2

Γ(N − 1− q)

Γ(N)
u(L). (5.10)

This formula is also second order accuracy, but we should not use the scheme
(5.9) because of the instability. This scheme is not stable for 1 < q < 2, and the
errors are amplified in the computations. This problem about the stability is also
shown in the related work[40]. In that paper, M.M. Meerschaert and C. Tadjeran
introduce an example scheme which has the accuracy O(ht) + O(hx) and is not
stable. Therefore, we cannot simply apply the high accuracy difference formulae
to the high accuracy finite difference methods. Then, how can we construct
high accuracy finite difference methods? There are three points for the author’s
scheme constructing. One is to embed a freedom of schemes by introducing the
parameter. To be stable, the author’s proposed schemes include the parameter
s, and are derived from the following second order accuracy formula

R
LD

q
xu(x)

≃ h−q
x

Γ(−q)

N−1∑
i=0

Γ(i− q)

Γ(i+ 1)

{
4s+ q

4
u(x− (i− 1)hx)

+(1− 2s)u(x− ihx) +
4s− q

4
u(x− (i+ 1)hx)

}
+

h−q
x

Γ(−q)
Γ(N − q)

Γ(N + 1)

4s+ q

4
u(L+ hx)

+h−q
x

{
N−q

Γ(1− q)
− Γ(N − q)

Γ(1− q)Γ(N)

− Γ(N − q)

Γ(−q)Γ(N + 1)

4s+ q

4

}
u(L). (5.11)

Depending on the value of q, the schemes become stable by changing the value
of s.
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Second point for the author’s scheme construction is a symmetric Toeplitz
matrix. Let us consider the matrix A in the matrix representation of the scheme
(5.5). The submatrix including entries ai,j for 1 ≤ i, j ≤ Nx − 1 is a symmetric
Toeplitz matrix. For example, the following scheme is less stable than scheme
(5.5),

Um+1
j − Um

j

ht

=
C

2

[
h−q
x

Γ(−q)

j−1∑
i=0

Γ(i− q)

Γ(i+ 1)

{
4s+ q

4
Um
j+1−i + (1− 2s)Um

j−i +
4s− q

4
Um
j−1−i

}

+
h−q
x

Γ(−q)

Nx−j−1∑
i=0

Γ(i− q)

Γ(i+ 1)

{
4s+ q

4
Um
j−1+i + (1− 2s)Um

j+i +
4s− q

4
Um
j+1+i

}
+h−q

x

{
j−q

Γ(1− q)
− Γ(j − q)

Γ(1− q)Γ(j)

}
Um
0

+h−q
x

{
(Nx − j)−q

Γ(1− q)
− Γ(Nx − j − q)

Γ(1− q)Γ(Nx − j)

}
Um
Nx

]
+fmj .

The entries ai,j of the matrix representation of the above scheme is not a symmet-
ric Toeplitz matrix for 1 ≤ i, j ≤ Nx − 1 because of first and Nx − 1-th column,
for example, a2,1 ̸= a1,2. The matrix representations of the author’s schemes in-
clude the symmetric Toeplitz matrix around aNx/2,Nx/2

. By constructing formulas
in such a way, the author succeeded to define stable formulae. The author has
discovered this feature in the results of trial and error and has noticed that the
matrix representation of the existing scheme (3.2) also has a symmetric Toeplitz
matrix. This means that the author forms schemes to have a symmetric Toeplitz
scheme in the results of analyzing stability. Generally, it is not easy to prove that
the symmetric Toeplitz matrix is the most appropriate to be stable. This is a
heuristic, and there is no proof that a stable formula must have such a structure.
However, it is a fact that this feature significantly improves the stability.

Third point for the author’s scheme construction is to approximate the frac-
tional differentiation with a few nodes. This means the author’s scheme can
compute solutions with a few number of N in the formula (5.11). For example,
to calculate Um

1 in the scheme (5.5), we have to approximate the left derivative
R
LD

q
xu(x) at L+ hx with N = 1 as

R
LD

q
xu(L+ hx)

≃ h−q
x

Γ(−q)

0∑
i=0

Γ(i− q)

Γ(i+ 1)

{
4s+ q

4
u(L+ hx − (i− 1)hx)

+(1− 2s)u(L+ hx − ihx) +
4s− q

4
u(L+ hx − (i+ 1)hx)

}
+

h−q
x

Γ(−q)
Γ(1− q)

Γ(2)

4s+ q

4
u(L+ hx)

+h−q
x

{
1

Γ(1− q)
− Γ(1− q)

Γ(1− q)Γ(1)
− Γ(1− q)

Γ(−q)Γ(2)
4s+ q

4

}
u(L).

The finite difference formulae calculate with the expected accuracy with N → ∞,
but we have to calculate even withN = 1. This limitation also increases the error.
For example, let us consider to calculate fractional differentiation of the constant
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function u(x) = c at hx with the formula (5.10) for N = 1. Then, the error is
given by ∣∣∣∣R0Dq

xc− h−q
x

{
2− q

2
c+

q

2
c

}∣∣∣∣
=

∣∣∣∣ Γ(1)

Γ(1− q)
ch−q

x − 2− q

2
ch−q

x − q

2
ch−q

x

∣∣∣∣
= O(h−q

x ).

This means that the formula (5.10) produces the error of O(h−q
x ) for N = 1.

Because q > 0 in finite difference methods, the error will diverge for hx →
0. To avoid this accuracy decaying, the formula (5.11) has a little ingenuity.
This formula has a more complicate expression than the formula (5.10), but this
formula has a feature of error cancelling. In a similar way, let us consider the
error for the constant function u(x) = c at x = jhx. Then, we have∣∣∣∣∣R0Dq

xc−
h−q
x

Γ(−q)

j−1∑
i=0

Γ(i− q)

Γ(i+ 1)

{
4s+ q

4
c+ (1− 2s)c+

4s− q

4
c

}

− h−q
x

Γ(−q)
Γ(j − q)

Γ(j + 1)

4s+ q

4
c

−h−q
x

{
j−q

Γ(1− q)
− Γ(j − q)

Γ(1− q)Γ(j)
− Γ(j − q)

Γ(−q)Γ(j + 1)

4s+ q

4

}
c

∣∣∣∣
=

∣∣∣∣∣c(jhx)−q

Γ(1− q)
− ch−q

x

Γ(−q)

j−1∑
i=0

Γ(i− q)

Γ(i+ 1)
− ch−q

x

Γ(1− q)

{
j−q − Γ(j − q)

Γ(j)

}∣∣∣∣∣
= 0.

Therefore, the author’s scheme calculates the constant function without errors.
This means that we can assume non-zero Dirichlet boundary conditions. Other
existing finite difference methods do not have a feature of this error cancelling, so
we cannot assume non-zero Dirichlet boundary conditions when we use them. Not
only the better accuracy, this feature of our proposed finite difference methods is
also good point comparing to existing methods.

5.1.2 Stability analysis of the author’s proposed finite difference meth-
ods

In this subsection, let us analyze the stability of the author’s proposed finite dif-
ference methods. In the beginning, let us review the concept of stability. Figures
5.2 and 5.3 show examples of being stable and not being stable, respectively. The
errors, which are derived from rounding errors and so on, are amplified over time
and the numerical solution does not converge if the scheme is unstable. The idea
of the stability is independent of the accuracy, so we have to analyze the stability
differently from the accuracy of schemes. Generally, there are two well-known
methods to analyze the stability of finite difference methods. One is Von Neu-
mann stability analysis, and the other is the matrix method which is the method
to analyze the eigenvalues. In this thesis, the author analyzes the stability by
using the matrix methods because of the reason as explained below.

Von Neumann stability analysis to the author’s proposed scheme

Firstly, let us consider to apply Von Neumann stability analysis to the scheme
(5.5). Let Um

j be Um
j = κm exp(iξjhx) where κ is an amplifier factor and ξ is
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Figure 5.2: Example of stable scheme Figure 5.3: Example of unstable scheme

a wave number. By substituting to the explicit scheme (5.5), for gn = Γ(n −
q)/(Γ(−q)Γ(n+ 1)) we have

κ

= 1 +
Cr

2

[
j−1∑
n=0

gn

{
4s+ q

4
exp(iξ(1− n)hx) + (1− 2s) exp(−iξnhx)

+
4s− q

4
exp(iξ(−1− n)hx)

}
+

Nx−j−1∑
n=0

gn

{
4s+ q

4
exp(iξ(n− 1)hx) + (1− 2s) exp(iξnhx)

+
4s− q

4
exp(iξ(1 + n)hx)

}
+gj

4s+ q

4
exp(iξ(1− j)hx) + gNx−j

4s+ q

4
exp(iξ(Nx − j − 1)hx)

+

{
j−q

Γ(1− q)
− Γ(j − q)

Γ(1− q)Γ(j)
− gj

4s+ q

4

}
exp(−iξjhx)

+

{
(Nx − j)−q

Γ(1− q)
− Γ(Nx − j − q)

Γ(1− q)Γ(Nx − j)
− gNx−j

4s+ q

4

}
exp(iξ(Nx − j)hx)

]
.

For j < Nx/2, we have

= 1 +
Cr

2

[
j−1∑
n=0

gn

{
4s+ q

2
cos(ξ(n− 1)hx) + 2(1− 2s) cos(ξnhx) +

4s− q

2
cos(ξ(n+ 1)hx)

}

+

Nx−j−1∑
n=j

gn

{
4s+ q

4
exp(iξ(n− 1)hx) + (1− 2s) exp(iξnhx)

+
4s− q

4
exp(iξ(1 + n)hx)

}
+gj

4s+ q

4
exp(iξ(1− j)hx) + gNx−j

4s+ q

4
exp(iξ(Nx − j − 1)hx)

+

{
j−q

Γ(1− q)
− Γ(j − q)

Γ(1− q)Γ(j)
− gj

4s+ q

4

}
exp(−iξjhx)

+

{
(Nx − j)−q

Γ(1− q)
− Γ(Nx − j − q)

Γ(1− q)Γ(Nx − j)
− gNx−j

4s+ q

4

}
exp(iξ(Nx − j)hx)

]
.
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As shown in Section 3.2, E. Sousa makes Von Neumann stability analysis under
the assumption j,Nx → ∞[54]. However, the significant feature of all finite
difference methods for fractional partial differential equations is that schemes
has the different form depending on the value j and Nx. This means that we
have to consider the case that the value of j is a finite number, for example, the
right side derivative is approximated with one node and the left side derivative is
approximated with Nx − 1 nodes for j = 1. By applying von Neumann stability
analysis, we cannot analyze with considering this feature. Therefore, the author
analyze the stability by using the matrix method.

Stability analysis in the matrix method to the author’s proposed ex-
plicit methods

The matrix method is the method to analyze the eigenvalues of the matrix rep-
resentation of a scheme. Let us analyze the stability of the scheme (5.5) for
1 < q < 2 by using the matrix method. In the matrix representation, this scheme
is expressed as U⃗m+1 = (E + A)U⃗m + f⃗m. If an arbitrary eigenvalue λ of the
matrix (E+A) satisfies |λ| ≤ −1, this scheme is stable. To estimate the eigenval-
ues, we use Gerschgorin’s theorem. From Gerschgorin’s theorem, the eigenvalues
derived from the first row and the last row are 1 as |λ−1| ≤

∑
j ̸=0 |a0,j | = 0. The

eigenvalue bound derived from the i-th column satsifies the following expression
as

|λ− (1 + ai,i)| ≤
∑
j ̸=i

|aj,i| , i = 1, 2, . . . , Nx − 1.

Note that we treat not rows but columns different to the first and the last rows.
By eliminating the absolute values, we have

−
∑
j ̸=i

|aj,i| ≤ λ− (1 + ai,i) ≤
∑
j ̸=i

|aj,i|

⇒ −
∑
j ̸=i

|aj,i|+ (1 + ai,i) ≤ λ ≤
∑
j ̸=i

|aj,i|+ (1 + ai,i)

Therefore, the stability condition is represented with two expressions as

−
∑
j ̸=i

|aj,i|+ (1 + ai,i) ≥ −1,

∑
j ̸=i

|aj,i|+ (1 + ai,i) ≤ 1.

Let us assume that the diagonal entries ai,i are negative or equal to 0 as ai,i ≤ 0
and the non-diagonal entries aj,i for j ̸= i are positive or equal to 0 as aj,i ≥ 0
except some entries al,i as al,i > 0. Then, we have the following lemma.

Lemma 5.1.1 All diagonal entries are negative or equal to 0 if the parameter s
satisfies the following expression as

s ≥ 2− q

4
. (5.12)
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Proof
The condition that the diagonal entries are negative or equal to 0 is given by

ai,i ≤ 0

⇒ Cr

2

[
2g0(1− 2s) + 2g1

4s+ q

4

]
≤ 0

⇒ s ≥ 2− q

4
.

□

From this assumption, the stability condition can be represented as

−
Nx−1∑
j=1

aj,i + 2ai,i + 2
∑
l

al,i ≥ −2, (5.13)

and

Nx−1∑
j=1

aj,i − 2
∑
l

al,i ≤ 0. (5.14)

The summation
∑Nx−1

j=1 aj,i is given by

Nx−1∑
j=1

aj,i

=
Cr

2

[
4s+ q

4

i∑
n=0

gn + (1− 2s)

i−1∑
n=0

gn +
4s− q

4

i−2∑
n=0

gn

+
4s+ q

4

Nx−i∑
n=0

gn + (1− 2s)

Nx−i−1∑
n=0

gn +
4s− q

4

Nx−i−2∑
n=0

gn

]

=
Cr

2

[
−4s+ q

4q

Γ(i+ 1− q)

Γ(−q)Γ(i+ 1)
− (1− 2s)

q

Γ(i− q)

Γ(−q)Γ(i)

−4s− q

4q

Γ(i− 1− q)

Γ(−q)Γ(i− 1)
− 4s+ q

4q

Γ(Nx − i+ 1− q)

Γ(−q)Γ(Nx − i+ 1)

−(1− 2s)

q

Γ(Nx − i− q)

Γ(−q)Γ(Nx − i)
− 4s− q

4q

Γ(Nx − i− 1− q)

Γ(−q)Γ(Nx − i− 1)

]
where 2 ≤ i ≤ Nx−2 and gn is gn = Γ(n−q)/(Γ(−q)Γ(n+1)). For i = 1, Nx−1,
the summation is given by

Nx−1∑
j=1

aj,i

=
Cr

2

[
4s+ q

4
g1 + (1− 2s)g0

−4s+ q

4q

Γ(Nx − q)

Γ(−q)Γ(Nx)
− (1− 2s)

q

Γ(Nx − 1− q)

Γ(−q)Γ(Nx − 1)
− 4s− q

4q

Γ(Nx − 2− q)

Γ(−q)Γ(Nx − 2)

]
.

If the value of i increases proportional to Nx, for example, i = Nx/2, this sum-
mation converges to 0 for Nx → ∞. Then, Exp. (5.14) can be written as

−2
∑
l

al,i ≤ 0.
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Since we assume that the entries al,i < 0, it is shown that there never exists
negative non-diagonal entries al,i. Next, let us show the conditions that all non-
diagonal entries are positive or equal to 0. Here, we have the following lemma.

Lemma 5.1.2 All non-diagonal entries are positive or equal to 0 if the parameter
s satisfies the following three expressions as

s ≥ −4g1 − qg2
8g0 − 8g1 + 4g2

, (5.15)

s ≤ qg1 − 4g2 − qg3
4g1 − 8g2 + 4g3

, (5.16)

s ≥ qg2 − 4g3 − qg4
4g2 − 8g3 + 4g4

. (5.17)

Proof
The condition that the entry ai,i+1 is positive or equal to 0 is given by

ai,i+1 ≥ 0

⇒ 2g0s+ g1(1− 2s) + g2
4s+ q

4
≥ 0

⇒ s ≥ −4g1 − qg2
8g0 − 8g1 + 4g2

.

The condition that the entry ai,i+2 is positive or equal to 0 is given by

ai,i+2 ≥ 0

⇒ g1
4s− q

4
+ g2(1− 2s) + g3

4s+ q

4
≥ 0

⇒ s ≤ qg1 − 4g2 − qg3
4g1 − 8g2 + 4g3

.

The condition that the entry ai,i+k, k ≥ 3 is positive or equal to 0 is given by

ai,i+k ≥ 0

⇒ gk−1
4s− q

4
+ gk(1− 2s) + gk+1

4s+ q

4
≥ 0

⇒ s ≥ qgk−1 − 4gk − qgk+1

4gk−1 − 8gk + 4gk+1
.

Then, we have the expressions (5.15) and (5.16). Next, let fk(q) be

fk(q) =
qgk−1 − 4gk − qgk+1

4gk−1 − 8gk + 4gk+1
,

and we prove fk(q) > fk+1(q) for k ≥ 3. The coefficients gk has relations to next
coefficients as gk−1 = kgk/(k − 1 − q) and gk+1 = (k − q)gk/(k + 1). Then, it
holds

fk(q)

=

qk
k−1−qgk − 4gk − q(k−q)

k+1 gk

4k
k−1−qgk − 8gk +

4(k−q)
k+1 gk

=
−4k2 + q(6 + 2q)k + (4− q2)(1 + q)

(4q + 8)(1 + q)
.
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Then, we have

fk(q)− fk+1(q)

=
8k + 4− q(6 + 2q)

(4q + 8)(1 + q)
> 0

for 1 < q < 2 and k ≥ 3. Therefore, we have the third condition (5.17).

□

Under the assumption that all diagonal entries are negative or equal to 0 and
non-diagonal entries are positive or equal to 0, we discuss the conditions that the
parameter s satisfies the expression (5.14). Then, we have the following lemma

Lemma 5.1.3 The conditions to hold the stability condition (5.14) are that the
parameter s satisfies the following three expressions as

s ≥ −4g1 − qg2
8g0 − 8g1 + 4g2

, (5.18)

s ≤ qg1 − 4g2 − qg3
4g1 − 8g2 + 4g3

, (5.19)

s ≥ qg2 − 4g3 − qg4
4g2 − 8g3 + 4g4

. (5.20)

Proof
In addition, for i = 1, Nx → ∞, the stability condition (5.14) is given by

Nx−1∑
j=1

aj,1 ≤ 0

⇒ Cr

2

[
4s+ q

4
g1 + (1− 2s)g0

]
≤ 0

⇒ s ≥ − qg1 + 4g0
4(g1 − 2g0)

=
2− q

4

For i = k, k = 2, Nx → ∞, the stability condition (5.14) is given by

Nx−1∑
j=1

aj,k ≤ 0

⇒ Cr

2

[
−4s+ q

4q

Γ(3− q)

Γ(−q)Γ(3)
− (1− 2s)

q

Γ(2− q)

Γ(−q)Γ(2)
− 4s− q

4q

Γ(1− q)

Γ(−q)Γ(1)

]
≤ 0

⇒ s ≤ qh1 − 4h2 − qh3
4h1 − 8h2 + 4h3

where hk is hk = Γ(k − q)/(Γ(−q)Γ(k)). For i = k, k = 3, 4, . . . , Nx → ∞, the
stability condition (5.14) is given by

Nx−1∑
j=1

aj,k ≤ 0

⇒ Cr

2

[
−4s+ q

4q

Γ(k + 1− q)

Γ(−q)Γ(k + 1)
− (1− 2s)

q

Γ(k − q)

Γ(−q)Γ(k)
− 4s− q

4q

Γ(k − 1− q)

Γ(−q)Γ(k − 1)

]
≤ 0

⇒ s ≥ qhk−1 − 4hk − qhk+1

4hk−1 − 8hk + 4hk+1
.

