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Abstract

Document summarization aims to extract the most important information from a

single document or a cluster of documents. It plays an increasingly important role

with the exponential growth of web documents. Over the past half a century, there

are various approaches proposed to solve the problem from many different perspec-

tives, most of which directly selected summary sentences using sentence ranking or

greedy selection approaches. Generally the quality of a summary should be deter-

mined by three properties: relevance, diversity and coverage. However, the sentence

ranking methods and greedy selection approaches hardly simultaneously consider the

three properties, and they could not provide a solution which selects best overall

sentences. Therefore optimizing all three properties jointly with a global sentence

selection procedure has been attractive.

In this thesis, we solve the summarization problem and unify all aims from a novel

perspective. We assumed that original documents should be reconstructed from the

best summary with least information loss. From this assumption, we first propose

a reconstruction based optimization framework for multi-document summarization.

We brought in various information-theoretic measures and regarded the minimum

distortion as the objective function. We defined three reconstruction models for op-

timization of the distortion measures, gaining state-of-the-art summarization results.

Moreover, we studied a new problem in summarization called summary length de-

termination. Traditional summarization systems require users to pre-define a bounded

length for summaries. However, how to find the proper summary length is quite

a problem; and keeping all summaries restricted to the same length is not always

a good choice. Following our reconstruction assumption, we developed a Bayesian

nonparametric model to automatically determine the proper summary length. The

model is demonstrated to own good summary qualities and to determine rational

summary length. Finally, we consider the case that the real categories of documents
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are not known, and advanced the hybrid nested Dirichlet process to extend traditional

Bayesian nonparametric topic analysis, which is a preprocessing step for document

summarization. The topic analysis itself also provides visualization for abstractive

summarization of the documents.
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Chapter 1

Introduction

Document summarization aims to generate a short text from one or more docu-

ment(s), which conveys the most important information of the original text. With

the rapid growth of documents on the Internet, summarization has proved to be an

essential task in the area of web data mining. For example, it can be used for news

services to compress a group of news articles to a short summary, helping readers to

grasp the essential points in a short time.

Generally, document summarization can be categorized as abstraction-based or

extraction-based. An abstraction-based summary can be seen as a reproduction of

the original document(s) in a new way, while the extraction-based summarization

focuses on extracting sentences directly from the original document(s). In this thesis,

we consider generic extraction-based summarization for multiple documents.

Though there is no precise definition about what summary is a good summary,

researchers usually follow some common standards [63, 45]1:

• Relevance: A good summary should contain the most important information,

i.e. the extracted sentences should be relevant to main topics of the original

documents.

1Sometimes the names may be different, but the main idea is always same. For example, in [63]
they considered length limitation instead of coverage.
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• Diversity: The sentences in the summary should be non-redundant.

• Coverage: The summary should cover as more topics in the original documents

as possible.

Early extractive summarization is based on some heuristic features of the sentences

such as their positions in the text, the frequency of the words they contain, or some key

phrases indicating the importance of the sentences [56]. More advanced techniques

consider the rhetorical structure [61] and semantic relationships [31]. Researchers

also leverage these features in some machine learning models [43, 102]. However,

these techniques seem to ignore or belittle the redundancy and coverage of the sum-

mary. How to optimize all the three properties jointly remained a problem. A classic

approach is the maximal marginal relevance (MMR) [10]. It introduced the MMR

measure which combines query relevance and information novelty in topic-driven sum-

marization, so the relevance and the redundancy are simultaneously considered in this

model. Due to its simplicity, the MMR style algorithms are widely adopted in doc-

ument summarization. However the greedy selection procedure in these algorithms

makes them not effective for optimal content selection of the entire summary. A typ-

ical problematic scenario for greedy sentence selection is shown in [63]. The greedy

selection procedure tends to select a long and highly relevant sentence first. This

sentence is regarded as most informative, however, long sentences often contain not

long relevant information but also some noise which is not relevant to the main story.

As a result, the amount of space in the summary remaining for other sentences would

be limited by including the noise in the selected sentence. As sentences in news are

generally very long, it is very common to see the failure of greedy selection.

Instead of the sentence scoring (or ranking) and greedy selection approaches, we

design an optimization framework which globally select the best overall summary

by optimizing some proper objective functions. We only need to include the ob-

jectives and constraints of summarization in the objective functions, such as maxi-
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mizing informativeness, minimizing repetition, and conforming to required summary

length. Different from the simple linear combination of relevance and redundance

constraints as in previous global inference algorithms [63] which hardly represent the

coverage, we unify all three objectives of summarization in just one unit and attain

an information-theoretic objective function. Our optimization framework is based on

a novel perspective: data reconstruction. We assume that a good summary should

reconstruct the original document as good as possible, for it should cover most of the

important information in original documents. Based on this assumption, we develop

several reconstruction models and generate summaries that has the least information

”distortion”. The reconstruction assumption is also adopted by others later [35], but

their optimization method is quite different.

The advantage of the reconstruction-based summarization framework is then

shown in solving a new problem called summary length determination. Generally,

before a summarization system generates summaries, we have to know the required

summary length. On the one hand, it facilitates efficient implementation and enables

comparison of different systems. On the other hand, in some cases it is not reason-

able to require all summaries to have the same length. Figure 1.1 shows a simple

illustration of this idea. Summary 1 and Summary 2 are generated from documents

focusing on the same event. However, obviously Summary 1 contains more opinions

and it should be longer than Summary 2. Furthermore, even in a definite-length

summarization system, how to define a proper length is also difficult. This thesis

employs a Bayesian nonparametric method to solve this problem.

Bayesian Nonparametric models have been widely used in machine learning and

data mining. It provides a Bayesian framework for model selection and adaptation,

where the sizes of models are allowed to grow with data size. It is efficient to address

the problem such as choosing the number of clusters mixture components or latent

factors. Our reconstruction-based summarization framework is easily extended to
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Figure 1.1: An illustration of the summary length problem.

a Bayesian nonparametric model where we employ the Beta process for sentence

selection. The new model could infer a proper number of summary sentences.

A problem in the Bayesian nonparametric document summarization is the sparsity

of words. As summaries are very short compared to the original documents, lots

of words are lost in summaries. If we use directly words frequencies or TF-IDFs

as the representation of sentences, the reconstruction error must be large. It will

largely impact the length determination. So topic models are utilized to represent

the sentences and documents, in order to overcome the sparsity problem. In this

process, we also considered an improvement to current topic models. We improved

the popular Hierarchical Dirichlet Process based topic models (HDP-LDA) to deal

with the situation that we do not know document category information. We propose

a new Bayesian nonparametric prior for topic analysis, the hybrid nested hierarchical

Dirichlet process (hNHDP). Other than improving the topic analysis results, the
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new model itself is an alternative to summarization. It provides a visualization of

document structures and specific topics.

1.1 Thesis Contribution

The objective of this thesis is to address the problems in multi-document summariza-

tion. This leads to various reconstruction-based summarization models as explained

before. The contributions of the thesis are summarized as follows:

• We proposed a novel optimization framework for multi-document summariza-

tion based on data reconstruction.

• We designed a new objective function for summarization: minimum distortion.

Then we experimented with various distortion measures and compared them.

• We advanced the summary length problem, which has been rarely studied in

document summarization.

• We extended the reconstruction-based framework for summarization to a

Bayesian nonparametric system which determines proper summary length

automatically.

• We present a new Bayesian nonparametric topic model to improve the current

HDP-LDA, which plays an important role in Bayesian nonparametric document

summarization.

1.2 Thesis Overview

The rest of the thesis is organized as follows:
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• Chapter 2: In this chapter, we review the current research state of document

summarization. We introduce the taxonomy, common approaches, evaluation

etc.

• Chapter 3: This chapter describes the reconstruction-based optimization ap-

proach to summarization. The minimum distortion is proposed as the objective

function. Then we design the p-median model, facility location model and linear

representation model for ”reconstruction” and minimizing the distortion.

• Chapter 4: In this chapter we introduce the topic models and Bayesian non-

parametric methods and their relationships with document summarization. The

two techniques will be used in the next Chapter. We also review the Bayesian

nonparametric topic models. Then we show our own contribution to this area

where we propose a new model, hybrid nested Dirichet process for topic mod-

eling.

• Chapter 5: This chapter addresses the problem of summary length determi-

nation. We integrate the Beta process into the reconstruction model, getting a

Bayesian nonparametric model for summarization. This model could automat-

ically determine the proper summary length. It uses the techniques explained

in Chapter 4. It is also an extension to Chapter 3, for they are all based on

data reconstruction.

• Chapter 6: This chapter summarizes the main contributions of this thesis.

6



Chapter 2

Document Summarization

Overview

With the explosive growth of the internet, people are overwhelmed by the massive

available online data. Document summarization, as an approach to solve the prob-

lem of information overload, has attracted a lot of interest in the area of natural

language processing (NLP). Document summarization is the process of reducing text

documents in order to create a brief summary that retains the most important in-

formation in the original texts. It could effectively save reading time as well as help

users quickly find specific information.

According to the aim of document summarization, an ideal document summariza-

tion system should include but not limited to the following features:

• Conciseness. It is the most important feature of summaries. A good summary

should be short to facilitate quick reading.

• Informativeness. Summaries should contain major points of the original docu-

ments.

• Good readability and clear structure.
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Besides, the summaries should not be redundant or contain unrelated noise informa-

tion. These features could also be summarized into three properties that we intro-

duced before: relevance, diversity and coverage.

Document summarization has been studied over half a century. It has been ad-

dressed from many different perspectives, and many new types of summarization

systems occurred. In the next section we will introduce the current state of summa-

rization research, such as summarization types, real systems, relevant conferences.

2.1 Taxonomy of Summarization

Based on the number of original documents, summarization could be categorized into

single-document and multi-document types. It is a popular but not the only kind of

classification. Considering the output, we can divide summarization into extraction-

based and abstraction-based types. According to the summarization method, there

are supervised and unsupervised summarization . At last, the emergence of some new

scenarios led to many new types of summarization (update summarization, opinion

summarization etc.).

2.1.1 Single-document V.S. Multi-document

Generally, a summary can be produced from a single document or multiple documents.

The former is called single-document summarization and the latter is multi-document

summarization.

Research on document summarization can date back to 1950s [56] and has been

greatly developed in recent years. Most early work focused on single-document sum-

marization of technical documents. They measured the significance of sentences by

features such as word frequency [56], sentence position [4] and the presence of cue

words [21]. Then top ranking sentences are selected to form the auto-abstract.
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Multi-document summarization [65] gained interests since mid 1990s, most ap-

plications being in the domain of news articles. Compared to single-document sum-

marization, the advantage of multi-document summarization is that it could include

different opinions from multiple perspectives. However it became more difficult and

complex because of the thematic diversity within a large set of documents. In this

thesis, we focus on the multi-document summarization.

2.1.2 Extraction-based V.S. Abstraction-based

Extraction-based (or extractive) summarization generates summaries by selecting

salient sentences in original documents, while abstraction-based (or abstractive) sum-

marization involves paraphrasing sections of the source document. Abstraction-based

approaches could compress the original sentences [86], regenerate new sentences and

re-ordering them [39].

Abstraction is conceptually better than extraction, for it allows to build more con-

densed and coherent texts. However, automatically generating texts is much more

difficult, and the technique has not been mature enough. Nowadays the majority of

summarization system remain extractive due to its feasibility. Recently, as the TAC

workshops take more emphasis on the readability of summarization systems, and

automatical linguistic evaluation methods has occurred [78], abstraction-based sum-

marization would draw more and more attentions. In our work at TAC2010 [38], we

also included simple sentence-editing methods and a new sentence ordering technique

to improve readability.

2.1.3 Supervised V.S. Unsupervised

When machine learning approaches are used for summarization, we can classify the

summarization approaches into supervised [43, 14] and unsupervised [10, 80]. It is

easily understood that the supervised type contains training data while the unsuper-
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vised does not. The difficulty of supervised extractive summarization is the labeling

of training data. The training data should be manually created by labeling sentences

as ”in summary” or ”not in summary”. However, this is not typically how people

create summaries. So the natural summaries could not be directly used for training.

2.1.4 Generic V.S. Query-Focused

The generic summaries serve as surrogate of the original text and cover all aspects of

the source text. Query-focused summaries [10], also called topic-focused summaries,

focus on only the query or topic that users required. The query-focused summariza-

tion could also serve as a part of question-answering system.

2.1.5 New Types

In recent years, new types of summarization have appeared to meet the needs of

various new scenarios. Update summaries [90, 16] concentrate on the novelty of the

summaries. Users are assumed to already read some background information and

they need novel information about the same event or topic. Opinion summariza-

tion [16], also called sentiment-based summarization, combines sentiment analysis

with summarization regarding to the case that we are concerned about the opinions

or reviews. Moreover, if we deal with texts in different languages, we may consider

the multi-lingual [23] or cross-lingual summarization [96]. A multi-lingual system

could deal with several languages, but the output summaries have always the same

language as the input documents. The cross-lingual summarization corresponds to

another case that input and output languages are different. For example, if we want

to generate an English summary, but we only have Japanese documents or English

translations of original Japanese documents, then the system is cross-lingual.
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2.2 Common Approaches to Document Summa-

rization

2.2.1 Sentence Scoring and Sentence Ranking

Most classic summarization systems are based on sentence scoring or sentence rank-

ing, which are intuitive ways to obtain important sentences. Early systems deter-

mined the relevance of a sentence by means of word frequency [56] counts or only

cue words/phrases [21]. Later tf*idf [62], mutual information [72] are used to im-

prove the word frequency based method. Other common approaches include centroid

based approaches, graph-based approaches, machine learning approaches. We will

also introduce the topic model based sentence scoring in Chapter 4. .

Centroid-based Approaches

The centroid-based method [80] leverages the cluster centroids and it has been one

of the most popular baselines for extractive summarization methods. A centroid is

a pseudo center of a cluster of documents. It is defined as cj =
∑

d∈Cj
d/|Cj|, where

Cj is the cluster of documents which describe the same topic, |Cj| is the number of

documents, and d is the tf ∗ idf representation of a document. The sentences that

contain more words from the centroid of the cluster are considered as more salient.

The MEAD toolkit1 is an implementation of the centroid-based method that scores

sentences based on sentence-level and inter-sentence features, including the cluster

centroids, the position and length.

Graph-based Approaches

Graph-based ranking algorithms has been shown to be superior to centroid-based

summarization. Usually a graph is constructed by establishing links between nodes

1http://www.summarization.com/mead/
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(normally sentences or entities). The links are defined using similarities or other

semantic relations. Sentences that are related to many other sentences are likely

to be central and would have high weight for selection in the summary. Then, the

system could normalize the weights of edges and calculate the sentence scores by per-

forming a random walk on the graph (for example, in LexRank [22]). Incorporating

syntactic and shallow semantic information in the graph building could improve the

performance [13]. Furthermore, Wan et al. [97] developed an affinity graphs by dif-

ferentiating intra-document and inter-document links between sentences, and finally

penalizing redundant information.

Machine Learning based Summarization

Machine learning algorithms provide another way to score the sentences. A wide range

of machine learning techniques have been applied to document summarization. The

binary classifiers are studied in [43] which calculates the probability that a sentence

is classified as a summary sentence. Hidden Markov Models are also connected with

summarization by judging the likelihood that each sentence should be contained in

the summary [14]. Neural networks [88], and support vector regression [74] are also

used in summarization.

