
Pruned Labeling Algorithms:

Unified Indexing Scheme for Graph Query Processing

（枝刈りラベリング法による大規模グラフ上の
体系的なクエリ処理）

by

Takuya Akiba

秋葉 拓哉

A Doctor Thesis

博士論文

Submitted to

the Graduate School of the University of Tokyo

on December 12, 2014

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and

Technology

in Computer Science

Thesis Supervisor: Hiroshi Imai 今井 浩

Professor of Computer Science

ABSTRACT

Graph-shaped data are ubiquitous; whenever we handle relationship among any kinds
of entities, a graph emerges as the most natural model. Owing to the recent populariza-
tion of the Internet and the World Wide Web, it is playing more and more important
roles in real applications to extract beneficial information from large-scale graphs such
as social networks and web graphs. One of the most fundamental and crucial building
blocks there is indexing methods for answering shortest paths and their variants. These
methods first construct a data structure called an index from a graph, and then they
efficiently answer queries using the data structure. From both theoretical and empiri-
cal sides, the study of these indexing methods has been intensively conducted to seek
for a good trade-off between scalability (i.e., index size and indexing time) and query
performance (i.e., query time and accuracy).

However, this field has been still in its infancy. Theoretical methods with asymptotic
complexity bounds for arbitrary graphs do not work well in practice. Therefore, state-
of-the-art empirical methods are heuristics that highly depend on properties of a specific
kind of queries and targeted real graphs. Hence, lines of research on different problems are
almost independent, and totally different approaches have been developed for different
popular problems such as shortest-path queries on complex networks, reachability queries
on directed acyclic graphs, and shortest-path queries on road networks.

In this thesis, we address this issue by proposing pruned labeling algorithms, which
is based on a new unified principle that can be widely applied to these path-related
queries. We first give an indexing method named pruned landmark labeling for shortest-
path queries on complex networks. Our method is an exact method, that is, it always
answers correct distance between arbitrary two points. It precomputes distance labels for
vertices by performing a breadth-first search from every vertex. Seemingly too obvious
and too inefficient at first glance, the key ingredient introduced here is pruning during
breadth-first searches. While we can still answer the correct distance for any pair of
vertices from the labels, it surprisingly reduces the search space and sizes of labels. We
experimentally demonstrate that the combination of these two techniques is efficient and
robust on various kinds of large-scale real-world networks. In particular, our method can
handle social networks and web graphs with hundreds of millions of edges, which are two
orders of magnitude larger than the limits of previous exact methods, with comparable
query time to those of previous methods.

Then, we show that efficient methods tailored to different kinds of queries can also
be obtained based on the same pruning principle. Specifically, we design indexing meth-
ods for reachability queries on directed acycilic graphs, shortest-path queries on road
networks, historical shortest-path queries on evolving networks, and top-k shortest-path
queries on complex networks. We demonstrate that each of these methods is also com-
parable with state-of-the-art methods for each kind of query, thus showing exceptional
generality of our unified approach.

Finally, we tackle another long-standing question in this field: what is the key factor
besides network size that has a large effect on the performance of indexing methods? For
example, when processing real-world networks, we sometimes see that indices constructed
from the graphs by the same algorithm may be of quite different sizes, even if graphs are
of similar size. We investigate the ways for measuring such difficulty of networks. We
theoretically and empirically show that obtaining the width of a tree decomposition can
take us closer to the answer.

論文要旨

物事の関係が現れるほぼあらゆる場面で，データはグラフとして表現され処理される．

特に近年では，インターネット及びワールド・ワイド・ウェブの普及に伴い，ソーシャル

ネットワークやウェブグラフを始めとする非常に大規模なグラフデータが偏在している．

そのため，大規模グラフデータから有用な情報を効率的に引き出すことは現代社会の様々

な場面において重要な役割を担っている．そのような大規模グラフの処理の根幹を支える

重要な部品の 1 つが，最短経路及び関連問題に対する索引付け手法である．それらの手法

は，グラフから予め索引と呼ばれるデータ構造を前計算し，そのデータ構造を用いて 2 点

間の最短経路などの問合せに効率的に応答する．スケーラビリティ（索引サイズや索引構

築時間）と応答性能（応答時間や精度）の良好なトレードオフを達成することが索引付け

手法の目的である．

しかし，最短経路関連問題に対する索引付け手法の研究は未だに未成熟な状況にあった．

理論的な結果として，任意のグラフにおける漸近的保証を持つ手法の開発が長らく取り組

まれてきているものの，現実的な性能は実用に足るものになっていない．一方，現実的な

グラフにおいて高い性能を達成する手法は，対象とする現実的なグラフの性質に依存した

ヒューリスティクスとして独立に開発されてきた．従って，複雑ネットワーク上での最短

経路クエリ，有向無閉路グラフ上での到達可能性クエリ，道路ネットワーク上での最短経

路クエリというような異なる状況が，完全に異なる問題として扱われ，個別にアプローチ

が開発されており，各個撃破の状態にあった．

そこで，本論文では統一的なアルゴリズムの枠組みである枝刈りラベリング法の提案を

行う．提案手法は距離ラベルと呼ばれるデータ構造を前計算し索引として保存する．距離

ラベルに基づく手法は一般にメモリ参照の局所性により応答性能が極めて優れている．し

かし，既存手法はいずれも距離ラベルの計算を異なる最適化問題への定式化を通じて間接

的に行うため，スケーラビリティに問題があった．一方，枝刈りラベリング法は巧妙な枝

刈りにより最短経路探索と同時に直接的に距離ラベルの計算を行うことができ，応答性能

を犠牲にすることなくスケーラビリティを大幅に向上する．そして，最短経路探索を行う

順番の変更により性質の異なるグラフの構造を活用でき，また異なる種類の距離ラベルに

対しても同じアプローチでアルゴリズムを設計できるため，上記のように今まで異なる問

題として扱われてきた問題に対して体系的にアルゴリズムを与えることができる．具体的

な問題として，複雑ネットワーク上での最短経路クエリ，有向無閉路グラフ上での到達可

能性クエリ，道路ネットワーク上での最短経路クエリ，複雑ネットワーク上での Top-k 最

短経路クエリ，動的ネットワークにおける最短経路変化履歴クエリを扱う．実験によりそ

れぞれの問題における最新の手法との比較を行い，一部の問題では大きな性能改善を達成

し，残りの問題でも少なくとも同程度の性能を達成することができることを示す．

さらに，提案手法を含むグラフ索引付け手法の性能を左右するグラフの性質を探る．例

えほぼ同じサイズのグラフであっても，索引構築時間や索引サイズといった索引付け手法

の性能がグラフによって大きく異なることがあり，その原因は今まで分かっていなかった．

そこで，木分解という道具を用いることにより，このようなグラフに潜むサイズ以外の「難

しさ」をある程度捉えることができることを理論的及び実験的に示す．

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Hiroshi Imai, for
his precious advice and encouragement from his broad knowledge and experience.
Without his support and guidance, my four years in graduate school could not be
accomplished. I am also obliged to him for showing me how to conduct research
effectively, how to present results in papers and talks, and how to communicate
with other researchers. These skills would be definitely valuable in my whole
research career.

I am also very honored to have Prof. Naoki Kobayashi as the chair, and Prof.
Masami Hagiya, Prof. Reiji Suda, Prof. Tetsuo Shibuya, Prof. Kunihiko Sadakane,
and Prof. Satoru Iwata as the members of the committee for this Ph.D. thesis.
I highly appreciate them taking the time and effort to study and examine this
thesis.

I am also profoundly grateful to my great collaborators so far, Christian Som-
mer, Ken-ichi Kawarabayashi, Yoichi Iwata, Yuichi Yoshida, Yosuke Yano, Yuki
Kawata, Takanori Maehara, Nori Nozomi, and Takanori Hayashi. I really en-
joyed working with these insightful and talented people, where I learned a lot
from them.

I would also like to thank all members in Imai Laboratory, Akitoshi Kawa-
mura, Francois Le Gall, Masato Edahiro, Mami Takahashi, Norie Fu, Vo-
rapong Suppakitpaisarn, Kenta Takahashi, Hiroyuki Miyata, Toshihiro Tanuma,
Takahiko Satoh, Jean-Francois Baffier, Yoshikazu Aoshima, Akihiro Hashikura,
Shunichi Matsuda, Ly Nguyen, Yoichi Iwata, Hidefumi Hiraishi, Hiroyuki Ohta,
Junya Fukawa, Chitchanok Chuengsatiansup, Alonso Gragera, Bingkai Lin, Keigo
Oka, Akira Motoyama, Yuto Hirakuri, Yuki Kawata, Chihiro Komaki, Yosuke
Yano, Naoto Ohsaka, Takuto Ikuta, Shuichi Hirahara, Takanori Hayashi, Makoto
Soejima, Kentaro Yamamoto, Holger Thies, Jeremy Cohen, and Simon Klein.

In addition to the main laboratory, I also had the privilege of working with or
visiting several prominent research groups. First, I have been a member of the
complex network and map graph group at JST ERATO Kawarabayashi Large
Graph Project. As people there have close research interest with me, I pretty
enjoyed the weekly seminar with them, specifically, Ken-ichi Kawarabayashi,
Yuichi Yoshida, Naoki Masuda, Takehisa Hasegawa, Kazuhiro Inaba, Yutaka
Horita, Ryosuke Nishi, Junichi Teruyama, Taro Takaguchi, Ryohei Hisano, Tat-
suro Kawamoto, Kodai Saito, Daiki Takeuchi, Yoshitake Murai, Leo Speidel, and
members from Imai Laboratory. In addition to the team members, I also appre-
ciate people in the other teams of the project, especially, Kazuo Imai, Naonori
Kakimura, Yusuke Kobayashi, Kohei Hayashi, Yutaro Yamaguchi, Kensuke Ot-
suki, and Satoko Tsushima.

I also profited from several fruitful events organized by members of JST ER-
ATO Minato Discrete Structure Manipulation System Project. I want to say
thank you to people there, especially to Shin-ichi Minato, Hiroki Arimura, Koji
Tsuda, Takeaki Uno and Yasuo Tabei.

It was also great to be involved with Graph CREST (Advanced Computing and
Optimization Infrastructure for Extremely Large-Scale Graphs on Post Peta-Scale
Supercomputers). People there kindly taught me the state-of-the-art research on
graph processing in the high performance computing community. Especially, I
would like to thank Katsuki Fujisawa, Toyotaro Suzumura, Toshio Endo, Hitoshi
Sato, Ken Wakita, Yuichiro Yasui and Koji Ueno.

I also did two valuable research internships at Microsoft Research. The first
internship was at Microsoft Research Asia (in Beijing). I owe a big thanks to
my mentor there, Tetsuya Sakai. I also appreciate researchers and colleagues
there, Yuki Arase, Jun-ichi Tsujii, Mitsuo Yoshida, Jun Hatori, Hiroki Hanaoka,
Tsuyoshi Takatani, Satoshi Ikehata, Takeshi Sakaki, Yasuhisa Yoshida, Kazuya
Okada, Lin Meng, and Yatao Li.

The second internship was at Microsoft Research Silicon Valley, which was
suddenly closed in September 2014, during my internship. I would never forget
what happened there in front of me. I express my sincere appreciation to my
mentor there, Daniel Delling, and group members, Robert E. Tarjan, Andrew V.
Goldberg, Edith Cohen, Renato F. Werneck, Thomas Pajor, Daniel Fleischman
and Ilya Razenshteyn.

Finally, I would like to express my heartfelt appreciation to my family mem-
bers, my friends and all of those who have supported me in any aspect of graduate
school life.

Takuya Akiba, December 2014

v

Contents

1 Introduction 1
1.1 Real-World Graph Data . 1

1.1.1 Social Networks . 1
1.1.2 Web Graphs . 2
1.1.3 Road Networks . 3

1.2 Path-Related Queries on Graphs 4
1.2.1 Reachability Queries . 4
1.2.2 Shortest-Path and Distance Queries 4

1.3 Indexing Methods . 4
1.4 Contributions . 8

1.4.1 Pruned Labeling Algorithms 8
1.4.2 Bit-parallel Labeling for Unweighted Complex Networks . . 9
1.4.3 Path-based Labeling for Directed Acyclic Graphs 9
1.4.4 Highway-based Labeling for Road Networks 10
1.4.5 Historical Queries for Evolving Complex Networks 10
1.4.6 Top-k Distance Queries on Complex Networks 11
1.4.7 Treewidth and Empirical Graph Tractability 11

1.5 Organization of This Thesis . 12

2 Preliminaries 13
2.1 Definitions . 13

2.1.1 Undirected and Directed Graphs 13
2.1.2 Adjacency, Neighbors and Degree 14
2.1.3 Edge Weight, Paths and Distance 14
2.1.4 Strongly and Weakly Connected Components 16
2.1.5 Trees and Shortest-Path Trees 16
2.1.6 Planar Graphs, Tree Decomposition and Minor-Closed

Properties . 17
2.1.7 Dynamic Graphs . 18

2.2 Fundamental Graph Algorithms . 19
2.2.1 Algorithm Evaluation Criteria 19
2.2.2 Single Source Shortest Path Algorithms 19
2.2.3 All Pairs Shortest Path Algorithms 19

2.3 Common Structural Properties of Real-world Graphs 20
2.3.1 Complex Networks . 20
2.3.2 Road Networks . 21

3 Review of Graph Indexing Methods 22
3.1 Shortest-path and Distance Queries on Complex Networks 22

3.1.1 Labeling Methods . 22
3.1.2 Tree-Decomposition-Based Methods 24
3.1.3 Landmark-based Methods 25

vi

3.2 Shortest-path and Distance Queries on Road Networks 26
3.2.1 Contraction Hierarchies . 26
3.2.2 Labeling Methods . 27

3.3 Reachability Queries . 30
3.3.1 Transitive-closure-based Methods 30
3.3.2 Online-search-based Methods 30
3.3.3 Labeling-based Methods . 30
3.3.4 General Improving Techniques 31

3.4 Theoretical Results . 31
3.4.1 Highway Dimension . 31
3.4.2 Power-Law Random Graphs 32

4 Basic Form of Pruned Landmark Labeling Algorithm 33
4.1 Labeling Algorithm . 33

4.1.1 Naive Landmark Labeling 33
4.1.2 Pruned Landmark Labeling 34
4.1.3 Proof of Correctness . 34

4.2 Vertex Ordering Strategies . 36
4.3 Theoretical Properties . 37

4.3.1 Minimality . 37
4.3.2 Canonicality of Labels . 37
4.3.3 Exploiting Existence of Highly Central Vertices 37
4.3.4 Exploiting Small Treewidth 38

4.4 Common Techniques for Efficient Implementation 38
4.4.1 Preprocessing . 38
4.4.2 Querying . 39

4.5 Incremental Update Algorithm . 39
4.5.1 Supported Updates . 40
4.5.2 Update Algorithm for Naive Labeling 41
4.5.3 Update Algorithm for Pruned Labeling 41
4.5.4 Proof of Correctness . 42
4.5.5 Efficient Implementation . 44

5 Bit-parallel Labeling for Unweighted Complex Networks 45
5.1 Bit-parallel Labeling Technique . 45

5.1.1 Bit-parallel Labels . 45
5.1.2 Bit-parallel BFS . 46
5.1.3 Bit-parallel Distance Querying 47
5.1.4 Introducing to Pruned Labeling 48
5.1.5 Online Update . 48

5.2 Experiments . 48
5.2.1 Setup . 48
5.2.2 Performance on Static Networks 51
5.2.3 Analysis . 54
5.2.4 Performance on Dynamic Graphs 58

6 Path-based Labeling for Directed Acyclic Graphs 60
6.1 Pruned Landmark Labeling for Reachability Queries 60

6.1.1 Labeling Algorithm . 60
6.2 Pruned Path Labeling . 61

6.2.1 Index Data Structure and Query Algorithm 61
6.2.2 Labeling Algorithm . 62

vii

6.2.3 Correctness . 64
6.2.4 Path Selection . 67

6.3 Theoretical Properties . 67
6.4 Experiments . 69

6.4.1 Experimental Setup . 69
6.4.2 Performance on Real-World Networks 70
6.4.3 Performance on Synthetic Graphs 71
6.4.4 Comparison of Vertex Ordering Strategies 72

7 Highway-based Labeling for Road Networks 74
7.1 Highway-based Labeling Framework 74

7.1.1 Highway Decomposition and Index Data Structure 74
7.1.2 Query Algorithm . 75

7.2 Pruned Highway Labeling . 76
7.2.1 Naive Highway Labeling . 76
7.2.2 Pruned Highway Labeling 76
7.2.3 Example For Pruned Highway Labeling 76
7.2.4 Proof of Correctness . 77

7.3 Detailed Algorithm Description . 78
7.3.1 Heuristic Highway Decomposition 78
7.3.2 Storing Labels . 79
7.3.3 Contraction Technique . 79

7.4 Experimental Evaluation . 80
7.4.1 Setup . 80
7.4.2 Performance Comparison 80
7.4.3 Analysis . 81

8 Historical Labeling for Evolving Complex Networks 84
8.1 Historical Pruned Landmark Labeling 85

8.1.1 Historical 2-Hop Cover Framework 85
8.1.2 Offline Indexing Algorithm 86
8.1.3 Online Incremental Update Algorithm 89

8.2 Experiments . 89
8.2.1 Setup . 89
8.2.2 Indexing Time, Index Size, and Label Size 89
8.2.3 Query Time . 90
8.2.4 Update Time and Label Increase 90

8.3 Application to Evolving Network Analysis 92
8.3.1 Ego Network Analysis . 92
8.3.2 Average Distance and Effective Diameter 92
8.3.3 Closeness Centrality . 93
8.3.4 Temporal Hop Plot . 93

9 Top-k Distance Queries on Complex Networks 95
9.1 Top-k Pruned Landmark Labeling 96

9.1.1 Index Data Structure . 96
9.1.2 Query Algorithm . 97
9.1.3 Indexing Algorithm . 97
9.1.4 Proof of Correctness . 98
9.1.5 Techniques for Efficient Implementation 99
9.1.6 Extensions . 99

9.2 Experiments . 100

viii

9.2.1 Setup . 100
9.2.2 Indexing Time and Index Size 102
9.2.3 Query Time . 102

9.3 Application to Graph Data Mining 102

10 Treewidth and Empirical Graph Tractability 104
10.1 Tree Decomposition Algorithm . 104

10.1.1 Min-degree Heuristic Algorithm 104
10.1.2 Proposed Tree Decomposition Algorithm 105

10.2 Results and Discussion . 108
10.2.1 Non-Trivial Factors for Index Size 110
10.2.2 Qualitative Empirical Analysis 110
10.2.3 Quantitative Empirical Analysis 110

11 Conclusions 112

References 117

ix

Chapter 1

Introduction

This thesis is about practical indexing methods for real graphs to efficiently an-
swer path-related queries. The aim of this chapter is to reconfirm the importance
of these practical graph indexing methods, explain the current research gaps, and
give the overview of the contribution of this thesis.

1.1 Real-World Graph Data

Graph-shaped data are ubiquitous; whenever we handle relationship among any
kinds of entities, a graph emerges as the most natural model. Formal definition
of graphs and related terms will be given in Chapter 2.

The study of graphs is considered to be pioneered by Leonhard Euler in 1735.
He proved that one cannot cross each bridge exactly once by walk at the famous
Seven Bridges of Königsberg, which is currently known as the notion of Euler
tour or Euler path. After that, graphs have been one of the main targets of study
in discrete mathematics.

Nowadays, graphs are also data sources of crucial importance in many kinds of
real systems such as web services, artificial intelligence, operations management
and industrial engineering. In particular, owing to the recent popularization of
the Internet and the World Wide Web, it is playing more and more critical roles
in real applications to extract beneficial information from large-scale graphs such
as social networks and web graphs.

In the following part of this section, we review the representative kinds of real-
world graph data of our interest. Specifically, we study the definition, history and
applications of them.

1.1.1 Social Networks

Generally, social networks are graphs where each vertex represents an individual
and each edge represents some kind of relationship. Examples of relationship
that is often modeled as social networks are friendship, collaboration (e.g., co-
author graphs and co-starring graphs), communication (e.g., e-mail networks and
instant-messaging networks).

Social networks have been definitely the graphs of the biggest interest to
various research communities such as sociology and psychology because their
properties are closely related to the nature of human beings. Study of social
network is said to have started in around 1930 [Kar29]. Famous results include
small-world phenomenon [Mil67,TM69]. In late 1990s, interesting structures of
real networks stimulated the statistical physics community to build statistical
modeling of these networks [WS98]. Together with other networks such as web

1

Figure 1.1: A social ego network of the author (i.e., the subgraph induced by the
friends of the authors) extracted from Facebook by Netvizz2.

graphs and biological networks, this led to the emergence of the new research
community called network science or complex network theory.

Recently, many people, especially young people, have started using social
networking web services (so-called SNSs). On these services, one creates a list
of users with whom to connect (called friends), and they interact by sharing
messages, pictures or videos with them. Indeed, the author is an active user
of several social networking services at the moment such as Facebook, Twitter,
Google+, LinkedIn, Instagram, Flickr, and Vine, to name but a few.

Through these services, the providers obtain the real, large-scale social net-
works. Figure 1.1 is an example of social network data extracted from a SNS.
These network data enabled to confirm classic hypotheses that were hard to ver-
ify with small data and to find new common global properties [BBR+12,BV12].
Moreover, mining beneficial information from these networks is getting a crucial
task for these service providers to improve the quality of experience for these web
services. The numbers of vertices in these social networks correspond to numbers
of users of these services, thus ranges depending on their popularity. The largest
social networking service at this moment is Facebook with 1.35 billion monthly
active users1.

1.1.2 Web Graphs

Web pages of the day may have hyperlinks, which help visitors to move to another
web page by clicking them. Web graphs are graphs where vertices represent web
pages and edges correspond to hyperlinks from the web pages.

Interestingly, web graphs also played a crucial role in the most notable change
in the history of web search engines: the rise of Google. There were numerous
search engines before Google, but they ranked search results just by keyword rele-
vance, which were fragile to spam sites. Google is the first engine that introduced
an idea of search result ranking using web graphs, and it significantly improved

1http://newsroom.fb.com/company-info/
2https://apps.facebook.com/netvizz/

2

Figure 1.2: A part of a road network of the City of New York [DGJ09]. Red and
blue paths illustrate the shortest paths between the same pair of vertices, where
the red one optimizes distance and the blue one optimizes time.

web search experience [PBMW99]. This history indicates that web graphs might
be really precious data sources.

As the notion of web graphs emerged after the popularization of the World
Wide Web, they are newer than social networks. However, while it was very
hard to obtain large-scale social networks before those social networking services
mentioned above, web graphs can be automatically obtained by crawling, i.e.,
just conducting graph search on web pages. Therefore, large graph data made
available earlier for web graphs than social networks. Famous results include the
bow-tie structure [BKM+00].

Obtaining an accurate web graph is an important task both for scientists (who
are interested in network properties) and practitioners (such as web search engine
providers). Seemingly, crawling is an easy search task based on graph searching.
However, it is actually very hard due to the enormous number of web pages and
dynamic web services. Therefore, considerable engineering effort has been done
to cope with these problems [BCSV04,BMSV14]. While the number of web pages
cannot be soundly defined due to dynamic web services, it is said that there are
at least 3.5 billion web pages and 128.7 billion edges [MVLB14].

1.1.3 Road Networks

Road networks are graphs where vertices and edges represent intersections and
streets, respectively. That is, road networks correspond to graph representations
of maps. Figure 1.2 shows an example of a road network. Road networks are
obviously helpful for many applications such as route planning, transportation
optimization, and evacuation planning.

Road networks are usually weighted graphs, where weight can be time, dis-
tance or cost. Figure 1.2 also illustrates two paths between the same pair of
vertices that optimize distance and time, respectively,

Previously, road networks can be obtained only by buying map data from map
vendors. However, some vendors kindly provided road network data for research
purpose. Popular ones are the road network of United States provided by Tiger

3

and that of Europe provided by PTV [DGJ09]. Unfortunately, it has been pointed
out that the former one contains several errors. Recently, there is a Wikipedia-
style collaborative open map called OpenStreetMap3. Researchers can obtain
large-scale road network data from OpenStreetMap. The road networks created
from OpenStreetMap have hundreds of millions of vertices and edges [DGW13].

1.2 Path-Related Queries on Graphs

In this thesis, we focus on indexing methods for processing path-related queries on
graphs. In this section, we briefly introduce the problems and explain applications
of them. The formal definition of the problems will be given later.

1.2.1 Reachability Queries

Answering a reachability query is to determine whether there is a directed path
from a vertex s to a vertex t on a given directed graph G = (V,E). Reachability
queries are ubiquitous as one of the most basic and important operations on
graphs.

For example, in query engines such as SPARQL and XQuery, it is one of the
fundamental building blocks for answering user queries [PAG09,Cha03,WED+08].
In computational biology, it is employed for representing and analyzing molec-
ular and cellular functions [vHNM+00]. In program analysis, it enables precise
interprocedural dataflow analysis [RHS95,Rep97].

1.2.2 Shortest-Path and Distance Queries

A shortest-path query asks the shortest path between two vertices in a graph, and
a distance query asks the distance between two vertices in a graph. Answering
these queries is also ones of the most fundamental operations on graphs, and has
a wide range of applications.

For example, on transportation networks, computing a shortest path corre-
sponds the route planning problem. On social networks, distance between two
users is considered to indicate the closeness, and used in socially-sensitive search
to help users to find more related users or contents [VFD+07, YBLS08], or to
analyze influential people and communities [KKT03,BHKL06]. On web graphs,
distance between web pages is one of indicators of relevance, and used in context-
aware search to give higher ranks to web pages more related to the currently
visiting web page [UCDG08, PBCG09]. Other applications of distance queries
include top-k keyword queries on linked data [HWYY07,TWRC09], discovery of
optimal pathways between compounds in metabolic networks [RAS+05, RS06],
and management of resources in computer networks [PSV04,BLM+06].

1.3 Indexing Methods

In this section, we introduce indexing methods for graphs, and explain remaining
challenges in this field.

First of all, we would like to confirm the practical importance of quickly
answering the queries above (Figure 1.3). Suppose we have a real-time network-
aware service (e.g., a network-aware search service [VFD+07, YBLS08]) on an
online social network. To generate a response to a user (e.g., a search result),
the total procedure may want to compute some kinds of fundamental metrics

3http://www.openstreetmap.org/

4

User

Real-time Network-aware Services
(e.g., Network-aware Search)

Access Response Distances between
1000 pair of vertices

In 100 ms
(10 QPS) Each distance should

be computed in 100 𝜇s

Total
Procedure

Figure 1.3: The necessity of graph indexing methods.

(e.g., distance) on the graph between many pair of vertices (e.g., for ranking the
search result). On the other hand, as this system is a real-time service, a user
may expect to get a result instantly, or we also have to process many queries in
a second to keep low load average. Supposing distances between one thousand
pairs of vertices are necessary for each result, and each result should be generated
under ten milliseconds, distance between single pair need to be obtained under
one hundred microseconds.

Therefore, to quickly obtain the answers to the path-related queries intro-
duced above, indexing methods have been employed. Generally, graph indexing
methods have two steps: indexing and query answering (Figure 1.4). First, it
constructs a data structure called an index from the given graph. After obtain-
ing an index, it answers queries between arbitrary pairs of vertices. The first step
is also called preprocessing or precomputation.

Index

𝑠1, 𝑡1 , 𝑠2, 𝑡2 , …Graph
Queries

Answer

Reachable!

Figure 1.4: The overview of graph indexing methods.

The indexing methods are evaluated in terms of the trade-off between scalabil-
ity and query performance (Figure 1.5). The term scalability means the applica-
bility to larger graphs, and measured by indexing time (i.e., the time consumption
for constructing an index) and index size (i.e., the data size of the constructed
index). On the other hand, query performance is evaluated with regard to query
time and precision. As evaluation of indexing methods is multi-criteria, methods
that provide different trade-offs are of different importance.

5

Scalability
Indexing time

Index size

Query Performance
Query time
(Precision)

Figure 1.5: The performance trade-off of indexing methods between scalability
and query performance.

There are two obvious extreme methods that optimize either of those two
criteria: non-indexing methods and full-indexing methods. Non-indexing methods
are those which conduct no preprocessing and answer queries solely by online
computation. Obviously, both indexing time and index size of these non-indexing
methods are optimal, while query performance is generally worse than other
indexing methods and insufficient for practical applications mentioned above.
In contrast, full-indexing methods precompute answers to all possible queries
(i.e., every pair of vertices). For example, computing the answers to all the
possible distance queries corresponds to the all pairs shortest path problem (see
Section 2.2.3). The query performance of full-indexing methods is clearly optimal,
but the scalability is highly limited. Thus, we need to develop more practical
indexing methods that lie midway between no-indexing methods and full-indexing
methods.

Practical graph indexing methods have been studied in the database com-
munity and experimental algorithmics community. In these communities, graph
indexing methods are relatively recent topics of their interest, probably due to
the recent emergence of large graph data.

Previously, indexing methods for different kinds of queries have been almost
independently studied, and current state-of-the-art methods are apparently based
on different approaches. Here we briefly explain the previous results for reach-
ability queries, distance queries on complex networks, and distance queries on
road networks. For details, please see Chapter 3.

Reachability Queries

One of the most classical approaches is to compress transitive closure [Sim88,
vSdM11]. Whereas its query performance is excellent, even with compression,
space complexity is still essentially quadratic, and thus this approach is not
promising with regard to scalability.

In contrast, methods that conduct an online graph search guided by precom-
puted indices for answering each query achieve better scalability due to small
indexing time and index size [CGK05,YCZ12, ZYQ+12]. However, their query
time is several orders of magnitude slower than other methods, which is critical
for certain applications such as SPARQL engines and XQuery engines, as some-
times answers to thousands or millions of reachability queries are necessary to
process one user query [YCZ12].

Methods based on labeling to vertices have also been studied for a long
time [CHKZ03, STW04, CYL+06, JXRF09]. They precompute a label for each
vertex so that a reachability query can be answered from the labels of two end-
points. This approach is promising since, after obtaining small labels, they attain
both fast query time and small index size. However, computing such labels has

6

been challenging and highly expensive, thus limiting the scalability of this ap-
proach.

Shortest-Path and Distance Queries on Complex Networks

Although the line of the research is almost independent, labeling-based ap-
proaches have been also studied for distance queries. However, as with reachabil-
ity queries, for distance queries on complex networks, efficiently finding small la-
bels is also a challenging and long-standing problem [CHKZ03,CY09,ADGW12].
One of the latest methods is hierarchical hub labeling [ADGW12], which is based
on a method for road networks [ADGW11]. Another latest method related to
2-hop cover is highway-centric labeling [JRXL12].

An approach based on tree decompositions is also reported to be effi-
cient [Wei10,ASK12]. It heuristically computes a tree decompositions and stores
shortest-distance matrices for each bag. It is not hard to compute distances from
this information.

Unfortunately, both of them highly suffer from drawback of scalability. They
take at least thousands of seconds or tens of thousands of seconds to index net-
works with millions of edges [Wei10,ASK12,ADGW12,JRXL12].

Therefore, to handle larger complex networks, apart from these exact meth-
ods, approximate methods are also studied. That is, we do not always have to
answer correct distances. They are successful in terms of much better scalability
and very small average relative error for random queries. However, some of these
methods take milliseconds to answer queries [GBSW10,TACGBn+11,QCCY12],
which is about three orders of magnitude slower than other methods. Some
other methods answer queries in microseconds [PBCG09, VFD+07], but it is
reported that precision of these methods for close pairs of vertices is not
high [QCCY12,ASK12]. This drawback might be critical for applications such
as socially-sensitive search or context-aware search since, in these applications,
distance queries are employed to distinguish close items.

Shortest-Path and Distance Queries on Road Networks

In comparison to reachability queries and distance queries on complex networks,
shortest-path queries on road network has a larger body of research. Exhaustive
survey is given in [BDG+14], and detailed experimental comparison of recent
methods is given in [WXD+12].

Methods of an early date are based on the Dijkstra search and they de-
crease the number of visited vertices by guiding the search using precomputed
data, which are called goal-directed techniques. Representative methods include
ALT [IHI+94,GH05], reach [Gut04] and arc flags [KMS06].

Another newer group of methods is based on hierarchical techniques. Their
indices are hierarchical, where higher levels capture more important parts (e.g.,
highways). Among several hierarchical methods, the notable one is the contrac-
tion hierarchy algorithm [GSSD08], which is simple, elegant and highly scalable.
However, its query time is several orders of magnitude slower than other state of
the art methods.

More recently, the labeling-based approach became successful for distance
queries on road networks [ADGW11, ADGW12, DGW13]. Interestingly, again,
the labeling algorithms are totally different from those for other queries.
In [ADGW11], labels for road networks are computed through contraction hi-
erarchies.

7

1.4 Contributions

As we have seen above, state-of-the-art empirical methods are heuristics that
highly depend on properties of a specific kind of queries and targeted real graphs.
Hence, though problems are related and somewhat close, lines of research on
different problems are almost independent, and different approaches have been
developed for different popular problems, even when limiting to labeling-based
methods.

In this thesis, we address this issue by proposing pruned labeling algorithms,
which is based on a new unified principle that can be widely applied to these path-
related queries. Our emphasis is mainly on the practical impact. We summarize
the contributions below.

1.4.1 Pruned Labeling Algorithms

The main contribution of this thesis is to present indexing methods for a wide
range of important path-related queries based on our new notion of pruned la-
beling. As we observed above, previous state-of-the-art indexing methods for
different queries are almost independently developed, and thus they are based on
different approaches. Even limiting to labeling-based methods, their labeling al-
gorithms are different among those for different kinds of queries. By contrast, the
methods presented in this thesis are based on the same notion of pruned label-
ing. Specifically, we design indexing methods for reachability queries on directed
acycilic graphs, shortest-path queries on road networks, historical shortest-path
queries on evolving networks, and top-k shortest-path queries on complex net-
works. We demonstrate that each of these methods is also comparable with state-
of-the-art methods for each kind of query, thus showing exceptional generality of
our unified approach.

The pruned labeling algorithm is first devised for shortest-path distance
queries, and that for distance queries (without any enhancement) is in the sim-
plest form. This basic form is called the pruned landmark labeling algorithm.
Therefore, we first present the basic form of the pruned labeling algorithm for
distance queries in Chapter 4. As with previous labeling methods, it is an exact
method, that is, it always answers correct distance between arbitrary two points.
It precomputes distance labels for vertices by performing a breadth-first search
from every vertex. Seemingly too obvious and too inefficient at first glance, the
key ingredient introduced here is pruning during breadth-first searches. While
we can still answer the correct distance for any pair of vertices from the labels,
it surprisingly reduces the search space and sizes of labels.

Moreover, we also propose an efficient online incremental index update algo-
rithm (Figure 1.6) for vertex and edge addition. To the best of our knowledge,
our method is the first practical exact indexing method to efficiently process dis-
tance queries and dynamic graph updates. It basically conducts local pruned
BFSs that visit only the vertices whose labels need to be updated. The idea
behind it is to properly resume and stop BFSs.

Real-time index update would definitely improve user experience because
these networks are highly dynamic and, more importantly, operations of users
are bursty with regard to temporal locality [Bar05]. For example, on an online
social networking service, when a user begins a friendship with another user,
chances are high for the user to keep using the service for a few more minutes.
Using our dynamic indexing method, the new friendship can be immediately re-
flected, which has never been possible with static methods that require periodic

8

Index

Graph

Indexing

Incremental
Update Index

In milliseconds

Change Update

New edge

Figure 1.6: A general illustration of incremental index update.

index reconstruction.
This is joint work with Yoichi Iwata and Yuichi Yoshida. A part of this work

was published in an extended abstract on Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (SIGMOD 2013; research track
full paper) [AIY13]. The other part of this work was published in another ex-
tended abstract on the Proceedings of the 23rd International Conference on World
Wide Web (WWW 2014; research track full paper) [AIY14].

1.4.2 Bit-parallel Labeling for Unweighted Complex Networks

Then, we apply our pruned labeling approach to distance queries on complex
networks. While solely using the new pruned labeling algorithm is already com-
petitive with previous methods, to gain further scalability, we propose another
technique to exploit unweightedness of these real complex networks. We show
that we can perform 32 or 64 breadth-first searches simultaneously exploiting
bitwise operations, which enables more strong exploitation of the structure of
these networks.

We experimentally demonstrate that the combination of these two techniques
is efficient and robust on various kinds of large-scale real-world networks. In
particular, our method can handle social networks and web graphs with hundreds
of millions of edges, which are two orders of magnitude larger than the limits
of previous exact methods, with comparable query time to those of previous
methods.

This result was achieved in joint work with Yoichi Iwata and Yuichi Yoshida.
An extended abstract was published in the same paper on the Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data (SIG-
MOD 2013; research track full paper) [AIY13].

1.4.3 Path-based Labeling for Directed Acyclic Graphs

Next, we consider methods based on pruned labeling for reachability queries.
Again, the original pruned labeling algorithm itself is already competitive with
previous methods for reachability queries. However, we also present an extension
of pruned landmark labeling algorithm named the pruned path labeling algorithm,
which exploits the fact that we are only interested in reachability here.

9

We experimentally compared our method with other state-of-the-art scalable
methods. Our experimental results show that they have good scalability and can
be applied to graphs with tens of millions of vertices and edges, their query time
is the fastest among the methods and two orders of magnitude faster than online-
search-based methods, and their index size is an order of magnitude smaller than
transitive-closure-based methods.

This is joint work with Yosuke Yano, Yoichi Iwata and Yuichi Yoshida. An
extended abstract was also published in the Proceedings of the 22nd ACM Inter-
national Conference on Information and Knowledge Management (CIKM 2013;
DB track short paper) [YAIY13]. In particular, the experiments in this part were
done with considerable help from the first author.

1.4.4 Highway-based Labeling for Road Networks

Then, we move on to shortest-path distance queries on road networks. As road
networks have quite a different structure from othe networks, we present a new
framework (i.e. data structure and query algorithm) referred to as highway-based
labelings and a preprocessing algorithm for it named pruned highway labeling
based on pruned landmark labeling. Our proposed method has several appealing
features from different aspects in the literature. Indeed, we take advantages of
theoretical analysis of the seminal result by Thorup for distance oracles [Tho04],
more detailed structures of real road networks, and the pruned labeling algorithm
that conducts pruned Dijkstra’s algorithm.

The experimental results show that the proposed method is comparable to
the previous state-of-the-art labeling method in both query time and in data
size, while our main improvement is that the preprocessing time is much faster.

