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Abstract

Machine learning is a framework to make machines learn from data. By taking ad-

vantage of useful information in observed data, machine learning enables informative

knowledge to be extracted from the data. This extracted knowledge can be used to

analyze and predict unobserved data with great accuracy. A large variety of massive-

scale data has recently become available for analysis in many fields along with the recent

progress of gathering, storing, and processing data in machines. The increase of the data

size contributes to the improvement of the predictive performance both theoretically and

empirically; therefore, the demand to deal with massive data has been increasing in an

efficient way. However, developing novel machine learning algorithms for massive data

analysis is a challenging task due to many practical difficulties, such as achieving a short

computational time with a small memory size to derive a predictive model. To solve these

problems, subgradient-based online and stochastic learning frameworks have been emerg-

ing to systematically utilize massive data. These frameworks process a bunch of data

one by one and iteratively update predictive models through the subgradient information

with respect to the currently received datum. This incremental update procedure realizes

an efficient massive data analysis with a simpler implementation and faster computation

with a smaller memory space than other machine learning frameworks.

In this thesis, we find that several biases make the original performance measures of

online and stochastic learning algorithms obsolete. We find out two biases in this thesis:

a truncation bias and a human cognitive bias. These biases originate from involvements

of data and humans, which are crucial for applying these incremental learning algorithms

to practical applications. We first show how these biases affect the original measures by

using toy examples and subjective experiments. These results indicate that the standard

performance measures become inappropriate to achieve the original objectives of online

and stochastic learning due to the existences of these biases. In the result, state-of-the-art

incremental learning algorithms are critically deteriorated even though these algorithms

are guaranteed to derive the optimal solution in the conventional performance measures.

To solve this difficulty, in this thesis, we reformulate objectives in online and stochastic

learning by integrating the effects of these biases and develop algorithms for new frame-

work while maintaining advantages of incremental learning procedures. We theoretically

prove the effectiveness of our proposed algorithms under new objectives. In addition, we

experimentally show the superiority of our algorithms by using several datasets.
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Chapter 1

Introduction

Machine learning is a framework to make machines learn from data. It is used to analyze

observed data and to efficiently take advantage of information extracted from these data.

Moreover, machine learning enables machines to gain knowledge and predict unobserved

data. Machine learning is a sub-field of artificial intelligence, and more broadly, computer

science. Furthermore, there are many research fields closely related to machine learning,

including ones from theoretical perspectives, such as optimization [1], statistics [2], and

game theory [3], to applications, including natural language processing, computer vision,

bioinformatics, and data mining. Machine learning can thus be viewed as an interdisci-

plinary research field.

A large amount of data has recently become available for data analysis in research and

business because of recent advances in the technologies and theories of computer science.

In particular, recent progress in data storage, data indexing, data retrieval, network, and

computational resources has led to the generation and use of massive amounts of data.

For example, about fifteen petabytes of genome data is being generated every year [4], and

more than one hundred hours worth of video was uploaded to Youtube, a video-sharing

website, every minute in 2014*1. The analysis of massive data could achieve breakthroughs

in many fields. For these reasons, the applicability of massive data analyses has broadened

[5], and both researchers and practitioners are now seeking methods to deal with massive

data in an efficient way [6].

We devote most of this thesis to the problems of supervised learning based on convex

optimization. In particular, we introduce an incremental learning framework based on

a subgradient-based update procedure with linear learners. This incremental learning

framework enables us to solve supervised learning problems even if the size of data is very

*1 https://www.youtube.com/yt/press/statistics.html
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Fig. 1.1. Categorization of subgradient-based online and stochastic learning

large. The framework has proved to be effective at massive data analysis by overcoming

many limiting aspects, such as computational complexity and memory constraints, and

has been shown to have excellent predictive performance in practical applications [7, 8].

Because of these advantages, practitioners in many fields have utilized subgradient-based

incremental learning with linear learners for massive data analysis [9, 10]. Variants of this

framework exist in online learning and stochastic learning. They use sequential parameter

update procedures and their predictive models are iteratively updated through the use of

subgradient information retrieved from one datum each round. In this chapter, we will

describe the basic framework of supervised learning and subgradient-based algorithms.

After that, we will give a short introduction to subgradient-based incremental learning

algorithms. Finally, we will overview the contributions of this thesis. Figure 1.1 illustrates

the categorization of these frameworks.
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1.1 Supervised Learning

In this thesis, we mainly focus on supervised learning based on convex optimization.

In this setting, our objective is to learn an appropriate hypothesis function to predict

an output from the corresponding input measures. We would like to extract significant

information implicitly contained in each datum as outputs. Such outputs can be seen in

the training data; however, they are unseen in the test data. To predict the outputs of

test data with high probability, we would like to determine relationships between inputs

and outputs that would be helpful in making predictions.

There are two major supervised learning problems: classification and regression. In

classification problems, we would like to predict qualitative outputs (i.e., labels); famous

examples include digit recognition from images [11], sentiment analysis from review texts

[12], and news article categorization [13]. In regression problems, we would like to predict

quantitative output values; for example, forecasts of future energy demand [14]. Although

many other supervised learning problems exist, such as learning to rank problems [15] and

structured prediction problems [16], we will mainly focus on classification and regression

problems in this thesis.

We denote an input in a D-dimensional vector form x. This input vector is taken from

a closed convex input space X ⊂ RD. Here, RD is a D-dimensional Euclidean space. Each

dimension of the input space corresponds to one feature, and each component of the input

vectors represents a feature value. In most cases, input vectors are naturally defined. For

example, some researches utilize gray-scale pixel values as features in the digit recognition

task. It is important to generate a better representation of input vectors to improve

predictive ability. We will not discuss this aspect in any detail; many studies have devised

ways to generate better vector representations for various applications [17, 18].

An output is denoted by a scalar y. It is taken from an output space Y. In classification

problems, Y consists of a set of class labels. In the binary classification case, Y = {−1, 1}.
On the other hand, in regression problems, Y becomes a subset of a one-dimensional

Euclidean space. Each datum is a pair consisting of an input vector and an output, which

is represented by (x, y).

In supervised learning, our goal is to derive the best hypothesis function mapping from

an input space to an output space. A hypothesis function is defined as h : X → Y, and

we denote the set of hypotheses by H.
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1.1.1 Linear Learner

We use a set of linear learners as a class of hypothesis functions. In the linear learner

setting, machine learning algorithms use a linear weight vector w ∈ W ⊂ RD, where W is

a closed convex set of D-dimensional weight vectors. Algorithms with linear learners make

predictions by computing the inner product between weight vectors and input vectors. For

example, in regression problems, a hypothesis function is simply defined as follows:

h(x) = ⟨w,x⟩ , (1.1)

where ⟨a,b⟩ is the notation for expressing the inner product of two vectors a and b. In

(1.1), the inner product of the weight vectors and input vectors is the predicted output

values. A hypothesis function in binary classification problems is defined as

h(x) = sgn (⟨w,x⟩) , (1.2)

where sgn : R → {−1, 1} is defined as

sgn(a) =

−1 a < 0

1 otherwise
. (1.3)

regarding a scalar a ∈ R. If the inner product is less than 0, the hypothesis outputs −1;

otherwise, it outputs 1.

Linear learners have several advantages. First, as we will show in the following sub-

sections, subgradients of loss functions can be efficiently computed in most cases be-

cause of their simplicity. Fast derivation of subgradients is the key to efficiently applying

subgradient-based learning algorithms to massive amounts of data. Second, linear learner

models make it easy to analyze predictive models. Linear learners explicitly possess the

weights of each feature. We can obtain insights about how each feature affects predic-

tions by investigating these weight vectors, though each weight value does not represent

an independent influence on the predictions. Analyzability is important for continuously

improving learning models. For example, linear learner models enable us to determine the

truncation bias and to validate the effect of our algorithms through the analysis of linear

weight vectors. We show the details in Chapter 4.

For these reasons, we will focus on linear learner models in this thesis.
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1.1.2 Loss Functions

Loss functions are used to evaluate the predictive ability of weight vectors. They penalize

weight vectors according to the extent to which the predictions are wrong. Loss functions

are defined as ℓ : W → R+, where R+ is a subset of the 1-dimensional Euclidean space

where the value is non-negative. The worse the predictions with the corresponding weight

vector are, the larger the output value becomes. A large variety of loss functions have

been proposed for various purposes, for example, the hinge loss function,

ℓ(w) = max (0, 1− y⟨w,x⟩) , (1.4)

the logistic loss function,

ℓ(w) = log (1 + exp (−y⟨w,x⟩)) , (1.5)

and the squared loss function,

ℓ(w) = (y − ⟨w,x⟩)2 . (1.6)

The hinge loss and the logistic loss functions are used to evaluate the predictive perfor-

mances of binary classifications. These loss functions are surrogate losses of the 0/1 loss

function. The 0/1 loss function evaluates whether a prediction is correct or not. It is

defined as 1[[h(x) ̸= y]], where 1[[·]] is an indicator function such that

1[[a]] =

1 a is true

0 otherwise
. (1.7)

Squared loss functions are used in regression problems. To explicitly represent the rela-

tionship between the loss functions and the datum (x, y), we sometimes denote the loss

functions by ℓ(·; (x, y)). In general, the algorithms attempt to derive weight vectors for

the minimization of the loss functions with respect to the data of interest. However,

the definition of the objective function changes depending on the problem setting (for

example, online or stochastic learning). Furthermore, biases are important components

in defining objective functions for achieving the goal in question. As a result, the best

hypothesis differs according to the objective.

We assume that the loss functions are convex with respect to the weight vectors.

Furthermore, we assume that the loss functions can be rewritten by using a function

ℓ̂ : R× Y → R+ that satisfies

ℓ(w) = ℓ̂(⟨w,x⟩, y) . (1.8)
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Most of the major loss functions satisfy these assumptions, such as the hinge loss, the

logistic loss, and the squared loss. These assumptions make it possible to use subgradient-

based update procedures to learn linear predictive models effectively.

1.1.3 Regularization

Regularization is a technique to force certain penalties on hypotheses. Here, regulariza-

tion terms, such as the L2 norm of weight vectors, are added to the objective functions.

These terms measure the complexity of hypotheses in general and penalize complicated

hypotheses so as to avoid them. A large variety of regularization methods have been

proposed to ensure that predictive models have some structure [19].

L2-regularization is a major example. It consists of computing the L2 norms of weight

vectors and is defined as:

Φ(w) = λ∥w∥2 , (1.9)

where we denote the Lp norm of a vector a by ∥a∥p and λ ∈ R+ is a regularization

parameter to adjust the importance ratio between the L2-regularization and the original

objective functions. By penalizing the L2-norm of the weight vectors, L2-regularization

simplifies the weight vectors and reduces the noise included in the data. Sparsity-inducing

regularization methods have recently gained attention in the field of machine learning for

many reasons. These methods are detailed in Section 4.1.1 of Chapter 4.

1.2 Subgradient-based Learning

Subgradient-based learning algorithms have been often used for solving supervised learn-

ing problems because of their computational efficiency and theoretical guarantee. These

algorithms iteratively update their parameters and utilize a first-order approximation of

the whole objective functions or part of the objective functions to update the weight

vectors in each round. Convexity plays an important role in analyzing the theoretical

properties of subgradient-based algorithms.

In the next subsection, we review several notable characteristics regarding convexity.

After that, we introduce the basic subgradient-based learning framework and give an

overview of subgradient-based incremental learning.
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1.2.1 Convex Analysis

We formally introduce the notion of convexity in this subsection. A set A ⊂ RD is said

to be convex if it obeys

∀t ∈ [0, 1], ∀a,b ∈ A, ta+ (1− t)b ∈ A . (1.10)

Let dom(f) be the domain of the function f . A function f is said to be convex if it

satisfies

∀t ∈ [0, 1], ∀a,b ∈ dom(f), f (ta+ (1− t)b) ≤ tf(a) + (1− t)f(b) , (1.11)

where dom(f) is convex. We will assume that the loss functions are convex as defined

above with respect to the weight vectors. Therefore, the loss functions ℓ : W → R+ satisfy

the following inequality:

∀t ∈ [0, 1], w1,w2 ∈ W, ℓ (tw1 + (1− t)w2) ≤ tℓ(w1) + (1− t)ℓ(w2) . (1.12)

When the loss function ℓ is differentiable, we denote its gradient vector with respect to

a weight vector w by
∂

∂w
ℓ(w) . (1.13)

As we are using linear learner models, the gradient vectors can be reformulated through

assumption (1.8) as follows:
∂

∂w
ℓ(w) =

∂

∂ŷ
ℓ̂(ŷ, y)x , (1.14)

where ŷ = ⟨w,x⟩. Therefore, the gradient vectors can be efficiently calculated when
∂
∂ŷ ℓ̂(ŷ, y) is easily computed. Fortunately, ∂

∂ŷ ℓ̂(ŷ, y) can be efficiently computed for some

of the most well-known loss functions, such as the logistic loss and the squared loss. This

characteristic helps to speed up the gradient calculation especially when the input vectors

are sparse. We describe this in detail in Section 1.5.1.

Even if the loss functions are convex, they may be non-differentiable at some points.

For example, there are non-differentiable points in the hinge loss function due to its non-

smoothness. We can use subgradients as an alternative to gradients in these cases. A

subgradient of a function f at a ∈ dom(f) is defined by a vector ∇f(a) such that

∀b ∈ dom(f), f(b) ≥ f(a) + ⟨∇f(a),b− a⟩ . (1.15)

The subdifferential at a point is defined as the set of all subgradients at that point. We

denote a subdifferential of f at a as ∂af(a). When f is convex, at least one subgradient
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exists at any interior point in the domain of the function. This is true even if a function f

is non-differentiable. The existence of subgradients of convex functions has been proved.

Proposition 1. [20, Proposition B.24 (b)] Let a function f be convex. Then, for any

interior point in the domain of f , the subdifferential of f is a nonempty, convex, and

compact set.

Note that the property of (1.14) holds with respect to the subgradients when the func-

tion is convex. To simplify the following discussion, we will use the notation ∇f(a) to

denote both the gradient and subgradient of a function f at a vector a.

Convexity plays an important role in solving the minimization problem over convex

functions. A crucial component is the equality of the local optimum and the global

optimum.

Proposition 2. [20, Proposition 1.1.2] Let a function f be convex and the domain of

f be convex. If a point a in the domain is a local minimum of f , then a is the global

minimum of f .

This property guarantees that a search for the local minimum is sufficient for solving

the minimization problem over convex problems because the local minimum is the global

minimum. The convex formulation makes it easy to solve supervised learning problems.

The optimality of the convex functions can be evaluated through their subgradients.

Before proceeding to the next proposition, let us define argmin f to be the point or set of

points at which the function f becomes a minimum.

Proposition 3. [20, Proposition B.24 (f)] Let a function f be convex and dom(f) be a

closed convex set. Then, if and only if a∗ ∈ dom(f) becomes an optimal vector such that

a∗ ∈ argmin
a∈dom(f)

f(a) , (1.16)

there is a subgradient ∇f(a∗) such that the following inequality is satisfied.

∀b ∈ dom(f), ⟨∇f(a∗),a∗ − b⟩ ≤ 0 . (1.17)

From this proposition, we can see that the optimality of weight vectors can be evalu-

ated from the subgradients. This proposition is often used in the analysis of online and

stochastic learning algorithms.
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1.2.2 Subgradinet-based Learning Framework

In this subsection, we introduce the subgradient-based learning framework for solving

supervised learning problems as convex optimization problems. We denote the objective

function as f : W → R+. We assume that f is convex. The procedure of subgradient-

based learning is as follows:

1. Initialization: Start at round t = 1. Initialize the weight vector w1 ∈ W.

2. Subgradient: At round t, calculate the subgradient of the whole objective function

or parts of the objective function at the t-th weight vector wt.

3. Update: Update the weight vector by using the subgradient and derive the t+1-th

weight vector wt+1.

4. Increase the round number t until the weight vectors converge.

A crucial component of subgradient-based learning algorithms is how to update this weight

vector through the subgradient information. There are numerous work categorized as the

subgradient-based learning algorithms to minimize the function f . The basic one is the

subgradient method over the unconstrained domain [21]. The update procedure of the

subgradient method is as follows:

wt+1 = wt − ηt∇f(wt) , (1.18)

where ηt > 0 is the t-th step size and ∇f(wt) is the subgradient vector of the objective

function f at the t-th weight vectorwt. The subgradient vector indicates the direction that

maximizes the first-order Taylor approximation of the objective function. Therefore, the

weight vectors move in the direction which minimizes the first-order approximation of the

objective function in steps of magnitude of ηt. When objective functions are differentiable,

the subgradient method reduces to the gradient descent method over the unconstrained

domain.

The definition of the step size plays an important role in convergence analyses of so-

lutions given by the subgradient method [20, 22]. The basic analysis is one proving that

the subgradient method can obtain the optimal function value for diminishing step sizes

such that
∞∑
k=1

ηt = ∞
∞∑
k=1

η2t <∞, . (1.19)

Theorem 1. [23] Here, let us assume that an objective function f : W → R+ is convex
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and has a finite optimal value f∗ = minw∈W f(w). In addition, we assume that f satisfies

∀a,b ∈ dom(f), |f(a)− f(b)| ≤ L∥a− b∥2 . (1.20)

Then, the following inequality is satisfied for {wt}t=1:T+1 derived by the subgradient

method.

min
t=1,...,T

f(wt)− f∗ ≤
∥w1 −w∗∥22 +G2

∑T
t=1 η

2
t

2
∑T
t=1 ηt

. (1.21)

If we set ηt = O(1/
√
t), the convergence rate becomes O(1/

√
t). In addition, this

method achieves a linear convergence rate for strongly convex objective functions, which

means it is O(ρT ), where 0 < ρ < 1 [23].

There are many extensions of the subgradient method. The major ones are the acceler-

ated methods [24], the smoothing approximation for non-smooth objective functions [25],

mirror descent algorithms [26, 27], and primal-dual subgradient schemes [28].

1.2.3 Subgradient-based Incremental Learning

Subgradient-based learning algorithms are very effective ways of dealing with most convex

machine learning problems; however, they become inefficient in massive data analysis.

Let us denote the data size by N and the dimension size by D. When the objective

function consists of the sum of loss functions over data, the computational cost of the

subgradient of the objective function becomes O(ND). If N and D are very big, we

need to perform the heavy subgradient computation many times. Furthermore, when the

data size exceeds the memory size, algorithms need to load data from disk to memory in

each iteration. Therefore, the data loading time becomes a dominant factor in the batch

learning framework [29]. In such cases, the huge computational cost of optimization in

each round makes batch subgradient-based learning algorithms very slow.

To avoid this difficulty, we introduce the subgradient-based incremental learning frame-

work. Incremental learning algorithms do not utilize the whole data in each round; they

only utilize one datum per round. To update the parameters, we construct an objective

function with respect to the current datum and compute a subgradient vector. There-

fore, in the incremental learning setting, the computational cost in each round becomes

independent of the whole data size. Because of this advantage and numerous theoretical

and experimental results, incremental learning algorithms are seen as effective tools by

the machine learning community.

Now, let us introduce the general incremental learning setting based on subgradient

information. The basic parameter update procedure is as follows:
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Algorithm 1 Incremental Learning Framework

Initialize w1 = 0 ∈ W
for t = 1, . . . do

Receive the t-th datum (xt, yt) ∈ X × Y
Calculate a subgradient for (xt, yt) and wt

Update the weight vector and derive wt+1 ∈ W
end for

1. Initialization: Start at round t = 1. Initialize the weight vector w1 ∈ W.

2. Datum: At round t, algorithms receive the t-th datum (xt, yt) ∈ X × Y.

3. Subgradient: Calculate a subgradient by using the t-th weight vector wt and the

t-th datum.

4. Update: Update wt by using the subgradient and derive the t+1-th weight vector

wt+1.

5. Increase the round number t. Continue this process until the weight vectors con-

verge or no data remains.

Algorithm 1 summarizes the parameter update procedure of the incremental subgradient-

based learning framework.

The incremental subgradient-based learning has recently gained attention in the context

of online learning and stochastic learning because of its simple and fast parameter update

procedure, memory efficiency, ease of re-learning, and adaptability to streaming data.

These two fields deal with different problem settings and objectives. Online and stochastic

learning algorithms are based on mathematical and statistical theories, such as linear

algebra, convex analysis, duality of convex functions, and optimization methods [30]. This

thesis focuses on the frameworks of these two fields, the details of which are in Chapter 2

and 3.

1.3 Subgradient-based Incremental Learning with Biases

To employ the incremental learning framework in real applications, the sort of data and

human behavior need to be considered. For example, data has several characteristics, and

sometimes these characteristics affect the predictive performance. In addition, systems

including machine learning algorithms are usually evaluated by humans. Figure 1.2 illus-

trates the relationship between subgradient-based incremental learning algorithms with

data and human behavior.
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Subgradient-based 
Online and Stochastic Learning

Data Humans
Fig. 1.2. Online and Stochastic Learning with Biases

As described in the previous sections, subgradient-based incremental learning is very

efficient on massive data, but that it has biases originating from the data and human

behavior. In this thesis, we introduce two such biases: truncation bias and human cog-

nitive bias. These biases are unique to the incremental learning setting and threaten the

effectiveness and applicability of its algorithms. We need to devise ways to alleviate the

biases if incremental learning algorithms are to be effective.

Several distinct objective functions have been proposed in the online and stochastic

learning frameworks, such as the regret and expected loss. The biases mentioned above

make it inappropriate to optimize these objective functions. As a result, they critically

degrade the performance of even state-of-the-art subgradient-based incremental learning

algorithms that have a strong theoretical guarantee on the original performance measures.

Figure 1.3 illustrates the categorization of these two biases.

In this thesis, we first show how these biases affect the original performance measures

and the performance of conventional learning algorithms. Then, by analyzing the proper-

ties of these biases, we establish new frameworks to integrate these biases into the objective

functions. We derive new performance measures for incremental learning algorithms and

new subgradient-based incremental algorithms for optimizing the new objective functions.

The difficulties are that these objective functions have to internalize the effects of the bi-

ases and the new algorithms have to maintain the advantages of the subgradient-based

incremental learning framework.
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Fig. 1.3. Categorization of Online and Stochastic Learning with Biases

1.4 Our Contributions

The focus of this thesis is on the design, analysis, and solution of the bias problem in

the incremental learning settings. These biases appear when we apply subgradient-based

incremental learning algorithms to the practical problems.

Our main contributions are as follows:

• We summarize the online and stochastic learning frameworks in terms of their

skeletons, objectives, and recent progress.

• We find that two unique biases happen in the subgradient-based incremental learn-

ing setting: truncation bias and human cognitive bias. These biases critically de-

grade the predictive ability of learning algorithms even if they have theoretical

guarantees as regards the conventional objectives.