The advantage of using machine learning for document summarization is that

it is of great freedom to incorporate all kinds of features, such as position, lexical,

syntactic. It also allows to test the performance of the features and then selects the

most suitable ones. However, many machine approaches need a big training corpus,

which impedes the popularity. Labeling the corpus is very costly and utilizing the

labels is also difficult because annotator agreement is often low.
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2.2.2 Greedy Selection V.S. Optimization

Most summarization approaches choose content sentence by sentence. They sequen-

tially select the most informative sentences after scoring or ranking the sentences.

However, they have to check for redundance of the chosen sentences, and they could

not guarantee the best coverage of important information. Global optimization ap-

proaches can be used to solve some new formulations of the summarization task, in

which the best overall summary is selected.

A typical method using greedy selection is the Maximal Marginal Relevance

(MMR) approach [30]. In this approach, the sentences are selected one by one to

optimize a function which considers the relevance between sentence and queries (or

original documents) as well as the redundance of the summaries.

The greedy selection approach is easy to be implemented and to be improved by

modifying the optimization functions. However, the approach often result in bias in

the selecting process as we introduced in the introduction. It could not effectively

select the globally optimal summary. Optimization based algorithms, on the contrast,

generate the overall best summaries. They could integrate all summarization aims or

constraints in their objective functions and then select sentences together to optimize

the function. Considering the features of a good summary, the objective function

may represent the informativeness, redundance, and other special constraints (e.g.

length limitation, query relevance). Exactly solving the global optimization is NP-

hard [63]. However, global inference can be approximately solved by Linear Integer

Programming [63] and dynamic programming [103] . Global optimization approaches

to sentence selection have been shown to outperform greedy selection algorithms in

several evaluations [83].
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2.3 Evaluation

Accurately evaluating the quality of a summary spurs the improvement of summa-

rization systems, so it has always been a critical task. Generally summary qualities

could be evaluated from two aspects [40]. A general idea is to directly judge the

linguistic quality and informativeness of the summaries. This approach is called in-

trinsic evaluation. The other approach is the extrinsic evaluation, where summaries

are assessed by their helpfulness for a specific task.

2.3.1 Intrinsic Evaluation

Intrinsic evaluation usually compares summaries to some ideal reference data. Al-

though it needs annotation of the corpora, it facilitates automatical evaluation and

comparison of summarization systems. In the DUC and TAC evaluation workshops,

summaries are evaluated mainly by intrinsic evaluation methods.

Human Evaluation

Early DUC conferences used the Summary Evaluation Environment (SEE) interface

to manually compare peer summaries to the ideal. Assessors measured contents by

marking all sharing units and rating the linguistic quality. Then a weighted score of

the model units are defined and calculated to show the performance of all systems.

For topic-focused summarization, the ”Responsiveness” metric is also used to reflect

to what extent the summary satisfies the user’s information need.

In DUC 2001 to 2004, the manual evaluation was based on comparison with

a single human-written model which may not cover all information. The pyramid

method [71] addresses the problem by using multiple human summaries to create a

gold-standard and by expoiting the frequency of information in the human summaries

in order to assign importance to different facts. The pyramid gold-standard is based
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on a comparison between human-written summaries in terms of Summary Content

Units (SCUs). The SCUs in peer summary are compared against an existing pyramid

to evaluate how much information agrees between the peer summary and manual

summary.

ROUGE

The advantage of human evaluation is its accuracy and comprehensive judgement

(especially for the linguistic quality evaluation). However, it needs a lot of annotation,

thus costly. Lin and Hovy developed the Recall-Oriented Understudy for Gisting

Evaluation (ROUGE) [48, 46] for automatical evaluation, which has been used in later

DUC conferences and most summarization work. The ROUGE-N measure is indeed

an n-gram recall between a candidate summary and a set of reference summaries:

ROUGE-N =

∑
S∈{RefSum}

∑
n-gram∈S Countmatch(n-gram)∑

S∈{RefSum}
∑

n-gram∈S Count(n-gram)

where n stands for the length of the n-gram, and Countmatch(n-gram) is the maxi-

mum number of n-grams co-occurring in a candidate summary and a set of reference

summaries. Count(n-gram) is the number of n-grams in the reference summaries.

ROUGE has been demonstrated a good automatic evaluation metric because it

obtains good correlations with manual scores for content selection [54]. Within all

ROUGE-N metrics, ROUGE-1 and ROUGE-2 are most popular. Moreover, ROUGE-

L which measures the longest common subsequence and ROUGE-SU which measures

the skip-bigram plus unigram-based co-occurrences are also widely applied.

Information-theoretic Measures

Most automatic evaluation measures are established based on the co-occurrence statis-

tics to measure the content overlaps between system summaries and ideal summaries.
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However, Lin et al [47] proposed a different approach form the information theoretic

perspective. They introduced the new method based on the Jensen-Shannon di-

vergence of distributions between automatic summary and reference summaries and

achieved comparable performance with ROUGE.

A later extension is Louis and Nenkova’s work [54] which still used the information

theoretic measures but does not need to create human summaries. It is a big improve-

ment because they only need to compare the summaries and the original documents.

This idea is also employed in our thesis, both in Chapter 3 and Chapter 5.

2.3.2 Extrinsic Evaluation

Instead of direct analysis of the summaries, extrinsic evaluation assesses the impacts of

summaries on other tasks, including categorization [60], information retrieval [81], and

question answering [67]. For example, the SUMMAC evaluation [60] established large-

scale, developer-independent evaluation of summarization systems in several relevance

assessment tasks, such as document categorization. [64] designed a fact gathering task

to demonstrate the helpfulness of news summaries generated by Newsblaster. Users

are asked to answer related questions about an issue in the news and to generate

reports by gathering facts from summaries or news articles. Then summaries are

evaluated by the report scores and user satisfaction.

2.4 Real Systems

The summarization technology are coming into our life. More and more real-life

summarization systems have been available in the domain of news articles and research

papers. Some of them are listed as follows:

• Ultimate Research Assistant (Figure 2.1) The Ultimate Research Assis-

tant is a research summarization system that combines information retrieval
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and text mining. It performs text mining (e.g. concept extraction, text sum-

marization, visualization techniques) on search results of a research topic; and

generates a concise research report summarizing the topic to help users perform

online research.

• iResearch Reporter (Figure 2.2) iResearch Reporter is similar to the Ulti-

mate Research Assistant but it is a commercial system. It could provide research

report for individual professionals as well as content management solutions for

business owners. It passes users’ queries on to Google search engine, retrieves

multiple relevant documents, and produces categorized, easily readable sum-

mary reports. Compared to the Ultimate Research Assistant, the summary is

longer and contains more detailed information. The basis elements in the final

report are snippets (text passages) which are derived from original documents

and arranged meaningfully.

• Newsblaster (Figure 2.2) Newsblaster is a news summarization system de-

veloped by Columbia University. This system automatically collects, clusters

and summarizes news from several web sites.

• Yahoo! News Digest (Figure 2.4 Summarization has been available in

mobile devices.Yahoo! News Digest, a mobile application which derives from

the former Summly, helps people stay ”quickly informed” on the day’s big topics

by sending out twice daily updates or digests. Basically it is a multi-document

summarization system, using several sources to create news stories. The novelty

is that it contains multi-modal contents, including videos, texts, maps and

pictures. It also provide background information for the news at the end.
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Figure 2.1: Ultimate Research Assistant.

2.5 Relevant Evaluation Workshops

Evaluating the quality of a summary is a difficult but important task. The evaluation

workshops for document summarization contributed a lot to the development of the

technique by providing a platform to evaluate and compare summarization systems.

The TIPSTER Text Summarization Evaluation2 (SUMMAC, 1998) is known as

the first large-scale evaluation of automatic text summarization systems. In the con-

ference, summaries are tested in categorization and question-answering tasks in order

to analyze their informativeness.

From 2001 to 2003, the National Institute for Informatics Test Collection for IR

(NTCIR) also involved the Automatic Text Summarization tasks. The aim is for

researchers in this field to collect and share text data, and to make clear the issues of

evaluation measures and methods for summarization of Japanese texts.

2http://www-nlpir.nist.gov/related projects/tipster summac/.
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Figure 2.2: iResearch Reporter.

Figure 2.3: Newsblaster.
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Figure 2.4: Yahoo! news digest.
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The most famous competitions of document summarization are the series of sum-

marization tasks in the Document Understanding Conferences (DUC) and the later

Text Analysis Conferences (TAC). The DUC were held by the NIST yearly from 2001

to 2007 to progress in summarization and enable researchers participate in large-

scale experiments. Every year different tasks were proposed, taking into account new

challenges and requirements for document summarization. The conference provided

standard data sets that are produced by experts, as well as the evaluation methods

and tools. TAC can be regarded as the extension of the DUC. Initiated in 2008, TAC

absorbed the DUC for text summarization and the Question-answering Track of the

Text Retrieval Conference (TREC).

The tasks in DUC and TAC are changed over the years. In the early period, the

conference focused on single-document summarization and generic multi-document

summarization; and the data sets are collected from newswire/newspaper. To pro-

mote new research in summarization, some new challenges were proposed later, such

as query-focused summarization, updated summarization, automatically evaluating

summaries of peers (AESOP), and multi-lingual summarization. Besides, the data

sets evolved from news to blogs and scientific articles; and the evaluation methods

are also changed. In early DUC conferences, the summaries are evaluated manually

using the SEE software. Then the automatic evaluation metrics are used, includ-

ing ROUGE [46], Basic Elements (BE) [37] and Pyramid [71]. Recently automatic

evaluation of summaries has even been a new track in the TAC conferences.

The tasks in all conferences are summarized in Table 2.1.
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Conference Summarization Task
SUMMAC Single-document, query-focused, news
TSCb (NTCIR) Query-focused, generic, news
TSC2 (NTCIR) Single and multi-document, generic, news
TSC3 (NTCIR) Multi-document, generic, news
DUC-01 Single and multi-document, generic, news
DUC-02 Single and multi-document, generic, news
DUC-03 Multi-document, query-focused, news
DUC-04 Single and multi-document, topic-oriented, news, cross-lingual
DUC-05 Multi-document, query-focused, news
DUC-06 Multi-document, query-focused, news
DUC-07 Multi-document, update, query-focused, news
TAC-08 Multi-document, update, query-focused, opinion, news & blogs
TAC-09 Multi-document, update, query-focused, news, evaluation
TAC-10 Multi-document, guided, news, evaluation
TAC-11 Multi-document, guided, multi-lingual, news, evaluation
TAC-14 Biomedical, scientific papers

Table 2.1: Summarization of all tasks in the evaluation conferences (mostly cited
from [52]).
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Chapter 3

Multi-document Summarization

using Minimum Distortion

This chapter explains our reconstruction-based optimization approach to summariza-

tion [59]. We proposed a novel objective by borrowing a concept in information

theory: distortion [15]. Our main idea is to use the distortion measures to take place

of the three summary standards (relevance, diversity and coverage) which cannot be

easily quantified integrally, and by minimizing the distortion our final summary can

achieve the same or better effects.

We regard summarization as a data transmission system and assume that the

output summary sentences represent the input document sentences. The distortion

of the representation1 is used as a measure to evaluate the summary quality. Based

on different methods of the representation and the algorithms of minimizing the

distortion, we propose three summarization models: p-median model, facility location

model and linear representation model. First we adopt the one-to-one representation

like the clustering technique (i.e. one original sentence is represented by one summary

sentence). Under this assumption we get the first model - p-median model. Then the

1In this chapter, the ”representation” is equal to ”reconstruction”.
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p-median model is improved by adding constraints or features and we propose the

facility location model. Next, we jump out of the idea of clustering-like algorithms

and replace the one-to-one representation with many-to-one representation (i.e. we

use a linear combination of output sentences to represent one input sentence). Our

final approach takes the linear representation model (many-to-many representation)

combined with the facility location model, and the result exceeds most of popular

summarization. In addition, we indicate that our final model can be extended to

other summarization tasks.

3.1 Motivation and Problem Formulation

Given a set of sentences Ω = {x1, x2, ...xn}, where xi denotes the ith sentence in the

documents, the aim of extractive summarization is to select several representative

sentences S = {x̂i} ⊂ Ω.

An intuitive idea of selecting S is to rank the sentences in Ω by some measures and

select the sentences with the highest ranks. The ranking system can easily integrate

various features of the sentence, but it cannot sufficiently leverage the correlation

with the original document(s) if we only consider the word occurrence information,

for it calculates the similarity between only one sentence with the whole set. The

coverage of the summary is hardly considered in the ranking model either. Other

sequential selection (e.g. MMR) algorithms also cannot avoid the disadvantage.

How to develop a model and quantified measures to take advantage of the rele-

vance, or on the contrary, the information loss, between the whole summary sentences

and the whole set of original sentences is a problem deserved to be investigated. This

problem also has some impact on recent evaluation metrics of the summarization [47].

As the above discussion refers to the concept of information loss, we develop an

information-theoretic model, which sees the summarization as a data transmission
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system in Figure 3.1 [15]. Here the channel is omitted and we should only consider

the information loss from the input to the output but ignore the middle process.

The sentences in Ω are represented as values of a variable , and sentences in S

are seen as values of a variable . If the original documents are seen as an input of

the variable X, the summary is the output of variable . Thus, in our approach the

summary is a reconstruction of the original documents and every sentence in Ω can

be represented by a new value x̂i ∈ S.

The representation function is defined as:

g : Ω → S.

Now we give a new function defined in the space Ω × S:

d : Ω × S → R+.

It is called a distortion function in the information theory, and the distortion d(x, x̂)

is a measure of the cost of representing the sentence x as the sentence x̂.To measure

the sum of the cost, we use expectation of the distortion function:

Dis = Ed(X, g(X)) =
∑
x∈Ω

p(x)d(x, g(x)) (3.1)

Using the rate distortion theory [15], the objective of the summarization model in

Figure 3.1 can be elaborated by the Distortion Rate Function D(R). When the rate

R (i.e. the R in Figure 3.1, which can be thought according to the number of sentences

in the summary in this case) is limited, our aim is to minimize the expectation of the

distortion Dis in 3.1.
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Figure 3.1: Transmission model.

3.2 Distortion Measures

While the distortion function is defined differently, the final output will be gained

differently. Commonly a sentence X can be assumed as a memory-less source of

words Y . This assumption makes the computation of the distortion more convenient.

Actually, it is one of the reasons why we choose data transmission model with the

distortion measure. Then the distortion between word sequences Xn and X̂n can be

extended to the following form:

d(xn, x̂n) =
1

n

n∑
i=1

d(yi, ŷi) (3.2)

where y indicate a kind of value of a word in sentence x. In Hamming distortion y

indicates the word itself, while in squared error distortion y indicates the frequency

of the word. The following are some popular distortion measures.

3.2.1 Hamming Distortion

d(y, ŷ) =

⎧⎪⎪⎨
⎪⎪⎩

0; y = ŷ

1; y �= ŷ

(3.3)

26



Here y is the word itself. Using (3.3) in (3.2), we can see that this distortion mainly

evaluate the number of common words between two sentences. In this case, the

optimization of the summary can be intuitively explained as sharing the most words

with the source without taking into account the weights of words.

3.2.2 Squared Error Distortion

d(y, ŷ) = (y − ŷ)2 (3.4)

It is the most popular distortion measure used for continuous alphabets [15]. Although

there are some disadvantages, it is widely used in image and speech coding. The

distortion measure has many useful characteristics: non-negative, non-decreasing,

symmetry.

If we see the sentences as points and the distortion as the distance, the optimiza-

tion of (3.1) is equivalent to a p-median problem [3], which selects p centers from a

set of data points so as to minimize the sum of the distances between each point to

its nearest center . With respect to this assumption, we can use heuristic algorithms

for p-median problem to determine which points can be chosen as the reconstruction

points. The process will be elaborated in the next section.