This is joint work with Yuki Kawata, Yoichi Iwata and Ken-ichi
Kawarabayashi. An extended abstract was also published in the Proceedings
of the 16th Meeting on Algorithm Engineering and Experiments (ALENEX
2014) [AIKK14]. In particular, the experiments in this part were done with
considerable help from the last author.

1.4.5 Historical Queries for Evolving Complex Networks

In addition to previous three popular kinds of graph querying problems, we pro-
pose new kinds of useful path-related queries that can also be efficiently processed
by methods based on pruned labeling. We first consider historical shortest-path
distance queries on time-evolving complex networks.

When analyzing historical networks, for which timestamps of vertices and
edges are also available, in addition to the latest snapshot, the shortest paths
and distances on previous snapshots or transition of them by time are also of
interest. We call such queries about previous snapshots historical queries. In
particular, we study two kinds of historical queries. A snapshot query asks the
shortest path or distance on a specified previous snapshot, and a change-point
query asks all the moments when the distance between two vertices has changed.

Indexing schemes supporting historical queries would be a powerful back-end
for time-evolving network analysis, as it enables many new interesting studies.
For example, from the transition of the shortest paths between two vertices, we
can grasp the events that shortened the distance or important links that lie in
the shortest paths for a long duration, which would provide valuable insights.
Moreover, it would also enable distance-based analysis of influential people and
communities [KKT03,BHKL06] on dynamic networks. In particular, transition

10

of closeness centrality and distance distribution can be efficiently computed with
historical change-point queries.

Experimental results show the efficiency and robustness of our method based
on pruned labeling. They can construct indices from large networks with millions
of vertices, and their query time is very small and around microseconds, which are
competitive with previous static methods. Meanwhile, the proposed methods can
update their indices for single graph modification in around milliseconds, which
is several orders of magnitude faster than reconstructing indices from scratch.

This result was achieved in joint work with Yoichi Iwata and Yuichi Yoshida.
An extended abstract was published in the Proceedings of the 23rd International
Conference on World Wide Web (WWW 2014; research track full paper) [AIY14].

1.4.6 Top-k Distance Queries on Complex Networks

Then, we also propose an indexing scheme for top-k shortest-path distance queries
on graphs, which is useful in a wide range of important applications such as
network-aware searches and link prediction. While many efficient methods for
answering standard (top-1) distance queries have been developed, none of these
methods are directly extensible to top-k distance queries. We develop a new
framework for top-k distance queries and then present an efficient indexing algo-
rithm based on our pruned landmark labeling scheme. The scalability, efficiency
and robustness of our method is demonstrated in extensive experimental results.

This is joint work with Takanori Hayashi, Nozomi Nori, Yoichi Iwata and
Yuichi Yoshida. An extended abstract is in press for the Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015; technical
track paper) [AHN+15]. The experiments in this part were done with help from
the second author.

1.4.7 Treewidth and Empirical Graph Tractability

The final part of this thesis contributes to the field of practical graph indexing
methods in a different direction from the other contributions above. In this
chapter, we tackle the long-standing question in this field: what is the key factor
in addition to network size that has a large effect on the size of constructed indices
for graph path queries? As discussed above, practical indexing methods exploits
the structure of graphs, and thus their performance cannot be fully predicted
only by sizes of networks.

We take the first big step in this direction by using tree decomposition [RS84].
We propose a new heuristic tree decomposition algorithm based on the new no-
tion of star-based representation, that is more scalable than previous algorithms.
Then, we apply our algorithm to various network instances and compare the
results with performance numbers of state-of-the-art labeling algorithms. The
results indicate that the difficulty of network instances for labeling-based index-
ing algorithms can be measured to some extent by heuristically obtaining tree
decompositions.

This result was achieved in joint work with Yoichi Iwata, Takanori Maehara,
and Ken-ichi Kawarabayashi. A part of this work is published as an extended
abstract the in Proceedings of the VLDB Endowment, Vol. 7, No. 12 (PVLDB
2014; research track full paper) [MAIK14], and the other part is in prepara-
tion [AMK14].

11

1.5 Organization of This Thesis

This thesis is organized as follows. Figure 1.7 illustrates the structure of this
thesis. In Chapter 2, we give preliminaries of this thesis such as definition from
graph theory and basic graph algorithms. Chapter 3 explains the related work
concerning path-related querying methods. Chapters 4–10 contain the contribu-
tions outlined in Section 1.4 above. Specifically, Chapter 4 explains the basic
form of our pruned labeling algorithms (Section 1.4.1). In Chapter 5, we present
the bit-parallel labeling scheme for further scalability on unweighted complex net-
works (Section 1.4.2). In Chapter 6, we describe our pruned path labeling method
specialized for reachability queries (Section 1.4.3). Chapter 7 is devoted to ex-
plain the pruned highway labeling method for road networks (Section 1.4.4). In
Chapter 8, the extension of pruned labeling for historical queries on time-evolving
networks is presented (Section 1.4.5). Chapter 9 gives another extension of pruned
labeling for top-k distance queries (Section 1.4.6). In Chapter 10, we present the
relationship between treewidth and empirical graph tractability (Section 1.4.7).
We conclude in Chapter 11.

1. Pruned labeling algorithms (Chapters 4–9)

(a) Basic form [AIY13] (Chapter 4)
(b) Further techniques for major graph queries (Chapters 5–7)

i. Distance queries on complex networks [AIY13] (Chapter 5)
ii. Reachability queries on DAGs [YAIY13] (Chapter 6)
iii. Distance queries on road networks [AIKK14] (Chapter 7)

(c) New graph queries and their usefulness (Chapters 8–9)

i. Historical queries on evolving networks [AIY14] (Chapter 8)
ii. Top-k queries on complex networks [AHN+15] (Chapter 9)

2. Treewidth and empirical tractability [MAIK14,AMK14] (Chapter 10)

Figure 1.7: Organization of this thesis.

12

Chapter 2

Preliminaries

In this thesis, we focus on networks that are modeled as graphs. In this chap-
ter, we first describe the necessary definitions from graph theory (Section 2.1),
then review fundamental algorithms for graphs (Section 2.2), and finally explain
common structural properties of real graphs (Section 2.3).

List of notations For better readability, please refer to Table 2.1 for the list
of notations used throughout this thesis.

Table 2.1: Notations

Notation Description

G = (V,E) A graph.
V (G) The vertex set of graph G.
E(G) The edge set of graph G.
n The number of vertices in graph G.
m The number of edges in graph G.
N−

G (v), N+
G (v) The in-neighbors and out-neighbors of vertex v in graph G.

w(e) The weight of edge e.
Pst The set of all (not necessarily simple) paths from s to t.
dG(u, v) The shortest-path distance from vertex u to v in graph G.
PG(u, v) Set of all the vertices on the shortest paths between vertex

u and v in graph G.

2.1 Definitions

2.1.1 Undirected and Directed Graphs

We consider two kinds of graphs: undirected graphs and directed graphs, defined
below.

Definition 2.1 (Undirected Graph). An undirected graph G is a pair G = (V,E)
where E ⊆

(
V
2

)
.

Definition 2.2 (Directed Graph). A directed graph G is a pair G = (V,E)
where E ⊆ V × V .

V is called vertices and E is called edges. Vertices are also referred to as
nodes or points. We use symbols n and m to denote the number of vertices
|V | and the number of edges |E|, respectively, when the graph is clear from the
context. We also denote the vertex set and edge set of graph G by V (G) and

13

E(G), respectively. We often assume that vertices are uniquely represented by
integers (i.e., V = {v1, v2, . . . , vn}), enabling natural comparisons of two vertices
u, v ∈ V by expressions such as u < v or u ≤ v.

We often explain algorithms assuming that given graphs are undirected.
Specifically, algorithms are explained for undirected graphs in Chapters 4, 5,
7, 8, 9 and 10. This is for simplicity of exposition, and, as briefly discussed in
each chapter, it is easy to obtain corresponding algorithms for directed graphs,
On the other hand, in Chapter 6, we discuss algorithms for directed graphs from
the beginning, as direction is essential for the problem setting of that chapter.

Following the definition above, the precise notation of an undirected edge
between two vertices u and v in an undirected graph is set {u, v}. However,
following the tradition in this field, pair (u, v) is also considered to describe the
edge {u, v} in this thesis. Note that, on undirected graphs, pairs (u, v) and (v, u)
describe the same edge and indistinguishable. This is in order to make some
portion of the discussion common among undirected and directed graphs. In what
follows, unless mentioned (e.g., when we simply say “a graph G”), discussions
apply both to undirected and directed graphs.

2.1.2 Adjacency, Neighbors and Degree

We then introduce the basic notion of adjacency, neighbors and degree.

Definition 2.3 (Adjacency). For a graph G = (V,E), two vertices u, v ∈ V are
called adjacent if there is an edge between them, i.e., (u, v) ∈ E or (v, u) ∈ E.

Definition 2.4 (Neighbors). For a graph G = (V,E) and two vertices u, v ∈ V ,
u is called an in-neighbor of v if (u, v) ∈ E. The set of the in-neighbors of
vertex v is denoted by N−

G (v), i.e., N−
G (v) = {u ∈ V | (u, v) ∈ E}. Similarly, for

a graph G = (V,E) and two vertices u, v ∈ V , u is called an out-neighbor of v
if (v, u) ∈ E. The set of the out-neighbors of vertex v is denoted by N+

G (v), i.e.,
N+

G (v) = {u ∈ V | (v, u) ∈ E}.

Definition 2.5 (Degree). For a graph G = (V,E) and a vertex v, the in-
degree and out-degree of v are defined as the number of its in-neighbors and
out-neighbors, that is,

∣∣N−
G (v)

∣∣ and ∣∣N+
G (v)

∣∣, respectively.
When the graph is clear from the context, we omit the subscripts, e.g., in-

neighbors of a vertex v may be described as N−(v). Please note that, on undi-
rected graphs, for any vertex v, its in-neighbors and out-neighbors are the same
(and thus its in-degree and out-degree are also the same). Therefore, for undi-
rected graphs, we simply call them neighbors and degree and we omit the super-
scripts, e.g., neighbors of a vertex v may be described as NG(v) or N(v).

2.1.3 Edge Weight, Paths and Distance

We sometimes consider weighted graphs to represent costs, time or geometric
distance of an edge.

Definition 2.6 (Weighted Graph). A weighted graph is a graph G = (V,E)
associated with a weight function w : E → R. For an edge e ∈ E, we call w(e)
the weight of the edge.

In this thesis, unless stated otherwise, we assume that the weight of any edge is
positive, i.e., w : E → R+. This is mainly due to fundamental technical reason,
which will be discussed in Section 2.2.2. However, real-world networks rarely

14

have negative weights (as they come from costs, time and geometric distance),
and thus this assumption seldom limits the applicability of our algorithms.

In contrast to weighted graphs, a graph that is not associated with a weight
function is called an unweighted graph. For an unweighted graph G = (V,E),
we consider the weight of any edge as one, i.e., we consider a weight function w
where w(e) = 1 for any e ∈ E.

Next, we define paths and their lengths.

Definition 2.7 (Path). For a graph G = (V,E) and two vertices s, t ∈ V , a path
from s to t is a sequence of edges ((u0, u1), (u1, u2), . . . , (uk−1, uk)) where u0 = s
and uk = t.

Definition 2.8 (Cycle). A cycle is a non-empty path whose both endpoints co-
incide.

Definition 2.9 (Simple Path). A path P is called simple if it does not pass any
vertex more than once.

Definition 2.10 (Path Length). For a path P , its length w(P) is defined as the
sum of the weight of the edges, that is, w(P) =

∑
e∈P w(e).

In this thesis, for a pair of vertices (s, t), let Pst be the set of all (not necessarily
simple) paths from s to t. If Pst 6= ∅, we say that t is reachable from s, and
otherwise we say that t is unreachable from s.

Then, we define shortest paths and shortest-path distance. In the following,
we consider graphs without cycles with negative length, because shortest paths
and distance cannot be defined otherwise.

Definition 2.11 (Shortest Path). For a graph G = (V,E) and two vertices
s, t ∈ V , a path P from s to t is called a shortest path if w(P) = minQ∈Pst w(Q).

Definition 2.12 (Shortest-Path Distance). For a graph G = (V,E) and two
vertices s, t ∈ V , we define distance dG(s, t) from s to t as the length of a shortest
path between them, i.e., dG(s, t) = minQ∈Pst w(Q).

For unreachable pairs, following the tradition in this field, we abuse the nota-
tion by defining dG(s, t) =∞, where ∞ is considered to be a very large number.
Note that, on undirected graphs, distance is symmetry, i.e., dG(s, t) = dG(t, s),
whereas it is not always the case on directed graphs. As the shortest-path dis-
tance in graphs is a metric, it satisfies the triangle inequalities.

Lemma 2.1 (Triangle Inequality). For a graph G = (V,E) and three vertices
s, u, t ∈ V , the following inequalities hold.

dG(s, t) ≤ dG(s, v) + dG(v, t), (2.1)

dG(s, t) ≥ |dG(s, v)− dG(v, t)| . (2.2)

We define PG(s, t) ⊆ V as the set of all vertices on the shortest paths between
vertices s and t. In other words,

PG(s, t) = {v ∈ V | dG(s, v) + dG(v, t) = dG(s, t)} .

The diameter of a graph is defined below using shortest-path distance.

Definition 2.13 (Diameter). For a graph G = (V,E), the diameter of G is
defined as

max
u,v∈V,dG(u,v)6=∞

dG(u, v).

15

2.1.4 Strongly and Weakly Connected Components

Definition 2.14 (Strongly Connected). For a graph G = (V,E), a pair of ver-
tices s, t ∈ V are called strongly connected if both dG(s, t) and dG(t, s) are finite.
A graph is called strongly connected if any pair of vertices are strongly connected.

Definition 2.15 (Weakly Connected). For a graph G = (V,E), a pair of vertices
s, t ∈ V are called weakly connected if there is a sequence of vertices (u1 =
s, u2, . . . , uk−1, uk = t) where (ui, ui+1) ∈ E or (ui+1, ui) ∈ E for any 1 ≤ i ≤
k − 1. A graph is called weakly connected if any pair of vertices are weakly
connected.

Both strong connectivity and weak connectivity are equivalence relations.
Therefore, we often consider natural partitions defined by the relations, which
are called strongly and weakly connected components.

Definition 2.16 (Strongly Connected Components). For a graph, strongly con-
nected components are all the maximal vertex sets where any pair of vertices in
each set is strongly connected.

Definition 2.17 (Weakly Connected Components). For a graph, weakly con-
nected components are all the maximal vertex sets where any pair of vertices in
each set is weakly connected.

For an undirected graph, strong connectivity and weak connectivity are equiv-
alent, and thus we simply call such pairs or graphs connected. Similarly, we use
the term connected components for undirected graphs.

Directed acyclic graphs (DAGs) are directed graphs which are opposite from
strongly connected graphs, defined below.

Definition 2.18 (Directed Acyclic Graph). A directed graph is called a directed
acyclic graph if no pair of vertices is strongly connected.

In other words, directed acyclic graphs are graphs without cycles.

2.1.5 Trees and Shortest-Path Trees

Definition 2.19 (Undirected Tree). An undirected graph G = (V,E) is called
an undirected tree if it is connected and |E| = |V | − 1.

In other words, an undirected tree is a connected graph without any cycles.
Undirected trees are also called unrooted trees. Another equivalent definition of
an undirected tree is a undirected graph on which there is exactly one simple
path between any pair of vertices.

Definition 2.20 (Directed Tree). A directed graph G = (V,E) is called a directed
tree if it is weakly connected, |E| = |V | − 1, and there is a vertex r where any
vertex v ∈ V is reachable from r. Such a vertex r is called a root.

In other word, a directed graph is a directed tree if and only if there is a
vertex r (root vertex) where, for any vertex v, there is exactly one simple path
from r to v. In a directed tree, there is exactly one root vertex.

For a directed tree T and two vertices u, v ∈ V (T), if there is a directed edge
(u, v) ∈ E(T), u is called the parent of v, and v is called a child of u. Any vertex
except the root has exactly one parent, and the root has no parent.

16

Definition 2.21 (Shortest-Path Tree). For a graph G and vertex s, a directed
tree T is a shortest-path tree from s if its root is s, its vertex set V (T) is the set
of reachable vertices from s on G, and, for any vertex u ∈ V (T), the path from s
to u on T is a shortest path from s to u on G.

As we will discuss in Section 2.2.2, computing a shortest-path tree from a
vertex is called the single source shortest path problem. A shortest-path tree can
be obtained in near-linear time.

2.1.6 Planar Graphs, Tree Decomposition and Minor-Closed Proper-
ties

Then, we introduce theoretical graph families that are relevant to our study. We
start from introducing one of the most fundamental and natural graph families,
planar graphs. As they are not necessary in the other parts of this thesis, we
omit the detailed definition of notions such as plane, drawing and intersection.

Definition 2.22 (Planar Graph). A graph is planar if it can be drawn on the
plane under the restriction that its edges intersect only at their endpoints.

Then, we introduce another important notion called tree decomposition and
its related notions, width and treewidth. Tree decomposition and the related
notions were first proposed by Halin [Hal76], and then rediscovered by Robertson
and Seymour [RS84] and, by Arnborg and Proskurowski [AP89], independently.

Definition 2.23 (Tree Decomposition). A tree decomposition of a graph G is a
pair (T,X), where T is a tree and X = {Xt}t∈T is a family of subsets of V (G),
with the following properties:

1.
⋃

t∈V (T)Xt = V (G).

2. For every (u, v) ∈ E(G), there exists t ∈ V (T) such that u, v ∈ Xt.

3. For all v ∈ V (G), the set {t | v ∈ Xt} induces a subtree of T .

In this thesis, we call the sets Xt bags. Figure 2.1 is an example of a graph
and one of its tree decompositions. Rectangles denote the bags. Circles and blue
lines denote the vertices and the edges of the original graph. Red lines connect
the same vertices between adjacent bags.

Then, we define the width of a tree decomposition and treewidth for a graph.

Definition 2.24 (Width). The width of a tree decomposition (T,X) is

max
t∈V (T)

{|Xt| − 1} .

Definition 2.25 (Treewidth). A graph G has treewidth w if w is the minimum
such that G has a tree decomposition of width w.

Intuitively, a tree decomposition with small width enables to deal with the
graph like a tree, and thus, a graph with small treewidth is algorithmically easy
like trees. We will use tree decomposition in the theoretical analysis of our algo-
rithm (Section 4.3) and empirical study on real network properties (Chapter 10).

Finally, we introduce the definition of minor-closed properties. To that end,
we first introduce contraction of an edge in a graph.

17

0

12

3

4

5

6

7

8

9

(a) A graph

8

9

2

3

4

0

1

3

4

1

3

4

5

4

5

6

7

4

5

7

8

(b) One of its tree decom-
positions

Figure 2.1: An example of tree decomposition.

Definition 2.26 (Contraction). Given a graph G = (V,E) and an edge e =
(u, v) ∈ E, contracting edge e converts the graph G to G′ = (V ′, E′), where,
letting ve be a new vertex, V ′ = (V \{u, v})∪{ve} and E′ is obtained by removing
e and replacing the occurrence of u and v by ve.

Roughly speaking, contraction of an edge e = (u, v) is an operation of remov-
ing the edge e and merging u and v into a new vertex. Intuitively, contraction of
an edge is to make the edge shorter and shorter until its endpoints meet.

Then, we define minor and minor-closed property.

Definition 2.27 (Minor). A graph H is called a minor of a graph G if H is
obtained from G by removing vertices, removing edges, and contracting edges.

Definition 2.28 (Minor-closed Property). A graph property P is minor-closed
if any minor of a graph satisfying P satisfies P .

As easily observed, minor-closed properties are generalization of planarity and
bounded treewidth, That is, planarity is a minor-closed property, and having
bounded treewidth is another minor-closed property.

Seemingly, minor closeness is a quite simple and natural class of graph prop-
erties, but actually it has turned out that the minor closeness of a graph family
solely gives strong information on it. One of the most notable results on minor
closeness is Robertson-Seymour theorem (also known as the graph minor theo-
rem) [RS04], which states that any minor-closed property is determined by a finite
set of forbidden minors. This is generalization of Kuratowski’s theorem [Kur30]
(or Wagner’s theorem [Wag37]) for planar graphs.

We will also use some part of the fertile results on minor-closed properties in
the theoretical analysis of our algorithm (Section 6.3).

2.1.7 Dynamic Graphs

In this thesis, we sometimes consider dynamic graphs. We basically model a
dynamic graph as a time series of graphs, and use symbol Gτ to denote the

18

network at time τ . For simplicity, we assume time is described by positive integers
(i.e., graph snapshots are G1, G2, . . .), and we define G0 as an empty graph, i.e.,
G0 = (∅, ∅). We use symbol G to denote the latest network.

We denote the distance between vertices u, v in graph Gτ by dτ (u, v). For edge
(u, v) ∈ G, we define t(u, v) = τ , where τ is the time when the edge appeared in
the graph (i.e., (u, v) 6∈ E(Gτ−1) and (u, v) ∈ E(Gτ)).

2.2 Fundamental Graph Algorithms

2.2.1 Algorithm Evaluation Criteria

In this thesis, emphasis is largely put on practical performance. Therefore, our
main evaluation criteria is the real performance numbers on modern computer
systems against real network datasets.

We sometimes use synthetic networks, but we prefer real graphs. This is
because state-of-the-art methods are designed to exploit the common structures
on real graphs, and, unfortunately, current synthetic models of networks are not
sufficiently similar to real networks. Experimental results on synthetic graphs
are often different from those on real graphs.

On the other hand, we also sometimes discuss theoretical complexities. For
measuring time and space complexities, we assume the word RAM model. In the
word RAM model with word length b, each register can hold an integer ranging
from 0 to 2b − 1. Operations among registers such as addition, subtraction,
bit shifts and bit-wise operations can be done in constant time. Registers are
managed like an array, and indirect addressing is capable.

2.2.2 Single Source Shortest Path Algorithms

The single source shortest path (SSSP) problem is, given a graph G = (V,E) and
a source vertex s ∈ V , to compute a shortest-path tree from s or distance from s
to all other vertices.

For an unweighted graph, a breadth-first search (BFS) can compute them in
O(n + m) time. For a DAG, even if it is weighted, they can be obtained by
conducting dynamic programming in O(n+m) time.

For a weighted graph, Dijkstra’s algorithm [Dij59] can be applied if weight of
any edge is non-negative. It runs in O(n2) time when not using priority queues.
If we use standard priority queues such as binary heaps, it works in O(m log n)
time. In theory, sophisticated priority queues such as fibonacci heaps [FT87]
improve the time complexity to O(m+ n log n), but it is slow in practice due to
hidden large constant factor. For an undirected graph with non-negative weight,
Thorup’s algorithm [Tho99] have the best time complexity of O(n+m) time, but
it is also slow in practice.

For a weighted graph that may contain negative weight, these algorithms
do not work correctly, and thus Bellman-Ford algorithm [Bel58, For56] is often
employed. Its worst-case time complexity is O(nm) time, but implementations
using queues work much faster in practice than what is expected from the time
complexity.

2.2.3 All Pairs Shortest Path Algorithms

The all pairs shortest path (APSP) problem is, given a graph G = (V,E), to
compute shortest-path trees from all the vertices or distances from any pair of

19

vertices. The obvious solution to this problem is to conduct a SSSP algorithm
for n times from each vertex.

On the other hand, there are some algorithms designed for the APSP problem.
The Warshall-Floyd algorithm is a popular algorithm [War62, Flo62], which is
based on very simple dynamic programming and runs in O(n3) time. While
its asymptotic time complexity is the same as conducting Dijkstra’s algorithm
without priority queues, The Warshall-Floyd algorithm is much faster because
of its simpleness. However, as the real graphs that we deal with in this thesis
have much less edges than Θ(n2), and thus the former approach based on SSSP
is much more efficient.

In theory, APSP algorithms based on algebraic approach have been also pro-
posed. In particular, for undirected graphs with small weights, the algorithm
based on matrix multiplication runs in O(M(n) · polylog(n)), where M(n) is the
time complexity of the multiplication of two n×n matrices [Car71]. The current
fastest matrix multiplication algorithm is by Le Gall [LG14] with M(n) = O(nω)
where ω < 2.3728639. However, these algorithms are too complex to implement,
and also their empirical performance is not believed to be promising because of
huge hidden constant factors.

2.3 Common Structural Properties of Real-world Graphs

Finally, in this section, we review the common structural properties of real-world
graphs of our interest. The graph data that we deal with in this thesis can
be roughly classified into two families: complex networks and road networks,
where complex networks comprise various but structurally similar networks such
as social networks, web graphs and computer networks. We review the structural
properties of these two families.

2.3.1 Complex Networks

The structural properties of complex networks have been intensively studied in
the Web, data mining and network science communities. Among many findings so
far, we introduce those that are representative or closely related to our subsequent
discussion.

Power-law Degree Distribution The degree distribution of various complex
networks roughly follow a power-law [BA99,FFF99,MMG+07]. That is, for some
constant γ, the fraction p(k) of the vertices with degree k is proportional to
k−γ , i.e., p(k) ∝ k−γ . A power-law means that there are likely a few vertices
that have exceptionally high degree, and many vertices have degree below the
average, leading to the existence of highly central vertices (or hubs). Parameter
γ is called power exponent, where 2 < γ < 3 in most networks.

Small Average Distance and Small Diameter Average distance and diam-
eters of complex networks are much smaller than what is intuitively expected from
the numbers of vertices. This is probably famous for social networks together with
the phrase “six degrees of separation” [Mil67,TM69]. Recently, on Facebook so-
cial network data, average distance is measured as 4.74, which rewrites the phrase
to “four degrees of separation” [BBR+12,BV12].

20

Large Clustering Coefficient Intuitive explanation of the clustering coeffi-
cient is the probability that “a friend of a friend” is a friend [HL71]. Global clus-
tering coefficient considers any pair of “a friend of a friend”, while local clustering
coefficient considers only friends of a person. It is known that, for real complex
networks, global clustering coefficient is much larger than what is expected from
random edge connection [HL71,WS98,MMG+07]. Moreover, local clustering co-
efficient is quite high especially for vertices with small degree [MMG+07]. This
indicates that real complex networks have some kind of locality.

Core-Fringe Structure Generally, the core-fringe structure, core-periphery
structure or core-whisker structure of complex networks state that a network can
be roughly classified into two parts: the core part and fringe part, where the
core part is relatively dense and well connected, while the fringe part is tree-
like [RPFM14,MMG+07,CSTW12,MAIK14]. With regard to formal definition
of the core-fringe structure, several different formulations have been proposed.
Among them, Maehara et al. proposed that a core is a expander-like subgraph
and a fringe is a subgraph of small treewidth [MAIK14], which is quite useful for
algorithm designers because these two notions are closely related to graph theory
and graph algorithms.

2.3.2 Road Networks

In contrast to complex networks, the structural property and its modeling is not
as popular for road networks. This is probably because the structure of road
networks is much more intuitive and seemingly straightforward. However, for us,
algorithm designers, since we need to design algorithms for road networks, the
structural properties of road networks are also important.

Small Separators While road networks are not precisely planar, they are close
to planar graphs. Therefore, they share several common properties to planar
graphs. Among them, existence of small separators is quite useful when designing
algorithms [Tho04, KMS06, ADGW11]. It indicates that road networks can be
decomposed into parts by removing relatively small set of edges or vertices.

Highways In contrast to general planar graphs, there are highways in road
networks. Highways usually have higher average speed than other roads, and
thus, one likely pass through highways when traveling long distance. In other
words, long shortest paths are likely pass through (parts of) paths that correspond
highways. Therefore, compared with complex networks, while complex networks
have highly central vertices (i.e., hubs), road networks may not have vertices
that are as central as these vertices, but instead, they have very popular paths
(i.e., highways). This is our motivation of our highway-based labeling framework
introduced in Chapter 7, which enable explicitly exploiting these highway paths.

21

Chapter 3

Review of Graph Indexing Methods

In this chapter, we review previous graph indexing methods for path-related
queries. As mentioned above, in this field, theoretical and practical methods are
almost totally independent. Since we focus on practical indexing methods in this
thesis, in this chapter, we also mainly review previous practical methods. For
theoretical results, we refer to [Som14]. In particular, as our method is closely
related to indexing methods for distance queries on complex networks, these
methods are of main interest in this chapter.

3.1 Shortest-path and Distance Queries on Complex Networks

For simplicity, we explain methods for answering distance queries, but it is also
easy for almost all the methods to simultaneously answer the shortest paths.
Methods are classified into two groups: exact methods and approximate meth-
ods. Exact methods always answer correct distance, while answers of approxi-
mate methods may contain error. In this section, we assume that given graph is
undirected and unweighted, but discussion can be naturally extended for directed
and/or weighted graphs.

3.1.1 Labeling Methods

Large portion of these methods can be considered as labeling methods. Therefore,
we first introduce labeling methods. Labeling methods are defined as indexing
methods that precompute a label L(v) for each vertex v, and answer a distance
query between vertices s and t only by using two labels L(s) and L(t).

In this thesis, we refer to the data structure and query algorithm of a labeling
method as a labeling framework. Most of the previous methods are based on the
labeling framework called 2-hop cover [CHKZ03]. Our method also follows this
framework.

Index Data Structure

For each vertex v, we precompute a label denoted as L(v), which is a set of pairs
(u, δuv), where u is a vertex and δuv = dG(u, v) (Figure 3.1a). We sometimes call
the set of labels {L(v)}v∈V as an index. We call the index correct if it satisfies
the following conditions.

Definition 3.1 (2-Hop Cover Index for Distance Queries [CHKZ03]). Set of
labels {L(v)}v∈V is a (correct) 2-hop cover index for distance queries of graph
G = (V,E) if L(v) is a set of pairs (u, δuv), where u is a vertex and δuv = dG(u, v),
and, for any pair of vertices s, t ∈ V ,

22

𝑙1

𝑙2

𝑙3

𝒗

𝛿1

𝛿2

𝛿3

(a) An illustration of a 2-hop
label

𝑡
𝑠

(b) The query algorithm of the 2-
hop cover framework

Figure 3.1: The index data structure and query algorithm of the 2-hop cover
framework.

1. L(s) ∩ L(t) = ∅ if dG(s, t) =∞, and

2. min {δvs + δvt | (v, δvs) ∈ L(s), (v, δvt) ∈ L(t)} = dG(s, t) if dG(s, t) 6=∞.

For directed graphs, two labels are computed and stored for each vertex,
called a forward label and backward label. Hierarchical 2-hop covers [ADGW12]
(also called hierarchical hub labelings) are a natural special class of 2-hop covers
defined below.

Definition 3.2 (Hierarchical 2-Hop Cover [ADGW12]). A 2-hop cover index
{L(v)}v∈V is a hierarchical 2-hop cover index of graph G = (V,E) if the relation-
ship “vertex v is in the label of vertex w” defines a partial order on the vertex set
V .

Moreover, canonical 2-hop covers [ADGW12] (also called canonical hub label-
ings) are a further special class of hierarchical 2-hop covers. Recent algorithms,
including our pruned labeling algorithm, compute canonical 2-hop covers. Canon-
ical 2-hop covers are defined as follows.

Definition 3.3 (Canonical 2-Hop Cover [ADGW12]). For a graph G = (V,E), a
2-hop cover index {L(v)}v∈V is a canonical 2-hop cover index of G if, for a total
order r of vertices, L(s) is the set of vertices that ranks the highest in PG(s, t)
with respect to r for any vertex t.

Note that, given a total order, the canonical 2-hop cover is unique.

Query Algorithm

To answer a distance query between vertices s and t, we compute and answer
Query(s, t, L) defined as follows (Figure 3.1b),

Query(s, t, L) = min {δvs + δvt | (v, δvs) ∈ L(s), (v, δvt) ∈ L(t)} .

We define Query(s, t, L) = ∞ if L(s) and L(t) do not share any vertex. It is
obvious that, if L is a correct 2-hop cover index, Query(s, t, L) = dG(s, t) for
any pair of vertices s and t.

For each vertex v, we store the label L(v) so that pairs in it are sorted by
their vertices. Then, we can compute Query(s, t, L) in O(|L(s)| + |L(t)|) time
using a merge-join-like algorithm.

23

Indexing Algorithms

As we have seen above, the indexing framework (i.e., the index data structure
and query algorithm) of the 2-hop cover framework is simple. However, finding
small 2-hop covers efficiently is a challenging and long-standing problem. As
the minimization of the size of labels is proven to be NP-hard, approximate
algorithms and heuristic algorithms have been studied.

In the original work [CHKZ03], Cohen et al. proposed an approximate labeling
algorithm that guarantees the approximation ratio of O(log n) from the optimal
2-hop cover. However, the algorithm first computes the distance matrix, then
reduces the label computation to an optimization problem. Therefore, the scal-
ability is highly limited. A faster labeling algorithm built on this approach with
the same approximation guarantee was recently presented by Delling et al., which
is orders of magnitude better than previous algorithm [DGSF14]. Nevertheless,
it can process networks with at most tens of thousands of edges.

More scalable algorithm that computes canonical 2-hop covers was pro-
posed by Delling et al. [ADGW12]. It is based on a method for road net-
works [ADGW11], which will be introduced in later sections. It first constructs
hierarchical 2-hop covers through contraction hierarchies, then it reduces the la-
bel sizes by making them canonical. It also requires Θ(n2) space.

Extensions

A variant related to 2-hop cover is highway-centric labeling [JRXL12]. In this
method, we first compute a spanning tree T and use it as a “highway”. That is,
when computing distance dG(u, v) between two vertices u and v, we output the
minimum over dG(u,w1)+dT (w1, w2)+dG(w2, v) where w1 and w2 are vertices in
labels of u and v, respectively, and dT (·, ·) is the distance metric on the spanning
tree T .

IS-Label is another method that combines partial 2-hop cover and online graph
searches [FWCW13]. To create an index, it recursively computes a vertex cover
and reduce vertices in the corresponding independent set. Simultaneously, it adds
label entries to the labels of these removed vertices. The recursion is stopped
when the graph gets sufficiently small. To answer queries, it reduces the problem
to many-to-many distance computation on the reduced graph by using the partial
2-hop labels.

3.1.2 Tree-Decomposition-Based Methods

An approach based on heuristic tree decomposition is also reported to be ef-
ficient [Wei10, ASK12]. Tree decomposition and complex networks are seem-
ingly unrelated at first glance, as intuitively treewidth of complex networks
is not small. However, because of the core–fringe structure of these net-
works [CNSW00,NSW01], the fringe part is actually tree-like, and these methods
exploit the tree-like structure by tree decomposition.

Index Data Structure

Since complex networks do not have small treewidth, to exploit the tree-like
fringes, new notion of relaxed tree decomposition is used in these methods.

Definition 3.4 (Relaxed Tree Decomposition [Wei10,ASK12]). A tree decompo-
sition is called a relaxed tree decomposition with width w if all bags except for
one have size at most w + 1.

24

We call the one arbitrary large bag the root bag. As an index, these methods
precompute and store a tree decomposition and a distance matrix for each bag
of it. The index size is O(nw2 + r2), where w is the relaxed width of the tree
decomposition, and r is the size of the root bag.

Indexing Algorithm

They compute a tree decomposition by algorithms built on the min-degree heuris-
tic algorithm [BHS03]. As we will also use the min-degree heuristic in Chapter 10,
we will explain the algorithm later.

The original method proposed by Wei [Wei10] computes the distance matri-
ces after obtaining tree decompositions (Figure 3.2). In contrast, Akiba et al.
proposed to simultaneously compute the distance matrices on reduced graphs of
min-degree heuristics [ASK12]. This technique improved the scalability by an
order of magnitude.

6 8 10

6 0 2 1

8 2 0 2

10 1 2 0

5 6 8

5 0 1 1

6 1 0 2

8 1 2 0

Figure 3.2: The index construction process of tree-decomposition-based ap-
proaches.

Query Algorithm

To answer queries, we conduct dynamic programming on the trees (Figure 3.3).
The basic algorithm by Wei works as follows [Wei10]. We start from two bags
that contain the specified endpoints. We ascend the bags by computing distances
from endpoints to vertices in each bag. We stop the process at the lowest common
ancestor of the two bags. It works in O(w2h) time, where h is the height of the
tree decomposition. Akiba, et al. proposed more sophisticated query algorithms
that work in O(w2 log h) time [ASK12].

3.1.3 Landmark-based Methods

To gain more scalability than these exact methods, approximate methods, which
do not always answer correct distances, also have been studied. The major ap-
proach is the landmark-based approach [TC03,VFD+07].

The basic idea of these methods is to select a subset L of vertices as landmarks,
and precompute the distance dG(`, u) between each landmark ` ∈ L and all the
vertices u ∈ V . When the distance between two vertices u and v is queried, we
answer the minimum dG(u, `) + dG(`, v) over landmarks ` ∈ L as an estimate.

Generally, the precision for each query depends on whether actual shortest
paths pass nearby the landmarks. Therefore, by selecting central vertices as land-
marks, the accuracy of estimates becomes much better than selecting landmarks

25

1 2 3 4

1 2 3 4

2 3

V 1 2

Dist 0 1

V 2 3

Dist 1 2

V 3 4

Dist 1 0

V 2 3

Dist 2 1

+1

+1 +1

+1

Distance from 1 Distance to 4

Original Graph

Tree Decomposition

Figure 3.3: The query algorithm of tree-decomposition-based distance querying.

randomly [PBCG09, CSTW12]. However, for close pairs, the precision is still
much worse than the average, since lengths of shortest paths between them are
small and they are unlikely to pass nearby the landmarks [ASK12].

To further improve the accuracy, several techniques were proposed [GBSW10,
TACGBn+11,QCCY12]. They typically store shortest-path trees rooted at the
landmarks instead of just storing distances from the landmarks. To answer
queries, they extract paths from the shortest-path trees as candidates of shortest-
paths, and improve them by finding loops or shortcuts. While they significantly
improve the accuracy, the query time becomes up to three orders of magnitude
slower.

3.2 Shortest-path and Distance Queries on Road Networks

Shortest-path distance queries on road network has a larger body of research. In
this section, we focus on two representative recent methods that are related with
methods of our interest: contraction hierarchies and labeling methods. Exhaus-
tive survey is given in [BDG+14], and detailed experimental comparison of recent
methods is given in [WXD+12]. In this section, as we deal with road networks,
we assume that given graph G = (V,E) is weighted and has a weight function w.

3.2.1 Contraction Hierarchies

The idea based on contraction hierarchies is just to repeatedly contract vertices by
increasing order of importance to obtain two DAGs (upward graph and downward
graph), on which query algorithms can efficiently obtain shortest-paths [GSSD08].