60



Here, in a similar discussion in the above proof, it holds that

qhk−1 − 4hk − qhk+1

4hk−1 − 8hk + 4hk+1
>
qhk − 4hk+1 − qhk+2

4hk − 8hk+1 + 4hk+2

for k = 3, 4, . . . . By comparing the above expressions to expressions (5.12),
(5.15), (5.16) and (5.17), we have the following results as

s ≥ −4g1 − qg2
8g0 − 8g1 + 4g2

≥ 2− q

4
,

s ≤ qg1 − 4g2 − qg3
4g1 − 8g2 + 4g3

≤ qh1 − 4h2 − qh3
4h1 − 8h2 + 4h3

,

s ≥ qg2 − 4g3 − qg4
4g2 − 8g3 + 4g4

≥ qh2 − 4h3 − qh4
4h2 − 8h3 + 4h4

for 1 < q < 2. Therefore, we have the above lemma.

□

Next, we consider the condition (5.13). Under the assumption that all non-
diagonal entries are positive or equal to 0, we have the following lemma.

Lemma 5.1.4 The conditions to hold the stability condition (5.13) are that the
step size ht satsfies the following expression as

ht ≤
4hqx

C((8 + 4q)s+ q2 − 4)
. (5.21)

Proof

−
Nx−1∑
j=1

aj,i + 2ai,i ≥ −2.

From the above discussion and the condition (5.14), it holds
∑Nx−1

j=1 aj,i ≤ 0 if
the parameter s satisfies the conditions in Lemma 5.1.3. Therefore, we have

−
Nx−1∑
j=1

aj,i + 2ai,i ≥ 2ai,i ≥ −2

⇒ Cr

2

[
2g0(1− 2s) + 2g1

4s+ q

4

]
≥ −1

The diagonal entries are negative, so the stability condition is given by

⇒ Cr ≤ 4

(8 + 4q)s+ q2 − 4

⇒ ht ≤
4hqx

C((8 + 4q)s+ q2 − 4)
.

□

From the expression (5.21), we can take larger time step size ht by taking
smaller s for s > 0. Let us summarize the lemmas 5.1.1, 5.1.2, 5.1.3 and 5.1.4.
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Theorem 5.1.5 The scheme (5.5) for 1 < q < 2 is stable if the following in-
equalities are satisfied.

s ≥ −4g1 − qg2
8g0 − 8g1 + 4g2

,

s ≤ qg1 − 4g2 − qg3
4g1 − 8g2 + 4g3

,

s ≥ qg2 − 4g3 − qg4
4g2 − 8g3 + 4g4

,

ht ≤ 4hqx
C((8 + 4q)s+ q2 − 4)

.

Figure 5.4 shows the range in which the parameter s must exist. As is seen
in this figure, the parameter s is always positive. These stability conditions are

Figure 5.4: The area where the parameter s must exist

sufficient conditions and not necessary and sufficient conditions. This means that
the scheme may be stable if we break these inequalities a little. In a similar way,
we have the following theorem about stability conditions of the scheme (5.7) for
explicit two dimensional fractional partial differential equations.

Theorem 5.1.6 The scheme (5.7) is stable for 1 < q < 2, h = hx = hy and
N = Nx = Ny if the following inequalities hold.

s ≥ −4g1 − qg2
8g0 − 8g1 + 4g2

,

s ≤ qg1 − 4g2 − qg3
4g1 − 8g2 + 4g3

,

s ≥ qg2 − 4g3 − qg4
4g2 − 8g3 + 4g4

,

ht ≤ 2hq

C((8 + 4q)s+ q2 − 4)
.

Proof
In the matrix representation, the scheme (5.7) can be expressed as U⃗m+1 =
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(E + A)U⃗m + f⃗m. Then, for h = hx = hy and r = rx = ry, the diagonal entries
bi,i of the matrix B are given by

bi,i =
Cr

2

[
4g0(1− 2s) + 2g1

4s+ q

4

]
.

In addition, the following summation about a column is given by

N−1∑
j=1

bi,j =



Cr
[
−4s+q

4q
Γ(i+1−q)

Γ(−q)Γ(i+1) −
(1−2s)

q
Γ(i−q)

Γ(−q)Γ(i) −
4s−q
4q

Γ(i−1−q)
Γ(−q)Γ(i−1)

−4s+q
4q

Γ(N−i+1−q)
Γ(−q)Γ(N−i+1) −

(1−2s)
q

Γ(N−i−q)
Γ(−q)Γ(N−i) −

4s−q
4q

Γ(N−i−1−q)
Γ(−q)Γ(N−i−1)

]
,

2 ≤ i ≤ N − 2,

Cr
[
4s+q
4 g1 + (1− 2s)g0

−4s+q
4q

Γ(N−q)
Γ(−q)Γ(N) −

(1−2s)
q

Γ(N−1−q)
Γ(−q)Γ(N−1) −

4s−q
4q

Γ(N−2−q)
Γ(−q)Γ(N−2)

]
,

i = 1, N − 1.

Therefore, with the same discussion, the conditions that the parameter s must
satisfy are the same to the conditions in Lemma 5.1.3. Then, the condition (5.13)
is given by

−
Nx−1∑
j=1

bj,i + 2bi,i ≥ 2bi,i ≥ −2

⇒ Cr

2

[
4g0(1− 2s) + 4g1

4s+ q

4

]
≥ −1.

This establishes the above theorem.

□

From the two theorems 5.1.5 and 5.1.6, we have the stability conditions of the
author’s proposed schemes (5.5) and (5.7). Next, let us compare these stability
conditions to those of existing methods. The author’s proposed methods have
better accuracy than existing methods, but the author’s proposed methods are
not effective if the stability conditions of the author’s proposed methods are more
strict than that of existing methods. The author’s proposed explicit scheme (5.5)
has the following stability condition about hx and ht,

ht ≤
hqx
C

4

((8 + 4q)s+ q2 − 4)
.

In this expression, we have to take a smaller step size of ht for larger s from
s = (2 − q)/4. This means we can take any step size of ht if the parameter s
is s = (2 − q)/4. Therefore, we take s = (qg1 − 4g2 − qg3)/(4g1 − 8g2 + 4g3) as
its largest possible value during satisfying the stability conditions about s. Next,
let us compare it with two kinds of the stability conditions of existing methods
proposed by M.M. Meerschaert and C. Tadjeran as

ht ≤
hqx
C

1

q
,

and proposed by E. Sousa as

ht ≤
hqx
C

21−q.
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Figure 5.5: Comparison of the stability conditions to the existing methods

Figure 5.5 shows the results of comparing the coefficients of three stability con-
ditions as

f1(q) =
4

((8 + 4q)s+ q2 − 4)
,

f2(q) =
1

q
,

f3(q) = 21−q,

where

s = (qg1 − 4g2 − qg3)/(4g1 − 8g2 + 4g3).

From Figure 5.5, we have

ht ≤
hqx
C

4

((8 + 4q)s+ q2 − 4)
≤ hqx
C

21−q ≤ hqx
C

1

q

for 1 < q < 2. The author’s proposed method can take much larger step size
of ht than existing methods for 1 < q < 2. In addition, we have the following
theorem about the stability condition.

Theorem 5.1.7 There exists a parameter s for arbitrary q with 1 < q < 2, and
the author’s proposed explicit scheme (5.5) and (5.7) can take the largest step
size of ht for

s = max
q

{
−4g1 − qg2

8g0 − 8g1 + 4g2
,
qg2 − 4g3 − qg4
4g2 − 8g3 + 4g4

}
.

Stability analysis by the matrix method to the author’s proposed im-
plicit methods

Next to the explicit methods as discussed above, let us analyze the stability of our
proposed implicit methods. The way of stability analysis for implicit methods is
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similar to that for explicit methods. The matrix representation of our proposed
implicit method (5.6) is given by (E −A)U⃗m = U⃗m−1 + f⃗m. In a similar way to
explicit methods, the scheme is stable if each eigenvalue λ of the matrix (E −A)
satisfies |λ| ≥ 1 where the eigenvalue of the matrix (E − A)−1 is represented as
1/λ. By Gerschgorin’s theorem, the scheme is stable if one of the following two
inequality holds.

−ai,i +
∑
j ̸=i

|aj,i| ≤ −2, (5.22)

or

−ai,i −
∑
j ̸=i

|aj,i| ≥ 0. (5.23)

If we assume that all diagonal entries are negative or equal to 0, then the stability
condition (5.22) never holds. As mentioned in Lemma 5.1.1, the condition that
the all diagonal entries are negative or equal to 0 is

s ≥ 2− q

4
.

In addition, we assume that non-diagonal entries are positive or equal to 0 as aj,i,
j ̸= i except some entries al,i as al,i < 0. Then, we have

−
Nx−1∑
j=1

aj,i + 2
∑
l

al,i ≥ 0.

The summation in the above expression converges to 0 for Nx → ∞ if the value
of j increases proportional to the value of Nx. Then, we have

+2
∑
l

al,i ≥ 0.

Since we assume al,i < 0, it is shown that there never exists negative non-diagonal
entries, and all non-diagonal must be positive or equal to 0. The conditions for
positive non-diagonal entries are represented in Lemma (5.1.2). Thus, we have
the following theorem.

Theorem 5.1.8 The scheme (5.6) is stable for 1 < q < 2 if all the following
inequalities hold.

s ≥ −4g1 − qg2
8g0 − 8g1 + 4g2

,

s ≤ qg1 − 4g2 − qg3
4g1 − 8g2 + 4g3

,

s ≥ qg2 − 4g3 − qg4
4g2 − 8g3 + 4g4

.

In contrast to the explicit method, the implicit method does not have the stability
condition about hx and ht. This indicates we can take arbitrary step sizes of hx
and ht by using the implicit methods. In a similar way, the stability conditions
about the scheme (5.8) are also shown in the next theorem.
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Theorem 5.1.9 The scheme (5.8) is stable for 1 < q < 2 if all the following
inequalities hold.

s ≥ −4g1 − qg2
8g0 − 8g1 + 4g2

,

s ≤ qg1 − 4g2 − qg3
4g1 − 8g2 + 4g3

,

s ≥ qg2 − 4g3 − qg4
4g2 − 8g3 + 4g4

.

By the above stability analysis, it is shown that the stability conditions for the
author’s proposed explicit methods are less restrictive in choosing hx than that
for existing methods as long as we take the appropriate parameter s. In addition,
the author’s proposed implicit methods do not impose any conditions on step sizes
hx and ht like existing methods as long as we take the appropriate parameter s.
Therefore, it is indicated that we can improve not only the accuracy but also the
stability conditions by using the author’s proposed methods.

5.1.3 Stability analysis to the author’s proposed schemes for 0 < q < 1

In the above discussion, we assume that the fractional calculus order q is 1 <
q < 2. The way to analyze the stability for 0 < q < 1 is almost the same to that
for 1 < q < 2, and we apply the matrix method. Let us analyze the stability of
the scheme (5.5) for 0 < q < 1. In a similar way to the case of 1 < q < 2, the
stability conditions are represented as

−
∑
j ̸=i

|aj,i|+ (1 + ai,i) ≥ −1,

and ∑
j ̸=i

|aj,i|+ (1 + ai,i) ≤ 1.

Here, we assume that all diagonal entries are negative or equal to 0 and all non-
diagonal entries are positive or equal to 0 in the same way to 1 < q < 2. Then,
we have the following lemma about this assumption.

Lemma 5.1.10 All diagonal entries are negative or equal to 0 and all non-
diagonal entries are positive or equal to 0 if the following inequalities hold.

s ≤ 2− q

4

s ≤ −4g1 − qg2
8g0 − 8g1 + 4g2

s ≥ qg1 − 4g2 − qg3
4g1 − 8g2 + 4g3

Proof
The condition that any diagonal entry ai,i for i = 1, 2, . . . , Nx − 1 is negative or
equal to 0 for 0 < q < 1 is given by

ai,i ≤ 0, i = 1, 2, . . . , Nx − 1

⇒ s ≤ 2− q

4
.
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The conditions that any non-diagonal entries aj,i for i = 1, 2, . . . , Nx − 1, j ̸= i
are positive or equal to 0 for 0 < q < 1 are given by

ai+1,i ≥ 0

⇒ s ≤ −4g1 − qg2
8g0 − 8g1 + 4g2

and

ai+k,i ≥ 0

⇒ s ≥ qgk−1 − 4gk − qgk+1

4gk−1 − 8gk + 4gk+1
, k ≥ 2,

from the symmetry property as ai+k,i = ai−k,i. Note that we have the following
relation in the above expression

s ≥ qg1 − 4g2 − qg3
4g1 − 8g2 + 4g3

≥ qg2 − 4g3 − qg4
4g2 − 8g3 + 4g4

≥ . . .

Therefore, we have the above lemma.

□

From the above assumption, the stability conditions can be represented with
two expressions as

2ai,i −
Nx−1∑
j=1

aj,i ≥ −2, (5.24)

and

Nx−1∑
j=1

aj,i ≤ 0. (5.25)

Firstly, we discuss the conditions that the entries ai,j satisfy the inequality (5.25)
with the following lemma.

Lemma 5.1.11 The parameter s must satisfy the following conditions so that
the stability condition (5.25) holds for 0 < q < 1.

s ≤ −4g1 − qg2
8g0 − 8g1 + 4g2

, (5.26)

s ≥ qg1 − 4g2 − qg3
4g1 − 8g2 + 4g3

. (5.27)

Proof
The conditions that the summation

∑Nx−1
j=1 aj,i is negative or equal to 0 are given

by

Nx−1∑
j=1

aj,1 ≤ 0

⇒ s ≤ 2− q

4
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Figure 5.6: The area where the parameter s must exist

and

Nx−1∑
j=1

aj,k ≤ 0

⇒ s ≥ qhk−1 − 4hk − qhk+1

4hk−1 − 8hk + 4hk+1
, k ≥ 2

for 0 < q < 1. Note that it holds the following relation in the above expressions

s ≥ qh1 − 4h2 − qh3
4h1 − 8h2 + 4h3

≥ qh2 − 4h3 − qh4
4h2 − 8h3 + 4h4

≥ . . .

By summarizing the conditions, we have the above lemma.

□
Figure 5.6 shows the range of parameter s, depending on the value q, given by

Lemma 5.1.11. In contrast to the case for 1 < q < 2, the parameter s can take a
negative number. Next, we discuss the condition that the step size ht satisfy the
inequality (5.24) in the following lemma.

Lemma 5.1.12 The parameter ht must satisfy the following conditions so that
the stability condition (5.24) holds for 0 < q < 1.

ht ≤
hqx
C

4

(8 + 4q)s+ q2 − 4
. (5.28)

Proof
Under the assumption that the summation

∑Nx−1
j=1 aj,i is negative or equal to 0,

the stability condition (5.24) is represented as

2ai,i −
Nx−1∑
j=1

aj,i ≥ 2ai,i ≥ −2

⇒ ht ≤
hqx
C

4

(8 + 4q)s+ q2 − 4
.

Therefore, we have the above lemma.
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□

By summarizing Lemmas 5.1.10, 5.1.11 and 5.1.12, we have the following
theorem about the stability of the scheme (5.5) for 0 < q < 1.

Theorem 5.1.13 The scheme (5.5) is stable for 0 < q < 1 if the followings are
satisfied.

s ≤ −4g1 − qg2
8g0 − 8g1 + 4g2

,

s ≥ qg1 − 4g2 − qg3
4g1 − 8g2 + 4g3

,

ht ≤ hqx
C

4

(8 + 4q)s+ q2 − 4
.

In this theorem, we can take larger step size of ht when the denominator of right
hand side is smaller. In the range that the parameter s can take, the denominator
become the smallest for s = (−4g1− qg2)/(8g0−8g1+4g2). Therefore, we should
put the parameter s as

s =
−4g1 − qg2

8g0 − 8g1 + 4g2

when we use the scheme (5.5). In a similar way, we obtain the stability conditions
of the scheme (5.7).

Theorem 5.1.14 The scheme (5.7) is stable for 0 < q < 1, h = hx = hy and
N = Nx = Ny if the followings are satisfied.

s ≤ −4g1 − qg2
8g0 − 8g1 + 4g2

,

s ≥ qg1 − 4g2 − qg3
4g1 − 8g2 + 4g3

,

ht ≤ hq

C

2

(8 + 4q)s+ q2 − 4
.

Also for the implicit methods, we have the following results as theorem.

Theorem 5.1.15 The scheme (5.6) and the scheme (5.8) are stable for 0 < q <
1 if the followings are satisfied.

s ≤ −4g1 − qg2
8g0 − 8g1 + 4g2

,

s ≥ qg1 − 4g2 − qg3
4g1 − 8g2 + 4g3

.

5.1.4 Accuracy order and accuracy decaying

The author introduces that all the author’s proposed schemes are second order
accuracy for space as O(ht) + O(h2x). In addition, the existing methods are also
introduced as first order accuracy method with O(ht) +O(hx). In some aspects,
the accuracy order of the author’s proposed schemes and existing schemes are
not O(ht) + O(h2x) and O(ht) + O(h2x), and decays for two reasons. One reason
is the smoothness of the function. In Chapter 4, the author shows that the
accuracy of finite difference formulae depends on the form of the differentiated
functions. For the function f(x) = xp, 0 < p < 1, the accuracy order of the
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formula (4.2) decays from second order accuracy to O(1/N1+p). The reason of
this accuracy decaying is the differentiated function is not differentiable at x =
0. The similar phenomenon happens for finite difference methods for fractional
partial differential equations. For the function u(x, t) = exp(−t)(x−L)p(R−x)p
with 0 < p < 1, the accuracy of the author’s proposed schemes and existing
schemes decays from second and first order accuracy to O(hp). In the numerical
computation of fractional derivative, the accuracy order decreases to O(1/N1+p)
for f(x) = xp. On the other hand, the accuracy order decreases not to O(h1+p)
but O(hp) in finite difference methods. The reason of this difference is the number
of sampling points when we can calculate fractional derivative. Let us consider
to calculate the fractional derivative to the function f(x) = xp+q with 0 < p < 1
where q is the fractional calculus order q > 0. By using the formula (4.9), we
have the following result

R
0D

q
xf(x)− R1

0 D
q
xf(x) = O(hp)

for x = jh, N = j and h → 0 where j does not depend on h. This expression
indicates x comes near to x = 0 for h → 0. For the case of j = 1, the above
expression is developed as

R
0D

q
xf(h)− R1

0 D
q
xf(h)

=
Γ(p+ q + 1)

Γ(p+ 1)
hp − h−q Γ(−q)

Γ(−q)Γ(1)
hp+q

=

(
Γ(p+ q + 1)

Γ(p+ 1)
− 1

)
hp.