• This phenomenon has a bad effect on subgradient-based incremental learning algo-

rithms in practical learning tasks. We analyze the effects of these biases by using toy

examples and subjective experiments. The results indicate that due to these biases,

the original objective functions in online and stochastic learning are inappropriate

as algorithm performance measures.
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• We reformulate new objective functions to be used as performance measures of

subgradient-based online and stochastic learning algorithms by integrating these

bias effects. Then, we develop new online and stochastic algorithms that have

strong theoretical guarantees on the new objective functions and yet maintain the

advantages of subgradient-based incremental learning algorithms.

• We conduct experiments on several real datasets, proving the effectiveness of our

proposed algorithms.

The constitution of this thesis is described below. In the following section, we introduce

the notation and several of the mathematical tools used in this thesis. In Chapter 2, we

introduce the online learning framework. Online learning is a variant of the incremental

learning framework. This framework does not put any assumptions on the sequence of

data. This sequential procedure efficiently deals with a large variety of problem settings,

such as streaming data environments, the never-ending learning setting, and adversarial

data generation. First, we mathematically formulate the problem setting and parameter

update procedure of the subgradient-based online learning framework. Then, we intro-

duce a performance measure called regret and describe several state-of-the-art algorithms.

Furthermore, we show several extensions and related work.

In Chapter 3, we introduce the stochastic learning framework. Stochastic learning is

also a variant of the incremental learning framework. In this setting, algorithms itera-

tively update parameters in order to learn an appropriate hypothesis function from data

sampled from a specific distribution. We mathematically formulate the problem setting

and parameter update procedure of subgradient-based stochastic learning. Then, we in-

troduce the expected loss as a performance measure of this setting. In addition, we show

several approaches to giving a bound to the expected loss, such as online to batch conver-

sion using the relationship with regret minimization in online learning and expected loss

minimization in stochastic learning. These approaches are very important when deriving

efficient stochastic learning algorithms. After that, we show several subgradient-based

stochastic learning methods with strong theoretical guarantees.

In Chapter 4, we consider the relationship between the characteristics of data and

subgradient-based incremental learning algorithms and analyze the truncation bias. As

background, we describe online learning with sparsity-inducing regularization. These

frameworks have been used to derive a compact hypothesis function by adding sparsity-

inducing regularization terms to the objective functions. Sparse online learning algorithms

are advantageous for massive data analysis because their compact model utilizes mem-

ory usage efficiently and speeds predictions in the test phase. First, we overview the
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sparsity-inducing regularization methods and sparse online learning algorithms. After

that, we point out that the heterogeneity of feature occurrence frequencies and feature

value ranges causes a truncation bias. Through the effect of this bias, several features

tend to be removed from the optimal solution in the original performance measure of

sparse online learning even if they are helpful for prediction. We show how the trunca-

tion bias affects the predictive performance by using toy examples. Then, we develop a

new regularization framework, named “Feature-aware Regularization”, to overcome this

bias in an online manner. This new regularization term integrates information on all pre-

vious subgradients of loss functions into a compact format and dynamically adjusts the

sparsity-inducing effects with respect to each feature. As a result of this reformulation, the

objective function also changes when there is no pre-processing, and we can derive several

efficient subgradient-based sparse online learning algorithms. We theoretically prove that

our algorithms maintain their theoretical advantages and empirically demonstrate their

superiority in terms of prediction performance and sparseness of the predictive models.

The work presented in this chapter is based on several previous studies [31, 32, 33].

In Chapter 5, we consider the relationship between human evaluations and subgradient-

based incremental learning algorithms. As a result, we find there is a cognitive bias. In-

cremental learning algorithms iteratively update predictive models; therefore, they some-

times make incorrect predictions on data that were correctly classified in the past. We find

that such inconsistent prediction behavior adversely affects the performance evaluations

of humans who are susceptible to cognitive bias. These phenomena occur in applications

with human users, such as in news recommendation services. In this chapter, we describe

a number of cognitive biases as background and show how they affect the incremental

learning setting. After that, we show the effect of such inconsistent behavior through a

subjective experiment. The results indicate that the original objective functions in the in-

cremental learning setting do not match the human evaluation of the incremental learning

algorithms. Accordingly, we formalize new frameworks by internalizing this bias into their

performance measures so that they match the evaluations. We develop new subgradient-

based incremental learning algorithms that have strong theoretical guarantees without

having to know the history of past predictions. This means that the new algorithms can

maximize the performance evaluations of humans. Finally, we demonstrate the superiority

of our algorithm by conducting several experiments. A large portion of this work can be

found in [34].

In Chapter 6, we summarize the discussion of this thesis and review our contributions.
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1.5 Preliminaries

First, let us briefly introduce the notation used in this thesis. Scalars are denoted in

lowercase italic letters, e.g., α, and the absolute value of a scalar is |α|. Vectors are in

lowercase bold letters, such as a, and the i-th element of the vector a is denoted by a(i).

Matrices are in uppercase bold letters, e.g., A, and the (i, j)-th element of the matrix

A is described by A(i,j). I is the identity matrix. When the matrix A − B is positive

semi-definite, we write A ⪰ B. We write a first-order derivative of a function f (or a

subgradient of a function f at a vector a by ∇f(a) and a second-order derivative of the

function f at a vector a by ∇2f(a) (it is known as the Hessian matrix). A set of scalars,

vectors, or functions, such as {a1,a2, . . . ,aT }, is sometimes given an abbreviated form,

e.g., {ai}i=1:T . Table 1.1 at the end of this chapter summarizes the notation introduced

in this chapter. After that, we introduce important mathematical formulations that are

used in the derivation and analyses of subgradient-based online and stochastic learning.

1.5.1 Sparse Vector

If most of the elements in a vector are zero, this vector is called sparse. Input vectors are

sparse in many tasks, such as the bag-of-word vector representations in natural language

processing [35] and computer vision tasks [36]. In the following discussion, we find that

sparseness helps to reduce the computational time and memory usage of calculations. A

sparse vector a can be represented by using a set of non-zero elements in an id-value pair

form, i.e., S(a) = {(id1, v1), (id2, v2), . . . }, where idi is an i-th non-zero feature ID and vi

is the corresponding feature value. For a vector to possess a sparse representation, we only

need to store the non-zero feature information, that is, the number of non-zero elements

denoted by |S(a)|. This representation is efficient as far as memory usage goes.

Such a sparse representation of vectors also helps to speed up some of the calculations.

In particular, sparse vectors speed up the calculation of the inner product between sparse

vectors and dense vectors. The inner product calculation between a sparse vector a and

a dense vector b can be reformulated as

⟨a,b⟩ =
∑
i

a(i) · b(i) =
∑

(idj ,vj)∈S(a)

vj · b(idj) . (1.22)

Zero elements in a sparse vector a have no effect on the inner products. We can see

from the above reformulation that the inner products are calculated by using only non-
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zero elements in a. As a result, the computational complexity of the inner product can

be reduced to |S(a)| from the number of feature dimensions by efficiently utilizing a

sparse representation. Similarly, vector-vector additions and subtractions, and scalar-

vector multiplications become faster by means of sparse representation. For example,

scalar-vector multiplications λa can be represented as S(λa) = {(id1, λv1), (id2, λv2), . . . },
when a is a sparse vector. Therefore, we only need to change the values of the non-zero

elements in a. The computational complexity depends on |S(a)|. Zero value features can

be ignored when computing the products of scalars and vectors.

When the input vectors or weight vectors are very sparse, it becomes important to

speed up of these calculations (e.g., when a predicted value ŷ is computed by taking the

inner product of the input vectors and weight vectors). Here, sparse representations are

used in most machine learning and optimization software.

1.5.2 Lipschitzness, Smoothness, and Strong Convexity

We introduce some of the important properties of functions, such as smoothness, strong

convexity, and Lipschitzness of functions. These are important factors when it comes to

defining the difficulty of a problem and for deriving better theoretical results [37, 23]. The

discussion of this section mainly follows the presentation in Chapter 12 of [38].

A function f : dom(f) → R is called closed when its level set {a : f(a) ≤ α} is closed

and convex for any scalar α ∈ R. For any function f : dom(f) → R and a norm ∥ · ∥, we
call a function f L-Lipschitz continuous with respect to the norm ∥ · ∥ if it satisfies

∀a,b ∈ dom(f), |f(a)− f(b)| ≤ L∥a− b∥ , (1.23)

for a constant L > 0. A differentiable function f : dom(f) → R is said to be α-smooth

with respect to a norm ∥ · ∥ when it holds that

∀a,b ∈ dom(f), ⟨∇f(a)−∇f(b),a− b⟩ ≤ α∥a− b∥2 , (1.24)

for a constant α > 0. In other words, a function f is α-smooth when its gradient ∇f is

α-Lipschitz with respect to the norm ∥ · ∥. The α-smoothness of a convex differentiable

function f with respect to a norm ∥ · ∥ can be transformed to the upper bound formula

of the function value as follows:

∀a,b ∈ dom(f), f(a) ≤ f(b) + ⟨∇f(b),a− b⟩+ α

2
∥a− b∥2 . (1.25)

Similarly, a differentiable function f : dom(f) → R is said to be β-strongly convex with



18 Chapter 1 Introduction

respect to a norm ∥ · ∥ if we have

∀a,b ∈ dom(f), f(a) ≥ f(b) + ⟨∇f(b),a− b⟩+ β

2
∥a− b∥2 , (1.26)

for a scalar β > 0. The theoretical performance of learning algorithms can be improved

by utilizing these properties in many cases when the objective functions or a subset of

them have these properties.

1.5.3 Legendre Function and Bregman Divergence

We introduce Legendre functions [3] and the Bregman divergence [39]. A Legendre function

ψ : dom(ψ) → R is a function having the following properties:

• dom(ψ) ⊂ RD is nonempty, and its interior is convex;

• ψ is strictly convex with continuous gradients throughout the interior of dom(ψ);

• the norm of gradients converges to +∞ when a sequence of inputs approaches the

boundary of dom(ψ).

By using a Legendre function ψ, we define the Bregman divergence between two vectors.

The Bregman divergence is a natural way of defining the distance between two vectors

through a Legendre function ψ. The Bregman divergence between two vectors a and b is

defined as

Bψ(a,b) = ψ(a)− ψ(b)− ⟨∇ψ(b),a− b⟩ . (1.27)

The Bregman divergence can be viewed as the difference between the Legendre function

value and its first-order approximation value around b at point a. For example, the

squared Euclidean distance Bψ(a,b) =
1
2∥a − b∥22 is a famous example of the Bregman

divergence when we set ψ(a) = 1
2∥a∥

2
2. The Bregman divergence provides a large variety

of distance definitions depending on the problem structure, especially the weight vector

space. This property has been used in the derivation of a large variety of online learning

algorithms and their analyses.

The Bregman divergence has many interesting properties. First, it is always non-

negative because ψ is convex. When a = b, Bψ(a,b) = 0. Furthermore, when ψ is

α-smooth with respect to a norm ∥ · ∥, it satisfies

Bψ(a,b) ≤
α

2
∥a− b∥2 , (1.28)
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and when the Legendre function is β-strongly convex with respect to a norm ∥ · ∥, the
following inequality is satisfied:

Bψ(a,b) ≥
β

2
∥a− b∥2 , (1.29)

Furthermore, we can see that the next equality is satisfied from the simple algebra of

Bregmen divergence [3]. For all a,b, c ∈ dom(ψ),

Bψ(a,b) +Bψ(b, c) = Bψ(a, c) + (a− b) (∇ψ(c)−∇ψ(b)) . (1.30)

1.5.4 Duality

In this section, we introduce the notion of duality of norms and functions. Duality is

very important when analyzing the theoretical aspects of subgradient-based online and

stochastic learning algorithms. First, we define the dual norm ∥ · ∥∗ of a specific norm

∥ · ∥:
∥b∥∗ = max

a
{⟨a,b⟩ : ∥a∥ ≤ 1} . (1.31)

As examples, we can immediately verify that the dual norm of the L2 norm is itself.

The dual norm of the L1 norm, that is, ∥a∥1 =
∑
i |a(i)|, is the L∞ norm, that is,

∥a∥∞ = maxi |a(i)|. Moreover, the dual norm of the L∞ norm is the L1 norm. From this

definition, we immediately see that the dual norm of a dual norm is the original norm.

The following inequality regarding the dual norm is satisfied for some α > 0,

⟨a,b⟩ ≤ ∥a∥∥b∥∗ ≤ α

2
∥a∥+ 1

2α
∥b∥∗ . (1.32)

After that, we introduce the Fenchel conjugate as the dual notion of a function. The

Fenchel conjugate f∗ of a function f : dom(f) → R is defined as:

f∗(b) = max
a∈dom(f)

(⟨a,b⟩ − f(a)) . (1.33)

If f is closed and convex, the Fenchel conjugate of f∗ is f [40]. The Fenchel-Young

inequality is derived from the definition of the Fenchel conjugate:

∀a ∈ dom(f), f∗(b) ≥ ⟨a,b⟩ − f(a) . (1.34)

This equality holds under the following condition.

Lemma 1. [41] Let f be a closed and convex function and ∇f(a) be any subgradient of

a function f at a. Then, if we set b = ∇f(a), we have f(a) + f∗(b) = ⟨a,b⟩.
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Furthermore, Fenchel duality gives an interesting relation between strong convexity and

smoothness.

Lemma 2. [42] Assume f is a closed and β-strongly convex function with respect to a

norm ∥ · ∥. Then f∗ is 1/β-smooth with respect to the dual norm ∥ · ∥∗. The converse is

also true.

Let us make some observations on the relation between Fenchel conjugate and Legendre

functions. First, from the definition of Legendre functions indicating that they are closed

and convex functions, we can see that the Fenchel conjugate of ψ∗ becomes ψ when ψ is

a Legendre function. The gradient of a dual Legendre functions has a special property:

Lemma 3. [3] For all Legendre functions ψ, ∇ψ∗ = (∇ψ)−1
.
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Table. 1.1. General Notation

λ scalar

|λ| absolute value

sgn(·) sign of a real number

a vector

a(i) i-th entry of vector a

A matrix

A(i,j) (i,j)-th entry of matrix A

I identity matrix

⟨·, ·⟩ inner product of vectors

∥ · ∥p Lp norm

∥ · ∥∗ dual norm

dom(f) domain of function f

argmin f point or a set of points for minimizing function f

∂wf(w) subdifferential of function f at w

∇f(w) (sub)gradient vector of f with respect to w

∇2f second-order derivative

f∗(·) Fenchel conjugate of function f

Bψ(·, ·) Bregman divergence

ψ(·) Legendre function

x input vector

xi,xt i-th or t-th input vector

y output value

yi, yt i-th or t-th output value

(x, y) datum

RD D-dimensional Euclidean space

R+ one-dimensional non-negative Euclidean space

X input space

Y output space

h(·) hypothesis (X → Y)

H hypothesis space

w weight vector

W weight vector space

ℓ(·), ℓ(·; (x, y)) loss function (W → R+)
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Chapter 2

Online Learning

In the batch learning setting, we have to calculate subgradients over all data in each

round when we apply subgradient-based learning algorithms, therefore, the computational

complexity per round becomes linear with the number of data. As a result, parameter

update procedures become very costly when the data size is quite large. Furthermore,

when the data size exceeds the memory size, loading data from disk to memory is needed

in each round. These data loading time becomes a dominant factor in the batch learning

framework due to slow disk scan [43, 29]. For these reasons, many batch algorithms cannot

derive a global optimal solution within a reasonable amount of time when we deal with

massive data. The optimization in batch learning requires some sort of reformulation

to attain an exact solution [29]. These problems frequently occur when we deal with

streaming data [44] or never-ending learning setting [45].

As a novel example of subgradient-based incremental learning framework, online learn-

ing becomes an emerging tool for learning from massive data. Online learning algorithms

are based on incremental learning procedures where predictions and parameter updates

take place each time algorithms receive one datum. Online learning algorithms use only

one datum per round to update parameters. After updating, algorithms can discard this

datum from the memory because this datum will not be used in the next round. This

learning procedure is advantageous for massive data analysis because the computational

cost of one-time update becomes independent of the data size and they require a small

memory space needed to store the information of only one datum. For these reasons,

online learning framework has been applied to many applications, for example, the mail

importance labeling [9] and online advertisement replacement optimization [10].

The constitution of this chapter is as follows: First, we introduce the basic framework

of subgradient-based online learning in Section 2.1. In Section 2.2, we mathematically
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formalize the objective of subgradient-based online learning, the regret minimization.

After that, we introduce several major subgradient-based online learning algorithms in

Section 2.3. For many advantages of subgradient-based online learning settings, many

batch learning algorithms have been transformed into online ones. In addition, we show

several extensions for the major subgradient-based online learning algorithms to solve

difficulties originating from the nature of online learning in Section 2.4. In Section 2.5,

we introduce the mistake bound as an alternative performance measure of online learning

algorithms for classification problems. In addition, we show several algorithms to pursue

to achieve this objective. In Section 2.6, we summarize the discussion of this chapter.

2.1 Subgradient-based Online Learning

In this section, we introduce the basic scheme of subgradient-based online learning. This

framework follows the problem setting of online convex programming proposed by Zinke-

vich [46]. Subgradient-based online learning algorithms perform sequential prediction and

parameter update according to the following procedure:

1. Initialization: Start at round t = 1. Set an initial weight vector w1 ∈ W. The

weight vector space is restricted in a closed convex set W ⊂ RD.
2. Evaluation: At round t, unveil the t-th loss function ℓt : W → R+ and incur the

cost ℓt(wt). Loss functions ℓt are convex with respect to weight vectors.

3. Subgradient: Receive the subgradient of the t-th loss function with respect to the

current weight vector wt. The subgradient vector is denoted by ∇ℓt(wt).

4. Update: Update wt through the subgradient and derive the t+1-th weight vector

wt+1.

5. Increase the round number t and repeat this procedure until stopping criterion is

satisfied or data are exhausted.

This procedure is based on the subgradient-based incremental learning framework intro-

duced in Section 1.2.3. In each round, we receive the t-th loss function and its sub-

gradient with respect to the current weight vector in this problem setting. Algorithms

update weight vectors through subgradients. Algorithm 2 summarizes the basic scheme

of subgradient-based online learning algorithms. It is important to note that the gener-

ation of a sequence of loss functions does not have any assumption in subgradient-based

online learning framework. Loss function can be generated adversarially as a response of

a sequence of weight vectors.
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Algorithm 2 Subgradient-based Online Learning

Initialize w1 ∈ W
for t = 1, . . . do

Receive t-th loss function ℓt

Evaluate the weight vector wt through the loss function ℓt

Calculate a subgradient ∇ℓt(wt)

Update weight vector and obtain wt+1 ∈ W
end for

In most supervised learning tasks, the above framework is specialized as follows: In

each round, we receive one datum (xt, yt). A received datum is a pair of D-dimensional

input feature vector xt taken from a closed convex set X ⊂ RD and the corresponding

output value yt ∈ Y. By using this definition of data, loss functions are defined as

ℓt(·) = ℓ(·; (xt, yt)).

2.2 Objective: Regret Minimization

In the standard online learning setting, the main objective is to minimize the cumulative

loss function values evaluated per round. In this chapter, we assume that objective func-

tions consist of only loss functions. We discuss how to induce the additional objective

to the loss minimization problem in Section 4.1. When we deal with the loss minimiza-

tion problem without any additional objective (such as sparsity-inducing regularization),

algorithms pursue to minimize the sum of loss functions.

In summary, the goal of online learning algorithms is equivalent to the minimization of

accumulated loss function values. To achieve this objective, algorithms try to derive weight

vectors to minimize the next coming loss function value in each round. The objective

function of online learning algorithms is defined by the following formula:

T∑
t=1

ℓt(wt) . (2.1)

We do not impose any assumption on the data distribution or a sequence of loss functions

in the standard online learning setting. Under these conditions, it is known that there is

no algorithm to upper bound this objective function because the data can be generated

adversarially by seeing the derivation of weight vectors [30]. In addition, if there is no

correlation between past data and future data, online learning algorithms could not learn

anything clearly. Though online learning algorithms try to minimize the sum of loss
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function values as much as possible, the evaluation of online learning algorithms by the

absolute value of (2.1) is hopeless. By adversarially choosing a sequence of loss functions,

the objective function grows in a linear scale O(T ) for any online learning algorithms.

To overcome this difficulty, regret has been introduced as a performance evaluation

indicator of online learning algorithms [3, 30]. The performance has been measured by

using not an absolute evaluation criterion but a relative evaluation criterion compared

with the optimal weight vector. For any sequence of loss functions {ℓt}t≥1, regret (or

called cumulative regret) is defined as:

Regret(T ) =

T∑
t=1

ℓt(wt)− min
u∈W

T∑
t=1

ℓt(u) . (2.2)

The regret is formalized as the difference between two terms

1. The total cost of loss functions over all rounds while we run online learning algo-

rithms.

2. The minimal cumulative cost when we pick the optimal weight vector in hindsight.

The optimal weight vector is defined by

w∗ = argmin
u∈W

T∑
t=1

ℓt(u) . (2.3)

From the definition, we see that regret evaluates how well online learning algorithms

generate a sequence of weight vectors compared with a fixed optimal weight vector. We

redefine the goal of online learning algorithms as the regret minimization. In other words,

we pursue to develop online learning algorithms that achieve as low regret as possible.

If regret is upper bounded by a sublinear factor (denoted by o(T )) with respect to the

number of data, regret on average converges to 0. It holds no matter what a sequence of

loss functions is generated. It is true even when the data are generated in an adversarial

way. The sublinear regret upper bound guarantees that a derived sequence of weight

vectors does not make worse predictions than the best fixed weight vector in terms of the

average loss function (2.1).

Unfortunately, it is known that the cumulative regret cannot be upper bounded in a

sublinear rate when loss functions are non-convex. For example, Cover [47] shows that it

is impossible to develop an online learning algorithm with a sublinear regret upper bound

in binary classification setting with the 0/1 loss. Therefore, we focus on online learning

for convex loss functions as online convex optimization. By using surrogate loss functions

of non-convex loss, such as the hinge-loss function, we can formalize the online convex
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optimization problem. Convexity plays a crucial role in the derivation of online learning

algorithms and analyses from perspectives of regret bound.

As noted above, no assumption is put on a sequence of loss functions and data. The

data can be generated not only from an i.i.d. environment but also other complicated

ones, such as the adversarial setting. Learning from streaming data sometimes need to

deal with adversarial agents, for example, the spam mail filtering [9, 48]. In an adversarial

setting, data are generated such that algorithms make wrong predictions in each round.

Regret can be employed as an evaluation criterion of subgradient-based online learning

even in an adversarial setting.