Index Data Structure

From the given graph, indexing algorithms construct two weighted DAGs, upward
graph G↑ = (V,E↑) and downward graph G↓ = (V,E↓). The two DAGs respect
a total order of vertices called importance in a reverse way. That is, for any
(u, v) ∈ E↑, u has a lower importance than v, and, for any (u, v) ∈ E↓, u has
a higher importance than v. A weighted graph G′ = (V,E↑ ∪ E↓) is called a
contraction hierarchy of the graph G.

26

Indexing Algorithm

We construct a contraction hierarchy basically by repeatedly contracting vertices
(Figure 3.4). First, both of the upward and downward graph are initialized with
the edges of original graph with the corresponding directions. Contraction of a
vertex v is to remove vertex v and add edges that are necessary not to change
the distance between at least one pair of remaining vertices.

When contracting less important vertices, as shortest paths are less likely to
pass these vertices, new edges are less likely to be added. Therefore, vertices are
contracted by increasing order of importance. The order is heuristically deter-
mined simultaneously with contraction process.

Query Algorithm

The query algorithm is just to compute a shortest path from two endpoints in
the contraction hierarchy G′. We can conduct bidirectional search on it.

Relation to Tree-Decomposition-Based Methods

Interestingly, indexing algorithms of contraction hierarchies have much in com-
mon with tree-decomposition-based methods introduced above. As we will ex-
plain in Chapter 10 the min-degree heuristic algorithm computes tree decomposi-
tions by reducing vertices. This reduction process is quite similar to the contrac-
tion above. However, one crucial difference is that, while the tree decomposition
process adds edges between every pair of neighbors, the contraction process only
adds necessary edges for remaining shortest paths. If we add only necessary edges
during tree decomposition, obtained decompositions would not be a tree decom-
position. On the other hand, as the contraction hierarchy algorithm adds less
edges, it seems to be more scalable.

However, there is also difference of index data structures; while the contrac-
tion hierarchies are union of DAGs, tree decompositions can be processed like
trees and thus query algorithms can be more efficient. While these methods are
developed independently in different communities (the database community and
experimental algorithmics community), and also targeted graphs are different,
they turned out to be interestingly related.

Contraction hierarchies have also interesting relation to labeling-based meth-
ods, which will be introduced in the next section.

3.2.2 Labeling Methods

The recent emergence of practical labeling methods for distance queries on road
networks is quite interesting and indeed a rare example of practical impact of
theoretical research in this field. In the seminal theoretical work by Abraham
et al. [AFGW10], they theoretically analyzed the indexing algorithms for dis-
tance queries on road networks under their new notion of highway dimension.
Interestingly, their theoretical result suggested that there should be good labels
on road networks, whereas previously little effort has been done for labeling-based
methods. Then, in their follow-up empirical work, Abraham et al. demonstrated
that indeed the labeling approach is practical on continental-scale road networks
of the day [ADGW11].

The labeling framework (i.e., the index data structure and query algo-
rithm) used for distance queries on road networks is exactly the 2-hop cover

27

６ １ ４ ３ ５２
２２ ２２ １３

(a)

６

１

４ ３ ５２
２ ２

２

１

３

５

(b)

６

１

４ ３ ５

２

２

２

２

１

３

５

(c)

６

１

４

３

５

２

２

２

２

１

３

３５

(d)

６

１

４

３

５

２

２

２

２

１

３

３５

８

(e)

６

１

４

３

５

２

２
２

２

１

３

３

５

８

(f)

６

１

４

３

５

２

２
２

２

１

３

３

５

８

(g)

Figure 3.4: The index construction process of contraction hierarchies. Blue, yel-
low and red vertices denote those which are not yet contracted, already contracted
and just being contracted, respectively.

28

framework introduced above. However, please note that it is called as hub-
based labeling or hub labeling in the field of distance queries on road net-
works [ADGW11,ADGW12].

Hierarchical Labels through Contraction Hierarchies

The first practical indexing algorithm by Abraham et al. computes labels by
using contraction hierarchies [ADGW11]. Their labels are hierarchical labels
(see Definition 3.2), which respects the order of importance of the corresponding
contraction hierarchies. The basic idea is to construct the forward label of v as the
vertices that can be reached from v in the upward graph G↑, and to construct the
backward label of v as the vertices that can reach v in the downward graph G↓. It
is easy to see that the labels are correct because the query algorithm corresponds
the bidirectional search on the contraction hierarchy graph. Surprisingly, their
algorithm proved that road networks with tens of millions of vertices and edges
had 2-hop covers with average label sizes of about one hundred. As a result,
the labeling-based approach became the indexing method for distance queries on
road networks with the fastest query time.

Canonical Labeling by Pruning

Then, in their next paper, they proposed the notion of canonical labeling (Defi-
nition 3.3). They also proposed a pruning algorithm to reduce the label sizes of
hierarchical labels by converting them to canonical labels. For a road network of
Western Europe, their new indexing algorithm using the technique above reduced
the label size from 85 to 69.

Recall that canonical labeling is unique under the same vertex ordering.
Therefore, both their algorithm and our algorithm compute the exactly same
canonical labeling when they are given the same vertex ordering, and both are
based on pruning. However, the algorithms are totally different and our algorithm
has much better scalability. Their algorithm first computes hierarchical labeling
and then obtains canonical labeling (the latter step is called pruning), while ours
directly computes canonical labeling during pruned graph searches. Indeed, in
their recent work [DGPW14], they also started using our labeling algorithm (see
Chapter 11).

Label Compression

Because the largest disadvantage of labeling-based methods is space consump-
tion, they proposed label compression schemes to reduce the space consump-
tion [ADGW11,DGW13,DGPW14]. The basic idea of their compression scheme
is to represent a label as a tree and reuse the common parts of different labels.
Therefore, the total set of labels is represented as a DAG.

In particular, the underlying thought in [DGW13] is, again, interestingly con-
nected with contraction hierarchies. Their finding is that, while they construct
hierarchical 2-hop cover labels from contraction hierarchies, contraction hierar-
chies can also be easily obtained from any hierarchical 2-hop cover labels by
considering label trees. This is quite interesting because the labeling-based ap-
proach is one of the heaviest indexing approaches, while the contraction hierar-
chy approach is one of the most lightweight indexing approaches, in the sense of
the trade-off between index size and query time. Therefore, their compression
scheme is designed to combine the contraction-hierarchy-like index structure into
the labeling-based approach.

29

3.3 Reachability Queries

In this section, we review previous methods on reachability queries. They can be
roughly classified into three approaches: transitive closure compression, online
search, and labeling.

3.3.1 Transitive-closure-based Methods

The most classical approach is to compress transitive closure, i.e., the |V | × |V |
table describing reachability for all pairs. In Tree Cover [ABJ89], transitive clo-
sure is represented as an interval label of a spanning tree, and the minimization
of the label size is considered. The interval list (IL) method compresses transi-
tive closure by using run-length-like compression [Nuu95]. Path-Tree [JXRW08]
decomposes a graph into paths, and then creates an interval label on a graph of
paths. In [vSdM11], transitive closure is compressed by a data structure called
PWAH after sorting vertices by topological order. Generally, queries can be an-
swered quickly in these methods, just by looking up the compressed transitive
closure. However, the size of full transitive closure can be quadratic, which causes
the scalability problem.

3.3.2 Online-search-based Methods

There are several online-search-based methods, which basically conduct a depth-
first search (DFS) guided by indices for each query [CGK05,YCZ12, ZYQ+12].
GRIPP [CGK05] exploits an index called an interval label on a spanning tree, and
answers a query by conducting a DFS efficiently by reducing search space using an
interval label. GRAIL [YCZ12] is one of state-of-the-art method in this approach.
This method speeds up DFS using several randomly created interval labels. The
advantages of these methods are short indexing time and memory-efficiency since
an interval label is created by a single DFS. However, query time is slow compared
with other methods since these methods traverse the input graph to answer each
query. An on-disk version of GRAIL has also been proposed [ZYQ+12].

3.3.3 Labeling-based Methods

Another popular approach is labeling-based methods. For reachability queries, 2-
hop cover indices have also been often used [CHKZ03,STW04,CYL+06], whereas
there are a few extensions that are specialized for reachability queries.

2-Hop Cover Framework for Reachability Queries

Given a DAG G = (V,E), we create two types of labels LOUT(v), LIN(v) ⊆ V for
each vertex v, defined below.

Definition 3.5 (2-Hop Cover Index for Reachability Queries [CHKZ03]). Set of
labels {L(v)}v∈V is a (correct) 2-hop cover index for reachability queries of graph
G = (V,E) if L(v) is a set of vertices, and, for any pair of vertices s, t ∈ V ,
L(s) ∩ L(t) 6= ∅ if and only if dG(s, t) 6=∞.

As with 2-hop covers for distance queries, upon a query (s, t), we return
Query(s, t, LOUT, LIN) defined as follows.

Query(s, t, LOUT, LIN) =

{
true if LOUT(s) ∩ LIN(t) 6= ∅,
false otherwise.

30

We construct labels LOUT and LIN so that, for every s, t ∈ V ,
Query(s, t, LOUT, LIN) matches the reachability on G from s to t. Naive cal-
culation of Query(s, t, LOUT, LIN) needs O(ls · lt) time for ls = |LOUT(s)| and
lt = |LIN(t)|. However, if LOUT(s) and LIN(t) are sorted, it can be done in
O(ls + lt) time by scanning both labels from their heads to tails simultaneously.

While the framework is highly common to methods for distance queries intro-
duced above, labeling algorithms are again designed independently and almost
independent [STW04,CYL+06]. For example, the approach proposed by Schenkel
et al. is based on divide-and-conquer algorithm. The algorithm is tailored to
graphs that are quite close to trees such as XMLs.

Extensions of 2-Hop Covers

3-hop cover [JXRF09] is a generalization of 2-hop cover, where labels are created
to satisfy that a vertex can reach its descendants via two vertices by using chain
decomposition. These hop cover methods usually achieve small query time and
index size, but computing such good labels is prohibitively expensive on large-
scale graphs.

3.3.4 General Improving Techniques

There are some general techniques to improve the performance of reachability
indices. The idea of query preserving compression [FLWW12] is to make a com-
pressed graph with which we can correctly answer reachability queries on the orig-
inal graph. In [JRDX12], a reachability computation framework named SCARAB
was proposed. In the framework, a smaller graph called a reachability backbone
is constructed from an input graph and a reachability query on the original graph
can be answered by issuing several reachability queries on the reachability back-
bone. These techniques can be combined with any methods, including ours, and
make them more scalable.

3.4 Theoretical Results

As mentioned in Chapter 1, most of the results from the theoretical algorithm
community are of independent interest from practical efficiency. By contrast,
there are a few notable theoretical results that offer valuable insight also into
empirical algorithmics on graph indexing. In this section, we introduce these
results.

3.4.1 Highway Dimension

Real road networks are close to planar graphs, but they are not exactly planar.
For example, there are grade separated crossings. Moreover, even if we assume
road networks are planar, still, it is not sufficient to theoretically explain the
efficiency of practical indexing methods for distance queries on road networks.
Intuitively, these practical indexing models exploit more specific structures of
road networks, e.g., existence of popular roads such as highways.

To theoretically discuss the efficiency of algorithms on such road net-
works, Abraham et al. proposed a new theoretical notion called highway dimen-
sion [AFGW10]. They modeled road networks as graphs with small highway
dimension. Intuitively, a graph with small highway dimension is one that has
small sets of vertices where any long shortest paths pass through at least one of

31

them. This assumption coincides our intuitive understanding of the structure of
real road networks.

Under the assumption of small highway dimension, those practical indexing
methods are theoretically proved to be efficient for the first time. Moreover, as
we mentioned above, the results also motivated the use of the labeling approach
for distance queries on road networks, which has been indeed demonstrated to
be prominent.

3.4.2 Power-Law Random Graphs

As with the discussion above, to discuss distance querying on complex networks
such as social and web graphs, there also should be assumptions for graphs. As
we explained above, practical methods exploit the common structures of these
networks, and thus analysis on general graphs are unfortunately not very inter-
esting.

To address this issue, Chen et al. presented the first theoretically interest-
ing results about distance queries on graphs with power-law degree distribu-
tion [CSTW12]. They assumed fixed degree random graph, and they conducted
rigorous average case analysis on the theoretical indexing method by Thorup
and Zwick [TZ05]. The results theoretically confirmed our intuition that highly
central vertices (i.e., hubs) in these networks make shortest path computation
easier.

32

Chapter 4

Basic Form of Pruned Landmark Labeling

Algorithm

In this chapter, we present the basic form of the pruned landmark labeling al-
gorithm. Here, we assume that the given graph G = (V,E) is undirected and
unweighted. We only consider basic distance queries, i.e., we construct an index
to efficiently answer distances between arbitrary pairs of vertices. As the index
data structure, we use the original 2-hop cover framework explained in Chapter 3.

We first explain the offline labeling algorithm and prove its correctness (Sec-
tion 4.1). Then, we discuss vertex ordering for empirically exploiting the struc-
tures of real networks (Section 4.2). Next, we look into theoretical properties of
our labeling algorithm to further see that, with proper vertex ordering strategies,
it can exploit various structures of real networks (Section 4.3). In Section 4.4,
common engineering techniques for efficient implementation are presented. Fi-
nally, we discuss online update algorithms of 2-hop indices for dynamic graph
update based on pruned labeling (Section 4.5).

In this chapter, we do not present experimental results. Experimental evalu-
ation will be presented in the following chapters, which deal with more concrete
problem settings on real instances. This chapter presents the concept of pruned
labeling that is common to the methods tailored to each problem setting.

4.1 Labeling Algorithm

We explain our labeling algorithm (i.e., an indexing algorithm for the 2-hop cover
framework) in two steps. We start with the following naive method, and then we
introduce pruning to the method.

4.1.1 Naive Landmark Labeling

Our naive landmark labeling algorithm conducts a BFS from each vertex and
store distances between all pairs as an index. Though this method is too obvious
and inefficient, for the exposition of the next method, we explain the details.

Let V = {v1, v2, . . . , vn}. We start with an empty index L0, where L0(u) =
∅ for every u ∈ V . Suppose we conduct BFSs from vertices in the order of
v1, v2, . . . , vn. After the k-th BFS from a vertex vk, we add distances from vk to
labels of reached vertices, that is, Lk(u) = Lk−1(u) ∪ {(vk, dG(vk, u))} for each
u ∈ V with dG(vk, u) 6=∞. We do not change labels for unreached vertices, that
is, Lk(u) = Lk−1(u) for every u ∈ V with dG(vk, u) =∞.

Ln is the final index. Obviously Query(s, t, Ln) = dG(s, t) for any pair of
vertices s and t, and therefore, Ln is a correct 2-hop cover for exact distance

33

Algorithm 4.1 Pruned BFS from vk ∈ V to create index L′
k.

1: procedure PrunedBFS(G, vk, L
′
k−1)

2: Q← a queue with only one element vk.
3: P [vk]← 0 and P [v]←∞ for all v ∈ V (G) \ {vk}.
4: L′

k[v]← L′
k−1[v] for all v ∈ V (G).

5: while Q is not empty do
6: Dequeue u from Q.
7: if Query(vk, u, L

′
k−1) ≤ P [u] then

8: continue
9: L′

k[u]← L′
k−1[u] ∪ {(vk, P [vk])}

10: for all w ∈ NG(v) s.t. P [w] =∞ do
11: P [w]← P [u] + 1.
12: Enqueue w onto Q.

13: return L′
k

queries. This is because, if s and t are reachable, then (s, 0) ∈ Ln(s) and
(s, dG(s, t)) ∈ Ln(t) for example.

This method can be considered as a variant of landmark-based approxi-
mate methods, which we mentioned in Section 3. The standard landmark-based
method can be regarded as a method that precomputes Ll instead of Ln and es-
timates distance between s and t by Query(s, t, Ll), where l� n is a parameter
expressing the number of landmarks.

4.1.2 Pruned Landmark Labeling

Then, we introduce pruning to the naive method. Similarly to the method above,
we conduct pruned BFSs from vertices in the order of v1, v2, . . . , vn. We start
with an empty index L′

0 and create an index L′
k from L′

k−1 using the information
obtained by the k-th pruned BFS from vertex vk.

We prune BFSs as follows. Suppose that we have an index L′
k−1 and we are

conducting a BFS from vk to create a new index L′
k. Suppose that we are visiting

a vertex u with distance δ. If Query(vk, u, L
′
k−1) ≤ δ, then we prune u, that is,

we do not add (vk, δ) to L′
k(u) (i.e. L

′
k(u) = L′

k−1(u)) and we do not traverse any
edge from vertex u. Otherwise, we set L′

k(u) = L′
k−1(u) ∪ {(vk, δ)} and traverse

all the edges from the vertex u as usual. As with the previous method, we also set
L′
k(u) = L′

k−1(u) for all vertices u ∈ V that were not visited in the k-th pruned
BFS. This algorithm, performing pruned BFSs, is described as Algorithm 4.1,
and the whole preprocessing algorithm is described as Algorithm 4.2.

Figure 4.1 shows examples of pruned BFSs. The first pruned BFS from
vertex 1 visits all the vertices (Figure 4.1a). During the next pruned BFS
from vertex 2 (Figure 4.1b), when we visit vertex 6, since Query(2, 6, L′

1) =
dG(2, 1) + dG(1, 6) = 3 = dG(2, 6), we prune vertex 6 and we do not traverse
edges from it. We also prune vertices 1 and 12. As the number of performed
BFSs increases, we can confirm that the search space gets smaller and smaller.

4.1.3 Proof of Correctness

In the following, we prove that this method computes a correct 2-hop cover index,
that is, Query(s, t, L′

n) = dG(s, t) for any pair of vertices s and t.

Theorem 4.1. For any 0 ≤ k ≤ n and for any pair of vertices s and t,
Query(s, t, L′

k) = Query(s, t, Lk).

34

1

46

7

8

9

1012

2

3

5

11

(a)

1

4

7

9

12

2

5

8

10

3

6

11

(b)

1

4

7

9

2
8

3

11

12

5
6

10

(c)

1

7

9

12

2
8

10

3

4

5
6

11

(d)

1

4

7

9

12

2
8

10

3

6
5

11

(e)

1

4

7

9

12

2
8

10

3

5
6

11

(f)

1

4

9

12

2
8

10

3

5
6

7

11

(g)

1

4

7

9

12

2

10

3

5
6

8

11

(h)

1

4

7

12

2
8

10

3

5
6

9

11

(i)

1

4

7

9

12

2
8

3

5
6

10

11

(j)

1

4

7

9

12

2
8

10

3

5
6

11

(k)

1

4

7

9

2
8

10

3

5
6

11

12

(l)

Figure 4.1: Examples of pruned BFSs. Yellow vertices denote the roots, blue
vertices denote those which we visited and labeled, red vertices denote those
which we visited but pruned, and gray vertices denote those which are already
used as roots.

35

Algorithm 4.2 Compute a 2-hop cover index by pruned BFS.

1: procedure Preprocess(G)
2: L′

0[v]← ∅ for all v ∈ V (G).
3: for k = 1, 2, . . . , n do
4: L′

k ← PrunedBFS(G, vk, L
′
k−1)

5: return L′
n

Proof. We prove the theorem by mathematical induction on k. Since L′
0 = L0,

it is true for k = 0. Now we assume it holds for 0, 1, . . . , k − 1 and prove it also
holds for k.

Let s, t be a pair of vertices. We assume these vertices are reachable in G, since
otherwise the answer∞ can be obviously obtained. Let j be the smallest number
such that (vj , δvjs) ∈ Lk(s), (vj , δvjt) ∈ Lk(t) and δvjs + δvjt = Query(s, t, Lk).
We prove that (vj , δvjs) and (vj , δvjt) are also included in L′

k(s) and L′
k(t). This

immediately leads to Query(s, t, L′
k) = Query(s, t, Lk). Due to the symmetry

between s and t, we prove (vj , δvjs) ∈ L′
k(s).

First, for any i < j, we prove by contradiction that vi 6∈ PG(vj , s). If we
assume vi ∈ PG(vj , s), from Inequality 2.1

Query(s, t, Lk) = dG(s, vj) + dG(vj , t)

= dG(s, vi) + dG(vi, vj) + dG(vj , t)

≥ dG(s, vi) + dG(vi, t).

Since (vi, dG(s, vi)) ∈ Lk(s) and (vi, dG(t, vi)) ∈ Lk(t), this contradicts to the
assumption of the minimality of j. Therefore, vi 6∈ PG(vj , s) holds for any i < j.

Now we prove that (vj , dG(vj , s)) ∈ L′
k(s). Actually, we prove a more general

fact: (vj , dG(vj , u)) ∈ L′
k(u) for all u ∈ PG(vj , s). Note that s ∈ PG(vj , s).

Suppose that we are conducting the j-th pruned BFS from vj to create Lj . Let
u ∈ PG(vj , s). Since PG(vj , u) ⊆ PG(vj , s) and vi 6∈ PG(vj , s) for any i < j, we
have vi 6∈ PG(vj , u) for any i < j. Therefore, Query(vj , u, L

′
j−1) > dG(vj , u)

holds. Thus, we visit all vertices u ∈ PG(vj , s) without pruning, and it follows
that (vj , dG(vj , u)) ∈ L′

j(u) ⊆ L′
k(u).

As a corollary, our method is proved to be an exact distance querying method
by instantiating the theorem with k = n.

Corollary 4.1. For any pair of vertices s and t,

Query(s, t, L′
n) = dG(s, t).

4.2 Vertex Ordering Strategies

In the algorithm description above, we conducted pruned BFSs from vertices in
the order of v1, v2, . . . , vn. We can freely choose the order, and moreover it turns
out that the order is crucial for the performance of this method as we will see in
the experimental results presented in Section 5.2.3.

To decide the order of vertices, we should select central vertices first in the
sense that many shortest paths pass through these vertices. Since we would like
to prune later BFSs as much as possible, we want to cover larger part of pairs of
vertices by earlier BFSs. That is, the earlier labels should offer correct distances
for as many pairs of vertices as possible, and therefore the earlier vertices should
be those who many shortest paths passes through.

36

This problem is quite similar to the problem of selecting good landmarks for
landmark-based approximate methods, which is discussed well in [PBCG09]. In
that problem, we also want to select good landmarks so that many shortest path
passes through these vertices or nearby vertices.

This part of our algorithm highly depends on the structures of graphs. There-
fore, we leave this part until we consider concrete problem settings. In fact, on
networks with skewed degree distribution (e.g., complex networks), simple strate-
gies work surprisingly well, as we will see in Section 5.2.3. On the other hand, for
road networks, we need different strategies, as the degree gives little information
about each vertex on these networks.

4.3 Theoretical Properties

4.3.1 Minimality

Theorem 4.2. Let L′
n be the index defined in Section 4.1.2. L′

n is minimal in
the sense that, for any vertex v and for any pair (u, δuv) ∈ L′

n(v), there is a pair
of vertices (s, t) such that, if we remove (u, δuv) from L′

n(v), we cannot answer
the correct distance between s and t.

Proof. Let vi ∈ V and (vj , δvjvi) ∈ L′
n(vi). This implies j < i. We show that

if we remove (vj , δvjvi) from L′
n(vi) then we cannot answer the correct distance

between vi and vj . We claim that, for any k 6= j, either (i) (vk, δvkvi) 6∈ L′
n(vi)

or (vk, δvkvj) 6∈ L′
n(vj) holds, or (ii) dG(vi, vk) + dG(vk, vj) > dG(vi, vj) holds.

Suppose k < j and assume that (ii) does not hold. Then, (i) must hold since
otherwise the j-th BFS should have pruned vertex vi and (vj , δvjvi) 6∈ L′

n(vi).
Suppose k > j and assume that (ii) does not hold. Then, vk ∈ PG(vi, vj) and
therefore (vj , δvjvk) ∈ L′

j(vk), thus the k-th BFS prunes vertex vj , leading to
(vk, δvkvj) 6∈ L′

n(vj).

4.3.2 Canonicality of Labels

As we mentioned in Chapter 3, our labels are hierarchical (Definition 3.2).

Lemma 4.1 ([DGPW14]). The labels computed by the pruned landmark labeling
algorithm are canonical.

Among hierarchical 2-hop indices that respect a vertex ordering, the canon-
ical labeling with respect to the vertex ordering is the only one minimal index
(and thus the index is also minimum) [ADGW12]. Therefore, together with the
discussion on minimality, our labels are also canonical with respect to the vertex
ordering.

4.3.3 Exploiting Existence of Highly Central Vertices

Then, we compare our method with landmark-based methods to show that our
method also can exploit the existence of highly central vertices. We consider the
standard landmark-based method [PBCG09,VFD+07], which do not use any path
heuristics. As we stated in Chapter 3, by selecting central vertices as landmarks, it
attains remarkable average precision for real-world networks. From the following
theorem, we can observe that our method is efficient for networks whose distance
can be answered by landmark-based methods with such high precision, and our
method also can exploit the existence of these central vertices.

37

Theorem 4.3. If we assume that the standard landmark-based approximate
method can answer correct distances to (1− ε)n2 pairs (out of n2 pairs) using k
landmarks, then the pruned landmark labeling method gives an index with average
label size O(k + εn).

Proof. After conducting pruned BFSs from the k landmark vertices first, at most
εn2 pairs are added to the index in total, since we never add pairs whose distance
can be answered from current labels.

4.3.4 Exploiting Small Treewidth

Finally, we show a theoretical evidence that our method can also exploit tree-like
fringes efficiently. As we explained in Chapter 3, methods based on tree decompo-
sitions were proposed for distance queries [Wei10,ASK12]. Both of them extend
methods which work efficiently for graphs of small treewidth, and they exploit
low treewidth of fringes in real-world networks by tree decompositions. Inter-
estingly, though we do not use tree decompositions explicitly, we can prove that
our method can efficiently process graphs of small treewidth. Thus, our method
implicitly exploits this property of real-world networks too. For definitions of
treewidth and tree decompositions, see Chapter 2.

Theorem 4.4. Let w be the treewidth of G. There is an order of vertices with
which the pruned landmark labeling method takes O(wm log n+ w2n log2 n) time
for preprocessing, stores an index with O(wn log n) space, and answers each query
in O(w log n) time.

Proof. We consider the centroid decomposition [Jor69] of the tree decomposition.
First we conduct pruned BFSs from all the vertices in a centroid bag. Then, later
pruned BFSs never go beyond the bag. Therefore, we can consider as we divided
the tree decomposition into disjoint components, each having at most half of the
bags. We recursively repeat this procedure. The number of recurrences is at most
O(log n). Since we add at most w pairs to each vertex at each depth of recursion,
the number of pairs in each label is O(w log n). At each depth of recursion, the
total time consumed by pruned BFSs from the current components is O(wm +
w2n log n), where O(wm) is the time for traversing edges and O(w2n log n) is the
time for pruning tests.

4.4 Common Techniques for Efficient Implementation

4.4.1 Preprocessing

Index: First, in the description above, we treated L′
k−1 and L′

k separately and
explained as if we copy L′

k−1 to L′
k for simplicity of explanation. However, this

copy can be easily avoided by keeping only one index and adding labels to it after
each pruned BFS.

Initialization: Another important note is to avoid O(n) time initialization for
each pruned BFS. The reason why this method is efficient is that the search
space of pruned BFSs gets much more smaller than the whole graph. However
if we spend O(n) time for initialization, it would be the bottleneck. What we
want to do in the initialization is to set all values in the array storing tentative
distances as∞ (Line 3). We can avoid O(n) time initialization as follows. Before
we conduct the first pruned BFS, we set all values in the array P as ∞. (This
takes O(n) time but we do this only once.) Then, during each pruned BFS, we

38

store all vertices we visited, and after each pruned BFS, we set P [v] as ∞ for all
each vertex v we have visited.

Arrays: For the array storing tentative distances, it is better to use 8-bit integers.
Since networks of our interest are small-world networks, 8-bit integers are enough
to represent distances. Using 8-bit integers, the array fits into low-level cache
memories of recent computers, resulting in the speed up by reducing cache misses.

Querying: To evaluate queries for pruning (Line 7), it is faster to use an algo-
rithm different from the normal one since we can exploit the fact here that we
issue many queries whose one endpoint is always vk. Before starting the k-th
pruned BFS from vk, we prepare an array T of length n initialized with ∞ and
set T [w] = δwvk for all (w, δwvk) ∈ L′

k−1(vk). To evaluate Query(vk, u, L
′
k−1), for

all (w, δwu) ∈ L′
k−1(u), we compute δwu+T [w] and return the minimum. Though

normal querying algorithm takes O(
∣∣L′

k−1(vk)
∣∣+ ∣∣L′

k−1(u)
∣∣) time, this algorithm

runs in O(
∣∣L′

k−1(u)
∣∣) time. As Line 7 is the bottleneck of the algorithm, this

technique speeds up preprocessing by about twice. Note that T should be rep-
resented by 8-bit integers as the same reason described above, and O(n) time
initialization for array T should be avoided in the same way for array P .

Prefetching: Unfortunately, we cannot fit the index and the adjacency lists into
the cache memory for large-scale networks. However, we can manually prefetch
them to reduce the cache misses, since vertices which we will access soon are in
the queue. Manual prefetching speeds up preprocessing by about 20%.

Thread-Level Parallelism: As with parallel BFS algorithms [APPB10], the
pruned BFS algorithm can be also parallelized. However, for simple experimental
analysis and fair comparison to previous methods, we did not parallelize our
implementation in the experiments.

Sorting Labels: When applying merge-join-like algorithms to answer queries,
pairs in labels need to be sorted by vertices. However, actually we do not need
to sort explicitly by storing ranks of vertices instead of vertices. That is, when
adding a pair (u, δ) in the i-th pruned BFS from vertex u, we add a pair (i, δ)
instead. Then, since pairs are added from vertices with lower rank to those with
higher rank, all the labels are automatically sorted.

4.4.2 Querying

Sentinel: We add a dummy entry, (n,∞), to the label L(v) for each v ∈ V . This
dummy entry ensures that we find the same vertices, n, in the end when scanning
two labels. Thus we can avoid to separately test whether we have scanned till
the end.

Arrays: For each label L(v), it is faster to store the array for vertices and
the array for distances separately since distances are only used when vertices
match [ADGW11]. We also align arrays to cache lines.

4.5 Incremental Update Algorithm

Finally, we present our algorithm that incrementally updates the current index
to reflect graph changes. The idea behind our efficient update algorithm is to
carefully resume and stop pruned BFSs.

39

4.5.1 Supported Updates

As we mentioned in Chapter 1, we focus on two kinds of graph updates: vertex
additions and edge additions. We do not consider removal. This is due to the
following reasons.

1. As we can see that no previous methods support any incremental updates,
supporting only additions is already quite technically challenging.

2. Supporting removals is even much harder and it seems impossible to effi-
ciently support removals without making big compromise on performance
such as index size and query time.

3. Removals never happen in certain kinds of real-world dynamic networks
such as interaction networks in social media and instant messaging ser-
vices, co-author networks, co-starring networks, e-mail networks, telephone
networks, and so on.

4. In other kinds of real dynamic networks, still, additions are much more
frequent than removals [Mis09].

5. For these reasons, it is quite common to ignore removals when analyzing
and modeling dynamic networks [BA99, LKF07,Mis09, VMCG09]. As an
evidence, widely used public datasets of time-evolving graphs do not contain
any removal12.

Please note that we can assume the newly inserted vertex is isolated since
otherwise we can process it by first inserting an isolated vertex and then inserting
edges incident to it. Similarly, if multiple edges are inserted simultaneously, we
process them one by one. Under the 2-hop framework, inserting a new isolated
vertex v can be easily done by setting a new empty label L(v) = ∅. Thus, in
what follows, we focus on edge additions.

Since we only consider vertex and edge additions, for any τ > 0, V (Gτ−1) ⊆
V (Gτ) and E(Gτ−1) ⊆ E(Gτ). As we only consider vertex and edge additions,
the following lemma is a key for designing algorithms.

Lemma 4.2. Let Gτ , Gτ ′ be graphs where E(Gτ) ⊆ E(Gτ ′). For any pairs of
vertices s and t, dτ (s, t) ≥ dτ ′(s, t).

That is, for any pairs of vertices, distance between them never increases by
adding vertices or edges.

Proof. The path that was the shortest path in Gτ is also present in Gτ ′ .

Please note that this lemma does not tell that distance on a dynamic graph
without removals is uninteresting. For example, diameter or average distance do
not necessarily always decrease because of vertex additions.

Suppose that we are maintaining index M for dynamic graph G and we want
to update M to reflect a newly inserted edge (a, b) that was previously absent.
We refer to the old graph without the new edge as Gτ−1 and the new graph with
the new edge as Gτ . Similarly, we refer to the old and new index as Mτ−1 and
Mτ , respectively.

From Lemma 4.2, it is sound to keep outdated distances in the index since
we never underestimate distances because of them. Therefore in our method, we

1http://socialnetworks.mpi-sws.org/
2http://konect.uni-koblenz.de/

40

do not remove outdated label entries since detecting them is too costly. We only
add new label entries or rewrite distances of existing label entries. Under this
strategy, the minimality of the index Mτ as a whole is broken after updates, but
we will later see that the set of newly added label entries is minimal to answer
correct distances in Gτ . Moreover, we will see that the increase of label sizes is
satisfyingly small in practice.

4.5.2 Update Algorithm for Naive Labeling

We first describe an update algorithm for the naive landmark labeling method.
The obvious way is to conduct full BFSs from every vertex again and update
labels, which is not different from the indexing algorithm at all. To update
labels more efficiently, let us reduce the search space of each BFS. The two key
insights here are the following. First, if the distance from vertex vk to vertex
u has changed, then all the new shortest paths between them pass through the
new edge (a, b). Second, suppose the shortest path P between vk and u 6= a, b
has changed. Then the distance between vk and w has changed, where w is the
penultimate vertex in P .

We can assume dτ−1(vk, a) ≤ dτ−1(vk, b) without loss of generality. Based on
these facts, for every vk, it suffices to resume the BFS from b originally rooted
at vk and stop at unchanged vertices. That is, instead of inserting (vk, 0) to the
initial queue, we insert (b, dτ−1(vk, a)+1) to the initial queue, which corresponds
to the position after passing through the new edge (a, b), and we do not traverse
edges from vertex u if δ ≥ dτ−1(vk, u), where δ is the tentative distance for u
drawn from the queue. Figure 4.2 illustrates an example.

0

1

1

4

5

2 3

2 4

6

65

3

(a) A graph

0

1

1

4

4

2 3

2 3

4

32

3

(b) The graph after inserting a new edge (drawn in
blue)

Figure 4.2: A running example for the update algorithm. The green vertex is the
root, and the distance to the root is written in each vertex.

4.5.3 Update Algorithm for Pruned Labeling

Now we explain our update algorithm for the pruned landmark labeling. We
introduce pruning to the previous update algorithm. Let s, t be vertices and k

41

Algorithm 4.3 Update index M for newly added edge (a, b)

1: procedure InsertEdge(G, a, b, M)
2: for all vk ∈M(a) ∪M(b) from lower k do
3: ResumePBFS(G, vk, b, d(vk, a) + 1, M) if vk ∈M [a]
4: ResumePBFS(G, vk, a, d(vk, b) + 1, M) if vk ∈M [b]

5: procedure ResumePBFS(G, vk, u, δru, M)
6: Q← a queue with only one element (u, δru).
7: while Q is not empty do
8: Dequeue (v, δ) from Q.
9: if PrefixalQuery(vk, v, M , k) ≤ δ then

10: continue
11: M [v]←M [v] ∪ {(vk, δ)}
12: for all w ∈ N(v) do
13: Enqueue (w, δ + 1) onto Q.

be an integer. We define a new function PrefixalQuery as follows,

PrefixalQuery(s, t,M, k) =

min {δs + δt | (vi, δs) ∈M(s), (vi, δt) ∈M(t), i ≤ k} .

That is, PrefixalQuery(s, t,M, k) is the answer to the query between vertices
s and t computed from the index M only using distances to vertices whose IDs
are at most k. We define PrefixalQuery(s, t,M, k) = ∞ if M(s) and M(t)
do not share any vertex whose ID is at most k. Using this function, suppose we
are conducting a resumed BFS originally rooted at vk and visiting vertex u with
distance δ, we prune u if PrefixalQuery(vk, u,M, k) ≤ δ.

However, one crucial question is left: for which roots do we need to resume
BFSs? The obvious solution is resuming BFSs no matter what their roots are as
with the previous algorithm, but it is too inefficient since it takes at least Ω(|V |)
time. Interestingly, the answer is exactly what we have in M(a) and M(b). That
is, it suffices to conduct resumed BFSs originally rooted at vk if vk ∈M(a)∪M(b).
This is because, if vk 6∈M(a)∪M(b), both a and b are pruned or unreached during
previous (resumed) BFSs rooted at vk, and since the shortest path between vk
and them has not changed from the last snapshot, the situation does not change
at all. The total algorithm is described as Algorithm 4.3.

Time complexity To roughly estimate the time complexity, we assume
|L(v)| = O(l) and the number of vertices visited during each resumed BFS is
O(s), where l and s are some integers. Then, since we conduct resumed BFSs
O(l) times and each pruning test takes O(l) time, in total, each update can be
done in O(l2s) time. In our experiments, l was around hundreds and s was around
tens on average.

4.5.4 Proof of Correctness

We prove the correctness of the proposed incremental update algorithm. For
vertices s, t and 0 ≤ k ≤ n, we define the restricted distance between s and t with
respect to k as d′(s, t, k) = mini≤k {d(s, vi) + d(vi, t)}. We define d′(s, t, k) = ∞
if k = 0 or vi is unreachable from s or t for all i ≤ k. As with dτ , we denote the
restricted distance at time τ by d′τ (s, t, k). The following notion of correctness is
important.

42

Definition 4.1 (Prefixal Correctness). Let M be a 2-hop cover index for graph
G. Index M is prefixally correct if PrefixalQuery(s, t,M, k) = d′(s, t, k) for
any s, t ∈ V and 0 ≤ k ≤ n.

Note that prefixal correctness is stronger than normal correctness. Due to
Theorem 4.1, the initial index constructed by the full pruned landmark labeling
algorithm satisfies prefixal correctness. In what follows, we prove that prefixal
correctness of an index is maintained by the incremental update algorithm.

In what follows, let Mτ−1 be a prefixally correct index for graph Gτ−1, let Gτ

be the graph created by inserting edge (a, b) 6∈ E(Gτ−1) to Gτ−1, and Mτ be the
index updated by the Algorithm 4.3 from Mτ−1 for the edge addition.

Lemma 4.3. For any pair of vertices s and t and 0 < k ≤ n, we have
PrefixalQuery(s, t,Mτ , k − 1) = d′τ (s, t, k − 1). For any vertex u and 0 <
k ≤ n, if dτ (vk, u) < dτ−1(vk, u) and dτ (vk, u) < d′τ (vk, u, k − 1), then we have
(vk, dτ (vk, u)) ∈Mτ (u).