For h → 0, the variable x = h comes near to x = 0. This phenomenon means
that the numerical solution around an initial point has bad accuracy. Yet, the
assumption of x = jh may seem to be strange, but this computation is done
in finite different methods for fractional partial differential equations. Actually,
in the scheme (3.2), a similar situation occurs for i = 1. Right side derivative
has to be calculated with i + 2 points which does not depend on h. This is the
second reason, and the accuracy of the scheme (3.2) and (3.1) decreases from
the expected accuracy because of these two reasons. If we use high accuracy
formulae, the accuracy does not improve. The formula (4.10) is the second order
accuracy, but we have the same result

R
0D

q
xf(x)− R2

0 D
q
xf(x) = O(hp) (5.29)

for the function f(x) = xp+q, x = jh, N = j and h→ 0 where j does not depend
on h. This situation can be seen, for example, in the scheme (5.5). Therefore,
we cannot improve the accuracy if we apply high accuracy formulae to finite
difference methods.

In integer order calculus, this phenomenon is seen. For the second derivative
of f(x) = xp+2, the error of analytical differential and numerical differential at
x = jh for j ≥ 2 and the value of j does not depend on h is given by

f ′′(jh)− f((j + 1)h)− 2f(jh) + f((j − 1)h)

h2

= (p+ 2)(p+ 1)(jh)p − ((j + 1)h)p+2 − 2(jh)p+2 + ((j − 1)h)p+2

h2

= (p+ 2)(p+ 1)(jh)p −
{
(j + 1)p+2 − 2jp+2 + (j − 1)p+2

}
hp

= −2(p+ 2)(p+ 1)p(p− 1)

4!
jp−2hp − · · ·

= O(hp), 0 < p < 1 (5.30)
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Thus, this accuracy decaying is the problem not only among fractional calculus
but also among integer order calculus.

In the previous paragraph, the author shows two reasons that cause the ac-
curacy decaying in finite difference methods. However, note that there is a dif-
ference between the above examples and schemes for differential equations. For
the function f(x) = xp+q, the accuracy of every difference formulae decreases
to O(hp). On the other hand, the accuracy of every finite difference methods
decreases O(hp) for the analytical solution u(x, t) = exp(−t)(x − L)p(R − x)p.
If the analytical solution converges at boundaries, the error of finite difference
methods also converges. This difference can be explained as follows. For a func-
tion f(x) = xp+q, fractional derivative of its function is given by R

0D
q
xf(x) =

xpΓ(p + q + 1)/Γ(p + 1). This derivative has the order O(xp) around an initial
point. Therefore, the accuracy decays to O(hp). In a similar way, both side
fractional derivative to the function u(x, t) = exp(−t)(x − L)p(R − x)p is given
by

R
LD

q
xu(x, t) +

R
xD

q
Ru(x, t)

=
C

2

∂

∂t
u(x, t)

= −C
2
exp(−t)(x− L)p(R− x)p.

This expression has the order O(xp) around boundaries. Therefore, the accuracy
decays to O(hp) around boundaries.

By the way, what happens if p = 0? It seems that the accuracy order is
a constant O(1). Actually, the accuracy order of existing methods is O(1) for
p = 0, and the solutions do not converge even if we take small step sizes. Yet,
the author’s proposed methods have the feature of error cancelling, and the solu-
tions are not influenced if the analytical solution is not zero at boundaries. This
improvement is significant to apply to actual problems.

As mentioned above, this accuracy decaying also happens in integer order
finite difference methods. However, this problem is not common in integer order
calculus because of two reasons. The first reason is the accuracy decaying does
not happen if the function is polynomial function. In the expressions (5.30),
the error is zero for p = −2,−1, 0, 1, and is O(h2) for a positive integer p ≥ 2.
However, the accuracy of the author’s proposed formula (4.10) decays to first
order accuracy even if the differentiated function is defined as f(x) = xp+q for
p = 1 in under the conditions of the expression (5.29). In finite difference schemes,
for the analytical function u(x, t) = exp(−t)(x− L)(R − x), the accuracy of the
author’s proposed second order accuracy schemes decays to first order accuracy
O(ht) + O(hx). In integer order calculus, the accuracy of numerical methods
does not decay if the function is represented with polynomials. Therefore, we do
not care about the error of the numerical derivative in the case of x = jh and
the value of j does not depend on h. Second reason is non-smooth function like
u(x) = exp(−t)(x−L)p(R−x)p, 0 < p < 1 does not appear if we assume smooth
function as the initial condition. In fractional calculus, fractional differentiation
and integration give a singularity to the function. This means that the analytical
solution of fractional partial differential equations may be a non-smooth function
for the initial condition of a smooth function. In contrast to integer order calculus,
we have to consider this accuracy decaying from these two reason when we use
fractional calculus.
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5.1.5 Experiments about space-fractional partial differential equa-
tions

Measurement of errors

When we measure the errors of finite difference methods, there is one mistake
which we tend to make. The errors of finite difference methods are usually con-
structed from two components. One is the error derived from time derivative,
and the other is the error derived from space derivative. The accuracy order of
existing scheme (3.2) is first order accuracy to both derivatives as O(ht)+O(hx).
However, the result which the error decreases with first order accuracy does
not mean the accuracy order of this scheme is first order accuracy. Because, if
one error have the big coefficients comparing to the other error, the other error
is hidden. For example, let the error about time derivative be Et = 1000ht,
and let the error about space derivative be Ex = h0.5x . This case assumes that
the accuracy decaying happens at space derivative. Then the accuracy order is
namely O(ht)+O(h0.5x ), but we are likely to misunderstand the accuracy order as
O(ht)+O(hx). Because, the error is 1000∗0.01+0.010.5 = 10.1 for ht = hx = 0.01
and the error is 1000∗0.001+0.0010.5 ≃ 1.032 for ht = hx = 0.001. By decreasing
of the values of ht and hx with 0.01 → 0.001, the error also decrease 10.1 → 1.032.
This error looks the first order accuracy because of the big coefficients for time
derivative. This phenomenon also occurs when we use the author’s proposed
high accuracy schemes. The method to avoid this problem is to make step size
ht and hx sufficiently small individually. This is effective to avoid the misun-
derstanding, but to make step size small amounts to increase the problem size.
Another method to avoid the misunderstanding is to make the diffusion coef-
ficient C large. By making the diffusion constant C large, the error of space
derivative also becomes large and the error of time derivative becomes relatively
small. In the experiments, the large diffusion coefficients appears for making
clear the accuracy order.

Stability

The stability is the problem in the form of schemes, and does not depend on the
analytical solution of equations. Therefore, we check the eigenvalues of the matrix
in the matrix representation. Firstly, we experiment about stability condition of
existing explicit scheme proposed by E. Sousa[54], M.M. Meerschaert and C.
Tadjeran[40] as

ht ≤ hqx
C

21−q

ht ≤ hqx
C

1

q
.

Let hx be hx = 1/40, and let C be C = 1, and we experiment with various
ht and q. Figure 5.7 shows whether the existing explicit scheme is stable or
not for each q and ht. The sign ’o’ denotes the scheme is stable at that point,
and the sign ’x’ denotes the scheme is not stable. The stability is confirmed
by checking eigenvalues. The eigenvalues are numerically calculated by using
Mathematica. The distinct result is at q = 1.2, ht = 0.01. This point is stable
with the stability condition proposed by E. Sousa, but not stable with the stability
condition proposed by M.M. Meerschaert and C. Tadjeran. This result shows
that the stability condition derived from Gerschgorin’s theorem is not strict, and
scheme may be stable if the stability condition is not satisfied.
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Figure 5.7: Stability conditions of existing explicit scheme

Next, let us verify the stability condition of the author’s proposed implicit
methods. Figure 5.8 shows whether the proposed implicit scheme (5.6) is stable
or not for each q and s with ht = hx = 0.025. The sign ’o’ denotes the scheme is
stable at that point, and the sign ’x’ denotes the scheme is not stable. Since the
stability conditions are analyzed by using Gerschgorin’s theorem, the author’s
proposed stability conditions are not strict. Table 5.1 shows the absolute max-
imum eigenvalues except eigenvalues derived from first and last row, which are
always 1. From this table, it is expected that the stability condition is strict for
small q, since the maximum eigenvalues are close to 1.

q=1.1 q=1.2 q=1.3 q=1.4 q=1.5 q=1.6 q=1.7 q=1.8 q=1.9

s=0.5 0.9896 0.9771 0.9623 0.9452 0.9257 0.9039 0.8802 0.8550 0.8287

s=0.45 0.9896 0.9771 0.9624 0.9453 0.9257 0.9040 0.8803 0.8550 0.8287

s=0.4 0.9896 0.9772 0.9625 0.9454 0.9258 0.9041 0.8804 0.8551 0.8288

s=0.35 0.9897 0.9773 0.9626 0.9455 0.9260 0.9043 0.8805 0.8553 0.8289

s=0.3 0.9898 0.9774 0.9627 0.9457 0.9262 0.9045 0.8808 0.8556 0.8293

s=0.25 0.9990 0.9969 0.9925 0.9840 0.9683 0.9408 0.8957 0.8577 0.8310

Table 5.1: The maximum eigenvalues for scheme (5.6) with 1 < q < 2

Figure 5.9 represents the stability of the scheme (5.6) for various q and s with
0 < q < 1. In contrast to the case of 1 < q < 2, the scheme is not at s = 0.3.
However, for negative s, the stability condition is not strict. Table 5.2 shows the
absolute maximum eigenvalues for 0 < q < 1.

Lastly, we make experiments about the stability condition of the author’s
proposed explicit methods. The stability condition about ht and hx is represented
as

ht ≤
hqx
C

4

((8 + 4q)s+ q2 − 4)
.
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Figure 5.8: Stability conditions of the implicit scheme (5.6) for 1 < q < 2

Figure 5.9: Stability conditions of the implicit scheme (5.6) for 0 < q < 1

q=0.1 q=0.2 q=0.3 q=0.4 q=0.5 q=0.6 q=0.7 q=0.8 q=0.9

s=0.3 1.0077 1.0121 1.0188 1.0295 1.0464 1.0739 1.1195 1.1985 1.3459

s=0.2 0.9923 0.9881 0.9816 0.9751 0.9763 0.9784 0.9815 0.9859 0.9919

s=0.1 0.9773 0.9745 0.9745 0.9750 0.9762 0.9782 0.9813 0.9857 0.9918

s=0 0.9749 0.9744 0.9744 0.9749 0.9761 0.9781 0.9812 0.9856 0.9917

s=-0.1 0.9748 0.9744 0.9743 0.9748 0.9760 0.9780 0.9811 0.9856 0.9917

s=-0.2 0.9748 0.9743 0.9743 0.9747 0.9759 0.9779 0.9810 0.9855 0.9916

Table 5.2: The maximum eigenvalues for scheme (5.6) with 0 < q < 1
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Figure 5.10: Stability conditions of the explicit scheme (5.5) for 1 < q < 2

To maximize the step size of ht, we take the parameter s for 1 < q < 2 as

s = max

{
−4g1 − qg2

8g0 − 8g1 + 4g2
,
qg2 − 4g3 − qg4
4g2 − 8g3 + 4g4

}
.

Then, Figure 5.10 shows the stability conditions for each q and ht with 1 < q < 2,
C = 1 and hx = 1/40. This result indicates that the author’s stability analysis
express sufficient stability conditions, and if it is shown that the scheme is stable
for q = 1.8 and ht = 0.001, where the analyzed stability condition is not hold,
but the scheme is actually stable.

Figure 5.11 shows the stability conditions for each q and ht with 0 < q < 1,
C = −1 and hx = 1/40. The stability condition of 0 < q < 1 is less strict than
that of 1 < q < 2. Comparing to the case of 1 < q < 2, the scheme is stable with
wide step size of ht.

Figure 5.12 shows the stability conditions of three methods, the author’s pro-
posed condition, the condition proposed by E. Sousa and the condition proposed
by M.M. Meerschaert and C. Tadjeran for each q and ht with 1 < q < 2, C = 1
and hx = 1/40. This graph represents that the stability condition of the author’s
proposed explicit scheme allows a larger step size ht than that of existing scheme.
This means that the author’s proposed explicit scheme has a weak condition about
step sizes comparing to other existing explicit method.

Accuracy

Next, we make experiments about the accuracy of the author’s proposed schemes
and existing methods. As existing methods, we compare not only finite difference
method proposed by M.M. Meerschaert and C. Tadjeran[40], but also the matrix
transform method proposed by M. Ilic, F. Liu, I. Turner and V. Anh[21]. The
detail of the matrix transform method is explained in Chapter 3. All experiments
are done with Mathematica. Firstly, we experiment for one dimensional fractional
partial differential equations 5.1 with zero-Dirichlet boundary conditions. Let the
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Figure 5.11: Stability conditions of the explicit scheme (5.5) for 0 < q < 1

analytical solution u(x, t) be

u(x, t) = 4 exp(−t)xp(1− x)p

where p is a constant to control the order of functions around boundaries. This
means the order of the analytical solution is O(xp) for x→ L and x→ R. Figure
(5.13) is the graph of the analytical solution function for p = 0.5. Then, let the

Figure 5.12: Comparison of stability conditions for 1 < q < 2
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Figure 5.13: The analytical solution function for p = 0.5

force term f(x, t) be

f(x, t)

= − exp(−t) {4xp(1− x)p

+2Cxp−q Γ(p+ 1)

Γ(p− q + 1)
2F1

[
−p, p+ 1
p− q + 1

;x

]
+2C(1− x)p−q Γ(p+ 1)

Γ(p− q + 1)
2F1

[
−p, p+ 1
p− q + 1

; 1− x

]}
where the function 2F1 is the hypergeometric series. The initial condition is given
by u(x, 0) = xp(1 − x)p, and the boundary conditions are given by u(0, t) =
u(1, t) = 0 as zero-Dirichlet boundary conditions. All experiments are done for
0 ≤ t ≤ 1.

Figure 5.14: Errors of three numerical
methods for q = 1.8, p = 2.5, s = 0.4

Figure 5.15: Errors of three numerical
methods for q = 1.6, p = 2.5, s = 0.4

Figures 5.14, 5.15, 5.16 and 5.17 show the errors about three methods, exist-
ing implicit finite difference method (3.1) proposed by M.M. Meerschaert and C.
Tadjeran in blue lines, the author’s proposed implicit finite difference method in
red lines and the matrix transform method proposed by M. Ilic, F. Liu, I. Turner
and V. Anh in green lines for q = 1.8, 1.6, 14, 1.2 respectively. The conditions
of three experiments Figures 5.14, 5.15, 5.16 and 5.17 are p = 2.5, Nt = 1000,

77



Figure 5.16: Errors of three numerical
methods for q = 1.4, p = 2.5, s = 0.35

Figure 5.17: Errors of three numerical
methods for q = 1.2, p = 2.5, s = 0.3

Figure 5.18: Absolute errors of the ma-
trix transform method for q = 1.6, p =
2.5, t = 1

Figure 5.19: Relative errors of the ma-
trix transform method for q = 1.6, p =
2.5, t = 1

C = 100000 and s = 0.45, 0.4, 0.35, 0.3. Figures 5.18 and 5.19 show the errors of
the results of the matrix transform method at t = 1 for q = 1.6 and Nx = 20.
It is shown that the results of existing method are actually first order accuracy
and the results of the author’s proposed method are second order accuracy in
any fractional calculus order q. In addition, these results indicate the numerical
solutions by the matrix transform method do not converge to the analytical so-
lution. The matrix transform method is the method to approximate fractional
derivative with a power of the matrix. From these results, it is shown that the
author was not able to implement the matrix transform method so to obtain
appropriate solutions. Therefore, from next experiments, we show the results by
only existing finite difference methods proposed by M.M. Meerschaert and the
author’s proposed finite difference methods.

Figures 5.20, 5.21 5.22 and 5.23 are the results for respectively q = 1.8, 1.6, 1.4, 1.2
and s = 0.45, 0.4, 0.35, 0.3 with p = 1.5, C = 100000, Nt = 1000. These graphs
indicate that existing first order accuracy methods numerically calculate actually
with first order accuracy. On the other hand, the author’s proposed second order
accuracy scheme cannot calculate with second order accuracy. This is because
the accuracy decaying happens. By the accuracy decaying, the accuracy order
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Figure 5.20: Errors of two numerical
methods for q = 1.8, p = 1.5, s = 0.45

Figure 5.21: Errors of two numerical
methods for q = 1.6, p = 1.5, s = 0.4

Figure 5.22: Errors of two numerical
methods for q = 1.4, p = 1.5, s = 0.35

Figure 5.23: Errors of two numerical
methods for q = 1.2, p = 1.5, s = 0.3

around boundaries decreases from O(h2x) to O(h1.5x ). However, the accuracy or-
der O(h2x) and O(h1.5x ) are near, and it is difficult to obtain that difference well.
Therefore, the author’s proposed scheme calculate not with second order accuracy
but with a little higher accuracy than O(h1.5x ).

Figures 5.24, 5.25, 5.26 and 5.27 show the results for respectively q = 1.8, 1.6, 1.4, 1.2
and s = 0.45, 0.4, 0.35, 0.3 with p = 0.5, C = 100000 and Nt = 1000. These
graphs indicate that the numerical solutions are influenced by the form of the
analytical solution, and the accuracy decays to O(hpx). This accuracy decaying
occurs both to the existing first order accuracy scheme and the author’s proposed
second order accuracy scheme. In addition, not depending on the fractional cal-
culus order q, the accuracy decays to O(hpx).