[97] has employed the squared error distance to form the clusters , but it is based

on the K-means method which is only used to form the clusters and calculate a virtual

centroid, instead of real sentences in the original texts.

3.2.3 Information Divergence (KLD)

d(x, x̂) = DKL(px(y)||px̂(y)) =
∑
y

px(y) log
px(y)

px̂(y)
(3.5)

Information divergence is also called K-L divergence (KLD), or relative entropy. It

measures the expectation number of extra bits required to code when we use the

distribution px̂(y) to replace px(y). Every sentence x is seen as a memory-less source
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of words Y , and the summary is the corresponding output. It is a good measure to

evaluate the degree of representation from the information-theoretic perspective. But

it has a problem that it is not symmetrical, and it does meet the triangle relation.

So it cannot be handled as same as the squared error distortion sometimes.

Besides, the px(y) = p(y|x) here is finally replaced by p(x, y) in our approach,

because we want to add the distortion of each sentence and reflect the integral dis-

tortion between the summary and the source documents, and p(x, y) is more useful

to reflect the integral quality.

3.2.4 Jensen-Shannon Divergence (JSD)

As the K-L divergence is not symmetrical, the summary based on this measure usually

get long sentences. However, the tasks of multi-document summarization are usually

limited by the number of words instead of sentences. Thus long sentences may lead

to a decrease of the total words in the summary.

One solution is adding length limits to the sentences when optimizing the expec-

tation distortion; the other solution is to replace K-L divergence with J-S divergence,

which is a symmetrical measure.

DJS(P,Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M) (3.6)

where M is the average of the two distributions, M = 1/2(P + Q).

3.2.5 Jensen-Shannon Divergence with Smoothing (JSDS)

The problem using K-L divergence is when an element in the distribution is zero. For

example, if a word does not occur in x̂ in 3.5, the px̂(y) will be zero, and the K-L

divergence will be infinite. In this case, we should lead in some smoothing method to

solve the problem. Bayes-smoothing [106, 47] is a widely used smoothing method in
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language models:

p =
ai
a0

→ p =
ai + μp(wi|T )

a0 + μ
(3.7)

where μ is a scaling factor and p(wi|T ) is the probability of word i occurring in topic

T . J-S divergence can also be improved by the above smoothing method [47].

d(x, x̂) = DJSDS(px(y)||px̂(y)) (3.8)

=
1

2

∑
y

(p(x, y) log
p(x, y)

1
2
(p(x, y) + p(x̂, y))

+ p(x̂, y) log
p(x̂, y)

1
2
(p(x, y) + p(x̂, y))

)

where p(x, y) = OccurrenceInSentence(y)+μp(y|T )
OccurenceInDocument(y)+μ

, and μ takes a value of 2000 following [47]

and [106].

3.2.6 Other Distortion Measures

Some other distortion measures are also used for data compressing or clustering, such

as various divergences introduced in [34]. And if we use the perspective of distortion,

the information bottleneck method [94] adopts the loss of mutual information like

a distortion measure. [34] demonstrates the rate distortion theory using information

divergence distortion is equal to the information bottleneck method in clustering.

However, in the document summarization, the two algorithms are not the same. A

simple example is that when we represent all the source sentences using the sentence x

with the highest T (x, Y ) as follows, the I(X̂, Y ) will be the highest, but it is obviously

not the best summary.

I(X, Y ) =
∑
x

p(x)
∑
y

p(y|x) log
p(y|x)

p(y)
(3.9)

T (x, Y ) = p(x)
∑
y

p(y|x) log
p(y|x)

p(y)
(3.10)
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The reason is that it only respects the relation between the global information Y ,

but ignores the information loss between the sentences. In clustering the new repre-

sentation is a class which contains the original sentence, but in summarization the

representation is a new sentence which has nothing to do with the original sentence

if we use the mutual information loss as the distortion.

3.3 Cluster-based Reconstruction Models

3.3.1 P-median Clustering Model

As discussed above, we use the data transmission model and the Distortion Rate Func-

tion 3.1 to solve the summarization problem. If the summary has a definite number

(N) of sentences, there is no need to consider the rate region. So the optimization

problem is as follows in 3.11.

min
S

Dis = Ed(X, X̂) (3.11)

=
∑
x∈Ω

p(x)
∑
x̂∈S

p(x̂|x)d(x, x̂)

= 1/N
∑
x̂∈S

∑
x∈Ω

p(x̂|x)d(x, x̂)

= 1/N
∑
x̂∈S

∑
x∈H(x̂)

d(x, x̂)
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Subject to:

p(x̂|x) ∈ {0, 1}, (3.12)

S ∈ Ω,

|S| ≤ P,∑
x̂∈S

p(x̂|x) = 1.

where p(x) = 1/N , P is the predefined number of summary sentences, and H(x̂)

denotes the partition generated by x̂. The problem can be solved by two heuristic

approaches: the agglomerative approach and the interchange approach.

The agglomerative approach first assumes all the sentences in Ω are the represen-

tative sentences. Then one sentence is merged into a partition region in every step

until the number of the sentences in the summary is N . The process is in fact a

kind of hierarchical clustering, and this method can also serve as the base clustering

method for traditional cluster-based summarization.

The interchange approach randomly chooses N sentences as the initial points and

then starts an iteration process to replace the former point with a new point and gain

a lower cost of the objective. In this approach, the problem is seen as a p-median

problem, and the iteration process is local search [3]. According to [3], the worst case

of this procedure has a cost 3 + 2/P times that of the global optimum.

Our final cluster-based model uses the result of the agglomerative approach as the

initial point and then searches a local optimization result of the objective function.

The process can be interpreted as Algorithm 3.3.1 and 3.3.1.
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Algorithm 1 The Agglomerative Approach

a) Calculate all the distortions between every two sentence, and assign each sentence
to a single cluster.
b) Agglomerate the two sentences with the least distortion and form a new cluster.
The distance between the new cluster and another cluster is computed by the largest
distortion between any two sentences of the two clusters.
c) Agglomerate the two clusters with the minimum distance and form a new cluster.
Re-compute the distance between this cluster and other clusters.
d) Repeat c) until the shortest distance has reached the threshold.
e) Calculate the sum distortion of a sentence with others in a cluster. Choose the
sentence with the least sum distortion as the deputy (centroid) of this cluster.

Algorithm 2 The Interchange Approach

f) Use the centroids computed by the agglomerative approach as initial points.
g) Assign each sentence to a centroid by choosing the least distortion.
h) Recalculate the centroids as e).
i) Repeat g) and h), until the centroids do not change any more.

3.3.2 Facility Location Model

In the former discussion, we can add length constraints when using K-L divergence

as the distortion measure. Moreover, in the rate distortion model, if the rate is not

a constant, according to the rate distortion theory, the objective function can be

written as I(X, X̂) − βDis.

These problems provide a motivation of adding additional features into the sum-

mary cost. The above p-median problem is then converted to a facility location

problem [3]. Take the length constraint as an example. If we choose a sentence into

the summary, the cost has been changed to:

LengthPunish(x̂) +
∑

x∈H(x̂)

d(x, x̂); (3.13)
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Here we define the punishment function as

LengthPunish(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

β(Length(x) −max) Length(x) ≥ max;

0 min ≤ Length(x) ≤ max;

β(min− Length(x)) Length(x) ≤ min

(3.14)

The values of max and min depend on the datasets and are described in our experi-

ments. Then the final objective function is changed as follows:

min
S

Dis = E(Cost(X) + d(X, X̂)) (3.15)

=
∑
x∈Ω

p(x)
∑
x̂∈S

p(x̂|x)(LengthPunish(x̂) + d(x, x̂))

=
1

N

∑
x̂∈S

∑
x∈H(x̂)

(LengthPunish(x̂) + d(x, x̂))

This idea complements the shortage of only using information distortion as the

standard of summary selection, and it can integrate other features (such as features in

the centroid-based method) or constraints in our model. The optimization algorithm

is similar to p-median clustering, and we both use the simple local search method.

Thus, our model gains a good extensibility without adding much complexity.

3.4 Linear Representation Model

3.4.1 Motivation

In the above cluster-based models, we assume every original sentence is represented

by a new sentence. However, it is not an optimal representation. Intuitively, if a

sentence is represented by more sentences instead of a single center, the information

loss may be less. To formulate this idea, we use the linear combination of summary
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sentences to represent original sentences. Thus the distortion function is changed to:

d : Ω × λ(S) → R
+

where λ(S) denotes the linear generative space of S.

In case of this assumption, the output of the transmission system in Fig. 1 is

not changed. The change can be respected as only adopting a different transmission

process. The expectation of distortion then is changed to:

Dis =
∑
x∈Ω

p(xi) min
{λ̂ij}

d(xi,
∑
x̂j∈S

λ̂ijx̂j) (3.16)

where
∑

j λ̂ij = 1, and λ̂ij ∈ R
+.

We prove that the reconstruction error of linear representation is the lower bound

of one-to-one representation along the distortion measure of J-S divergence in Ap-

pendix A, i.e.

min
{λ̂ij}

d(xi,
∑
x̂j∈S

λ̂ijx̂j) ≤ d(xi, x̂i). (3.17)

So linear representation can be regarded as a better reconstruction model for summa-

rization theoretically. However, 3.16 is hard to compute because we must calculate

the set {λ̂ij} for every sentence. Thus we consider a representation in document-level,

i.e. we consider the whole input documents as a word source and the output summary

is also a set of words by combining the sentences with different weights.

We expect that the distortion between the whole summary and the whole original

documents is smaller than the sum of sentence-level distortion:

min
S

min
{λi}

1

n
d(
∑
x∈Ω

x,
∑
x̂i∈S

λix̂i) ≤ min
S

∑
xi∈Ω

1

n
min
{λ̂ij}

d(xi,
∑
x̂j∈S

λ̂ijx̂j) (3.18)

where
∑

i λi = n, λi ∈ R+, n is the number of sentences in Ω.
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This assumption is proved to be true in Appendix B. Thus we can directly calcu-

late the distortion between the whole summary and the original documents without

considering the representation of each sentence. In this way, our final objective func-

tion becomes:

Dis ∝ min
S

min
{λi}

d(
∑
x∈Ω

x,
∑
x̂i∈S

λix̂i); (3.19)

where 1/n is omitted.

3.4.2 The Approach of the Linear Representation Model

The Optimization Process

Using the above minimum objective 3.19, we develop an iterative algorithm based on

an interchange process:

• a) Choose initial sentences. In our experiment, we adopt the former result of

our cluster-based method (the interchange approach).

• b) Determine λi for corresponding x̂i.

Dis = min
{λi}

d(
∑
x∈Ω

x,
∑
x̂j∈S

λijx̂j)

• c) Remove the sentence x̂t with the lowest λt. Add a sentence x̂j to guarantee

that Disnew has the largest decrease.

Disnew = d(
∑
x∈Ω

x, λtx̂j +
∑

x̂i∈S,x̂i �=x̂t

λix̂i)

• d) Repeat Step b) and c) until the summary set does not change any more.

The Algorithm of Assigning λi to x̂i.

We use a gradient algorithm to assign λi and the proof is given in Appendix A.
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• a) When the initial summary sentences are given, calculate the distortion (or

with the punishment weight together) between each sentence x and the summary

sentences.

• b) A sentence x is assigned to the region of the summary sentence x̂i, if d(x, x̂i) =

minx̂j∈S d(x, x̂j).

• c) Calculate the size of the x̂i region, i.e. the number of sentences assigned to

x̂i. Then the size is assigned to λi as its initial value.

• d) Calculate each value of gi = ∂d(
∑

x∈Ω x,
∑

x̂i∈S λix̂i)/∂λi.

• e) Find the largest gradient gi and the smallest one gj.

gi = gi − δh; if gi > 0.

gj = gj + δh; if gj < n.

where δh > 0 and n is the number of sentences in Ω.

• f) Repeat Step d) and e) until d(
∑

x∈Ω x,
∑

x̂i∈S λix̂i) becomes constant or larger

than the last step.

In our following experiments, we take δh = 0.5. It is a tradeoff between accuracy and

computational complexity.

Comparison with Soft Partition

Someone may notice that in our initial p-median model, the partition is hard, i.e.

p(x̂|x) ∈ {0, 1}(see 3.11). The model can be improved by using a soft partition

(soft clustering method). In this new model, we assume p(x̂|x) ∈ [0, 1]. Thus every
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sentence can be represented by several sentences with a serial of probabilities:

Dis =
∑
x∈Ω

p(x)
∑
x̂∈S

p(x̂|x)d(x, x̂) =
∑
x∈Ω

p(x)
∑
x̂i∈S

λid(x, x̂i); (3.20)

where 0 ≤ λi = p(x̂i|x) ≤ 1.

Intuitively, soft partition and the linear representation have similar effects. Now

we compare the two ideas. As J-S divergence has similar characteristics with K-L

divergence in these inequalities, we need only to take K-L divergence as the example.

3.20 indicates that our linear representation model can attain a smaller distortion

than soft partition.

∑
x̂∈S

p(x̂|x)d(x, x̂) =
∑
x̂∈S

p(x̂|x)
∑
y

p(x, y) log
p(x, y)

p(x̂, y)
(3.21)

=
∑
y

∑
x̂∈S

p(x̂|x)p(x, y) log
p(x̂|x)p(x, y)

p(x̂|x)p(x̂, y)

≥
∑
y

(
∑
x̂∈S

p(x̂|x)p(x, y)) log
sumx̂∈Sp(x̂|x)p(x, y)

sumx̂∈Sp(x̂|x)p(x̂, y)

=
∑
y

p(x, y) log
p(x, y)∑
x̂i∈S λix̂i

= d(x,
∑
x̂i∈S

λix̂i);

where
∑

x̂∈S p(x̂|x) = 1;λi = p(x̂i|x).

3.5 Experiments

3.5.1 Data Sets

Document Understanding Conference (DUC) has organized yearly evaluation of doc-

ument summarization. Generic multi-document summarization is one of the funda-

mental tasks in DUC2002 and DUC2004. In DUC 2002, 59 document sets of approx-

imately 10 documents each were provided and generic summaries of each document
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set with lengths of approximately 100 words or less were required to be created. In

DUC 2004, 50 document clusters were provided and a short summary with lengths

of 665 bytes or less was required to be created.

3.5.2 Evaluation Metric

We use the ROUGE [46] evaluation toolkit2, which is adopted by DUC for automat-

ically summarization evaluation. It measures summary quality by counting overlap-

ping units such as the n-gram, word sequences and word pairs between the candidate

summary and the reference summary. ROUGE-N is an n-gram recall measure which

is computed as follows:

ROUGE-N =

∑
S∈{RefSum}

∑
n-gram∈S Countmatch(n-gram)∑

S∈{RefSum}
∑

n-gram∈S Count(n-gram)

where n stands for the length of the n-gram, and Countmatch(n-gram) is the maxi-

mum number of n-grams co-occurring in a candidate summary and a set of reference

summaries. Count(n-gram) is the number of n-grams in the reference summaries.

According to [46], among the evaluation methods implemented in ROUGE,

ROUGE-N (N=1, 2) is relatively simple and works well in most cases. In our work

we employ ROUGE-1 and ROUGE-2 to score the summaries.