We note that several variants of regret has been proposed and analyzed in many re-

searches [3, 49, 50]. For example, the underlying data distribution may be drifting over

time in some tasks. This situation frequently occurs in the streaming data processing.

When we know these phenomenon will occur in advance, we assume that the best com-

petitor should be changed according to the concept drift. Adaptive regret [49] has been

proposed to generalize the standard regret by allowing changes of the best competitor.

2.3 Subgradient-based Online Algorithms

Many researchers have designed algorithms in relation to subgradient-based online learning

with linear predictors. In this section, we introduce several subgradient-based online

learning algorithms and their theoretical properties.

2.3.1 Online Subgradient Method

We introduce Online Subgradient Method [46, 7] (OSM) in this section. This algorithm is

one of the simplest subgradient-based online learning algorithms and an online version of

Subgradinet Method introduced in Section 1.2.2. It is widely used because of its simplicity

and extensive theoretical background.

The update formula of OSM in each round is defined as:

wt+1 = ΠW (wt − ηt∇ℓt(wt)) . (2.4)

∇ℓt(wt) indicates a subgradient of the t-th loss function ℓt with respect to the t-th weight

vector wt. ΠW(·) is a projection function onto a convex set W such that ΠW(w) =

argminw′∈W ∥w −w′∥2. We can see from this update formula that the weight vector is

projected onto W if it moves to the outside of W. {ηt}t=1:T is a sequence of positive

learning rates. If the weight vector space is the D-dimensional Euclidean space RD, the
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projection function can be omitted. The weight vector is continuously updated according

to the formula (2.4) whenever OSM receives a new loss function. OSM utilizes a first-order

approximation of loss functions to update weight vectors. The first-order approximation

of only one loss function contributes to smaller computational cost and memory usage,

especially when these constraints are crucial concerns in the batch learning setting. From

(2.4), we can see that OSM updates weight vectors for the reverse direction of the sub-

gradient vector.

OSM is a natural generalization of online gradient descent (OGD) [46]. Though some

papers utilize the term OGD to explicitly represent that this algorithm utilizes only the

differential loss functions, we use the term OGD even if loss functions are non-differentiable

and algorithms use subgradients by following the discussion of [46]. Therefore, OGD and

OSM are exactly the same and we utilize the term OGD to indicate the algorithms in the

following discussion.

Computational Cost of OGD

We analyze the computational complexity of OGD. The computational complexity of OGD

depends on the calculation of projection functions and the inner part of the projection

function in (2.4). We first analyze the inner part of the projection function, that is,

wt − ηt∇ℓt(wt) . (2.5)

The calculation of (2.5) requires the subgradient computation, the scalar-vector multipli-

cation with respect to the subgradient, and the subtraction operation between the current

weight vector and the subgradient. From the assumption (1.14), we assume that when

we set ŷ = ⟨x,w⟩, subgradients can be computed by loss function value ℓ(ŷ, y) and input

vectors x, and ℓ(ŷ, y) is calculated within a constant time. Therefore, the cost of subgra-

dient calculations is dominated by the calculation of the multiplication between the loss

function value and input vectors, that is, a linear order with respect to the input vector

dimension O(D). The computational cost of other multiplications and subtractions are

also O(D), therefore, the computational cost of (2.5) becomes O(D).

When input vectors are sparse, its computational cost is significantly reduced. From

the assumption (1.14), we can derive the subgradient vector with the non-zero element

size of sparse input vectors, that is, O(S(xt)). In addition, the subgradient vector also

become sparse. Therefore, other multiplication and subtraction computations can be

performed by O(S(xt)) as written in Section 1.5.1. Therefore, the computational cost of

(2.5) becomes O(S(xt)) when input vectors are sparse.
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The computational cost of projection function depends on the structure of convex weight

spaces. In some cases, the projection step becomes computationally very expensive. For

example, the projection onto the any kind of polytopes needs to solve a convex quadratic

program [51]. It is very hard to solve these problems, therefore, several investigations of

projection-free counterparts has been often done in some researches [52, 53]. On the other

hand, it has been known that Euclidean projections onto several famous convex domains

(such as ℓ2-ball, ℓ1-ball [54], cube, and simplex [55]) can be computed within the linear

time with respect to the size of dimension. Therefore, when we adopt the simple weight

space as described above, the computational cost of the projection follows O(D) or less in

some cases (e.g. weight vectors are sparse). In summary, the computational cost of OGD

becomes O(D) or less. It is important to note that the computational complexity does

not depend on the data size. This advantage is crucial when we deal with massive data.

Memory Usage of OGD

We analyze OGD from the perspective of memory usage. To update parameters in each

round, OGD needs to store the current weight vector in the memory and utilize only the

current received datum. The used data in the previous rounds can be discarded, therefore,

the memory usage does not depend on the data size. In summary, the memory usage of

OGD follows the linear order of the dimension size, that is, O(D). If both input vectors

and weight vectors are sparse, this memory usage can be reduced.

Theoretical Analyses of OGD

From the theoretical aspect, regret is an important performance indicator of subgradient-

based online learning algorithms. Ever since OGD was proposed in the context of online

convex programming, the theoretical aspects of OGD has been often analyzed by several

researches. First, Zinkevich [46] proved that OGD obtains a sublinear regret upper bound

under practical constraints.

Theorem 2. [46] Let a sequence of weight vectors {wt}t=1:T+1 be derived according to

OGD’s update formula (2.4). Assume that there exists R,G ∈ R such that for all w, w̃ ∈
W, ∥w − w̃∥2 ≤ R2 and for all t, ∥∇ℓt(wt)∥2 ≤ G. Then, when a sequence of step sizes

{ηt}t=1:T is positive and non-increasing, regret is upper bounded by the following formula:

Regret(T ) ≤ R2

2ηT
+
G2

2

T∑
t=1

ηt . (2.6)

For a decreasing step size, we can obtain the O(
√
T ) regret upper bound.
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Corollary 1. Assume that the conditions defined in Theorem 2 is satisfied. When we set

ηt = R/G
√
2t, the regret bound is

Regret(T ) ≤
√
2RG

√
T . (2.7)

O(
√
T ) regret upper bound can be obtained in the case of constant step size when we

know the number of rounds in advance.

Corollary 2. When we set ηt = R/G
√
T , the regret bound is

Regret(T ) ≤ RG
√
T . (2.8)

Even if algorithms do not know the round number T in advance, OGD obtains O(
√
T )

regret bound by applying the doubling trick [30]. From this result, we see that the regret

value of OGD is upper bounded by the square root of the round number. This bound

guarantees that OGD obtains the same average loss as the the best fixed hypothesis does.

It is known that this upper bound rate O(
√
T ) cannot be improved in general for arbi-

trary convex loss functions (e.g. see [3, 56]), that is Ω(
√
T ). This rate cannot be improved

even if we assume that loss functions are sampled from a fixed specific distribution. How-

ever, when we assume that loss functions are twice-differentiable and strongly convex,

OGD achieves O(log T ) regret upper bound by appropriately setting a sequence of step

sizes. When we know the convexity parameter of loss functions before we run algorithms,

we can determine a sequence of step sizes to achieve O(log T ) regret upper bound [56, 57].

Theorem 3. [56] Let a sequence of weight vectors {wt}t=1:T+1 be derived according to

OGD’s update formula (2.4). Assume that there exists G, β ∈ R such that ∥∇ℓt(wt)∥2 ≤ G

for all t, and loss functions are β-strongly convex with respect to all weight vector w ∈ W.

When we set ηt =
1
βt , regret is upper bounded by the following inequality.

Regret(T ) ≤ G2

2β
(1 + log T ) . (2.9)

In the following research [58], it is shown that O(
√
T ) regret bound for arbitrary convex

loss functions and O(log T ) for strongly convex loss functions without any prior knowledge

about the convexity parameter about loss functions by adding adaptive regularizations

to objective functions. It is known that this upper bound rate O(log T ) is the optimal

rate [59]. In other words, the lower bound of regret for strongly convex loss functions is

Ω(log T ).
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2.3.2 Online Mirror Descent

As a generalized framework of gradient descent methods introduced in Section 1.2.2, Mir-

ror Descent (MD) algorithms have been developed for achieving efficient subgradient-based

batch learning [26, 27]. MD algorithms have been proposed to solve convex optimization

problems through an iterative update procedure. The main advantage of MD compared

with the gradient descent algorithms is the applicability of a general distance function

based on the Bregman divergence, and as a result, MD provides a wider family of efficient

subgradient-based learning algorithms compared with the gradient descent according to

the structure of weight vectors, loss functions and its subgradients. As an online version

of MD, Online Mirror Descent (OMD) has been developed [3, 60, 30]. OMD succeeds

advantages of MD. The update formula of OMD in each round is defined as:

wt+1 = argmin
w∈W

{ηt⟨∇ℓt(wt),w⟩+Bψ(w,wt)} , (2.10)

where Bψ is the Bregman divergence defined in Section 1.5.3. OMD uses the subgradient

of the t-th loss function to update the parameters. OMD solves the minimization problem

defined in the parenthesis of the right-hand side to derive the next weight vector. The

formula consists of two terms. The first term is the inner product between the next

weight vector and the subgradient vector with respect to the current loss function. If

weight vectors move to the reverse direction of the subgradient vector, the formula value

becomes decreased. This motivation is similar to the subgradient method, where weight

vectors are updated in the opposite direction of the current subgradient. The second term

is the Bregman divergence between the next weight vector and the current weight vector.

As written in Section 1.5.3, the Bregman divergence represents the divergence between two

vectors. The value becomes large when the next weight vector moves far from the current

weight vector. ηt > 0 is a hyper-parameter and it adjusts the trade-off of importance ratio

between these two terms. In summary, OMD tries to minimize the linear approximation

of the loss function while not moving too far from the current weight vector to derive the

updated weight vector. This update formula is equivalently represented by using the dual

notion*1. The definition of OMD update formula can be given by the following formula:

wt+1 = argmin
w∈W

Bψ (w,∇ψ∗ (∇ψ(wt)− ηt∇ℓt(wt))) . (2.11)

*1 MD algorithms were originally developed from this dual notion and later proved the equivalence to

(2.10). We first introduce the primal notion of the update formula for simplifying the discussion.
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where ψ is a Legendre function used in the Bregman divergence (2.10) and ψ∗ is its Fenchel

conjugate. The equivalence of (2.10) and (2.11) is written in several previous papers (e.g.

[27]). From the property of the derivative of dual Legendre functions written in Lemma

3, ∇ψ∗ equals to ∇ψ−1. From this update formula, we can see that the subgradients

of loss functions are used to update in the domain of Fenchel conjugate of the Legendre

function, not the primal domain. This algorithm is called Online Mirror Descent because

parameters are updated in the dual space by using subgradients in each step, and then

algorithms generate weight vectors by mapping from parameters in the dual space to the

primal space through the inverse of Legendre functions.

It has been proven that OGD is a special case of OMD.

Lemma 4. [30] Let us define a Legendre function as ψ(w) = ∥w∥22/2 for w ∈ W and

otherwise ψ(w) = +∞. , the update formula becomes

wt+1 = argmin
w∈W

{
ηt⟨∇ℓt(wt),w⟩+ 1

2
∥w −wt∥22

}
. (2.12)

By solving (2.12), we derive the following update formula that is equivalent to the OGD

update formula.

wt+1 = ΠW (wt − ηt∇ℓt(wt)) . (2.13)

From Lemma 4, OMD can be viewed as a general class of OGD by replacing the Eu-

clidean distance by the Bregman divergence.

The theoretical guarantee of OMD for regret bound is as follows:

Theorem 4. Let a sequence of weight vectors {wt}t=1:T+1 be derived according to OMD’s

update formula (2.10). Assume that ψ is β-strongly convex with respect to a norm

∥ · ∥, there exists scalars R,G ∈ R such that Bψ(w, w̃) ≤ R2 for all w, w̃ ∈ W and

∥∇ℓt(wt)∥∗ ≤ G for all t. When we use a positive non-increasing sequence of step sizes,

that is ηt ≥ ηt+1 for all t, the following inequality holds:

Regret(T ) ≤ R2

ηT
+
G2

2β

T∑
t=1

ηt . (2.14)

While we could not find the direct proof of this theorem when we set non-constant

step sizes, we show the proof of this theorem below. First, we introduce and prove the

following lemma to derive the upper bound of regret for OMD.

Lemma 5. The conditions defined in Theorem 4. Let us define

w∗ = argmin
u∈W

T∑
t=1

ℓt(u) . (2.15)
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. Then, the following inequality is satisfied.

ℓt(wt)− ℓt(w
∗) ≤ 1

ηt
(Bψ(w

∗,wt)−Bψ(w
∗,wt+1)) +

ηt
2β

∥∇ℓt(wt)∥2∗ . (2.16)

Proof. This lemma can be proved by following discussions in several previous work [27, 61].

We reformulate the left-hand side of the formula (2.16) as follows:

ℓt(wt)− ℓt(w
∗) ≤ ⟨wt −w∗,∇ℓt(wt)⟩

= ⟨wt+1 −w∗,∇ℓt(wt)⟩+ ⟨wt −wt+1,∇ℓt(wt)⟩

=
1

ηt
⟨w∗ −wt+1,∇ψ(wt)−∇ψ(wt+1)− ηt∇ℓt(wt)⟩

+
1

ηt
⟨w∗ −wt+1,∇ψ(wt+1)−∇ψ(wt)⟩+ ⟨wt −wt+1,∇ℓt(wt)⟩ . (2.17)

The first inequality is derived from the convexity of loss functions. Now, from the opti-

mality condition introduced in Proposition 3, the first term in the last equation becomes

non-positive because wt+1 is the optimal solution in (2.10). Therefore, the above inequal-

ity is reformulated as:

ℓt(wt)− ℓt(w
∗) ≤ 1

ηt
⟨w∗ −wt+1,∇ψ(wt+1)−∇ψ(wt)⟩+ ⟨wt −wt+1,∇ℓt(wt)⟩

=
1

ηt
Bψ(w

∗,wt)−
1

ηt
Bψ(wt+1,wt)−

1

ηt
Bψ(w

∗,wt+1) + ⟨wt −wt+1,∇ℓt(wt)⟩

≤ 1

ηt
Bψ(w

∗,wt)−
1

ηt
Bψ(wt+1,wt)−

1

ηt
Bψ(w

∗,wt+1)

+
β

2ηt
∥wt −wt+1∥2 +

ηt
2β

∥∇ℓt(wt)∥2∗

≤ 1

ηt
Bψ(w

∗,wt)−
1

ηt
Bψ(w

∗,wt+1) +
ηt
2β

∥∇ℓt(wt)∥2∗ . (2.18)

The first equality follows (1.30) and the second inequality is derived from (1.34). The last

inequality follows (1.29). This lemma is proven by this formula.

Proof of Theorem 4. The regret bound of OMD is derived by summing up this inequality

derived in Lemma 5 from t = 1 to t = T . When we assume Bψ(w, w̃) ≤ R2 for all

w, w̃ ∈ W and ∥∇ℓt(wt)∥∗ ≤ G for all t, the following inequality is satisfied.

Regret(T ) ≤ 1

η1
Bψ(w

∗,w1) +
T−1∑
t=1

(
1

ηt+1
− 1

ηt

)
Bψ(w

∗,wt+1)

− 1

ηT
Bψ(w

∗,wT+1) +

T∑
t=1

ηt
2β

∥∇ℓt(wt)∥2∗

≤ 1

ηT
R2 +

G2

2β

T∑
t=1

ηt . (2.19)
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Furthermore, OMD achieves the logarithmic regret bound O(log T ) for strongly convex

loss functions [62]. It is known that OMD achieves a nearly optimal regret upper bound

for any general convex online learning problems with an appropriate Legendre function

choice [63], though this Legendre function choice is impractical for real applications due

to the intractability of the update formula derivation.

The main difference between OGD and OMD is in the introduction of Bregman di-

vergence and Legendre functions. Other than the L2 norm, we can set other Legendre

functions to match the problem structure. We introduce an example to apply OMD for

regret minimization problem over the simplex, that is W = {w ∈ RD+ ;
∑D
i=1 w

(i) = 1}
[27]. In this problem setting, the negative entropy has been known as an efficient tool.

The negative entropy function is defined for a vector a ∈ RD,

ψ(a) =
D∑
i=1

a(i) log a(i) . (2.20)

The Bregman divergence of this Legendre function is given by a well-known Kullback-

Leibler divergence as:

Dψ(a,b) =
D∑
i=1

a(i) log

(
a(i)

b(i)

)
. (2.21)

This Bregman divergence is 1-strongly convex with respect to the ∥ · ∥1 norm on the

simplex [25], therefore, Theorem 4 can be applied. In this case, the dual norm is the

L∞ norm, therefore, the bound of G is calculated by the L∞ norm. This implies that G

does not explicitly depend on the dimension size compared with the L2 norm case, and

it contributes to the derivation of tighter upper bound. Furthermore, the projection onto

the simplex can be easily computed in this case. Therefore, by appropriately choosing

Legendre functions, several efficient algorithms can be derived from OMD.

2.3.3 Online Dual Averaging

In the batch learning setting, Dual Averaging (DA) methods [28] have been proposed

to solve the drawback inherited in Mirror Descent algorithms. When updating weight

vectors per round, algorithms only use the information derived from the current loss

function through the subgradient vector. Although they are guaranteed to converge to

the best regret value per round compared with the best fixed strategy, this characteristic

leads to large variance of a sequence of weight vectors [64]. Especially when data contain
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noise or some data have characteristics different from other data, the current weight vector

drastically move to the wrong direction and weight vectors become worse. To avoid this

problem, Dual Averaging methods utilize all previous subgradients in an efficient way

to update weight vectors. Because of its effectiveness, many extensions and theoretical

analyses of DA have been presented. DA is known as a special case of more general

framework, called primal-dual framework, presented b Shalev-Shwartz et al. [60]. In

other ways, several researches [65, 66] analyzed a distributed online optimization problem

over a network and derived the Dual Averaging based algorithms. They does not have a

central node and updates parameters by using local information received from adjacent

nodes. Under such circumstances, these work yields notable analyses of regret upper

bounds, which are largely affected by the topology of networks.

An online version of Dual Averaging can be derived from the notion of Dual Averaging

algorithms in the batch learning setting. We call this framework Online Dual Averaging

(ODA) in this thesis. In ODA, we update weight vectors according to the following

formula:

wt+1 = argmin
w∈W

{
t∑

τ=1

⟨∇ℓτ (wτ ),w⟩+ 1

ηt
Bψ(w,w1)

}
, (2.22)

where {ηt}t=1:T is a sequence of positive non-increasing constants. The main difference

between OMD and ODA is in the first term. As written in (2.10), OMD only use the

t-th subgradient vector. On the other hand, ODA algorithms utilize the summation of

subgradient vectors over all rounds. Averaging subgradients contributes to improving the

robustness of ODA. To explain this advantage, we assume that algorithms deal with data

containing some noises. When the t-th loss function is noisy, the subgradient vector may

have the different direction from the ones derived in previous rounds. In OMD, weight

vectors move toward the wrong way aggressively in this round because the impact of the

first term becomes big. On the other hand, ODA utilizes the average of subgradients

generated from t = 1 to the present. Even if the t-th loss function is noisy, its effect is

weakened by averaging of subgradients. Therefore, ODA algorithms work well in these

situations.

The regret bound of ODA can be derived as follows:

Theorem 5. Let us assume that the Legendre function ψ is β-strongly convex with respect

to a norm ∥ · ∥ and there exist constants R,G such that Bψ(w,w1) ≤ R2 for all w ∈ W
and ∥∇ℓt(wt)∥∗ ≤ G for all t ≥ 1. When we set positive non-increasing step size {ηt}t=1:T
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and η0 = η1, the following inequality holds:

Regret(T ) ≤ R2

ηT
+
G2

2β

T∑
t=1

ηt−1 . (2.23)

As in the OMD case, we could not find the direct proof of regret upper bound of ODA

with non-constant step sizes. Therefore, we show the proof below.

Proof of Theorem 5. The proof of this theorem follows the discussion in [28, 64]. First,

we define the gap sequence for each round t ≥ 1 as follows:

δt = max
w∈W̃

{
t∑

τ=1

⟨∇ℓτ (wτ ),wτ −w⟩

}
, (2.24)

where W̃ =
{
w ∈ W|Bψ(w,w1) ≤ R2

}
. This gap value δt becomes the upper bound

of regret from the convexity of loss functions. This is straightforwardly proved by the

following inequality for all w ∈ W̃:

δt ≥
t∑

τ=1

⟨∇ℓτ (wτ ),wτ −w⟩ ≥
t∑

τ=1

(ℓτ (wτ )− ℓτ (w)) . (2.25)

In the following, we denote
∑t
τ=1 ∇ℓτ (wτ ) as ∇ℓ1:t for simplifying the notation in this

proof. We derive the upper bound on δt. First, we reformulate δt as follows:

δt =
t∑

τ=1

⟨∇ℓτ (wτ ),wτ −w1⟩+ max
w∈W̃

{⟨∇ℓ1:t,w1 −w⟩} , (2.26)

To upper bound the second term, we use the following lemma.

Lemma 6. Let us define two conjugate-type functions for each round t,

Ut(a) = max
w∈W̃

⟨a,w −w1⟩ , Vt(a) = max
w∈W

{
⟨a,w −w1⟩ −

1

ηt
Bψ(w,w1)

}
. (2.27)

For any vector a in the dual space, which is the vector space of all linear functions on W,

we have

Ut(a) ≤ Vt(a) +
R2

ηt
. (2.28)

Proof. From the definition of Ut, we obtain

Ut(a) = max
w∈W̃

⟨a,w −w1⟩ = max
w∈W

min
β≥0

{
⟨a,w −w1⟩+ β(R2 −Bψ(w,w1))

}
≤ min

β≥0
max
w∈W

{
⟨a,w −w1⟩+ β(R2 −Bψ(w,w1))

}
≤ max

w∈W

{
⟨a,w −w1⟩+

1

ηt
(R2 −Bψ(w,w1))

}
= Vt(a) +

R2

ηt
. (2.29)
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The first inequality use the standard max-min inequality [37]. In the second inequality,

we set β = 1/ηt.