Figures 5.28, 5.29 and 5.30 show the errors of the author’s proposed explicit
scheme with C = 1, Nt = 5000, q = 1.8, 1.6, 1.4, 1.2, s = 0.45, 0.4, 0.35, 0.3 for
p = 2.5, 1.5, 0.5 respectively. The time step size ht is ht = 1/5000, and this
satisfies the stability conditions of the author’s proposed explicit scheme. These
results show that the numerical solutions are stable, but the expected accuracy
orders cannot be obtained. The reason is that the number of space grids is at
most Nx = 80 in these experiments and so small that errors cannot converge with
the expected accuracy order. Therefore, by taking larger Nx and smaller hx, the
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Figure 5.24: Errors of two numerical
methods for q = 1.8, p = 0.5, s = 0.45

Figure 5.25: Errors of two numerical
methods for q = 1.6, p = 0.5, s = 0.4

Figure 5.26: Errors of two numerical
methods for q = 1.4, p = 0.5, s = 0.35

Figure 5.27: Errors of two numerical
methods for q = 1.2, p = 0.5, s = 0.3

Figure 5.28: Errors of the author’s pro-
posed explicit scheme with various q for
p = 2.5

Figure 5.29: Errors of the author’s pro-
posed explicit scheme with various q for
p = 1.5
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Figure 5.30: Errors of the author’s proposed explicit scheme with various q for
p = 0.5

expected accuracy order will be obtained. However, larger Nx requires smaller
ht, and this means the rapid increase of computational complexity. Therefore,
explicit methods are not suitable for measuring errors accurately. In this section,
the numerical experiments are done with implicit methods which do not impose
the stability conditions on time step size ht.

Next, the author makes experiments for 0 < q < 1 with the same analytical
solution and the force term. The existing finite difference methods proposed by
M.M. Meerschaert and C. Tadjeran are not defined in 0 < q < 1. Therefore,
the author verify the accuracy only of the author’s proposed implicit scheme.
Figures 5.31, 5.32 and 5.33 are the results with C = −100000, Nt = 1000,
q = 0.8, 0.6, 0.4, 0.2, s = 0.2, 0.1, 0.0,−0.1 for p = 2.5, 1.5, 0.5 respectively.

Figure 5.31: Errors of the author’s pro-
posed implicit scheme with various q for
p = 2.5

Figure 5.32: Errors of the author’s pro-
posed implicit scheme with various q for
p = 1.5

Figure 5.31 indicates the accuracy order of out proposed implicit scheme is
the second order accuracy. In addition, the result for q = 0.4 is influenced by the
accuracy around boundaries. By the phenomenon of accuracy decaying, the accu-
racy around boundaries is O(h2.5x ), and the result for q = 0.4 has a stronger effect
of O(h2.5x ) than O(h2x) which is the accuracy of the author’s proposed scheme.
Figure 5.32 and 5.33 show the accuracy decaying happens in the computations.
The expected accuracy order is the second order accuracy, but the accuracy de-
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Figure 5.33: Errors of the author’s proposed implicit scheme with various q for
p = 0.5

cays to O(h1.5x ) and O(h0.5x ). From these results, the accuracy of the numerical
solutions for 0 < q < 1 also decreases depending on the form of the analytical
solution.

Next, the author makes experiments in the case of non-zero Dirichlet boundary
conditions. Let us consider the following two problems. Problem 1 is defined by
the following analytical solution

u1(x, t) = exp(−t)x2(1− x)2 + 3(1− x)2 − 2(1− x)3, 0 ≤ x ≤ 1

and the force term

f1(x, t)

= − exp(−t)x2(1− x)2 − C

2
exp(−t)

{
2
(
x2−q + (1− x)2−q

)
Γ(3− q)

−
12
(
x3−q + (1− x)3−q

)
Γ(4− q)

+
24
(
x4−q + (1− x)4−q

)
Γ(5− q)

}

−C
2

{
x−q

Γ(1− q)
−

6
(
x2−q + (1− x)2−q

)
Γ(3− q)

+
12
(
x3−q + (1− x)3−q

)
Γ(4− q)

}
.

The initial condition of Problem 1 is u1(x, 0) = x2(1−x)2+3(1−x)2−2(1−x)3,
and the boundary conditions are u1(0, t) = 1, u1(1, t) = 0. Problem 2 is defined
by the following analytical solution

u2(x, t) = exp(−t)x(1− x) + (1− x), 0 ≤ x ≤ 1

and the force term

f2(x, t)

= − exp(−t)x(1− x)− C

2
exp(−t)

{(
x1−q + (1− x)1−q

)
Γ(2− q)

−
2
(
x2−q + (1− x)2−q

)
Γ(3− q)

}

−C
2

{
x−q

Γ(1− q)
−
(
x1−q + (1− x)1−q

)
Γ(2− q)

}
.

The initial condition of Problem 2 is u2(x, 0) = x(1 − x) + (1 − x), and the
boundary conditions are u2(0, t) = 1, u2(1, t) = 0. This problem also has non-
zero Dirichlet boundary conditions. All experiments are done for 0 ≤ t ≤ 1. In

82



the paper[21], M. Ilic and others mentioned that the matrix transform method
cannot be applied to non-zero Dirichlet boundary conditions. Therefore, the
author makes experiments by using existing first order accuracy implicit scheme
(3.1) proposed by M.M. Meerschaert and C. Tadjeran and by using the author’s
proposed second order accuracy implicit scheme (5.6).

Figure 5.34: Errors of two scheme with
Problem 1 for q = 1.8

Figure 5.35: Errors of two scheme with
Problem 1 for q = 1.6

Figure 5.36: Errors of two scheme with
Problem 1 for q = 1.4

Figure 5.37: Errors of two scheme with
Problem 1 for q = 1.2

Figures 5.34, 5.35, 5.36 and 5.37 show the errors of the existing first accu-
racy implicit scheme and the author’s proposed second accuracy implicit schemes
with C = 100000, Nt = 1000, ht = 1/1000 for q = 1.8, 1.6, 1.4, 1.2 and s =
0.45, 0.4, 0.35, 0.3 respectively. These graphs indicate that the existing first accu-
racy scheme cannot compute with non-zero Dirichlet boundary condition, since
the numerical solutions do not converge to the analytical solution. The existing
first accuracy scheme does not employ the feature of error cancelling, so the ac-
curacy order becomes O(1) by the accuracy decaying. In contrast, the numerical
solutions of the author’s proposed scheme converge to the analytical solution with
about second order accuracy. The author’s proposed scheme employ the feature
of error cancelling, and can analytically compute constant functions without er-
rors. In addition, this analytical solution has the order O(x2) around boundaries.
Therefore, the numerical solutions are not influenced by the accuracy decaying.
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Figure 5.38 is the results of the author’s proposed second order accuracy
implicit scheme for Problem 1 with C = −100000, Nt = 1000, ht = 1/1000 for
q = 0.8, 0.6, 0.4, 0.2 and s = 0.2, 0.1, 0.0,−0.1 respectively. This graph shows

Figure 5.38: Errors of the author’s proposed implicit scheme with Problem 1 and
various q

that the author’s proposed implicit scheme actually compute with second order
accuracy for 0 < q < 1 for non-zero Dirichlet boundary condition. In addition,
the accuracy decaying does not happen.

Next, the author makes experiments for Problem 2. Figures 5.39, 5.40, 5.41
and 5.42 show the error of existing first order accuracy implicit scheme and the
author’s proposed second order accuracy implicit scheme with C = 100000, Nt =
1000, ht = 1/1000 for q = 1.8, 1.6, 1.4, 1.2 and s = 0.45, 0.4, 0.35, 0.3 respectively.

Figure 5.39: Errors of two scheme with
Problem 2 for q = 1.8

Figure 5.40: Errors of two scheme with
Problem 2 for q = 1.6

In the same way of the results of Problem 1, the numerical solutions of existing
scheme do not converge to the analytical solution. The numerical solutions of
the author’s proposed scheme converge not with the second order accuracy, but
with the first order accuracy. This is because the accuracy decaying happens.
The analytical solution has the order O(x) around boundaries, so the accuracy
decaying occurs and the accuracy order decreases from the second order accuracy
O(h2x) to O(hx).
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Figure 5.41: Errors of two scheme with
Problem 2 for q = 1.4

Figure 5.42: Errors of two scheme with
Problem 2 for q = 1.2

Figure 5.43 is the results of the author’s proposed second order accuracy
implicit scheme for Problem 2 with C = −100000, Nt = 1000, ht = 1/1000 for
q = 0.8, 0.6, 0.4, 0.2 and s = 0.2, 0.1, 0.0,−0.1 respectively. This graph indicates

Figure 5.43: Errors of the author’s proposed implicit scheme with Problem 2 and
various q

that the accuracy decaying happens also for 0 < q < 1. Therefore, the accuracy
of the author’s proposed scheme decreases from the second accuracy O(h2x) to
the first order accuracy O(hx).

5.2 Time-fractional partial differential equations

5.2.1 The author’s proposed finite difference method

In this section, the author proposes the implicit high accuracy finite difference
methods for one-dimensional time-fractional partial differential equations which
is given by

R
t0D

q
tu(x, t) = C

∂2u(x, t)

∂x2
+ f(x, t),

for 0 < q < 1, t0 ≤ t ≤ T and L ≤ x ≤ R. The constant C > 0 is a diffusion con-
stant, and the function f is a force term. This equation also appears in the model
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to simulate physical phenomena, and there are many research to study about
this equation. Existing finite difference methods to this equation employ Caputo
derivative for time derivative, and have first order accuracy[67, 44, 28]. However,
the author consider to use Riemann-Liouville derivative to apply the author’s
proposed formulae. It is not difficult to convert Riemann-Liouville derivative to
Caputo derivative, so the author also try to develop schemes for Caputo deriva-
tive in the future task. Let Nt and Nx be the number of grid points for time and
space respectively. In addition, let the time step size ht be ht = (T − t0)/Nt, and
let the space step size hx be hx = (R − L)/Nx. Let Um

j denote an approximate
solution Um

j ≃ u(jhx,mht). Then, the author’s proposed scheme is given by

h−q
t

Γ(−q)

m−1∑
i=0

Γ(i− q)

Γ(i+ 1)

{
2 + q

2
Um−i
j − q

2
Um−i−1
j

}

+
h−q
t

Γ(1− q)
U0
j

{
m−q − Γ(m− q)

Γ(m)

}
= C

Um
j+1 − 2Um

j + Um
j−1

h2x
+ fmj . (5.31)

where 1 ≤ j ≤ Nx − 1 and 1 ≤ m ≤ Nx. This scheme also has the feature of
error cancelling, and can compute constant functions. The matrix representation
of the scheme (5.31) is given by AU⃗m = b⃗m−1 where U⃗m = (Um

0 , U
m
1 , . . . , U

m
Nx

)T .
The entries ai,j of the matrix A are defined as

ai,j =


1, i = j = 0 or i = j = Nx

2r + 2+q
2 , i = j, 1 ≤ i, j ≤ Nx − 1

−r, j = i− 1 or j = i+ 1, 1 ≤ i ≤ Nx − 1
0, otherwise

where r = Cht/h
q
x The entries bmj of the vector b⃗m are defined as

bm−1
j =

q

2
Um−1
j −

m−1∑
i=1

gi

{
2 + q

2
Um−i
j − q

2
Um−i−1
j

}
−U0

j

{
m−q − Γ(m− q)

Γ(m)

}
+ hqtf

m
j

where gn is gn = Γ(n− q)/(Γ(−q)Γ(n+ 1)). This scheme indicates that the past
information is required to calculate the present values.

5.2.2 Stability analysis

As mentioned above, the author apply the matrix method to the schemes for
space-fractional partial differential equations. In a similar way, to analyze the
stability of the scheme (5.31), the author uses the matrix method to the matrix
A. If any eigenvalues λ of the matrix A satisfy |λ| ≥ 1, this scheme is stable.
Eigenvalues derived from the first and last column are exactly 1 by Gerschgorin’s
theorem. From the matrix representation of the scheme, we have

|λ− ai,i| ≤
∑
j ̸=i

|aj,i|

= |λ− 2r − 2 + q

2
| ≤ 2r

⇒ 2 + q

2
≤ λ ≤ 4r +

2 + q

2
.

Then, any eigenvalues λ are always more than 1, and this scheme is stable.
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5.2.3 Numerical experiments

For the numerical experiments about the author’s proposed second accuracy
scheme, let us assume two problems. Problem 1 is defined by the following
analytical solution

u1(x, t) = tp sin(2πx), 0 ≤ x ≤ 1,

and the force term

f1(x, t) =
Γ(p+ 1)

Γ(p− q + 1)
tp−q sin(2πx) + 4Cπ2tp sin(2πx)

where the constant p is a factor which controls the order of the analytical solution
at initial points. The initial condition of Problem 1 is u(x, 0) = 0, and the
boundary conditions are u(0, t) = u(1, 0) = 0. Problem 2 is defined by the
following analytical solution

u2(x, t) = (tp + 1) sin(2πx), 0 ≤ x ≤ 1,

and the force term

f2(x, t)

=

{
Γ(p+ 1)

Γ(p− q + 1)
tp−q +

t−q

Γ(1− q)

}
sin(2πx)

+4Cπ2(tp + 1) sin(2πx)

where the constant p is a factor which controls the order of the analytical solution
at initial points. The initial condition of Problem 1 is u(x, 0) = sin(2πx), and
the boundary conditions are u(0, t) = u(1, 0) = 0.

Figure 5.44 is the analytical solution of Problem 1. Figures 5.45, 5.46 and
5.47 show the errors of the proposed scheme to Problem 1 for q = 0.8 in blue
lines, q = 0.6 in red lines, q = 0.4 in green lines and q = 0.2 in cyan line with
C = 0.000001, Nx = 320 for p = 2.5, 1.5, 0.5 respectively.

Figure 5.44: The analytical solution
u1(x, t) of Problem 1 Figure 5.45: Errors of the proposed

scheme with Problem 1 for p = 2.5

Figure 5.45 indicates that the proposed scheme computes actually with the
second order accuracy if the accuracy decaying does not occur. On the other
hand, Figures 5.46 and 5.47 show the influence of the accuracy decaying. In a
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Figure 5.46: Errors of the proposed
scheme with Problem 1 for p = 1.5

Figure 5.47: Errors of the proposed
scheme with Problem 1 for p = 0.5

similar way of space-fractional partial differential equations, the accuracy decay-
ing happens around initial points. Therefore, the accuracy around the initial
boundary is O(h1.5t ) for p = 1.5 and is O(h0.5t ) for p = 0.5. The computations
of the numerical solutions at t = 1 require the numerical solutions around initial
points as the past information. Therefore, the results at t = 1 are also influenced
by the accuracy decaying. Then, how much does the accuracy decay at t = 1?
The notable points in Figures 5.46 and 5.47 are that the observed accuracy orders
are represented with O(hp+1−q

t ). This relation is meaningful, but it is not easy
to mathematically analyze the accuracy of the formula which contain the past
information. In addition, time-fractional partial differential equations are similar
not to space-fractional partial differential equations but to fractional ordinary
differential equations which the author introduces in Chapter 7. This is because
two equations include time fractional derivatives. Further error analysis of the
author’s proposed method is a future task.

Figure 5.48 is the analytical solution of Problem 2. Figures 5.49, 5.50 and
5.51 show the errors of the author’s proposed scheme to Problem 2 for q = 0.8
in blue lines, q = 0.6 in red lines, q = 0.4 in green lines and q = 0.2 in cyan lines
with C = 0.000001, Nx = 320 for p = 2.5, 1.5, 0.5 respectively.

Figure 5.48: The analytical solution
u1(x, t) of Problem 2 Figure 5.49: Errors of the proposed

scheme with Problem 2 for p = 2.5

Figure 5.49, 5.50 and 5.51 indicates that the proposed scheme computes actu-
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Figure 5.50: Errors of the proposed
scheme with Problem 2 for p = 1.5

Figure 5.51: Errors of the proposed
scheme with Problem 2 for p = 0.5

ally with the second order accuracy if the analytical solution contains a constant
function. The proposed scheme can compute constants functions without errors,
so the results of Problem 2 are almost the same to that of Problem 1. In Problem
2, the accuracy decaying happens in a similar way of Problem 1.
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Chapter 6

Numerical solutions in the form of

polynomial expansion for homogeneous

parabolic fractional partial differential

equations

6.1 Motivation

This section treat the following homogeneous parabolic fractional partial differ-
ential equations in bounded domain as

∂u(x, t)

∂t
=

C

2

[
R
−LD

q
xu(x, t) +

R
xD

q
Lu(x, t)

]
(6.1)

=
C

2
−LR

q
Lu(x, t)

where 1 < q < 2 and −L ≤ x ≤ L. In the above equation, the operator

−LR
q
L defined by the sum of right side and left side fractional derivative is called

Riesz derivative. There are two motivations to develop the numerical solving
method in the form of polynomial for this kind of equations. In Chapter 5, the
author proposes finite difference methods for space-fractional partial differential
equations. In addition, the author shows that the author’s proposed schemes
are second order accuracy but its accuracy decays depending on the analytical
solution of equations. Then, there is a question. Does the analytical solution
of the equation (6.1) have the form which causes the accuracy decaying? This
is one of motivations, and the other motivation is to measure the error. In
order to measure the error, we need to know the analytical solution, since the
error is made from the comparison between the analytical solution and numerical
solutions. Whether the accuracy decaying will happen depends on the form of
the analytical solution at boundaries. However, to measure the error, we need to
know the form of the analytical solution in the whole domain.

6.2 The author’s proposed method in the form of polynomial
expansion

The author’s proposed method is similar to development of the analytical so-
lution of integer order diffusion equations in a finite domain. In finite domain,
the analytical solution of integer order diffusion equations is developed by us-
ing separation of variables. Then, we solve two kinds of differential equations
about time and space individually. The solutions of differential equations about
space are sine and cosine functions which become multiples of constants for sec-
ond derivatives. In a similar way, the proposed method is to find odd and even
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functions which becomes multiples of constants for right side fractional derivative
and left side fractional derivative. Firstly, the analytical solution of homogeneous
parabolic fractional partial differential equations in finite domain is also devel-
oped by using separation of variables. Let us assume that the analytical solution
u(x, t) be represented as u(x, t) = X(x)T (t). Then, by substituting this to Eq.
(6.1), we have

X(x)T ′(t) =
C

2

[
R
LD

q
xX(x) + R

xD
q
RX(x)

]
T (t)

⇒ T ′(t)

T (t)
=
C

2

[
R
LD

q
xX(x) + R

xD
q
RX(x)

]
X(x)

= −µ

where µ is a constant µ > 0 which depends on neither t nor x. Then, we have
the differential equations about t as

T ′(t) = −µT (t).

The solution of the above equation is given by using an exponential function as

T (x) = A exp(−µt)

where A is an integral constant. In regard to x, we have the following fractional
differential equations as

C

2

[
R
LD

q
xX(x) + R

xD
q
RX(x)

]
= −µX(x). (6.2)

This differential equation contain the two kinds of fractional derivative, so it is
not easy to solve analytically. In integer order diffusion equations, the analytical
solution about x is composed by the combination of sine and cosine functions.
In a similar way, let us assume that the function X(x) is odd or even function
expanded at the center of domain. Here, we put the function X(x) as an even
function defined by

X0(x) = a0 + a2x
2 + a4x

4 + · · ·

=
∞∑
k=0

a2kx
2k.