3.5.3 Experimental Results

We evaluate all the proposed models with different distortion measures on the

DUC2004 dataset, and the results on the DUC2002 dataset further show the im-

provement of the models. Table 3.1 and Table 3.2 list the comparison results

generated by our models. As the Agglomerative approach of the p-median model is

most simple and its result can provide initial sentences for other approaches, we take

2We use ROUGEeval-1.4.2 downloaded from http://www.haydn.isi.edu/ROUGE/
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it as the baseline. The Interchange approach (p-median) is then used to improve

the Agglomerative approach. In these two approaches, four distortion measures are

employed on the DUC2004 dataset: Hamming, Squared Error, K-L divergence with

smoothing (KLDS) and J-S divergence with smoothing (JSDS). In the agglomerative

process, the cluster threshold is empirically set to 0.9 for Hamming and Squared

Error distortion; and when two sentences have less than two common words, we

assign the KLDS and JSDS with a large value (1.0) and stop the clustering process

according to this value. The results in Table 3.1 show that JSDS is the best measure

in the interchange approach, while in the agglomerative approach different distortion

measures achieve similar results. On DUC2002 data, we do not test all distortion

measures but only use the best measure-JSDS to demonstrate the effectiveness of

the improved models.

To limit the lengths of summary sentences when using KLDS, we add the length

punishment function and solve the optimization problem using the facility location

model. We also tried this model with the JSDS measure. On the DUC2004 dataset,

we punish sentences whose lengths are more than 100 bytes or less than 50 bytes.

And on the DUC2002 dataset, we assume the length of a good sentence is between 7

and 20 words. In the listed results, we find that in most cases the length constraint

leads to performance improvement. The model can be further extended by adding

more features like the positions and structure features; however, we do not investigate

other features in this work. Our main aim here is to demonstrate the extendibility of

our model. The final improvement comes from the usage of linear representation. As

our method usually gains a local optimization, the selection of the initial sentences is

crucial and it can greatly impact the final result. Fortunately, we always obtain per-

formance improvement when using results of former runs (the interchange approach

of the p-median model and the facility location model) as the initial sentences. We

do not conduct experiments using distortion measures other than KLDS and JSDS
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DUC2004 Task 2
ROUGE-1 ROUGE-2

P-Median Model (Agglomerative )

Hamming 0.36756 0.07755
Squared Error 0.36703 0.07813
KLDS 0.36583 0.07571
JSDS 0.36599 0.07495

P-Median Model (Interchange )

Hamming 0.37413 0.07845
Squared Error 0.36791 0.07823
KLDS 0.36791 0.07823
JSDS 0.38235 0.08364

Facility Location Model (Length Punishment)
KLDS 0.37208 0.07868
JSDS 0.38429 0.09107

Linear Representation(LR) Model
KLDS 0.38095 0.08262
JSDS 0.38599 0.08345

LR Model with Length Punishment
KLDS 0.37996 0.07749
JSDS 0.39614 0.09179

Table 3.1: Experimental Results on DUC2004 Data.

at this step. The linear representation model with length punishment method (i.e.

DUC2002 Task 2
ROUGE-1 ROUGE-2

P-Median Model (Agglomerative ) JSDS 0.33923 0.07224
P-Median Model (Interchange ) JSDS 0.34625 0.07262
Facility Location Model (Length Punish) JSDS 0.35262 0.07418
Linear Representaion(LR) Model JSDS 0.35021 0.07673
LR Model with Length Punishment JSDS 0.35884 0.07752

Table 3.2: Experimental Results on DUC2002 Data.

we use the result of facility location model to initiate the linear representation model

and add length punishment to the summary sentences.) achieves the best perfor-

mance on both DUC2004 and DUC2002. This indicates the effectiveness of the two

techniques, and also proves the distortion is a good standard to estimate the quality

of summaries. We also compare our results with some other popular models in Table

3.3 and Table 3.4. Except for MMR [10] and KLSum [33], all the results of these

models are cited from their original papers which maybe experiment only on one of

40



ROUGE-1 95% confidence ROUGE-2
Best Human 0.41828 0.40193 - 0.43463 0.10500
Worst Human 0.38902 0.36793 - 0.41011 0.08595
Team65 0.38232 0.37034 - 0.39278 0.09219
Team104 0.37436 0.36502 - 0.38568 0.08544
Team35 0.37427 0.36074 - 0.38664 0.08364
Our best model 0.39614 0.38244 - 0.41220 0.09179
Our Interchange Approach (JSDS) 0.38235 0.37028 - 0.39744 0.08364
Centroid 0.3670 0.3580-0.3767 -
Cont. LexRank 0.3758 0.3617-0.3826 -
Semi-supervised 0.329 - 0.073
MMR 0.34923 0.33740 - 0.36617 0.08010
KLSum 0.23422 0.22149 - 0.24697 0.01716

Table 3.3: Comparison with Other Models on DUC2004.

our datasets, finally we have different control groups on DUC2002 and DUC2004, and

- indicates there is no reported score in this term. First, we list the best performance

values of the DUC2002 and DUC2004 participants. Moreover, on DUC2004, the hu-

man summaries are also evaluated and the official ROUGE scores are given. We cite

the Centroid and LexRank results provided by [22] as well the MMR and KLSum

results which are generated by ourselves, in order to show the performance of the

traditional greedy selection models. The language independent graph-based model

(Pagerank-U) [66], the dynamic programming (Knapsack), the integer programming

(ILP) [63], the semi-supervised model [100] are also included, and we use the toolkit

of Information Distance [53] to experiment too. From the results in Table 3.3 and Ta-

ble 3.4, we can see that our final approach (Linear Representaion Model with Length

Punishment) exceeds most of popular models and the participating systems. Espe-

cially, we have achieved a result close to the human-annotated result on the DUC2004

dataset. The result of our approach is better than greedy selection based models (e.g.

centroid, LexRank, MMR, KLSum). It shows that the traditional selection methods

are not good enough and our optimization approach is a better choice, for our method

conveys more integral information from the perspective of information theory. The
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ROUGE-1 ROUGE-2
Our best Model 0.35884 0.07752
Team26 0.35151 0.07642
Team19 0.34504 0.07936
Team28 0.34355 0.07521
Pagerank-U 0.3552 -
Information Distance 0.29216 0.05478
Knapsack 0.348 0.073
ILP 0.346 0.072
MMR 0.29519 0.05781
KLSum 0.19513 0.01230

Table 3.4: Comparison with Other Models on DUC2002.

information distance model is not very effective on the DUC2002 dataset, the reason

may be that it is a model which is more suitable for topic-focused summarization.

Furthermore, our model also beats other optimization (global inference) models (i.e.

Knapsack and ILP). It demonstrates the superiority of our model by unifying all aims,

especially the coverage, in one information-theoretic objective function.

3.6 Conclusions and Problems

In this chapter, three new summarization models are proposed based on the recon-

struction assumption and they optimize an information theoretic measure: distortion.

The p-median model respects the optimization as a p-median problem and conveys

as more information between the whole summary and the whole original documents

as possible. The facility location model adds features to the p-median model, and the

linear representation model jumps out of the idea of clustering, and directly evaluate

the distortion between the whole documents and all candidate sentences. The models

have been demonstrated effective on the DUC2002 and DUC2004 datasets. However,

there remained several problems as follows:
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1. In almost all previous summarization systems, including the models proposed

in this chapter, the summary length should be predefined. Summary length is an

important factor in summarization, it indicates the trade-off between concision and

completeness. Moreover, when quantity of information in two document sources dif-

ferentiate too much, it is not reasonable to require their summaries have the same

length. So, how to find a proper summary length should be considered. In Chapter

5, we explain the problem of summary length determination in detail, and extend the

optimization based summarization models to be Bayesian nonparametric in order to

solve the problem.

2. In this chapter, we use word vectors to represent the documents and sentences.

It remains the original word information, but it ignores the relationships between

words. Moreover, in our reconstruction models, the reconstruction error would be

large due to word sparseness. In Chapter 4, we introduce the topic models for sum-

marization and use them to avoid sparseness for the new model in Chapter 5.

3. The extractive summarization enables acceptable readability. However, it lacks

information about the document or topic structures, especially in documents with

clear categories or hierarchies. In Chapter 4, we also present an alternative method

to extractive summarization. We improved a classical Bayesian nonparametric topic

model, HDP-LDA, and propose a new model which could discover latent document

and topic structures. The visualization of the topics and document structures pro-

vides a new perspective to understand the documents. The new topic model should

also be seen as an improvement to the preprocessing step of traditional document

summarization.
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Chapter 4

Topic Models and Bayesian

Nonparametrics

This chapter describes the fundamentals of topics models and Bayesian nonparamet-

ric methods, their relationship with document summarization. The two techniques

provide the background of the next chapter, and they will be utilized to improve

document summarization. First we briefly introduce the basic ideas and some typical

models and applications separately. Then we discuss the connections between them

and document summarization.

In addition, at the end of this chapter we introduce our new Bayesian nonpara-

metric topic model. We integrate the advantage of both the hierarchical Dirichlet

proces (HDP)s and the nested Dirichlet process (NDP), attaining the hybrid nested

hierarchial Dirichlet process (hNHDP).

4.1 Probabilistic Topic Models

Topic models [6] are an increasingly useful family of algorithms for statistical analysis

of document collections as well as other discrete data, such as genomic data [26] and

discrete image data [24]. The aim of topic models is to uncover the latent thematic
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structure in documents (or other similar data). With topic models, we could better

understand the documents, and easily browse, search or organize the information.

They have various applications in machine learning, including information retrieval,

collaborative filtering, and image classification.

The fundamental idea of topic models is to assume that each document is a mixture

of latent topics, each of which is a probabilistic distribution over words. To generate

a document, a distribution of topics is firstly drawn; then each word in the document

is assigned randomly a topic and drawn according to the probability distribution

associated with the topic. To better illustrate the models, we define the following

notations. Let θ be the document-specific topic distribution, z be the assigned topic

for each word w, φz be the word distribution associated with topic z, and F be the

multinomial distribution which select a word from topic z. Then a topic model can

be represented as a mixture model.

w|Φ, z ∼ F (φz) (4.1)

z|θ ∼ θ

(4.2)

4.1.1 Probabilistic Latent Semantic Indexing

Probabilistic Latent Semantic Indexing (PLSI) [36] is an early topic model (sometimes

it is also called an aspect model). It follows the bag-of-words assumption that ignores

the order of words. It introduces the concept of latent topic, and assumes that a

document d and a word w are conditionally independent given a topic z.

p(d, w) = p(d)
∑
z

p(w|z)p(z|d) (4.3)
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4.1.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [9] is a fully Bayesian extension of the PLSI model.

The PLSI model does not make any assumption about how the topic distributions (θ)

are generated. This makes it hard to be generalized to new documents. In constrast,

the LDA model puts a Dirichlet prior on the topic distributions, i.e. θ ∼ Dir(α)

where α is the hyperparameter of the Dirichlet Distribution.

4.1.3 Other Topic Models

Since the LDA, there have been a variety of topic models applying to many different

situations. For example, the dynamic topic models [8] could catch the topic variance

over time; the author-topic model [87] is developed to consider the author information;

the multi-grain topic model [95] is present to extract comment aspects of objects in

online reviews.

4.2 Topic Models for Document Summarization

In document summarization, topic models can be used for document representa-

tion [99, 33], and they can be also directly used for some special summarization

tasks [18, 91]. Summarization benefits from topic model representations, which re-

duce the dimensionality and capture implicit semantic relations. Compared to word

representations, topic representations enable better sentence scoring and sentence sim-

ilarity calculation. For example, Haghighi and Vanderwende [33] show that the Topic-

Sum method which uses topic model based representations performs much better than

the SumBasic method which uses word representations. There are also special topic

models developed for summarization to get the document structure(HIERSUM [33],

DualSum [18], HybHSum [11]) or topical coherence [12].
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4.3 Bayesian Nonparametric Methods

Bayesian nonparametric methods provide a Bayesian framework for model selection

and adaptation using nonparametric models [27]. A BNP model uses an infinite-

dimensional parameter space, but invokes only a finite subset of the available param-

eters on any given finite data set. This subset generally grows with the data set. Thus

BNP models address the problem of choosing the number of mixture components or

latent factors. For example, the hierarchical Dirichlet process (HDP) [92] can be used

to infer the number of topics in topic models or the number of states in the infinite

Hidden Markov model.

4.3.1 Dirichlet Process Mixture Models

The Dirichlet Process

The Dirichlet process is one of the best known Bayesian nonparametric priors. It

has been widely used in machine learning due to its computational efficiency [25].

A Dirichlet process (DP) is a distribution over probability distributions. Given a

probability measure G0 on a measurable space (Θ,B), if we say G is distributed

according to a DP with parameters α,H, i.e. G ∼ DP(α,H), it means the following:

(G(A1), G(A2), ..., G(AK)) ∼ Dirichlet(αH(A1), αH(A2), ..., αH(AK)) (4.4)

for any finite partition (A1, A2, ..., AK) of the space (Θ,B).

Dirichlet Process Mixture Models

Since the probability distributions drawn from a DP are discrete, the DP related

processes cannot be directly used for density estimation. Instead, they are used as

a prior at the top of hierarchical models, which yields the Dirichlet mixture model
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(DPM) [2]. Let wi be an observation with a distribution F (θi) given factor θi that

is i.i.d. drawn from a random probability measure G. Given θi, the observations are

conditionally independent to each other. If G is Dirichlet process distributed, we can

then derive the DPM as

wi ∼ F (θi) for i = 1; 2; . . . ;n

θi ∼ G for i = 1; 2; . . . ;n

G ∼ DP(α;H) :

With respect to Dirichlet-multinomial conjugacy, F (.) is usually set to be a multino-

mial distribution in real applications, for example, the probabilistic topic models.

4.3.2 The Hierarchical Dirichlet Process

The HDP [92] is a Bayesian nonparametric prior for modeling groups of data. It

ensures that sets of group-specific DPs share the atoms. Suppose that we have ob-

servations organized into groups. Let xji denote the ith observation in group j. All

the observations are assumed to be exchangeable both within each group and across

groups, and each observation is assumed to be independently drawn from a mixture

model. Let F (θji) denote the distribution of xji with the parameter θji, which is

drawn from a group-specific prior distribution Gj. For each group j, the Gj is drawn

independently from a DP, DP (α0, G0). To share the atoms between groups, the HDP

model forces G0 to be discrete by defining G0 itself as a draw from another DP,
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DP (γ,H). The generative process for HDP is represented as:

G0 ∼ DP(γ,H),

Gj ∼ DP(α0, G0) for each j,

θji ∼ Gj for each j and i,

xji ∼ F (θji) for each j and i. (4.5)

Using the stick-breaking construction of Dirichlet processes, we can express G0 as

G0 =
∑∞

k=1 βkδφk
, where δφk

is a probability measure concentrated at the atom φk.

The atoms are drawn from the base measure H independently, and the weights β ∼
GEM(γ)1 are mutually independent. Because G0 has support at the points {φk},

each Gj necessarily has support at these points as well; and can thus be written as

Gj =
∑∞

k=1 πjkδφk
, where the weights πj = (πjk)∞k=1 ∼ DP(α0,β).

When the data groups are categorized into higher-level categories, we should ex-

tend HDP to the third level. For example, let us consider documents from different

corpora. In this case, a document is a group and a corpus is a category. A top-level

DP generates the base measure for each corpus; draws from each of these corpus-level

DPs yield the base measures for DPs associated with the documents within a corpus.

Finally, draws from the document-level DPs provide the topic representation of each

document (a topic is a probability distribution across words). The model allows the

sharing of topics both within each corpus and between corpora. Teh et al. [92] com-

pared three models: 2-level HDP on documents from one category, 2-level HDP on

documents from different categories, and 3-level HDP on documents from different

categories. The second model yielded the poorest performance, proving the need to

consider the category information of groups. Unfortunately, in many cases we do not

known the category information.