By applying Lemma 6 to (2.26), we obtain

δt ≤
t∑

τ=1

⟨∇ℓτ (wτ ),wτ −w1⟩+ Vt(−∇ℓ1:t) +
R2

ηt
. (2.30)

In addition, we see that Vt is differentiable and it is ηt/β-smooth with respect to the dual

norm ∥ · ∥∗ due to the convex/smooth duality introduced in Lemma 2. We can derive the

following inequality for each t ≥ 2:

Vt−1(−∇ℓ1:t) ≤ Vt−1(−∇ℓ1:t−1) + ⟨−∇ℓt(wt),wt −w1⟩+
ηt−1

2β
∥∇ℓt(wt)∥2∗ . (2.31)

Let us assume η0 = η1, then the above inequality is satisfied when t = 1 such that

V0(−∇ℓ1(w1)) ≤ V0(0) + ⟨−∇ℓ1(w1),w1 −w1⟩+
η0
2β

∥∇ℓ1(w1)∥2∗ . (2.32)

Furthermore, we obtain the following inequality for each t ≥ 1,

Vt−1(−∇ℓ1:t) = max
w∈W

{
⟨−∇ℓ1:t,w −w1⟩ −

1

ηt−1
Bψ(w,w1)

}
≥ ⟨−∇ℓ1:t,wt+1 −w1⟩ −

1

ηt−1
Bψ(wt+1,w1)

=

{
⟨−∇ℓ1:t,wt+1 −w1⟩ −

1

ηt
Bψ(wt+1,w1)

}
+

(
1

ηt
− 1

ηt−1

)
Bψ(wt+1,w1)

= Vt(−∇ℓ1:t) +
(

1

ηt
− 1

ηt−1

)
Bψ(wt+1,w1)

≥ Vt(−∇ℓ1:t) . (2.33)

The first inequality is derived by setting w = wt+1. The second inequality is satisfied due

to non-negativity of Bregman divergence and non-increasing sequence of {ηt}t≥0. From

these two inequalities, we can obtain the following inequality for t ≥ 1:

⟨∇ℓt(wt),wt −w1⟩ ≤ Vt−1(−∇ℓ1:t−1)− Vt(−∇ℓ1:t) +
ηt−1

2β
∥∇ℓt(wt)∥2∗ . (2.34)

By summing up the above inequalities from t = 1 to t = T , we obtain

T∑
t=1

⟨∇ℓt(wt),wt −w1⟩+ VT (−∇ℓ1:T ) ≤ V0(0) +

T∑
t=1

ηt−1

2β
∥∇ℓt(wt)∥2∗ . (2.35)

We note that V0(0) = 0. By combining (2.30) and (2.35), we obtain the upper bound.
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2.3.4 Follow-The-Regularized-Leader

We introduce several subgradient-based online learning algorithms so far. They have

been developed in the field of the online convex optimization. From a different viewpoint,

several algorithms and theories have been developed to minimize the regret defined in

expert advice problem setting. The relationship between this setting and the online convex

optimization has been investigated and these results have been imported to the online

convex optimization problems [67, 68, 56]. As the simplest framework of these algorithms,

Follow-The-Leader (FTL) [69, 3] has been developed to make a sequential prediction

and parameter update. Based on the notion of FTL, several variants of FTL have been

proposed and extended as online convex optimization problem solvers.

The update formula of FTL algorithms for online convex optimization problems [67, 56]

is defined as:

wt+1 = argmin
w∈W

t∑
τ=1

ℓτ (w) . (2.36)

The intuition of this update formula is very simple. FTL derives weight vectors that

minimize the sum of loss function values received until the previous round in each round.

Though FTL fully utilizes the information about all previous loss functions, FTL obtains

the linear regret bound Ω(T ) as an upper bound in worst case [30].

To achieve a sublinear regret bound based on FTL, Follow-The-Regularized-Leader

(FTRL) has been proposed as a variant of FTL. FTRL [70, 30] induces a regularization

term to objective functions for stabilizing a sequence of weight vectors. FTRL is a funda-

mental template for online convex optimization and a number of cutting-edge algorithms

have been derived from FTRL; OGD is one of famous examples. By adding a regulariza-

tion term, FTRL prevents weight vectors from moving wildly from the previous one, which

contributes to a sublinear regret bound. FTRL algorithms play the following parameter

update procedure in each round:

wt+1 = argmin
w∈W

{
t∑

τ=1

ℓτ (w) +
1

η
R(w)

}
. (2.37)

where R : W → R is a convex regularization function. η > 0 is a trade-off parameter

between the original FTL objective function and a regularization term.

However, the original FTRL framework cannot be applied to massive data analysis. The

update formula defined in (2.37) requires the heavy computational cost and large memory

space to derive the next weight vector and to store all previous loss functions. Therefore,
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it is very difficult to directly apply the FTRL algorithms for online convex optimization

tasks. Fortunately, for online convex optimization problems, we do not need to solve

the problem directly to upper bound the regret. From the convexity property of loss

functions, the regret can be upper bounded by the regret of the first-order approximation

of the original loss functions for any u ∈ W as follows:

T∑
t=1

ℓt(wt)−
T∑
t=1

ℓt(w
∗) ≤

T∑
t=1

⟨wt,∇ℓt(u)⟩ −
T∑
t=1

⟨u,∇ℓt(wt)⟩ . (2.38)

From this reformulation, we can see that we derive the regret upper bound with respect to

the original loss functions by deriving the regret upper bound in the linear approximated

loss functions by some algorithms. Therefore, FTRL can use the first-order approxima-

tions as the loss functions in the original objective functions. The update formula is

modified as:

wt+1 = argmin
w∈W

{
t∑

τ=1

⟨∇ℓτ (wτ ),w⟩+ 1

η
R(w)

}
. (2.39)

When the regularization term R(w) is β-strongly convex with respect to a norm ∥ · ∥ and

the trade-off parameter is time-varying, this update formula is exactly the same as the

ODA introduced in (2.22).

Furthermore, the regret upper bound of linear-approximated version of FTRL as follows:

Theorem 6. [61] Let a sequence of weight vectors {wt}t=1:T+1 be derived according to

FTRL udpate formula (2.39). Assume that R is β-strongly convex with respect to a norm

∥ · ∥, w1 = argmin
w∈W

R(w), and R(w1) = 0. Furthermore, we assume that there exists

scalars R,G ∈ R such that R(w) ≤ R2 for all w ∈ W and ∥∇ℓτ (wτ )∥∗ ≤ G for all τ ≥ 1.

Then, the following inequality is satisfied.

Regret(T ) ≤ R2

η
+
G2T

β
η (2.40)

When we set η = c/
√
T for some constant c ≥ 0, we obtain O(

√
T ) regret bound. The

detail analyses of FTRL has been done in several previous work from the viewpoint of

primal-dual approach [41]. Other researches [71, 72] proved that OGD and OMD are

instances of FTRL algorithms. By appropriate choosing R, FTRL can be reduced to

OGD and OMD.
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2.4 Several Extensions

In the previous sections, we review some state-of-the-art subgradient-based online learn-

ing algorithms (OGD, OMD, ODA, and FTRL). In this section, we introduce several

extensions for subgradient-based online learning algorithms. These extensions make on-

line learning algorithms more applicable and practical for real-world problems by dealing

with several difficulties. Some extensions are closely related to our proposed methods

introduced in later chapters from the perspectives of motivations and used techniques.

2.4.1 Adaptive Subgradient Methods for Online Learning

We first introduce the adaptive subgradient methods for subgradient-based online learn-

ing algorithms [73]. As described above, an appropriate choice of Legendre functions is

very important for running subgradient-based online learning algorithms such as OMD

and ODA. The choice of Legendre terms largely affects the predictive performance and

convergence speed depending on the geometry of the data. However, in most cases, we

cannot know characteristics of data in advance and it is very difficult to appropriately set

the Legendre function according to the geometry of the data. To achieve a proper choice

of the Legendre function, an adaptive tuning of Legendre functions is one of the desirable

solutions.

Duchi et al. [73] have proposed adaptive subgradient methods, call AdaGrad, to achieve

an adaptive tuning of Legendre functions. AdaGrad dynamically retrieves the geometry

knowledge of the data extracted from all previous subgradients and reflects information

to adaptive Legendre functions used for the next weight vector derivation. AdaGrad

introduces a D × D symmetric matrix Ht ⪰ 0 and formalizes ψt(a) = ⟨a,Hta⟩ for D-

dimensional vector a as adaptive Legendre functions. Ht store the information about

the geometry of data and adjust the Legendre functions according to the geometry of

data. We provide the definition of Ht in a diagonal matrix case below. In this case, non-

diagonal components of Ht are always zero. Diagonal components are defined by using

all previously derived subgradients. For each diagonal component, algorithms calculate

H
(i,i)
t =

√√√√ t∑
τ=1

(
(∇ℓτ (wτ ))

(i)
)2

. (2.41)

This matrix term Ht can be viewed as the approximation of the Hessian in second-order

subgradient-based algorithms. AdaGrad has the guarantee of the data-dependent regret
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bound for OGD, OMD, and ODA with this diagonal symmetric matrix case [73]. This

bound is provably as good as the one derived by the best choice of Legendre functions

in hindsight. Though we note in detail in Chapter 4, the idea of AdaGrad to utilize

subgradient information for capturing data characteristics is similar to the idea of our

proposed methods for healing a truncation bias. We note that AdaGrad algorithms do

not change the objective function itself.

2.4.2 Normalized Online Learning

In most tasks, features are generated from difference multiple sources or views. Therefore,

each feature has its own scale of values and large heterogeneity of value ranges exists

among features in most tasks. This heterogeneity may affect predictive abilities of learning

algorithms badly without any treatment. The standard way to deal with this problem is to

apply normalization or standardization as a pre-processing method. These pre-processing

methods are used to improve prediction accuracy of algorithms in most batch learning

settings.

In the online learning settings, regret bounds of state-of-the-art subgradient-based on-

line learning algorithms explicitly depend on the norm of subgradient vectors and the

divergence between two weight vectors. It also implies that the regret bound significantly

depends on the norm of input vectors due to the assumption (1.14) and update proce-

dures. Therefore, an appropriate feature scaling is needed to make regret upper bounds

reasonable. However, it is difficult to employ pre-processing methods in the online learning

setting while maintaining advantages of online learning. Data are prepared in advance

or the characteristics of data could change over time in many online learning settings,

therefore, we cannot calculate the exact sufficient statistics for applying pre-processing.

For streaming data, we cannot access a large amount of data before running algorithms.

For massive data, it is very costly to access the whole data for calculating basic statistics.

To avoid these difficulties, it is better to develop the dynamic feature scaling method

according to the characteristics of data seen until the previous round.

Ross et al. [74] has developed the normalized online learning method to achieve a

dynamic feature normalization without pre-processing. This method is based on OGD

and makes OGD invariant to feature scaling. As a result, they prove that their proposed

method achieve a sublinear regret bound even when the scaling of each feature are de-

termined adversarially. The idea of this method is closely related to the feature-aware

regularization method we propose in Chapter 4. We note that this method is unclear how
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to induce (non-smooth) regularization terms while achieving sublinear regret bound with

an adversarial feature scaling.

2.4.3 Importance-aware Update

Sometimes, OGD and other subgradient-based online learning algorithms deal with the

data in which each datum or type of prediction error has different importance, such as

the classification problems with asymmetric cost [75]. In these cases, we need to update

parameters differently according to the importance. A famous method to achieve an

update with difference importance is to update parameters by weighing step sizes at a

certain scale. However, this method lacks two important properties: the invariance and

safety. The invariance property is satisfied when the update with an importance weight

h becomes the same result when the same data appears h times in a row. The safety

property is satisfied when the relationship between the predicted output ŷ = ⟨w,x⟩ and
the true output y does not change before and after the update. More formally, the safety

property is satisfied when the following inequality holds:

⟨wt+1,xt⟩ − yt
⟨wt,xt⟩ − yt

≥ 0 , (2.42)

where ⟨wt,xt⟩−yt ̸= 0. Because the step size becomes large in a linear scale, the previous

method might overshoot when the importance h becomes big. The safety property guar-

antees to prevent this type of overshooting. Methods without these properties sometimes

make the update of online learning algorithms fragile.

To solve these difficulties, the importance-aware update method has been established

[76]. This method provides a closed-form update formula with importance h for calculating

the next weight vector at one time. This closed-form formula is derived from the solution

of ordinary differential equation problems constructed to satisfy the invariance property.

By this derivation, for many major convex loss functions such as the hinge loss and

the logistic loss, it is guaranteed that this closed-form formula satisfies the above two

important properties. Furthermore, proposed algorithms achieve the same regret bound

as the original subgradient-based online learning algorithms.

In Chapter 5, we develop a new algorithm in which algorithms dynamically change

the importance of the received datum according to the prediction result. To make our

proposed algorithms more effective, we incorporate this importance-aware update scheme

to our algorithms.
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2.5 Mistake-Bound-based Online Learning

As discussed above, most subgradient-based online learning algorithms focus on the re-

gret minimization as an learning objective. However, the regret minimization is not an

only way as performance measures of online learning algorithms. Some researches have

established other objectives as alternatives to the regret and developed several online

learning algorithms to achieve these objectives. For classification problems, many online

learning algorithms focus on the minimization of mistake counts as objective functions.

In this section, we briefly review the mistake-bound-based online learning framework and

algorithms.

2.5.1 Objective: Mistake Bound

For binary classification problems, many work focus on directly minimizing classification

mistake counts while running online learning algorithms with linear learner models. In

the binary classification setting, prediction mistakes are defined as y⟨w,x⟩ ≤ 0. This

definition is equivalent to the case where the hypothesis defined in (1.3) outputs the

wrong label. Formally, the mistake count is defined as:

T∑
t=1

1[[yt⟨wt,xt⟩ ≤ 0[] . (2.43)

A notion of this mistake bound had been introduced in researches about Perceptron algo-

rithms [77, 78]. In this setting, we would like to minimize mistake counts, and hopefully

algorithms have the guarantee to bound mistake counts. As indicated in Section 2.2, the

regret bound on 0/1 loss functions becomes linear with respect to the data size [47]. How-

ever, through surrogate loss functions such as the hinge-loss function, we can bound the

mistake counts by using the regret upper bound. This idea is called the relative mistake

bound and it has been investigated in some work [79, 41].

2.5.2 Mistake-Bound-based Algorithms

A large number of mistake-bound-based online learning algorithms has been developed

for solving binary classification tasks efficiently. The oldest online learning algorithms for

the minimization of mistake counts is known as the Perceptron [77]. The update formula
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is written as:

wt+1 =

wt + xt yt⟨wt,xt⟩ ≤ 0

wt otherwise
. (2.44)

From this update formula, we can see that the the Perceptron updates weight vectors

only when the prediction over the received datum fails. When updating parameters, the

Perceptron just adds an input vector to weight vectors. While the update procedure of the

Perceptron is very simple, the Perceptron has the guarantee to achieve the upper bound

of mistake counts [78]. Especially, in the realizable case where there exists a hypothesis

in the hypothesis space such that all data are correctly classified, mistake counts is upper

bounded by a fixed constant by the Perceptron. In other words, the number of mistakes

does not depend on the data size. Due to its simplicity, easiness of implementation,

free from hyper-parameters, and theoretical background, many variants of the Perceptron

have been proposed, such as margin-Perceptron [80] and second-order Perceptron [81].

Furthermore, many extensions have been proposed, such as a robust distributed learning

framework over noisy data [82].

Furthermore, online learning algorithms for the minimization of mistake upper bound

has been improved by recent studies, such as Passive-Aggressive algorithms [83] and

Confidence-Weighted algorithms [84, 85, 86]. Subgradient-based online learning algo-

rithms for upper bounding mistake counts also exists [87]. They are all guaranteed to

upper bound the mistake counts by a constant value in the realizable case. In particular,

a family of Confidence-Weighted algorithms [84, 85, 86] is the state-of-the-art framework

for online classification tasks. Their algorithms significantly improve the predictive per-

formance and convergence speed compared with the Perceptron algorithms. The idea of

Confidence-Weight algorithms is very similar to AdaGrad, in that they incorporate ap-

proximated second-order information to the update procedure of weight vectors and dy-

namically adjust the information extracted from data. Confidence-Weighted algorithms

assume that weight vectors obey a Gaussian distribution. Algorithms update the mean

and variance of the Gaussian distribution per round by using the received datum.

2.6 Chapter Summary

Online learning is a novel framework for efficiently learning from a large variety of data.

In particular, online learning is effective for streaming data, massive data, data with con-

cept drift, and the environment with adversarial data generation. From these reasons,

subgradient-based online learning algorithms have been frequently used for solving these
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problems owing to several additional advantages derived from subgradient-based update

procedure, such as its implementation simplicity, efficiency of computational cost and

memory usage, and several theoretical guarantees through regret bounds. In this chapter,

we introduce the basic framework of subgradient-based online learning and the regret mini-

mization criterion as the major objective. To achieve this objective, many algorithms have

been developed. We introduce several state-of-the-art subgradient-based online learning

algorithms, Online Gradient Descent (OGD), Online Mirror Descent (OMD), Online Dual

Averaging (ODA), and Follow-The-Regularized-Leader (FTRL). We review that these al-

gorithms are closely related to each other and have strong characteristics.

In Chapter 4 and 5, we point out that algorithms and objectives described above have

crucial oversights stemmed from several biases. To deal with these biases, we need to

reformulate objective functions by integrating effects of these biases into objectives and

develop new algorithms for solving these new problems.
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Chapter 3

Stochastic Learning

In this chapter, we introduce stochastic learning as another important learning framework

based on the incremental learning. To minimize some objective functions, stochastic

learning is the framework to iteratively update parameters by using noisy but easily

available estimates of the original objective function in each round. When the original

objective function cannot be easily accessed or the objective function consists of massive

data, stochastic learning methods realize the faster iterative optimization of the objective

function by avoiding the costly evaluation and calculation.

In this chapter, we introduce the basic framework and algorithms of subgradient-based

stochastic learning. First, we introduce the basic problem setting and parameter update

procedure of subgradient-based stochastic learning in Section 3.1. To update weight vec-

tors, algorithms utilize an unbiased estimator of a subgradient of the original objective

function in each round. By iteratively updating parameters through unbiased estimates,

algorithms pursue to generate the optimal weight vector of the original objective func-

tion. After that, in Section 3.2, we mathematically formulate the expected loss mini-

mization as an algorithm performance measure of subgradient-based stochastic learning

algorithms. Furthermore, we introduce the two main approaches to upper bound the ex-

pected loss through subgradient-based stochastic learning algorithms, the generalization

bound and the online to batch conversion. Based on these theories, many state-of-the-art

subgradient-based stochastic learning algorithms have been developed. In particular, the

online to batch conversion shows the notable relationship between the regret bound in

the online learning setting and the expected loss minimization in the stochastic learning

setting. This technique enables us to convert state-of-the-art online learning algorithms

to stochastic ones while the regret bound analysis can be simultaneously transformed to

the expected loss bound analysis. In Section 3.3, we introduce several state-of-the-art
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subgradient-based stochastic learning algorithms. We show that they have novel theoreti-

cal guarantees and practical effectiveness [8]. In Section 3.4, we summarize the discussions

of this chapter.

3.1 Subgradient-based Stochastic Learning

In this section, let us introduce the basic parameter update procedure of subgradient-based

stochastic learning. The procedure is written as the following scheme:

1. Initialization: Start at round t = 1. Set a weight vector w1 ∈ W. The weight

vector space is restricted in a closed convex set W ⊂ RD.
2. Random Variable: At round t, unveil the t-th random variable ξt. The random

variable ξt is sampled from a specific distribution D. The noisy objective function

with respect to ξt is defined as f(·; ξt) : W → R+. We assume that f(·; ξt) is convex
with respect to the weight vector. The original objective function is defined as

f(·) = Eξ∼D[f(·; ξ)].
3. Subgradient: Algorithms calculate the t-th subgradient vector to be used to de-

crease the objective function value. The subgradient vector with respect to the t-th

random variable and the t-th weight vector is defined as ∇f(wt; ξt) = ∇ft(wt).

This is an unbiased estimator of a subgradient of the original objective function.

4. Update: Update weight vectors using the t-th subgradient vector. Algorithms

derive the t+ 1-th weight vector wt+1.

5. Increase the round number t and repeat these processes until the stopping criterion

is satisfied.

This procedure is based on the subgradient-based incremental learning framework. We

update weight vectors according to the t-th unbiased estimator of a subgradient of the

original objective function. While weight vectors are updated by using a random vari-

able ξt which is stochastically sampled from a specific distribution D, this framework is

called stochastic learning. Algorithm 3 summarizes a basic scheme of subgradient-based

stochastic learning algorithms.

When we deal with the supervised learning tasks, the above framework is specialized

as follows: We receive one datum ξt = (xt, yt) as a random variable in each round. A

received datum is a pair of a D-dimensional feature vector xt taken from a closed convex

set X ⊂ RD and the corresponding output value yt ∈ Y. Each datum is sampled from a

specific distribution D. The t-th noisy objective function is defined as ft(·) = f(·; (xt, yt)).
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Algorithm 3 Subgradient-based Stochastic Learning

Initialize w1 ∈ W
for t = 1, . . . do

Receive t-th random variable ξt ∼ D
Calculate a subgradient with respect to ξt as ∇ft(wt)

Update weight vector and obtain wt+1 ∈ W
end for

3.2 Objective: Expected Loss Minimization

The objective in the stochastic learning setting is to derive the optimal weight vector for

minimizing the original objective function. To update weight vectors per round, we only

utilize an unbiased estimator of a subgradient of the original objective function.

We mathematically formalize the objective in the stochastic learning setting. Let us

assume that there exists a certain data distribution D and random variables {ξt}t≥1 are

i.i.d. sampled from D. The objective function f : W → R+ is defined as the expectation

with respect to random variables sampled from the data distribution as follows:

f(w) = Eξ∼D [f(w; ξ)] . (3.1)

The objective function is called as the expected loss. Algorithms pursue to derive the

optimal weight vector w∗ such that it becomes the minimization point of the objective

function. Unlike in the online learning setting, weight vectors are evaluated through the

finally derived one such as the average weight vector from round t = 1 to t = T . Other

weight vectors are not used to evaluate the performance of stochastic learning algorithms

in general. The optimal weight vector is defined as:

w∗ = argmin
w∈W

f(w) , (3.2)

and we would like to develop algorithms to derive the optimal weight vector at the end.

The expected loss minimization is the objective of subgradient-based stochastic learning.

Unlike in the online learning setting, we assume that data are generated from a data

distribution D in the stochastic learning setting. However, we could not know the exact

data distribution D in most cases. Therefore, it is difficult not only to minimize the

expected loss value, but also to evaluate the objective function value directly. To solve this

difficult problem, we introduce two major approaches to upper bound the expected loss
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in this thesis; the generalization bound through the empirical risk minimization and the

online to batch conversion through the regret bounds of online learning algorithms. The

first approach uses the empirical loss to upper bound the expected loss with some kinds

of complexities of the weight vector space. This theory guarantees that the empirical loss

minimization derives the tightest expected loss upper bound in this view. Therefore, the

empirical loss minimization becomes the crucial objective to minimize the expected loss.

In Section 3.3.3, we show that several stochastic learning algorithms are very effective to

minimize the empirical loss when the data size is very large. The second approach enables

us to convert the regret upper bound of online learning algorithms to the expected loss

upper bound by using these algorithms as stochastic ones. Through this theory, novel

online learning algorithms introduced in Chapter 2 can be used for stochastic learning

problems without any modification of parameter update procedures. We briefly introduce

these two approaches below.