An odd function is defined by

X1(x) = a1x+ a3x
3 + a5x

5 + · · ·

=

∞∑
k=0

a2k+1x
2k+1.

The author call this even function X0(x) fractional cosine function, and call this
odd function X1(x) fractional sine function in this thesis. By assuming that the
function X(x) can be expanded at the center of the domain, we can solve Eq.
(6.1) by computing the coefficient ak.

Before substituting X0(x) and X1(x) to Eq. (6.2), let us consider the frac-
tional derivative for the polynomial xn where n is a positive integer n = 0, 1, 2, 3, · · · .
From the definition of Riemann-Liouville definition, we have

R
−LD

q
xx

n

=
1

Γ(2− q)

[
d

dx

]2 ∫ x

−L

ξn

(x− ξ)q−1
dξ.
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By applying changing variable as τ = x− ξ, we have

=
1

Γ(2− q)

[
d

dx

]2 ∫ x+L

0

(x− τ)n

τ q−1
dτ

=
1

Γ(2− q)

[
d

dx

]2 ∫ x+L

0

n∑
k=0

xn−k(−1)kτk+1−q

(
n

k

)
dτ

=
1

Γ(2− q)

[
d

dx

]2 [ n∑
k=0

(
n

k

)
xn−k(−1)k

τk+2−q

k + 2− q

]x+L

0

=
1

Γ(2− q)

[
d

dx

]2 n∑
k=0

(
n

k

)
xn−k(−1)k

(x+ L)k+2−q

k + 2− q

=
1

Γ(2− q)

[
d

dx

]2{
xn

(x+ L)2−q

2− q
− nxn−1 (x+ L)3−q

3− q
+ · · ·+ (−1)n

(x+ L)n+2−q

n+ 2− q

}
.

Then, we have the fractional derivative of X0(x) as

R
−LD

q
xX0(x)

=

[
d

dx

]2 1

Γ(2− q)

[
L2−q

{
a0

2− q
+

a2
4− q

L2 + . . .

}
+
(x
L

)
L2−q

{
a0

1− q

1− q
+ a2L

2 1− q

3− q
+ a4L

4 1− q

5− q
+ . . .

}
+
(x
L

)2
L2−q

{
a0

(1− q)(−q)
2(−q)

+ a2L
2 (1− q)(−q)

2(2− q)
+ a4L

4 (1− q)(−q)
2(4− q)

+ . . .

}
+
(x
L

)3
L2−q

{
a0

(1− q)(−q)(−1− q)

6(−1− q)
+ a2L

2 (1− q)(−q)(−1− q)

6(1− q)
+ . . .

}
+ . . .

+
(x
L

)n
L2−q Γ(2− q)

Γ(n+ 1)Γ(2− n− q)

∞∑
k=0

a2kL
2k

2− n− q + 2k

+ . . . ] .

Next, let us consider the left fractional derivative for the polynomial xn. Here,
we have

R
xD

q
Lx

n

=
1

Γ(2− q)

[
− d

dx

]2 ∫ L

x

ξn

(ξ − x)q−1
dξ.

By applying changing variable as τ = ξ − x, we have

=
1

Γ(2− q)

[
d

dx

]2 ∫ L−x

0

(x+ τ)n

τ q−1
dτ

=
1

Γ(2− q)

[
d

dx

]2 ∫ L−x

0

n∑
k=0

xn−kτk+1−q

(
n

k

)
dτ

=
1

Γ(2− q)

[
d

dx

]2 [ n∑
k=0

(
n

k

)
xn−k τk+2−q

k + 2− q

]L−x

0

=
1

Γ(2− q)

[
d

dx

]2 n∑
k=0

(
n

k

)
xn−k (L− x)k+2−q

k + 2− q

=
1

Γ(2− q)

[
d

dx

]2{
xn

(L− x)2−q

2− q
+ nxn−1 (L− x)3−q

3− q
+
n(n− 1)

2
xn−2 (L− x)4−q

4− q
+ . . .

}
.
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Then, we have the left fractional derivative to X0 as

R
xD

q
LX0(x)

=

[
d

dx

]2 1

Γ(2− q)

[
L2−q

{
a0

2− q
+

a2
4− q

L2 + . . .

}
−
(x
L

)
L2−q

{
a0

1− q

1− q
+ a2L

2 1− q

3− q
+ a4L

4 1− q

5− q
+ . . .

}
+
(x
L

)2
L2−q

{
a0

(1− q)(−q)
2(−q)

+ a2L
2 (1− q)(−q)

2(2− q)
+ a4L

4 (1− q)(−q)
2(4− q)

+ . . .

}
−
(x
L

)3
L2−q

{
a0

(1− q)(−q)(−1− q)

6(−1− q)
+ a2L

2 (1− q)(−q)(−1− q)

6(1− q)
+ . . .

}
+ . . .

+(−1)n
(x
L

)n
L2−q Γ(2− q)

Γ(n+ 1)Γ(2− n− q)

∞∑
k=0

a2kL
2k

2− n− q + 2k

+ . . . ] .

Therefore, we obtain

C

2

[
R
−LD

q
xX0(x) +

R
xD

q
LX0(x)

]
=

[
d

dx

]2 C

Γ(2− q)

[
L2−q

{
a0

2− q
+

a2
4− q

L2 + . . .

}
+
(x
L

)2
L2−q

{
a0

(1− q)(−q)
2(−q)

+ a2L
2 (1− q)(−q)

2(2− q)
+ a4L

4 (1− q)(−q)
2(4− q)

+ . . .

}
+ . . .

+
(x
L

)2m
L2−q Γ(2− q)

Γ(2m+ 1)Γ(2− 2m− q)

∞∑
k=0

a2kL
2k

2− 2m− q + 2k

+ . . . ]

=
C

Γ(2− q)

[
L−q

{
a0

(1− q)(−q)
(−q)

+ a2L
2 (1− q)(−q)

(2− q)
+ a4L

4 (1− q)(−q)
(4− q)

+ . . .

}
+
(x
L

)2
L−q

{
a0

(1− q)(−q)(−1− q)(−2− q)

2(−2− q)
+ a2L

2 (1− q)(−q)(−1− q)(−2− q)

2(−q)
+ . . .

}
+ . . .

+
(x
L

)2m
L−q

∞∑
k=0

a2kL
2kΓ(2− q)

(2k − 2m− q)Γ(2m+ 1)Γ(−2m− q)

+ . . . ] .

By substituting to Eq. (6.2), we obtain the following relation for each term

−µa2mx2m =
(x
L

)2m
L−q

∞∑
k=0

Ca2kL
2k

(2k − 2m− q)Γ(2m+ 1)Γ(−2m− q)

where m is a non-negative integer. Let bk be bk = akL
k, and applying Euler’s

reflection formula to Γ(2m + 1)Γ(−2m − q), we have the following system of
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equations

−b0
Γ(1)

Γ(1 + q)

µπLq

C sin(qπ)
=

b0
q

+
b2

q − 2
+

b4
q − 4

+ . . .

−b2
Γ(3)

Γ(3 + q)

µπLq

C sin(qπ)
=

b0
q + 2

+
b2
q

+
b4

q − 2
+ . . .

−b4
Γ(5)

Γ(5 + q)

µπLq

C sin(qπ)
=

b0
q + 4

+
b2

q + 2
+
b4
q

+ . . .

... =
...

−b2m
Γ(2m+ 1)

Γ(2m+ 1 + q)

µπLq

C sin(qπ)
=

b0
q + 2m

+
b2

q + 2m− 2
+ . . . . (6.3)

Next, let us consider about the odd function X1(x). In the same way to the
function X0(x), we obtain

C

2

[
R
−LD

q
xX1(x) +

R
xD

q
LX1(x)

]
=

C

Γ(2− q)

[(x
L

)
L−q

∞∑
k=0

a2k+1L
2k+1Γ(2− q)

(2k − q)Γ(2)Γ(−1− q)

+
(x
L

)3
L−q

∞∑
k=0

a2k+1L
2k+1Γ(2− q)

(2k − 2− q)Γ(4)Γ(−3− q)

+ . . .

+
(x
L

)2m+1
L−q

∞∑
k=0

a2k+1L
2k+1Γ(2− q)

(2k − 2m− q)Γ(2m+ 2)Γ(−2m− 1− q)

+ . . . ] .

From Eq. (6.2), we have the following relation for each term

−µa2m+1x
2m+1 =

(x
L

)2m+1
L−q

∞∑
k=0

Ca2k+1L
2k+1

(2k − 2m− q)Γ(2m+ 2)Γ(−2m− 1− q)

where m is a non-negative integer. Let bk be bk = akL
k, and applying Euler’s

reflection formula to Γ(2m+ 2)Γ(−2m− 1− q), we have the following system of
equations

−b1
Γ(2)

Γ(2 + q)

µπLq

C sin(qπ)
=

b1
q

+
b3

q − 2
+

b5
q − 4

+ . . .

−b3
Γ(4)

Γ(4 + q)

µπLq

C sin(qπ)
=

b1
q + 2

+
b3
q

+
b5

q − 2
+ . . .

−b5
Γ(6)

Γ(6 + q)

µπLq

C sin(qπ)
=

b1
q + 4

+
b3

q + 2
+
b5
q

+ . . .

... =
...

−b2m+1
Γ(2m+ 2)

Γ(2m+ 2 + q)

µπLq

C sin(qπ)
=

b1
q + 2m

+
b3

q + 2m− 2
+ . . . . (6.4)

Now, we obtain two infinite size of equations (6.3) and (6.4). Then, how can we
solve them? The author suggests the following two points for this question. First
point is the approximation to a finite size. In the beginning, we cannot solve
infinite size problems by using computers. It is required that the approximation
from infinite size system of equations to finite size. In this thesis, let N denote
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the size of approximated system of equations. Then, by this approximation, we
obtain a finite number of approximated coefficients bk,N and an approximation
µN to µ. In addition, let the approximation function X0,N (x) to X0(x) be

X0,N (x) =
N−1∑
k=0

a2kx
2k,

and let the approximation function X1,N (x) to X1(x) be

X1,N (x) =

N−1∑
k=0

a2k+1x
2k+1.

Then, we obtain not X0(x) and X1(x) but approximated functions X0,N (x) and
X1,N (x). However, even approximated functions have many significant proper-
ties in order to understand homogeneous parabolic fractional partial differential
equations (6.1). Second point is uniqueness of the coefficients bk. When we solve
Eqs. (6.3) or (6.4), the values of coefficients bk cannot be uniquely decided unless
we decide just two values before solving. This fact is shown from the number of
variables and equations. In this thesis, we decide µ and b0 in Eq. (6.3) and µ
and b1 in Eq. (6.4) before solving. The proposed method simply puts b0 = 1 and
b1 = 1. However, the value of µ cannot be decided without consideration, since
µ has a mathematical meaning. The author suggests two methods to decide the
value of µ.

Eigenvalues method

One is to use the property that µ is the eigenvalue of the Riesz derivative operator.
Equation (6.2) can be represented with Riesz operator as

−µX(x) =
C

2
−LR

q
LX(x).

Then, it is interpreted that the function X(x) is an eigenfunction and µ is an
eigenvalue. Therefore, the approximated eigenvalue µN can be calculated as the
eigenvalues of eigenfunctions X0,N (x) and X1,N (x) by computing the eigenvalues
of the following matrix

−Γ(1+q) sin(qπ)
qΓ(1)πLq −Γ(1+q) sin(qπ)

(q−2)Γ(1)πLq . . . − Γ(1+q) sin(qπ)
(q−2N)Γ(1)πLq

−Γ(3+q) sin(qπ)
(q+2)Γ(3)πLq −Γ(3+q) sin(qπ)

qΓ(3)πLq . . . − Γ(3+q) sin(qπ)
(q−2N+2)Γ(3)πLq

−Γ(5+q) sin(qπ)
(q+4)Γ(5)πLq −Γ(5+q) sin((q+2)π)

(q+2)Γ(5)πLq . . . − Γ(5+q) sin(qπ)
(q−2N+4)Γ(5)πLq

...
...

. . .
...

− Γ(2N+1+q) sin(qπ)
(q+2N)Γ(2N+1)πLq − Γ(2N+1+q) sin(qπ)

(q+2N−2)Γ(2N+1)πLq . . . −Γ(2N+1+q) sin(qπ)
(q)Γ(2N+1)πLq


for X0,N and the following matrix

−Γ(2+q) sin(qπ)
qΓ(2)πLq −Γ(2+q) sin(qπ)

(q−2)Γ(2)πLq . . . − Γ(2+q) sin(qπ)
(q−2N)Γ(2)πLq

−Γ(4+q) sin(qπ)
(q+2)Γ(4)πLq −Γ(4+q) sin(qπ)

qΓ(4)πLq . . . − Γ(4+q) sin(qπ)
(q−2N+2)Γ(4)πLq

−Γ(6+q) sin(qπ)
(q+4)Γ(6)πLq −Γ(6+q) sin((q+2)π)

(q+2)Γ(6)πLq . . . − Γ(6+q) sin(qπ)
(q−2N+4)Γ(6)πLq

...
...

. . .
...

− Γ(2N+2+q) sin(qπ)
(q+2N)Γ(2N+2)πLq − Γ(2N+2+q) sin(qπ)

(q+2N−2)Γ(2N+2)πLq . . . −Γ(2N+2+q) sin(qπ)
(q)Γ(2N+2)πLq


for X1,N .
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Search method

The other method to decide the value of µN is to search the appropriate value in
order to satisfy the boundary condition. In this thesis, we assume the zero Dirich-
let boundary condition for Eq. (6.1), so the appropriate value of µN is searched
by solving the following system of equations under the assumption b0,N = 1 and
b1,N = 1

1
q−2

1
q−4 . . . 1

q−2N
1
q +

Γ(3)µπLq

Γ(3+q) sin(qπ)
1

q−2 . . . 1
q−2N+2

...
...

. . .
...

1
q+2N−4

1
q+2N−6 . . . 1

q−2




b2,N
b4,N
...

b2N,N

 =


−1

q −
Γ(1)µπLq

Γ(1+q) sin(qπ)

− 1
q+2
...

− 1
q+2N−2


and

1
q−2

1
q−4 . . . 1

q−2N
1
q +

Γ(4)µπLq

Γ(4+q) sin(qπ)
1

q−2 . . . 1
q−2N+2

...
...

. . .
...

1
q+2N−4

1
q+2N−6 . . . 1

q−2




b3,N
b5,N
...

b2N+1,N

 =


−1

q −
Γ(2)µπLq

Γ(2+q) sin(qπ)

− 1
q+2
...

− 1
q+2N−2


so that the coefficients bk,N satisfy respectively the following boundary conditions

X0,N (−L) = X0,N (L) =

N−1∑
k=0

b2k,N = 0

and

X1,N (−L) = X1,N (L) =

N−1∑
k=0

b2k+1,N = 0.

The author introduces the two methods to decide the approximated values µN and
coefficients bk,N . However, the values calculated with two methods are different
because of difference of the objectives. This thesis mainly uses the latter method.
This is because the approximated function X0,N (x) and X1,N (x) satisfy zero
Dirichlet boundary conditions with high accuracy. It is very important to satisfy
the boundary condition for studying the properties of Eq. (6.1) and for utilizing
the method to solve equations. Therefore, to calculate µN , the author apply the
method which uses the boundary conditions in this thesis.

6.3 Experiments about the analytical solution of homogeneous
parabolic fractional differential equations

6.3.1 The value of µN

Firstly, the author finds the value of µN from Dirichlet boundary conditions as
X0,N (L) = X0,N (−L) = 0 or X1,N (L) = X1,N (−L) = 0. Here, the author shows
the graph between the value of µN and the value of X0,N (L) and X1,N (L) at
boundary. In this section, all numerical experiments are done with L = 1 and
C = 1.
Figure 6.1 is the result of X0,N (x) and X1,N (x) for q = 1.999, 1.5 and N = 250.
For q = 2, X0(x) is equal to cosine function and X1(0) is equal to sine function.
This means that, for q = 2, the boundary values X0(L) = cos(L) and X1(L) =
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Figure 6.1: µ and the boundary value for q = 1.999 and q = 1.5

sin(L) are equal to 0 as X0(L) = cos(L) = 0 with µ =
(
π
2

)2
,
(
3π
2

)2
,
(
5π
2

)2
, · · ·

for X0(x) and equal to 0 as X1(x) = sin(x) = 0 with µ = π2, (2π)2 , (4π)2 , · · · .
Then, solutions of Figure 6.1 for q = 1.999 are almost the same to that of q = 2,
so the boundary values change smoothly for fractional order q.
Figure 6.1 also indicates that there is an infinite number of solutions also for
q = 1.5. This means that there are infinitely many µ’s which satisfies zero
Dirichlet boundary conditions.
Next, the author shows a table about µN satisfying zero Dirichlet boundary
conditions as

∑N−1
k=0 b2k = 0 and

∑N−1
k=0 b2k+1 = 0. By searching µN , we find

a number of µN which satisfies zero Dirichlet boundary conditions. Here, the
author names those a number of constants µN as µ1N , µ

2
N , µ

3
N , · · · in ascending

order, and name a number of constants µ as µ1, µ2, µ3, · · · in ascending order.
In addition to µkN , the author shows the condition number for N = 2000. Table

N = 500 N = 1000 N = 2000 cond

µ1N 1.130029051 1.129817357 1.129711482 2.73D + 1
µ2N 6.786741644 6.785470455 6.784834629 2.98D + 1
µ3N 14.98880218 14.98599539 14.98459126 4.00D + 2
µ4N 25.10321624 25.09851688 25.09616549 7.74D + 3
µ5N 36.81942307 36.81253291 36.80908449 1.64D + 5
µ6N 49.94244694 49.93310483 49.92842798 3.58D + 6
µ7N 64.33501130 64.32298259 64.31695923 7.98D + 7
µ8N 79.89371594 79.87878788 79.87130725 1.80D + 9
µ9N 96.53546256 96.51757714 96.50477259 4.07D + 10
µ10N 114.2388000 114.2553959 114.2624102 9.49D + 11

Table 6.1: µkN satisfying zero Dirichlet boundary conditions for X0,N (x) = 0 with
q = 1.5

6.1 represents that the values of µkN converge to constants µk by increasing the
matrix size N . In the case of X1,N (x), Table 6.2 shows that the values of µkN
also converge to constant µk by increasing N . However, the condition number
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for solving a system of equations becomes larger by increasing N . Therefore, it
is difficult to calculate more µkN by using the proposed method.