Proof. Since dτ (vk, u) < dτ−1(vk, u), all the shortest paths from vk to u in the new
snapshot Gτ pass through the new edge (a, b). We assume dτ (vk, a) < dτ (vk, b)
without loss of generality, and suppose that one of the shortest paths is of the
form (vk, . . . , a, b = w0, w1, w2, . . . , u = wl). We can observe that, not only u
but also for any wi, dτ (vk, wi) < dτ−1(vk, wi) holds. Moreover, since dτ (vk, u) <
d′τ (vk, u, k− 1), none of the shortest paths between vk and u in Gτ goes through
the vertex vj for any j < k. This also holds for any wi, that is, none of the
shortest paths between vk and wi in Gτ passes through vj for any j < k, and
thus dτ (vk, wi) < d′τ (vk, wi, k − 1).

During the resumed BFS originally rooted at vk, we have
PrefixalQuery(vk, wi,Mτ , k) ≥ min{d′τ (vk, wi, k − 1), dτ−1(vk, wi)} for
any wi. Therefore, PrefixalQuery(vk, wi,Mτ , k) ≥ dτ (vk, wi), and wi is not
pruned. Thus, the BFS reaches vertex u with the correct distance dτ (vk, u), and
pair (vk, dτ (vk, u)) is newly added to the label Mτ (u).

Theorem 4.5. Mτ is a prefixally correct index for Gτ .

Proof. We prove the prefixal correctness of Mτ by mathematical induction on
k. For k = 0, it is true as, for any pair of vertices s and t with s 6= t,
PrefixalQuery(s, t,Mτ , 0) = d′(s, t, 0) = ∞. Now we assume k > 0 and
PrefixalQuery(s, t,Mτ , k− 1) = d′(s, t, k− 1) for any pairs of vertices s and t,
and prove PrefixalQuery(s, t,Mτ , k) = d′(s, t, k) for any pairs of vertices s, t.

Let δ′ = d′τ (s, t, k). If δ
′ = d′τ (s, t, k−1), then we have nothing to show due to

the assumption of the mathematical induction. Otherwise, since δ′ < d′τ (s, t, k−
1), δ′ = dτ (s, vk) + dτ (vk, t). Therefore, it suffices to show that (vk, dτ (vk, s)) ∈
Mτ (s) and (vk, dτ (vk, t)) ∈ Mτ (t). Due to the symmetry between s and t, we
only show (vk, dτ (vk, s)) ∈Mτ (s).

First, we consider the case dτ (vk, s) = dτ−1(vk, s). From d′τ (s, t, k) =
dτ (s, vk) + dτ (vk, t) < d′τ (s, t, k − 1), there is no vertex vi with i ≤ k − 1 on
any shortest path between s and vk in Gτ . This is the case in Gτ−1 since
dτ (vk, s) = dτ−1(vk, s). It follows that d

′
τ−1(vk, s, k − 1) > d′τ−1(vk, s, k). Thus if

(vk, dτ (vk, s)) 6∈Mτ−1(s), then PrefixalQuery(vk, s,Mτ−1, k) = d′τ−1(vk, s, k−
1) > d′τ−1(vk, s, k), which contradicts to the prefixal correctness of Mτ−1. There-
fore, (vk, dτ (vk, s)) ∈Mτ−1(s) ⊆Mτ (s) holds.

Otherwise, we can assume dτ (vk, s) < dτ−1(vk, s). As δ′ < d′τ (s, t, k−1), none
of the shortest paths from vk to s goes through the vertex vi for any i < k, and
thus dτ (vk, s) < d′τ (vk, s, k − 1). From Lemma 4.3, (vk, dτ (vk, s)) ∈Mτ (s).

43

Corollary 4.2. Let M1 be the index constructed by the offline indexing algorithm
for graph G1. For 2 ≤ i ≤ τ , let Mi be the index updated by Algorithm 4.3 from
Mi−1 for the edge addition to make Gi from Gi−1. Then, the index Mτ is a
correct 2-hop index for Gτ .

Moreover, the sufficient condition for a pair to be added shown in Lemma 4.3
is actually also a necessary condition. Therefore, the minimality of newly added
pairs is derived.

Theorem 4.6. The label entries added by the update algorithm are minimal.
That is, for any vertex u and any pair in Mτ (u)\Mτ−1(u), if we remove the pair
from Mτ (u), then Mτ becomes an incorrect 2-hop index for Gτ .

4.5.5 Efficient Implementation

Unnecessary BFSs: When entries (r, δra) and (r, δrb) are contained in both
labels M(a) and M(b), we actually do not need to resume the BFS twice from
a and b. Instead, we compare the distance in these labels. We can assume
δra ≤ δrb without loss of generality. If δrb ≤ δra + 1, then the distance d(r, b)
has not changed, and thus nothing happened. Therefore, we need to do nothing.
Otherwise, we resume the BFS only from b with distance δra + 1.

Rewriting Labels: Suppose we are conducting a BFS originally rooted at r
and visiting vertex v with distance δ. If (r, δrv) ∈ M(v) where δrv > δ, instead
of adding a new label entry (r, δ), we rewrite the distance in the pair above as δ.

Visited Bitset: To avoid evaluating the same prefixal query on a pruned vertex
more than once, we use a bitset to manage visited vertices.

44

Chapter 5

Bit-parallel Labeling for Unweighted

Complex Networks

As we explained in Chapter 1, distance queries on complex networks are used in
important applications such as network-aware searching and network analysis. In
this chapter, we focus on distance queries on unweighted complex networks such
as social networks and web graphs. Specifically, we propose the bit-parallel label-
ing technique tailored for these networks, and present the experimental results
on unweighted complex networks.

5.1 Bit-parallel Labeling Technique

To further speed up both preprocessing and querying, we propose an optimizing
method which exploits bit-level parallelism. Bit-parallel methods (also known as
broadword algorithms) are those that perform different calculations on different
bits in the same word to exploit the fact that computers can perform bitwise
operations on a word at once. The word length is commonly 32 or 64 in computers
of the day.

In the following, we denote the number of bits in a computer word as b and
assume bitwise operations on bit vectors of length b can be done in O(1) time.
We propose an algorithm to conduct BFSs and compute labels from b+ 1 roots
simultaneously in O(m) time. Moreover, we also propose a method to answer
distance queries for any pair of vertices via one of these b + 1 vertices in O(1)
time.

5.1.1 Bit-parallel Labels

To describe the preprocessing algorithm and the querying algorithm, we first
define what we store in the index. As we explain in the next subsection, we
conduct bit-parallel BFSs from a vertex r and a subset of its neighbors Sr ⊆
NG(r) with size at most b. We define

Si
r(v) = {u ∈ Sr | dG(u, v)− dG(r, v) = i} .

The key insight of this bit-parallel labeling scheme is as follows (Figure 5.1).
Since vertices in Sr are neighbors of r, for any vertex u ∈ Sr and any vertex
v ∈ V , |dG(u, v)− dG(r, v)| ≤ 1. Therefore, for each v ∈ V , Sr can be partitioned
into S−1

r (v), S0
r (v), and S+1

r (v). That is, S−1
r (v) ∪ S0

r (v) ∪ S+1
r (v) = Sr.

We compute bit-parallel labels and store them in the index. For each vertex
v ∈ V , we precompute a bit-parallel label denoted as LBP(v). LBP(v) is a set of
quadruples (u, δuv, S

−1
u (v), S0

u(v)), where u ∈ V is a vertex, δuv = dG(u, v) and
Si
u(v) ⊆ Su is defined above. We store S−1

u (v) and S0
u(v) by bit vectors of b bits.

45

𝛿 + 1

𝛿

𝛿 − 1 𝑢6

𝑣

𝑟

𝑢7 𝑢8

𝑢4 𝑢5

𝑢1 𝑢2 𝑢3

𝑢1~𝑢 are neighbors of 𝑣

𝑟

𝑣

𝑑 𝑣, 𝑟 = 𝛿

𝑑 𝑢𝑖 , 𝑟 =
• 𝛿 − 1,
• 𝛿, or

• 𝛿 + 1

Figure 5.1: The key insight of the bit-parallel labeling scheme.

Note that S+1
u (v) can be obtained as Su \ (S−1

u (v) ∪ S0
u(v)), but actually we do

not use S+1
u (v) in the querying algorithm.

In order to describe subsets of Sr by bit vectors of b bits, we assign an unique
number between one and |Sr| to each vertex in Sr, and express presence of the
i-th vertex by setting the i-th bit.

5.1.2 Bit-parallel BFS

We once put aside the pruning discussed in Section 4.1.2 and we make a bit-
parallel version of the naive labeling method discussed in Section 4.1.1. We
introduce pruning later in Section 5.1.4.

Let r ∈ V be a vertex and Sr ⊆ NG(r) be a subset of neighbors of r with
size at most b. We explain an algorithm to compute dG(r, v), S

−1
r (v) and S0

r (v)
for all v ∈ V that are reachable from {r} ∪ Sr. The algorithm is described as
Algorithm 5.1. Basically we conduct a BFS from r computing sets S−1 and S0.

Let v be a vertex. Suppose that we have already computed S−1
r (w) for all w

such that dG(r, w) < dG(r, v). We can compute S−1
r (v) as follows,

S−1
r (v) =

{
u ∈ Sr | u ∈ S−1

r (w), w ∈ NG(v), dG(r, w) = dG(r, v)− 1
}
,

since if u is in S−1
r (v), dG(u, v) = dG(r, v) − 1 and therefore u is on one of the

shortest paths from r to v. Similarly, assuming that we have already computed
S−1
r (w) for all w such that dG(r, w) ≤ dG(r, v) and S0

r (w) for all w such that
dG(r, w) < dG(r, v), we can compute S0

r (v) as follows,

S0(v) =
{
u ∈ Sr | u ∈ S0

r (w), w ∈ NG(v), dG(r, w) = dG(r, v)− 1
}

∪
{
u ∈ Sr | u ∈ S−1

r (w), w ∈ NG(v), dG(r, w) = dG(r, v)
}
.

Therefore, along with the breadth-first search, we can compute S−1
r and S0

r

alternately by dynamic programming in the increasing order of distance from r.

46

Algorithm 5.1 Bit-parallel BFS from r ∈ V and Sr ⊆ NG(r).

1: procedure Bp-BFS(G, r, Sr)
2: (P [v], S−1

r [v], S0
r [v])← (∞, ∅, ∅) for all v ∈ V

3: (P [r], S−1
r [r], S0

r [r])← (0, ∅, ∅)
4: (P [v], S−1

r [v], S0
r [v])← (1, {v} , ∅) for all v ∈ Sr

5: Q0, Q1 ← an empty queue
6: Enqueue r onto Q0

7: Enqueue v onto Q1 for all v ∈ Sr

8: while Q0 is not empty do
9: E0 ← ∅ and E1 ← ∅

10: while Q0 is not empty do
11: Dequeue v from Q0.
12: for all u ∈ NG(v) do
13: if P [u] =∞∨ P [u] = P [v] + 1 then
14: E1 ← E1 ∪ {(v, u)}
15: if P [u] =∞ then
16: P [u]← P [v] + 1
17: Enqueue u onto Q1.

18: else if P [u] = P [v] then
19: E0 ← E0 ∪ {(v, u)}
20: for all (v, u) ∈ E0 do
21: S0

r [u]← S0
r [u] ∪ S−1

r [v]

22: for all (v, u) ∈ E1 do
23: S−1

r [u]← S−1
r [u] ∪ S−1

r [v]
24: S0

r [u]← S0
r [u] ∪ S0

r [v]

25: Q0 ← Q1 and Q1 ← ∅
26: return (P, S−1

r , S0
r)

That is, first we compute S−1
r (v) for all v ∈ V such that dG(r, v) = 1, next we

compute S0
r (v) for all v ∈ V such that dG(r, v) = 1, then we compute S−1

r (v) for
all v ∈ V such that dG(r, v) = 2, next we compute S0

r (v) for all v ∈ V such that
dG(r, v) = 2, and so on. Note that operations on sets can be done in O(1) time
by representing sets by bit vectors and using bitwise operations.

5.1.3 Bit-parallel Distance Querying

To process a distance query between a pair of vertices s and t, as with nor-
mal labels, we scan bit-parallel labels LBP(s) and LBP(t). For each pair of
quadruples that share the same root vertex, (r, δrs, S

−1
r (s), S0

r (s)) ∈ LBP(s)
and (r, δrt, S

−1
r (t), S0

r (t)) ∈ LBP(t), from these quadruples we compute dis-
tance between s and t via one of vertices in {r} ∪ Sr. That is, we compute
δ = min

u∈{r}∪Sr

{dG(s, u) + dG(u, t)}. A naive way is to compute dG(s, u) and

dG(u, t) for all u and take the minimum, which takes O(|Sr|) time. However,
we propose an algorithm to compute δ in O(1) time by exploiting bitwise opera-
tions.

Let δ̃ = dG(s, r) + dG(r, t). Since δ̃ is an upper bound on δ and dG(s, u) ≥
dG(s, r)− 1, dG(u, t) ≥ dG(r, t)− 1 for all u ∈ Sr, δ̃ − 2 ≤ δ ≤ δ̃. Therefore, what
we have to do is to judge whether the distance δ is δ̃ − 2, δ̃ − 1 or δ̃.

This can be done as follows. If S−1
r (s)∩S−1

r (t) 6= ∅, then δ = δ̃−2. Otherwise,

47

if S0
r (s) ∩ S−1

r (t) 6= ∅ or S−1
r (s) ∩ S0

r (t) 6= ∅, then δ = δ̃ − 1, and otherwise δ = δ̃.
Note that computing intersections of sets can be done by bitwise AND operations.
Therefore, all these operations can be done in O(1) time. Thus, the distance
δ can be computed in O(1) time, and, in total, we can answer each query in
O(|LBP(s)|+ |LBP(t)|) time.

5.1.4 Introducing to Pruned Labeling

Now we discuss how to combine this bit-parallel labeling methods and the pruned
labeling method discussed in Section 4.1.2. We propose a simple and efficient way
as follows. First we conduct bit-parallel BFSs without pruning for t times, where
t is a parameter. Then, we conduct pruned BFSs using both the bit-parallel
labels and normal labels for pruning.

This method exploits different strength of the pruned labeling method and
the bit-parallel labeling method. In the beginning, pruning does not work much
and pruned BFSs visits large portion of the vertices. Therefore, instead of pruned
labeling, we use bit-parallel labeling without pruning to efficiently cover a larger
part of pairs of vertices. Skipping the overhead of vain pruning tests also con-
tributes the speed-up.

As roots and neighbor sets for bit-parallel BFSs, we propose to greedily use
vertices with the highest priority: we select a vertex with the highest priority
as the root r among remaining vertices, and we select up to b vertices with the
highest priority as the set Sr among remaining neighbors.

As we see in the experimental results in Section 5.2, this method improves
the preprocessing time, the index size and the query time. Moreover, as we also
confirm in the experiments, if we do not set too large value as t, at least it does
not spoil the performance. Therefore we do not have to be too serious about
finding a proper value for t, and our method is still easy to use.

5.1.5 Online Update

As with static pruned landmark labeling, the dynamic method can be combined
with bit-parallel labeling to further improve the performance. Bit-parallel labels
can be also updated incrementally. For each root r, we resume the BFS from
one of the endpoints of the new edge. The main difference is that, for any visited
vertex v, even if d(r, v) has not changed, we push v to the queue if the associated
bitsets are changed.

5.2 Experiments

5.2.1 Setup

Environment

We conducted experiments on a Linux server with Intel Xeon X5670 (2.93 GHz)
and 48GB of main memory. The proposed method was implemented in C++.
We used 8-bit integers to represent distances, 32-bit integers to represent vertices,
and 64-bit integers to conduct bit-parallel BFSs. For vertex ordering, we mainly
use the Degree strategy and we do not specify the vertex ordering strategy
unless we use other strategies. For query time, we generally report the average
time for 1,000,000 random queries.

48

Static Graph Datasets

To show the efficiency and robustness of our method, we conducted experiments
on various real-world networks: five social networks, three web graphs and three
computer networks. We treated all the graphs as undirected, unweighted graphs.
Basically we used five smaller datasets to compare the performance between the
proposed method and previous methods and to analyze the behavior of these
methods, and used larger six datasets to show the scalability of the proposed
method. The types of networks, the numbers of vertices and edges are presented
in Table 5.1. The detailed description of each network is as follows.

Table 5.1: Static complex network datasets

Dataset Network |V | |E|
Gnutella Computer 63 K 148 K
Epinions Social 76 K 509 K
Slashdot Social 82 K 948 K
Notredame Web 326 K 1.5 M
WikiTalk Social 2.4 M 4.7 M
Skitter Computer 1.7 M 11 M
Indo Web 1.4 M 17 M
MetroSec Computer 2.3 M 22 M
Flickr Social 1.8 M 23 M
Hollywood Social 1.1 M 114 M
Indochina Web 7.4 M 194 M

Gnutella: This is a graph created from a snapshot of the Gnutella P2P network
in August 2002 [RIF02].

Epinions: This graph is the on-line social network in Epinions
(www.epinions.com), where each vertex represents a user and each edge
represents a trust relationship [RAD03].

Slashdot: This is the on-line social network in Slashdot (slashdot.org) ob-
tained in February 2009. Vertices correspond to users and edges correspond to
friend/foe links between the users [LLDM09].

NotreDame: This is a web graph between pages from University of Notre Dame
(domain nd.edu) collected in 1999 [AJB99].

WikiTalk: This is the on-line social network among editors of Wikipedia
(www.wikipedia.org) created by communication on edits on talk pages by till
January 2008 [LHK10b,LHK10a].

Skitter: This is an Internet topology graph created from traceroutes run in 2005
by Skitter [LKF05].

Indo: This is a web graph between pages in .in domain crawled in 2004 [BV04,
BRSV11].

MetroSec: This is a graph constructed from Internet traffic captured by Met-
roSec. Each vertex represents a computer and two vertices are linked if they
appear in a packet as sender and destination [MLH09].

Flickr: This is the on-line social network in a photo-sharing site, Flickr
(www.flickr.com) [MMG+07].

Indochina: This is a web graph of web pages in the country domains of Indochina
countries, crawled in 2004 [BV04,BRSV11].

49

Hollywood: This is a social network of movie actors. Two actors are linked if
they appeared in a movie together by 2009 [BV04,BRSV11].

First, we investigated the degree distribution of the networks, since degrees
of vertices play important roles in our method when we use Degree strategy
for vertex ordering. Figures 5.2a and 5.2b are the log-log plot of degree com-
plementary cumulative distribution. As expected, we can confirm that all these
networks generally exhibit power-law degree distributions.

Then, we also examined the distribution of distances. Figures 5.2c and 5.2d
show distribution of distances for 1,000,000 random pairs of vertices. As we can
observe from these figures, these networks are also small-world networks, in the
sense that the average distance is very small.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
u

m
u

la
ti
v
e

 F
re

q
u

e
n

c
y

Degree

Gnutella
Epinions
Slashdot

NotreDame
WikiTalk

(a) Degree distribution of smaller five
datasets.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

C
u

m
u

la
ti
v
e

 F
re

q
u

e
n

c
y

Degree

Skitter
Indo

MetroSec
Flickr

Hollywood
Indochina

(b) Degree distribution of larger six
datasets.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14 16

F
ra

c
ti
o

n

Distance

Gnutella
Epinions
Slashdot

NotreDame
WikiTalk

(c) Distance distribution of smaller
five datasets.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10 12 14 16

F
ra

c
ti
o

n

Distance

Skitter
Indo

MetroSec
Flickr

Hollywood
Indochina

(d) Distance distribution of larger six
datasets.

Figure 5.2: Properties of the static complex network datasets.

Dynamic Graph Datasets

We treated all the graphs as undirected graphs. Statistics of the datasets are
given in Table 5.2. The detailed description of each dataset is as follows.

Epinions: This is the on-line social network in Epinions
(www.epinions.com) [MA05].

Enron: This is an e-mail network among employees of Enron between 1999 and
2003 [KY04]. Vertices are employees and edges are created by e-mails between
two employees.

P2P: This is a graph constructed from a log of an eDonkey server where vertices
describe users and a link between two users appears when one provided a file to
the other [ALM09].

50

Table 5.2: Dynamic Complex Network Datasets

Dataset Network |V | |E| Snapshots

Epinions Social 132 K 831 K 421 K
Enron Social 87 K 1.1 M 574 K
P2P Computer 1.1 M 6.3 M 3.1 M
YouTube Social 3.2 M 9.4 M 4.7 M
Wikipedia Web 1.9 M 36.5 M 18.3 M
DMS Synthetic 1.0 M 10.5 M 5.2 M
Hyperbolic Synthetic 1.0 M 10.5 M 5.2 M
ForestFire Synthetic 1.0 M 7.6 M 3.8 M

YouTube: This is the online social network among users of YouTube
(www.youtube.com) crawled daily in 2007 [Mis09]. Vertices and edges correspond
to users and friend links.

Wikipedia: is a web graph between English Wikipedia pages
(en.wikipedia.org) constructed from edit history in 2007 [Mis09]. Each
vertex represents a page and each edge represents a link.

DMS: This is a synthetic graph constructed under the Dorogovtsev-Mendes-
Samukhin model [DMS00], which is a simple growth model based on preferential
attachment that exhibits power-law degree distribution with configurable power-
law exponent. We generally set the power-law exponent as about 2.3.

Hyperbolic: This is also a growth model based on preferential attachment.
However, in addition to power-law degree distribution, it takes into account
similarity of vertices by using distance on a hyperbolic space, leading to large
clustering coefficients.

ForestFire: This is a graph generated by the forest fire model [LKF07], which
exhibits not only standard static properties but also common properties on dy-
namic networks like densification power laws and shrinking diameter. For the
DMS network, we set the power-law exponent as around 2.3. We generated the
ForestFire network by Stanford Network Analysis Platform with the default
parameters.

When using dynamic graph datasets, we conducted the experiments as follows.

1. We first construct an index from a graph with all the edges except last
10,000 edges by the offline indexing algorithm.

2. Then, we measure average update time by inserting the last 10,000 edges.

3. Finally, we measure the average query time with 1,000,000 random queries
after reflecting all the dynamic updates.

As a baseline, the average time of BFSs for 1,000 random pairs is also reported.

5.2.2 Performance on Static Networks

First we present the performance of our method on the real-world datasets to
show the efficiency and robustness of our method. Table 5.3 shows the perfor-
mance of our method for the datasets. IT denotes preprocessing time, IS denotes
index size, QT denotes average query time for 1,000,000 random queries, and LN
denotes the average label size for each vertex, in the format of the size of normal

51

labels (left) plus the size of bit-parallel labels (right). We set the number of times
we conduct bit-parallel BFSs as 16 for first five datasets and 64 for the rest.

In Table 5.3, we also listed the performance of two of the state-of-the-art ex-
isting methods. One is hierarchical hub labeling [ADGW12], which is also based
on distance labeling. The other one is based on tree decompositions [ASK12],
which is an improved version of TEDI [Wei10]. For these previous methods,
we used the implementations by the authors of these methods, both in C++.
Experiments for hierarchical hub labeling were conducted on a Windows server
with two Intel Xeon X5680 (3.33GHz) and 96GB of main memory. Experiments
for the tree-decomposition-based method were conducted on our environment
described above. We also described the average time to compute distance by
breadth-first search for 1,000 random pairs of vertices. Among these four meth-
ods including the proposed method, only the preprocessing of hierarchical hub
labeling [ADGW12] was parallelized to use all the 12 cores. All the other timing
results are sequential.

Preprocessing Time and Scalability

Our emphasis is particularly on the large improvement in the preprocessing time,
leading to much better scalability. First, we successfully preprocessed the largest
two datasets Hollywood and Indochina with millions of vertices and hundreds
of millions of edges in moderate preprocessing time of 15,164 seconds and 6,068
seconds. This is improvement of two orders of magnitude on the graph size we
can handle since other existing exact distance querying methods take thousands
or tens of thousands of seconds to preprocess graphs with millions of edges.

For next four datasets with tens of millions of edges, it took less than one
thousand seconds, while the previous methods did not finish after one day or
ran out of memory. For smaller six datasets, they took at most one minute, and
about at least 50 times faster than the previous methods for the most of them.

Query Time

The average query time was generally microseconds and at most 16 microseconds.
For almost all the smaller five datasets, the query time of the proposed method
is faster than the query time of the previous methods.

Index Size

for three datasets, index sizes were smaller than or almost equal to the previous
methods, and for the other two datasets, index sizes were about 2.5 times larger
than the tree-decomposition-based method, which is not big difference and still
acceptable. For next four networks, index sizes range from two gigabytes to four
gigabytes, and for the largest two networks, index sizes are 12GB and 22GB.
For networks of these sizes, the graph data themselves have sizes of gigabytes,
and nowadays computers with tens of gigabytes of memory are neither rare nor
expensive, therefore it would be acceptable. However, even though nowadays
computers with tens of gigabytes of memory are neither rare nor expensive, re-
ducing the index size can be an important next research issue.

52

T
ab

le
5.
3:

P
er
fo
rm

an
ce

co
m
p
ar
is
on

b
et
w
ee
n
th
e
p
ro
p
o
se
d
m
et
h
o
d
a
n
d
p
re
v
io
u
s
m
et
h
o
d
s
fo
r
th
e
re
a
l-
w
o
rl
d
d
a
ta
se
ts
.
IT

d
en
ot
es

in
d
ex
in
g
ti
m
e,

IS
d
en
ot
es

in
d
ex

si
ze
,
Q
T

d
en
ot
es

q
u
er
y
ti
m
e,

an
d
L
N

d
en
o
te
s
av
er
a
g
e
la
b
el

si
ze

fo
r
ea
ch

v
er
te
x
.
D
N
F

m
ea
n
s
it

d
id

n
o
t
fi
n
is
h
in

on
e
d
ay

or
ra
n
ou

t
of

m
em

or
y.

D
at
as
et

P
ru
n
ed

L
an

d
m
ar
k
L
ab

el
in
g
(T

h
is

w
or
k
)

H
ie
ra
rc
h
ic
a
l
H
u
b
L
a
b
el
in
g
[A

D
G
W

1
2
]

T
re
e
D
ec
o
m
p
o
si
ti
o
n
[A

S
K
12
]

B
F
S

IT
IS

Q
T

L
N

IT
IS

Q
T

L
N

IT
IS

Q
T

G
n
u
te
ll
a

54
s

20
9
M
B

5.
2
µ
s

6
4
4
+
1
6

2
4
5
s

3
8
0
M
B

1
1
µ
s

1
,2
7
5

2
0
9
s

6
8
M
B

19
µ
s

3.
2
m
s

E
p
in
io
n
s

1.
7
s

32
M
B

0.
5
µ
s

3
3
+
1
6

4
9
5
s

9
3
M
B

2
.2

µ
s

2
5
6

1
2
8
s

4
2
M
B

11
µ
s

7.
4
m
s

S
la
sh
d
ot

6.
0
s

48
M
B

0.
8
µ
s

6
8
+
1
6

6
7
0
s

1
8
2
M
B

3
.9

µ
s

4
6
4

3
4
3
s

8
3
M
B

12
µ
s

12
m
s

N
ot
re
D
am

e
4.
5
s

13
8
M
B

0.
5
µ
s

3
4
+
1
6

1
0
,2
5
6
s

6
4
M
B

0
.4

µ
s

4
1

2
4
3
s

1
2
0
M
B

39
µ
s

17
m
s

W
ik
iT
al
k

61
s

1.
0
G
B

0.
6
µ
s

3
4
+
1
6

D
N
F

-
-

-
2
,4
5
9
s

4
1
6
M
B

1.
8
µ
s

19
7
m
s

S
k
it
te
r

35
9
s

2.
7
G
B

2.
3
µ
s

1
2
3
+
6
4

D
N
F

-
-

-
D
N
F

-
-

19
0
m
s

In
d
o

17
3
s

2.
3
G
B

1.
6
µ
s

1
3
3
+
6
4

D
N
F

-
-

-
D
N
F

-
-

15
0
m
s

M
et
ro
S
ec

10
8
s

2.
5
G
B

0.
7
µ
s

1
9
+
6
4

D
N
F

-
-

-
D
N
F

-
-

15
0
m
s

F
li
ck
r

86
6
s

4.
0
G
B

2.
6
µ
s

2
4
7
+
6
4

D
N
F

-
-

-
D
N
F

-
-

36
1
m
s

H
ol
ly
w
o
o
d

15
,1
64

s
12

G
B

15
.6

µ
s

2
,0
9
8
+
6
4

D
N
F

-
-

-
D
N
F

-
-

1.
2
s

In
d
o
ch
in
a

6,
06

8
s

22
G
B

4.
1
µ
s

4
1
5
+
6
4

D
N
F

-
-

-
D
N
F

-
-

1.
5
s

53

5.2.3 Analysis

Next we analyze the behavior of our method to investigate why our method is
efficient.

Pruned BFS

First we study how labels are computed and stored. Figure 5.3a shows the number
of distances added to labels in each pruned BFS, and Figure 5.3b shows the
cumulative distribution of it, that is, the ratio of the distances stored no later
than each step to all the distances stored in the end. We did not use bit-parallel
BFSs for these experiments.

From these figures, we can confirm the large impact of the pruning. Fig-
ure 5.3a shows that the number of distances added to labels in each BFS decreases
so rapidly. For example, after 1,000 times of BFSs, for all the three datasets dis-
tances are added to the labels of only less than 10% of the vertices, and after
conducting 10,000 times of BFSs, for all the three datasets distances are added
to the labels of only less than 1% of the vertices. Figure 5.3b also shows that
large portion of the labels are computed in the beginning.

Sizes of Labels

Figure 5.3c shows the distribution of the sizes of labels after the whole prepro-
cessing, sorted in the ascending order of sizes. We can observe that the size of
a label each vertex has do not differ much for different vertices, and few vertices
have much larger labels than the average. This shows that the query time of our
method is quite stable.

If you are anxious about vertices with unusually large labels, you can pre-
compute the distance between these vertices and all the vertices and answer it
directly, since the number of such vertices are few as shown in Figure 5.3c.

Pair Coverage

Figure 5.4a illustrates the ratio of the covered pairs of vertices, that is, the pairs
of vertices whose distances can be answered correctly by current labels, at each
step. We used 1,000,000 random pairs to estimate these ratios. We can observe
that most pairs are covered in the beginning. This shows that such a large portion
of pairs have the shortest paths that pass such a small portion of central vertices,
which are selected by the Degree strategy. This is the reason why landmark-
based approximate methods have good precision, and also the reason why our
pruning works so effectively.

Figures 5.4b, 5.4c and 5.4d illustrate the ratio of the covered pairs of ver-
tices at each step with pairs classified by distance. They show that generally
distant pairs are covered earlier than close pairs. This is the reason why the
precision of landmark-based approximate methods for close pairs are far worse
than the precision for distant pairs. On the other hand, our method aggressively
exploits this property: because distant pairs are covered in the beginning, we
can prune distant vertices when processing other vertices, which results in fast
preprocessing.

Vertex Ordering Strategies

Based on the results on landmark-based methods [PBCG09], we propose and
examine the following three strategies.

54

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

L
a

b
e

ls

x-th BFS

Skitter

Indo

Flickr

(a) Number of vertices labeled in each pruned
BFS.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
ti
le

x-th BFS

Skitter

Indo

Flickr

(b) Cumulative distribution of the number of
vertices labeled in each pruned BFS.

10
0

10
1

10
2

10
3

10
4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
a

b
e

l
S

iz
e

Percentile

Skitter

Indo

Flickr

(c) Distribution of the sizes of labels.

Figure 5.3: Effect of pruning and sizes of labels.

• Random: We order vertices randomly. We use this method as a baseline
to show the significance of other strategies. As we show in the experiments,
this strategy is much worse than other strategies.

• Degree: We order vertices from those with higher degree. The idea behind
this strategy is that vertices with higher degree have stronger connection to
many other vertices and therefore many shortest paths would pass through
them.

• Closeness: We order vertices from those with the highest closeness cen-
trality. Since computing exact closeness centrality for all vertices costs
O(nm) time, which is too expensive for large-scale networks, we approxi-
mate closeness centrality by randomly sampling a small number of vertices
and computing distances from those vertices to all vertices.

55

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
o

v
e

re
d

 P
a

ir
s

x-th BFS

Gnutella
Epinions
Slashdot

(a) Average

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
o

v
e

re
d

 P
a

ir
s

x-th BFS

d = 3

d = 4

d = 5

d = 6

d = 7

d = 8

(b) Distance-wise, Gnutella

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
o

v
e

re
d

 P
a

ir
s

x-th BFS

d = 2

d = 3

d = 4

d = 5

d = 6

d = 7

d = 8

(c) Distance-wise, Epinions

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
o

v
e

re
d

 P
a

ir
s

x-th BFS

d = 2

d = 3

d = 4

d = 5

d = 6

d = 7

(d) Distance-wise, Slashdot

Figure 5.4: Fraction of pairs of vertices whose distance can be answered by index,
against number of performed pruned BFS.

Table 5.4: Average size of a label for each vertex against different vertex ordering
strategies.

Dataset Random Degree Closeness

Gnutella 6,171 781 865
Epinions 7,038 124 132
Slashdot 8,665 216 234
NotreDame DNF 60 82
WikiTalk DNF 118 158

We see the effect of vertex ordering strategies. Table 5.4 describes the average
size of a label for each vertex using different vertex ordering strategies. We did
not use bit-parallel BFSs for these experiments. For the Closeness strategy, we
randomly sampled 50 vertices and conducted BFSs from these vertices to estimate
closeness centrality. For the NotreDame dataset and the WikiTalk dataset, using
the Random strategy our program did not finish because it ran out of memory.

As we can see, results are not so different between the Degree strategy and
the Closeness strategy. The Degree strategy might be slightly better. On the
other hand, the result of the Random strategy is much worse than other two
strategies. This is because it is critical for our method that the first vertices are
not central since we fail to prune later BFSs efficiently. This shows that by the
Degree and Closeness strategies we can successfully capture central vertices.

Bit-parallel BFS

Finally, we see the effect of bit-parallel BFSs discussed in Section 5.1. Figure 5.5
shows the performance of our method against different number of times we con-
duct bit-parallel BFSs.

56

10
2

10
3

10
4

 1 4 16 64 256 1024

P
re

p
ro

c
e

s
s
in

g
 T

im
e

 (
s
)

Bit-parallel BFS

Skitter
Indo

Flickr

(a) Preprocessing time

10
-6

10
-5

 1 4 16 64 256 1024

Q
u

e
ry

 T
im

e
 (

s
)

Bit-parallel BFS

Skitter
Indo

Flickr

(b) Query time

 10

 100

 1000

 1 4 16 64 256 1024

L
a

b
e

l
S

iz
e

Bit-parallel BFS

Skitter
Indo

Flickr

(c) Average size of a normal label

 1

 10

 100

 1 4 16 64 256 1024

D
a

ta
 S

iz
e

 (
G

B
)

Bit-parallel BFS

Skitter
Indo

Flickr

(d) Index size

Figure 5.5: Performance varing number of bit-parallel BFSs.

Figure 5.5a illustrates preprocessing time. It shows that, with a proper num-
ber of bit-parallel BFSs, preprocessing time gets two to ten times faster, resulting
in the further enhancement to the scalability of our method. Figure 5.5b illus-
trates query time. We can confirm that query time also gets faster.

Figure 5.5c shows the average size of a normal label for each vertex. As
we increase the number of bit-parallel BFSs, many pairs are covered by special
labels computed by bit-parallel BFSs, and the size of normal labels decreases.
Figure 5.5d shows the index size. With a proper number of bit-parallel BFSs,
index size also decreases.

Another important finding from these figures is that the performance of our
method is not too sensitive to the parameter of the number of bit-parallel BFSs.
As they show, the performance of our method does not become worse much unless
we choose a too big number. The proper parameters seem to common between
different networks. Therefore, our method still is easy to use with this bit-parallel
technique.

Table 5.5 lists the performance results without bit-parallel BFSs. We confirm
that, even without bit-parallel BFSs, our pruned labeling scheme itself is powerful
and indeed outperforms previous exact indexing methods. On the other hand,
we also confirm that the bit-parallel technique significantly improves the overall
performance.

Table 5.5: Performance results without bit-prallel BFSs.

Dataset IT IS QT LN

Skitter 1495 s 3.6 GB 3.8 µs 456
Indo 430 s 2.1 GB 2.6 µs 332
Flickr 1586 s 4.1 GB 3.8 µs 468

57

5.2.4 Performance on Dynamic Graphs

Finally, we examine the performance of update algorithm by using the dynamic
graph datasets. Average update time reported in Table 5.6 is measured by insert-
ing the last 10,000 edges of each dataset. We observe that the average update
time is generally milliseconds, which is four or five orders of magnitude faster
than full index reconstruction. Thus, we can confirm that our incremental up-
date algorithm is also practical. As we can expect that queries are much more
frequent than updates in real dynamic networks, although updates are slower
than queries, updates are also sufficiently fast.

Table 5.6: Experimental results of our online update algorithm.

Update Label Visited
Dataset time increase vertices

Epinions 0.2 ms 1.0× 10−4 5.7
Enron 0.5 ms 3.2× 10−4 4.6
P2P 4.0 ms 1.5× 10−4 2.9
YouTube 4.3 ms 1.6× 10−4 11.4
Wikipedia 6.1 ms 4.0× 10−5 5.4
DMS 1.9 ms 1.8× 10−4 8.2
Hyperbolic 1.9 ms 2.5× 10−7 3
ForestFire 2.6 ms 3.7× 10−4 9.8

We further study update time in Figure 5.6, which illustrates the average
update time on synthetic networks with different graph size or density. We define
the density of graph G = (V,E) as |E| / |V |. Figure 5.6a illustrates the average
update time on synthetic networks with different numbers of vertices. For the
DMS and Hyperbolic model, we set the density as ten. Note that the Forest
Fire model cannot solely configure density and these generated networks follow
the densification power law (i.e., |E| ∝ |V |1.2). From the figure, we can observe
the average update time grows slowly with graph sizes. Similarly, Figure 5.6b
describes the average update time on synthetic networks with 217 vertices and
different density. Though the patterns are different between the two models, we
can confirm that the query time does not get too slow for denser networks.

10
-1

10
0

10
1

2
15

2
16

2
17

2
18

2
19

2
20

U
p

d
a

te
 t

im
e

 (
m

s
)

Number of vertices

DMS
Hyperbolic
ForestFire

(a) Varying graph size

10
-1

10
0

10
1

 4 8 16 32 64 128

U
p

d
a

te
 t

im
e

 (
m

s
)

Density

DMS
Hyperbolic

(b) Varying density

Figure 5.6: Update time on synthetic networks with different size and density.