3.2.1 Generalization Bound and Empirical Risk Minimization

The first approach is the generalization bound through the statistical learning theory. We

introduce the basic scheme of the generalization bound in this subsection. We note that

we only focus on binary classification problems in this subsection. For other problem

settings such as multiclass classification problems, there are many work to analyze the

upper bound of the expected loss through the generalization bound in a different way

[88].

To derive the generalization bound, we utilize the union bound through the Rademacher

complexity [89]. The empirical Rademacher complexity evaluates the complexity of feasi-

ble hypothesis space regarding a set of input vectors. It is mathematically defined as:

ℜ(W; {ξτ}τ=1:T ) = E{ϵτ}τ=1:T∼{±1}T

[
sup
w∈W

1

T

T∑
τ=1

ϵτh(xτ ;w)

]
, (3.3)

where {ϵτ}τ=1:T is i.i.d. sampled {±1}-valued random variables and h(x;w) is the hypoth-

esis to predict outputs of the input vector x through the weight vector w. The expectation

is calculated over all {ϵτ}τ=1:T . In binary classification problems, the hypothesis function

becomes h : X → {±1}. In general, we use (1.3) as a hypothesis function. The value of

the empirical Rademacher complexity is determined by a variety represented by instances

in the weight vector space with respect to the sampled data. When a set of hypotheses

contains a larger variety of weight vectors and these hypotheses can represent a large

variety of output sets, the empirical Rademacher compelxity value becomes bigger.
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The empirical Rademacher complexity can be used to upper bound the gap between

the expected loss and the empirical loss as follows:

Theorem 7. [38] We assume |f(w, ξ)| ≤ 1 for all w ∈ W and ξ ∼ D. With probability

of at least 1− δ, for all w ∈ W, the following inequality is satisfied:

f(w)− 1

T

T∑
τ=1

fτ (w; ξτ ) ≤ 2ℜ(W; {ξτ}τ=1:T ) + 4

√
2 log(4/δ)

T
. (3.4)

This theorem shows the relationship between the expected loss and the empirical loss,

which is the average function value with respect to the sampled data {ξτ}τ=1:T . The dif-

ference is upper bounded by using the empirical Rademacher complexity and a O(1/
√
T )

term. If the empirical Rademacher complexity is less than O(T ), the difference between

the expected loss and the empirical loss converges to 0 as a result. Therefore, when this

term is bounded by O(T ), stochastic learning algorithms can focus on the empirical loss

minimization because the average function converge to the original objective function.

Therefore, the expected loss minimization can be achieved through the empirical loss

minimization even if we do not know the exact structure of data distribution D. Fur-

thermore, the increase of data size contributes to the improvement of the generalization

ability; therefore, the demand on systematically utilizing massive data has been increas-

ing. We note that the empirical Rademacher complexity is bounded by O(1/
√
T ) when

we utilize a set of linear learners as a set of hypotheses under practical constraints [38].

3.2.2 Online to Batch Conversion

Second, we introduce the notion of the online to batch conversion. This conversion enables

us to utilize regret upper bounds derived by online learning algorithms for upper bounding

the expected loss. This technique guarantees that novel online learning algorithms can be

converted into stochastic ones and the derived algorithms have the theoretical guarantee

to derive the upper bound of the expected loss [90]. We show how the online to batch

conversion is used. We introduce the online to batch conversion procedure as follows:

First, we run online learning algorithms with the data {ξt}t=1:T produced from a specific

data distribution D. As a result, we obtain a sequence of weight vectors {wt}t=1:T . Then,

we derive representative weight vectors as final outputs. We generate the average weight

vector w̄T such that

w̄T =
1

T

T∑
t=1

wt , (3.5)
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or randomly pick up one weight vector uniformly at random from {wt}t=1:T . With respect

to the average weight vector w̄T , we obtain the meaningful expected loss upper bound by

the following theorem.

Theorem 8. [30] If the objective function f is convex and {ξt}t=1:T are i.i.d. sampled

from a specific distribution D. Then, the following inequality is satisfied.

E{ξt}t=1:T∼DT [f(w̄)]− f(w∗) ≤ E{ξt}t=1:T∼DT

[
1

T

T∑
τ=1

(f(wt; ξt)− f(w∗; ξt))

]
. (3.6)

The right-hand side of (3.6) is upper bounded by regret per datum defined in (2.2)

because the regret bound does not put any assumption on the data generation. Therefore,

when some online learning algorithms have sublinear regret bounds, the left-hand side of

(3.6) converges to 0 with T → ∞. Furthermore, this result implies that lower regret

bounds lead to tighter expected loss upper bounds. Not only for the average weight

vector defined in (3.5), but also for randomly chosen weight vectors, it is known that this

theorem is satisfied [30].

This online to batch conversion technique can be applied to online learning algorithm

with the sublinear regret upper bound we introduced in Chapter 2, such as OGD, OMD,

ODA, and FTRL. These novel online learning algorithms can be automatically trans-

formed to stochastic ones by averaging of weight vectors or random sampling of weight

vectors and the derived weight vectors have theoretical guarantees.

3.3 Subgradient-based Stochastic Learning Algorithms

Many subgradient-based stochastic learning algorithms have been proposed to efficiently

minimize the expected loss. To solve this problem, the convexity of unbiased estimators

of a subgradient plays an important role. In addition, stochastic learning algorithms

are effective to deal with massive data. Simple subgradient-based stochastic learning

algorithms, such as Stochastic Subgradient Descent algorithms, have been experimentally

shown to achieve better practical performances than other batch algorithms [8, 91]. In

this section, we show several subgradient-based stochastic learning algorithms.

3.3.1 Stochastic Subgradient Methods

One of the simplest subgradient-based stochastic learning algorithms is Stochastic Gradi-

ent Descent (SGD) and Stochastic Subgradient Methods [92, 93]. As the same reason as

the Online Gradient Descent, we use the term Stochastic Gradient Descent (SGD) as the
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generic name of these algorithms even when we utilize subgradients to update parame-

ters. Basically, the parameter update procedure of SGD is exactly the same as the one of

OGD and can be viewed as a stochastic version of OGD. The update formula is defined

as follows:

wt+1 = ΠW (wt − ηt∇f(wt; ξt)) . (3.7)

where {ηt}t=1:T is a sequence of step sizes and ΠW is a projection function onto a convex

set W based on the Euclidean distance. As the same as OGD, SGD moves toward the

direction where an unbiased estimator of the first-order approximation will be decreased

in a steepest way.

SGD has a long history and many theoretical analyses on SGD have been done [92, 94,

93]. It is known [92] that a derived weight vector of SGD converges to the optimal weight

vector with probability one under several conditions such that

Eξ∼D

[
(∇f(w; ξ)−∇f(w))

2 |w
]
<∞ , (3.8)

lim
t→∞

ηt = 0 ,
∞∑
t=1

ηt = ∞ ,
∞∑
t=1

η2t <∞ . (3.9)

SGD achieves the O(1/
√
T ) asymptotic convergence rate when the original objective func-

tion is convex [26]. The non-aymptotic convergence analysis is recently done and O(1/
√
T )

convergence rate has been derived [95]. Properties of computational cost and memory us-

age is also the same as the one of OGD defined in Section 2.3.1.

As a technique to derive robust weight vectors, the average of the iterates is known as

helpful method. The average of the iterates is mathematically defined as:

w̄T =
1

T

T∑
t=1

wt . (3.10)

This method is known as Polyak-Ruppert averaging [96]. This averaging method, or its

polynominal-decay weighted version [95], derives the optimal convergence rate when we

set an appropriate step size.

Through the online to batch conversion, we can derive the expected loss upper bound

of SGD through the regret bound of OGD. The following theorem shows the relationship

between these two bounds.

Theorem 9. [90] Assume that the conditions set in Theorem 2 are satisfied. Then, the

following expected loss upper bound is satisfied when we derive {wt}t=1:T+1 by running

OGD.

E{ξt}t=1:T∼DT [f(w̄T )]− f(w∗) ≤ Regret(T ) =
2
√
2RG√
T

, (3.11)
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where

w̄T =
1

T

T∑
t=1

wt . (3.12)

Therefore, SGD achieves O(1/
√
T ) convergence rate for the general convex objective

function through the online-to-batch conversion. By applying the same technique, SGD

obtains O(log T/T ) convergence rate for the strongly convex case through the result of the

O(log T ) regret bound of OGD [56]. However, the optimal convergence rate of subgradient-

based stochastic learning algorithms for strongly convex problems is known as O(1/T )

[97, 98]. The optimal upper bound rate of regret by subgradient-based online learning

algorithms for strongly convex loss functions is known as O(log T ) [98]. Therefore, there

is a gap between the best convergence rate obtained by the online to batch conversion and

the true optimal rate of stochastic learning algorithms. This optimal rate can be achieved

through a slight modification of SGD by introducing the intra-epoch procedure [98].

Due to its simplicity, many extensional algorithms have been proposed. To reduce the

computational cost of the projection onto a convex set W, SGD with only one projection

method has been developed [99]. This method guarantees the convergence toward the

optimal point without the projection onto the feasible region in each round.. They prove

that their developed algorithm requires only one projection onto W to achieve O(1/
√
T )

convergence rate for general convex optimization problem and O(log T/T ) for strongly

convex problem. In addition, Hazan et al. has developed the projection-free online and

stochastic learning algorithms using the Frank-Wolfe technique [100]. Though the con-

vergence rate and regret bound becomes worse or at least the same as the standard OGD

and SGD, their algorithms are quite efficient when the projection onto the weight vector

space requires a large amount of computational time.

An appropriate learning rate setting of SGD is also very important to achieve a good

predictive performance. To achieve an adaptive tuning of step sizes, some researches

focus on how to possess the approximated information of the Hessian without any burden

of computational cost and memory usage [101]. Schaul et al. has developed a method

for on-the-fly estimations of the variance of the subgradients and for incorporating these

information into the adaptive choice of step sizes to efficiently minimize the expected loss.

Experimental results show that this auto-tuning method outperforms the basic SGD and

AdaGrad [73] with respect to the predictive performance and the convergence speed.
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3.3.2 Pegasos

SGD and its variants show strong effectiveness for several machine learning tasks. To show

its effectiveness of the stochastic learning methods, we introduce Pegasos [102]. This

algorithm is a well-known SGD-based learning framework for Support Vector Machine

(SVM) [103] and fully utilize the online to batch conversion technique for deriving efficient

online and stochastic learning algorithms in the same way. As a result, Pegasos provides

a family of optimization methods to solve the SVM problem in many ways, such as the

mini-batch, online, and stochastic learning framework. In this section, we focus on the

stochastic learning variant of Pegasos.

Pegasos has been developed to solve the SVM optimization problem in a primal form

efficiently. The primal objective function of the SVM is explicitly described as follows:

f(w) =
λ

2
∥w∥22 + E(x,y)∼D [max(0, 1− y⟨w,x⟩)] . (3.13)

where D is the data distribution and λ is the hyper-parameter to adjust the importance

ratio between the expected loss function and the regularization term. The weight vector

space W is set to RD and the hinge loss is used as loss functions. We use ℓ(w; (x, y)) =

max(0, 1− y⟨w,x⟩) in this section.

We describe the parameter update procedure of Pegasos. Pegasos receives one datum

sampled from a specific distribution D and received the following objective function in

each round t,

ft(w) =
λ

2
∥w∥22 + ℓ(w; (xt, yt)) . (3.14)

Equation (3.14) represents the objective function with respect to only the t-th datum

(xt, yt).

Pegasos performs two-step update procedures; the subgradient-based parameter update

step and the projection step. In the first step, we use the subgradient of ft at wt to update

weight vectors. We denote its subgradient as ∇ft(wt). Weight vectors are updated as

follows and we obtain a new weight vector wt+ 1
2
:

wt+ 1
2
= wt − ηt∇ft(wt) , (3.15)

where

∇ft(wt) = λwt − 1[[1− yt⟨wt,xt⟩ ≥ 0]]ytxt . (3.16)

and ηt > 0 is the positive learning rate.
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In the second step, weight vectors are projected onto the region where the optimal

solution exists. wt+ 1
2
is projected onto the set B such that

B = {w : ∥w∥2 ≤ 1/
√
λ} . (3.17)

Although the weight vector space is defined as the whole Euclidean space, the optimal

solution w∗ is necessarily in the set B. This property is verified through the convexity of

the objective function, the optimality condition about the subgradient of (3.13), and the

norm of the subgradient of the hinge loss function. The projection can be performed by

the closed-form formula. The explicit update formulation is as follows:

wt+1 = min

{
1,

1/
√
λ

∥wt+ 1
2
∥2

}
wt+ 1

2
. (3.18)

wt+1 is obtained by scaling of wt+ 1
2
. Pegasos performs these two procedures each time

algorithms receive a new datum.

First, we analyze the online learning aspect of theoretical property of Pegasos. The

objective function of Pegasos (3.13) is strongly convex with respect to weight vectors.

It is because (3.13) consists of non-smooth convex loss functions and a strongly convex

regularization term, the L2 norm. By effectively utilizing this property, Pegasos has been

proved to obtain a logarithmic scale of regret upper bound.

Lemma 7. [102] Assume that there exists R ∈ R such that for all t, ∥xt∥2 ≤ R. Let

{wt}t=1:T+1 be derived according to Pegasos’s update rule. When we set learning rates as

ηt = 1/λt, for T ≥ 3 and for any u ∈ W, we have

T∑
t=1

ft(wt)−
T∑
t=1

ft(u) ≤
c(1 + log(T ))

2λ
, (3.19)

where c = (
√
λ+R)2.

By using the online to batch conversion, Pegasos achieves O(log T/T ) upper bound of

the expected loss.

Theorem 10. [102] Assume that conditions used in Theorem 7 are satisfied and data

{ξt}t=1:T are i.i.d. generated according to the data distribution D. Then, for T ≥ 3, we

have

E{ξt}t=1:T∼DT [f(w̄)] ≤ f(w∗) +
c(1 + log(T ))

2λT
, (3.20)

where c = (
√
λ+R)2, and

w̄ =

T∑
t=1

wt, w∗ = argmin
w∈W

f(w) . (3.21)
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The above theorem guarantees that the average weight vector converges to the optimal

weight vector in expectation without the direct access to the original objective function.

The expected loss can be bounded through a randomly sampled weight vector from a

set {wt}t=1:T [102]. In several experiments, Pegasos works very well for massive data,

which means T is very large, compared with other state-of-the-art methods such as the

cutting-plane method [104] and the decomposition method [105]. This result implies

that subgradient-based stochastic learning algorithms are very efficient for massive data

analyses as a optimization solver for SVM. Pegasos quickly optimize parameters in weight

vectors due to the low computational cost and memory usage in each round. Though

it is slow to fully optimize the minimization over the empirical loss compared with non-

stochastic optimization methods due to slow convergence rate, however, it quickly obtains

a generalized weight vector with respect to the expected loss [8].

3.3.3 Toward Linearly Convergence of SGD

From the perspective of the generalization bound analyses, efficient optimization methods

for minimizing the empirical loss are also needed. To achieve this objective, the main

disadvantage of subgradient-based batch learning algorithms is heavy computational cost

of the full subgradient calculation over all data as discussed above. On the other hand,

subgradient-based stochastic learning algorithms update weight vectors very fast in each

round. However, the convergence speed to the optimal solution becomes very slow com-

pared with the batch learning algorithms. Though stochastic learning algorithms are

efficient to quickly derive a good weight vector in practice, these algorithms have not been

appropriate to exactly minimize the empirical loss due to its slow convergence speed. In

particular, for strongly convex objective functions, the gap between the subgradient-based

batch learning algorithms and stochastic ones is significantly large. To overcome this diffi-

culty, several recent work has developed some subgradient-based stochastic algorithms to

achieve linear convergence rate for strongly convex objective functions with finite samples.

These methods have both advantages: linear convergence rate of subgradient-based batch

learning algorithms and fast iteration in stochastic learning algorithms by avoiding full

subgradient calculation.

We redefine the problem setting. We assume that data {ξn}n=1:N is finite and fixed, and

we pursue to minimize the empirical loss. In this problem setting, the objective function
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is defined as the minimization problem of the empirical loss:

f̂(w) =
1

N

N∑
n=1

f(w; ξn) . (3.22)

The minimization over the empirical loss becomes crucial for the expected loss minimiza-

tion through the generalization bound analysis introduced in Section 3.2.1. This effect

becomes more effective when we deal with a large amount of data because the empirical

loss converges to the expected loss as N → ∞.

Roux et al. has first proposed algorithms to achieve linear convergence rate in a stochas-

tic learning way [106]. This algorithm is named as Stochastic Average Gradient (SAG).

The overview of SAG is as follows: The important difference between SGD and SAG is

that SAG preserves the latest calculated subgradients of each datum in the memory and

utilize them to update parameters in each round. In each round, SAG receives one datum

randomly sampled from a fixed set of data and derive the subgradient with respect to the

received datum at the current weight vector. Then, SAG replaces the stored subgradient

with respect to the received datum by the newly calculate one. Other stored subgradients

remain the same. After replacing subgradients, SAG update weight vectors by using the

average of stored subgradients. In summary, SAG maintains the latest subgradients for

each datum and used them in the parameter update procedure. The update formula of

SAG is mathematically defined by the following formula:

wt+1 = wt −
ηt
N

N∑
n=1

g̃t,n , (3.23)

where N is the size of the data and

g̃t,n =

∇f(wt; ξt) if ξt = ξn

g̃t−1,n otherwise
(3.24)

From this update formula, we can see that SAG can be viewed as the intermediate algo-

rithm between the batch gradient descent methods and SGD. In place of full subgradients,

SAG use the average of stored subgradients to avoid the full calculation of subgradients

over all data. To improve the convergence rate, we utilize stored subgradients in addition

to the currently received subgradient.

The convergence analysis guarantees that SAG has a linear convergence rate for strongly

convex objective function.

Theorem 11. [106] Let us assume that each n-th objective function f(·; ξn) is convex,

differentiable, and their gradients are L-Lipschitz continuous with respect to the norm ∥·∥.
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Moreover, we assume that the objective function is µ-strongly convex with respect to the

norm ∥ · ∥ and there exists a scalar σ2, R such that σ2 = ∥∇f(w∗; ξn)∥2/N where w∗ is

the unique minimizer of the empirical loss and ∥w1−w∗∥ ≤ R. In this case, the following

inequality is satisfied:

E
[
f̂(w̄T )

]
− f̂(w∗) ≤

(
1−min

{
µ

16L
,

1

8N

})T (
f̂(w1)− f̂(w∗) +

4LR2

N
+

σ2

16L

)
,

(3.25)

where the expectation is calculated over a sequence of data sampling from the fixed data.

From this result of the theorem, we can see that the convergence rate of SAG becomes

linear. Furthermore, the computational cost per round becomes O(D) because we can

calculate the average subgradient by using the following equation:

1

N

N∑
n=1

g̃t,n =
1

N

(
N∑
n=1

g̃t−1,n +∇f(wt; ξt)− g̃t−1,nt

)
, (3.26)

where nt is the datum ID which SAG receives at round t. Therefore, the computational

cost of update procedure becomes independent of data size. On the other hand, the

memory usage cause some difficulties. In the normal case, SAG have to store subgradients

with respect to all data, so, it may be impractical for massive data analysis from the

viewpoint of the memory size constraint. However, in the linear learner case, algorithms

do not need to store subgradients explicitly and only need to store scalar values due to

the assumption (1.14).

Many variants and extensions of SAG have been developed. For example, Johnson and

Zhang has recently proposed the algorithm named Stochastic Variance-reduced Gradient

(SVRG) [107]. This method exploits the essence to achieve a linear convergence property

of subgradient-based stochastic learning algorithms for strongly convex objective function.

Based on these discussions, they develop SVRG without the need to store the subgradient

information in the memory. Furthermore, the proof of linear convergence property of

SVRG is quite simple compared with the other competitive methods, such as SAG, the

Minimization by Incremental Surrogate Optimization (MISO) [108], and the Stochastic

Dual Coordinate Descent [109].

3.4 Chapter Summary

In this chapter, we review the framework and algorithms of subgradient-based stochastic

learning. Stochastic learning is a novel optimization framework for solving several difficult

tasks. We first introduce the stochastic learning framework. We receive a noisy but easily
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available estimate of the original objective function in each round. Then, algorithms

calculate the subgradient with respect to the received datum and update parameters by

utilizing the subgradient. After that, we introduce the objective of stochastic learning

framework, the expected loss minimization. Stochastic learning algorithms focus on the

derivation of the optimal weight vector such that it minimizes the expected loss. Then, we

show two techniques for upper bounding the expected loss, the generalization bound and

the online to batch conversion. Especially, the online to batch conversion technique ensures

that novel online learning algorithms introduced in Chapter 2 can be transformed to

stochastic ones and the expected loss bounds of these algorithms are automatically derived.

Based on above discussions, we introduce several subgradient-based stochastic learning

algorithms. The advantages and disadvantages of these algorithms are very similar to the

ones of subgradient-based online learning algorithms. Furthermore, we show the recent

progress about linear convergence methods based on the subgradient-based stochastic

learning algorithms for strongly convex problems. These algorithms are very effective

to minimize the expected loss through the minimization of the empirical loss and the

generalization bound. In Chapter 5, we point out that these algorithms and objectives

have crucial deficits originated from a human cognitive bias. We show that objectives

and algorithms are needed to be modified and the derived ones are efficient from both

theoretical and practical aspects.
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Chapter 4

Feature-aware Regularization for Sparse

Online Learning

We first introduce Sparse Online Learning in this chapter. Compact predictive models

are desirable for efficiently solving supervised learning problems with massive data. Com-

pact predictive models consist of a small amount of effective features, therefore, these

models enable us to make predictions faster by using only a small amount of memory.

To make predictive models compact, we introduce sparsity-inducing regularization meth-

ods for inducing sparsity to predictive models. Sparsity-inducing regularization methods

make predictive models compact. The most famous example of sparsity-inducing regu-

larization methods is the L1-regularization. The L1-regularization triggers the truncation

of parameters that are ineffective for precise predictions and the minimization of the loss

functions. On the other hand, online learning generally requires less computational cost

and a smaller memory space than batch learning as written in Chapter 2. By combining

subgradient-based online learning algorithms with these sparsity-inducing regularization

techniques, online learning with sparsity-inducing regularization methods has gained a

great deal of attentions as one of the most sophisticated methods for learning from mas-

sive data. We call subgradient-based online learning with sparsity-inducing regularization

methods sparse online learning. Due to these advantages, sparse online learning frame-

work has recently been analyzed and many algorithms have been developed.