N = 500 N = 1000 N = 2000 cond

µ1N 3.579130385 3.578460938 3.578125862 2.43D + 1
µ2N 10.62386207 10.62187537 10.62088084 3.92D + 1
µ3N 19.83130712 19.82759963 19.82574334 3.71D + 2
µ4N 30.77568662 30.76993499 30.76705459 5.38D + 3
µ5N 43.21505649 43.20698319 43.20293908 8.99D + 4
µ6N 56.98739769 56.97675610 56.97142387 1.62D + 6
µ7N 71.97429293 71.96085834 71.95412424 3.08D + 7
µ8N 88.08400917 88.06762385 88.05947939 6.03D + 8
µ9N 105.2520790 105.2219068 105.2324051 1.21D + 10
µ10N 123.5144476 123.5410414 123.5372264 2.56D + 11

Table 6.2: µkN satisfying zero Dirichlet boundary conditions for X1,N (x) = 0 with
q = 1.5

6.3.2 Fractional cosine and sine functions and Riesz derivative

By computing appropriate µkN , the author can define fractional sine and cosine. In
this paper, the author calls even function X0,N (x) with µkN ’fcosk,N (x)’ and calls
odd function X1,N (x) with µkN ’fsink,N (x)’. Additionally, under the limitation
N → ∞, the values of µkN converge to µk, so the author calls even function X0(x)
with µk ’fcosk(x)’ and calls odd function X1(x) with µ

k ’fsink(x)’.

Figure 6.2: fcos1,1000 and Riesz deriva-
tive of fcos1,1000

Figure 6.3: fcos3,1000 and Riesz deriva-
tive of fcos3,1000

Figures 6.2, 6.3, 6.4 and 6.5 show the function fcosk,1000(x) and Riesz deriva-
tive

1

2

[
R
−1D

q
xfcosk,1000(x) +

R
xD

q
1fcosk,1000(x)

]
for k = 1, 3, 5, 7. In this section, fractional derivatives in Riesz derivative are
calculated with the author’s proposed second accuracy formula (4.10) with 500
points. From Eq. (6.2), functions X(x) become −µ times by q-th order Riesz
derivative. In the same way, the function fcosk,1000(x) actually becomes −µk1000
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Figure 6.4: fcos5,1000 and Riesz deriva-
tive of fcos5,1000

Figure 6.5: fcos7,1000 and Riesz deriva-
tive of fcos7,1000

times by applying Riesz derivative. By incrementing k of µk1000, the number of
extremum of the function increases, and the number of local maxima in the graph
also increases.

Figure 6.6: fsin1,1000 and Riesz deriva-
tive of fsin1,1000

Figure 6.7: fsin3,1000 and Riesz deriva-
tive of fsin3,1000

Figure 6.6, 6.7, 6.8 and 6.9 show the function fsink,1000(x) and Riesz deriva-
tive of the function fsink,1000(x) for k = 1, 3, 5, 7. Functions fcosk,1000(x) also
−µk1000 times by applying Riesz derivative. In contrast to fcosk,1000(x), the nu-
merical results show functions fsink,1000(x) are odd functions.

6.3.3 Other properties

First derivative

In this section, the author calculates first derivative of X0,N (x) and X1,N (x). Es-
pecially, the author shows the experimental results for fcos1,1000(x) and fsin1,1000(x).
The function fcos1,1000(x) is the function X0,1000(x) with µ

1
1000, and the function

fsin1,1000(x) is the function X1,1000(x) with µ11000. The reason why the author
uses only fcos1,1000(x) and fsin1,1000(x) is that functions calculated by µk1000 with
larger k have more errors around boundaries as mentioned in the above section.
Both fcos1,1000(x) and fsin1,1000(x) are given with the form of polynomials, so
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Figure 6.8: fsin5,1000 and Riesz deriva-
tive of fsin5,1000

Figure 6.9: fsin7,1000 and Riesz deriva-
tive of fsin7,1000

we can calculate first derivative analytically.
Figure 6.10 shows that first derivatives diverge at boundaries for fcos1,1000(x)

Figure 6.10: Graph of first derivative of fcos1,1000 and first derivative of fsin1,1000

and fsin1,1000(x). This means that both functions cannot be represented by poly-
nomials at boundaries, and are not differentiable. In addition, this is equivalent
to that the analytical solution of homogeneous parabolic fractional differential
equations have the form which causes the accuracy decaying. The divergence of
first derivative around boundaries indicates the functions have the order O(xp),
0 < p < 1 around boundaries. Then, when we solve the equations by using fi-
nite difference methods, the accuracy decaying happens and the accuracy order
becomes low.

Orthogonality

If we use fcosk,N and fsink,N for series expansion like cosine and sine functions,
fcosk,N and fsink,N should have the orthogonality. In addition, Riesz derivative
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is the summation of right and left derivative and seems to be the adjoint operator.
Therefore, those functions are estimated to be orthogonal. In this section, the
author shows the orthogonality by calculating the following inner product by
using trapezoidal rule with 1000 points,∫ L

−L
f(x)g(x)dx.

Because functions fcosk,N are even functions and functions fsink,N are odd func-
tions, the multiple of fcosm,N (x) and fsinm,N (x) is odd function and the inner
product is always 0. Therefore, the author numerically calculates the inner prod-
uct of fcosm,1000(x)fcosn,1000(x) and fsinm,1000(x)fsinn,1000(x).
Table 6.3 shows the value of inner product for fcosm,1000(x) and fcosn,1000(x).

m = 1 m = 2 m = 3 m = 4 m = 5

n = 1 1.079D+0 3.883D-7 -5.586D-7 7.029D-7 -8.387D-7
n = 2 3.883D-7 9.866D-1 1.272D-6 -1.614D-6 1.935D-6
n = 3 -5.586D-7 1.272D-6 1.004D+0 2.388D-6 -2.872D-6
n = 4 7.029D-7 -1.614D-6 2.388D-6 9.977D-1 3.678D-6
n = 5 -8.387D-7 1.935D-6 -2.872D-6 3.678D-6 1.001D+0

Table 6.3: Inner product of fcosm,1000(x) and fcosn,1000(x)

For m ̸= n, the values of inner product are small and near to 0. For m = n,
the values of inner product are almost 1. Therefore, the results indicate that
functions fcosk,1000(x) have orthogonality and are normalized. From Tab. 6.4,

m = 1 m = 2 m = 3 m = 4 m = 5

n = 1 1.170D-1 4.491D-8 -3.959D-8 3.620D-8 -3.382D-8
n = 2 4.491D-8 2.692D-2 3.213D-8 -2.950D-8 2.765D-8
n = 3 -3.959D-8 3.213D-8 1.175D-2 2.637D-8 -2.476D-8
n = 4 3.620D-8 -2.950D-8 2.637D-8 6.531D-3 2.287D-8
n = 5 -3.382D-8 2.765D-8 -2.476D-8 2.287D-8 4.155D-3

Table 6.4: Inner product of fsinm,1000(x) and fsinn,1000(x)

we can estimate that functions fsink,1000(x) also have orthogonality, but are not
normalized.

6.3.4 Series expansion and solutions of fractional diffusion equation

To solve diffusion equations, we have to expand a function, which is defined by an
initial condition, by using orthogonal functions. In the above section, the author
shows the orthogonality of fcosk(x) and fsink(x). Therefore, let us make series
expansion by using fcosk,1000(x) and numerically solve a homogeneous parabolic
fractional differential equation in this section. Firstly, let us expand the following
function step function

f(x) =

{
1 −0.5 < x < 0.5
0 x ≤ −0.5, 0.5 ≤ x

101



Figure 6.11: Graph of series expansion of a step function by using fcosk,1000(x),
1 ≤ k ≤ 10

by using functions of fcos1,1000, fcos2,1000, · · · , fcos10,1000. This step function is
expanded as

f(x) ≃
10∑
k=1

Ckfcosk,1000(x)

Ck =

∫ 1

−1
f(x)fcosk(x)dx.

The integrals in the above expression are computed by using trapezoidal rule with
1000 points. Figure 6.11 is the result of series expansion of the step function.
Because of orthogonality, the step function can be expanded just like we expand
with trigonometric functions.

Next, we solve a fractional diffusion equation with the initial condition P (x, 0) =
1 − x2 and the boundary conditions P (−1, t) = P (1, t) = 0. Because the initial
condition function is the even function, the function P (x, 0) is expanded only
with even functions fcosk,1000(x). Then, the solution is calculated by

P (x, t) ≃
10∑
k=1

Ck exp(−µkt)fcosk,1000(x)

Ck =

∫ 1

−1
P (x, 0)fcosk,1000(x)dx.

The integrals in the above expression are also computed by using trapezoidal
rule with 1000 points. Figure 6.12 and 6.13 show the numerical result until t = 1.
By using the proposed method, we can actually compute numerical solutions for
this problem.
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Figure 6.12: Numerical result to the
function P (x, t)

Figure 6.13: Numerical result to the
function P (x, t)
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Chapter 7

Fractional ordinary differential equations

7.1 Difference between Caputo type and Riemann-Liouville type
fractional ordinary differential equations

Fractional ordinary differential equations are used in many fields, for example,
control system, simulation of viscosity models and so on. This thesis treats the
following fractional ordinary differential equations with Caputo definition

C
t0D

q
t y(t) = f(t, y)

where the fractional calculus order q is 0 < q < 1 and t0 denotes an initial point.
The function f is a known function, and the function y is an unknown function.
In contrast, Riemann-Lioville type fractional ordinary differential equations are
defined by

R
t0D

q
t y(t) = f(t, y).

Then, from a reason, we motivated to solve not Riemann type fractional ordinary
differential equations, but Caputo type. The reason is that the applications must
assume fractional derivative as initial conditions when we choose Caputo type
equations. This reason is also pointed out in a related work[13]. However, it
is not shown why Caputo type equations require fractional derivatives as initial
conditions in mathematical expressions. Therefore, the author firstly shows we
have to impose initial conditions of fractional derivatives on Riemann-Liouville
type equations. For m − 1 < q < m and m = ⌈q⌉, the Riemann-Liouville type
fractional ordinary differential equations are given by

R
t0D

q
t y(t) = f(t, y).

Integrating both side, we have

R
t0D

q−1
t y(t)− R

t0D
q−1
t y(t0) = t0D

−1
t f(t, y).

Repeating the integration, we have

R
t0D

q−m+1
t y(t) =

m−1∑
k=1

R
t0D

q−k
t y(t0)

Γ(m− k)
(t− t0)

m−1−k + t0D
−m+1
t f(t, y).

Applying fractional integral to both side, we obtain

t0D
−q+m−1
t

[
d

dt

]
R
t0D

q−m
t y(t) =

m−1∑
k=1

R
t0D

q−k
t y(t0)

Γ(q − k + 1)
(t− t0)

q−k + t0D
−q
t f(t, y).
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Here, let Y (t) be defined by Y (t) = R
t0D

q−m
t y(t), and applying the exchange rule,

we have

t0D
−q+m−1
t

[
d

dt

]
Y (t)

=

[
d

dt

]
t0D

−q+m−1
t y(t)− Y (t0)

Γ(q −m+ 1)
(t− t0)

q−m

=

[
d

dt

]
t0D

−1
t Y (t)− Y (t0)

Γ(q −m+ 1)
(t− t0)

q−m

= y(t)−
R
t0D

q−m
t y(t0)

Γ(q −m+ 1)
(t− t0)

q−m.

Therefore, we obtain the solution for Riemann-Liouville type fractional ordinary
differential equations

y(t) =
m∑
k=1

R
t0D

q−m
t y(t0)

Γ(q −m+ 1)
(t− t0)

q−m + t0D
−q
t f(t, y).

This solution contains fractional derivative terms as R
t0D

q−m
t y(t0). However, the

physical meaning of fractional derivatives are not trivial, and in most cases there is
not any measurement method for fractional derivative. Hence, many applications
employ Caputo type fractional ordinary differential equations, and this thesis
also treats them. Next, the author shows the solution for Caputo type fractional
ordinary differential equations with m − 1 < q < m and m = ⌈q⌉. Applying
fractional integral to both side, we have

t0D
−q
t

C
t0D

q
t y(t) = t0D

−q
t f(t, y)

⇒ t0D
−m
t y(m)(t)dt = t0D

−q
t f(t, y)

⇒ t0D
−m+1
t

[
y(m−1)(t)− y(m−1)(t0)

]
= t0D

−q
t f(t, y)

Then, it holds

y(t) =
m−1∑
k=0

y(k)(t0)

k!
(t− t0)

k +
1

Γ(q)

∫ t

t0

f(u, y)

(t− u)1−q
du. (7.1)

This solution actually does not include fractional derivatives as initial conditions
but integer order derivatives. From this property, Caputo type fractional or-
dinary differential equations are preferred. The solution is developed, but the
problem is how to compute the integral in Eq. (7.1). In the next section, the au-
thor introduces the two numerical computational method for fractional ordinary
differential equations. They have a different method to compute the integral in
Eq. (7.1). Depending on the way of approximation of the integral, the accuracy
and the stability change.

7.2 The author’s proposed explicit numerical computational method
for fractional ordinary differential equations

7.2.1 Existing methods and the author’s proposed methods

In the above section, the solutions for Caputo type fractional differential equa-
tions are developed. This section introduces the numerical computational meth-
ods for the solution. Let tn be a grid point about time, and t0 is the initial point.
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Let yn be a numerical solution of y(tn), and let y0 be an initial condition as
y0 = y(t0). In addition, let h be a step size, and we put tn = t0 +nh. As a exist-
ing method, the predictor-corrector method has been proposed by K. Diethelm,
N.J. Ford, A.D. Freed[13]. For 0 < q < 1, this method is given by

yn

= y0 +
hq

Γ(2 + q)
f(tn, y

P
n ) +

hq

Γ(q + 2)

n−1∑
j=0

aj,nf(tj , yj)

where the coefficients aj,n are defined by

aj,n =


(n− 1)q+1 − (n− 1− q)nq, j = 0
(n− j + 1)q+1 − 2(n− j)q+1 + (n− j − 1)q+1, 1 ≤ j ≤ n− 1
1, j = n

and the predictor term yPn is defined by

yPn = y0 +
hq

Γ(1 + q)

n−1∑
j=0

{(n− j)q − (n− 1− j)q} f(tj , yj).

This scheme can be represented by changing the order of summations as

yn

= y0 +
hq

Γ(2 + q)

[
f(tn, y

P
n ) + qf(tn−1, yn−1)

]
+

hq

Γ(2 + q)

n−1∑
j=1

[
f(tn−j , yn−j)

{
−(1 + q)jq + (j + 1)1+q − j1+q

}
−f(tn−1−j , yn−1−j)

{
−(1 + q)(j + 1)q + (j + 1)1+q − j1+q

}]
where yPn is defined by

yPn = y0 +
hq

Γ(1 + q)

n−1∑
j=0

f(tn−1−j , yn−1−j) {(j + 1)q − jq} .

Therefore, it is shown that predictor-corrector method consists of the combination
of the second accuracy formula (4.12) and the first order accuracy formula (4.11).
If C

t0D
q
t y(t) ∈ C2[t0, T ] then, the accuracy of the predictor-corrector method is

given by

max
0≤j≤n

|y(tj)− yj | = O(h1+q).

The author’s proposed method also employ the predictor-corrector method, but
uses the third order accuracy formula (4.13). The author’s proposed method is
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given for n ≥ 2 by

yn

= y0 +
hq

Γ(q)

[
A0f(tn, y

P
n ) +B0

{
3

2
f(tn, y

P
n )− 2f(tn−1, yn−1) +

1

2
f(tn−2, yn−2)

}
+C0

{
f(tn, y

P
n )− 2f(tn−1, yn−1) + f(tn−2, yn−2)

}]
+

hq

Γ(q)

n−2∑
j=1

[Ajf(tn−j , yn−j)

+Bj

{
3

2
f(tn−j , yn−j)− 2f(tn−j−1, yn−j−1) +

1

2
f(tn−j−2, yn−j−2)

}
+Cj {f(tn−j , yn−j)− 2f(tn−j−1, yn−j−1) + f(tn−j−2, yn−j−2)}]

+
hq

Γ(q)
[An−1f(t1, y1)

+Bn−1

{
3f(t1, y1)− 4f(t1/2, y1/2) + f(t0, y0)

}
+Cn−1

{
2f(t1, y1)− 4f(t1/2, y1/2) + 2f(t0, y0)

}]
. (7.2)

The coefficients Aj , Bj , Cj are defined by

Aj =
(j + 1)q

q
− jq

q

Bj = −(j + 1)q

q
+

(j + 1)q+1

q(q + 1)
− jq+1

q(q + 1)

Cj =
(j + 1)q

2q
− (j + 1)q+1

q(q + 1)
+

(j + 1)q+2

q(q + 1)(q + 2)
− jq+2

q(q + 1)(q + 2)
.

The predictor term yPn is given by

yPn

= y0 +
hq

Γ(q)
[A0f(tn−1, yn−1)

+(A0 +B0) {3f(tn−1, yn−1)− 4f(tn−2, yn−2) + f(tn−3, yn−3)}

+

(
A0

2
+B0 + C0

)
{2f(tn−1, yn−1)− 4f(tn−2, yn−2) + 2f(tn−3, yn−3)}

]
+

hq

Γ(q)

n−2∑
j=1

[Ajf(tn−j , yn−j)

+Bj

{
3

2
f(tn−j , yn−j)− 2f(tn−j−1, yn−j−1) +

1

2
f(tn−j−2, yn−j−2)

}
+Cj {f(tn−j , yn−j)− 2f(tn−j−1, yn−j−1) + f(tn−j−2, yn−j−2)}]

+
hq

Γ(q)
[An−1f(t1, y1)

+Bn−1

{
3f(t1, y1)− 4f(t1/2, y1/2) + f(t0, y0)

}
+Cn−1

{
2f(t1, y1)− 4f(t1/2, y1/2) + 2f(t0, y0)

}]
. (7.3)

This method requires the computation for the values of y1/2 ≃ y(t0 + h/2) and
y1 as the preparation. Their values are computed by a different method. The
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numerical solution y1 is computed by

y1

= y0 +
hq

Γ(1 + q)

{
q

2(1 + q)
f(t0, y0)

+
2 + q

2(1 + q)
f

(
t0 +

2

2 + q
h, y0 +

2

2 + q
y10 +

2

(2 + q)2
y20

)}
. (7.4)

The numerical solution y1/2 is computed by

y1/2

= y0 +

(
h

2

)q 1

Γ(1 + q)

{
q

2(1 + q)
f(t0, y0)

+
2 + q

2(1 + q)
f

(
t0 +

1

2 + q
h, y0 +

2

2 + q
y11/2 +

2

(2 + q)2
y21/2

)}
.