Average label increase in Table 5.6 describes the average difference of the
average label size before and after inserting an edge. As the average label increase
is also small, the label size grows slowly. From small update time and label
increase, we can conclude that our incremental update algorithm is practical.

Table 5.6 also lists the average number of vertices visited during each BFS

58

for dynamic index updates. More precisely, we define that a vertex is visited if it
is inserted in the queue. It shows the numbers of visited vertices are very small,
that is, the dynamic update is certainly done quite locally.

59

Chapter 6

Path-based Labeling for Directed Acyclic

Graphs

In this chapter, we focus on another kind of queries called reachability queries.
As reachability querying is a specialized problem of distance querying, it is easy
to see that we can use our pruned landmark labeling algorithm also for reacha-
bility queries. In this chapter, after examining application of pruned landmark
labeling to reachability queries (Section 6.1), we propose another method named
pruned path labeling, which is specialized for reachability queries (Section 6.2).
Then, we study the performance of these methods theoretically (Section 6.3) and
empirically (Section 6.4).

In this chapter, let G = (V,E) be a directed graph. For two vertices s, t ∈ V ,
we define reach(s, t) as true if there is a path from s to t and false otherwise.
A reachability query (s, t) asks whether reach(s, t) is true or not. Let v ∈ V be
a vertex, we denote by anc(v) the set of vertices that can reach v, and by dec(v)
the set of vertices that can be reached from v. We denote the children of v by
children(v) and the parents of v by parents(v).

We can safely assume that the input graph is always a directed acyclic graph
(DAG). To see this, let G be a directed graph. Note that all vertices in a strongly
connected component (SCC) of G is equivalent in terms of reachability since they
are reachable each other. Thus, G can be converted into a DAG by SCCs, preserv-
ing the information of reachability among vertices. By Tarjan’s algorithm [Tar72],
we can construct the DAG in O(n+m) time, which is much shorter than indexing
time in most cases. Therefore, in this chapter, we assume that the given graph
is a DAG.

6.1 Pruned Landmark Labeling for Reachability Queries

First, we explain how to apply the pruned landmark labeling algorithm for reach-
ability queries. Specifically, we focus on the difference between distance querying
and reachability querying.

6.1.1 Labeling Algorithm

For simplicity, as with the presentation of pruned labeling algorithm for distance
queries, we first describe a naive algorithm to construct LOUT and LIN without
pruning, and then proceed to an algorithm with pruning.

60

Naive Landmark Labeling

Let V = {v1, . . . , vn} be the vertex set. We incrementally construct labels by
processing v1, . . . , vn in this order. To make exposition easier, we define Lk

OUT and
Lk
IN as LOUT and LIN, respectively, right after processing vk. In the beginning,

we start with L0
OUT(v) = L0

IN(v) = ∅ for every v ∈ V . Suppose that we have
constructed Lk−1

OUT and Lk−1
IN . Then, we construct Lk

OUT and Lk
IN by processing

vk. First we describe how to construct Lk
IN. We conduct a BFS from vk, and add

vk to the labels of vertices that are visited during the BFS. Specifically, we set

Lk
IN(v) =

{
Lk−1
IN (v) ∪ {vk} if v is visited during the BFS,

Lk−1
IN (v) otherwise.

To construct Lk
OUT, we conduct a reversed BFS from vk, for which we traverse

edges backwards. That is,

Lk
OUT(v) =

{
Lk−1
OUT(v) ∪ {vk} if v is visited during the reversed BFS

Lk−1
OUT(v) otherwise.

We use Ln
OUT and Ln

IN to answer reachability queries. Obviously, they satisfy
that Query(s, t, Ln

OUT, L
n
IN) = reach(s, t) since every vertex has all information

about which vertices it can reach and it can be reached from. We also note that
Query(s, t, Lk

OUT, L
k
IN) = true if and only if there is a path from s to t passing

through one of v1, . . . , vk.

Pruned Landmark Labeling

In pruned landmark labeling, we stop BFSs by pruning vertices whose reachability
can be answered correctly from the labels constructed so far. The key observation
is the following: Suppose that we are visiting a vertex v during the (forward) BFS
from a vertex vk, and that v can be shown to be reachable from vk by existing
labels, that is, Query(vk, v, L

k−1
OUT, L

k−1
IN) is true. Then, we prune the vertex v

and do not search descendants of v.
Similarly, when we visit v during the reversed BFS from vk and

Query(v, vk, L
k−1
OUT, L

k−1
IN) is true, then we prune the vertex v. Though

we have pruned vertices, Lk
OUT and Lk

IN still satisfy the property that
Query(s, t, Lk

OUT, L
k
IN) = true if and only if there is a path from s to t passing

through one of v1, . . . , vk.

6.2 Pruned Path Labeling

In this section, we first propose the pruned path labeling method, which is based
on pruned landmark labeling. Then, we show the correctness of pruned path
labeling. As we have already mentioned, an important part of our method is
selecting paths for which many pairs of vertices are connected via these paths.
We discuss heuristics to select such paths in Section 6.2.4.

6.2.1 Index Data Structure and Query Algorithm

The idea of pruned path labeling is iteratively selecting paths and conducting
BFSs from these paths. The main difference from pruned landmark labeling is
that we use paths instead of vertices to start BFSs with. Then, we store which
vertices can reach these paths or can be reached from these paths. If a query

61

Algorithm 6.1 Answer a query in pruned path labeling

1: procedure Query(s, t, LOUT, LIN)
2: i, j ← 1
3: while i ≤ |LOUT(s)| and j ≤ |LIN(t)| do
4: (ps, vs)← the i-th element in LOUT(s)
5: (pt, vt)← the j-th element in LIN(t)
6: if ps = pt then
7: if vs ≤ vt then return true
8: else
9: i← i+ 1

10: j ← j + 1

11: else if ps < pt then
12: i← i+ 1
13: else
14: j ← j + 1

15: return false

(s, t) is given, we find a path we have selected with two vertices u, v such that
there is a path of the form s− u− v − t. In this sense, our method can be seen
as a special case of 3-hop cover [JXRF09]. The detail is given in the following.

For a given DAG G = (V,E), we take l paths P1, P2, . . . , Pl such that⋃l
k=1 Pk = V . Let {vk,1, vk,2, . . . , vk,pk} denote the sequence of vertices that

forms the path Pk, where pk = |Pk|. We construct two types of labels
LOUT(v), LIN(v) ⊆ N×N. It is supposed that, if (i, j) ∈ LOUT(v) for some vertex
v ∈ V , then v can reach vi,j . Similarly, it is supposed that, if (i, j) ∈ LIN(v) for
a vertex v ∈ V , then v can be reached from vi,j .

We note that, for any vertex v ∈ V and i, we only have to store at most
one pair (i, j) in LOUT(v) and LIN(v) to answer reachability. To see this, suppose
that v can reach vi,j for some i and j. Then, v can reach every vi,j′ for j ≤ j′ ≤ pi
since vi,j can reach vi,j′ through the path Pi. Thus, we can choose an integer jmin

such that v can reach vi,j if and only if jmin ≤ j ≤ pi. Therefore, we only have
to store the pair (i, jmin) in LOUT(v) to answer the reachability of vertices in Pi

from v. Conversely, for each v ∈ V and i, we only have to store one pair (i, j) in
LIN(v).

Upon a query (s, t), we return Query(s, t, LOUT, LIN) defined as follows.

Query(s, t, LOUT, LIN) =

true if ∃i, j, j′ ∈ N s.t. j ≤ j′,

(i, j) ∈ LOUT(s),

(i, j′) ∈ LIN(t),

false otherwise.

In words, Query(s, t, LOUT, LIN) is true if and only if there are a path Pi and
two integers j, j′ with j ≤ j′ such that s can reach vi,j and t can be reached from
vi,j′ . We emphasize again that vi,j can reach vi,j′ through Pi. We can compute
Query(s, t, LOUT, LIN) in O(|LOUT(s)| + |LIN(t)|) time if LOUT(s) and LIN(t)
are sorted by path index (See Algorithm 6.1).

6.2.2 Labeling Algorithm

Now we describe how to construct labels LOUT and LIN. Again, we start with
a naive algorithm. We basically conduct BFSs from paths P1, P2, . . . , Pl in this

62

order. Since labels LOUT and LIN grow gradually during the algorithm, we define
Li
OUT and Li

IN as LOUT and LIN obtained right after processing the i-th path Pi.
In particular, we define L0

OUT(v) and L0
IN(v) as ∅ for all v ∈ V , and the pair

Ll
OUT(v) and Ll

IN(v) is the label finally output by the algorithm. Suppose that
we have already constructed Lk−1

OUT and Lk−1
IN . Then, we construct Lk

OUT and Lk
IN

as follows.
First, we conduct BFSs from vertices in Pk in descending order, that is, from

vk,pk to vk,1. In the BFS from the vertex vk,j , we update Lk
IN as follows.

Lk
IN(v) =

{
Lk−1
IN (v) ∪ {(k, j)} if v is visited during the BFS from vk,j ,

Lk−1
IN (v) otherwise.

When performing a BFS from vk,j , we do not have to visit vertices that are
already visited in previous BFSs since they already have a pair (k, j′) for some
j′ ≥ j.

After BFSs to construct Lk
IN are finished, we conduct reversed BFSs by

traversing edges backwards from vertices in Pk in ascending order, that is, from
vk,1 to vk,pk . In the reversed BFS from the vertex vk,j , we update L

k
OUT as follows.

Lk
OUT(v) =

Lk−1
OUT(v) ∪ {(k, j)} if v is visited during the

reversed BFS from vk,j ,

Lk−1
OUT(v) otherwise.

Similarly to the previous case, we do not have to visit vertices that are previously
visited by reversed BFSs.

Now we improve the naive algorithm by introducing pruning. The idea is
the same as pruned landmark labeling. Suppose that we are processing a vertex
v in the BFS from a vertex vk,j for some k and j. Then, we issue a query
Query(vk,j , v, L

k−1
OUT, L

k−1
IN). If the answer is true, we prune v, that is, we stop

the BFS at v. When we are processing a vertex v in the reversed BFS from a
vertex vk,j for some k and j, we issue a query Query(v, vk,j , L

k−1
OUT, L

k−1
IN) instead.

If the answer is true, we prune v. A pseudocode for constructing LOUT and LIN

is shown in Algorithm 6.2.
Figure 6.1 shows an example of pruned path labeling. Three paths P1 =

{v1,1, v1,2, v1,3, v1,4}, P2 = {v2,1, v2,2, v2,3}, and P3 = {v3,1, v3,2, v3,3} are selected.
Then, BFSs are conducted from v1,4, v1,3, v1,2, and v1,1 in this order (Figure 6.1a)
to obtain L1

IN. We add a pair (1, 2) to L1
IN(v2,2), L

1
IN(v2,3), and L1

IN(v3,3). Also, we
add (1, 1) to L1

IN(v2,1). No pruning occurs during BFSs from P1. Then similarly,
reversed BFSs are conducted from v1,1, v1,2, v1,3, and v1,4 in this order (Figure
6.1b) to obtain L1

OUT. For example, LOUT(v2,3) obtains a pair (1, 3). Next, we
conduct BFSs from vertices in P2 in an appropriate order. When v1,3 is visited
during the BFS from v2,3, we issue the query Query(v2,3, v1,3, L

1
OUT, L

1
IN). The

query is true since (1, 3) ∈ L1
OUT(v2,3) and (1, 3) ∈ L1

IN(v1,3). Therefore, v1,3 is
pruned and we no longer continue the search from v1,3 (Figure 6.1c). We continue
this process until we finish performing (reversed) BFSs from all the paths (Figure
6.1d,6.1e,6.1f).

At this point, we note that pruned path labeling is equivalent to pruned
landmark labeling when we always take paths of length zero, that is, each path
consists of a single vertex.

A potential drawback of adopting paths instead of vertices is that it may
increase the index size. This is because that each element in a label is a pair
of integers (a path index and an index of a vertex in the path) instead of one

63

Algorithm 6.2 Conduct pruned BFSs from Pk

1: procedure PrunedBFS(G,Pk, L
k−1
OUT, L

k−1
IN)

2: p← the number of vertices in Pk

3: Lk
OUT[v]← Lk−1

OUT[v] for all v ∈ V

4: Lk
IN[v]← Lk−1

IN [v] for all v ∈ V
5: Q← an empty queue
6: U ← ∅
7: for i← p . . . 1 do
8: s← Pk[i]
9: Enqueue s onto Q

10: while Q is not empty do
11: Dequeue v from Q
12: U ← U ∪ {v}
13: if Query(s, v, Lk−1

OUT, L
k−1
IN) is false then

14: Lk
IN[v]← Lk

IN[v] ∪ {(k, i)}
15: for all u ∈ children(v) do
16: if u /∈ U then
17: Enqueue u onto Q

18: U ← ∅
19: for i← 1 . . . p do
20: s← Pk[i]
21: Enqueue s onto Q
22: while Q is not empty do
23: Dequeue v from Q
24: U ← U ∪ {v}
25: if Query(s, v, Lk−1

OUT, L
k−1
IN) is false then

26: Lk
OUT[v]← Lk

OUT[v] ∪ {(k, i)}
27: for all u ∈ parents(v) do
28: if u /∈ U then
29: Enqueue u onto Q

30: return (Lk
OUT, L

k
IN)

integer (a vertex number) as opposed to pruned landmark labeling. Therefore,
we do not have any benefit if we cannot find long paths. Also, it is practically
difficult to cover all the vertices by long paths. To address these issues, we
combine the two methods. That is, for some constant a ≥ 0, we perform pruned
path labeling from a paths and then perform pruned landmark labeling from
remaining vertices. Furthermore, we stop taking paths if the length of the path
is shorter than b. From preliminary experiments, we decided to choose a = 50
and b = 10.

The effectiveness of pruned path labeling largely depends on how we select
paths. We will discuss this issue in Section 6.2.4.

6.2.3 Correctness

We prove the correctness of pruned path labeling in the following two steps:

1. First we prove that the labels computed by the naive algorithm correctly
answer queries.

2. Then we show that the pruned labels and the naive labels return the same
answer for any query.

64

1,1

1,2

2,1

1,3

2,2

3,3

1,4

2,3

3 ,1

3,2

(a) a BFS from P1

1,1

1,2

2,1

1,3

2,2

3,3

1,4

2,3

3 ,1

3,2

(b) a reversed BFS from
P1

1,1

1,2

2,1

1,3

2,2

3,3

1,4

2,3

3,1

3,2

(c) a BFS from P2

1,1

1,2

2,1

1,3

2,2

3,3

1,4

2,3

3 ,1

3,2

(d) a reversed BFS from
P2

1,1

1,2

2,1

1,3

2,2

3,3

1,4

2,3

3 ,1

3,2

(e) a BFS from P3

1,1

1,2

2,1

1,3

2,2

3,3

1,4

2,3

3,1

3,2

(f) a reversed BFS from
P3

Figure 6.1: An example of pruned path labeling. Color of a vertex indicates its
status: Red is a start point of BFSs, blue is a vertex being searched, gray is a
pruned vertex, and brown is a vertex already used as a start point.

Before the proof, we review definitions. Given a DAG G = (V,E), let
P1, P2, . . . , Pl be a set of l paths such that

⋃l
k=1 Pk = V . Let {vk,1, vk,2, . . . , vk,pk}

denote the sequence of vertices that forms the path Pk. Let Lk
OUT and Lk

IN be
the labels obtained right after processing the k-th path in the naive algorithm,
and let LOUT and LIN be Ll

OUT and Ll
IN, respectively.

Theorem 6.1. For all s, t ∈ V , Query(s, t, LOUT, LIN) = reach(s, t)

Proof. First we show that Query(s, t, LOUT, LIN) = true implies reach(s, t) =
true. Assume that Query(s, t, LOUT, LIN) = true, then there exist i, j, j′ such
that (i, j) ∈ LOUT(s), (i, j′) ∈ LIN(t), and j ≤ j′. From the algorithm, s ∈
anc(vi,j) and t ∈ dec(vi,j′) holds, and it follows that reach(s, vi,j) = true and
reach(vi,j′ , t) = true. reach(vi,j , vi,j′) = true also holds from j ≤ j′. Therefore,
reach(s, t) = true because of the path s− vi,j − vi,j′ − t.

Next we show that reach(s, t) = true implies Query(s, t, LOUT, LIN) = true.
Clearly, s ∈ anc(t) holds. Since

⋃l
k=1 Pk = V , there exist i, j such that s ∈ Pi,

s = vi,j . From the algorithm, there exists j′ with j ≤ j′ such that (i, j′) ∈ LIN(t)
since at least vi,j can reach t in the BFS from vi,j . Obviously LOUT(s) has a pair
(i, j), thus Query(s, t, LOUT, LIN) = true.

Let Mk
OUT and Mk

IN be the labels obtained right after processing the k-th path
in the pruned algorithm, and let MOUT and MIN be M l

OUT and M l
IN, respectively.

Then, we prove the following theorem.

65

Theorem 6.2. For all s, t ∈ V and k ∈ N with 0 ≤ k ≤ l,
Query(s, t, Lk

OUT, L
k
IN) = Query(s, t,Mk

OUT,M
k
IN)

Proof. We prove the following propositions for all 0 ≤ k ≤ l by induction.

(A) For all s, t ∈ V and k ∈ N such that 0 ≤ k ≤ l, Query(s, t, Lk
OUT, L

k
IN) =

Query(s, t,Mk
OUT,M

k
IN).

(B) For all s, t ∈ V ,Query(s, t,Mk
OUT,M

k
IN) = true if and only if there exist

i, j such that i ≤ k and vi,j ∈ dec(s) ∩ anc(t).

For notational simplicity, we denote Query(s, t, Lk
OUT, L

k
IN) by q(s, t, k) and

Query(s, t,Mk
OUT,M

k
IN) by q′(s, t, k) .

Base case: L0
OUT(v) = M0

OUT(v) = ∅, L0
IN(v) = M0

IN(v) = ∅ for all v ∈ V by
definition. Therefore, q(s, t, 0) = q′(s, t, 0) = false for all s, t ∈ V . From this,
(A) and (B) follow.

Inductive case: Suppose (A) and (B) hold for 0, 1, . . . , k−1. First, we prove (A)
by contradiction. Assume that there exist s, t ∈ V such that q(s, t, k) 6= q′(s, t, k).
We can assume that q(s, t, k − 1) = q′(s, t, k − 1) = false since q(s, t, k) =
q′(s, t, k) = true holds if q(s, t, k − 1) = q′(s, t, k − 1) = true. Moreover, we
can assume that q(s, t, k) = true, q′(s, t, k) = false, and reach(s, t) = true
since q′(s, t, k) = true implies q(s, t, k) = true from Mk

OUT(v) ⊆ Lk
OUT(v)

and Mk
IN(v) ⊆ Lk

IN(v) for all v ∈ V . Since q(s, t, k) = true, there exist j′, j′′

such that (k, j′) ∈ Lk
OUT(s), (k, j

′′) ∈ Lk
IN(t), and j′ ≤ j′′. From (B), we have

vi,j /∈ dec(s) ∩ anc(t) for all i ≤ k − 1 and j since q′(s, t, k − 1) = false. Note
that any path between vk,j′′ and t is contained in dec(vk,j′′) ∩ anc(t). There
is no vertex u ∈ dec(vk,j′′) ∩ anc(t) such that q′(u, t, k − 1) = true since
dec(vk,j′′) ∩ anc(t) ⊆ dec(s) ∩ anc(t) and q′(s, t, k − 1) = false hold. There-
fore, t is not pruned during the BFS from vk,j′′ , thus (k, j′′) ∈ Mk

IN(t) holds.
Similarly (k, j′) ∈ Mk

OUT(s) holds. However, this contradicts the assumption
that q′(s, t, k) = false since (k, j′) ∈ Mk

OUT(s) and (k, j′′) ∈ Mk
IN(t). Therefore,

(A) holds for k.

Next, we prove (B). (⇒): Assume that q′(s, t, k) = true. From the definition
of q′, there exist i, j, j′ such that (i, j) ∈Mk

OUT(s), (i, j
′) ∈Mk

IN(t), 1 ≤ i ≤ k, and
j ≤ j′. The vertex vi,j ∈ dec(s)∩ anc(t) holds since vi,j ∈ dec(s), vi,j ∈ anc(vi,j′),
and vi,j′ ∈ anc(t). (⇐): Assume that there exist i, j such that i ≤ k and
vi,j ∈ dec(s)∩anc(t). Then, there exists the minimum j′ ≤ j with (i, j′) ∈ dec(s).
Similarly there exists the maximum j′′ such that j′′ ≥ j, (i, j′′) ∈ anc(t). From
the algorithm, (i, j′) ∈ Lk

OUT(s) and (i, j′′) ∈ Lk
IN(t) hold. Therefore, from (A)

and the definition of q, q′(s, t, k) = q(s, t, k) = true. The theorem holds when
k = l.

Based on the two theorems above, the correctness of the pruned path labeling
is proved as the following corollary.

Corollary 6.1. For any pair of vertices s, t ∈ V , Query(s, t,MOUT,MIN) =
reach(s, t)

Proof. From Theorem 1 and Theorem 2, Query(s, t,MOUT,MIN) =
Query(s, t,M l

OUT,M
l
IN) = Query(s, t, Ll

OUT, L
l
IN) = Query(s, t, LOUT, LIN) =

reach(s, t).

66

6.2.4 Path Selection

As with pruned landmark labeling, vertex ordering strategies largely influence
the performance of pruned landmark labeling. Correspondingly, effectiveness of
pruning should depend on how to select paths in pruned path labeling. We discuss
these problems and propose path selection strategies. We empirically compare
these strategies in Section 6.4.4, along with vertex ordering strategies.

We propose three path selection strategies: Longest, DPDeg, and
DPInOut. In all strategies, we first assign a value to each vertex. The value
assigned to a vertex v is 1, d(v), or (dIN(v) + 1)× (dOUT(v) + 1) in each method,
if the vertex is not selected as a part of a path before. Otherwise, we assign 0
to the vertex. Then, we select the path that maximizes the sum of the value of
vertices in it by dynamic programming on the DAG.

After selecting 50 paths in Longest or DPInOut, we order remaining ver-
tices by InOut. In DPDeg, we use Degree to order remaining vertices. The
idea behind Longest is that selecting long paths would contribute to the prun-
ing. Similarly, DPDeg and DPInOut are intended to select good vertices as
many as possible.

6.3 Theoretical Properties

In [YAIY13], theoretical evidence that our methods perform well on real-world
networks is given as follows. Note that analysis given in Section 4.3 applies to
pruned landmark labeling even when dealing with reachability queries. In this
section, we further see that our pruned path labeling algorithm can efficiently
process graphs satisfying a minor-closed property.

Please note that examples of minor-closed properties include having bounded
treewidth, planarity and bounded genus. That is, minor-closed graphs are gener-
alization of bounded treewidth graphs. Thus, interestingly, pruned path labeling
is not only practically but also theoretically stronger than pruned landmark la-
beling. We note that minor-closed properties also often appear in real-world
networks. For example, consider a directed graph used for program analysis
given as follows. The vertex set corresponds to the variable set used in the input
program, and edges represent dependency between variables. If the input pro-
gram executes a dynamic programming on a 2-dimensional array, the dependency
among variables will form a grid graph, which is planar. Our analysis implies
that pruned path labeling perform well on such networks.

The main result is the following.

Theorem 6.3 ([YAIY13]). Let P be a minor-closed property and G be a digraph
whose underlying graph satisfies P . Then, there is a strategy of choosing paths for
which pruned path labeling on G outputs a label of size O(log n) for each vertex.
(Constants depending on P are hidden in the O(·) notations.)

Again, the theorem implies that index size is O(n log n) and query time is
O(log n). Unfortunately, we can only prove that the running time of finding
the strategy is polynomial (due to Theorem 6.4 below). We leave it as an open
problem to improve it to (quasi-)linear time.

We introduce notions describing how many paths we need to decompose a
graph into smaller components. In a rooted tree, a monotone path is a path with
one endpoint at the root.

Definition 6.1 ([AG06,BGJ+12]). Let G be a connected undirected graph of n
vertices. G is (s, k)-path separable (for k ≥ n/2) if for any rooted spanning tree T

67

of G either (1) there exists a set P of at most s monotone paths in T so that each
connected component of G \ P is of size at most k, or (2) for some s′ < s, there
exists a set P of s′ monotone paths in T so that the largest connected component
of G \ P is (s− s′, k)-path separable.

G is said to be s-path separable if G is (s, n/2)-path separable. The set of
paths P is called an s-path separator of G if each connected component of G \ S
has size at most n/2.

In the above definition, the number of vertices in the path separator is left
unspecified. Trees are 1-path separable, since S can be taken to be the centroid.
Similarly, graphs of treewidth w are (w + 1)-path separable. Thorup [Tho04]
showed that every planar graph is 3-path separable and we only need the case (1)
in the definition. The more general case of minor-closed properties is also known:

Theorem 6.4 ([AG06, BGJ+12]). Let P be a minor-closed property. Then,
there exists s = s(P) such that every graph satisfying P is s-path separable.
Furthermore, an s-path separator can be computed in polynomial time (for any
choice of spanning trees).

The last component in our proof is the following decomposition lemma.

Lemma 6.1 ([BGJ+12]). Given a digraph G, we can construct in linear time a
series of digraphs G1, . . . , Gk so that

(i) Gi is a subgraph of G.

(ii)
∑

i |V (Gi)| ≤ 2|V (G)|.
(iii) There exists a spanning tree TG for the underlying graph of G with the

following property. Any monotone path in TG restricted to Gi for any
i ∈ {1, . . . , k} is a concatenation of at most two dipaths, and all vertices
reachable from and to such a dipath are contained in Gi−1, Gi, or Gi+1.

Proof of Theorem 6.3. The first part of this proof is to recursively separate the
given graph with directed paths. This can be done in essentially the same way
with the recursive graph fragmentation [BGJ+12] as follows.

We first apply Lemma 6.1 to G0 := G. As a result, a family of subgraphs
G0

1, G
0
2, . . . and a spanning tree TG0 are obtained. Due to the path separability,

there is a set of monotone paths P 0 on TG0 that satisfies one of the following two
conditions:

1. the sizes of all the connected components of G0 \ P 0 are at most n/2, or

2. the largest connected component of G0 \ P 0 has size greater than n/2 but
is path separable.

Let us assume that P 0 satisfies the second condition. We denote the largest
connected component in G0 \P 0 by G1. By applying Lemma 6.1 to G1, a family
of subgraphs G1

1, G
1
2, . . . and a spanning tree TG1 are obtained. Then, similarly,

there is a set P 1 of monotone paths in TG1 , and, if necessary, we can recurse
on the largest connected component of G1 \ P 1. We end the recursion when the
current connected component has size at most n/2. The number of paths in
S = P 0 ∪ P 1 ∪ · · · is at most s = Θ(1) in total, and the number of times we
recurse is a constant.

We now conduct pruned BFSs from each dipath in S to construct the index.
Then as an outer recursion, we recurse on the subgraph induced by C for each

68

connected component C of G \ S. Note that C is also s-path separable since C
satisfies the property P .

The correctness is clear since we are just applying pruned path labeling on
a specific strategy of choosing dipaths. We now consider the efficiency of the
strategy. From the property (iii), when performing pruned BFSs from dipaths
in Gi

j , each vertex in Gi
j−1, G

i
j , G

i
j+1 will store a constant number of paths to its

label. Since
∑

j |V (Gi
j)| ≤ 2n and the number of Gi’s is O(1), the total number

of paths added to the label of a vertex in each step of the outer recursion is O(1).
The size of the remaining connected components halves after each step. Thus,

the depth of the outer recursion is O(log n).

6.4 Experiments

We conducted two kinds of experiments: performance comparison and analysis.
We first compare proposed methods and existing methods. Then, we present
the comparison of vertex ordering strategies. These methods are evaluated in
terms of query time, index size, and indexing time. As query time, we report the
average time over one million random queries.

6.4.1 Experimental Setup

Environment

We conducted all the experiments on a Linux server with Intel Xeon X5675
3.07GHz and 288GB memory. We used only one core on all the experiments.
Pruned landmark labeling (PLL) and pruned path labeling (PPL) are com-
pared with three state-of-the-art existing methods, GRAIL [YCZ12], interval list
(IL) [Nuu95] and PWAH [vSdM11]. GRAIL is a graph traversal method exploit-
ing labels created by random DFSs, and one of the most memory efficient methods
for reachability queries. IL and PWAH are methods that construct compressed
transitive closure and they were shown to be the fastest methods for answering
reachability queries on large graphs. The implementations of GRAIL and PWAH
are by their authors, and the implementation of IL is by the authors of PWAH.
In experiments in Section 6.4.2 and Section 6.4.3, we used Degree as the vertex
ordering strategy for PLL and DPInOut as path selection strategy for PPL. All
algorithms are implemented in C++ using standard template library (STL).

Datasets

We used real-world network datasets with more than a million vertices that have
been used in the literature on reachability queries [vSdM11,YCZ12]. The numbers
of vertices and edges (after contracting SCCs) are shown in Table 6.1. The
detailed description is as follows.

ff/successors: This is a graph used for source code analysis of Firefox [vSdM11].

citeseerx, cit-patents: These are citation networks from CiteSeerX1 and US
patents2 [YCZ12].

go-uniprot: This is the joint graph of Gene Ontology terms and annotation files
from UniProt3 [YCZ12].

1http://citeseer.ist.psu.edu/
2http://snap.stanford.edu/data/
3http://www.uniprot.org/

69

Table 6.1: Real-world datasets for reachability queries

Dataset |V |SCC |E|SCC

ff/successors 1,858,504 2,009,541
citeseerx 6,540,399 15,011,259
cit-patents 3,774,768 16,518,948
go-uniprot 6,967,956 34,770,235
uniprot22m 1,595,444 1,595,442
uniprot100m 16,087,295 16,087,293
uniprot150m 25,037,600 25,037,598

uniprot22m, uniprot100m, and uniprot150m: These are RDF graphs from
UniProt database [YCZ12]. We note that underlying graphs of these graphs are
very close to trees.

We also conducted experiments on even larger synthetic graphs to show the
scalability of our methods. These graphs are created as follows. We first randomly
determine the topological order of 10 million vertices. Then we randomly connect
two non-adjacent vertices |E| times, where |E| is chosen as a parameter. Note
that the direction of each edge is uniquely determined by the topological order.

6.4.2 Performance on Real-World Networks

First, we compared PLL and PPL with existing methods on real-world networks.
Tables 6.2, 6.3, and 6.4 list the results of our experiments.

Query Time

Table 6.2 shows the average query time on real-world networks. PLL and PPL
outperform all the other methods in general. IL also performs quite well especially
on citeseerx. In many cases, however, PLL is about twice faster than IL. This is
possibly because of compactness of labels and simplicity of the query processing
procedure of PLL. PPL is slightly slower than PLL since answering queries by
PPL is a little more complicated than PLL. PWAH and GRAIL are comparable
on very sparse graphs, but they get very slow on the other graphs.

Table 6.2: Average query time (µs)

PLL PPL GRAIL IL PWAH
Dataset (This work) [YCZ12] [Nuu95] [vSdM11]

ff/successors 0.085 0.133 0.279 0.154 0.202
citeseerx 0.124 0.164 27.946 0.103 0.214
cit-patents 0.253 0.296 11.591 0.292 15.451
go-uniprot 0.156 0.194 0.520 0.233 0.521
uniprot22m 0.083 0.122 0.403 0.173 0.243
uniprot100m 0.133 0.197 0.743 0.292 0.361
uniprot150m 0.153 0.223 0.776 0.248 0.351

Index Size and Indexing Time

Table 6.3 suggests that the index size of PLL and PPL are reasonable, though
there is no doubt that GRAIL is the most memory-efficient method. On

70

uniprot22m, uniprot100m, and uniprot150m, PLL and PPL perform the best,
but the difference on these datasets is not very significant. This may be due to
the sparseness of these graphs, which makes it easier to compress the transitive
closure by using IL or PWAH. On these graphs, the index size of PLL and that
of PPL are exactly the same since the length of the first path in PPL is no longer
than ten and PPL does not use paths at all. IL and PWAH perform better than
PLL and PPL on ff/firefox. On the other hand, PLL and PPL outperform IL and
PWAH on citeseerx and cit-patents. The index size of PLL and PPL is about
3% of IL and 12% of PWAH on cit-patents. We can say that PLL and PPL
are robust in the sense that it only takes moderate space, less than 1GB, on all
graphs in the experiments. As for the difference between PLL and PPL, PLL is
slightly more space-efficient than PPL in most cases since we need two integers to
represent each element in a label PPL whereas we only need one integers in PLL.
However, the result on cit-patents shows that PLL has a potential to represent
reachability in a more efficient way than PPL in some cases.

Table 6.3: Index size (MB)

PLL PPL GRAIL IL PWAH
Dataset (This work) [YCZ12] [Nuu95] [vSdM11]

ff/successors 122.3 91.6 29.7 40.0 34.1
citeseerx 122.0 126.7 104.6 441.3 156.0
cit-patents 664.6 691.2 60.4 22444.5 5593.1
go-uniprot 263.1 273.5 111.5 792.7 255.9
uniprot22m 19.4 19.4 25.5 19.6 19.5
uniprot100m 206.8 206.8 257.4 223.0 218.8
uniprot150m 334.0 334.0 400.6 373.8 366.2

Then we look at Table 6.4, which shows indexing time on real-world networks.
GRAIL constantly shows great performance in indexing time since the number
of elements in labels is linear in the number of vertices. Still, indexing time of
PLL and PPL is acceptable, while they are relatively slow. They are even faster
than IL and PWAH on cit-patents. This suggests that PLL and PPL work well
on large and mildly dense graphs. IL performs quite well except on cit-patents,
and PWAH needs approximately 1.5 to 2.5 times longer time than IL.

Table 6.4: Indexing time (sec)

PLL PPL GRAIL IL PWAH
Dataset (This work) [YCZ12] [Nuu95] [vSdM11]

ff/successors 10.46 8.19 1.08 7.84 5.02
citeseerx 23.13 45.42 7.65 6.70 16.03
cit-patents 192.05 239.95 8.24 397.04 847.83
go-uniprot 26.60 29.74 5.78 18.33 31.10
uniprot22m 2.82 3.02 0.96 0.96 1.23
uniprot100m 30.80 32.99 12.39 10.64 14.39
uniprot150m 49.48 53.56 20.52 17.21 24.16

6.4.3 Performance on Synthetic Graphs

Second, we compared PLL and PPL with existing methods on synthetic graphs.
Query time, index size, and indexing time on synthetic graphs are shown in

71

Figure 6.2. These synthetic graphs have ten million vertices and number of edges
ranges from twenty million to fifty million. Note that these graphs are drawn
with logarithmic-scale y-axis.

Figure 6.2a shows that PLL and PPL achieve very fast query time. The query
time of PLL, PPL and IL increase very slowly as the number of edges becomes
larger, within a microsecond even on the graph with 50 million edges. On the
other hand, the query time of GRAIL and PWAH grows fast and exceeds 10
microseconds on that graph.

In Figure 6.2b, the index size of IL and PWAH become larger drastically as
the graph becomes dense. The index size of PLL and PPL grow relatively slowly,
and that of GRAIL does not change by the number of edges.

Figure 6.2c shows that GRAIL outperforms other methods in indexing time,
especially on relatively dense graphs. PLL and PPL are relatively slow on very
sparse graphs. However, these two methods overtake IL and PWAH as the graph
becomes dense.

10
-1

10
0

10
1

10
2

20M edges 30M edges 40M edges 50M edges

Q
u

e
ry

 t
im

e
 (

u
s
)

Dataset

PLL
PPL

GRAIL
IL

PWAH

(a) Query time

10
2

10
3

10
4

10
5

20M edges 30M edges 40M edges 50M edges

In
d

e
x
 s

iz
e

 (
M

B
)

Dataset

PLL
PPL

GRAIL
IL

PWAH

(b) Index size

10
1

10
2

10
3

10
4

20M edges 30M edges 40M edges 50M edges

In
d

e
x
in

g
 t

im
e

 (
s
e

c
)

Dataset

PLL
PPL

GRAIL
IL

PWAH

(c) Indexing time

Figure 6.2: Performance comparison of reachability queries on synthetic graphs.

As a whole, we can say that PLL and PPL outperform other methods on
relatively dense graphs, achieving very fast query time and moderate index size.
The index size of IL and PWAH becomes very large on dense graphs, and the
query time of GRAIL and PWAH becomes very slow on these graphs. These
experimental results show that PLL and PPL has a potential to handle real-
world networks larger than those we used in the experiments.

6.4.4 Comparison of Vertex Ordering Strategies

Finally, we compare the performance of vertex selection and path selection strate-
gies. We only show index size since query time and indexing time are almost

72

proportional to index size. The results are shown in Tables 6.5 and 6.6. DNF in
Table 6.5 means that indexing did not finish in 20 minutes.

Table 6.5 shows that InOut performed the best among three vertex selection
strategies. Random did not finish on any graph, while others finished indexing
within 20 minutes on all graphs. This shows that vertex ordering strategies sig-
nificantly influence the performance, as expected. InOut outperformed Degree
on cit-patents and citeseerx. Especially, the index size of InOut is half as large
as that of Degree on cit-patents. On the other graphs, these two strategies
demonstrated almost the same performance.

Table 6.5: Comparison of index size of PLL using different vertex ordering strate-
gies (MB)

Dataset Random Degree InOut

ff/successors DNF 123.4 122.3
citeseerx DNF 168.0 122.0
cit-patents DNF 1555.0 664.6
go-uniprot DNF 270.3 263.1
uniprot22m DNF 19.4 19.4
uniprot100m DNF 206.8 206.8
uniprot150m DNF 334.0 334.0

Then we compared the performance of path selection strategies (Table 6.6).
DPInOut is quite stable and it outperforms the other strategies, though
Longest performed slightly better than DPInOut in some cases. Again,
the index size is the same in all strategies on uniprot22m, uniprot100m, and
uniprot150m since we cannot find any path of length at least ten. DPDeg is
inferior to other two strategies on citeseerx and cit-patents. The result shows
that path selection strategies may drastically affect the performance of PPL.