We point out that conventional sparse online learning algorithms do not consider infor-

mation on features in input vectors. Each feature has distinct characteristics such as its

value range and occurrence frequency. These characteristics are usually not uniform in

most tasks such as natural language processing and pattern recognition. It is well-known

that some rare features are informative for precise prediction, therefore, several techniques
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have been developed to emphasize such features and retain them in the predictive model

through pre-processing methods. For example, TF-IDF [110] is the state-of-the-art pre-

processing method to normalize these heterogeneity and emphasize rarely occurring fea-

tures for natural language processing tasks. However, to apply this type of pre-processing,

machines have to load all data into the memory, sums up the occurrence counts of each

feature in prior, and rewrites all feature values before we start to run machine learning

algorithms. This requirement does not match the essence of online learning framework

wherein data are sequentially processed and all data do not have to be prepared in ad-

vance. Therefore, pre-processing methods are difficult to be employed while preserving

advantages of online learning algorithms. We point out that many unemphatic features

are easily truncated without any treatment for modifying these heterogeneity, even though

such features are crucial for making a precise prediction. As feature occurrence frequencies

or value ranges are highly skewed in many tasks, informative features tend to be truncated

beyond necessity when these features are rare or have low value range. Similar problems

are indicated by [74], however, they only deal with the feature value range problem, and in

addition, their developed methods cannot incorporate non-smooth regularization terms,

such as sparsity-inducing regularization methods. We treat this type of bias as the trun-

cation bias and we have thus developed extensional framework for online learning with

sparsity-inducing regularization. This bias originates from the problem inside objective

functions, therefore, we need to dynamically modify the objective function depending on

the truncation bias.

In this chapter, we introduce the a new extensional method for sparse online learning to

solve this difficulty. Our framework enables us to eliminate the bias for retaining informa-

tive features in an online setting without any pre-processing. By integrating the dynamic

adjustment framework of this bias, these algorithms retain the weight of rare or low value

range but informative features. Our methods enhance the conventional L1-regularization

by integrating the information on all previous subgradients of loss functions. These ex-

tensions enable online learning to automatically and dynamically adjust the intensity of

each feature’s truncation. This extension enables us to identify and retain infrequently

occurring but informative features in an online setting. The important thing is that the

optimal solution changes according to the dynamic adjustment effect even when the data

are sampled from a fixed data distribution. Furthermore, we establish that our methods

achieve the same order of computational complexity and regret upper bound rate as the

sparse online learning algorithms. Experimental results demonstrate that our extensional

algorithms outperform conventional online learning with sparsity-inducing regularization
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methods in many classification tasks.

The constitution of this chapter is as follows: In Section 4.1, we introduce the notion

of sparse online learning, sparsity-inducing regularizations, and several state-of-the-art

subgradient-based sparse online learning algorithms as the background of this chapter.

In Section 4.2, we introduce the truncation bias. The truncation bias originates from

the skewness of occurrence frequencies and value ranges of features. We show how these

biases affect the predictive performance by using toy examples. In Section 4.3, we propose

our new sparsity-inducing regularization framework, called feature-aware regularization.

The key idea behind our framework is to integrate the information about feature occur-

rence frequencies and value ranges absolute through subgradients of loss functions into

the regularization term. We show that our framework dynamically weakens truncation

effects on rare or low value range features and thereby obtains a set of important features

regardless of their occurrence frequency or value range. In addition, we develop a unified

extension method for many subgradient-based online learning and three applications of

our framework in this section. Section 4.4 discusses the upper bound of regret for our

derived algorithms. We analyzed the theoretical aspects of our framework and derived

the same computational cost and the same order of the regret upper bound as those for

the original algorithms in this section. Section 4.5 describes several experimental results.

We compared our methods with other subgradient-based sparse online algorithms and

evaluated the performances. The results reveal that our framework improve the predic-

tive performance of state-of-the-art algorithms on most datasets with a smaller size of

predictive models. Section 4.6 concludes the discussion of this chapter.

4.1 Background: Sparse Online Learning

In this section, we introduce the notion of sparse online learning and several state-of-the-

art algorithms. Sparse online learning has been focused on as one of the most sophisti-

cated methods for learning from large-scale data. Subgradient-based sparse online learning

have several effective advantages such as less computational time and a smaller memory

space originating from subgradient-based online learning framework and compact predic-

tive models induced by sparsity-inducing regularization methods. As described before,

compact predictive models contribute to speed up predictions and reduce memory usage.

However, to achieve efficient subgradient-based sparse online learning algorithms, there

were many challenging tasks to obtain a sparse solution while preserving online learning’s

computational advantages. Consequently, many optimization methods and learning algo-
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rithms have been developed to attain an efficient modeling and framework of subgradient-

based sparse online learning as a way of solving large-scale problems.

We first introduce what sparsity-inducing regularization is and how it works in Section

4.1.1. After that, we show how the objective of subgradient-based online learning changes

by adding sparsity-inducing regularization terms. In the end, we introduce three state-

of-the-art subgradient-based sparse online learning algorithms in later sections. In this

thesis, we focus on three state-of-the-art algorithms.

• COMID (Composite Objective MIrror Descent) [111, 61];

• RDA (Regularized Dual Averaging) [64];

• FTPRL (Follow-The-Proximally-Regularized-Leader) [71, 72];

4.1.1 Sparsity-inducing Regularization

First, we introduce the basic of sparsity-inducing regularization methods and show several

examples in this section. As described in Section 1.1.3, regularization is a well-known

technique to obtain desirable structures in accordance with task objectives. Regularization

is widely used for many reasons, such as the improvement of the generalization ability by

avoiding overfitting. We integrate a regularization term into an objective function to

apply regularization techniques.

Sparsity-inducing regularization is a family of regularization methods to enforce a sparse

representation on weight vectors. In other words, sparsity-inducing regularization meth-

ods make a large amount of elements zero. By making the derived predictive model sparse,

it is capable of reducing the computational time and required memory space for predic-

tions because a sparse representation of weight vectors has a small amount of informative

information. L1-regularization is a simple and famous example of sparsity-inducing regu-

larization. The L1-regularization term is defined as follows:

Φ(w) = λ∥w∥1 , (4.1)

where λ > 0 is a trade-off parameter to adjust the importance ratio between the original

objective function and the sparsity-inducing regularization term. The functionality of L1-

regularization is to eliminate parameters that are insignificant for prediction on the fly.

These sparsity-inducing regularization methods have an effect to automatically truncate

uninformative parameters. Moreover, L1-regularization has the side effect of preventing

over-fitting to training data by eliminating non-informative features especially when the

number of data is small. From these reasons, L1-regularization is an effective technique
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for learning. The disadvantage of L1-regularization is that it makes objective functions

non-smooth due to the non-smoothness of the L1 norm. Due to its non-smoothness,

L1-regularization has the sparsity-inducing effect, however, at the same time, the mini-

mization over objective functions with L1-regularization becomes difficult to be solved effi-

ciently compared with smooth ones. For solving minimization problems with non-smooth

sparsity-inducing regularization, several optimization methods have been proposed, such

as COMID, RDA, and FTPRL. We focus on L1-regularization as a sparsity-inducing norm

in this chapter.

We note that many other sparsity-inducing regularization methods exist. Elastic net

[112] is defined as a combination of the L1 norm and the L2 norm. This regularization

method is very effective to capture all informative features for predictions even if these

features are largely correlated with each other. This property contributes to the analysis

of what type of features are effective for predictions. OSCAR [113] combines the L1 norm

and the pair-wise L∞ norms. OSCAR has a stronger effect for capturing all informative

features than Elastic net because of the strong grouping effect of the pair-wise L∞ norms.

There are many other sparsity-inducing regularization [114, 115] and these are used for

many tasks [116, 117, 118]. In particular, we have proposed an efficient solver for convex

optimization problem with L2 and L0 regularization terms through the dual decomposition

technique [115].

4.1.2 Objective: Regret with Regularization Term

By adding a convex regularization term to objective functions, objectives in the sparse

online learning setting change from the regret minimization over the sum of loss functions

to the regret minimization over the sum of loss functions and regularization terms. Our

main focus in sparse online learning is to derive weight vectors to minimize the next coming

loss function added at regularization terms, therefore, objective functions are reformulated

as follows:
T∑
t=1

(ℓt(w) + Φ(w)) , (4.2)

where Φ is a regularization term of the form Φ : W → R+ where Φ is convex in the

weight vector space W. For optimization methods over objective functions with sparsity-

inducing regularization terms in the batch learning setting, proximal gradient methods

have been studied in many researches [114]. These optimization methods pursue to derive

the optimal weight vector by using iterative update procedures in the batch-learning

setting. The idea of the proximal gradient method is to split objective functions into two
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parts, differentiable terms and non-differentiable (non-smooth) terms, and we optimize

parameters through the first-order approximations of the former formula and the exact

form of the latter formula in each iteration. Especially, when an objective function consists

of the sum of convex smooth loss functions and the L1-regularization (or other non-smooth

regularization methods), proximal gradient methods are very effective to optimize these

parameters [24, 119, 120]. There is a thorough survey of proximal gradient methods and

their statistical properties [121].

For online learning setting, we use the regret as an objective function. The definition

of regret also changes when regularization terms are integrated. A new definition of the

regret in sparse online learning setting is as follows:

Regretℓ+Φ(T ) =
T∑
t=1

(ℓt(wt) + Φ(wt))− min
u∈W

T∑
t=1

(ℓt(u) + Φ(u)) . (4.3)

In the following subsections, we introduce three major subgradient-based online learning

frameworks that have been developed to deal with these sparsity-inducing regularization

methods in an exact form in the update procedure.

4.1.3 Composite Objective Mirror Descent (COMID)

It has been a challenging task to derive a sparse solution and at the same time to preserve

online learning framework’s advantages. Conventional subgradient-based online learning

algorithms, such as OGD and OMD, cannot derive a sparse solution by simply integrating

sparsity-inducing regularization methods because a first-order approximation of sparsity-

inducing regularization methods does not work to clip parameters to zero. This problem

originates from its update procedure, that is to say, while it uses the linear approximation

of non-smooth sparsity-inducing norms, not original regularization terms, cannot main-

tain characteristics of sparsity-inducing regularization methods to update parameters.

To overcome the problem, we have to deal with sparsity-inducing regularization without

first-order approximation of these terms in the update procedure.

We first introduce Composite-Objective Mirror Descent (COMID) [61] as a method to

provide an efficient way to achieve sparse online learning. This framework can be viewed

as a unified framework of online subgradient methods [46], online mirror descent [3, 60, 30],

and FOBOS (forward-backward splitting) [111]. COMID enables regularization terms to

be induced into objective functions even if these regularization terms are non-smooth, and

minimize regret with regularization terms by subgradient-based update procedures in an

online way. When we set sparsity-inducing regularization as regularization terms, COMID
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has both advantages of online learning framework and sparsity-inducing regularization

methods, such as its implementation simplicity, computation and memory efficiency, and

variety of loss function and regularization term choices. The update formula of COMID

is written as follows and we solve the following optimization problem in each round to

derive the next weight vector.

wt+1 = argmin
w∈W

{ηt⟨∇ℓt(wt),w⟩+ ηtΦ(w) +Bψ(w,wt)} , (4.4)

where ∇ℓt(wt) is a subgradient of t-th loss function ℓt at wt, {ηt}t≥1 is a sequence of

positive non-increasing constants, and Bψ is the Bregman divergence.

The update formula (4.4) consists of a sum of three terms. The first term indicates

that the objective function value will decrease when the next weight vector moves in the

reverse direction of the current subgradient. In other words, weight vectors are updated

in such a way that its value decreases with respect to the first-order approximation of

t-th loss function at the current weight vector. The second term is a regularization term.

When we set sparsity-inducing regularization terms, it is hoped that the derived weight

vector become sparse. The third term is the Bregman divergence between the current

weight vector and the next one. The farther the next weight vector moves away from the

current vector, the bigger the Bregman divergence becomes. By inducing this Bregman

divergence, a weight vector is updated in a way that it stays close to the current weight

vector. The next weight vectors are derived by minimizing the sum of these three terms.

Variables {ηt}t≥1 control a relative importance of these terms.

COMID can be viewed as the extension of OMD introduced in Section 2.3.2. By

inducing a regularization term Φ into the right-hand side of formula (2.10), the update

formula of COMID (4.4) is derived. Therefore, when we remove Φ from the update formula

of COMID, COMID is reduced to OMD. The upper bound on the regret has been proven

to be O(
√
T ) by properly setting {ηt}t≥1 [61]. We note that the regret is defined by (4.3),

not (2.2).

To realize sparse online learning, the splitting method approach was first proposed

with theoretical guarantee. COMID is a generalized version of this splitting method

approach. Carpenter [122] proposed a splitting approach that combines OGD/SGD with

L1-regularization while maintaining advantages of both techniques. Duchi and Singer

[111] and Langford et al. [123] generalized Carpenter’s method to achieve sparse online

learning based on OGD, which enables to utilize different type of regularization terms. In

particular, Duchi and Singer’s algorithm is called FOBOS [111]. FOBOS has been proven

that FOBOS has asymptotically O(
√
T ) regret upper bound under practical conditions.
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We show the parameter update procedure of online subgradient method with L1 regu-

larization as the example of FOBOS. In FOBOS, the parameter update procedure consists

of two steps in each round, i.e., a parameter update step and a regularization step. In

the first step, weight vectors are updated to decrease the t-th loss function value by using

the received t-th datum. We apply online subgradient method to update parameters for

pushing down the current loss function value. In this step, weight vectors are updated as:

wt+1/2 = wt − ηt∇ℓt(wt) , (4.5)

where ∇ℓt(wt) is a subgradient of the t-th loss function ℓt with respect to wt and {ηt}t≥1

is a sequence of positive step sizes. We do not consider regularization terms in this step.

Then, regularization terms have been applied in the second step. In this example, we

focus on the L1-regularization case. As described before, L1-regularization is very effective

to derive sparse predictive models. At second step, we apply L1-regularization to weight

vectors. We penalize the current weight vector through sparsity-inducing regularization

terms as:

wt+1 = argmin
w∈W

{
1

2
∥w −wt+1/2∥22 + ληt+1/2∥w∥1

}
, (4.6)

where {ηt+1/2}t≥1 is a sequence of learning rates used in the second step and λ is the trade-

off parameter to adjust the importance between loss functions and the L1-regularization.

In this step, it truncates parameters where it is not useful for prediction in a weight vector

through L1-regularization. As we transform equation (4.6) into a closed-form solution, we

obtain the following parameter update formula.

w
(i)
t+1 =

0 if |w(i)
t+1/2| ≤ λ

sgn(w
(i)
t+1/2)|w

(i)
t+1/2 − ληt+1/2| otherwise

. (4.7)

From formula (4.7), we can see that algorithms truncate parameters where its absolute

value is less than λ without exception. By applying the regularization term explicitly

as described in (4.6), the truncation effect in L1-regularization is preserved. In sum-

mary, weight vectors are updated in a loss minimization step according to the subgradient

method, and then it truncates uninformative parameters for predictions using the L1-

regularization term in this framework. In practice, these two step update formula can be

summarized as one closed update formula. L1-regularization is helpful because it derives

sparse predictive models while preserving the advantages of online learning framework in

FOBOS.

The connection between FOBOS and COMID can be described as follows. When we

set ηt = ηt+1/2 for all t, the update formula of FOBOS with L1-reuglarization can be
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described as:

wt+1 = argmin
w∈W

{
⟨∇ℓt(wt),w⟩+Φ(w) +

1

2ηt
∥w −wt∥22

}
. (4.8)

Therefore, FOBOS is a special case of COMID in which the squared Euclidean distance

is used as the Bregman divergence.

Although COMID is a sophisticated sparse online learning algorithm, it has a serious

deficit; COMID updates parameters by utilizing only the current subgradient and forgets

the information on the previous subgradients. As a result, the original version of COMID

has a problem wherein a solution is often significantly affected by the last few data. This

is the problem OMD-like algorithm has, and this problem is already indicated in Section

2.3.2. Unfortunately, this problem becomes more crucial in the case of sparse online

learning. When the derived weight vector is strongly influenced by the recent few data,

many uninformative features may become non-zero if these features appear in the recent

data. This is because weight values easily move away from zero when the corresponding

features are included in the last few data. For example, when we apply the L1 norm

as a regularization term, COMID tends to retain parameters that corresponding features

occur recently, independent of the importance of features for predictions. To solve this

difficulty, several extensions have been developed for it. After that, we will introduce

Regularized Dual Averaging (RDA) as one approach to solve this problem. In another

way, the truncation-cumulative version of FOBOS [124] heals the problem. The main idea

of the cumulative penalty model is to keep track of the total L1-regularization potential

operations as a cumulative L1 penalty. A cumulative L1 penalty is used to smooth out

fluctuation effects caused by the last few data. When weight values are clipped to zero

for a long time, the cumulative penalty is accumulated. To move away from zero, weight

values need to accumulate the subgradient value larger than the accumulated truncation

penalty. In addition, this scheme not only smooths the fluctuation effect, it also suppresses

noisy data.

4.1.4 Regularized Dual Averaging (RDA)

In addition to OMD, ODA has also been extended to integrate regularization terms to

objective functions. This method is called Regularized Dual Averaging (RDA) [64] as an

extensional framework of ODA introduced in Section 2.3.3. RDA can be viewed as a way

of overcoming the weakly truncated problem of COMID by using the average subgradients,

not only the subgradient with respect to the current datum. In each round, RDA solves

a simple minimization problem that involves the summation of all past subgradients with
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respect to loss functions and the regularization term to derive the next weight vector.

RDA updates parameters subject to the following equation:

wt+1 = argmin
w∈W

{
t∑

τ=1

⟨∇ℓτ (wτ ),w⟩+ tΦ(w) +
1

ηt
Bψ(w,w1)

}
, (4.9)

where {ηt}t≥1 is a positive and non-increasing scalar sequence that determines the con-

vergence properties of the algorithm.

RDA consists of a minimization problem of three terms, which are similar to COMID.

The first term represents the inner product between the next weight vector and the sum

of all previous subgradients. Therefore, if weight vectors are updated toward the direction

which is reverse with the sum of all previous subgradients, the function value will decrease.

The main difference between RDA and COMID is in this first term. Averaging by all

previous subgradients alleviates the fluctuation of weight vector updates. The second

term is a regularization term Φ. We assume Φ is a closed convex function. For example,

L1-regularization works as Φ to obtain a sparse weight vector. The third term is the

Bregman divergence between the next weight vector and initial weight vector. In RDA,

we set the initial weight vector w1 such that it satisfies

w1 ∈ argmin
w∈W

Φ(w) . (4.10)

As is similar to COMID and ODA, RDA is also guaranteed to have an O(
√
T ) regret bound

by properly setting {ηt}t≥1 [64]. Similar to ODA, RDA do not need to store the previous

subgradients to solve (4.9). If we have the average subgradient over all previous round,

we can calculate the next average subgradient by only using the current subgradient and

we can discard the current subgradient after update.

There are several extensional algorithms for RDA. In [64], an accelerated version of

the RDA has been proposed to achieve the improved convergence rate for smooth loss

functions. Dekel et al. [125] has proposed a variant of Dual Averaging methods for

efficiently processing data distributed in many servers. Their derived algorithms have the

theoretical guarantee of an asymptotically optimal regret bound for smooth convex loss

functions. Lee et al. [126] has showed that RDA with L1-regularization is able to identify

a low-dimensional manifold in which the optimal solution exists. This study led to the

development of a new modified variant of Dual Averaging algorithms that works faster

than the original RDA by identifying low-dimensional manifold structures and efficiently

utilizing them to search for the optimal solution.
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4.1.5 Follow-The-Proximally-Regularized-Leader (FTPRL)

As another algorithm for sparse online learning, McMahan developed an algorithm called

Follow-The-Proximally-Regularized-Leader (FTPRL) [71, 72]. FTPRL can be viewed as

the extensional method of FTRL introduced in Section 2.3.4. We note that the regular-

ization term used in Section 2.3.4 is replaced by the Bregman divergence and we newly

insert the regularization term as Φ. The update formula of FTPRL can be written as the

following formula:

wt+1 = argmin
w∈W

t∑
τ=1

{
⟨∇ℓτ (wτ ),w⟩+Φ(w) +

(
1

ητ
− 1

ητ−1

)
Bψ(w,wτ )

}
, (4.11)

where {ηt}t≥0 is positive non-increasing sequence of constants that determine the conver-

gence property. In FTPRL, we set the initial weight vector w1 such that it satisfies

w1 ∈ argmin
w∈W

Φ(w) . (4.12)

FTPRL is reduced to FTRL by erasing the regularization term Φ. FTPRL can be

viewed as an intermediate version of COMID and RDA. The crucial difference between

COMID and FTPRL is in the first term. FTPRL applies the average of all previous

subgradients to derive the next weight vector as in the same way as RDA. On the other

hand, COMID utilizes the current subgradient vector in each round. Averaging of sub-

gradients contributes to the improvement of the robustness of FTPRL and FTPRL heals

the problem where COMID is largely affected by the recently received data.

The difference between RDA and FTPRL is in center points of the Bregman divergences

(the third term). RDA sets the initial weight vector as the center point of the Bregman

divergence and it is fixed at every round. In RDA, the farther the next weight vector

moves away from the initial point, the bigger the value of Bregman divergence becomes. In

contrast, FTPRL sets a weighted sum of the Bregman divergences in which each previous

weight vectors is set as a center point. When the next weight vector stays near a weighted

sum of previous weight vectors, the Bregman divergence of FTPRL will remain small in

contrast to RDA.

The regret upper bound of FTPRL has been proved. It is guaranteed that FTPRL

has O(
√
T ) regret upper bound under the specific conditions of {ηt}t≥1 [72]. Previous

studies [71, 72] have shown FTPRL is equivalent to COMID as update procedures by

appropriately setting the Bregman divergence. Table 4.1 illustrates the differences between

COMID, RDA, and FTPRL.
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Table. 4.1. Comparison of Subgradient-based Sparse Online Learning Algorithms

COMID RDA FTPRL

Average Subgradient
√ √

Bregman Divergence Current weight Initial weight Previous weights

o(T ) Regret bound
√ √ √

4.2 Truncation Bias

In the previous section, we introduce the overview of sparse online learning. Sparse online

learning is effective for massive data analysis because of its implementation simplicity, fast

computation, theoretical guarantee, and compact predictive model derived by sparsity-

inducing regularization. We point out that these algorithms have the problem originated

from the truncation bias in this section. As indicated above, a large skewness of feature

occurrence frequency and value range exists in many tasks, such as Natural Language

Processing and Pattern Recognition tasks. The truncation bias stems from these het-

erogeneity among features. This bias has bad effect for predictive performance of sparse

online learning algorithms and we need to modify objective functions to solve this problem.