The values of y11, y
1
1/2 are computed by

y11

=
18 · 12q − 64 · 8q + 45 · 6q + 3 · 4q − 36 · 3q + 7 · 2q

3 · (2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)
K0

+
−8 · 2q(6q − 3 · 4q + 2 · 3q)

(2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)
K1/4 +

2(12q − 9 · 4q + 8 · 3q)
(2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)

K2/4

− 8 · 2q(2q − 2)(2q − 1)

3 · (2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)
K3/4

+
3 · 2q − 4 · 3q + 6q

(2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)
K4/4 (7.5)

y11/2

=
18 · 12q − 64 · 8q + 45 · 6q + 3 · 4q − 36 · 3q + 7 · 2q

3 · (2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)
K0

+
−8 · 2q(6q − 3 · 4q + 2 · 3q)

(2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)
K1/8 +

2(12q − 9 · 4q + 8 · 3q)
(2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)

K2/8

− 8 · 2q(2q − 2)(2q − 1)

3 · (2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)
K3/8

+
3 · 2q − 4 · 3q + 6q

(2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)
K4/8 (7.6)

where Kx is defined as

Kx = y0 + (xh)qf(t0, y0)/Γ(1 + q).

In a similar way, the values of y21, y
2
1/2 are computed by

y21

=
24 · 12q − 64 · 8q + 36 · 6q + 24 · 4q − 24 · 3q + 4 · 2q

3 · (2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)
K0

+
−16 · (12q − 2 · 8q + 6q)

(2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)
K1/4 +

8(12q − 3 · 4q + 2 · 3q)
(2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)

K2/4

− 16 · 2q(2 · 2q − 1)(2q − 1)

3 · (2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)
K3/4

+
4 · 2q − 8 · 3q + 4 · 6q

(2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)
K4/4 (7.7)
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and

y21/2

=
24 · 12q − 64 · 8q + 36 · 6q + 24 · 4q − 24 · 3q + 4 · 2q

3 · (2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)
K0

+
−16 · (12q − 2 · 8q + 6q)

(2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)
K1/8 +

8(12q − 3 · 4q + 2 · 3q)
(2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)

K2/8

− 16 · 2q(2 · 2q − 1)(2q − 1)

3 · (2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)
K3/8

+
4 · 2q − 8 · 3q + 4 · 6q

(2q − 1)(2q − 4 · 3q + 4 · 4q − 6q)
K4/8. (7.8)

7.2.2 Derivation of the accuracy order

The author’s proposed method is based on the third order accuracy formula (4.13)
and (4.7). The formula (4.7) is given by using coefficients Aj , Bj , Cj as

t0D
−q
t f(t, y)

=
hq

Γ(q)

N−1∑
j=0

[
f(t− jh, y(t− jh))Aj + hf ′(t− jh, y(t− jh))Bj

+h2f ′′(t− jh, y(t− jh))Cj

]
+O

(
1

N3

)
where q > 0. The author’s proposed method approximate the integral in Eq.
(7.1) by using this formula (4.7). Eqs (7.2) and (7.3) are obtained by applying
Taylor expansion to f, f ′, f ′′ by seeing them as one variable function about t, and
have third order accuracy. Then, the author shows how to develop y1. The value
of y1 is computed like Runge-Kutta method in Eq. (7.4). For y1, the analytical
solution (7.1) is given by

y(t1)− y0

=
1

Γ(q)

∫ t1

t0

f(u, y(u))

(t1 − u)1−q
du.

Here, let us consider to expand this integral like the derivation of Runge-Kutta
method. Applying Taylor expansion to f around t0 and y0, we have

=
1

Γ(q)

∫ t1

t0

(t1 − u)q−1

{
f(t0, y0) + (u− t0)

∂f

∂t
+ (y(u)− y0)

∂f

∂y

+
(u− t0)

2

2

∂2f

∂t2
+ (u− t0)(y(u)− y0)

∂2f

∂t∂y
+

(y(u)− y0)
2

2

∂2f

∂y2
+ . . .

}
du

Here, y(u)− y0 can be approximated by Taylor expansion as

y(u)− y0 = (u− t0)y
′(t0) +

(u− t0)
2

2
y′′(t0) + . . . .
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By substituting the above expression, we have

y(t1)− y0

=
1

Γ(q)

∫ t1

t0

(t1 − u)q−1

{
f(t0, y0) + (u− t0)

∂f

∂t

+

(
(u− t0)y

′(t0) +
(u− t0)

2

2
y′′(t0)

)
∂f

∂y
+

(u− t0)
2

2

∂2f

∂t2

+(u− t0)((u− t0)y
′(t0))

∂2f

∂t∂y
+

(u− t0)y
′(t0)

2

∂2f

∂y2
+ . . .

}
du

=
1

Γ(q)

[
hq

q
f(t0, y0) +

h1+q

q(1 + q)

∂f

∂t
+

h1+q

q(1 + q)
y′(t0)

∂f

∂y

+
h2+q

q(1 + q)(2 + q)
y′′(t0)

∂f

∂y
+

h2+q

q(1 + q)(2 + q)

∂2f

∂t2

+
2h2+q

q(1 + q)(2 + q)
y′(t0)

∂2f

∂t∂y
+

h2+q

q(1 + q)(2 + q)
(y′(t0))

2∂
2f

∂y2

]
+O(h3+q) (7.9)

Here, by folding the above expression with Taylor expansion, we have

y1

= y0 +
hq

Γ(1 + q)

{
q

2(1 + q)
f(t0, y0)

+
2 + q

2(1 + q)
f

(
t0 +

2

2 + q
h, y0 +

2

2 + q
y′(t0)h+

2

(2 + q)2
y′′(t0)h

2

)}
+O(h3+q).

Expression (7.9) is a series expansion of the integral in Eq. (7.1) for n = 1. If we
can expand the integral for n = 2, 3, 4, . . . , we may construct a similar method to
Runge-Kutta method. However, it is difficult because of two reasons. One reason
is fractional derivatives require the past information. In integer order calculus,
differentiations are the local phenomena, and the next node is calculated only with
the present node. Yet, fractional differentiations have a interval like integrals,
and by only the present node, we cannot compute the next node. Therefore,
numerical methods for fractional ordinary differential equations are more similar
to the computation of integral than Runge-Kutta method. Second reason is that
the difference of Taylor expansion. The above expression contains the first order
derivative and the second order derivative of y, and those values are computed
by using an initial condition and total differentiation of f . For example, for first
degree ordinary differential equations, y′(t0) is given as a part of equation to
solve. However, in fractional ordinary differential equations, y′(t0) is not a part
of given equation, and it is not easy to calculate y′(t0). From the expression (7.9),
the values of y′(t0) and y

′′(t0) must be numerically computed with second order
and first order accuracy respectively. Let us consider that the value of y′(t0) is
numerically computed by using a difference method as

y′(t0) =
a0y(t0) + a1y

(
t0 +

h
4

)
+ a2y

(
t0 +

2h
4

)
+ a3y

(
t0 +

3h
4

)
+ a4y(t1)

h
.

If we know the exact values of y(t0+mh/4), m = 1, 2, 3, 4, y′(t0) can be computed
with the second accuracy for a0 = −3, a1 = 0, a2 = 4, a3 = 0, a4 = −1. However,
we do not know even the exact values of y(t0 + mh/4). Therefore, we have to
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compute y(t0+kh/4) with at least third order accuracy. Then, firstly, let consider
to approximate the values of y(t0+mh/4) with the accuracy order O(h3+q). Let
Km/4 be defined as

Km/4 = y0 +
1

Γ(1 + q)

(
kh

4

)q

f(t0, y0).

This approximation is given by taking only first term of the expression (7.9), and
the accuracy is O(h1+q). The value Kx can be calculated only from t0 and y0. In
addition, the value of y(t0 + xh) is given by using the expression (7.9) as

y(t0 + xh)

= Kx +
1

Γ(q)

[
(xh)1+q

q(1 + q)

∂f

∂t
+

(xh)1+q

q(1 + q)
y′(t0)

∂f

∂y
+

(xh)2+q

q(1 + q)(2 + q)
y′′(t0)

∂f

∂y

+
(xh)2+q

q(1 + q)(2 + q)

∂2f

∂t2
+

2(xh)2+q

q(1 + q)(2 + q)
y′(t0)

∂2f

∂t∂y
+

(xh)2+q

q(1 + q)(2 + q)
(y′(t0))

2∂
2f

∂y2

]
+O(h3+q).

By transformation, we have

Kx

≃ y(t0 + xh)− 1

Γ(q)

[
(xh)1+q

q(1 + q)

∂f

∂t
+

(xh)1+q

q(1 + q)
y′(t0)

∂f

∂y

+
(xh)2+q

q(1 + q)(2 + q)
y′′(t0)

∂f

∂y
+

(xh)2+q

q(1 + q)(2 + q)

∂2f

∂t2

+
2(xh)2+q

q(1 + q)(2 + q)
y′(t0)

∂2f

∂t∂y
+

(xh)2+q

q(1 + q)(2 + q)
(y′(t0))

2∂
2f

∂y2

]
(7.10)

Therefore, by combination of Kx such that we eliminate the terms except y(t0 +
xh), we obtain y′(t0) with high accuracy. That is, we approximate y′(t0) by the
following expression

y′(t0) =
a0K0 + a1K1/4 + a2K2/4 + a3K3/4 + a4K4/4

h
+O(h3+q).

Then, the coefficients am can be computed from the following system of equations

a0 + a1 + a2 + a3 + a4 = 0

a1 + 2a2 + 3a3 + 4a4 = 4

a1 + 4a2 + 9a3 + 16a4 = 0

a1 + 21+qa2 + 31+qa3 + 41+qa4 = 0

a1 + 22+qa2 + 32+qa3 + 42+qa4 = 0.

First two equations are for difference method to compute y′(t0), and last three
equations are for eliminating terms except y(t0 + xh) in the expression (7.10).
By solving this system of equations, we have the expression (7.5) as the approx-
imation of y′(t0). In a similar way, the value of y′′(t0) is numerically computed
as

y′′(t0) =
b0K0 + b1K1/4 + b2K2/4 + b3K3/4 + b4K4/4

h
+O(h3+q).
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The coefficients bm can be computed from the following system of equations

b0 + b1 + b2 + a3 + b4 = 0

b1 + 2b2 + 3b3 + 4b4 = 0

b1 + 4b2 + 9b3 + 16b4 = 16

b1 + 21+qb2 + 31+qb3 + 41+qb4 = 0

b1 + 22+qb2 + 32+qb3 + 42+qb4 = 0.

By solving this system of equations, we have the expression (7.7). The expres-
sions (7.6) and (7.8) are obtained by approximating y′(t0) and y′′(t0) by using
K0,K1/8,K2/8,K3,8,K4/8. Therefore, it is shown that the author’s proposed
method has third order accuracy, and the accuracy of this the author’s proposed
method is given by the following theorem.

Theorem 7.2.1 If Ct0D
q
t y(t) ∈ C2[t0, T ] then, the accuracy of the proposed method

is

|y(T )− yN | = O(h3)

for N → ∞, h = T/N .

7.2.3 Stability of existing method and the author’s proposed method

In the previous section, the author proposed third order accuracy numerical
method. The accuracy of this method is higher than that of the existing method.
However, the stability is another significant factor when equations are numerically
solved. If a method is unstable, its numerical solutions diverge also in ordinary
differential equations. However, experimental results in Section 7.4 show that
the existing method and the author’s proposed method are stable. Therefore,
the author tries to prove the stability of the existing method and the author’s
proposed method in this section. The stability of numerical methods for ordinary
differential equations are analyzed by substituting a test function to numerical
schemes. This stability analysis method is similar to Von Neumann stability anal-
ysis, and uses the following function as a test function in integer order differential
equations

y′(t) = −ky(t), k > 0.

The solution of this equation is y(t) = y0 exp(−kt). Existing method and the
author’s proposed method are similar to linear multi-step method. Therefore,
let us consider the stability analysis of linear multi-step method as an example.
By applying integral to both side of a first order ordinary differential equation,
a multi-step method is given∫ tn+1

tn−1

y′(t)dt =

∫ tn+1

tn−1

f(t, y)dt

⇒ yn+1 − yn−1 = 2hf(tn, yn)

where the integral about f is approximated by using mid-point rule. Then, by
substituting a test function, we have

yn+1 − yn−1 = −2khyn.

The characteristic equation of the above equation is given by

λ2 + 2khλ− 1 = 0
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Let λm be the m-th root of the above equation. Then, the condition that linear
multi-step methods are stable is: all roots λm satisfy |λm| ≤ 1. The above
characteristic equation has a solution which is less than −1. Therefore, this linear
multi-step method is unstable. If a linear multi-step method is stable, there exists
a stability region. This region is defined by the area which the numerical solutions
do not diverge. Numerical methods are compared with the stability region, and
generally higher order accuracy methods have narrower stability region in linear
multi-step methods.

Next, let us analyze the stability of existing method and the author’s pro-
posed method. For predictor-corrector method, it is sufficient to analyze only
predictor term, since the corrector scheme as implicit scheme is more stable than
the predictor scheme as explicit scheme in general. As a test function, the author
employ the solution of the following fractional ordinary differential equations as

C
t0D

q
t y(t) = −ky(t).

The solution is given by

y(t) = 1− k(t− t0)
q

Γ(q + 1)
+
k2(t− t0)

2q

Γ(2q + 1)
− k3(t− t0)

3q

Γ(3q + 1)
+ . . . .

By substituting the solution to the predictor term of existing method, we have

yPn − y0 = − khq

Γ(1 + q)

n−1∑
j=0

{(n− j)q − (n− 1− j)q} yj

⇒ λn + α
n−1∑
j=0

{(n− j)q − (n− 1− j)q}λj − 1 = 0

where α = khq/Γ(1 + q). Figure 7.1 is the graph of the absolute value of the

Figure 7.1: Graph of characteristic equation for existing method

following characterestic equation

f(λ) = λn + α

n−1∑
j=0

{(n− j)q − (n− 1− j)q}λj − 1

where α = 0.1, n = 100, q = 0.2. This result shows that the all roots λm satisfy
|λm| ≤ 1, and the existing method is stable. Next, let us analyze the stability
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of the author’s proposed method. By substituting the solution to the predictor
term of the author’s proposed method, we have

yPn − y0

=
khq

Γ(q)

[
yn−1

(
−5A0 − 5B0 − 2C0 −A1 −

3

2
B1 − C1

)
+yn−2

(
6A0 + 8B0 + 4C0 + 2B1 + 2C1 −A2 −

3

2
B2 − C2

)
+yn−3

(
−2A0 − 3B0 − 2C0 −

1

2
B1 − C1 + 2B2 + 2C2 −A3 −

3

2
B3 − C3

)
+

n−2∑
j=4

yn−j

(
−1

2
Bj−2 − Cj−2 + 2Bj−1 + 2Cj−1 −Aj −

3

2
Bj − Cj

)

+y1

(
−1

2
Bn−3 − Cn−3 + 2Bn−2 + 2Cn−2 −An−1 − 3Bn−1 − 2Cn−1

)
+y1/2 (4Bn−1 + 4Cn−1)

+ y0

(
−1

2
Bn−2 − Cn−2 −Bn−1 − 2Cn−1

)]
.

Figure 7.2: Graph of characteristic equation for the author’s proposed method

Figure 7.2 is the graph of the absolute value of the following characteristic
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equation with α = 0.1, n = 100, q = 0.2,

f(λ)

= λ2n − 1− α

[
λ2(n−1)

(
−5A0 − 5B0 − 2C0 −A1 −

3

2
B1 − C1

)
+λ2(n−2)

(
6A0 + 8B0 + 4C0 + 2B1 + 2C1 −A2 −

3

2
B2 − C2

)
+λ2(n−3)

(
−2A0 − 3B0 − 2C0 −

1

2
B1 − C1 + 2B2 + 2C2 −A3 −

3

2
B3 − C3

)

+

2(n−2)∑
j=4

λn−j

(
−1

2
Bj−2 − Cj−2 + 2Bj−1 + 2Cj−1 −Aj −

3

2
Bj − Cj

)

+λ2
(
−1

2
Bn−3 − Cn−3 + 2Bn−2 + 2Cn−2 −An−1 − 3Bn−1 − 2Cn−1

)
+λ (4Bn−1 + 4Cn−1)

+

(
−1

2
Bn−2 − Cn−2 −Bn−1 − 2Cn−1

)]
.

where we put ym = λ2m in order to avoid y1/2 = λ1/2 by putting ym = λm. From
this graph, the author’s proposed method seems to be stable. However, there are
three problems for this stability analysis. One is the solution of the test function.
The solution of the test function takes 1 at t = t0 for 0 < q < 1. Though the
solution converges for t → ∞, the undifferentiability around t = t0 may cause
the problem for this stability analysis. Second problem is the author’s proposed
method changes the form depending on the value of n. This means the number
of step depends on n. The third problem is the treatment of y1/2. To convert to
the characteristic equation, we put ym to λ2m. Then, there is also a problem that
we can simply put y1/2 to λ. It is required to prove this conversion is allowable.
These three problems remain in the stability analysis of the author’s proposed
method, and they are future tasks.

7.3 The author’s proposed implicit numerical computational method
for fractional ordinary differential equations using Lagrange
interpolate polynomial

In the previous section, the author introduces the explicit numerical computa-
tional methods, but the accuracy of each explicit method is not so higher than
that of implicit methods. This section shows the author’s proposed implicit
method which employs Lagrange interpolate polynomials. This method is a sort
of collocation methods, and defines the analytical solution as

y(t) =
n∑

i=0

ciPi(t), t0 ≤ t ≤ L (7.11)

where ci are unknown constants and Pi(t) are Lagrange polynomials whose sample
points are Chebyshev nodes si. Therefore, Pi(t) is given by

Pi(t) =
∏
j ̸=i

t− sj
si − sj

.

The existing method which is explained in Chapter 3 employs Jacobi polyno-
mials as orthogonal polynomials[4]. In contrast, this method employs Lagrange
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polynomials as interpolate polynomials. By increasing the number of degree of
polynomials, Runge’s phenomenon occurs and errors also increase for equally dis-
tance grids. To avoid Runge’s phenomenon, the author uses Chebyshev nodes. It
is well known that the errors produced by increasing the number of degree can be
decreased by using Chebyshev nodes. Next, let us compare the existing method
based on Jacobi polynomials and the author’s proposed method. In the existing
method, the solution is assumed as the following function

ỹn(x) = a+

n∑
i=0

cix
qJ

(0,q)
i

(
2x

L
− 1

)
,

where J
(0,q)
i is a Jacobi polynomial. This means that if the analytical solution

has the form y(x) = xq
∑n

i=0 x
i as shifted polynomials, this existing method can

compute the solution analytically. In contrast, the author’s proposed method
can compute analytically if the analytical solution consist of polynomials whose
degree is less than or equal to n. These two methods assume different solution
functions, so if the analytical solution can be represented with finite degree poly-
nomials, the accuracy of the author’s proposed method is better than that of the
existing method. In contrast, the accuracy of the existing method is better if the
analytical solution can be represented with finite degree shifted polynomial as
y(t) = tq + t1+q + t2+q. In the previous section, the explicit numerical methods
are introduced. They assume that the fractional derivative of the analytical so-
lution is continuous differentiable as C

t0D
q
t y(t) ∈ C2[t0, T ] to obtain the expected

accuracy. This means that explicit methods assume that the analytical solutions
can be represented with shifted polynomials. The author’s proposed implicit
method assumes the different type analytical solution. Therefore, by having the
author’s proposed implicit method, we have one more choice for solving ordinary
differential equations. Especially, in fractional calculus, we have to treat more
sorts of functions than in integer order calculus. Therefore, by proposing the
author’s implicit method, we can treat various assumptions, and apply numerical
methods to more applications.