1Here GEM stands for Griffiths, Engen, and McCloskey [79]. We say β ∼ GEM(γ) if we have

βk = β′
k

∏k−1
k=1(1− β′

k) for k = 1, ...,∞, where β′
k ∼ Beta(1, γ).
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Figure 4.1: Graphical model representations of (a) HDP and (b)LC-HDP.

4.3.3 LC-HDP

Motivated by a similar problem to that of the HDP [92], Müller et. al. [68] developed

another hierarchical Dirichlet process (LC-HDP). They considered a model in which

a coupled set of random measures Fj is defined as

Fj = εG0 + (1 − ε)Gj,

Gj ∼ DP(γ,H) for j = 0, 1, ...J. (4.6)
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where 0 ≤ ε ≤ 1 defines weights of the linear combination. This model provides an

alternative approach to sharing atoms, in which the shared atoms are given the same

stick-breaking weights in each of the groups. It has an attractive characteristic that

it can discriminate local components, which are useful for clustering. We compare

graphical model representations of the HDP [92] and LC-HDP [68] in Figure 4.1.

4.3.4 The Nested Dirichlet Process

The NDP [84] is motivated by simultaneously clustering groups and observations

within groups. It induces multi-level clustering, while the HDP can cluster only

observations. In the NDP model, the groups are clustered by their entire distribution.

Consider a set of distributions {Gj}, each for one group. If {Gj} ∼ nDP(α, γ,H), it

means that for each group j, Gj ∼ Q with Q ≡ DP(αDP(γH)). This implies that we

can first define a collection of DPs

G∗
k ≡

∞∑
l=1

wlkδθ∗lk with θ∗lk ∼ H, (wlk)∞l=1 ∼ GEM(γ)

and then draw the group specific distributions Gj from the following mixture

Gj ∼ Q ≡
∞∑
k=1

π∗
kδG∗

k
with (πk)∞k=1 ∼ GEM(α)

The process ensures Gj in different groups can select the same G∗
k, leading to clustering

of groups.

Although the NDP can also borrow information across groups, groups belonging

to different clusters cannot share any atoms. For the NDP, the different distributions

have either the same atoms with the same weights or completely different atoms and

weights.
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4.3.5 Beta Processes and Latent Feature Analysis

The beta process(BP) [93, 75] and the related Indian buffet process(IBP) [32] are often

applied to factor/feature analysis to infer a set of factors with which data may be

sparsely represented. By defining the infinite dimensional priors, these factor analysis

models need not to specify the number of latent factors but automatically determine

it.

Definition of BP: Here we avoid using a complete measure-space definition for

the beta process, but follow the representation form given by [77].

Let B0 be a continuous measure on a space Θ; B0(Θ) = γ; and α is a positive

scalar. If Bk is defined as follows,

Bk =
N∑
k=1

πkδθk

πk ∼ Beta(
αγ

N
, α(1 − γ

N
))

θk ∼ 1

γ
B0 (4.7)

then as N → ∞, Bk → B and B is a beta process: B ∼ BP (αB0).

Finite Approximation: The beta process is defined on an infinite parameter

space, but sometimes we can also use its finite approximation by simply setting N to

a large number.

Bernoulli Process: The beta process is conjugate to a class of Bernoulli pro-

cesses, denoted by X ∼ Bep(B). If B is discrete, of the form in (4.7), then X =∑
k bkδθk where the bk are independent Bernoulli variables with the probability that

bk = 1 equal to πk. Due to the conjugation between the beta process priors and

Bernoulli process, the posterior of B given N samples Xi ∼ Bep(B) is also a beta
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process which has updated parameters:

B|X1, X2, ..., XM ∼ BP (c + M,
c

c + M
B0 +

1

c + M

∑
i

Xi) (4.8)

Application of BP: Furthermore, marginalizing over the beta process measure B

and taking c = 1, provides a predictive distribution on indicators known as the

Indian buffet process (IBP) [93]. Linking the beta process and the Bernoulli process

is often used in a feature analysis model to generate infinite vectors of binary indicator

variables, which indicates whether a feature is used to represent a sample. In this

paper, we propose a similar method to indicate which sentences are used to represent

a document.

4.3.6 Bayesian Nonparametric Topic Models

A problem of the classic topic models is how to find a proper number of topics.

For example, in PLSI [36] and LDA [9], we have to predefine the number of topics

before we construct the model. This impedes the flexibility of the models. Bayesian

nonparametric methods are suitable to solve the problem. Especially, the Dirichlet

Proceess (DP) is an appropriate tool to extend finite mixture models to nonparametric

models. So the topic distribution of each document is generated by a DP. Then, to

guarantee the topics are shared across documents, all these document-specific DPs

shares the same base measure which is an another DP. This method derives the HDP

based topic model, HDP-LDA [92].

Besides the HDP-LDA, other Bayesian nonparametric priors are also utilized in

the topic modeling. For example, the infinite buffet process (IBP) [32] is used to

build a sparse topic model, where each topic is associated with only a subset of the

vocabulary.
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4.3.7 Bayesian Nonparametric Methods in Document Sum-

marization

Recently, some BNP models are also involved in document summarization ap-

proaches [11, 17]. BNP priors such as the nested Chinese restaurant process

(nCRP) [7] are associated with topic analysis in these models. Then the topic

distributions are used to get the sentence scores and rank sentences as in Section 4.2.

BNP here only impacts the number and the structure of the latent topics, but the

summarization framework is still constant-length. Our BNP summarization model

differs from the previous models. Besides using the HDP for topic analysis, our ap-

proach further integrates the beta process into sentence selection. The BNP method

in our model are directly used to determine the number of summary sentences but

not latent topics.

4.4 Hybrid Nested Dirichlet Processes for Topic

Modeling

4.4.1 Introduction

In previous sections, we introduced the Bayesian nonparametric (BNP) models [73, 28]

which have attracted a lot of attention in the machine learning and data mining com-

munity recently. In this section, we improved a well known Baysian nonparametric

model, the the hierarchical Dirichlet process (HDP), to adapt it to a new environment.

Among the various BNP priors, the Dirichlet process (DP) is one of the most

widely used priors owing to its efficiency of inference [69]. The DP is often associated

with a mixture model, resulting in a Dirichlet process mixture (DPM) model [69]. One

basic assumption of the DPM is that the observations are infinitely exchangeable.

However, this assumption does not hold when data comes from multiple groups,
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where observations from different groups are generally not exchangeable. To model

grouped data, Teh et al. [92] advanced the hierarchical Dirichlet process (HDP), which

constructs multiple DPs by sharing the base measure which is drawn by another DP.

With this setting, the HDP allows different groups to share mixture components.

Moreover, motivated by the same problem, Müller et. al. [68] developed an alternative

model which is also called HDP. They defined a random measure for each group as

a linear combination of two independent samples from DPs. One is shared across

the groups, while the other is idiosyncratic. In this thesis, we call Müller’s model

LC-HDP (Linear Combination-HDP) to distinguish it from Teh’s HDP model.

The HDP has achieved great success for modeling groups of data and it has been

applied to various areas such as topic modeling and hidden Markov models. It as-

sumes that each group distribution is conditionally independent based on the same

base measure. However, this assumption ignores the category information of groups.

If we consider a group of data as an object; the objects are often organized into

categories, such as documents in multi-corpora data and epileptic seizures (groups of

channels) across patients [101]. Intuitively, objects within the same categroy should

be more similar to each other than to those in other categories. These kinds of cate-

gory information are useful for modeling data [44, 82], and Teh et al. [92] demonstrate

that ignoring the category information would result in much worse performance. Nev-

ertheless, in many cases the category information is difficult to get; and discovering

the implicit categories is an important task [105].

Here, we consider the case that the membership of the grouped data is unknown,

and we develop a hybrid nested/hierarchical Dirichlet process (hNHDP) model [58]

uncovering the latent categories and taking advantage of it. We borrow the idea from

the nested Dirichlet process (NDP) [84], which is able to simultaneously cluster groups

and observations within groups. In the HDP model, two distributions share all atoms

but they are assigned different weights to them. The LC-HDP allows distributions
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Table 4.1: Comparison of different models.
[92] [68] [84] This work

Model HDP LC-HDP NDP hNHDP
Sharing atoms

√ √
-

√
Clustering data
groups - -

√ √
Discriminating
local components -

√
-

√
Top-level
base measures H H H H0&H1

to share only part of atoms. NDP, on the other hand, leads to distributions that

have either the same atoms with the same weights or completely different atoms and

weights. This induces clustering in both observations and distributions.

We combine elements of the NDP and the LC-HDP in our model. We cluster

the group distributions as in the NDP. However, different from the NDP, our model

generates distributions sharing atoms between groups from different clusters; and we

cluster the groups using only some local components. We define the distribution Fk

for each cluster k as a mixture of two independently drawn DPs as in the LC-HDP:

G0 which is shared by all clusters and Gk which is cluster-specific. Through some

settings, we make Fk still a realization of the DP (this is not guaranteed by the

original LC-HDP). Moreover, we set different base measures (H0 and H1) for G0 and

Gj. Thus Gj can only include useful features for clustering. This setting is based

on consideration of feature selection in data clustering. Selecting only a subset of

features are enough to get good clustering performance, while including irrelevant

features may even harm the clustering. The properties of the proposed model are

summarized and compared with those of other models in Tabel 4.1.

We apply the hNHDP to the problem of topic modeling, which is a suitable case for

illustrating the power of the prior and an alternative to document summarization as

well. Our model assumes documents to be mixtures of topics and assigns documents

into latent categories. It automatically identifies local words for local topics by word
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Figure 4.2: Graphical model representation of hNHDP.

differentiation. It reveals topic structures and dependencies, which are visualized in

our experiments.
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4.4.2 The Hybrid Nested/Hierarchical Dirichlet Process

We propose the hybrid nested/hierarchical Dirichlet process (hNHDP) mixture model

for groups of data. Following the setting of HDP, assume that we have M groups of

data. Each group is denoted as xj = xj1, ..., xjNj
, where {xji} are observations and Nj

is the number of observations in group j. Each xji is associated with a distribution

p(θji) with parameter θji. For example, in topic modeling the distribution p is a

multinomial distribution. We now describe the generative process of observations

using the hNHDP model.

As in the NDP, we first consider the set of distributions {Fk} for different clusters.

For each cluster (latent category) k, we model Fk as a combination of two components,

G0 and Gk. This setting is similar to that for the LC-HDP, but we impose some

additional restrictions on the parameters. The combination weight εk is changed

for each cluster, and the two components are drawn from DPs with different base

measures.

G0 ∼ DP(α,H0),

Gk ∼ DP(β,H1) for each k,

εk ∼ Beta(α, β) for each k,

Fk = εkG0 + (1 − εk)Gk for each k. (4.9)

After getting the cluster-specific distributions, we assign the group distributions

F ′
j to the set {Fk}. This hierarchy is the same as that of the NDP.

F ′
j ∼

∞∑
k=1

ωkδFk
(4.10)
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where ω = {ωk} ∼ GEM(γ). This is equal to selecting a cluster label k for a group

and then assigning Fk to the group as its distribution. Then we generate observations

using the following process.

• For each object xj,

– Draw a cluster label cj ∼ ω;

– For each observation xji

∗ θji ∼ Fcj ;

∗ xji ∼ p(xji|θji).

A graphical model representation is shown in Figure 4.2.We can also define the

hNHDP mixture model in another way. For each group, the observations are inde-

pendently drawn from the distribution

Pj(·) =

∫
p(·|θ)d(F ′

j(θ))

where F ′
j is drawn from the hNHDP prior as above and xji ∼ Pj for each i in group

j.

Model Properties

The hNHDP has some interesting properties:

• (1) Fk is still a sample from a DP.

• (2) F ′
j can share atoms that are generated from G0.

In [50], the authors proposed a new construction of DPs by three operations based

on existing ones. This construction is also used to derive a coupled mixture model

for groups of data [49]. Here we cite one of the operations: the superposition.
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Superposition 1 Let Dk ∼ DP(αkBk) for k = 1, ..., K be independent DPs and

(c1, ..., ck) ∼ Dir(α1, ..., αk). Then the stochastic convex combination of these DPs

remains a DP,

c1D1 + · · · + ckDk ∼ DP(α1B1 + · · · + αkBk).

From the set of equations in (4.9), we can infer that cluster-specific distribution Fk

in the hNHDP model is still a realization of DP.

Fk ∼ DP(αH0 + βH1). (4.11)

With this form, the hNHDP can be transferred into a special NDP. However, the

generative process of (4.11) is not the same as that of (4.9) because G0 is only sampled

once in (4.9). If we directly use form (4.11) for each cluster, H0 will generate different

atoms for each cluster.

Now we consider the relationship between the hNHDP and the LC-HDP. We

ignore the clustering structure of the hNHDP, and focus on only the group-specific

distributions {F ′
j}. For each group j, F ′

j can be written as εkG0 + (1 − εk)G′
j where

k = cj is the cluster label and G′
j = Gk. If εk is same for all k,the hNHDP degenerates

into a special LC-HDP. It also indicates that F ′
j can share atoms generated from a

global component G0.

4.4.3 Application to Topic Modeling

Category information is useful for modeling complex data. For example, in the area

of topic modeling, the discriminative LDA [44] and the labeled LDA [82], which

utilize the side information of documents, have better predictive performance than

the general unsupervised LDA (latent Dirichlet allocation [9]). Let us return to the

HDP. When it is used for topic modeling (HDP-LDA), one document is regarded

as a group. If we have documents in multiple corpora (each corpus is a category),
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the HDP is extended to a 3-level model to integrate the category information of

documents. As we introduced before, Teh et al. [92] demonstrated that a 3-level

HDP that considers the category information of documents performs better than a

2-level HDP that treats documents from different corpora in the same way. All these

studies proved the advantage of discriminating documents from different categories

in text modeling. This stimulated us to take consideration of the document structure

and to utilize it.

4.4.4 The hNHDP model for Topic Modeling

We consider the case where the category information of documents is unknown and

develop an hNHDP model for topic modeling in this case. We assume that word is an

observation and that a document is a group. We generate the parameter distribution

F ′
j for each document j using the generative process in Section 4.4.2, where the

distribution p(θji) is set as a multinomial distribution with parameter θji. The base

measures H0 and H1 are set as Dirichlet distributions over words.

In clustering analysis, feature selection is a very important task. By selecting a

subset of efficient features, feature selection can improve the text clustering efficiency

and performance [51]. Feature selection has already been used in the Dirichlet mixture

models for clustering [42, 104]. Moreover, word selection has also been successfully

used in sparse topic models [98]. So we also want to integrate feature selection into

our model to reduce the dimension of topics and improve the clustering performance.

Thus we develop the following process of word differentiation.

Assuming that the size of the vocabulary is V , we bring in a binary vector q1 =

(q11, ..., q
1
V ) to select discriminative words and separate the vocabulary into two disjoint

sets. If q1v = 1, the word v is regarded as discriminative and included only in local

topics. Otherwise, v is regarded as global and included only in global topics. In this

way we get two disjoint base measures, H0 and H1, for the hNHDP.

61



• For each word v

– q0v ∼ Bernoulli(π).

– q1v = 1 − q0v .

• H0 = Dir(ηq0);

• H1 = Dir(ηq1).

Here, q0 and q1 are binary vectors q0 = (q01, ..., q
0
V ) and q1 = (q11, ..., q

1
V ). For the

parameter π, we set π ∼ Beta(α, β) to conform with the hyperparameters of εk.