Table 6.6: Comparison of index size of PPL using different path selection strate-
gies (MB)

Dataset Longest DPDeg DPInOut

ff/successors 91.0 92.7 91.6
citeseerx 126.1 166.5 126.7
cit-patents 678.1 1536.6 691.2
go-uniprot 428.0 279.6 273.5
uniprot22m 19.4 19.4 19.4
uniprot100m 206.8 206.8 206.8
uniprot150m 384.1 334.0 334.0

73

Chapter 7

Highway-based Labeling for Road Networks

Next, we deal with shortest-path and distance queries on road networks. As we
explained in Chapter 1, structural properties of road networks are quite different
from those of complex networks. Moreover, as road networks are weighted graphs,
the bit-parallel labeling technique cannot be used. Therefore, we propose another
method named pruned highway labeling, which is tailored to road networks.

We first propose another indexing framework (i.e., index data structure and
query algorithm) named highway-based labeling framework (Section 7.1), which
is another extension of the 2-hop cover framework. Then, the overview of our
pruned highway labeling algorithm is presented (Section 7.2). Next, we present
the detailed description of the algorithm (Section 7.3). Finally, results of our
experimental evaluation is explained (Section 7.4).

7.1 Highway-based Labeling Framework

In this section, we propose a new labeling framework (i.e., data structure and
query algorithm) referred to as the highway-based labeling framework. We first
introduce the notion of a highway decomposition and explain what we store for
labels (Section 7.1.1). This concept has some similarity to the decomposition
used in Thorup [Tho04]. We then present our query algorithm (Section 7.1.2).

7.1.1 Highway Decomposition and Index Data Structure

First, we define a highway decomposition, which is a key for our proposed frame-
work. In what follows, we identify a path with an ordered set of vertices.

Definition 7.1 (highway decomposition). A highway decomposition of a given
graph G is a family of ordered sets of vertices P = {P1, P2, ..., PN} such that,

1. Pi = (pi,1, pi,2, . . . , pi,li) is a shortest path between two vertices pi,1 and pi,li,

2. Pi ∩ Pj = ∅ for any i and j (i 6= j), and

3. P1 ∪ P2 ∪ . . . ∪ PN = V .

In Section 7.3 we will describe how to compute a highway decomposition of
a graph. In the following, we assume that we are given such a decomposition.
In the highway-based labeling framework, a label L(v) for a vertex v is a set of
triples (i, d(pi,1, pi,j), d(v, pi,j)), that is, for each vertex v, we store an index i of

74

a path Pi, distance from the starting point pi,1 of the path to a vertex pi,j on the
path, and distance from the vertex v to the vertex pi,j

1.
In the hub-based labeling framework (i.e., the 2-hop cover framework), a can-

didate for the distance between s and t are computed from pairs (v, d(s, v)) ∈ L(s)
and (v, d(t, v)) ∈ L(t) for the same vertex v. On the other hand, in the highway-
based labeling framework, we can compute a candidate for the distance between
s and t even for the case that the vertices stored in two triples are different.
Indeed, suppose that the label L(s) contains a triple (i, d(pi,1, pi,j), d(s, pi,j))
and the label L(t) contains a triple (i, d(pi,1, pi,k), d(t, pi,k)). Then we can ob-
tain a candidate distance by looking at d(s, pi,j) + d(pi,j , pi,k) + d(pi,k, t) =
d(s, pi,j) + |d(pi,1, pi,j) − d(pi,1, pi,k)| + d(pi,k, t). This observation is crucial in
our experiment. It allows us to make the label for each vertex to be smaller size.
This is a clear advantage of the highway-based labeling framework. In particular,
a large part of distances between pairs of far vertices can be answered by storing
a few distances to central paths in real road networks (e.g. highways).

7.1.2 Query Algorithm

For an s-t query, we search for the triples that minimize the candidate distance.
That is, we define the answer to an s-t query using labels L as

Query(s, t, L)

= min{d(s, pi,j) + d(pi,j , pi,k) + d(pi,k, t) |
(i, d(pi,1, pi,j), d(s, pi,j)) ∈ L(s), (i, d(pi,1, pi,k), d(t, pi,k)) ∈ L(t)}.

The distance d(pi,j , pi,k) itself is not contained in labels L(s) and L(t), but can
be computed by using d(pi,1, pi,j) and d(pi,1, pi,k) as mentioned above.

Naively computing the function above takes Θ(|L(s)| |L(t)|) time, but we can
obtain a linear-time algorithm based on the following lemma.

Lemma 7.1. There exist triples (i, d(pi,1, pi,j), d(s, pi,j)) ∈ L(s) and
(i, d(pi,1, pi,k), d(t, pi,k)) ∈ L(t) that achieve the minimum candidate distance
and satisfy the following: for any vertex pi,l with min(j, k) < l < max(j, k),
(i, d(pi,1, pi,l), d(s, pi,l)) 6∈ L(s) and (i, d(pi,1, pi,l), d(t, pi,l)) 6∈ L(t).

Proof. Let (i, d(pi,1, pi,j), d(s, pi,j)) ∈ L(s) and (i, d(pi,1, pi,k), d(t, pi,k)) ∈ L(t) be
triples that minimize the candidate distance. Let us choose j, k with j < k such
that k − j is as small as possible. Suppose there exists pi,l with j < l < k
such that (i, d(pi,1, pi,l), d(s, pi,l)) ∈ L(s). Then the candidate distance computed
from triples (i, d(pi,1, pi,l), d(s, pi,l)) and (i, d(pi,1, pi,k), d(t, pi,k)) must also be the
minimum, because

d(s, pi,l) + d(pi,l, pi,k) + d(pi,k, t)

= d(s, pi,l) + d(pi,1, pi,k)− d(pi,1, pi,l) + d(pi,k, t)

= (d(s, pi,j) + d(pi,j , pi,l)) + d(pi,1, pi,k)

−(d(pi,1, pi,j) + d(pi,j , pi,l)) + d(pi,k, t)

= d(s, pi,j) + d(pi,1, pi,k)− d(pi,1, pi,j) + d(pi,k, t)

= d(s, pi,j) + d(pi,j , pi,k) + d(pi,k, t).

Note that Pi is a shortest path. This is a contradiction.
1The label L(v) does not necessarily contain triples from all indexes i nor contains triples

for all the vertices on a path Pi, because in our preprocessing, we will reduce the total size of
labels L(v).

75

Therefore, like previous labeling methods, by sorting triples in labels with
indexes and the distances from the starting point of the path in ascending order
beforehand, we can answer an s-t query in O(|L(s)|+ |L(t)|) time using a merge-
sort-like algorithm.

7.2 Pruned Highway Labeling

In this section we propose our label computation algorithm for highway-based
labelings. Throughout this section, we assume that a highway decomposition P
is given. In Section 7.3, we will explain how to obtain such a decomposition.

7.2.1 Naive Highway Labeling

Before presenting our efficient preprocessing algorithm, we first give a naive algo-
rithm to compute correct labels for the highway-based labeling framework. We
start with empty labels L0 (i.e., L0(v) = ∅ for each vertex v) and then construct
new labels Li+1 from Li iteratively. In order to construct the labels Li, we first
copy the labels Li−1 to Li, and then conduct the Dijkstra search from each ver-
tex pi,j on the path Pi and add the distance between vertices v and pi,j to the
label Li(v). That is, Li(v) = Li−1(v) ∪ (i, d(pi,1, pi,j), d(v, pi,j)) for all pi,j ∈ Pi.
After we conduct all Dijkstra searches, we obtain the labels L = LN . Because
L(v) contains the distance from v to all vertices, the labels can answer correct
distances between v and any other vertex. Therefore we have the following.

Lemma 7.2. For any pair of vertices s and t, Query(s, t, L) = d(s, t).

7.2.2 Pruned Highway Labeling

We now explain our efficient algorithm for computing labels for the highway-based
labeling framework named pruned highway labeling. This algorithm is based on
the pruned landmark labeling.

Similarly to the naive algorithm, we start with empty labels L′
0 and then

construct new labels L′
i+1 from L′

i iteratively. In order to construct the labels
L′
i, we conduct the pruned Dijkstra search from all the vertices on the path Pi

simultaneously as described in Algorithm 7.1. When we visit a vertex v from
the vertex pi,j with distance δ, if Query(v, pi,j , L

′
i) is less than or equal to δ,

we prune the search. Otherwise, we add the triple (i, d(pi,1, pi,j), δ) to L′
i(v) and

check edges from the vertex v. After we conduct the pruned Dijkstra searches
from all the paths, we obtain the labels L′ = L′

N for the highway-based labeling
framework. We prove the correctness of our algorithm in Section 7.2.4, but in
the next subsection, we shall give intuition how our algorithm goes.

7.2.3 Example For Pruned Highway Labeling

Figure 7.1 illustrates examples for the pruned highway labeling. For simplicity,
we assume that the length of all edges is 1.

First, we decompose the input graph. Suppose that we are given a highway
decomposition P = {P1, P2, P3}, where P1 = {0, 1, 2, 3, 4}, P2 = {5, 6}, P3 =
{7, 8}. Then we conduct the pruned Dijkstra search from the path P1 (Figure
1a). A triple (1, 2, 1) is added to the label L′

1(5). However, a triple (1, 3, 2) is not
added to the label L′

1(5) because Query(5, 3, L′
1) = d(5, 2) + d(2, 3) + d(3, 3) =

1 + 1 + 0 = 2. Therefore, the search from the vertex 3 is pruned. In the same
way, only one triple (1, 3, 1) is added to the label L′

1(6). On the other hand,

76

Algorithm 7.1 Pruned Dijkstra search from Pi to compute the labels L′
i

procedure PrunedDijkstraSearch(G,Pi, L
′
i−1)

Q← an empty priority queue
Push (0, pi,j , pi,j) onto Q for all pi,j ∈ Pi

L′
i(v)← L′

i−1(v) for all v ∈ V
while Q is not empty do

Pop (δ, v, pi,j) from Q
if Query(v, pi,j , L

′
i) ≤ δ then

continue
L′
i(v)← L′

i(v) ∪ (i, d(pi,1, pi,j), δ)
Push (δ + w(v, u), u, pi,j) onto Q for all (v, u) ∈ E

return L′
i

Algorithm 7.2 Preprocessing by the pruned highway labeling

procedure Preprocess(G)
L′
0(v)← ∅ for all v ∈ V

P ← a highway decomposition of G
N ← the size of P
for i = 1 to N do

L′
i ← PrunedDijkstraSearch(G,Pi, L

′
i−1)

return L′
N

two triples (1, 0, 1) and (1, 1, 1) are added to the label L′
1(7) because we cannot

prune the search.
Next, we conduct the pruned Dijkstra search from the path P2 (Figure 1b).

Because the search is pruned, no triples are added to labels L′
2(2) nor L

′
2(3) and

no other vertices are visited. Similarly, we conduct the pruned Dijkstra search
from the path P3 (Figure 1c).

For a query between vertices 6 and 7, we check the two labels L′(6) and L′(7).
The triple (1, 3, 1) is contained in L′(6) and the triple (1, 0, 1) is contained in
L′(7), so the distance computed by these triples is d(6, 3) + d(3, 0) + d(0, 7) =
1+ 3+ 1 = 5. L′(7) also contains the triple (1, 1, 1). We can indeed get 4 as the
distance by using this triple. Although both labels L′(6) and L′(7) contain other
triples, these triples do not coincide to the index of the path. Therefore, we do
not need to check these triples. As a result, Query(6, 7, L′) = 4.

7.2.4 Proof of Correctness

In this subsection, we prove the correctness of the pruning. Specifically, we prove
that the distance computed by using labels L′ from the pruned highway labeling
is equal to the distance computed by using labels L from the naive highway
labeling.

Theorem 7.1. For any pair of vertices s and t, Query(s, t, L′) =
Query(s, t, L).

Proof. For vertices s and t, let i be the index such that Query(s, t, Li′) 6= d(s, t)
for any i′ < i andQuery(s, t, Li) = d(s, t). Then there exist vertices pi,j , pi,k ∈ Pi

that satisfy d(s, t) = d(s, pi,j) + d(pi,j , pi,k) + d(pi,k, t). Among others, we choose
a pair (j, k) such that no vertices on the shortest path between s and pi,j or
between pi,k and t are on the path Pi. Suppose that for some i′ < i, a vertex pi′,j′

77

0 1
3

5

6

4

8

2

7

(a) Pruned Dijkstra
search from the path P1

0 1
3

5

6

4

8

2

7

(b) Pruned Dijkstra
search from the path P2

0 1
3

5

6

4

8

2

7

(c) Pruned Dijkstra
search from the path P3

Figure 7.1: Examples for the pruned highway labeling. Pink vertices are on the
starting path Pi, blue vertices are visited and added to some labels, gray vertices
are already used as the starting points of the previous searches, orange vertices
are visited but pruned, and white vertices are not visited.

on the path Pi′ is on a shortest path between s and pi,j . Then the label L(s)
contains the triple (i′, d(pi′,1, pi′,j′), d(s, pi′,j′)) and the label L(t) contains the
triple (i′, d(pi′,1, pi′,j′), d(t, pi′,j′)), and therefore Query(s, t, Li′) = d(s, t) holds,
which is a contradiction to the choice of i. Therefore any path Pi′ with i′ < i
contains no vertices on the shortest paths between s and pi,j . Thus the search
from pi,j to s is not pruned and the triple (i, d(pi,1, pi,j), d(s, pi,j)) is added to the
label L′(s). In the same way, the triple (i, d(pi,1, pi,k), d(t, pi,k)) is added to the
label L′(t). As a result, Query(s, t, L′) = Query(s, t, L) holds.

From this theorem, we can answer a query for any pair of vertices correctly
by using labels computed by the pruned highway labeling.

Corollary 7.1. Let L′ be the labels computed by the pruned highway labeling.
Then for any pair of vertices s and t,

Query(s, t, L′) = d(s, t).

7.3 Detailed Algorithm Description

7.3.1 Heuristic Highway Decomposition

Until this point, we assumed that a highway decomposition is already given, and
then we conduct the first pruned Dijkstra search. We now show how to construct
a highway decomposition and labeling simultaneously. Specifically, we choose a
path Pi from remaining vertices just before conducting the i-th pruned Dijkstra
search. In the pruned landmark labeling algorithm, the order of vertices to start
BFSs is crucial to achieve small labels. Similarly, in our method, the order of
paths Pi in a highway decomposition is important, and this allows us to achieve
small label sizes.

At a high level, we want to choose a path that hits many shortest paths at
the early stage of Dijkstra search, because this would allow us to prune future
Dijkstra searches. In what follows, we propose strategies for selecting such a good
path.

First, we focus on the speed of an edge (i.e., the geometrical length divided
by the travel time). In the real life, we tend to use fast highways when we travel
long distance. Therefore, we may assume that the vertices connected to fast edges
tend to be passed by many shortest paths. For this reason, we group vertices into

78

several levels according to the speed of their connected edges. We assign vertices
connected to faster edges to higher levels and then we choose a path consisting
of the highest level vertices. When the number of vertices in the highest level
is fewer than some threshold, we mix unused vertices in the highest level with
vertices in the second highest level to make it possible to select a path of enough
length.

We now describe how to choose a path from the highest level vertices. Because
the selected path must be a shortest path between two vertices, we first compute
the shortest path tree from a randomly selected root vertex, and then pick a path
between the root vertex and another vertex in the shortest path tree. The more
descendants a vertex has in the shortest path tree, the more shortest paths on the
tree hit the vertex. Therefore, in order to select a path that hits many shortest
paths, we choose the path by starting from the root vertex and iteratively pick a
child with the largest number of descendants.

Finally, we describe our technique to skip unimportant vertices. Suppose that
a vertex v on the selected path hits many shortest paths, but most of them also
contain another vertex w on the selected path. In this case, even if we skip the
vertex v while keeping the vertex w, most of the future searches that will be
pruned by v are still pruned by w. Thus we skip such unimportant vertices from
the selected path. Suppose that we chose a vertex v on the shortest path tree, and
then choose its child w. If the difference between the number of descendants of v
and w is small, most of the shortest paths on the tree that contain v also contain
w, and therefore we skip v. This does not affect the correctness of the algorithm
because this operation corresponds to add shortcut edges across skipped vertices.

In our implementation used in the experiments, we group vertices into four
levels and we skip a vertex v when the difference between the number of descen-
dants of vertices v and its child w is smaller than five percents.

7.3.2 Storing Labels

To make highway-based labelings more practical, we describe the efficient
way to store labels in this subsection. The label L(v) is a set of triples
(i, d(pi,1, pi,j), d(v, pi,j)), where i is an index of a path. The distance informa-
tion in the label is used in the query only when the indexes of the paths are
same in two triples. Therefore, storing the index information and the distance
information separately makes the query time faster because we can avoid cache
misses. For a single path, multiple triples may be stored to a vertex. Therefore,
by storing pairs of an index and the number of triples for the index, we can re-
duce the space usage. Moreover, this also makes the query time faster because
we can reduce unnecessary comparisons when the indexes do not match in two
triples. For more efficient implementation, we use pointer arithmetic and align
arrays storing labels to cache line.

7.3.3 Contraction Technique

Additionally, to further improve the performance, we introduce a new technique
called the contraction technique. First, we consider a vertex v of degree one.
Any shortest path from v to another vertex passes through its adjacent vertex x.
Moreover, the vertex v is never contained in shortest paths between other vertices.
Therefore, we can remove the vertex v from the graph in the preprocessing. We
can correctly answer the query between the vertex v and another vertex u by
referring the label L(x) and adding the length w(v, x), that is, Query(v, u, L) =

79

Query(x, u, L) + w(v, x).
Next, we consider a vertex v of degree larger than one. In this case, the

vertex v may be contained in a shortest path between other vertices. Therefore,
we need to add some shortcut edges before removing the vertex v to preserve
the distances. We can correctly answer the distance between v and another
vertex u by evaluating the distances from all the neighbors of v to u, that is,
Query(v, u, L) = min(v,x)∈E(G){Query(x, u, L) + w(v, x)}. However, the larger
the degree limit is, the slower query time becomes due to the number of neighbors
to check. In our experiments, we only set the degree limit to be at most three.

7.4 Experimental Evaluation

7.4.1 Setup

Environment

We conducted experiments on a Linux server with Intel Xeon X5675 processor
(3.06 GHz) and 288 GB for main memory. We implemented the proposed method
in C++ and compiled it with the GNU C++ compiler 4.4.6 using optimization
level 3. We did not parallelize the preprocessing and queries and used one core.
We evaluate query time as the average time for 1,000,000 random queries.

Datasets

We used two popular graph instances from 9th DIMACS Implementation Chal-
lenge [DGJ09]. One is a road network of USA that has about 24 million vertices
and 58 million edges. The other is a road network of Western Europe by PTV
AG with about 18 million vertices and 42 million edges. In both instances, we
use travel times as the length of edges and treat a graph as an undirected graph.

7.4.2 Performance Comparison

First, we compare the proposed method with several previous methods with
regard to preprocessing time, space usage and query time (Table 7.1). The
proposed method is set to use the contraction technique for vertices of degree
one. We compare the proposed method with the following five previous methods:
contraction hierarchies (CH) [GSSD08], transit node routing (TNR) [BFM+07],
combination of TNR and arc flags (TNR+AF) [BDS+10], hub-based labeling
(HL) [ADGW11, ADGW12], and hub label compression (HLC) [DGW13]. For
HL, we used four variants: HL local [ADGW11], HL global [ADGW11], HL-
15 local [ADGW12] and HL-∞ global [ADGW12]. All these methods are also
implemented in C++. CH, TNR and TNR+AF were evaluated on a ma-
chine with an AMD Opteron 270 processor (2.0 GHz) [BDS+10], and HL and
HLC were evaluated on a machine with two Intel Xeon X5680 processors (3.33
GHz) [ADGW11,ADGW12,DGW13]. The preprocessing is parallelized for only
HL but not parallelized for other methods including our method. Queries are not
parallelized for all methods.

Preprocessing Time

We would like to emphasize our big improvement in preprocessing time. The
preprocessing time for the proposed method is much faster than previous labeling
methods. Although it seems that HL-15 local is faster than our method, let us

80

Table 7.1: Comparison of the performance between pruned highway labeling and
previous methods. HL is parallelized to use 12 cores in preprocessing and all
other methods are not parallelized.

USA Europe
Prep. Space Query Prep. Space Query

Method [h:m] [GB] [ns] [h:m] [GB] [ns]

PHL-1 (This work) 0:29 16.4 941 0:34 14.9 1039

CH [BDS+10] 0:27 0.5 130000 0:25 0.4 180000
TNR [BDS+10] 1:30 5.4 3000 1:52 3.7 3400
TNR+AF [BDS+10] 2:37 6.3 1700 3:49 5.7 1900
HL local [ADGW11] 2:24 22.7 627 2:39 20.1 572
HL global [ADGW11] 2:35 25.4 266 2:45 21.3 276
HL-15 local [ADGW12] - - - 0:05 18.8 556
HL-∞ global [ADGW12] - - - 6:12 17.7 254
HLC-15 [DGW13] 0:53 2.9 2486 0:50 1.8 2554

observe that its preprocessing is parallelized to use 12 cores. This improvement
shows the efficiency of pruned labeling.

Space Usage

The space consumption for our method is also smaller than HL. While this may
be still not very compact, in the situations when space consumption is severe,
we can greatly reduce the space usage with help of the contraction technique, at
the cost of a little slower query time, as discussed in Section 7.4.3. Therefore, it
would be not a big problem.

Query Time

With regard to query time, although our method is a bit slower than HL, it is
still sufficiently fast and around 1 µs on average. This shows the efficiency of the
highway-based labeling as a labeling framework.

7.4.3 Analysis

Contraction Technique

Table 7.2 lists the performance of our method with different contraction level.
The contraction level denotes the limit of the degree of vertices to remove. That
is, if the level is 2, we remove vertices of degree no larger than 2. Setting the
contraction level zero means we do not use the contraction technique at all.

Even without the contraction technique, our preprocessing is much faster
than previous labeling methods. However, by applying the contraction tech-
nique, preprocessing time becomes even faster. In particular, it takes only about
ten minutes with contraction level three. This is because the input graph size
is fairly reduced by this contraction. Moreover, the space usage gets smaller
than five gigabytes with contraction level three, while the query time is not very
slower. Although the higher the level is, the slower the query time becomes, it is
sufficiently fast. Therefore, the contraction technique is highly useful.

Pruning

Figure 7.2a illustrates the number of triples added to labels in each pruned Di-
jkstra search and Figure 7.2b illustrates the cumulative distribution of it. We

81

Table 7.2: Comparison of the performance by the contraction technique. The
contraction level indicates the degree of removed vertices.

USA Europe
Preprocessing Space Query Preprocessing Space Query

Contraction level [h:m] [GB] [ns] [h:m] [GB] [ns]
0 0:38 19.8 906 0:50 20.2 1080
1 0:29 16.4 941 0:34 14.9 1039
2 0:11 6.4 1793 0:22 8.5 2011
3 0:07 4.1 2970 0:11 4.6 3344

can confirm big effect of pruning from these figures. From Figure 7.2a, we ob-
serve that the number of triples added to labels in each pruned Dijkstra search
decreases dramatically. In consequence, as Figure 7.2b shows, most triples are
added at the beginning.

Figure 7.3a reports the average number of common paths in labels of two
vertices against Dijkstra rank of them. We used labels constructed without the
contraction technique and computed the average on 10,000 pairs of vertices for
each rank. We observe that the number of common paths decreases gradually as
the two vertices get far. This indicates that our preprocessing algorithm success-
fully separates input graphs by shortest paths.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

N
u

m
b

e
r

o
f

T
ri
p

le
s

i-th Dijkstra search

USA
Europe

(a) Number of triples added in each pruned Dijkstra search.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
ti
le

i-th Dijkstra search

USA
Europe

(b) Cumulative distribution of the number of triples added in
each pruned Dijkstra search.

Figure 7.2: Effect of pruning.

82

 0

 5

 10

 15

 20

 25

 30

 35

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

C
o

m
m

o
n

 P
a

th
s

Dijkstra Rank

USA
Europe

(a) Number of common paths in labels against Dijkstra Rank

 0

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
a

b
e

l
S

iz
e

s

Percentile

USA
Europe

(b) Distribution of the sizes of labels

Figure 7.3: Label properties.

Sizes of Labels

Figure 7.3b shows the distribution of the sizes of labels. We constructed labels
without the contraction technique. We can confirm that the size of a label for
each vertex does not vary much for different vertices, and few vertices have much
larger labels than the average. This indicates that the query time for our method
is quite stable.

83

Chapter 8

Historical Labeling for Evolving Complex

Networks

When analyzing historical networks, for which timestamps of vertices and edges
are also available, in addition to the latest snapshot, the shortest paths and
distances on previous snapshots or transition of them by time are also of interest.
In this chapter, we call such queries about previous snapshots historical queries.
We study indexing methods for such kinds of historical queries (Figure 8.1). In
particular, we deal with the following two kinds of queries: a snapshot query asks
the shortest path or distance on a specified previous snapshot, and a change-point
query asks all the moments when the distance between two vertices has changed.

Ti
m

e

Index

Query: transition of distance

Time

D
is
ta
n
ce

Figure 8.1: An illustration of indexing methods for historical queries.

We first design an indexing method based on pruned landmark labeling for
these kinds of queries (Section 8.1). Second, we present the result of experimental
evaluation (Section 8.2). Finally, the usefulness of these new kinds of historical
queries is demonstrated via application to evolving network analysis (Section 8.3).

Formal Problem Definition

In this chapter, we study indexing methods that, given a time series of a evolving
graph (i.e., a graph with edge time stamps), construct an index to quickly answer
the following queries.

Problem 8.1 (Historical Snapshot Distance Query).
Given: Two query vertices s, t and time τ .

84

Answer: Distance dτ (s, t).

Problem 8.2 (Historical Distance Change-point Query).
Given: Two query vertices s, t.
Answer: Set C(s, t) = {(τ1, δ1), (τ2, δ2), . . .} where (τi, δi) ∈ C(s, t) if and only
if δi = dτi(s, t) 6= dτi−1(s, t).

8.1 Historical Pruned Landmark Labeling

In this section, we propose a new indexing scheme referred to as historical pruned
landmark labeling to efficiently process historical queries defined above. Unlike
our first method for contemporary queries, as there is no previous work on these
queries, we start from designing a new index framework (i.e., data structure
and query algorithms), named historical 2-hop cover, in Section 8.1.1. Then,
we propose an offline indexing algorithm that constructs an index from a stored
historical graph in Section 8.1.2. Since it is more involved than that for stan-
dard contemporary queries, we explain our indexing algorithm with three steps:
we start from an algorithm based on dynamic programming, next we turn the
algorithm into a BFS-like algorithm, and then introduce pruning to the algo-
rithm. Finally, we present an online incremental update algorithm for online
graph changes in Section 8.1.3.

8.1.1 Historical 2-Hop Cover Framework

First, we propose a new indexing framework (i.e., data structure and query al-
gorithms) referred to as the historical 2-hop cover framework. Since there is no
previous work on these queries, it is the first framework for historical distance
queries. The main technical challenge here is to design (almost) linear-time query
algorithms for both kinds of historical queries.

Data Structure

For each vertex v, we store a label L(v). Label L(v) is a set of triples (u, τ, δuv),
where u is a vertex, τ describes time, and δuv = dτ (u, v). Due to Lemma 4.2,
(u, τ, δuv) ∈ L(v) also indicates dτ ′(u, v) ≤ δuv for τ ′ ≥ τ .

As with the normal 2-hop cover framework, we store triples in a label in the
ascending order of the IDs of destination vertices. In addition, we sort triples that
share the same destination vertex in ascending order of distance (i.e. descending
order of time).

Answering Snapshot Queries

A snapshot query between a pair of vertices s and t at time τ can be answered in
O(|L(s)|+ |L(t)|) time. Though we basically conduct a merge-sort-like algorithm
as with normal 2-hop cover, there are several differences. First, we need to ignore
label entries with time later than τ . In addition, to handle triples in a label that
share the same destination vertex, among them we only see the newest label entry
with time earlier than or equal to τ . That is, if (ui, τi, δi) and (ui+1, τi+1, δi+1)
are consecutive labels in L(s) where ui = ui+1 and τ ≥ τi > τi+1, then we ignore
the second label since δi ≤ δi+1 from Lemma 4.2.

85

Answering Change-point Queries

Answering a change-point query between vertices s and t is a little more involved,
but can be done in O(l log l) time, where l = |L(s)| + |L(t)|. First, we conduct
a merge-sort-like algorithm to enumerate candidates of distance change-points.
From pairs of triples (u, τs, δs) ∈ L(s) and (u, τt, δt) ∈ L(t), we enumerate pairs
(τ, δ) = (max {τs, τt} , δs + δt), which indicates dτ (s, t) ≤ δ. Then, we sort these
pairs by time τ . Finally, we remove unnecessary pairs. That is, if (τi, δi) and
(τi+1, δi+1) are consecutive pairs, where τi ≤ τi+1 and δi ≤ δi+1, then we remove
the second pair.

Again, the remaining issue is to handle triples in a label that share the same
destination vertex. If we check every pair of these triples, in the worst case, it
would take quadratic time. However, for these triples, we can also apply a merge-
sort-like scan algorithm by considering time of these triples. The algorithm is
described in Algorithm 8.1, where v(t) = v, τ(t) = τ and δ(t) = δ for triple
t = (v, τ, δ). In total, the first step and the final step can be done in linear time,
and the time complexity is dominated by sorting.

Algorithm 8.1 Answer change-point query (s, t)

1: procedure QueryChangePoints(s, t, L)
2: is, it ← 0
3: C ← an empty array
4: while is < |L[s]| and it < |L[t]| do
5: if v(L[s][is]) < v(L[t][it]) then
6: is ← is + 1
7: else if v(L[s][is]) > v(L[t][it]) then
8: it ← it + 1
9: else

10: τ ← max {τ(L[s][is]), τ(L[t][it])}
11: δ ← δ(L[s][is]) + δ(L[t][it])
12: Push (τ, δ) to C
13: if v(L[t][it + 1]) 6= v(L[t][it]) then
14: is ← is + 1
15: else if v(L[s][is + 1]) 6= v(L[s][is]) then
16: it ← it + 1
17: else if τ(L[s][is] > τ(L[t][it])) then
18: is ← is + 1
19: else
20: it ← it + 1

21: Sort pairs in C by time.
22: Filter out unnecessary pairs from C.
23: return C

8.1.2 Offline Indexing Algorithm

For presenting the indexing algorithm for contemporary queries, we first de-
scribed a naive labeling algorithm without pruning, then we introduced pruning
to present the indexing algorithm. However, designing an algorithm for historical
queries is more challenging since, while the naive labeling algorithm was obvious
for contemporary queries, this time, even the naive labeling algorithm without
pruning is not trivial for historical 2-hop cover. Therefore, we explain our index-

86

ing algorithm with three steps: we start from an algorithm based on dynamic
programming, next we turn the algorithm into a BFS-like algorithm, and finally
introduce pruning to the algorithm to obtain our indexing algorithm.

Dynamic Programming

As usual, we start from an empty index L0 and construct index Lk from Lk−1 by
adding triples whose destination vertex is vk. Let D be the maximum distance to
a connected vertex from vk regarding all the snapshots. Let T be a (D+1)× |V |
table. We conduct dynamic programming on the table T so that each cell T [δ][u]
denotes the earliest time τ with dτ (vk, u) ≤ δ. First, we fill the cells with distance
zero as T [0][vk] = 0 and T [0][u] =∞ for any u 6= vk. Then, we compute the values
of cells with distance δ > 0 from smaller δ by the following recurrence relation:

T [δ][u] = min
w∈N(u)

{max {T [δ − 1][w], t(w, u)}} ,

for any u 6= vk and T [δ][vk] = 0.

Lemma 8.1. Each cell T [δ][u] denotes the earliest time τ with dτ (vk, u) ≤ δ.

This lemma can be proved by mathematical induction on δ. After computing
the table, we add triple (vk, δ, τ) to label Lk(u) where τ = T [δ][u] if T [δ][u] 6=∞
and δ = 0 or T [δ][u] < T [δ − 1][u].

Historical Naive Landmark Labeling

While the algorithm above computes the correct index, it takes Θ(D |E|) time
and Θ(D |V |) space. In this subsection, we reduce the time and space complexity
by skipping unnecessary computations. Again, we suppose we are to construct
index Lk from Lk−1 by adding triples whose destination vertex is vk.

The key insight here is the following simple fact. For simplicity, we define
T [−1][u] = ∞ for any vertex u in the following. For any vertex u and δ ≥ 0, if
T [δ − 1][w] = T [δ][w] for all w ∈ N(u), then T [δ + 1][u] = T [δ][u]. Therefore, we
avoid vainly computing values of such cells as follows. For each distance δ ≥ 0
and vertex u, we initially set T [δ + 1][u] = T [δ][u]. Then, we only check edges
(w, u) incident to vertex w with T [δ− 1][w] 6= T [δ][w], and update T [δ+1][u] by
max {T [δ][w], t(w, u)} if it is smaller than the current value.

This can be efficiently achieved by managing vertices with queues. We
prepare two queues, Q and Q′, where initially Q contains vk and Q′ is empty.
For each distance δ ≥ 0, supposing that Q contains vertices w with T [δ− 1][w] 6=
T [δ][w], we check edges incident to each vertex w ∈ Q and create Q′ for the next
distance δ + 1. If we obtain T [δ + 1][u] 6= T [δ][u] and u 6∈ Q′, we push u to Q′.
Finally, before incrementing δ, we swap Q and Q′, and clear Q′. Note that, the
algorithm now behaves quite similarly to BFSs, although it may visit a vertex
more than once. We also add triple (vk, T [δ][u], δ) to label L(u) when we draw
vertex u from Q.

However, even using queues, it still takes Ω(D |V |) time and Θ(D |V |) space
due to the two-dimensional table. Thus, instead of straightforwardly using a two-
dimensional table, we use two one-dimensional arrays with length O(|V |), and
avoid full initialization for each distance δ. Consequently, conducting queue-based
dynamic programming and avoiding Θ(|V |) time initialization for each step, the
total time complexity becomes O(m′), where m′ is the number of traversed edges
including duplications. Also note that, by using queues, we do not need to obtain
the maximum distance D beforehand, as it suffices to stop when the queues get
empty.

87

Algorithm 8.2 Pruned BFS from vk ∈ V to create index L′
k for historical

queries.

1: procedure PrunedBFS(G, vk, L
′
k−1)

2: L′
k[v]← L′

k−1[v] for all v ∈ V (G).
3: Q← a queue with only one element vk.
4: T [vk]← 0 and T [v]←∞ for all v ∈ V (G) \ {vk}.
5: T ′[v]←∞ for all v ∈ V (G).
6: for all δ = 0, 1, . . . until Q gets empty do
7: Q′ ← an empty queue.
8: for all u ∈ Q do
9: if QuerySnapshot(vk, u, T [u], L

′
k−1) ≤ δ then

10: continue
11: L′

k[u]← L′
k[u] ∪ {(vk, T [u], δ)}

12: for all w ∈ NG(v) do
13: τ ′ = max {T [u], t(u,w)}
14: if τ ′ < T ′[w] and τ ′ < T [w] then
15: if T ′[w] =∞ then
16: Enqueue w onto Q′.

17: T ′[w]← τ ′.

18: T [u]← T ′[u], T ′[u]←∞ for all u ∈ Q′.
19: Q← Q′.

20: return L′
k

Historical Pruned Landmark Labeling

We finally introduce pruning to the previous algorithm to obtain our indexing
algorithm. Suppose we have started with an empty index L′

0 and we are con-
structing index L′

k from L′
k−1 and the result of the k-th pruned BFS from vk.

Along with the labeling algorithm for contemporary queries, after drawing vertex
u from the queue Q, we issue a query between vk and u, and if the distance is at
most δ, we prune vertex u. The difference from the algorithm for contemporary
queries here is that we issue a snapshot query with regard to time T0[u]. The
total algorithm is described as Algorithm 8.2.

The correctness of this algorithm is not obvious, but can be proved as the
exactly same way as the correctness of the pruned landmark labeling algorithm
for contemporary queries.

Theorem 8.1. For any pair of vertices s, t and i, τ ≥ 0,
QuerySnapshot(s, t, τ, Li) = QuerySnapshot(s, t, τ, L′

i).

Corollary 8.1. For any pair of vertices s and t and τ ≥ 0,
QuerySnapshot(s, t, τ, L′

n) = dτ (s, t).

Corollary 8.2. For any pair of vertices s and t, (τ, δ) ∈
QueryChangePoints(s, t, L′

n) if and only if dτi−1(s, t) 6= dτi(s, t) = δ.

By the same discussion as the standard pruned labeling algorithm, the time
complexity is roughly estimated as O(ml + n2l) time. As with the standard
algorithms for contemporary queries, to exploit structures of real networks, we
adopt the same vertex ordering strategies (i.e., we order vertices from those with
higher degree in the final snapshot).

88

Note on weighted graphs

For handling weighted graphs, the algorithm can be applied by simply using a
priority queue instead of a normal queue. We push triple (v, δ, τ) to the priority
queue if v is reachable by distance δ at time τ . We pop the triple with the
smallest distance to compute labels and traverse edges.

8.1.3 Online Incremental Update Algorithm

Incrementally updating the index to reflect graph changes can be done in the
almost same way as Section 4.5. For a newly added vertex, we just prepare a
new empty label, and for a newly added edge, we resume pruned BFSs from the
endpoints. The time complexity is also the same.

The only difference here is that, as opposed to the contemporary query sce-
nario for which we overwrite existing label entries when the label has an entry
whose destination vertex matches the pair to add, we cannot overwrite existing
entries since they would be used to answer the distance for the past. Instead, we
add the new entry in such a case.

8.2 Experiments

8.2.1 Setup

We conducted experiments on a Linux server with Intel Xeon X5670 and 48GB of
main memory. The proposed methods were implemented in C++. Only indexing
was parallelized to use the six cores, and all the other timing results are sequential.
We use 64 bits for each triple in that for historical queries (8 bits for distance, 24
bits for vertex IDs, and 32 bits represent time).

We used the same set of dynamic graph datasets used in Chapter 5. See
Section 5.2 for the information and description.

8.2.2 Indexing Time, Index Size, and Label Size

For each dataset, we constructed an index from a historical graph data with all the
snapshots except insertions of last 10,000 edges by the offline indexing algorithm.
These last 10,000 edges are used for measuring average update time afterward.
Indexing time, index size and average label size are shown in Table 8.1.

Although indexing time and index size are a little larger than those for con-
temporary queries, they are still acceptable even for large dynamic networks. For
example, it took only two hours for constructing an index from the Wikipedia
dataset. Also note that, since our method can incrementally update an index,
we do not need to reconstruct an index frequently. The index size was 13 GB,
which adequately fits in the main memory of commodity computers of the day.
However, even if only computers with smaller main memory are available, we can
first construct an index on crowd computing services such as Amazon EC2 us-
ing an instance with larger main memory, then we can conduct disk-based query
answering on local computers by storing the index on a local disk.