In the following subsections, we show two examples in which plain L1-regularization

causes problems in sparse online learning due to the truncation bias. In addition, we

show that subgradient-based sparse online learning algorithms, such as RDA, do not take

the truncation bias into account. Therefore, subgradient-based online learning algorithms

with L1-regularization terms tend to truncate some specific kinds of features even if they

are crucial for making a prediction. It is because the plain L1-regularization applies

the same penalty to all features independent of occurrence counts or parameter update

counts. We point out that this bias largely affects the derived predictive model, therefore

appropriate treatment are needed to improve the predictive performance.

4.2.1 Feature Occurrence Frequency Problem

Suppose we will run RDA with the plain L1-regularization as a sparsity-inducing norm.

Let Φ(w) = λ∥w∥1, where λ is a positive constant for controlling the intensity of regu-

larization, and Bψ(w,w1) = ∥w − w1∥22/2 = ∥w∥22/2 with w1 = 0. In addition, let us
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assume ηt = 1/
√
t. In this case, we can derive a coordinate-wise update formula:

w
(i)
t+1 =

0 if |ḡ(i)t | ≤ λ

t
√
t
(
−ḡ(i)t + sgn(ḡ

(i)
t )λ

)
otherwise

, (4.13)

where ḡt is the average value of the subgradients of the loss functions in the range from

1 to t. In other words,

ḡt =
1

t

t∑
τ=1

∇ℓτ (wτ ) . (4.14)

Let us apply this simple RDA to a dataset in which the occurrence rate of feature α

is 1/100 and that of feature β is 1/2. Feature α inevitably becomes zero unless the

average absolute value of the α-th index of the subgradients exceeds 100λ. In other

words, when ĝ(α) < 100λ is satisfied, where ĝ(i) is the average of the i-th absolute values

of the subgradients by taking the i-th index to be non-zero, w(α) always becomes zero. On

the other hand, the weight of feature β is not always truncated to zero, wherein ĝ(β) ≥ 2λ.

Therefore, if the feature occurrence frequency is highly skewed, which happens in many

tasks, sparse online learning algorithms might fail to retain features that are rare but

helpful for making precise predictions. The same problem occurs in the case of COMID

and FTPRL with L1-regularization.

4.2.2 Value Range Problem

The disparity in the range of features affects the truncation, too. Let us assume a dataset

with two features: feature α and β. Feature α is an arbitrary feature, and feature β is

the one whose value is exactly 1000 times larger than that of feature α. Although they

both have the same importance when it comes to predictions, the weight of feature α is

truncated faster than that of feature β when RDA learns from this dataset. That is, the

following inequality is satisfied.

|ḡ(α)| ≤ λ ≤ |ḡ(β)| , (4.15)

where ḡ(i) is the average of the i-th indexes of all previous subgradients. We can easily

see from formula (4.13) that the weight of feature i is truncated if the i-th index of the

average subgradient is less than λ. Therefore, when inequality (4.15) is satisfied, only

feature α is truncated; feature β is not. The converse phenomenon does not occur.
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4.3 Feature-aware Regularization

The truncation bias largely affects the selection of informative features in weight vectors

as written above. The simple solution to heal this type of bias is to apply pre-processing

methods such as normalization and TF-IDF. However, in the online learning setting, it is

difficult to apply pre-processing methods while maintaining advantages of online learning

framework. To overcome this truncation bias problem in an online manner, we develop

a feature-aware regularization method for sparse online learning without pre-processing.

Our framework integrates the information obtained from all previous subgradients into a

regularization term so as to adjust the intensity of the truncation and retain informative

features for predictions. In this thesis, we focus on the feature-aware regularization for

the L1-regularization case.

First, we define the feature-aware matrix used in this framework. This feature-aware

matrix is later used to dynamically adjust the truncation intensity for each feature. The

feature-aware matrix is mathematically defined as:

Rt,q =


r
(1)
t,q 0 . . . 0

0 r
(2)
t,q . . . 0

...
...

. . .
...

0 0 . . . r
(d)
t,q

 s.t. r
(i)
t,q =

q

√√√√ t∑
τ=1

∣∣∣(∇ℓτ (wτ ))
(i)
∣∣∣q . (4.16)

r
(i)
t,q is the Lq norm of a vector that consists of values of the i-th index’s subgradients

derived in each round. q ≥ 1 is a scalar parameter. Rt,q is a matrix consisting of r
(i)
t,q of

all features in a diagonal component. From the definition of (4.16), we can see that r
(i)
t,q

has a high probability of being a small value when parameter updates are rare or feature

value ranges are small. On the other hand, when the i-th feature has large value range or

frequently occurs in the input vectors, r
(i)
t,q tends to become bigger.

By using this feature-aware matrix, we replace the L1-regularization term by the feature-

aware L1-regularization term to achieve automatic adjustment of the truncation inten-

sity. By putting this matrix inside the L1-regularization term, the feature-aware L1-

regularization is defined as

Φt(w) = λ∥Rt,qw∥1 , (4.17)

where λ is a regularization parameter. Note that L1-regularization can be restored by

setting Rt,q = I for all t. From the definition of (4.17), when r
(i)
t,q is large, online learning

algorithms with feature-aware L1-regularization aggressively truncate the i-th component
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of the weight vector w(i). On the other hand, if r
(i)
t,q has a small value, the i-th weight

value tends to be non-zero. In such a case, we exert an influence on the regularization

intensity through r
(i)
t,q, that is almost proportional to the parameter update frequency and

feature value range. This effect heals the truncation bias.

We can see from the definition of r
(i)
t,q that we adjust the regularization intensity accord-

ing to the subgradient information at each index and not to the feature information.

We use the information of subgradients to define feature-aware parameters. It is because

weight vectors are updated according to the subgradient information and input vectors

are not directly related to feature occurrence counts or feature value range. As a result,

values in weight vectors tend to largely depend on subgradients other than input vectors

and so, the intensity of regularization should depend on subgradient information. We will

verify that subgradient-based regularization matrix outperforms feature-frequency-based

definition of feature-aware matrix in experiments of Section 4.5.3.

We can set a wide variety of scalar values to q for adjusting the regularization intensity

between features. We show how the parameter q affects the feature-aware parameter

r
(i)
t,q by using a simple numerical example. In this numerical example, we assume that

components of all subgradients are limited to either 0 or 1. Figure 4.1 shows how the

relationship between r
(i)
t,q and the parameter update counts of feature i changes depending

on the parameter q in this case. The horizontal axis is the number of occurrences in

ascending order. The vertical axis is the value of r
(i)
t,q. This figure indicates that the

smaller the value of q is, the faster r
(i)
t,q becomes a large value for frequently occurring

features. In terms of value range, we can easily see that r
(i)
t,q becomes linearly bigger

according to the value range of features regardless of the parameter q.

We note that the difference between our proposed feature-aware regularization methods

and AdaGrad introduced in Section 2.4.1. The main difference between them is in our

proposed feature-aware regularization methods. The truncation bias affects the objec-

tive functions themselves, therefore, tighter upper bound of regret is not helpful to heal

this bias even if AdaGrad version of online learning algorithms are the best to obtain

the regret upper bound. The appropriate reformulation of objective functions through

adaptive feature-aware regularization methods is needed to heal this truncation bias. Our

feature-aware regularization methods achieve this objective by introducing feature-aware

parameters into the regularization terms and changing objective functions to derive a

sequence of weight vectors according to the data structure.

Here, we apply feature-aware regularizations to COMID, RDA, and FTPRL to derive

sophisticated subgradient-based sparse online learning algorithms. The derived algorithms
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q=1 q=2 q=∞ 

r(i)t,q

Value range	


Fig. 4.1. Plot of feature-aware parameter r
(i)
t,q against parameter q

are FR-COMID (Feature-aware Regularized COMID), which is an extension of COMID,

FRDA (Feature-aware Regularized Dual Averaging), which is an extension of RDA, and

FTPFRL (Follow-The-Proximally-Feature-aware-Regularized-Leader), which is an exten-

sion of FTPRL. To simplify our explanation in the remainder of this section, we will omit

the notations on the parameter q indicating, for example, from Rt,q to Rt and from r
(i)
t,q to

r
(i)
t . In addition, for simplifying the following discussion, let us define that feature-aware

intensity vector rt,q consisting of feature-aware parameters r
(i)
t,q for each component, that

is, rt,q = (r
(1)
t,q , r

(2)
t,q , . . . , r

(d)
t,q ).

4.3.1 Feature-aware Regularized COMID

Let us apply feature-aware regularization methods to COMID. We name this feature-aware

version of COMID as Feature-aware Regularized Composite Objective Mirror Descent

(FR-COMID). The objective function of FR-COMID is defined as

wt+1 = argmin
w∈W

{ηt⟨∇ℓt(wt),w⟩+ ηtΦt(w) +Bψ(w,wt)} , (4.18)

where Φt is defined as the feature-aware L1-regularization (4.17). FR-COMID can be

generated by replacing the fixed regularization term in the update formula of the original

COMID (4.4) by feature-aware regularization term (4.17).

As a motivating example, let us derive a closed update formula in which we set the

Euclidean distance as the Bregman divergence Bψ(w,wt) = ∥w −wt∥22/2. The formula
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(4.18) is reformulated as:

wt+1 = argmin
w∈W

{
ηt⟨∇ℓt(wt),w⟩+ ηtλ∥Rtw∥1 +

1

2
∥w −wt∥22

}
. (4.19)

The coordinate-wise closed-form update formula is derived by setting the derivative of

right-hand side of the formula (4.19) with respect to the weight vector w to zero. The

solution is uniquely derived because this formula is strongly convex with respect to the

weight vector. This problem can be decomposed into coordinate-wise one and the equation

with respect to i-th element is derived as follows:

ηt (∇ℓt(wt))
(i)

+ ηtλr
(i)
t ξ

(i)
t + w

(i)
t+1 − w

(i)
t = 0 , (4.20)

where ξ
(i)
t is the subgradient of |w(i)

t+1|. The subdifferential of |w(i)
t+1| changes according to

the value of w
(i)
t+1. ξ

(i)
t = 1 if w

(i)
t+1 > 0, ξ

(i)
t = −1 if w

(i)
t+1 < 0, or {ξ ∈ R| − 1 ≤ ξ ≤ 1} if

w
(i)
t+1 = 0.

By summarizing (4.20), we can derive the coordinate-wise closed-form update formula

as follows:

w
(i)
t+1 =

0 v
(i)
t ≤ 0

sgn
(
w

(i)
t − ηt (∇ℓt(wt))

(i)
)
v
(i)
t otherwise

. (4.21)

where v
(i)
t =

∣∣∣w(i)
t − ηt (∇ℓt(wt))

(i)
∣∣∣− ηtλr

(i)
t .

From this update formula, we can see that r
(i)
t adjusts the intensity of the truncation so

as to retain informative but rarely occurring features. We can see from the formula (4.21)

that FR-COMID can process one datum at O(D) computational cost. This computational

cost is exactly the same as the original COMID. The update procedure is summarized in

Algorithm 4.

Lazy Update

We additionally proved that FR-COMID allows us to truncate parameters in a lazy fashion

[31]. We do not need to apply sparsity-inducing regularization to all components at all

rounds. To perform exact prediction, algorithms can postpone the update of weights

such that these corresponding features do not occur in the current datum; therefore, we

can postpone to apply the regularization effect on these weights in each round. Such an

updating scheme enables us to speed up the update procedure when the input vectors are

very sparse and its dimension is very large.

We define the cumulative value of the total L1-regularization from τ = 1 to t as

lt = λ

t∑
τ=1

ητ . (4.23)
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Algorithm 4 Feature-aware Regularized Composite Objective Mirror Descent (FR-

COMID)

Require:

1: {ηt}t≥1 is a positive non-increasing sequence.

2: w1 = 0.

Algorithm:

1: for t = 1, 2, . . . do

2: Given a loss function ℓt, compute the subgradient ∇ℓt(wt).

3: Derive a new weight vector wt+1 as:

w
(i)
t+1 =

0 v
(i)
t ≤ 0

sign
(
w

(i)
t − ηt (∇ℓt(wt))

(i)
)
v
(i)
t otherwise

. (4.22)

where v
(i)
t =

∣∣∣w(i)
t − ηt (∇ℓt(wt))

(i)
∣∣∣− ηtλr

(i)
t .

4: end for

In the lazy update scheme, before the subgradient of the loss function is computed, we

apply feature-aware L1-regularization to features that occur in the current datum, i.e.,

w
(i)
t+1/2 =

max
(
0, w

(i)
t − (lt−1 − ls−1)r

(i)
s

)
w

(i)
t ≥ 0

min
(
0, w

(i)
t + (lt−1 − ls−1)r

(i)
s

)
w

(i)
t < 0

, (4.24)

where s is the most recent round number at which feature i appear in the input vector.

After truncating weight vectors, we calculate a subgradient by using weight vectors derived

by (4.24) and update parameters through the update formula of the online subgradient

method. The computational cost of lazy-update FR-COMID can be reduced to the order

of the number of non-zero elements in input vectors at the risk of the memory size for

storing the value of ls for each feature.

FR-COMID with Cumulative Penalty

We also derived the cumulative penalty version of COMID based on Tsuruoka et al.

proposed model [124]. The normal COMID with the L1-regularization has a problem

where weight vectors are significantly affected by the last few instances. This is because

weight values easily move away from zero when the corresponding features are used in the

last few data. The main idea of the cumulative penalty model is to keep track of total

penalty incurred by the regularization term. Then, we apply a cumulative feature-aware
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L1 penalty to smooth the effect of the update fluctuation and move away from zero unless

the updating sum exceeds the cumulative penalty. In addition, this model can smooth

the effect of the update and also suppress noisy data.

We introduce FR-COMID with the cumulative penalty model. We begin by introducing

q
(i)
t as a cumulative feature-aware L1 penalty value of feature i at the t-th round. We

initialize q
(i)
1 = 0 for all i. In this model, we truncate weight vectors whose features are

used in the current data as follows:

w
(i)
t+1 =

 max
(
0, w

(i)
t+1/2 − (r

(i)
t lt + q

(i)
t )
)

w
(i)
t+1/2 ≥ 0

min
(
0, w

(i)
t+1/2 + (r

(i)
t lt − q

(i)
t )
)

w
(i)
t+1/2 < 0

. (4.25)

Then, we update the parameter q
(i)
t if the feature i is non-zero in the current input vector.

The update formula is defined as follows:

q
(i)
t+1 = q

(i)
t + (w

(i)
t+1 − w

(i)
t+1/2) . (4.26)

We represent the lazy update form of the update formula. This formalization makes

update functions simple, reduces space complexity, and enables faster calculation.

4.3.2 Feature-aware Regularized Dual Averaging

We apply the feature-aware regularization to RDA. The update formula can be rewritten

as:

wt+1 = argmin
w∈W

{
t∑

τ=1

(⟨∇ℓτ (wτ ),w⟩+Φτ (w)) +
1

ηt
Bψ(w,w1)

}
. (4.27)

This update formula can be generated by replacing the regularization term in RDA by

the feature-aware regularization (4.17). We call this method FRDA.

We derive a closed-form update formula of the feature-aware L1-regularization defined

in (4.17). Our derivation is similar to that of Xiao [64], except for the definition of Φt(w)

and corresponding terms. Let us set Bψ(w,w1) = ∥w − w1∥22/2. And in this case, the

update formula is reformulated as follows:

wt+1 = argmin
w∈W

{
t∑

τ=1

(⟨∇ℓτ (wτ ),w⟩+ λ∥Rτw∥1) +
1

2ηt
∥w −w1∥22

}
. (4.28)

FRDA set the following restriction for any integer t ≥ 1.

w1 = argmin
w∈W

t∑
τ=1

Φτ (w) (4.29)
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From this condition, we set the initial weight vector as w1 = 0.

Let ḡt be the average of all previous subgradients ∇ℓτ (wτ ) from τ = 1 to τ = t, and let

r̄t be the average of all previous feature-aware regularization parameters rτ from τ = 1

to τ = t. Moreover, to simplify our explanation, we define the vector ut, each element of

which satisfies the following equation:

u
(i)
t =

t∑
τ=1

| (∇ℓτ (wτ ))
(i) |q . (4.30)

The parameter q is the same as the one in the definition of r
(i)
t,q.

By using these notations, we explain the parameter update procedure in FRDA. In each

round, we updates ut in a coordinate-wise as follows:

u
(i)
t = u

(i)
t−1 + | (∇ℓt(wt))

(i) |q . (4.31)

After all, we calculate the feature-aware parameters as rt and r̄t:

r
(i)
t =

q

√
u
(i)
t , r̄t =

t− 1

t
r̄t−1 +

1

t
rt . (4.32)

The optimization problem of the right-hand side of (4.28) can be decomposed into a

coordinate-wise update formula:

w
(i)
t+1 = argmin

w∈R

(
tḡ

(i)
t w + tλ|r̄(i)t w|+ 1

2ηt
w2

)
, (4.33)

From the definition of r
(i)
t , we clearly have r̄

(i)
t ≥ 0. Thus, the optimal solution of the

formula (4.33) is subject to

ḡ
(i)
t + λr̄

(i)
t ξ(i) +

1

tηt
w

(i)
t+1 = 0 , (4.34)

where ξ(i) is the subgradient of |w(i)
t+1|. The value of ξ

(i)
t changes according to the value

of w
(i)
t+1. ξ

(i)
t = 1 if w

(i)
t+1 > 0, ξ

(i)
t = −1 if w

(i)
t+1 < 0, or {ξ ∈ R| − 1 ≤ ξ ≤ 1} if w

(i)
t+1 = 0.

Therefore, we can solve the optimization problem as follows:

• If |ḡ(i)t | ≤ λr̄
(i)
t , set w

(i)
t+1 = 0 and ξ(i) = −ḡ(i)t /λr̄

(i)
t . When w

(i)
t+1 ̸= 0, the formula

(4.34) cannot be satisfied.

• If ḡ
(i)
t > λr̄

(i)
t > 0, set w

(i)
t+1 < 0 and ξ(i) = −1.

• If ḡ
(i)
t < −λr̄(i)t < 0, set w

(i)
t+1 > 0 and ξ(i) = 1.

The above solution is summarized as

w
(i)
t+1 =

0 v
(i)
t ≤ 0

−sign(ḡ
(i)
t )tηtv

(i)
t otherwise

, (4.35)
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where we have defined v
(i)
t = |ḡ(i)t | − λr̄

(i)
t .

The update procedure of FRDA algorithm is summarized in Algorithm 5.

Algorithm 5 Feature-aware Regularized Dual Averaging (FRDA)

Require:

1: {ηt}t≥1 is a positive non-increasing sequence.

2: w1 = 0, u0 = 0, ḡ0 = 0 and r̄0 = 0.

Algorithm:

1: for t = 1, 2, . . . do

2: Given a loss function ℓt, compute subgradient ∇ℓt(wt).

3: Update the average of all previous subgradients ḡt as:

ḡt =
t− 1

t
ḡt−1 +

1

t
∇ℓt(wt) . (4.36)

4: Calculate the regularized parameters rt:

u
(i)
t = u

(i)
t−1 + |g(i)t |p , r

(i)
t =

p

√
u
(i)
t . (4.37)

5: Update the regularized parameters r̄t:

r̄t =
t− 1

t
r̄t−1 +

1

t
rt . (4.38)

6: Derive new weight vector wt+1 as:

w
(i)
t+1 =

0 v
(i)
t ≤ 0

−sign(ḡ
(i)
t )tηtv

(i)
t otherwise

, (4.39)

where we have defined v
(i)
t = |ḡ(i)t | − λr̄

(i)
t .

7: end for

Lazy Update

As the same as in the case of COMID, we can derive the lazy update form of FRDA with

the feature-aware L1-regularization. The evaluations of (4.38) and (4.39) can be delayed

until the corresponding features occur in the current datum. Each time we receive one

datum, the algorithm updates only the indices of r andw where the corresponding features

occur. In this lazy update form, FRDA with the feature-aware L1-regularization runs at

a computational cost of O(the number of occurring features) in each round.
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4.3.3 Follow-The-Proximally-Feature-aware-Regularized-Leader

In addition, we derive the FTPRL with the feature-aware L1-regularization. The update

formula of FTPRL with the feature-aware L1-regularization is derived from the replace-

ment of the simple L1-regularization term by the feature-aware regularization defined in

(4.17). The update formula is defined as

wt+1 = argmin
w∈W

{
t∑

τ=1

(
⟨∇ℓτ (wτ ),w⟩+Φτ (w) +

(
1

ητ
− 1

ητ−1

)
Bψ(w,wτ )

)}
. (4.40)

Here, we set w1 as the minimizing points of argminBψ(w,w1). We call this optimization

method Follow-The-Proximally-Feature-aware-Regularized-Leader (FTPFRL).

We will give a closed-form update formula for FTPFRL, where Bψ(w,wt) = ∥w −
wt∥22/2, and Φτ (w) is the feature-aware regularization (4.17). Let us assume that w1 is

a zero vector and 1/η0 = 0. The update formula of FTPFRL is written as follows:

wt+1 = argmin
w∈W

{
t∑

τ=1

(
⟨∇ℓτ (wτ ),w⟩+ λ∥Rτw∥1 +

1

2

(
1

ητ
− 1

ητ−1

)
∥w −wτ∥22

)}
.

(4.41)

To simplify the following discussion, we define 1/ηt − 1/ηt−1 as β̂t. First, we summarize

the sum of the squared Euclidean norms as follows:

t∑
τ=1

β̂τ
2
∥w −wτ∥22 =

1

2

(
t∑

τ=1

β̂τ∥w∥22 − 2β̂τwwτ + β̂τ∥wτ∥22

)

=

∑
β̂τ
2

∥∥∥∥∥w −
∑
β̂τwτ∑
β̂τ

∥∥∥∥∥
2

2

+ const.

=
1

2ηt

∥∥∥w − ηtw
β
t

∥∥∥2
2
+ const. , (4.42)

where
∑
β̂τ = 1/ηt from the definition of β̂τ and wβ

t =
∑
β̂τwτ . The constant term does

not affect the derivation of the next weight vector; therefore, we can ignore it.