In practice, we may not require that the q0v is uncertain if we already know the

feature words; and it is also possible that q1v �= 1 − q0v . However, these cases are not

discussed in this paper.

Finite Approximation

In Bayesian statistics, the Dirichlet-multinomial allocation (DMA) has often been

applied as a finite approximation to the DP [105, 104]. It takes the form GN =∑N
l=1 πlδθl , where π = (π1, ..., πN) is an N -dimensional vector distributed as a Dirich-

let distribution Dir(α/N, ...α/N). In our inference step, we approximate ω in (4.10)

by a finite Dirichlet distribution

ω ∼ Dir(γ/K, ...γ/K). (4.12)

The G0 and G1 are also approximated by the DMA.

G0 =
L∑
l=1

wl0δθl0

Gk =
L∑
l=1

wlkδθlk (4.13)
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where (w10, ..., wL0) ∼ Dir(α/L, ...α/L) and (w1k, ..., wLk) ∼ Dir(β/L, ...β/L). If we

set K and L large, the DMA can give a good approximation in our model.

Comparison with Related Work

Some relevant models using a similar terminology or focusing on a similar prob-

lem have been proposed. The Dirichlet enhanced latent semantic analysis (DELSA)

model [105] extends LDA by revealing the clustering structure of data. It replace

the parametric Dirichlet prior distribution in LDA by a DP. However, it is still para-

metric when generating topics because it is based on LDA and it requires the topic

number to be given. By contrast, in a Bayesian nonparametric topic model, such as

the HDP-LDA and our model, the topic number can be inferred.

Paisley et al. [76] developed a nested hierarchical Dirichlet process (nHDP) for

hierarchical topic modeling. The model is a generalization of the nested Chinese

restaurant process (nCRP) [7], which allows each word to follow its own path to a

topic node according to a document-specific distribution on a shared tree. Our model

is based on the HDP and NDP, which are different from the nCRP when modeling

topics.

More recently, Agrawal et al. [1] proposed an alternative Nested Hierarchical

Dirichlet Process (which is also called nHDP). They addressed the problem of mod-

eling documents associated with entities. Their proposed model is an HDP-nesting-

HDP model, which allows entities for different documents to be shared. It also utilizes

the category information of documents. Documents are clustered by entities. Our

model differs from it because ours is based on the LC-HDP. Besides, the hNHDP

model identifies local words and local topics, which are never realized by other mod-

els.
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4.4.5 Inference

We use the Gibbs sampling method to infer the posterior of parameters. The inference

proceeds through the following steps.

Sampling the cluster indicators cj.

As we use the DMA approximation for ω in (4.12), the probability of cluster

assignments conditioned on other variables can be calculated as

P (cj = k|c−j, ...) ∝ mk − 1 + γ/K

M − 1 + γ
∗

∏
xji

L∑
l=1

(εkwl0P (xji|θl0) + (1 − εk)wlkP (xji|θlk)) ,

where p(xji|θlk) = θvlk, v = xji. M is the number of documents, and mk is the number

of documents assigned to cluster k.

Since the global words and local words are disjoint, we can re-write the upper

equation as

P (cj = k|c−j, ...) ∝ mk − 1 + γ/K

M − 1 + γ
∗

∏
xji∈A0

L∑
l=1

(εkwl0P (xji|θl0)) ∗

∏
xji∈A1

L∑
l=1

((1 − εk)wlkP (xji|θlk)) ,

where A0 := {v|q0v = 1} and A1 := {v|q1v = 1} are the sets of global words and local

words.

Sampling topic assignment zji for each word xji.

P (zji = tlk|cj = k, ...) ∝ (1 − εk) ∗ wlkP (xji|θlk)

P (zji = tl0|cj = k, ...) ∝ εk ∗ wl0P (xji|θl0), (4.14)
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where tlk and tl0 are topic indices.

Sampling the weights {wl0} and {wlk} for G0 and G1.

(w1k, ..., wLk) ∼ Dir(β/L + n1k, ..., β/L + nLk) (4.15)

(w10, ..., wL0) ∼ Dir(α/L + n10, ..., α/L + nL0), (4.16)

where nlk is the number of words assigned to topic tlk.

Sampling θlk and θl0

(θlk|...) ∼ Dir(ηq11 + n1
lk, ..., ηq

1
V + nV

lk) (4.17)

(θl0|...) ∼ Dir(ηq01 + n1
l0, ..., ηq

0
V + nV

l0), (4.18)

nv
lk is the count when the word v assigned to topic lk.

Sampling εk

(εk|...) ∼ Beta(α +
L∑
l=1

nl0, β +
L∑
l=1

nlk) (4.19)

Sampling q. For the word selection variable q (including q0 and q1)2, we use the

Metropolis-Hastings algorithm. In each step, we randomly select a word v and invert

its qv value. When q changes, the associated θ (i.e. the collection of θlk and θl0) should

also be changed. As it is difficult to integrate out θ for the posterior distribution of

q, we update q with θ together. The new candidates q∗ and θ∗ are accepted with

probability

min

{
1,

P (q0∗, θ∗|c,X, ...)P (q0, θ|q0∗, θ∗)
P (q0, θ|c,X, ...)P (q0∗, θ∗|q0, θ)

}
(4.20)

This is equal to

min

{
1,

P (X|q0∗, θ∗, ...)P (q0∗v )

P (X|q0, θ, , ...)P (q0v)

}
(4.21)

where X is the collection of all the documents.

2q1 is dependent on q0 via the equation q1 = 1− q0, so we only need to consider q0 here.

65



Sampling π

(π|...) ∼ Beta(α + N0, β + N1). (4.22)

N0 and N1 are the numbers of unique words identified as global and local ones re-

spectively. Notice that N1 �=
∑

l,k nl,k, because N1 counts each word only once.

4.4.6 Experiments

Simulation Study

We designed a simulation study to show two aspects of our model: (a) the effectiveness

of finding relevant clusters and (b) the ability to find cluster-specific words and topics.

We generated toy datasets with the following steps:

(1) Set the cluster number K ′ and vocabulary size V . Choose some words as

general words and the other as local words. (2) Generate L1 global topics for all

clusters and L2 local topics for each cluster. The global topics are defined as Dirichlet

distributions over all global words, while the local topics are Dirichlet distributions

over all local words. Then define each cluster as a mixture of global topics and local

topics belonging to it. (3) Generate M documents. For each document, we first select

a cluster label for it and then sample D words according to the corresponding cluster

distribution.

First, we set K ′ = 4, V = 16, L1 = L2 = 2, D = 100 and M = 500. As we wanted

to show the discriminative words, we used a small vocabulary here. Figures 4.3 and

4.4 illustrate the clustering process and the word differentiation results of our model.

The clustering result perfectly matches the real assignments, while the local words we

extracted are close to the original setting. The diference may be caused by the small

number of samples but the extracted discriminative words are enough for accurate

clustering.
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Figure 4.3: Clustering results on toy dataset1. (a)-(d) show the clustering assignments
at different iterations: (a) real cluster assignments, (b)initial random assignments, (c)
assignments after one iteration, and (d) final assignments (after 30 iterations).

Next, we illustrate the robustness of our model when the proportion of discrimina-

tive words is changed. We set K ′ = 4, V = 200, L1 = L2 = 5, D = 100, M = 600, and

varied the proportion of discriminative words from 20% to 80% for 20 trials. For each

trial, we sampled for 1000 iterations and discard the first 500. Our model got perfect

clustering results in all trials, and on average the accuracy of word differentiation was

83%.
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Figure 4.4: Word differentiation on toy dataset1.

Document Modeling on Real Data

We implemented the proposed hNHDP model on two real-world text datasets. The

first one is the NIPS data, which is used in [92]3. This version of NIPS data collects

NIPS articles from 1988–1999 and unifies the section labels in different years. It con-

tains 13649 unique words and 1575 articles separated into nine sections: algorithms

and architectures, applications, cognitive science, control and navigation, implemen-

tations, learning theory, neuroscience, signal processing, and vision sciences. The

other dataset is ”6 conference abstracts (6conf)”, which contains abstracts from six

international conferences (IJCAI, SIGIR, ICML, KDD, CVPR, and WWW) collected

3http://www.stats.ox.ac.uk/∼teh/research/data/nips0 12.mat
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by [19]. It has 11,456 documents and 4083 unique words. We preprocesses the data

by removing the stop words and stemming.

We compared our model with other models on training sets of various sizes as

in [49]. Each dataset was randomly separated into two disjoint sets, one for training

and the other for testing. We generated 6 pairs of training/testing datasets for NIPS

data and 5 pairs for 6conf data. For all the real datasets experiments, we used the

same setting of parameter settings for our model. We gave the hyperparameter γ a

vague value Gamma(0.1, 1) and set η = 0.5 for H0 and H1. The component numbers

in DMA approximation are set as K = 100, L = 30. The other parameters were

α = β = 1. For each training set, we ran 1000 iterations and treated the first 500 as

burn-in. In the initialization step, we used a simple feature selection method which

ranks words by term variance quality [20]. We selected a random proportion of highest

ranked words as discriminative words, while the others were set as global words. This

allowed us to accelerate the convergence in the sampling process.

The models used for comparison were the following:

• HDP-LDA [92]. We used the HDP mixture model which does not consider

the category information of documents. Articles from different sections were

not treated differently. We followed the parameter setting procedure given

in [92]. The concentration parameters for the two levels were given as: γ ∼
Gamma(5, 0.1), α ∼ Gamma(0.1, 0.1). The base measure of the bottom level

was a symmetric Dirichlet distribution over all words with parameters of 0.5.

• NDP. This model is based on the nested Dirichlet process. In its settings, G0 did

not exist and Fk = Gk. Since the NDP model does not share topics between

clusters, it does not distinguish either local topics or local words.

• hNHDP-nosel. For this model, we used the same structure as for the proposed

hNHDP model. The difference was that here we set H0 = H1 ∼ Dir(η) . The
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Figure 4.5: Results of document modeling on NIPS data.

base measures H0 and H1 were symmetric Dirichlet distributions over all words.

In other words, this model does not differentiate words between global and local,

while it remains to distinct global topics from local topics.

We evaluated all the models with the test-set perplexity, a standard metric for

document modeling which measures how well the models generalize to new data. The

perplexity is defined as follows.

perplexity(Dtest) = exp(−
∑

d∈Dtest
log p(xd|Dtrain)∑
d∈Dtest

Nd

).
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Figure 4.6: Results of document modeling on 6conf data.

Figures 4.5 and 4.6 compare the perplexities on the two datasets. Our proposed

model, hNHDP, achieved the best perplexities (lower is better) in all runs. Especially,

it exceeded HDP-LDA by a large amount.

In addition, with the same setting for topic-word distributions (a symmetric

Dirichlet distribution over all words in vocabulary), the hNHDP-nosel performed

better than the NDP and HDP. The former demonstrates the advantage of distin-

guishing local topics, while the latter indicates the effectiveness of taking advantage

of the clustering structure of documents. We also noticed that the performance of the

hHNDP was obviously better than that of the hHNDP-nosel only for some training

sizes, while the two models got comparable results in other runs. This is reasonable
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Figure 4.7: Comparison of hNHDP and hNHDP-knowncategory.

because the vocabulary size was so large that the tail words of each topic may have

contributed little. Thus, we may suppose that the global words in local topics and

the local words in global topics contributed little to predictive performance, resulting

in a result similar to the hNHDP’s. Nevertheless, the hNHDP still achieved our aim

by greatly reducing the model complexity without any performance decrease (in fact

the performance increased a little). Its ability to extract local topics and local words

is also very useful.

In addition, we wanted to show how well the latent categories found by hNHDP

improves document modeling. We developed another model, hNHDP-knowncategory,

which assumes that the category labels of documents are known. It assigns real labels
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to documents in the hNHDP model and does not change them during iterations.

Comparing the two models (Figure 4.7), we found that the performance of hNHDP

was comparable to hNHDP-knowncategory on NIPS data, while on 6conf data it was

even better. These results indicate the efficiency of hNHDP for document modeling.

Clustering and Visualization

Our last experiment was designed to show the clustering performance of the hNHDP.

We first present the clustering results on 6conf data in Figure 4.8. Although the

number of clusters inferred by our model is a little larger than the real one, each

conference has its specific clusters, which we can easily differentiate in the figure.

Moreover, we could also find the connection between the conferences in Figure 4.8.

CVPR is separate from the others, with only a little connection with ICML and IJCAI.

ICML and KDD have a large overlap, but ICML has an additional cluster component.

SIGIR and WWW also own the same major clusters although the cluster densities

may differ. IJCAI is a comprehensive conference, so it includes several clusters shared

by other conferences as well as a specific cluster.

We then extracted the typical topics in each cluster and matched them with cor-

responding conferences. The topics are shown in Table 4.2. The global topics/words

and the local topics/words are easily distinguished in the table. The local topics con-

form to the features of different conferences. From Figure 4.8 and Table 4.2, we can

see that both the clusters and the topics can be well explained and that they reveal

the structure and features of the data.

We also make a quantitative evaluation of the clustering results, although cluster-

ing can be regarded as only a by-product of hNHDP. The evaluation metric used here

was the normalized mutual information (NMI ). It is a clustering accuracy measure

that is tolerant to mismatches between the number of clusters and the number of

reference classes. Following the definition in [107], NMI was estimated as follows:
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Table 4.2: Some example topics extracted from 6conf data. Each column is a topic;
for each topic the top 15 words are shown. The numbers in brackets are the typical
cluster numbers of each conference shown in Figure 4.8.

Global Topics
Local Topics

CVPR(23) ICML(16) IJCAI(15) KDD(52) SIGIR(31) WWW(28)
task imag learn system data retriev web
predict model algorithm base cluster queri search
experiment recognit problem knowledg mine inform base
work object method model model model document
describ base search gener base document user
fast track reinforc program algorithm base inform
solut segment gener languag structur system queri
requir motion optim plan time relev retriev
specif shape base learn graph languag content
context visual model semant pattern term index
express detect function process learn data text
categor estim plan problem detect effect approach
parallel surfac approach natur network search page
onlin vision constraint comput distribut method system
properti match structur domain method text model

Table 4.3: Description of datasets for clustering.
Datasets s im3g d if3g news4g

Number of documents 1749 1670 2382
Number of clusters 3 3 4

Vocabulary size 15,103 15,491 18,143

NMI =

∑
h,l nh,l log

n·nh,l

nhnl√
(
∑

h nh log nh

n
)(
∑

l nl log nl

n
)

where n is the number of all documents, nh is the number of documents in class h, nl

is the number of documents in cluster l, and nh,l is the number of documents in both

classh and cluster l. The NMI range is [0,1], where a value of 1 denotes a perfect

match between clusters and reference classes.

Besides the 6conf data described above, we experimented on three new datasets

generated from the standard 20-newsgroups data4: sim3g, dif3g, and news4g. The

sim3g consists of 1749 documents from 3 newsgroups on similar topics (comp.graphics,

4http://qwone.com/∼jason/20Newsgroups/
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Figure 4.8: Visualization of the clustering results on 6conf data. The red lines indicate
the real labels, while the blue points indicate the clustering assignments.

comp.os.ms-windows, comp.windows.x); dif3g contains 3 newsgroups on different

topics; and news4g has 4 newsgroups involving both similar and different top-

ics (rec.autos, rec.motorcycles, rec.sport.baseball, and sci.med). These three new

datasets are summarized in Table 4.3.