Average label size is further investigated in Figure 8.2, which presents the
average label size on synthetic networks with different graph size or density. We
find that the average label size does not grow rapidly for both graph size and
density. The indexing time, index size and query time follow similar trend as the
label size.

89

10
0

10
1

10
2

10
3

2
15

2
16

2
17

2
18

2
19

2
20

A
v
e

ra
g

e
 l
a

b
e

l
s
iz

e

Number of vertices

DMS
Hyperbolic
ForestFire

(a) Varying graph size

10
0

10
1

10
2

10
3

 4 8 16 32 64 128

A
v
e

ra
g

e
 l
a

b
e

l
s
iz

e

Density

DMS
Hyperbolic

(b) Varying density

Figure 8.2: Label size for historical queries on synthetic networks with different
size and density.

8.2.3 Query Time

Average query time reported in Table 8.1 is measured by 1,000,000 random
queries after reflecting all the dynamic updates. As a baseline for snapshot
queries, we also report the average time to evaluate a snapshot query by a BFS
for 1,000 random queries. As a baseline for change-point queries, we suppose a
naive method that conducts a BFS for each snapshot. Since this baseline method
takes too long query time, we estimated the average query time by the product
of the average snapshot-query time and the number of snapshots. For both snap-
shot queries and change-point queries, the query time of our method for historical
queries is also generally microseconds and orders of magnitude faster than the
baselines.

8.2.4 Update Time and Label Increase

Average update time listed in Table 8.1 is measured by inserting the last 10,000
edges of each dataset. As with the method for contemporary queries, this method
for historical queries also handles each update in milliseconds. Moreover, as
average label increase in Table 8.1 is small, we can confirm that the label size
grows slowly.

90

T
ab

le
8.
1:

E
x
p
er
im

en
ta
l
re
su
lt
s
o
f
o
u
r
m
et
h
o
d
fo
r
h
is
to
ri
ca
l
q
u
er
ie
s
a
g
a
in
st

re
a
l-
w
o
rl
d
a
n
d
sy
n
th
et
ic

n
et
w
or
k
s.

D
at
as
et

H
is
to
ri
ca
l
P
ru
n
ed

L
a
n
d
m
a
rk

L
a
b
el
in
g
(T

h
is

w
or
k
)

B
F
S

D
at
as
et

In
d
ex
in
g

In
d
ex

S
n
a
p
sh
o
t

C
h
a
n
g
e-
p
o
in
t

U
p
d
a
te

L
a
b
el

L
a
b
el

S
n
a
p
sh
o
t

C
h
an

ge
-p
oi
n
t

ti
m
e

si
ze

q
u
er
y
ti
m
e

q
u
er
y
ti
m
e

ti
m
e

si
ze

in
cr
ea
se

q
u
er
y
ti
m
e

q
u
er
y
ti
m
e

E
p
i
n
i
o
n
s

23
.1

s
23

6
M
B

2
.7

µ
s

4
.6

µ
s

0
.3

m
s

2
3
4
.2

2
.6
×

1
0
−
4

6
.2

m
s

25
93

s
E
n
r
o
n

5.
4
s

86
M
B

1
.6

µ
s

3
.0

µ
s

0
.2

m
s

1
2
8
.5

4
.0
×

1
0
−
4

5
.3

m
s

30
41

s
P
2
P

25
96

.4
s

9.
7
G
B

1
2
.4

µ
s

2
2
.0

µ
s

1
0
.7

m
s

1
2
2
7
.9

2
.7
×

1
0
−
4

7
9
.5

m
s

>
1d

ay
Y
o
u
T
u
b
e

12
81

.8
s

9.
1
G
B

4
.5

µ
s

8
.1

µ
s

2
.1

m
s

3
7
4
.7

4
.0
×

1
0
−
5

1
7
7
.5

m
s

>
1d

ay
W
i
k
i
p
e
d
i
a

51
65

.9
s

13
.0

G
B

9
.8

µ
s

1
2
.7

µ
s

8
.3

m
s

9
1
9
.5

3
.0
×

1
0
−
5

4
1
3
.3

m
s

>
1d

ay

D
M
S

92
0.
0
s

3.
8
G
B

4
.0

µ
s

5
.6

µ
s

1
.0

m
s

4
8
1
.1

8
.6
×

1
0
−
5

1
2
6
.4

m
s

>
1d

ay
H
y
p
e
r
b
o
l
i
c

24
.7

s
19

5
M
B

0
.5

µ
s

0
.7

µ
s

0
.1

m
s

2
3
.9

2
.9
×

1
0
−
6

8
6
.2

m
s

>
1d

ay
F
o
r
e
s
t
f
i
r
e

10
56

.3
s

6.
5
G
B

8
.2

µ
s

1
2
.8

µ
s

3
.9

m
s

8
3
5
.9

3
.6
×

1
0
−
4

9
1
.4

m
s

>
1d

ay

91

8.3 Application to Evolving Network Analysis

In this section, we demonstrate the usefulness of our historical indexing method
for evolving network analysis. The proposed method enables quick and fine-
grind temporal analysis of large-scale dynamic networks. For example, with our
index, users can instantly and interactively check the transition of various features
related to distances, which has never been available at all without our index.

We see by the case study in Section 8.3.1 that transitions of distance and
shortest-path themselves are useful and of interest. Furthermore, based on our
method, we see that we can also efficiently compute the transition of the following
kinds of network features in the following sections.

8.3.1 Ego Network Analysis

Figure 8.3 illustrates an example of analysis on a real-world Facebook sub-
graph [VMCG09] based on historical change-point queries. Figure 8.3a depicts
an ego network, i.e., the induced subgraph of a center vertex and its neighbors,
where the center vertex is the gray one. From the figure, we can observe that
there are two clusters on the left and right of the center vertex. Figure 8.3b
shows the transition of the distances between the center vertex and its neighbors,
where the colors of the lines correspond to those of the vertices in Figure 8.3a.
We can confirm that the time periods of the appearance of the friendship links
are different between the two clusters. Moreover, we find that the two clusters
happened quite differently. That is, while the left cluster gradually approached
the center vertex, the right cluster became neighbors almost instantly.

(a) An ego network

1

2

3

4

5

6

7

8

9

Time

D
is

ta
nc

e

(b) Distances to the neighbors

Figure 8.3: An example of social network analysis on a dynamic Facebook sub-
graph [VMCG09] using our method for historical shortest-path distance queries.

8.3.2 Average Distance and Effective Diameter

Distance distribution is one of the most important features of networks, and the
transition of distance distribution of dynamic networks is of strong interest to the
data mining and social network analysis community [LKF07]. Though calculating
distance distribution of one graph is already too costly, to obtain the transition
of it, we need to do so for many snapshots of graphs, which would be impossi-
ble for large historical networks. Using our historical indexing method, however,
we can estimate the transition just by evaluating random change-point queries
with regard to a set of randomly sampled pairs of vertices. To demonstrate the
effectiveness of our method, we computed the transition of the average distance

92

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

A
v
e

ra
g

e
 d

is
ta

n
c
e

Snapshot

Enron
Epinions

P2P

YouTube
Wikipedia

DMS

Forestfire

(a) Average distance

 4

 6

 8

 10

 12

 14

E
ff

e
c
ti
v
e

 d
ia

m
e

te
r

Snapshot

Enron
Epinions

P2P

YouTube
Wikipedia

DMS

Forestfire

(b) Effective diameter

Figure 8.4: Transition of average distance and effective diameter.

 0.06

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

C
lo

s
e

n
e

s
s
 C

e
n

tr
a

lit
y

Snapshot

(a) Enron

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

C
lo

s
e

n
e

s
s
 C

e
n

tr
a

lit
y

Snapshot

(b) Epinions

Figure 8.5: Transition of the closeness centrality of some popular vertices.

between pairs and the effective diameter (the 90th percentile distance) of vari-
ous networks (Figure 8.4). We can observe that average distance decreases over
time, which confirms the claim of [LKF07], but the effective diameter sometimes
increases.

8.3.3 Closeness Centrality

Closeness centrality is one of the most popular network centralities defined on
vertices. There are several different definitions, but all of them are based on
distances to other vertices, and thus they can be efficiently estimated by random
change-point queries. Here, we adopt the definition that defines the closeness
centrality of vertex v as 1

|V |
∑

u∈V 2−d(v,u). We picked up several vertices of high
closeness centralities from Enron and Epinions and computed the transition of
their closeness centralities by the proposed method (Figure 8.5). We can see that
the closeness centrality sometimes drastically increases as some moment.

8.3.4 Temporal Hop Plot

To study distance distribution in depth, the (temporal) hop plot, which is the
transition of the fraction of pairs within a fixed distance, is also used. We can
approximate the hop plot by evaluating change-point queries with regard to a
set of randomly sampled pairs of vertices. In Figure 8.6, we illustrate the hop
plot of YouTube and Wikipedia for various distances. We observe that it tends
to increase over time, as expected from the fact that average distance decreases
over time.

93

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
e

rc
e

n
ti
le

Snapshot

1
2
3
4
5
6
7
8
9

(a) YouTube

 0

 0.2

 0.4

 0.6

 0.8

 1

P
e

rc
e

n
ti
le

Snapshot

1
2
3
4
5
6
7

(b) Wikipedia

Figure 8.6: Temporal hop plot.

94

Chapter 9

Top-k Distance Queries on Complex

Networks

In this chapter, we study top-k shortest-path distance queries. While many
efficient methods for answering standard (top-1) distance queries have been de-
veloped, none of these methods are directly extensible to top-k distance queries.
We develop a new framework for top-k distance queries based on 2-hop cover
and then present an efficient indexing algorithm based on our pruned landmark
labeling scheme.

First we propse the indexing method for distance queries in Section 9.1, and
then we present the experimental results in Section 9.2. Moreover, in Section 9.3,
we discuss the usefulness of top-k distance queries in real applications.

Motivation

As discussed before, the shortest-path distance is widely applied as a proximity
measure between vertex pairs. However, on complex unweighted graphs such
as social and web graphs, there is a fundamental drawback of basing relevance
on distance alone. Specifically, distances should be integers and the diameters
of real-world networks are typically small [Mil67,TM69,WS98,BBR+12,BV12].
Such small diameter greatly reduce the number of possible distances and preclude
the full use of the underlying structure.

This problem is clearly depicted in Figure 9.1. In each graph in the figure,
the distance between the pair of black vertices is four. Hence, based on distance
alone, the black pairs in all three graphs have the same similarity. However,
the pair in graph (c) seems more tightly connected than the pairs in graphs (a)
and (b), since this pair is connected by a greater number of shortest paths.

(a) (b) (c)

Figure 9.1: Examples of connection between two vertices.

95

This intuitive concept can be naturally implemented by adopting the top-k
distances. Table 9.1 presents the top-k distances between the pair of black vertices
in each graph of Figure 9.1. Although the pairs in each graph are separated by
the same distance, their top-k distances markedly vary, providing a potential
means of distinguishing these three graph structures.

Table 9.1: Distances and top-k distances between the two black vertices in the
examples above.

Graph Distance Top-k Distances

(a) 4 [4, 6, 6, 6, 6, 8, 8, . . .]
(b) 4 [4, 4, 4, 6, 6, 6, 6, . . .]
(c) 4 [4, 4, 4, 4, 4, 4, 4, . . .]

Formal Problem Definition

Let P be a set of paths. The i-th shortest path in P refers to the i-th path in P ,
ordered by length, where ties are broken arbitrarily. For a pair of vertices (s, t),
let Pst be the set of all (unnecessarily simple) paths between s and t. Then for
two vertices s and t, the i-th shortest path between s and t is the i-th shortest
path in Pst. Let di-th(s, t) denote the length of the i-th shortest path in Pst. If
the size of the corresponding set is less than i, then we set them to ∞. We study
the following top-k distance query problem.

Problem 9.1 (Top-k Distance Query).
Given: A pair of vertices (s, t).
Answer: An array (d1st(s, t), d2nd(s, t), . . . , dk-th(s, t)).

An internal vertex of a path refers to a vertex in the path that is not an
endpoint of it. For a vertex v, let P>v

st be the set of paths in Pst whose internal

vertices are all larger than v. Similarly, let P 6>v
st be the set of paths in Pst such

that at least one internal vertex is smaller than or equal to v. Let d>v
i-th(s, t) and

d 6>v
i-th(s, t) denote the length of the i-th shortest path in P>v

st and P 6>v
st , respectively.

We define d≥v
i-th(s, t) and d 6≥v

i-th(s, t) similarly.

9.1 Top-k Pruned Landmark Labeling

This section describes our proposed method and show its correctness. We also
suggest several important techniques for practical performance enhancement.

9.1.1 Index Data Structure

The data structure and query algorithm of the proposed method are based on the
general framework of 2-hop cover, which is designed for standard (top-1) distance
queries. However, as normal distance queries do not consider the number of paths,
the main challenge in processing top-k distance queries is preventing multiple
counts of the same path. To this end, we require a more involved framework.

For each vertex v, our method precomputes and stores the following two
labels:

• Distance label L(v), comprising a set of pairs (u, δ) of a vertex and a path
length. If we gather lengths in L(v) associated with a vertex u, they should
form the sequence (d>v

1st(v, u), d
>v
2nd(v, u), . . . , d

>v
`-th(v, u)) for some 1 ≤ ` ≤ k.

96

• Loop label C(v), constituting a sequence of k integers (δ1, δ2, . . . , δk). This
sequence should equal (d≥v

1st(v, v), d
≥v
2nd(v, v), . . . , d

≥v
k-th(v, v)).

An index is a pair I = (L,C), where L and C are the sets of distance labels
{L(v)}v∈V and loop labels {C(v)}v∈V , respectively.

9.1.2 Query Algorithm

Given an index I = (L,C) and a pair of vertices (s, t), we compute the top-k
distances between s and t as follows. First, we compute the following multiset.

∆(I, s, t) = {δsv + δvv + δvt | (v, δsv) ∈ L(s),

δvv ∈ C(v), (v, δvt) ∈ L(t)}.

Intuitively, we first move from s to v, then loop back to v several steps later, and
finally move from v to t. Note that from the definition of distance labels and
loop labels, every internal vertex in the path from s to t (except v itself) is larger
than v.

Let Query(I, s, t) denote the smallest k elements in the multiset ∆(I, s, t).
If |δ(I, s, t)| < k, the remaining entries are filled with ∞. This case occurs only
when s and t are disconnected or when s = t and isolated from other vertices.
Our answer to the query (s, t) is Query(I, s, t).

9.1.3 Indexing Algorithm

Our index constructing algorithm is summarized in Algorithm 9.1. We first com-
pute the loop label C(v) for every vertex v. We then construct the distance labels
L by conducting a pruned BFS from each vertex.

Algorithm 9.1 Indexing Algorithm

1: procedure ConstructIndex(G)
2: for i = 1 to n do Compute C(vi) using the modified BFS.
3: L(v)← ∅ for all v ∈ V .
4: for i = 1 to n do PrunedBFS(G, vi).
5: return (C,L).

Algorithm for Computing Loop Labels

We construct the loop labels as follows. For each vertex v, using vertices larger
than or equal to v, we perform a modified version of breadth first search (BFS).
In the BFS, each vertex may be visited up to k times. The first k visits to the
vertex v gives the distance sequence d≥v

1st(v, v), d
≥v
2nd(v, v), . . . , d

≥v
k-th(v, v).

The modified BFS returns to the starting vertex long before all vertices in the
graph have been visited. Consequently, the running time is very small in practice
and empirically estimated as O(nk) time in total from our experiments.

Algorithm for Computing Distance Labels

We assume that vertices in V are ordered as v1, v2, . . . , vn. Then for each 1 ≤
i ≤ n, we perform a pruned BFS from vi (Algorithm 9.2). The pruned BFS is
essentially a modified version of the BFS from v that visits the same vertex at
most k times. The crucial difference is the non-trivial pruning; that is, when
visiting a vertex u at distance δ, the process is discontinued if δ is larger than

97

or equal to the k-th shortest distance computable by the current index (L,C)
(Line 5).

Algorithm 9.2 Pruned Top-k BFS from v ∈ V .

1: procedure PrunedBFS(G, v)
2: Q← a queue with only one element (v, 0).
3: while Q is not empty do
4: Dequeue (u, δ) from Q.
5: if δ < max (Query((L,C), v, u)) then
6: Add (v, δ) to L(u).
7: for all w ∈ V such that (u,w) ∈ E,w > v do
8: Enqueue (w, δ + 1) onto Q.

We now estimate the time complexity of this algorithm. Let l be the average
size of labels. We visit O(nl) vertices in total, traversing O(mn) edges on average
and evaluating a query in O(l) time (by using the fast pruning technique intro-
duced later). Thus, the total time complexity of this part is O(ml+ nl2). In our
experiments, l was a few hundred.

9.1.4 Proof of Correctness

The correctness of our method is shown as follows. Let Li denote the set of
distance labels L after the i-th pruned BFS from vi. We define L0(v) = ∅ for any
v. Let Ii denote pair (Li, C) of the partially constructed set of distance labels
and the set of loop labels. We prove the following lemma.

Lemma 9.1. For every integer i where 0 ≤ i ≤ n, and every pair of vertices
(s, t), Query(Ii, s, t) = (d 6>vi

1st (s, t), d
6>vi
2nd(s, t), . . . , d

6>vi
k-th(s, t)) holds.

Proof. We prove the claim by induction on i. When i = 0, we have
Query(Ii, s, t) = (∞,∞, . . . ,∞) and the claim clearly holds. Suppose that the
claim holds for every i′ < i. For a fixed pair of vertices (s, t) where s 6= t, we
validate the claim for i and the pair (s, t).

Note that we can already compute Query(Ii−1, s, t) =

(d
6>vi−1

1st (s, t), d
6>vi−1

2nd (s, t), . . . , d
6>vi−1

k-th (s, t)). Let P denote the set of paths P

such that (i) P is in P>vi−1

st , (ii) P passes through vi, and (iii) the length of P is

smaller than d
6>vi−1

k-th (s, t). Let P ′ be the first k elements in P. It suffices to show
that, after the i-th pruned BFS, we can also compute the distances of paths in
P ′.

Let P ∈ P ′. We can split P into three parts Psvi , Pvivi , and Pvit. Here,
Psvi denotes the subsequence of P from s to the first appearance of vi in P ,
Pvivi denotes the subsequence of P from the first appearance of vi to the final
appearance of vi in P , and Pvit denotes the subsequence of P from the last
appearance of vi in P to t. Note that Pvivi must be among the first k elements in
P>vi
vivi ; otherwise shorter k paths are possible and P ∈ P ′ is contradicted. Hence,

C(vi) must include the length of Pvivi .
Now we observe that the BFS from vi along path Pvit is not pruned in the

i-th pruned BFS (and similarly for Psvi). To illustrate by contradiction, suppose
that the BFS is pruned at some vertex u on path Pvit. In this case, there exist

at least k paths in P 6>vi−1
viu shorter than δ, where δ is the distance from vi to u

in the BFS. For each of these k paths, we concatenate Psvi , Pvivi , and the suffix

of Pvit from u to t. Then, we obtain k paths in P 6>vi−1

st that are shorter than P ,

98

and therefore shorter than d
6>vi−1

k-th (s, t) from condition (iii). Hence, we reach a
contradiction.

Corollary 9.1. At the end of Algorithm 4.2, we can correctly answer top-k dis-
tance queries using the constructed index.

9.1.5 Techniques for Efficient Implementation

We introduce several key techniques for practical performance improvement.

Vertex Ordering Strategy

By properly selecting the order of vertices from which we conduct pruned BFSs,
our pruning can drastically reduce the search space and label sizes by exploit-
ing the structure of real-world networks, greatly enhancing the efficiency of the
proposed method. This is possible because the real networks contain highly cen-
tralized vertices (sometimes called hubs). As a heuristic vertex ordering strategy,
vertices are selected in order of decreasing degrees. Further discussion is provided
in [AIY13].

Fast Pruning

When constructing distance labels, many queries are evaluated for pruning. How-
ever, when conducting a pruned BFS from a vertex v, queries are limited to “Are
there more than k paths of length less than δ between v and u?” Given this
restriction, we can reduce the query time. For each vertex w in the distance label
of v, we can precompute the number cw,δ′ of paths between v and w of length not
exceeding δ′ using the loop label C(w). Suppose that we have reached vertex u
in the pruned BFS conducted from v. We can then compute the number of paths
between v and u of length less than δ as

∑
(w,δ′,c)∈L(u) c · cw,δ−δ′ .

Merged Queue Entries

When a (pruned) BFS is performed from a vertex v, rather than pair (u, δ), which
denotes the existence of a path of length δ between v and u, triplets (u, δ, c) are
pushed onto the queue. These triples specify that c paths of length δ exist between
v and u, This technique enables the simultaneous handling of many paths, and
significantly reduces the number of pushes onto the queue. Hence, it significantly
reduces the running time.

Merged Label Entries

Related to the above technique, instead of pairs (u, δ), which denotes that there
is a path of length δ between v and u, triplets (u, δ, c) are stored in distance
labels. These triplets indicate that c paths of length δ exist between v and u. A
similar technique is applicable to loop labels.

9.1.6 Extensions

Directed graphs

If the input graph is a directed graph, we compute and store two distance labels
LIN(v) and LOUT(v) for each vertex v, where LIN(v) and LOUT(v) contain the
distances from and to v, respectively.

99

Weighted graphs

For weighted graphs, we can replace the pruned BFS by pruned Dijkstra’s algo-
rithm. In this scheme, the queue used in Algorithm 4.1 is replaced by a priority
queue. The time complexity becomes O(ml + nl(log n+ l)).

9.2 Experiments

In this section, we show the scalability, efficiency and robustness of the proposed
method by experimental results using real-world networks.

9.2.1 Setup

Environment

All experiments were conducted on a Linux server with Intel Xeon X5670 (2.93
GHz) and 48 GB of main memory. The proposed method was implemented in
C++.

Datasets

The target applications of the proposed method are graph mining tasks such as
network-aware searching and link prediction. Therefore, our experiments were
conducted on publicly available real-world social and web graphs12345. The sizes
and types of these graphs are listed in Table 9.2. We treated all the graphs as
unweighted undirected graphs.

Algorithms

As there are no previous indexing methods for top-k distances, the proposed
method was evaluated against the following two algorithms without precompu-
tation.

• The first is the BFS-based naive approach, which uses a FIFO queue in
the graph search, but which allows at most k visits to each vertex. This
algorithm was also implemented in C++ by the authors.

• The second is Eppstein’s algorithm [Epp98], which theoretically attains
near-optimal time complexity. We adopted the C++ implementation of
Jon Graehl6.

In what follows, we denote the proposed method by Top-k PLL and these two
previous methods by BFS and Eppstein.

1http://lovro.lpt.fri.uni-lj.si/support.jsp
2http://grouplens.org/datasets/hetrec-2011/
3http://snap.stanford.edu/
4http://socialnetworks.mpi-sws.org/datasets.html
5http://law.di.unimi.it/datasets.php [BV04]
6http://www.ics.uci.edu/ eppstein/pubs/p-kpath.html

100

T
ab

le
9.
2:

D
at
as
et

in
fo
rm

at
io
n
an

d
p
er
fo
rm

a
n
ce

o
f
th
e
p
ro
p
o
se
d
a
n
d
ex
is
ti
n
g
m
et
h
o
d
s
o
n
re
a
l-
w
o
rl
d
d
a
ta
se
ts

(k
=

8)
.

D
at
as
et

T
o
p
-k

P
L
L

(T
h
is

w
or
k
)

B
F
S

E
p
p
st
ei
n

N
am

e
T
y
p
e

|V
|

|E
|

In
d
ex
in
g
ti
m
e

In
d
ex

si
ze

Q
u
er
y
ti
m
e

F
ac
eb

o
ok

-1
S
o
ci
al

33
4

2
,2
1
8

1
3
.7

m
s

1
7
8
.6

K
B

1
.9

µ
s

2
2
7
.1

µ
s

3
78
.4

µ
s

L
as
t.
fm

S
o
ci
al

1,
89

2
1
2
,7
1
7

1
2
5
.3

m
s

1
.3

M
B

1
.7

µ
s

1
.6

m
s

7.
5
m
s

G
rQ

c
S
o
ci
al

5,
24

2
1
4
,4
9
6

1
5
2
.9

m
s

2
.7

M
B

1
.6

µ
s

2
.2

m
s

7.
3
m
s

H
ep
T
h

S
o
ci
al

9,
87

7
2
5
,9
9
8

6
3
1
.2

m
s

7
.8

M
B

2
.2

µ
s

5
.5

m
s

16
.5

m
s

C
on

d
M
at

S
o
ci
al

23
,1
33

1
8
6
,9
3
6

3
.2

s
2
6
.4

M
B

3
.1

µ
s

1
5
.2

m
s

1
58
.8

m
s

F
ac
eb

o
ok

-2
S
o
ci
al

63
,7
32

1
,5
4
5
,6
8
6

2
3
9
.0

s
7
1
6
.8

M
B

1
5
.2

µ
s

1
1
7
.6

m
s

2.
7
s

Y
ou

T
u
b
e-
1

S
o
ci
al

1,
15

7,
82

8
4
,9
4
5
,3
8
2

6
2
4
.3

s
2
.3

G
B

5
.1

µ
s

1
.5

s
7.
0
s

Y
ou

T
u
b
e-
2

S
o
ci
al

3,
23

8,
84

8
1
8
,5
1
2
,6
0
6

1
6
2
7
.1

s
9
.6

G
B

3
.9

µ
s

5
.0

s
41
.1

s

N
ot
re
D
am

e
W
eb

32
5,
72

9
1
,4
9
7
,1
3
4

5
2
.3

s
6
1
7
.7

M
B

2
.9

µ
s

2
4
9
.8

m
s

1.
7
s

S
ta
n
fo
rd

W
eb

28
1,
90

3
2
,3
1
2
,4
9
7

4
2
.5

s
2
3
0
.0

M
B

1
.7

µ
s

4
5
4
.9

m
s

2.
9
s

B
er
k
S
ta
n

W
eb

68
5,
23

0
7
,6
0
0
,5
9
5

1
0
8
.7

s
1
.0

G
B

1
.9

µ
s

6
4
3
.3

m
s

10
.8

s
In
d
o

W
eb

1,
38

2,
90

6
1
6
,5
3
9
,6
4
4

2
6
9
5
.3

s
6
.0

G
B

1
2
.1

µ
s

1
.4

s
25
.4

s

101

9.2.2 Indexing Time and Index Size

The high scalability of the proposed method is evident from the index construc-
tion time and constructed index size reported in Table 9.2. Indices were con-
structed from large social and web graphs comprising tens of millions of edges
(YouTube-2 and Indo) in one hour. The index sizes are below 10 GB, easily
accommodated by the main memories of modern commodity computers.

While the index construction of all datasets was consistently efficient, we ob-
serve that the indexing time does not depend on graph size alone. The efficiency
of the proposed method relies on the efficiency of pruning, and is thus related to
network properties such as degree distribution and clustering coefficient. How-
ever, because the graphs of real-world social, web, computer and biological net-
works exhibit similar qualitative properties, the proposed method is robust and
consistently efficient. The same argument is valid for index size.

Figure 9.2a and 9.2b illustrate the effect of k on the indexing time and index
size in the proposed method. Both are relatively insensitive to the value of k.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

 1 2 4 8 16 32 64

In
d
e
x
in

g
 t
im

e
 (

s
e
c
)

K

Facebook-1
Last.fm

CondMat

(a) Indexing time

10
-1

10
0

10
1

10
2

10
3

 1 2 4 8 16 32 64

In
d
e
x
 s

iz
e
 (

M
B

)

K

Facebook-1
Last.fm

CondMat

(b) Index size

Figure 9.2: Effect of k on indexing time and index size.

9.2.3 Query Time

The proposed method generally answers queries within microseconds, very much
faster than the other algorithms (Table 9.2). Indeed for the largest dataset,
YouTube-2, the query time was six orders of magnitude faster than those of the
BFS-based and Eppstein algorithms. This query time enables top-k distances to
be used in real-time interactive applications such as network-aware search for the
first time. In our experiments the BFS-based method was faster than Eppstein’s
algorithm. This is due to the big constant factor hidden in the O-notation of the
time complexity of Eppstein’s algorithm, as it involves complex data structure
manipulation.

Figure 9.3 plots the query time as a function of k. Although the query time
increased with k, it remained sufficiently fast at high k.

9.3 Application to Graph Data Mining

In [AHN+15], the usefulness of our indexing method for top-k distance queries
are demonstrated by applying it to the link prediction problem [LNK03]. In
particular, we confirm that top-k distances can contribute to prediction precision
improvement. Note that our indexing method enables the first use of the top-k
distances for such tasks, because top-k distances must be computed for many
pairs of vertices during training and evaluation.

102

10
0

10
1

 1 2 4 8 16 32 64

Q
u
e
ry

 t
im

e
 (

µ
s
)

K

Facebook-1
Last.fm

CondMat

Figure 9.3: Effect of k on query time.

We selected link prediction as it is one of the most fundamental and popular
problems on graphs in the AI and Web communities. However, the results suggest
the applicability of top-k distances to other graph tasks such as network-aware
searching.

it is empirically shown that the support vector machine (SVM) with the top-
k distances as its feature outperforms a number of baseline methods including
singular value decomposition and random walk with restart. We emphasize that
our indexing method makes it possible for the first time to use the top-k distances
for such tasks.

103

Chapter 10

Treewidth and Empirical Graph Tractability

In this chapter, we tackle the long-standing question in this field: what is the key
factor in addition to network size that has a large effect on the size of constructed
indices for graph path queries? As we have discussed several times in this thesis,
state-of-the-art graph indexing algorithms, including ours, exploit many common
structural properties of real-world graphs. Therefore, the performance (i.e., in-
dexing time, index size and query time) of such algorithms depends not only the
sizes of networks, and indeed vary largely even between networks with almost the
same size (we confirm this point in Section 10.2.1).

Therefore, our goal here is to empirically estimate the tractability (or diffi-
culty) of networks. To that end, we propose to use upper bound of treewidth
obtained by heuristic tree decomposition algorithms. Here we focus on 2-hop-
based indexing methods for distance queries, but we believe that similar results
also hold for other problems where state-of-the-art methods are designed to ex-
ploit the structures of real networks.

First, as previous decomposition algorithms suffer from the drawback of scal-
ability, we present a faster algorithm based on the new notion of star-based
representation in Section 10.1. Then, we discuss the experimental results in
Section 10.2. In particular, we confirm that the width of a tree decomposition
obtained by our algorithm is indeed informative.

10.1 Tree Decomposition Algorithm

In this section, we give a detailed description of our algorithm for constructing a
tree decomposition. A naive algorithm for the decomposition can be obtained by
extending the well-known min-degree heuristic [BHS03]; however, its scalability
is highly limited because of its costly clique materialization. To construct the de-
compositions for large networks, we propose a new algorithm with several orders
of magnitude better scalability using the new idea of a star-based representation.
Our method is also based on the min-degree heuristic; thus we first explain this
heuristic (Section 10.1.1), and then present our new algorithm (Section 10.1.2).

10.1.1 Min-degree Heuristic Algorithm

Our algorithm is based on the min-degree heuristic [BHS03], which is a standard
tree decomposition algorithm in practice [XJB05,Wei10,ASK12].

At a high level, the algorithm first generates a list of bags, and then constructs
a tree of these bags (Algorithm 10.1). To generate a list of bags, the algorithm
repeatedly reduces a vertex with the smallest degree. The reduction of vertex
v includes of three steps. First, we create a new bag Vv including v and all its
neighbors. Second, we change the graph G by removing node v. Third, we create

104

a clique among those vertices in Vv \ {v}. Then, we construct the tree of the
tree decomposition from the list of bags. We set the parent of bag Vv as bag Vp,
where (Vv \ {v}) ⊆ Vp. We can always find the valid parent because all neighbors
of a reduced vertex are contained in a clique. Figure 10.1 illustrates a running
example of the min-degree heuristic algorithm.

Algorithm 10.1 Min-degree heuristic.

1: Repeatedly reduce a vertex with minimum degree to generate a list of bags.
2: Add a bag with all the remaining vertices to the list as the root bag.
3: Construct a tree of these bags.

Drawback of Scalability Even if we assume that the adjacency lists are man-
aged in hash tables and operations on edges can be performed in O(1) time,
reducing vertex v takes Θ(|Vv|2) time. Thus, in total, the algorithm takes
Θ(

∑
t∈T\{r} |Vt|2) time. Furthermore, we need to materialize edges of cliques;

hence space consumption is also too large. Therefore, even if we use a relatively
small parameter d (e.g., 100), it becomes impractical to apply the described al-
gorithm to large-scale networks.

10.1.2 Proposed Tree Decomposition Algorithm

Overview

The idea behind our method is to virtually conduct the min-degree heuristic
algorithm to avoid costly clique materialization. Rather than naively inserting
all the edges of the cliques, we introduce star-based representation to maintain
clique edges efficiently. In this representation, all operations on graphs used in
the min-degree heuristic correspond to simple operations, such as modification of
roles of vertices and contraction of edges, which leads to improved scalability of
several orders of magnitude.

Star-based Representation Here we deal with two kinds of graphs: A (star-
based) representation graph is what we store and maintain in the memory, and a
represented graph corresponds to a virtual snapshot of a graph represented by a
representation graph that would be maintained by the naive min-degree heuristic
algorithm.

In the star-based representation, each vertex belongs to one of the following
two types: normal vertices or hub vertices. Two hub vertices are never connected,
i.e., edges connect either two normal vertices or a normal vertex and a hub vertex.
The represented graph can be obtained by a representation graph by (1) adding
edges to make its neighbors a clique for all hub vertices and (2) removing hub
vertices. For example, the representation graphs shown in Figures 10.2a and
10.2c represents the graphs shown in Figures 10.2b and 10.2d, respectively.

Overall Algorithm At a high level, our algorithm conducts the min-degree
heuristic (Algorithm 10.1) on virtually represented graphs, i.e., it repeatedly
reduces vertices in the represented graph to generate a list of bags. Then our
algorithm constructs the tree of the bags. To construct the tree, we use the same
tree construction algorithm. Therefore, as noted before, the main difference here
is that, during the reduction phase, we do not maintain the represented graph

105

0

2

4

3

6

5

7

1

89

(a) The
original
graph.

0

2

4

3

6

5

7

1

89

(b) Chose
vertex 0.

0

24

1

2

3

4

6

5

7

89

(c) Reduced ver-
tex 0.

0

24

1

2

3

4

6

5

7

89

(d) Chose vertex
1.

0

2 4

1

2

3

4

2

3

4

6

5

7

8 9

(e) Reduced vertex 1.

0

24

1

2

3

4

2

3

4

6

3

4

5

6

7

8 9

(f) Reduced vertex 2.

0

24

1

2

3

4

2

3

4

6

5

6

7

8

3

4

5

6

7

9

(g) Reduced vertex 8.

0

24

1

2

3

4

2

3

4

6

5

6

7

8

5

6

7

9

3

4

5

6

7

(h) Reduced vertex 9.

Figure 10.1: An example of computation process of a tree decomposition.

itself. We manage the star-based representation graph instead. Thus, we explain
how to reduce vertices using star-based representation for enumerating bags.

Reducing a Vertex First, for an easier case, we consider a situation in which
we reduce vertex v, whose neighbors are all normal vertices. To remove v and
make its neighbors a clique in the represented graph, we must alter the vertex
type of v from normal to hub.

Let us now consider a general situation, where some of v’s neighbors in the
representation graph are hub vertices. One of the challenges here is the fact

106

6

9

8
1

7

2
3

5

4

(a) A star-based representation of
a graph.

6

9

8
1

7

5

4

(b) The represented graph.

6 9

7

8

1

5

4

(c) The star-based representation af-
ter reducing vertex 1.

6 9

7

8

5

4

(d) The represented graph after re-
ducing vertex 1.

Figure 10.2: Star-based representation and reduction. The white vertices are
normal vertices, and gray vertices are hub vertices.

that no direct edges can exist in the representation graph between some of v’s
neighbors due to these neighbor hub vertices. To make v’s neighbors a clique in
the represented graph, we must create a new hub vertex that is connected to all
these neighbors.

Rather than creating such a new hub from scratch, the new hub can be ef-
ficiently composed by contracting v and all the neighboring hub vertices. Con-
traction of two vertices means removing the edge between them and merging two
endpoints. For example, reducing the vertex 1 in the represented graph shown in
Figure 10.2b corresponds to contracting vertices 1, 2, and 3 in the representation
graph depicted in Figure 10.2a, thus yielding the representation graph in Fig-
ure 10.2c. By doing so, as we will discuss in Section 10.1.2, the time complexity
becomes almost linear to the output size using proper data structures. Moreover,
we never add any new edge to the representation graph. Therefore, the number
of edges in the representation graph never increases; thus, space consumption is
also kept in linear.

Details

Finding a Vertex to Reduce Precisely finding a vertex with minimum degree
is too costly because we must track the degree of all vertices. Therefore, we
approximately find a vertex with minimum degree by using a priority queue as
follows. First, we insert all vertices into the priority queue, and use their current
degree as keys. To find a vertex to reduce, we pop a vertex with the smallest
key from the priority queue. If its current degree is the same as the key, then we
reduce the vertex. Otherwise, we reinsert the vertex to the priority queue with
its new degree.

107

Data Structures We manage adjacency lists in hash tables to operate edges
in constant time. To efficiently contract edges, we manage groups of vertices and
merge adjacency lists, similar to the weighted quick-find algorithm [Yao76].

Time Complexity We roughly estimate the time complexity. As we contract
vertices similar to the weighted quick-find algorithm, the expected total time
consumed for edge contractions is O(m) time [KS78]. Reducing a vertex v takes
approximately O(d′), where d′ is the degree of v. Therefore, we expect that the
proposed algorithm computes a tree decomposition in O(

∑
i<d idi + m) time,

where di is the number of vertices of degree i.

10.2 Results and Discussion

In Table 10.1, the information of small datasets and results of our tree decompo-
sition are given. Note that our tree decompositions are not necessarily optimal,
and hence the width given in Table 10.1 is just an upper bound of treewidth.
However, the aim of this section is to show how informative the width of a tree
decomposition obtained by our algorithm is.

In the following section, we focus on two state-of-the-art indexing methods:
pruned landmark labeling and IS-label [FWCW13]. Both are based on the 2-
hop cover framework. While both pruned landmark labeling and IS-label use
further sophisticated frameworks based on 2-hop cover, they can be used to con-
struct standard 2-hop indices. Therefore, for simplicity, in our experiments we
constructed standard 2-hop indices by these methods, i.e., pruned landmark la-
beling was not combined with the bit-parallel labeling technique and IS-label
constructed complete vertex hierarchy.