As a collocation method, the numerical solution can be computed by substi-
tuting the assumed solution (7.11). Then, we have

n∑
i=0

ciPi(t) = yt0 +
1

Γ(q)

∫ t

t0

(t− u)q−1f

(
u,

n∑
i=0

ciPi(u)

)
du.

By putting t = sk, we obtain

ck − y0 =
1

Γ(q)

∫ sk

t0

(sk − u)q−1f

(
u,

n∑
i=0

ciPi(u)

)
du.

This integral includes the singularity at the kernel, and has a form suitable to
Gauss-Jacobi quadrature. Firstly, we apply changing variables ξ = 2(u−t0)/(sk−
t0)− 1 as a preparation

ck − y0

=
1

Γ(q)

∫ 1

−1

(
sk − t0

2

)q

(1− ξ)q−1f

(
ξ̃,

n∑
i=0

ciPi(ξ̃)

)
dξ,

where ξ̃ is defined by

ξ̃ =
ξ + 1

2
(sk − t0) + t0.
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Let wi be a i-th weight of Gauss-Jacobi quadrature, and let τi be a i-th node of
Gauss-Jacobi quadrature. Then, we obtain equations

ck − y0

=
1

Γ(q)

(
sk − t0

2

)q n∑
i=0

wif

(
τ̃i,

n∑
i=0

ciPi(τ̃i)

)

for 0 ≤ k ≤ n. By solving this non-linear system of equations, the coefficients ck
are computed. Note that the number of nodes of Chebyshev nodes is the same
to that of Gauss-Jacobi quadrature. By increasing the number of Gauss-Jacobi
nodes, the accuracy improve. However, the number of Gauss-Jacobi nodes of the
existing method is the same to the number of polynomials which consist of the
solution function[4]. Thus, for the comparison, the author set the same number.

7.4 Experiments about fractional ordinary differential equations

7.4.1 Preparation of experiments

Problems

For the numerical experiments, the author sets four problems. All experiments
are done with t0 = 0, L = T = 1 and 0 < q < 1. In Problem 1, let the solution
function y be

y(t) = tq − t1+q,

and a function f be

f(t, y) = Γ(1 + q)− Γ(2 + q)t1−q(y + t1+q).

In addition, the initial condition is y(0) = 0. This problem assumes that C
0D

q
t y(t)

is infinitely many times continuously differentiable. This property enables to ob-
tain the expected accuracy of existing and the author’s proposed explicit methods.
In addition, note that the assumed solution function of existing implicit method
using Jacobi polynomials exactly expresses this analytical solution for n ≥ 1.
This means the error of the existing implicit method for this problem is derived
only from computational errors.

In Problem 2, the analytical function is given by

y(t) = t− t2.

The function f is given by

f(t, y) =
1

Γ(2− q)
t1−q − 2

Γ(3− q)
t1−q(y + t2),

and the initial condition is y(0) = 0. In contrast to Problem 1, the analytical
solution is infinitely many times continuously differentiable. This means that
this problem is not suitable for the existing and the author’s proposed explicit
method, and the author’s proposed implicit method with Lagrange polynomial
analytically solves it for n ≥ 2.

Problem 3 is defined by the following analytical solution

y(t) = t8 − 3t4+q/2 +
9

4
tq,
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and the function f

f(t, y) =
40320

Γ(9− q)
t8−q − 3

Γ(5 + q/2)

Γ(5− q/2)
t4−q/2 +

9

4
Γ(q + 1) +

(
3

2
tq/2 − t4

)3

− y3/2

with the initial condition y(0) = 0. This problem is cited from the paper by K.
Diethelm, N.J. Ford and A.D. Freed[13].

In addition to Problem 3, Problem 4 is also cited from the papers by K.
Diethelm and others[13, 4]. Let the analytical solution be

y(t) = 1− tq

Γ(q + 1)
+

t2q

Γ(2q + 1)
− t3q

Γ(3q + 1)
+ . . . ,

and let the function f be

f(t, y) = −y.

The initial condition is y(0) = 1. This analytical solution can be represented
with Mittag-Leffler function as

y(t) = Eq,1(−xq) =
∞∑
k=0

(−xq)k

Γ(kq + 1)
.

This equation is also a homogeneous equation.

Measurement of errors

For the numerical experiments about explicit methods, the author measures the
error at a terminal point. Explicit methods compute the numerical solutions
from an initial point to a terminal point step by step. Therefore, errors are
accumulated at the terminal point. In addition, in order to check the stability,
we should measure the error at the terminal point. The terminal point is set
depending on the problem.

For implicit methods, the author employs different measurements to explicit
methods. First measurement is cited from the paper[4]. Let e be a error with
the first measurement given by

e = max
1≥j≥10000

|y(tj)− yN (tj)|, tj =
L− t0
10000

j

for j = 1, 2, . . . , 10000. This measurement approximates a maximum error in an
interval. The author propose the second measurement which is given by

E =

10000∑
j=1

h|y(tj)− yN (tj)|, tj = hj, h =
L− t0
10000

.

This measurement numerically integrate errors between the analytical solution
and numerical solutions, and can be called an average error.

7.4.2 Accuracy of the explicit methods for fractional ordinary differ-
ential equations

In this subsection, the author shows the numerical results about explicit existing
method and the author’s proposed method.

Figures 7.3, 7.4, 7.5 and 7.6 show the errors of explicit existing method and
the author’s proposed method for Problem 1 with various q. All experiments are
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Figure 7.3: Errors of existing and the
author’s proposed methods for Problem
1 with q = 0.2

Figure 7.4: Errors of existing and the
author’s proposed methods for Problem
1 with q = 0.4

Figure 7.5: Errors of existing and the
author’s proposed methods for Problem
1 with q = 0.6

Figure 7.6: Errors of existing and the
author’s proposed methods for Problem
1 with q = 0.8

done with two terminal points T = 1 and T = 3. If C
t0D

q
t y(t) ∈ C2[t0, T ], it is

proven that the accuracy of the existing method is O(h1+q) by K. Diethelm, N.J.
Ford and A.D. Freed[13]. If C

t0D
q
t y(t) ∈ C∞[t0, T ], it is proved that the accuracy

of the author’s proposed method is O(h3). Actually, Figures 7.5 and 7.6 exactly
show the expected accuracy order. In addition, Fig. 7.4 represents that the
expected accuracy order is almost obtained. However, Obtained accuracy orders
in Figure 7.3 are not the same to the expected accuracy orders. This reason
is that the stability becomes worse for small q. Table 7.1 shows the errors of

h=0.02 h=0.01 h=0.005 h=0.0025 h=0.00125

Existing 5.287D+96 7.719D+172 9.321D+305 Nan Nan

Proposed 2.277D+160 3.492D+295 Nan Nan Nan

Table 7.1: Errors of existing and the author’s proposed methods for q = 0.1 and
T = 5.

existing and the author’s proposed methods for q = 0.1 and T = 5. This table
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represents that the numerical solutions diverge to ∞, and indicates that existing
method and the author’s proposed method are not stable in this case. For small
q and large T , errors increase and the accuracy orders decay.

Figure 7.7: Errors of existing and the
author’s proposed methods for Problem
2 with q = 0.2

Figure 7.8: Errors of existing and the
author’s proposed methods for Problem
2 with q = 0.4

Figure 7.9: Errors of existing and the
author’s proposed methods for Problem
2 with q = 0.6

Figure 7.10: Errors of existing and the
author’s proposed methods for Problem
2 with q = 0.8

Figures 7.7, 7.8, 7.9 and 7.10 show the errors for Problem 2 for T = 1, 3 with
various q. For q = 0.2, the accuracy order is not firm because of the stability of
numerical methods. In addition, the numerical experiments about the existing
method is not firm neither in any q. However, for large q, the numerical results
of the author’s proposed method show the accuracy order decrease from O(h3)
to O(h2−q). In Problem 2, the differentiated function of the analytical function
is given by

C
0D

q
t y(t) = t1−q/Γ(2− q)− 2t2−q/Γ(3− q).

As mentioned in Chapter 4, the author’s proposed third accuracy formula (4.7)
calculate for this function with O(h2−q). Therefore, the accuracy order of the
author’s proposed explicit method for fractional ordinary differential equations
is also O(h2−q), since this method employs the formula (4.7).
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Figure 7.11: Errors of existing and the
author’s proposed methods for Problem
3 with q = 0.2

Figure 7.12: Errors of existing and the
author’s proposed methods for Problem
3 with q = 0.4

Figure 7.13: Errors of existing and the
author’s proposed methods for Problem
3 with q = 0.6

Figure 7.14: Errors of existing and the
author’s proposed methods for Problem
3 with q = 0.8

Figures 7.11, 7.12, 7.13 and 7.14 show the errors of the existing method and
the author’s proposed method for Problem 3 and T = 1 with various q. In all
experiments, the numerical solutions diverge to Nan for T = 3, so the graphs are
not shown. Additionally, the numerical results of the author’s proposed method
for T = 1 and q = 0.2 diverge to Nan in Figure 7.11, and the results of the
author’s proposed method for T = 1 and q = 0.4 become complex numbers
because a negative number is substituted to y. Therefore, those results are also
not shown. In Problem 3, it holds C

0D
q
t y(t) ∈ C3[0, T ]. Therefore, the accuracy

decaying does not happen in contrast to Problem 2, and the obtained accuracy
orders are near to the expected accuracy order if the computations are done
stably. However, these figures show the stability of the existing method and the
author’s proposed method for this problem is bad, and the numerical solutions are
not firm for h. Depending on the problems, the stability of the existing method
and the author’s proposed method is changed. Because of the stability problem,
the numerical results do not decrease along to the expected accuracy order.

Figure 7.15, 7.16, 7.17 and 7.18 show the errors of the existing and the author’s
proposed methods for Problem 4 and T = 1 and T = 3. Because of the accuracy
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Figure 7.15: Errors of existing and the
author’s proposed methods for Problem
4 with q = 0.2

Figure 7.16: Errors of existing and the
author’s proposed methods for Problem
4 with q = 0.4

Figure 7.17: Errors of existing and the
author’s proposed methods for Problem
4 with q = 0.6

Figure 7.18: Errors of existing and the
author’s proposed methods for Problem
4 with q = 0.8

decaying with the term −tq/Γ(q+1), the expected accuracy order is O(h1+q) for
both methods. However, the obtained accuracy orders are higher than the author
expected. The possible reason is that the time step size is too large. By taking
smaller h, the expected accuracy order may be obtained, but the computational
complexity of the existing and the author’s proposed methods are larger than that
of Runge-Kutta methods or linear multi-step methods for integer order ordinary
differential equations. The predictor-corrector methods for fractional ordinary
differential equations have to compute each numerical solution from an initial
point. In integer order calculus, differentiation is a local phenomenon, so the
numerical methods do not consider the information from the initial point. To
create the numerical methods with less computational complexity is a future
task.

7.4.3 Accuracy of the implicit methods for fractional ordinary differ-
ential equations

This section shows the numerical experiments of three methods, the existing
method using Jacobi polynomial, the existing method using double exponential
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transform and the author’s proposed methods using Lagrange polynomial. All
non-linear equations in those methods are solved by using Newton’s method.
The values of the weights and nodes of Gauss-Jacobi quadrature is cited from a
website[7].

Figure 7.19: Errors of existing and the
author’s proposed methods for Problem
1 with q = 0.2

Figure 7.20: Errors of existing and the
author’s proposed methods for Problem
1 with q = 0.4

Figure 7.21: Errors of existing and the
author’s proposed methods for Problem
1 with q = 0.6

Figure 7.22: Errors of existing and the
author’s proposed methods for Problem
1 with q = 0.8

Figures 7.19, 7.20, 7.21 and 7.22 show the max errors and average errors of
three methods with Problem 1. The solution function has the suitable form to
apply the numerical method using Jacobi polynomial. Therefore, the errors of
the Jacobi method are smaller than others.

Figures 7.23, 7.24, 7.25 and 7.26 show the max errors and average errors
of three methods with Problem 2. The solution function of Problem 2 has the
suitable form to apply the author’s proposed method using Lagrange polynomial.
For n > 1, the solution of the author’s method can express the analytical solution.
However, because of the error of integration, the accuracy is worse than that of
double exponential transform method for q = 0.6, 0.8 and larger N . Caputo
derivative of the analytical solution y in Problem 2 is undifferentiable at x = 0.
Thus, the existing explicit method and the author’s proposed explicit method
for fractional ordinary differential equations introduced in this thesis cause the
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Figure 7.23: Errors of existing and the
author’s proposed methods for Problem
2 with q = 0.2

Figure 7.24: Errors of existing and the
author’s proposed methods for Problem
2 with q = 0.4

Figure 7.25: Errors of existing and the
author’s proposed methods for Problem
2 with q = 0.6

Figure 7.26: Errors of existing and the
author’s proposed methods for Problem
2 with q = 0.8

accuracy decaying. Yet, this results show the author’s proposed implicit method
is good at such problems. Therefore, when we try to solve fractional ordinary
differential equations, we can treat a problem, which it is difficult to solve with
explicit methods, by using the author’s implicit method with small N .

Figures 7.27, 7.28, 7.29 and 7.30 present the max errors and average errors of
three methods for Problem 3. Since the numerical solutions of double exponential
transform become the complex numbers, the author does not show its results.
The analytical solution of this problem consists of the combination of polynomial
and not polynomial term. However, the minimum order term is 9tq/4, and it is
indicated that this problem fits to the method using Jacobi polynomial. Actually,
the errors of Jacobi method are smaller than that of Lagrange method.

Figures 7.31, 7.32, 7.33 and 7.34 present the max errors and average errors
of three methods for Problem 4. This problem is not suitable for Lagrange
method, since the solution cannot be represented with finite degree polynomial.
In contrast, double exponential transform method solves this problem with high
accuracy order. The errors of double exponential transform method decrease
more rapidly than any other methods.
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Figure 7.27: Errors of existing and the
author’s proposed methods for Problem
3 with q = 0.2

Figure 7.28: Errors of existing and the
author’s proposed methods for Problem
3 with q = 0.4

Figure 7.29: Errors of existing and the
author’s proposed methods for Problem
3 with q = 0.6

Figure 7.30: Errors of existing and the
author’s proposed methods for Problem
3 with q = 0.8

Figure 7.31: Errors of existing and the
author’s proposed methods for Problem
4 with q = 0.2

Figure 7.32: Errors of existing and the
author’s proposed methods for Problem
4 with q = 0.4
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Figure 7.33: Errors of existing and the
author’s proposed methods for Problem
4 with q = 0.6

Figure 7.34: Errors of existing and the
author’s proposed methods for Problem
4 with q = 0.8
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Chapter 8

Conclusion

This thesis has proposed new numerical methods for three problems. One is a
finite difference method for space-fractional partial differential equations. The
author’s proposed finite difference methods have four improvements comparing
to the existing method. First improvement is the accuracy order. The exist-
ing methods have only the first order accuracy about space, and the author’s
proposed methods have the second order accuracy about space. By using the au-
thor’s proposed methods, errors decrease more rapidly than the existing methods.
However, this accuracy order may decay if the analytical solution has the form
which is expanded with low order around boundaries. This accuracy decaying
happens both in the existing methods and the author’s proposed methods. Sec-
ond improvement is the stability condition. The stability condition about time
step size of the author’s proposed methods is less strict than that of the existing
method. However, the author’s proposed schemes contain the parameter s. To
be stable, we have to select a proper value of the parameter s. Otherwise, the
author’s proposed schemes become unstable even if the time step size is suffi-
ciently small. The third improvement is the boundary conditions. The existing
methods cannot handle non-zero Dirichlet boundary conditions. If the analytical
solution takes non-zero values at boundaries, the numerical solutions of the exist-
ing methods do not converge to the analytical solution. In contrast, the author’s
proposed schemes have the feature of error cancelling. Therefore, the numerical
solutions of the author’s proposed schemes actually converge to the analytical
solution for non-zero Dirichlet boundary conditions. The fourth improvement is
that the author’s proposed methods can be applied to the case 0 < q < 1. The
existing methods cannot deal with the case 0 < q < 1. Then, the author has
made stability analysis to such a case by using Gerschgorin’s theorem, and has
shown the stability condition.

This thesis also has treated the numerical solutions in the form of polyno-
mial expansion for homogeneous parabolic fractional partial differential equa-
tions. This approach is based on new idea, and there does not exist related works
as far as the author knows. In this problem, the author has tried to lead the
analytical solution by expanding even and odd function like integer order diffu-
sion equations. In integer order diffusion equations with zero Dirichlet boundary
conditions, the analytical solution can be expressed with the combination of or-
thogonal functions, sine and cosine functions. In a similar way, the author has
proposed the numerical methods by computing the even and odd functions, and
has shown their orthogonality. Those functions are analytically developed by
solving infinite size of a system of equation. In the experiments, the numerical
solutions are calculated in the form of polynomial expansion by solving approxi-
mated finite system of equations. However, the author could not find the general
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forms of such polynomials. To find the general forms is the future task.
This thesis also has discussed the numerical methods for fractional ordinary

differential equations. The author has proposed a higher accuracy computational
method than the existing method. The existing method has the accuracy or-
der O(h1+q), and the author’s proposed method has the accuracy order O(h3).
Actually, in almost experiments, results of the author’s proposed method have
been more accurate than the existing method. However, experimental results also
have shown the stability of the author’s proposed method is lower than that of the
existing method, and the expected accuracy order cannot be obtained in many
cases. In addition, the computational complexity is larger than the integer order
linear multi-step method. As future tasks, the author considers to make more
detailed stability analysis, and to apply the parallelization in order to obtain the
results with smaller h. The author also has proposed the implicit method using
Lagrange interpolate polynomial. This method accurately can solve the problem
which causes the accuracy decaying in the explicit methods. This means that the
author’s proposed method gives us a choice which we can select the numerical
method depending on problems. In addition, the author has made experiments
of the double exponential transform method. This method has been already pro-
posed, but the experiments about this method have never been done. The author
has shown that double exponential transform method has much better accuracy
order depending on problems.

The author has discussed high accuracy numerical computational methods
about fractional differential equations. The author predicts fractional differential
equations become more popular and more research fields employ them. Then, by
given high accuracy numerical computational methods, this thesis will help the
utilization and understanding of fractional differential equations.
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