To demonstrate the advantage of our model, we compared it with the NDP (see

section 4.4.6). The NMI values of the clustering are shown in Figure 4.9. In the

figure, hNHDP performed consistently better than NDP on all datasets. Similar

to general feature selection techniques in clustering, the hierarchical extension and
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Figure 4.9: Clustering comparison of hNHDP and NDP.

word differentiation, which discriminates clusters only by local topics and local words,

improved the clustering quality.

4.4.7 Conclusions

We proposed an extension to the HDP model for modeling groups of data by taking

advantage of the latent category information of groups. The hNHDP model clusters

the groups and also allows the clusters to share mixture components. The application

of the hNHDP to topic modeling illustrates the power of the new prior and provides

a way to summarize the document structures. We identify both local topics and

local words in the model and discover the implicit document and topic structures.

This work can be seen as a potential alternative to document summarization, as well
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as an improvement to Baysian nonparametric topic models which can be used as a

preprocessing step in document summarization.

In addition to document modeling, the hNHDP can also be used for other applica-

tions, such as multi-level clustering of patients and hospitals. Moreover, the global ex-

ponents can be replaced by some context information, leading to some context-based

models. Important future work includes enhancing the computation efficiency.
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Chapter 5

Bayesian Nonparametric

Summarization and Summary

Length Determination

5.1 Background

In previous chapters, we introduced our global optimization approach to multi-

document summarization. All the summaries are generated under some length

limitation (e.g. 100 words). In fact, in most of the existing summarization systems,

people need to first define a constant length to restrict all the output summaries.

However, in many cases it is improper to require all summaries are of the same length.

Take the multi-document summarization as an example, generating the summaries

of the same length for a 5-document cluster and a 50-document cluster is intuitively

improper. More specifically, consider two different clusters of documents: one cluster

contains very similar articles which all focus on the same event at the same time;

the other contains different steps of the event but each step has its own topics. The
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former cluster may need only one or two sentences to explain its information, while

the latter needs to include more.

Research on summary length dates back in the late 90s. Goldstein et al. [29] stud-

ied the characteristics of a good summary (single-document summarization for news)

and showed an empirical distribution of summary length over document size. How-

ever, the length problem has been gradually ignored later, since researchers need to fix

the length so as to estimate different summarization models conveniently. A typical

instance is the Document Understanding Conferences (DUC)1, which provide author-

itative evaluation for summarization systems. The DUC conferences collect news

aritcles as the input data and define various summarization tasks, such as generic

multi-document summarization, query-focused summarization and update summa-

rization. In all the DUC tasks, the output is restricted within a length. Then human-

generated summaries are provided to evaluate the results of different summarization

systems. Limiting the length of summaries contributed a lot to the development of

summarization techniques, but as we discussed before, in many cases keeping the

summaries of the same size is not a good choice.

Moreover, even in constant-length summarization, how to define a proper size

of summaries for the summarization tasks is quite a problem. Why does DUC2007

main task require 250 words while Update task require 100 words? Is it reasonable?

A short summary may sacrifice the coverage, while a long summary may cause redun-

dance. Automatically determining the best size of summaries according to the input

documents is valuable, and it may deepen our understanding of summarization.

In this chapter, we aim to find the proper length for document summarization

automatically and generate varying-length summaries based on the document itself.

The varying-length summarization is more robust for unbalanced clusters. It can also

provide a recommended size as the predefined summary length for general constant-

1After 2007, the DUC tasks are incorporated into the Text Analysis Conference (TAC).
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length summarization systems. We advance a Bayesian nonparametric model of ex-

tractive multi-document summarization to achieve this goal [57]. As far as we are

concerned, it is the first model that can learn appropriate lengths of summaries.

Bayesian nonparametric (BNP) methods are powerful tools to determine the size

of latent variables [27]. They let the data ”speak for itself” and allow the dimension

of latent variables to grow with the data. In order to integrate the BNP methods

into document summarization, we follow the assumption that the original documents

should be recovered from the reconstruction of summaries [59, 35]. We use the Beta

process as a prior to generate binary vectors for selecting active sentences that recon-

struct the original documents. Then we construct a Bayesian framework for summa-

rization and use the variational approximation for inference. Experimental results on

DUC2004 dataset demonstrate the effectiveness of our model. Besides, we reorganize

the original documents to generate some new datasets, and examine how the sum-

mary length changes on the new data. The results prove that our summary length

determination is rational and necessary on unbalanced data.

5.2 Related Work

5.2.1 Research on Summary Length

Summary length is an important aspect for generating and evaluating summaries.

Early research on summary length [29] focused on discovering the properties of

human-generated summaries and analyzing the effect of compression ratio. It demon-

strated that an evaluation of summarization systems must take into account both the

compression ratios and the characteristics of the documents. Radev and Fan [89]

compared the readability and speedup in reading time of 10% summaries and 20%
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summaries2 for topic sets with different number of documents. Sweeney et al. [90]

developed an incremental summary containing additional sentences that provide con-

text. Kaisser et al. [41] studied the impact of query types on summary length of

search results. Other than the content of original documents, there are also some

other factors affecting summary length especially in specific applications. For exam-

ple, Sweeney and Crestani [89] studied the relation between screen size and summary

length on mobile platforms. The conclusion of their work is the optimal summary

size always falls into the shorter one regardless of the screen size.

In sum, the previous works on summary length mostly put their attention on the

empirical study of the phenomenon, factors and impacts of summary length. None

of them automatically find the best length, which is our main task in this chapter.

Nevertheless, they demonstrated the importance of summary length in summariza-

tion and the reasonability of determining summary length based on content of news

documents [29] or search results [41]. As our model is mainly applied for generic

summarization of news articles, we do not consider the factor of screen size in mobile

applications.

5.2.2 BNP Methods in Document Summarization

Bayesian nonparametric methods provide a Bayesian framework for model selection

and adaptation using nonparametric models [27]. A BNP model uses an infinite-

dimensional parameter space, but invokes only a finite subset of the available param-

eters on any given finite data set. This subset generally grows with the data set. Thus

BNP models address the problem of choosing the number of mixture components or

latent factors. For example, the hierarchical Dirichlet process (HDP) can be used

to infer the number of topics in topic models or the number of states in the infinite

Hidden Markov model [92].

210% and 20% are the compression rates, and the documents are from search results in information
retrieval systems.
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Recently, some BNP models are also involved in document summarization ap-

proaches [11, 17]. BNP priors such as the nested Chinese restaurant process (nCRP)

are associated with topic analysis in these models. Then the topic distributions are

used to get the sentence scores and rank sentences. BNP here only impacts the num-

ber and the structure of the latent topics, but the summarization framework is still

constant-length. Our BNP summarization model differs from the previous models.

Besides using the HDP for topic analysis, our approach further integrates the beta

process into sentence selection. The BNP method in our model are directly used to

determine the number of summary sentences but not latent topics.

5.3 BNP Summarization

In section 4.3.5, we introduced the Beta processes which are often used for latent

factor/feature analysis. Here we integrate the BP processes into our model, the BNP

summarization.

5.3.1 Framework of BNP Summarization

Most existing approaches for generic extractive summarization are based on sentence

ranking. However, these methods suffer from a severe problem that they cannot make

a good trade-off between the coverage and minimum redundancy [35]. Some global

optimization algorithms are developed, instead of greedy search, to select the best

overall summaries [70]. One approach to global optimization of summarization is to

regard the summarization as a reconstruction process [59, 35] . Considering a good

summary must catch most of the important information in original documents, the

original documents are assumed able to be recovered from summaries with some in-

formation loss. Then the summarization problem is turned into finding the sentences
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that cause the least reconstruction error (or information loss). In this paper, we follow

the assumption and formulate summarization as a Bayesian framework.

First we review the models of Chapter 3 and [35]. Given a cluster of M docu-

ments D = d1, d2, ..., dM and the sentence set contained in the documents as X =

[x1, x2, ..., xN ], we denote all corresponding summary sentences as S = [s1, ..., sn],

where n is the number of summary sentences and N is the number of all sentences in

the cluster. A document d and a sentence s or x here are all represented by weighted

term frequency vectors in the space RV , where V is the number of total terms (words).

Following the reconstruction assumption, a candidate sentence xi can be approxi-

mated by the linear combination of summary sentences: xi �
∑n

j=1 w
′
jsj, where w′

j is

the weight for summary sentence sj. Thus the document can also be approximately

represented by a linear combination of summary sentences because it is the sum of

the sentences.

di �
n∑

j=1

wjsj. (5.1)

Then the work in [35] aims to find the summary sentence set that can minimize the

reconstruction error
∑N

i=1 ||xi−
∑n

j=1 w
′
jsj||2; while the linear representation model in

Chapter 3 defines the problem as finding the sentences that minimize the distortion

between documents and its reconstruction dis(di,
∑n

j=1 wjsj) where this distortion

function can also be a squared error function.

Now we consider the reconstruction for each document, if we see the document

d as an dependent variable, and the summary sentence set S as the independent

variable, the problem to minimize the reconstruction error can be seen as a linear

regression model. The model can be easily changed to a Bayesian regression model

by adding a zero-mean Gaussian noise ε [5], as follows.

di =
n∑

j=1

wjsj + εi (5.2)
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where the weights wj are also assigned a Gaussian prior.

The next step is sentence selection. As our system is an extractive summarization

model, all the summary sentences are from the original document cluster. So we

can use a binary vector zi =< zi1, ..., ziN >T to choose the active sentences S (i.e.

summary sentences) from the original sentence set X. The Equation (5.2) is turned

into di =
∑N

j=1 φij ∗zijxj + εi. Using a beta process as a prior for the binary vector zi,

we can automatically infer the number of active component associated with zi. As to

the weights of the sentences, we use a random vector φi which has the multivariate

normal distribution because of the conjugacy. φi ∈ R
N is an extension to the weights

{w1, ...wn} in (5.2).

Integrating the linear reconstruction (5.2) and the beta process3 (4.7), we get the

complete process of summary sentence selection as follows.

di = X(φi ◦ zi) + εi

X = [x1, x2, ..., xN ]

zij ∼ Bernoulli(πj)

πj ∼ Beta(
αγ

N
, α(1 − γ

N
))

φi ∼ N (0, σ2
φI)

εi ∼ N (0, σ2
ε I) (5.3)

where N is the number of sentences in the whole document cluster. The symbol ◦
represents the elementwise multiplication of two vectors.

One problem of the reconstruction model is that the word vector representation

of the sentences are sparse, which dramatically increase the reconstruction error. So

we bring in topic models to reduce the dimension of the data. We use a HDP-

3We use the finite approximation because the number of sentences is large but finite
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LDA [92] to get topic distributions for each sentence, and we represent the sentences

and documents as the topic weight vectors instead of word weight vectors. Finally di

is a K-dimensional vector and X is a K ∗N matrix, where K is the number of topics

in topic models.

5.4 Variational Inference

In this section, we derive a variational Bayesian algorithm for fast inference of

our sentence selection model. Variational inference [5] is a framework for ap-

proximating the true posterior with the best from a set of distributions Q :

q∗ = arg minq∈Q KL(q(Z)|p(Z|D)). Suppose q(Z) can be partitioned into disjoint

groups denoted by Zj, and the q distribution factorizes with respect to these groups:

q(Z) =
∏M

j=1 q(Zj). We can obtain a general expression for the optimal solution

q∗j (Zj) given by

ln q∗j (Zj) = Ei �=j[ln p(D,Z)] + const. (5.4)

where Ei �=j[ln p(D,Z)] is the expectation of the logarithm of the joint probability

of the data and latent variables, taken over all variables not in the partition. We

will therefore seek a consistent solution by first initializing all of the factors qj(Zj)

appropriately and then cycling through the factors and replacing each in turn with

a revised estimate given by (5.4) evaluated using the current estimates for all of the

other factors.

Update for Z

p(zij|πj, di, X, φi) ∝ p(di|zij, xj, φi)p(zij|πj)
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We use q(zij) to approximate the posterior:

q(zij)

∝ exp{E[ln(p(di|zij, z−j
i , X, φi)) + ln(p(zij|π))]}

∝ exp{E[ln(πj)]}∗

exp{E[− 1

2σ2
ε

(
d−j
i − xjzijφij

)T (
d−j
i − xjzijφij

)
]}

∝ exp{ln(πj)}∗

exp{−
(
φ2
ij ∗ z2ij ∗ xT

j xj − 2φij ∗ zij ∗ xj
T ∗ d−j

i

)
2σ2

ε

}

(5.5)

where d−j
i = di −X−j(φ−j

i ◦ z−j
i ), and the symbol ¯ indicates the expectation value.

The φ2
ij can be extended to this form:

φ2
ij = φij

2
+ Δj

i (5.6)

where Δj
i means the jth diagonal element of Δi which is defined by Equation 5.11.

As zi is a binary vector, we only calculate the probability of zij = 1 and zij = 0.

q(zij = 1) ∝ exp{ln(πj)} ∗

exp{− 1

2σ2
ε

(
φ2
ij ∗ xT

j xj − 2φij ∗ xj
T ∗ d−j

i

)
}

q(zij = 0) ∝ exp{ln(1 − πj)} (5.7)

The expectations can be calculated as

ln(πj) = ϕ(
αγ

N
+ nj) − ϕ(α + M) (5.8)

ln(1 − πj) = ϕ(α(1 − γ

N
) + M − nj) − ϕ(α + M) (5.9)
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where nj =
∑M

i=1 zij.

Update for π

p(πj|Z) ∝ p(πj|α, γ,N)p(Z|πj)

Because of the conjugacy of the beta to Bernoulli distribution, the posterior of π is

still a beta distribution:

πj ∼ Beta(
αγ

N
+ nj, α(1 − γ

N
) + M − nj) (5.10)

Update for Φ

p(φi|di, Z,X) ∝ p(di|φi, Z,X)p(φi|σ2
φ)

The posterior is also a normal distribution with mean μi and covariance Δi.

Δi =

(
1

σ2
ε

X̃i
T
X̃i +

1

σ2
φ

I

)−1

(5.11)

μi = Δi

(
1

σ2
ε

X̃i

T

di

)
(5.12)

Here X̃i ≡ X ◦ z̃i and z̃i ≡ [zi, ..., zi]
T is a K ×N matrix with the vector zi repeated

K(the number of the latent topics) times.

X̃i = X ∗ z̃i (5.13)

X̃i
T
X̃i = (XTX) ◦ (zi ∗ ziT + Bcovi) (5.14)

Bcovi = diag[zi1(1 − zi1), ..., ziN(1 − ziN)] (5.15)

87



Update for σ2
ε

p(σ2
ε |Φ, D, Z,X) ∝ p(D|Φ, Z,X, σ2

ε )p(σ2
ε )

By using a conjugate prior, inverse gamma prior InvGamma(u, v), the posterior can

be calculated as a new inverse gamma distribution with parameters

u′ = u + MK/2

v′ = v +
1

2

M∑
i=1

(||di −X(zi ◦ φi)|| + ξi)

(5.16)

where

ξi =
∑N

j=1(z
2
ij ∗ φ2

ij ∗ xT
j xj − zij

2 ∗ φij
2 ∗ xT

j xj)

+
∑

j �=l zij ∗ zil ∗ Δi,jl ∗ xT
j xl

Update for σ2
φ

p(σ2
φ|Φ) ∝ p(Φ|σ2

φ)p(σ2
φ)

By using a conjugate prior, inverse gamma prior InvGamma(e, f), the posterior can

be calculated as a new inverse gamma distribution with parameters

e′ = e + MN/2

f ′ = f +
1

2

M∑
i=1

(
(Φ)TΦ + trace(Δ′

i)
)

(5.17)
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5.5 Experiments

To test the capability of our BNP summarization systems, we design a series of

experiments. The aim of the experiments mainly includes three aspects:

1. To demonstrate the summaries extracted by our model have good qualities and

the summary length determined by the model is reasonable.