108

T
ab

le
10
.1
:
In
fo
rm

at
io
n
of

sm
al
l
d
at
as
et
s,

re
su
lt
s
of

o
u
r
fu
ll
tr
ee

d
ec
o
m
p
o
si
ti
o
n
,
a
n
d
si
ze
s
o
f
2
-h
o
p
in
d
ic
es

co
n
st
ru
ct
ed

b
y
st
at
e-
of
-t
h
e-
ar
t
in
d
ex
in
g

m
et
h
o
d
s
fo
r
sh
or
te
st
-p
at
h
d
is
ta
n
ce

q
u
er
ie
s.

D
a
ta
se
t
In
fo
rm

a
ti
o
n

T
re
e
d
ec
o
m
p
o
si
ti
o
n

D
is
ta
n
ce

In
d
ic
es

(M
B
)

N
a
m
e

|V
|

|E
|

T
y
p
e

T
im

e
(s
)

W
id
th

d
d
/
|V

|
P
L
L

IS
L
[F
W

C
W

1
3
]

c
a
-
g
r
q
c

5
,2
4
2

2
8
,9
8
0

so
ci
a
l
(u
)

0
.0
2

2
5
3

0
.0
4
8

1
.4

3
.9

c
a
-
h
e
p
t
h

9
,8
7
7

5
1
,9
7
1

so
ci
a
l
(u
)

0
.1
6

7
9
8

0
.0
8
1

4
.4

2
4
.7

w
i
k
i
-
v
o
t
e

7
,1
1
5

1
0
3
,6
8
9

so
ci
a
l
(d
)

0
.5
9

1
,3
3
2

0
.1
8
7

2
.4

2
3
.8

c
a
-
c
o
n
d
m
a
t

2
3
,1
3
3

1
8
6
,9
3
6

so
ci
a
l
(u
)

1
.5

2
,1
6
0

0
.0
9
3

1
3
.4

1
5
6
.8

c
a
-
h
e
p
p
h

1
2
,0
0
8

2
3
7
,0
1
0

so
ci
a
l
(u
)

0
.5
2

1
,4
0
6

0
.1
1
7

8
.8

6
5
.5

e
m
a
i
l
-
e
n
r
o
n

3
6
,6
9
2

3
6
7
,6
6
2

so
ci
a
l
(d
)

1
.4
3

2
,1
7
8

0
.0
5
9

8
.4

1
3
6
.1

c
a
-
a
s
t
r
o
p
h

1
8
,7
7
2

3
9
6
,1
6
0

so
ci
a
l
(u
)

3
.3
4

3
,4
9
7

0
.1
8
6

1
9
.5

2
3
3
.5

e
m
a
i
l
-
e
u
a
l
l

2
6
5
,2
1
4

4
2
0
,0
4
5

so
ci
a
l
(d
)

1
.6
7

1
,0
3
3

0
.0
0
4

8
4
.1

4
5
3
.0

s
o
c
-
e
p
i
n
i
o
n
s
1

7
5
,8
7
9

5
0
8
,8
3
7

so
ci
a
l
(d
)

1
1
.4
3

5
,5
0
4

0
.0
7
3

4
5
.5

1
,0
3
3
.3

s
o
c
-
s
l
a
s
h
d
o
t
0
8
1
1

7
7
,3
6
0

9
0
5
,4
6
8

so
ci
a
l
(d
)

2
8
.3
1

8
,5
5
5

0
.1
1
1

7
7
.1

1
,7
7
2
.3

s
o
c
-
s
l
a
s
h
d
o
t
0
9
0
2

8
2
,1
6
8

9
4
8
,4
6
4

so
ci
a
l
(d
)

2
9
.4
1

9
,1
8
1

0
.1
1
2

8
5
.3

2
,0
2
8
.5

w
e
b
-
n
o
t
r
e
d
a
m
e

3
2
5
,7
2
9

1
,4
9
7
,1
3
4

w
eb

(d
)

0
.9
9

2
,9
3
8

0
.0
0
9

9
5
.4

2
,8
3
5
.4

w
e
b
-
s
t
a
n
f
o
r
d

2
8
1
,9
0
3

2
,3
1
2
,4
9
7

w
eb

(d
)

2
.8
2

1
,6
1
1

0
.0
0
6

6
4
.3

2
,0
8
6
.7

w
e
b
-
g
o
o
g
l
e

8
7
5
,7
1
3

5
,1
0
5
,0
3
9

w
eb

(d
)

8
0
.2
8

1
8
,2
2
9

0
.0
2
1

7
1
2
.3

6
4
,5
4
0
.1

w
e
b
-
b
e
r
k
s
t
a
n

6
8
5
,2
3
0

7
,6
0
0
,5
9
5

w
eb

(d
)

1
0
.8
1

3
,2
7
2

0
.0
0
5

1
9
5
.5

1
0
,4
8
2
.0

p
2
p
-
g
n
u
t
e
l
l
a
0
8

6
,3
0
1

2
0
,7
7
7

p
2
p
(u
)

0
.1
2

1
,2
6
3

0
.2
0
0

5
.0

2
6
.3

p
2
p
-
g
n
u
t
e
l
l
a
0
9

8
,1
1
4

2
6
,0
1
3

p
2
p
(u
)

0
.1
9

1
,6
1
8

0
.1
9
9

8
.0

4
3
.5

p
2
p
-
g
n
u
t
e
l
l
a
0
6

8
,7
1
7

3
1
,5
2
5

p
2
p
(u
)

0
.6
6

2
,1
9
9

0
.2
5
2

1
0
.2

6
5
.2

p
2
p
-
g
n
u
t
e
l
l
a
0
5

8
,8
4
6

3
1
,8
3
9

p
2
p
(u
)

0
.3
5

2
,2
1
5

0
.2
5
0

1
0
.5

6
5
.5

p
2
p
-
g
n
u
t
e
l
l
a
0
4

1
0
,8
7
6

3
9
,9
9
4

p
2
p
(u
)

0
.6
1

2
,7
8
9

0
.2
5
6

1
5
.8

1
0
2
.6

p
2
p
-
g
n
u
t
e
l
l
a
2
5

2
2
,6
8
7

5
4
,7
0
5

p
2
p
(u
)

0
.9

3
,6
1
8

0
.1
5
9

4
5
.8

2
8
4
.1

p
2
p
-
g
n
u
t
e
l
l
a
2
4

2
6
,5
1
8

6
5
,3
6
9

p
2
p
(u
)

1
.5
9

4
,3
2
0

0
.1
6
3

5
0
.0

3
8
9
.6

p
2
p
-
g
n
u
t
e
l
l
a
3
0

3
6
,6
8
2

8
8
,3
2
8

p
2
p
(u
)

2
.0
4

5
,5
9
6

0
.1
5
3

1
0
0
.9

7
0
7
.6

p
2
p
-
g
n
u
t
e
l
l
a
3
1

6
2
,5
8
6

1
4
7
,8
9
2

p
2
p
(u
)

5
.7
8

9
,3
8
5

0
.1
5
0

2
3
3
.6

2
,0
5
0
.2

c
i
t
-
h
e
p
t
h

2
7
,7
7
0

3
5
2
,8
0
7

ci
ta
ti
o
n
(d
)

1
1
.6
1

8
,5
1
5

0
.3
0
7

1
5
8
.4

6
8
7
.0

c
i
t
-
h
e
p
p
h

3
4
,5
4
6

4
2
1
,5
7
8

ci
ta
ti
o
n
(d
)

1
0
.2
1

1
0
,7
1
8

0
.3
1
0

1
7
8
.4

1
,1
5
5
.1

109

10.2.1 Non-Trivial Factors for Index Size

We first confirm the existence of non-trivial factors for the index size. Table 10.1
lists the sizes of 2-hop indices constructed by the two methods, pruned landmark
labeling and IS-label [FWCW13] for our datasets. The results indicate that,
even if two graphs are of similar size, indices constructed from these graphs by
the same algorithm may be of quite different sizes.

For example, datasets email-enron, ca-astroph, cit-hepth and cit-hepph

have similar sizes in terms of the number of vertices and edges. However, sizes
of indices for these datasets vary largely and, surprisingly, indices for cit-hepph
are approximately ten times larger than those for email-enron for both indexing
algorithms. Similar differences can be observed from datasets ca-condmat and
p2p-gnutella30.

This is because these state-of-the-art indexing methods heuristically exploit
the structures of real networks explicitly or implicitly, and thus they depend on
the properties of each network. Indeed, it is proved that 2-hop indices may have
Θ(n2) space for general graphs [GPPR04]. Therefore, it is impossible to construct
small 2-hop indices without exploiting the network structures.

However, the long-standing question among researchers in this field is that,
having understood this, what is the key factor besides network size that has
a large effect on the size of constructed shortest-path distance indices? In the
following section, we show that obtaining the width of a tree decomposition can
take us closer to the answer.

10.2.2 Qualitative Empirical Analysis

Widths of tree decompositions obtained using our algorithm are also listed in
Table 10.1. We can observe that the difference in index sizes seems to be highly
related to widths. For example, widths of the tree decompositions for datasets
email-enron and cit-hepph are 10,718 and 2,178, respectively. Similarly, tree
decompositions for ca-condmat and p2p-gnutella30 have widths of 1,406 and
5,596, respectively.

Interestingly, from our results, index sizes for graphs with larger widths are
almost always larger than those for graphs with smaller widths. Therefore,
treewidth could be the key factor that has a large effect on the sizes of con-
structed shortest-path distance indices.

10.2.3 Quantitative Empirical Analysis

To further analyze the relation between widths of tree decompositions and sizes
of distance indices, let us recall the theoretical results discussed in Section 4.3.4.
Theorem 4.4 tells that, while there are no non-trivial theoretical bounds on the
size of 2-hop indices that are better than O(n2) for general graphs [GPPR04],
we can prove that there are small 2-hop indices for graphs of small treewidth.
Specifically, it says that there is a 2-hop index with size O(nw log n) for a graph
with treewidth w.

Although the aforementioned methods do not necessarily yield 2-hop indices
of that size (i.e., O(nw log n)), we show that this theoretical bound works quite
well as an estimation. Figure 10.3 illustrates the relation between the estimated
value nw log n and actual sizes of constructed indices showing that these values
correlate well.

Moreover, in Table 10.2, we see that Spearman’s correlation coefficient be-
tween estimation nd log n and actual index sizes is significantly higher than other

110

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

In
d

e
x
 s

iz
e

 (
M

B
)

n d log(n)

PLL
ISL

Figure 10.3: Actual index sizes and estimation using the widths of tree decom-
positions.

estimations such as n and m. This indicates that the width d of our tree decom-
position is indeed informative. Note that Spearman’s correlation coefficient uses
only ranks and thus, for example, the score for estimation of n2 would be exactly
the same as that of n.

Table 10.2: Spearman’s correlation between actual index sizes and estimation
with and without width d.

Methods n m n+m d nd log n

PLL 0.819 0.774 0.798 0.795 0.899
IS-Label [FWCW13] 0.940 0.792 0.875 0.719 0.983

111

Chapter 11

Conclusions

In this thesis, we studied graph indexing methods for path-related queries. Previ-
ously, state-of-the-art methods for different queries or different families of graphs
are developed almost independently, and their approaches were also quite dif-
ferent. Even limiting to labeling-based methods, their labeling algorithms were
totally different. By contrast, the methods presented in this thesis are based on
the same notion of pruned labeling, which were demonstrated to be competitive
or comparable with state-of-the-art methods for each kind of query. Specifi-
cally, we designed indexing methods for reachability queries on directed acycilic
graphs, shortest-path queries on road networks, historical shortest-path queries
on evolving networks, and top-k shortest-path queries on complex networks. We
demonstrated that each of these methods is also comparable with state-of-the-art
methods for each kind of query, thus showing exceptional generality of our unified
approach.

Lastly, we discuss the follow-up work of our pruned labeling algorithms by
other groups and future work in this field.

Follow-up Work

The emergence of pruned labeling algorithms have had large impact to research
communities. As evidence, there have already been several papers presenting
follow-up work of them by other groups. We introduce a few notable results.

More robust vertex ordering strategies [DGPW14] As we observed, on
many network instances with skewed degree distribution, simple vertex ordering
strategies such as the Degree strategy work surprisingly well. However, Delling
et al. show that, by approximately solving optimization problems, better vertex
orders can be obtained for pruned labeling, which lead to further smaller label
sizes. Moreover, they also showed that their ordering strategies are much more
robust, in the sense that they can find good vertex ordering on various kinds of
graph families.

Fully dynamic indexing for reachability queries [ZLWX14] We have pre-
sented incremental index update algorithm based on pruned labeling against edge
insertion. Zhu et al. have also independently proposed index update algorithm
based on pruned labeling for labeling-based reachability indices. In contrast to
our discussion, they focus on vertex insertion and vertex removal. Vertex removal
is much slower than vertex insertion, though it is faster than full reconstruction.

112

External memory labeling algorithm [JFWX14] Our indexing algorithm
assumed that given graphs fit in main memory, and does not work well when
they are in external memory due to frequent random access. Jiang et al. devised
a labeling algorithm for the 2-hop cover framework, which can efficiently process
graphs in external memory. It is also built on the notion of pruned labeling.

Future Work

More scalability While our methods improved the scalability of exact graph
querying (e.g., distance queries on complex networks) by orders of magnitude,
they are still not sufficiently scalable when considering huge social and web
graphs, which may consist of billions of vertices and edges. Therefore, we still
need more scalable indexing methods.

Complex queries Some of real applications requires path-related queries that
have more involved constraints. For example, in graph database systems, answer-
ing path queries with label constraints is a fundamental building block [LB13],
which cannot be efficiently processed by our current indexing techniques.

Stronger connection to theory Unfortunately, besides the seminal work
mentioned in Chapter 3, theoretical research has had little impact to practical
algorithms. This is because the interest of the theory community (e.g., worst-
case asymptotic complexity on general graphs) is in a quite different direction
from reality (e.g., real running time on real instances). Such discrepancy is quite
common in the field of algorithmics. This work sometimes borrowed ideas from
graph theory and theoretical graph algorithms, such as tree decomposition. There
might be more theoretical ideas that are actually useful in practice. Contrary to
this, the author also hopes to contribute to the calibration of current theoretical
fields from the practice side.

113

List of Figures

1.1 A social ego network of the author (i.e., the subgraph induced by
the friends of the authors) extracted from Facebook by Netvizz1. . 2

1.2 A part of a road network of the City of New York [DGJ09]. Red
and blue paths illustrate the shortest paths between the same pair
of vertices, where the red one optimizes distance and the blue one
optimizes time. 3

1.3 The necessity of graph indexing methods. 5
1.4 The overview of graph indexing methods. 5
1.5 The performance trade-off of indexing methods between scalability

and query performance. 6
1.6 A general illustration of incremental index update. 9
1.7 Organization of this thesis. 12

2.1 An example of tree decomposition. 18

3.1 The index data structure and query algorithm of the 2-hop cover
framework. 23

3.2 The index construction process of tree-decomposition-based ap-
proaches. 25

3.3 The query algorithm of tree-decomposition-based distance querying. 26
3.4 The index construction process of contraction hierarchies. Blue,

yellow and red vertices denote those which are not yet contracted,
already contracted and just being contracted, respectively. 28

4.1 Examples of pruned BFSs. Yellow vertices denote the roots, blue
vertices denote those which we visited and labeled, red vertices
denote those which we visited but pruned, and gray vertices denote
those which are already used as roots. 35

4.2 A running example for the update algorithm. The green vertex is
the root, and the distance to the root is written in each vertex. . 41

5.1 The key insight of the bit-parallel labeling scheme. 46
5.2 Properties of the static complex network datasets. 50
5.3 Effect of pruning and sizes of labels. 55
5.4 Fraction of pairs of vertices whose distance can be answered by

index, against number of performed pruned BFS. 56
5.5 Performance varing number of bit-parallel BFSs. 57
5.6 Update time on synthetic networks with different size and density. 58

6.1 An example of pruned path labeling. Color of a vertex indicates
its status: Red is a start point of BFSs, blue is a vertex being
searched, gray is a pruned vertex, and brown is a vertex already
used as a start point. 65

6.2 Performance comparison of reachability queries on synthetic graphs. 72

114

7.1 Examples for the pruned highway labeling. Pink vertices are on the
starting path Pi, blue vertices are visited and added to some labels,
gray vertices are already used as the starting points of the previous
searches, orange vertices are visited but pruned, and white vertices
are not visited. 78

7.2 Effect of pruning. 82
7.3 Label properties. 83

8.1 An illustration of indexing methods for historical queries. 84
8.2 Label size for historical queries on synthetic networks with different

size and density. 90
8.3 An example of social network analysis on a dynamic Facebook

subgraph [VMCG09] using our method for historical shortest-path
distance queries. 92

8.4 Transition of average distance and effective diameter. 93
8.5 Transition of the closeness centrality of some popular vertices. . . . 93
8.6 Temporal hop plot. 94

9.1 Examples of connection between two vertices. 95
9.2 Effect of k on indexing time and index size. 102
9.3 Effect of k on query time. 103

10.1 An example of computation process of a tree decomposition. 106
10.2 Star-based representation and reduction. The white vertices are

normal vertices, and gray vertices are hub vertices. 107
10.3 Actual index sizes and estimation using the widths of tree decom-

positions. 111

115

List of Tables

2.1 Notations . 13

5.1 Static complex network datasets 49
5.2 Dynamic Complex Network Datasets 51
5.3 Performance comparison between the proposed method and pre-

vious methods for the real-world datasets. IT denotes indexing
time, IS denotes index size, QT denotes query time, and LN de-
notes average label size for each vertex. DNF means it did not
finish in one day or ran out of memory. 53

5.4 Average size of a label for each vertex against different vertex
ordering strategies. 56

5.5 Performance results without bit-prallel BFSs. 57
5.6 Experimental results of our online update algorithm. 58

6.1 Real-world datasets for reachability queries 70
6.2 Average query time (µs) . 70
6.3 Index size (MB) . 71
6.4 Indexing time (sec) . 71
6.5 Comparison of index size of PLL using different vertex ordering

strategies (MB) . 73
6.6 Comparison of index size of PPL using different path selection

strategies (MB) . 73

7.1 Comparison of the performance between pruned highway labeling
and previous methods. HL is parallelized to use 12 cores in pre-
processing and all other methods are not parallelized. 81

7.2 Comparison of the performance by the contraction technique. The
contraction level indicates the degree of removed vertices. 82

8.1 Experimental results of our method for historical queries against
real-world and synthetic networks. 91

9.1 Distances and top-k distances between the two black vertices in
the examples above. 96

9.2 Dataset information and performance of the proposed and existing
methods on real-world datasets (k = 8). 101

10.1 Information of small datasets, results of our full tree decompo-
sition, and sizes of 2-hop indices constructed by state-of-the-art
indexing methods for shortest-path distance queries. 109

10.2 Spearman’s correlation between actual index sizes and estimation
with and without width d. 111

116

References

[ABJ89] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient manage-
ment of transitive relationships in large data and knowledge bases.
In SIGMOD, pages 253–262, 1989.

[ADGW11] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. A
hub-based labeling algorithm for shortest paths in road networks.
In SEA, pages 230–241, 2011.

[ADGW12] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck.
Hierarchical hub labelings for shortest paths. In ESA, pages 24–
35. 2012.

[AFGW10] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck. High-
way dimension, shortest paths, and provably efficient algorithms.
In SODA, pages 782–793, 2010.

[AG06] I. Abraham and C. Gavoille. Object location using path separa-
tors. In PODC, pages 188–197, 2006.

[AHN+15] T. Akiba, T. Hayashi, N. Nori, Y. Iwata, and Y. Yoshida. Efficient
top-k shortest-path distance queries on large networks by pruned
landmark labeling. In AAAI, 2015. to appear.

[AIKK14] T. Akiba, Y. Iwata, K. Kawarabayashi, and Y. Kawata. Fast
shortest-path distance queries on road networks by pruned high-
way labeling. In ALENEX, pages 147–154, 2014.

[AIY13] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path
distance queries on large networks by pruned landmark labeling.
In SIGMOD, pages 349–360, 2013.

[AIY14] T. Akiba, Y. Iwata, and Y. Yoshida. Dynamic and histori-
cal shortest-path distance queries on large evolving networks by
pruned landmark labeling. In WWW, pages 237–248, 2014.

[AJB99] R. Albert, H. Jeong, and A. L. Barabasi. The diameter of the
world wide web. Nature, 401:130–131, 1999.

[ALM09] F. Aidouni, M. Latapy, and C. Magnien. Ten weeks in the life of
an edonkey server. In IPDPS, pages 1–5, 2009.

[AMK14] T. Akiba, T. Maehara, and K. Kawarabayashi. Network struc-
tural analysis via core-tree-decomposition. Manuscript, 2014.

[AP89] S. Arnborg and A. Proskurowski. Linear time algorithms for np-
hard problems restricted to partial k-trees. Discrete Appl. Math.,
2:11–24, 1989.

117

[APPB10] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader. Scalable
graph exploration on multicore processors. In SC, pages 1–11,
2010.

[ASK12] T. Akiba, C. Sommer, and K. Kawarabayashi. Shortest-path
queries for complex networks: exploiting low tree-width outside
the core. In EDBT, pages 144–155, 2012.

[BA99] A.-L. Barabási and R. Albert. Emergence of scaling in random
networks. Science, 286(5439):509–512, 1999.

[Bar05] A.-L. Barabasi. The origin of bursts and heavy tails in human
dynamics. Nature, 435:207–211, 2005.

[BBR+12] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna. Four
degrees of separation. In WebSci, pages 33–42, 2012.

[BCSV04] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubicrawler:
A scalable fully distributed web crawler. Software Pract. Ex.,
34(8):711–726, 2004.

[BDG+14] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pa-
jor, P. Sanders, D. Wagner, and R. Werneck. Route planning
in transportation networks. Technical report, MSR-TR-2014-4,
2014.

[BDS+10] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes,
and D. Wagner. Combining hierarchical and goal-directed speed-
up techniques for dijkstra’s algorithm. J. Exp. Algorithmics,
15(2.3):1–31, 2010.

[Bel58] R. E. Bellman. On a routing problem. Quarterly of Applied
Mathematics, 16:87–90, 1958.

[BFM+07] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes. In
transit to constant time shortest-path queries in road networks.
In ALENEX, pages 46–59, 2007.

[BGJ+12] A. Bhattacharyya, E. Grigorescu, K. Jung, S. Raskhodnikova,
and D. P. Woodruff. Transitive-closure spanners. SIAM J. Com-
put., 41(6):1380–1425, 2012.

[BHKL06] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group
formation in large social networks: membership, growth, and evo-
lution. In KDD, pages 44–54, 2006.

[BHS03] A. Berry, P. Heggernes, and G. Simonet. The minimum degree
heuristic and the minimal triangulation process. In WG, volume
2880 of LNCS, pages 58–70. 2003.

[BKM+00] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener. Graph structure in the web.
Computer Networks: The International Journal of Computer and
Telecommunications Networking, 33(1-6):309–320, June 2000.

[BLM+06] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang.
Complex networks: Structure and dynamics. Physics reports,
424(4-5):175–308, 2006.

118

[BMSV14] P. Boldi, A. Marino, M. Santini, and S. Vigna. Bubing: Massive
crawling for the masses. In WWW Companion, pages 227–228,
2014.

[BRSV11] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propa-
gation: a multiresolution coordinate-free ordering for compressing
social networks. In WWW, pages 587–596, 2011.

[BV04] P. Boldi and S. Vigna. The webgraph framework I: compression
techniques. In WWW, pages 595–602, 2004.

[BV12] P. Boldi and S. Vigna. Four degrees of separation, really. In
ASONAM, pages 1222–1227, 2012.

[Car71] B. A. Carré. An algebra for network routing problems. IMA J.
Appl. Math., 7(3):273–294, 1971.

[CGK05] L. Chen, A. Gupta, and M. Kurul. Stack-based algorithms for
pattern matching on dags. In VLDB, pages 493–504, 2005.

[Cha03] D. Chamberlin. XQuery: a query language for XML. In SIG-
MOD, pages 682–682, 2003.

[CHKZ03] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachabil-
ity and distance queries via 2-hop labels. SIAM J. Comput.,
32(5):1338–1355, 2003.

[CNSW00] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J.
Watts. Network robustness and fragility: Percolation on random
graphs. Phys. Rev. Lett., 85:5468–5471, 2000.

[CSTW12] W. Chen, C. Sommer, S.-H. Teng, and Y. Wang. A compact
routing scheme and approximate distance oracle for power-law
graphs. TALG, 9(1):4:1–26, 2012.

[CY09] J. Cheng and J. X. Yu. On-line exact shortest distance query
processing. In EDBT, pages 481–492, 2009.

[CYL+06] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast compu-
tation of reachability labeling for large graphs. In EDBT, pages
961–979, 2006.

[DGJ09] C. Demetrescu, A. V. Goldberg, and D. S. Johnson. The Shortest
Path Problem: Ninth DIMACS Implementation Challenge, vol-
ume 74. AMS, 2009.

[DGPW14] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Robust
distance queries on massive networks. In ESA, pages 321–333,
2014.

[DGSF14] D. Delling, A. V. Goldberg, R. Savchenko, and R. F.Werneck.
Hub labels: Theory and practice. In SEA, pages 259–270, 2014.

[DGW13] D. Delling, A. V. Goldberg, and R. F. Werneck. Hub label com-
pression. In SEA, pages 18–29, 2013.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, 1959.

119

[DMS00] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Struc-
ture of growing networks with preferential linking. Phys. Rev.
Lett., 85:4633–4636, 2000.

[Epp98] D. Eppstein. Finding the k shortest paths. SIAM J. Computing,
28(2):652–673, 1998.

[FFF99] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law rela-
tionships of the Internet topology. In SIGCOMM, pages 251–262,
1999.

[Flo62] R. W. Floyd. Algorithm 97: Shortest path. Comm. ACM,
5(6):345, 1962.

[FLWW12] W. Fan, J. Li, X. Wang, and Y. Wu. Query preserving graph
compression. In SIGMOD, pages 157–168, 2012.

[For56] L. R. Ford. Network flow theory. Report P-923, The Rand Cor-
poration, 1956.

[FT87] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. J. ACM,
34(3):596–615, 1987.

[FWCW13] A. W.-C. Fu, H. Wu, J. Cheng, and R. C.-W. Wong. Is-label: an
independent-set based labeling scheme for point-to-point distance
querying. PVLDB, 6(6):457–468, 2013.

[GBSW10] A. Gubichev, S. Bedathur, S. Seufert, and G. Weikum. Fast and
accurate estimation of shortest paths in large graphs. In CIKM,
pages 499–508, 2010.

[GH05] A. V. Goldberg and C. Harrelson. Computing the shortest path:
A* search meets graph theory. In SODA, 2005.

[GPPR04] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance labeling
in graphs. J. Algorithms, 53(1):85 – 112, 2004.

[GSSD08] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contrac-
tion hierarchies: Faster and simpler hierarchical routing in road
networks. In WEA, pages 319–333, 2008.

[Gut04] R. Gutman. Reach-based routing: A new approach to shortest
path algorithms optimized for road networks. In ALENEX, 2004.

[Hal76] R. Halin. s-function for graphs. J. Geometry, 8:171–186, 1976.

[HL71] P. W. Holland and S. Leinhardt. Transitivity in structural models
of small groups. Small Group Research, 2(2):107–124, 1971.

[HWYY07] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked keyword
searches on graphs. In SIGMOD, pages 305–316, 2007.

[IHI+94] T. Ikeda, M. Y. Hsu, H. Imai, S. Nishimura, H. Shimoura,
T. Hashimoto, K. Tenmoku, and K. Mitoh. A fast algorithm
for finding better routes by ai search techniques. In VNSI, pages
291–296, 1994.

120

[JFWX14] M. Jiang, A. W. Fu, R. C. Wong, and Y. Xu. Hop doubling
label indexing for point-to-point distance querying on scale-free
networks. PVLDB, 7(12):1203–1214, 2014.

[Jor69] C. Jordan. Sur les assemblages de lignes. J. Reine Angew Math,
70:185–190, 1869.

[JRDX12] R. Jin, N. Ruan, S. Dey, and J. Xu. SCARAB: scaling reachability
computation on large graphs. In SIGMOD, pages 169–180, 2012.

[JRXL12] R. Jin, N. Ruan, Y. Xiang, and V. Lee. A highway-centric labeling
approach for answering distance queries on large sparse graphs.
In SIGMOD, pages 445–456, 2012.

[JXRF09] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a high-
compression indexing scheme for reachability query. In SIGMOD,
pages 813–826, 2009.

[JXRW08] R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently answering
reachability queries on very large directed graphs. In SIGMOD,
pages 595–608, 2008.

[Kar29] F. Karinthy. Lancszemek. 1929.

[KKT03] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread
of influence through a social network. In KDD, pages 137–146,
2003.

[KMS06] E. Kohler, R. H. Mohring, and H. Schilling. Fast point-to-point
shortest path computations with arc-flags. In The Shortest Path
Problem: Ninth DIMACS Implementation Challenge, pages 41–
72, 2006.

[KS78] D. E. Knuth and A. Schönhage. The expected linearity of a simple
equivalence algorithm. Theor. Comput. Sci., 6:281–315, 1978.

[Kur30] K. Kuratowski. Sur le Problème des Courbes Gauches en Topolo-
gie. Fundamenta Mathematicae, 15:271–283, 1930.

[KY04] B. Klimt and Y. Yang. The enron corpus: A new dataset for
email classification research. In ECML, volume 3201 of LNCS,
pages 217–226. 2004.

[LB13] A. Likhyani and S. Bedathur. Label constrained shortest path
estimation. In CIKM, pages 1177–1180, 2013.

[LG14] F. Le Gall. Powers of tensors and fast matrix multiplication. In
ISSAC, pages 296–303, 2014.

[LHK10a] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting posi-
tive and negative links in online social networks. In WWW, pages
641–650, 2010.

[LHK10b] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks
in social media. In CHI, pages 1361–1370, 2010.

121

[LKF05] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time:
Densification laws, shrinking diameters and possible explanations.
In KDD, pages 177–187, 2005.

[LKF07] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution:
Densification and shrinking diameters. TKDD, 1(1), 2007.

[LLDM09] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. Community
structure in large networks: Natural cluster sizes and the absence
of large well-defined clusters. Internet Mathematics, 6(1):29–123,
2009.

[LNK03] D. Liben-Nowell and J. Kleinberg. The link prediction problem
for social networks. In CIKM, pages 556–559, 2003.

[MA05] P. Massa and P. Avesani. Controversial users demand local trust
metrics: an experimental study on epinions.com community. In
AAAI, pages 121–126, 2005.

[MAIK14] T. Maehara, T. Akiba, Y. Iwata, and K. Kawarabayashi. Com-
puting personalized pagerank quickly by exploiting graph struc-
tures. PVLDB, 7(12):1023–1034, 2014.

[Mil67] S. Milgram. The small world problem. Psychology Today, 1:61–67,
1967.

[Mis09] A. Mislove. Online Social Networks: Measurement, Analysis, and
Applications to Distributed Information Systems. PhD thesis,
Rice University, 2009.

[MLH09] C. Magnien, M. Latapy, and M. Habib. Fast computation of
empirically tight bounds for the diameter of massive graphs. J.
Exp. Algorithmics, 13:10:1.10–10:1.9, February 2009.

[MMG+07] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and analysis of online social net-
works. In IMC, pages 29–42, 2007.

[MVLB14] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer. Graph structure
in the web — revisited: A trick of the heavy tail. In WWW
Companion, pages 427–432, 2014.

[NSW01] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random
graphs with arbitrary degree distributions and their applications.
Phys. Rev. E, 64(2):026118 1–17, 2001.

[Nuu95] E. Nuutila. Effcient transitive closure computation in large di-
graphs. PhD thesis, Finnish Academy of Technology, 1995.

[PAG09] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complex-
ity of SPARQL. Transactions on Database Systems, 34(3):16:1–
16:45, September 2009.

[PBCG09] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fast shortest
path distance estimation in large networks. In CIKM, pages 867–
876, 2009.

122

[PBMW99] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank
citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999.

[PSV04] R. Pastor-Satorras and A. Vespignani. Evolution and structure
of the Internet: A statistical physics approach. Cambridge Uni-
versity Press, 2004.

[QCCY12] M. Qiao, H. Cheng, L. Chang, and J. X. Yu. Approximate
shortest distance computing: A query-dependent local landmark
scheme. In ICDE, pages 462–473, 2012.

[RAD03] M. Richardson, R. Agrawal, and P. Domingos. Trust management
for the semantic web. In ISWC, volume 2870, pages 351–368.
2003.

[RAS+05] S. A. Rahman, P. Advani, R. Schunk, R. Schrader, and D. Schom-
burg. Metabolic pathway analysis web service (pathway hunter
tool at cubic). Bioinformatics, 21(7):1189–1193, 2005.

[Rep97] T. Reps. Program analysis via graph reachability. In ILPS, pages
5–19, 1997.

[RHS95] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In POPL, pages 49–61,
1995.

[RIF02] M. Ripeanu, A. Iamnitchi, and I. Foster. Mapping the gnutella
network. IEEE Internet Computing, 6(1):50–57, January 2002.

[RPFM14] M. P. Rombach, M. A. Porter, J. H. Fowler, and P. J. Mucha.
Core-Periphery Structure in Networks. SIAM J. Appl. Math.,
74(1):167–190, February 2014.

[RS84] N. Robertson and P. D. Seymour. Graph minors. III. planar tree-
width. J. Comb. Theory, Ser. B, 36(1):49–64, 1984.

[RS04] N. Robertson and P. Seymour. Graph minors. XX. wagner’s con-
jecture. J. Comb. Theory, Ser. B, 92(2):325 – 357, 2004. Special
Issue Dedicated to Professor W.T. Tutte.

[RS06] S. A. Rahman and D. Schomburg. Observing local and global
properties of metabolic pathways: ‘load points’ and ‘choke points’
in the metabolic networks. Bioinformatics, 22(14):1767–1774,
2006.

[Sim88] K. Simon. An improved algorithm for transitive closure on acyclic
digraphs. Theor. Comput. Sci., 58(1):325–346, 1988.

[Som14] C. Sommer. Shortest-path queries in static networks. ACM Com-
put. Surv.ag, 46:45:1–31, 2014.

[STW04] R. Schenkel, A. Theobald, and G. Weikum. HOPI: An efficient
connection index for complex XML document collections. In
EDBT, pages 237–255, 2004.

123

[TACGBn+11] K. Tretyakov, A. Armas-Cervantes, L. Garćıa-Bañuelos, J. Vilo,
and M. Dumas. Fast fully dynamic landmark-based estimation
of shortest path distances in very large graphs. In CIKM, pages
1785–1794, 2011.

[Tar72] R. Tarjan. Depth-first search and linear graph algorithms. SIAM
J. Comput., 1(2):146–160, 1972.

[TC03] L. Tang and M. Crovella. Virtual landmarks for the internet. In
SIGCOMM, pages 143–152, 2003.

[Tho99] M. Thorup. Undirected single-source shortest paths with positive
integer weights in linear time. J. ACM, 46(3):362–394, 1999.

[Tho04] M. Thorup. Compact oracles for reachability and approximate
distances in planar digraphs. J. ACM, 51(6):993–1024, 2004.

[TM69] J. Travers and S. Milgram. An experimental study of the small
world problem. Sociometry, 32:425–443, 1969.

[TWRC09] T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k explo-
ration of query candidates for efficient keyword search on graph-
shaped (RDF) data. In ICDE, pages 405–416, 2009.

[TZ05] M. Thorup and U. Zwick. Approximate distance oracles. J. ACM,
52(1):1–24, January 2005.

[UCDG08] A. Ukkonen, C. Castillo, D. Donato, and A. Gionis. Searching
the wikipedia with contextual information. In CIKM, pages 1351–
1352, 2008.

[VFD+07] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher, D. d. C.
Reis, and B. Ribeiro-Neto. Efficient search ranking in social net-
works. In CIKM, pages 563–572, 2007.

[vHNM+00] J. van Helden, A. Naim, R. Mancuso, M. Eldridge, L. Wernisch,
D. Gilbert, and S. J. Wodak. Representing and analysing molecu-
lar and cellular function using the computer. Biol. Chem., 381(9-
10):921–935, 2000.

[VMCG09] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the
evolution of user interaction in facebook. In WOSN, pages 37–42,
2009.

[vSdM11] S. van Schaik and O. de Moor. A memory efficient reachabil-
ity data structure through bit vector compression. In SIGMOD,
pages 913–924, 2011.

[Wag37] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Math-
ematische Annalen, 114(1):570–590, 1937.

[War62] S. Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–12,
1962.

[WED+08] Z. Wu, G. Eadon, S. Das, E. I. Chong, V. Kolovski, M. Anna-
malai, and J. Srinivasan. Implementing an inference engine for
RDFS/OWL constructs and user-defined rules in oracle. In ICDE,
pages 1239–1248, 2008.

124

[Wei10] F. Wei. Tedi: efficient shortest path query answering on graphs.
In SIGMOD, pages 99–110, 2010.

[WS98] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-
world’ networks. Nature, pages 440–442, 1998.

[WXD+12] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou.
Shortest path and distance queries on road networks: An exper-
imental evaluation. PVLDB, 5(5):406–417, 2012.

[XJB05] J. Xu, F. Jiao, and B. Berger. A tree-decomposition approach to
protein structure prediction. In CSB, pages 247–256, 2005.

[YAIY13] Y. Yano, T. Akiba, Y. Iwata, and Y. Yoshida. Fast and scalable
reachability queries on graphs by pruned labeling with landmarks
and paths. In CIKM, pages 1601–1606, 2013.

[Yao76] A. C.-C. Yao. On the average behavior of set merging algorithms.
In STOC, pages 192–195, 1976.

[YBLS08] S. A. Yahia, M. Benedikt, L. V. S. Lakshmanan, and J. Stoy-
anovich. Efficient network aware search in collaborative tagging
sites. PVLDB, 1(1):710–721, 2008.

[YCZ12] H. Yildirim, V. Chaoji, and M. Zaki. GRAIL: a scalable index
for reachability queries in very large graphs. The VLDB Journal,
21(4):509–534, 2012.

[ZLWX14] A. D. Zhu, W. Lin, S. Wang, and X. Xiao. Reachability queries
on large dynamic graphs: A total order approach. In SIGMOD,
pages 1323–1334, 2014.

[ZYQ+12] Z. Zhang, J. Yu, L. Qin, Q. Zhu, and X. Zhou. I/O cost mini-
mization: reachability queries processing over massive graphs. In
EDBT, pages 468–479, 2012.

125