2. To give examples where varying summary length is necessary.

3. To observe the distribution of summary length.

We evaluate the performance on the dataset of DUC2004 task2. The data contains

50 document clusters, with 10 news articles in each cluster. Besides, we construct

three new datasets from the DUC2004 dataset to further prove the advantage of

variable-length summarization. We separate each cluster in the original dataset into

two parts where each has 5 documents, hence getting the Separate Dataset; Then we

randomly combine two original clusters in the DUC2004 dataset, and get two datasets

called Combined1 and Combined2. Thus each of the clusters in the combined datasets

include 20 documents with two different themes.

5.5.1 Evaluation of Summary Qualities

First, we implement our BNP summarization model on the DUC2004 dataset, with

summary length not limited. At the topic analysis step, we use the HDP model and

follow the inference in [92]. For the sentence selection step, we use the variational

inference described in Section 5.4, where the parameters in the beta process (5.3) are

set as γ = 1, α = 1. The summaries that we finally generate have an average length

of 164 words. We design several popular unsupervised summarization systems and

compare them with our model.

• The Random model selects sentences randomly for each document cluster.
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• The MMR [10] strives to reduce redundancy while maintaining relevance. For

generic summarization, we replace the query relevance with the relevance to

documents.

• The Lexrank model [22] is a graph-based method which choose sentences based

on the concept of eigenvector centrality.

• The Linear Representation model [59] has the same assumption as ours and it

can be seen as an approximation of the constant-length version of our model.
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Figure 5.1: Rouge-1 values on DUC2004 dataset.
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Figure 5.2: Rouge-2 values on DUC2004 dataset.
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Figure 5.3: Rouge-L values on DUC2004 dataset.

All the compared systems are implemented at different predefined lengths from

50 to 300 words. Then we evaluate the summaries with ROUGE4 tools [48] in terms

of the f-measure scores of Rouge-1 Rouge-2, and Rouge-L. The metric of Rouge f-

measure takes into consideration the summary length in evaluation, so it is proper

for our experiments. From Fig.5.1, Fig.5.2 and Fig.5.3, we can see that the result of

BNP summarization (the dashed line) gets the second best value among all systems.

It is only defeated by the Linear model but the result is comparable to the best in

Fig.5.1 and Fig.5.3; while it exceeds other systems at all lengths. This proves the

good qualities of our BNP summaries. The reason that the Linear system gets a

little better result may be its weights for linear combination of summary sentences

are guaranteed nonnegative while in our model the weights are zero-mean Gaussian

4we use ROUGE1.5.5 in this work.
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variables. This may lead to less redundance in sentence selection for the Linear

Representation model.

Turn to the length determination. We take advantage of the Linear Representation

model to approximate the constant-length version of our model. Comparing the

summaries generated at different predefined lengths, Fig.5.4 shows the the model

gets the best performance (Rouge values) at the length around 164 words, the length

learned by our BNP model. This result partly demonstrates our length determination

is rational and it can be used as the recommended length for some constant-length

summarization systems, such as the Linear .
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Figure 5.4: Rate-dist value V.S. summary word length.

5.5.2 A New Evaluation Metric

The Rouge evaluation requires golden standard summaries as the base. However,

in many cases we cannot get the reference summaries. For example, when we im-

plement experiments on our expanded datasets (the separate and combined clusters

of documents), we do not have exact reference summaries. Louis and Nenkova [55]

advanced an automatic summary evaluation without human models. They used the
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Jensen-Shannon divergence(JSD) between the input documents and the summaries as

a feature, and got high correlation with human evaluations and the rouge metric. Un-

fortunately, it was designed for comparison at a constant-length, which cannot meet

our needs. To extend the JSD evaluation to compare varying-length summaries, we

propose a new measure based on information theory, the rate-distortion [15].

Rate-Distortion: The distortion function d(x, x̂) is a measure of the cost of

representing the symbol x to a new symbol x̂; and the rate can indicate how much

compression can be achieved. The problem of finding the minimum rate can be solved

by minimizing the functional

F [p(x̂|x)] = I(X; X̂) + βE(d(x, x̂)). (5.18)

where I(X; X̂) denotes the mutual information. The rate-distortion theory is a fun-

damental theory for lossy data compression. Recently, it has also been successfully

employed for text clustering [85] and document summarization [59]. Slonim [85] claims

that the mutual information I(X; X̂) measures the compactness of the new represen-

tation. Thus the rate-distortion function is a trade-off between the compactness of

new representation and the expected distortion. Specifically in summarization, the

summaries can be seen as the new representation X̂ of original documents X. A good

summary balances the compression ratio and the information loss, thus minimizing

the function (5.18). So we use the function (5.18)(we set β = 1) to compare which

summary is a better compression. The JS-divergence (JSD), which has been proved

to have high correlation with manual evaluation [55] for constant-length summary

evaluation, is utilized as the distortion in the function. In the following sections, we

simply call the values of the function (5.18) rate-dist. In fact, the rate-dist values can

be seen as the JSD measure with length regularization.
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To check the effectiveness of rate-dist measure, we evaluate all summaries gener-

ated in Section 5.5.1 with the new measure (the lower the better). Fig. 5.5 shows that

the results accord with the ones in Fig. 5.1 and Fig. 5.3. Moreover, in Fig. 5.4, the

curve of rate-dist values has a inverse tendency of Rouge measures (Rouge-1, Rouge-

2, Rouge-L and Rouge-SU4 are all listed here), and the best performance also occurs

around the summary length of 164 words. This even more clearly reveals that the

BNP summarization achieves a perfect tradeoff between compactness and informa-

tiveness. Due to the accordance with rouge measures, it is promising to be regarded

as an alternative to the rouge measures in case we do not have reference summaries.
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Figure 5.5: Comparison of BNP Summarization with other systems using rate-dist

measure.

5.5.3 Necessity of Varying Summary Length

In this section, we discuss the necessity of length determination and how summary

length changes according to the input data. As explained before, we generate three
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new datasets from the original DUC2004 dataset. Now we use them to indicate

varying summary length is necessary when the input data varies a lot.

Table 5.1 shows the average summary length of different data sets. The results

satisfy the intuitive expectation of summary length change. When we split a 10-

document cluster into two 5-document parts, we expect the average summary length

of the new clusters to be a little smaller than the original cluster but much larger

than half of the original length, because all the documents concentrate on the same

themes. When we combine two clusters into one, the summary length should be

smaller than the sum of the summary lengths of two original clusters due to some

unavoidable common background information but much larger than the summary

length of original clusters.

Original Separate Combined1 Combined2
164 115 250 231

Table 5.1: Average summary length (number of words) on different datasets

We also run the Linear Representation system at different lengths on the new

datasets and evaluate the qualities. As we do not have golden standard for the new

datasets, so we only use the rate-dist measure here. Results in Table 5.2,5.3,5.4 show

the summaries which do not change the predefined length 5 perform significantly

worse than the BNP summarization. All the comparison is statistically significant.

So varying summary length is necessary when the input changes a lot, and our model

can just give a good match to the new data. This characteristic also can be used to

give recommended summary length for extractive summarization systems when given

unknown data.

Then we observe the summary length distributions and compression ratios accord-

ing to document size(the length of the whole documents in a cluster). The average

summary length increases (Fig. 5.6), while the compression ratios decreases (Fig. 5.7)

5665 bytes is the DUC2004 requirement and 164 words is the best length on original data

97



Predefined Unchanged BNP
Length 665 bytes 164 words 115 words
Rate-dist 0.4130 0.4404 0.4007

Table 5.2: Comparison of summary lengths on Separate Dataset.

Predefined Unchanged BNP
Length 665 bytes 164 words 250 words
Rate-dist 0.3768 0.3450 0.3238

Table 5.3: Comparison of summary lengths on Combined1 Dataset.

as document size grows. The rule of the compression ratio here agrees with the rule

in [29], although that work is done for single-document summarization.
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Figure 5.6: The distribution of summary word length.
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Predefined Unchanged BNP
Length 665 bytes 164 words 231 words
Rate-dist 0.3739 0.3464 0.3326

Table 5.4: Comparison of summary lengths on Combined2 Dataset.
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Figure 5.7: Compression ratio versus document word length.

5.6 Conclusion and Future Work

In this paper, we present a new problem of finding a proper summary length for multi-

document summarization based on the document content. A Bayesian nonparametric

model is proposed to solve this problem. We use the beta process as the prior to

construct a Bayesian framework for summary sentence selection. Experimental results

are shown on DUC2004 dataset, as well as some expanded datasets. We demonstrate
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the summaries we extract have good qualities and the length determination of our

system is rational.

However, there is still much work to do for variable-length summarization. First,

Our system is extractive-base summarization, which cannot achieve the perfect co-

herence and readability. A system which can determine the best length even for

abstractive summarization will be better. Moreover, in this work we only consider

the aspect of data compression and evaluate the performance using an information-

theoretic measure. In future we may consider more human factors, and prove the

summary length determined by our system agrees with human preference. In addi-

tion, in the experiments, we only use the imbalanced datasets as the example that

intuitively needs varying the summary length. However, the data type is also impor-

tant to impact the summary length. In future, we may extend the work by studying

more cases that need varying summary length.
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Chapter 6

Conclusion

In this thesis, we proposed two new algorithms for document summarization: a re-

construction based optimization approach and a Bayesian nonparametric approach.

We also improved the current Bayesian nonparametric methods in a related research

area, topic modeling, which is an effective preprocessing step of or an alternative to

document summarization.

In Chapter 3, we assumed that a good summary should contain most of the im-

portant information in the original documents, thus the original documents should be

reconstructed by the best summary with the least information loss. We first built op-

timization systems from the information-theoretic perspective. Different from former

sentence-ranking algorithms, our system selected sentences globally by regarding sum-

marization as solving an optimization problem. We designed several reconstruction

strategies and defined different distortion measures to evaluate the goodness of re-

construction, deriving finally a flexible and well-performed summarization approach,

namely Linear Representation.

The reconstruction-based summarization framework was then extended to a

Bayesian nonparametric approach to solving the summary length problem in Chap-

ter 5. We aimed at automatically determining summary length, which was often
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ignored in traditional summarization systems but formed one of the important

factors of summarization. Following the summarization framework of Linear Repre-

sentation, we integrated a Bayesian nonparametric prior, the Beta process, into the

reconstruction from summaries to original documents. We borrowed the power of

Bayesian nonparametric in model selection, for summary length determination. The

number of summary sentences was automatically determined by posterior inference.

The generated variable-length summaries were demonstrated that they had good

qualities as well as proper lengths.

Topic representation is an important step in BNP summarization to avoid the

word sparseness. Chapter 4 provides the background information for topic modelling

as well as Bayesian nonparametrics and their relationships with document summariza-

tion. Moreover, In the end of Chapter 4 we proposed a new Bayesian nonparametric

topic model, namely, the hybrid nested hierarchial Dirichlet process. The hNHDP

model deals with the case that the documents are well organized but we do not know

the categories of documents. It could differentiate specific topics and words from

common topics and words. It could be used for a robust topic analysis for the origi-

nal documents in future summarization work. Its visualization of the topic structures

and document structures could also be seen as an abstractive form of summarization.

Reconstruction and Bayesian nonparametrics based summarization systems pro-

vide new aspects for summarization. They have gained great success in traditional

summarization tasks as well as in determining the summary length. Besides better

representation of documents, future work contains extension to new types of sum-

marization (e.g. multi-lingual summarization) and improving the computational ef-

ficiency. As we introduced in Chapter 2, there have been more and more types of

summarization in practice. Our summarization frameworks are very flexible to be

modified to adapt to the new types. Meanwhile, when we have huge amounts of data,

how to accelerate our algorithms deserves more consideration.
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Appendix A

Proof of the Distortion Bound 1

Proof : M any-to-one linear representation has no more distortion than one-to-one

representation.

First, we demonstrate the ”no more than” relationship. Suppose we have an

original sentence i, in p-median model, it can be reconstructed by only the median

x̂i; while in linear representation model, it is reconstructed by a linear combination

of summary sentences
∑

x̂j∈S λ̂ijx̂j.

we can take λ̂ii = 1; λ̂ij = 0(whenj �= i) for
∑

x̂j∈S λ̂ijx̂j, thus we could get

min
λ̂ij

d(xi,
∑
x̂j∈S

λ̂ijx̂j) ≤ d(xi, x̂i)

.

Then, we demonstrate that in some constraint, the reconstruction error of linear

representation is less than one-to-one representation.

We calculate the partial derivative of f = d(xi,
∑

x̂j∈S λ̂ijx̂j) with respect to λ̂ij.

Here J-S divergence is taken as an example of the distortion measure.

∂f

λ̂ij

=
∑
y

yij
Count

log
λ̂ijyij

yij +
∑

j λ̂ijyij
≤ 0
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.

Assuming there exists λ̂ij such that ∂f

λ̂ij
< ∂f

λ̂ii
, the new representation

∑
x̂j∈S λ̂ijx̂j

with λ̂ii = 1 − δh, λ̂ij = δh, λ̂ik = 0(k �= i, j; δh > 0), have a smaller distortion.

dLinear = dOneToOne + (
∂f

λ̂ij

− ∂f

λ̂ii

)δh < dOneToOne

104



Appendix B

Proof of the Distortion Bound 2

Proof : Distortion between the whole summary and the whole original documents is

smaller than the sum of sentence-level distortion.

For simplicity, let us see the case of K-L divergence first.

Dis = 1/n
∑
xi

DKL(p(y, xi)||p(y,
∑
x̂j∈S

λ̂ijx̂j))

= 1/n
∑
y

∑
xi

p(y, xi) log
p(y, xi)

p(y,
∑

x̂j∈S λ̂ijx̂j)

≥ 1/n
∑
y

(
∑
xi

p(y, xi)) log
p(y, xi)

p(y,
∑

x̂j∈S λ̂ijx̂j)

according to the log sum inequality [15]

= 1/n
∑
y

(p(y,X)) log
p(y, xi)

p(y,
∑

x̂j∈S λ̂ijx̂j)

= 1/nDKL(p(y,X)||p(y,
∑
x̂j∈S

λ̂ijx̂j))

Then it is easy to see the log sum inequality is also correct for J-S divergence, and

we can gain the same conclusion when using J-S divergence as the distortion measure

following the relationship between K-L divergence and J-S divergence.
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Dis = 1/n
∑
xi

DJS

(
p(y, xi)||p(y,

∑
x̂j∈S

λ̂ijx̂j)
)

= 1/n
∑
xi

1/2

⎧⎨
⎩DKL

(
p(y, xi)||1/2

(
p(y, xi) + p(y,

∑
x̂j∈S

λ̂ijx̂j)
))

+DKL

(
p(y,

∑
x̂j∈S

λ̂ijx̂j)||1/2
(
p(y, xi) + p(y,

∑
x̂j∈S

λ̂ijx̂j)
))⎫⎬⎭

≥ 1/n ∗ 1/2

⎧⎨
⎩DKL

(
p(y,X)||1/2

(
p(y,X) + p(y,

∑
x̂j∈S

λ̂ijx̂j)
))

+DKL

(
p(y,

∑
x̂j∈S

λ̂ijx̂j)||1/2
(
p(y,X) + p(y,

∑
x̂j∈S

λ̂ijx̂j)
))⎫⎬⎭

= DJS

(
p(y,X)||p(y,

∑
x̂j∈S

λ̂ijx̂j)
)
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