We derive a new weight vector wt+1 in a closed-form update formula. The derivation

of the closed-form solution is similar to the one for FRDA, therefore, we reuse the same

definition of variables ḡ, u, and r̄. We derive r̄t by using eqs. (4.31), (4.32). The beta-

weighted weight vector can be calculated as:

wβ
t = wβ

t−1 + β̂twt . (4.43)
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Since the optimization problem can be decomposed into a coordinate-wise update formula

and is a convex function with respect to w, we find

ḡ
(i)
t + λr̄

(i)
t ξ(i) +

1

tηt

(
w

(i)
t+1 − ηt

(
wβt

)(i))
= 0 . (4.44)

As in the case of FRDA, the update formula is derived by properly assigning the value of

ξ. In summary, the closed-form solution can be derived as follows:

w
(i)
t+1 =


0 v

(i)
t ≤ 0

sgn

((
wβt

)(i)
− tḡ

(i)
t

)
ηtv

(i)
t otherwise

, (4.45)

where we have defined v
(i)
t =

∣∣∣∣(wβt )(i) − tḡ
(i)
t

∣∣∣∣ − tλr̄
(i)
t . The update procedure of the

FTPFRL algorithm is summarized in Algorithm 6. Unfortunately, it is unclear whether

the lazy update form of FTPFRL can speed up the update procedure.

4.3.4 How to eliminate the truncation bias

Here, we illustrate how the feature-aware L1-regularization overcomes the rare feature

truncation problem and the value range problem in this subsection.

Let us apply FRDA to the examples described in Sections 4.2.1 and 4.2.2. First, let us

consider the dataset described in Section 4.2.1 under the condition that parameter settings

are the same as RDA’s. As described before, RDA truncates the feature α on a priority

basis. On the other hand, FRDA does not truncate the feature α when ĝ(α) ≥ 100λr̄
(α)
t

is satisfied where ĝ(i) is defined as the average of the i-th absolute values of subgradients

whose i-th index is non-zero. For the feature β, FRDA does not truncate the feature

β when ĝ(β) ≤ 2λr̄
(β)
t is satisfied. In FRDA, feature-aware parameters r̄

(i)
t are inserted.

While the occurrence frequency of the feature β is fifty times greater than that of the

feature α, it is expected that the value of r̄
(β)
t will be q

√
50 larger than the value of r̄

(α)
t

from the definition of r̄
(i)
t . Thus, the intensity of truncation is adjusted so as to retain

rare features compared with the plain RDA.

After that, let us consider the value range problem described in Section 4.2.2. We

assume that the feature α is arbitrary defined and the value of the feature β is exactly

1000 times larger than that of the feature α. These two features have the same importance

for prediction. However, the feature α would be truncated in an earlier round than feature

β in RDA. On the other hand, in FRDA, r
(α)
t becomes exactly 1000 times larger than r

(β)
t

in all rounds; thus, the value of r̄
(α)
t is also exactly 1000 times larger than the value of

r̄
(β)
t . Therefore, if |ḡ(α)t | < λr̄

(α)
t , i.e., w

(α)
t+1 = 0 is satisfied, |ḡ(β)t | < λr̄

(β)
t , i.e., w

(β)
t = 0 is
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Algorithm 6 Follow-The-Proximally-Feature-aware-Regularized-Leader (FTPFRL)

Require:

1: {ηt}t≥0 is a positive non-increasing sequence.

2: w1 = 0, u0 = 0, ḡ0 = 0, r̄0 = 0, and wβ
0 = 0.

Algorithm:

1: for t = 1, 2, . . . do

2: Given a loss function ℓt, compute the subgradient ∇ℓt(wt).

3: Update the average of all previous subgradients ḡt as:

ḡt =
t− 1

t
ḡt−1 +

1

t
∇ℓt(wt) . (4.46)

4: Calculate the regularized parameters rt:

u
(i)
t = u

(i)
t−1 + |g(i)t |p , r

(i)
t =

p

√
u
(i)
t . (4.47)

5: Update the regularized parameters r̄t:

r̄t =
t− 1

t
r̄t−1 +

1

t
rt . (4.48)

6: Update the weight vector weighted by the variables {ηt}t≥0:

wβ
t = wβ

t−1 +

(
1

ηt
− 1

ηt−1

)
wt . (4.49)

7: Derive new weight vector wt+1 as:

w
(i)
t+1 =


0 v

(i)
t ≤ 0

sgn

((
wβt

)(i)
− tḡ

(i)
t

)
ηtv

(i)
t otherwise

, (4.50)

where we have defined v
(i)
t =

∣∣∣∣(wβt )(i) − tḡ
(i)
t

∣∣∣∣− tλr̄
(i)
t .

8: end for

also satisfied. The converse is also true. Accordingly, even if the range of feature values is

skewed among features, FRDA automatically absorbs the disparity in features and adjusts

the truncation intensity by using feature-aware parameters r̄.
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4.4 Theoretical Analyses

The objective of sparse online learning algorithms is to achieve a low regret as in the

definition of (4.3). No matter what a sequence of data or convex loss functions is received,

the regret upper bound of sparse online learning algorithms is guaranteed to be o(T ); as

such, the regret value per round converges to zero. Thus, sparse online learning algorithms

obtain the minimal value of objective function per datum as the optimal weight vector is

obtained in hindsight. As mentioned before, regret in the sparse online learning setting is

defined as

Regretℓ+Φ(T ) =
T∑
t=1

(ℓt(wt) + Φt(wt))− min
u∈W

T∑
t=1

(ℓt(u) + Φt(u)) . (4.51)

Before proceeding the discussion of regret upper bounds, we set the upper bound of r
(i)
t,q

by using a scalar V so that we can ensure that the value of Φt(wt) does not approach

infinity. This assumption is crucial to derive regret upper bounds of our derived feature-

aware regularization methods. We redefine r
(i)
t,q as

r
(i)
t,q = min

V, q

√√√√ t∑
τ=1

∣∣∣g(i)τ ∣∣∣q
 , (4.52)

i.e., we set the upper bound for r
(i)
t,q to V and derive the following inequality for any t ≥ 1:

1

t

t∑
τ=1

Φτ (w) ≤ max
i,τ

r(i)τ,q∥w∥1 ≤ V ∥w∥1 . (4.53)

The left-hand side of the inequality has an upper bound.

After that, we prove the following lemma. This lemma is used to bound the difference

of the feature-aware regularization.

Lemma 8. When Φt is the feature-aware regularization defined in (4.17) and the initial

weight vector becomes w1 = 0, the following inequality is satisfied.

T∑
τ=1

(Φτ (wτ )− Φτ (wτ+1)) ≤ dV max
w∈W

∥w∥1 . (4.54)
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Proof. We reformulate the left-hand side of the formula (4.54) as:

T∑
τ=1

(Φτ (wτ )− Φτ (wτ+1)) =
T∑
τ=1

(∥Rτ,qwτ∥1 − ∥Rτ,qwτ+1∥1)

= ∥R1,qw1∥1 +
T∑
τ=2

∥(Rτ,q −Rτ−1,q)wτ∥1 − ∥RT,qwT+1∥1

≤ 0 +
T∑
τ=2

∥(Rτ,q −Rτ−1,q)wτ∥1 − 0 , (4.55)

where the first inequality has used w1 = 0 and Φτ (wτ+1) ≥ 0. Let us focus on the second

term of (4.55). We can reformulate it by applying Holder’s inequality.

T∑
τ=2

∥(Rτ,q −Rτ−1,q)wτ∥1 ≤
T∑
τ=2

∥rτ,q − rτ−1,q∥1∥wτ∥1

≤ max
w∈W

∥w∥1
T∑
τ=2

∥rτ,q − rτ−1,q∥1 . (4.56)

From the definition of rt,q, all elements are non-decreasing with respect to γ. Therefore,

the following inequality is satisfied through (4.52):

T∑
τ=2

∥(rτ,q − rτ−1,q)∥1 = ∥rT,q∥1 ≤ dV . (4.57)

By applying this inequality to (4.56), we can prove this lemma.

4.4.1 Regret Upper Bound for FR-COMID

The regret upper bound of FR-COMID is derived as follows:

Theorem 12. Let {wt}t=1:T+1 be sequences generated by Algorithm 4. Furthermore,

we assume that ψ is β-strongly convex with respect to a norm ∥ · ∥, there exist scalars

R,N,G ∈ R such that Bψ(w, w̃) ≤ R2 for all w, w̃ ∈ W, ∥w∥1 ≤ N for all w ∈ W, and

∥∇ℓt(wt)∥∗ ≤ G for all t. Let us set a positive non-increasing sequence of {ηt}t≥1 and

V ∈ R such that (4.52) is satisfied, we obtain

Regretℓ+Φ(T ) ≤
R2

ηT
+
G2

2β

T∑
t=1

ηt + dV N . (4.58)

When we set ηt = γ/
√
t where γ is a constant, for any T ≥ 1, we obtain O(

√
T ) regret

upper bound.
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Proof. We prove the regret upper bound of FR-COMID. First, we introduce the fol-

lowing lemma. This lemma is an extension of Lemma 5 by adding the feature-aware

L1-regularization term.

Lemma 9. We assume that the conditions defined in Theorem 12 are satisfied. When we

define w∗ as

w∗ = argmin
u∈W

T∑
t=1

(ℓt(u) + Φt(u)) , (4.59)

the following inequality is satisfied.

ℓt(wt)− ℓt(w
∗) + Φt(wt+1)− Φt(w

∗)

≤ 1

ηt
(Bψ(w

∗,wt)−Bψ(w
∗,wt+1)) +

ηt
2β

∥∇ℓt(wt)∥2∗ . (4.60)

Proof. This lemma can be proved by following the discussion of COMID [61]. It is derived

from the following reformulation:

ℓt(wt)− ℓt(w
∗) + Φt(wt+1)− Φt(w

∗)

≤ ⟨wt −w∗,∇ℓt(wt)⟩+ ⟨wt+1 −w∗,∇Φt(wt+1)⟩

= ⟨wt+1 −w∗,∇ℓt(wt)⟩+ ⟨wt+1 −w∗,∇Φt(wt+1)⟩+ ⟨wt −wt+1,∇ℓt(wt)⟩

=
1

ηt
⟨w∗ −wt+1,∇ψ(wt)−∇ψ(wt+1)− ηt∇Φt(wt+1)− ηt∇ℓt(wt)⟩

+
1

ηt
⟨w∗ −wt+1,∇ψ(wt+1)−∇ψ(wt)⟩+ ⟨wt −wt+1,∇ℓt(wt)⟩ . (4.61)

The first inequality is derived from the convexity of loss functions and the feature-aware

L1-regularization. Now, we obtain the first term in the last equation is non-positive

from the optimality of wt+1 in the right-hand side of the formula (4.18). By the same

reformulation of (2.18), the following inequality can be derived.

ℓt(wt)− ℓt(w
∗) + Φt(wt+1)− Φt(w

∗)

≤ 1

ηt
⟨w∗ −wt+1,∇ψ(wt+1)−∇ψ(wt)⟩+ ⟨wt −wt+1,∇ℓt(wt)⟩

≤ 1

ηt
Bψ(w

∗,wt)−
1

ηt
Bψ(w

∗,wt+1) +
ηt
2β

∥∇ℓt(wt)∥2∗ . (4.62)

The regret bound is derived by using this lemma. From assumptions, Bψ(w, w̃) ≤ R2

is satisfied for all w, w̃ ∈ W and ∥∇ℓt(wt)∥∗ ≤ G is satisfied for all t, and ∥w∥1 ≤ N is
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satisfied for all w ∈ W. By using these conditions, we reformulate the following inequality

by summing up the inequalities derived in Lemma 9 from t = 1 to t = T .

Regretℓ+Φ(T ) =
T∑
τ=1

(ℓt(wt)− ℓt(w
∗) + Φt(wt+1)− Φt(w

∗)) +
T∑
τ=1

(Φτ (wτ )− Φτ (wτ+1))

≤ 1

η1
Bψ(w

∗,w1) +
T−1∑
t=1

(
1

ηt+1
− 1

ηt

)
Bψ(w

∗,wt+1)

− 1

ηT
Bψ(w

∗,wT+1) +
T∑
t=1

ηt
2β

∥∇ℓt(wt)∥2∗ + dV N

≤ R2

ηT
+
G2

2β

T∑
t=1

ηt + dV N . (4.63)

4.4.2 Regret Upper Bound for FRDA

The regret upper bound of FRDA can be derived as the following theorem.

Theorem 13. Let sequences {wt}t=1:T+1 be generated by Algorithm 5. We assume that ψ

is β-strongly convex with respect to a norm ∥·∥. Furthermore, let us assume that there exist

scalars R,N,G ∈ R such that Bψ(w
∗,w1) ≤ R2 for the optimal weight vector w∗ ∈ W

and the initial weight vector w1 ∈ W, ∥w∥1 ≤ N for all w ∈ W, and ∥∇ℓt(wt)∥∗ ≤ G for

all t. In addition, we assume that (4.52) are satisfied. In this case, let us set the initial

weight vector as

w1 ∈ argmin
w∈W

Φ1(w) , (4.64)

{ηt}t≥1 be a positive non-increasing sequence, and we set V to upper bound the value of

r
(i)
t,q as (4.52), we have for any T ≥ 1,

Regretℓ+Φ(T ) ≤
R2

ηT
+
G2

2β

t∑
τ=1

ητ−1 + dV N . (4.65)

In addition, when we set ηt = γ/
√
t where γ > 0, we obtain O(

√
T ) regret bound.

Proof. Our proof is written in line with the proof in [64]. The difference between out proof

and the proof of [64] is in the definition of Φt(w) and the effect of this change. First, we

define the summation of all previous subgradients as st, i.e.,

st =

t∑
τ=1

∇ℓτ (wτ ) . (4.66)
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Then, we define two conjugate-type functions for each t ≥ 0:

Ut(s) = max
w∈FD

{
⟨s,w −w1⟩ −

t∑
τ=1

Φτ (w)

}
, (4.67)

Vt(s) = max
w∈W

{
⟨s,w −w1⟩ −

t∑
τ=1

Φτ (w)− 1

ηt
Bψ(w,w1)

}
, (4.68)

where FD = {w ∈ W|Bψ(w,w1) ≤ R2} and R is a scalar with a positive value. We note

that we set η0 = η1. Because ηt > 0, the function
∑t
τ=1 Φτ (w) +Bψ(w,w1)/ηt is always

strongly convex; therefore, the maximizer of equation (4.68) is unique. We assume that

dom(Vt) = dom(Ut).

We can derive Lemma 10 in this setting.

Lemma 10. For any s ∈ dom(Vt) and t ≥ 0, we have

Ut(s) ≤ Vt(s) +
R2

ηt
. (4.69)

Proof. The derivation of this lemma is closely related to the proof of Lemma 6. We start

with the definition of Ut(s) and FD,

Ut(s) = max
w∈FD

{
⟨s,w −w1⟩ −

t∑
τ=1

Φτ (w)

}

= max
w∈W

min
β≥0

{
⟨s,w −w1⟩ −

t∑
τ=1

Φτ (w) + β(R2 −Bψ(w,w1))

}

≤ min
β≥0

max
w∈W

{
⟨s,w −w1⟩ −

t∑
τ=1

Φτ (w) + β(R2 −Bψ(w,w1))

}

≤ max
w∈W

{
⟨s,w −w1⟩ −

t∑
τ=1

Φτ (w) +
1

ηt

(
R2 −Bψ(w,w1)

)}

= Vt(s) +
R2

ηt
. (4.70)

Let πt(s) be the unique maximizer of Vt(s), and then we have the following equation

for each t ≥ 0.

wt+1 = πt(−st) . (4.71)

The subgradient of the function Vt is given as:

∇Vt(s) = πt(s)−w1 . (4.72)
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The function Vt is differentiable and strongly convex with convexity parameter β/ηt.

Therefore, its gradient is Lipschitz continuous with the constant ηt/β and we obtain the

following inequality for any vector a,b in dom(Vt).

Vt(a+ b) ≤ Vt(a) + ⟨b,∇Vt(a)⟩+
ηt
2β

∥b∥2∗ . (4.73)

Lemma 11. For each t ≥ 1, we have

Vt(−st) + Φt(wt+1) ≤ Vt−1(−st) +

(
1

ηt−1
− 1

ηt

)
Bψ(wt+1,w1) . (4.74)

Proof.

Vt−1(−st) = max
w∈W

{
⟨−st,w −w1⟩ −

t−1∑
τ=1

Φτ (w)− 1

ηt−1
Bψ(w,w1)

}

≥ ⟨−st,wt+1 −w1⟩ −
t−1∑
τ=1

Φτ (wt+1)−
1

ηt−1
Bψ(wt+1,w1)

= ⟨−st,wt+1 −w1⟩ −
t∑

τ=1

Φτ (wt+1)−
1

ηt
Bψ(wt+1,w1)

+ Φt(wt+1) +

(
1

ηt
− 1

ηt−1

)
Bψ(wt+1,w1)

= Vt(−st) + Φt(wt+1) +

(
1

ηt
− 1

ηt−1

)
Bψ(wt+1,w1) . (4.75)

From equation (4.71), we use wt+1 = πt(−st) for the last equality.

From the definitions, Bψ(wt+1,w1) ≥ 0 and the sequence {ηt}t≥0 is non-increasing.

Thus, we can derive the following function.

∀t ≥ 1 Vt(−st) + Φt(wt+1) ≤ Vt−1(−st) . (4.76)

From these lemmas, we will prove Theorem 13. To measure the quality of the solutions,

we define gap sequences {δt}t≥1 and use it for bounding the regret of FRDA. For each

t ≥ 1, the following inequality is satisfied as:

δt = max
w∈FD

{
t∑

τ=1

(⟨∇ℓτ (wτ ),wτ −w⟩+Φτ (wτ ))−
t∑

τ=1

Φτ (w)

}

≥ max
w∈FD

{
t∑

τ=1

(ℓτ (wτ )− ℓτ (w) + Φτ (wτ ))−
t∑

τ=1

Φτ (w)

}

=

t∑
τ=1

(fτ (wτ ) + Φτ (wτ ))− min
w∈FD

{
t∑

τ=1

(fτ (w) + Φτ (w))

}
= Regretℓ+Φ(t) . (4.77)
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To derive the first inequality, we use the convexity of loss functions.

In addition, we can derive the upper bound for δt. To achieve this, we reformalize gap

sequences as:

δt =

t∑
τ=1

(⟨∇ℓτ (wτ ),wτ −w1⟩+Φτ (wτ )) + max
w∈FD

{
⟨st,w1 −w⟩ −

t∑
τ=1

Φτ (w)

}

=
t∑

τ=1

(⟨∇ℓτ (wτ ),wτ −w1⟩+Φτ (wτ )) + Ut(−st)

≤
t∑

τ=1

(⟨∇ℓτ (wτ ),wτ −w1⟩+Φτ (wτ )) + Vt(−st) +
R2

ηt
. (4.78)

After that, we will discuss the upper bound for the right-hand side of inequality (4.78).

For each τ ≥ 1,

Vτ (−sτ ) + Φτ (wτ+1) ≤ Vτ−1(−sτ )

= Vτ−1(−sτ−1 −∇ℓτ (wτ ))

≤ Vτ−1(−sτ−1) + ⟨−∇ℓτ (wτ ),∇Vτ−1(−sτ−1)⟩+
ητ−1

2β
∥∇ℓτ (wτ )∥2∗

= Vτ−1(−sτ−1) + ⟨−∇ℓτ (wτ ),wτ −w1⟩+
ητ−1

2β
∥∇ℓτ (wτ )∥2∗ ,

(4.79)

where these four steps above used (4.76), (4.66), (4.73), and (4.72), respectively. In

summary, we can derive

⟨∇ℓτ (wτ ),wτ −w1⟩+Φτ (wτ+1) ≤ Vτ−1(−sτ−1)− Vτ (−sτ ) +
ητ−1

2β
∥∇ℓτ (wτ )∥2∗ , (4.80)

where τ ≥ 1.

Summing up the above inequalities from τ = 1 to t, and noting that V0(−s0) = V0(0) =

0, we can derive

t∑
τ=1

(⟨∇ℓτ (wτ ),wτ −w1⟩+Φτ (wτ+1)) + Vt(−st) ≤
1

2β

t∑
τ=1

ητ−1∥∇ℓτ (wτ )∥2∗ . (4.81)

From Lemma 8, we obtain

t∑
τ=1

(⟨∇ℓτ (wτ ),wτ −w1⟩+Φτ (wτ ))+Vt(−st) ≤
1

2β

t∑
τ=1

ητ−1∥∇ℓτ (wτ )∥2∗+dV N . (4.82)

Combining (4.78) with (4.82), we can derive

Rℓ+Φ(t) ≤ δt ≤
R2

ηt
+

1

2β

t∑
τ=1

ητ−1∥∇ℓτ (wτ )∥2∗ + dV N . (4.83)
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From the condition of ∥∇ℓτ (wτ )∥∗ ≤ G for all τ , we can reformalize (4.83) as:

Regretℓ+Φ(t) ≤ δt ≤
R2

ηt
+
G2

2

t∑
τ=1

ητ−1 + dV N , (4.84)

When we set ηt = γ/
√
t where γ > 0, we can derive

Regretℓ+Φ(t) ≤
(
R2

γ
+G2γητ−1

)√
t+ dV N , (4.85)

where we use inequality

t−1∑
τ=1

1√
τ
≤ 1 +

∫ t

1

1√
τ
dτ = 2

√
t− 1 . (4.86)

4.4.3 Regret Upper Bound for FTPFRL

The following theorem establishes the upper bound on the regret of FTPFRL. The theorem

of upper bounding the regret of FTPFRL is as follows:

Theorem 14. Let {wt}t=1:T+1 be sequences generated by Algorithm 6. We assume that ψ

is β-strongly convex with respect to a norm ∥·∥. Furthermore, let us assume that there exist

scalars R,N,G ∈ R such that Bψ(w
∗,w1) ≤ R2 for the optimal weight vector w∗ ∈ W

and the initial weight vector w1 ∈ W, ∥w∥1 ≤ N for all w ∈ W, and ∥∇ℓt(wt)∥∗ ≤ G

for all t. In this case, let us set the initial weight vector as

w1 ∈ argmin
w∈W

Φ1(w) , (4.87)

Let us set a positive non-increasing sequence of {ηt}t≥1, 1/η0 = 0, and V ∈ R such that

(4.52) is satisfied, we obtain

Regretℓ+Φ(T ) ≤
R2

ηT
+
G2

2β

t−1∑
τ=1

ητ + dV N . (4.88)

When we set ηt = γ/
√
t where γ is a constant, for any T ≥ 1, we obtain O(

√
T ) regret

upper bound.

We will prove this theorem to upper bounds on regret for FTPFRL with the feature-

aware L1-regularization below. The proof of this bound basically follows the FRDA

analysis. We need some modifications from the FRDA derivation due to the effect of the

Bregman divergence changes.
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Proof. As the same as the analysis of FRDA, we define the summation of all previous

subgradients as st and two conjugate-type functions for each t ≥ 0:

st =
t∑

τ=1

∇ℓτ (wτ ) . (4.89)

Ut(s) = max
w∈Ft

{⟨s,w −w1⟩ −
t∑

τ=1

Φτ (w)} , (4.90)

Vt(s) = max
w∈W

{⟨s,w −w1⟩ −
t∑

τ=1

Φτ (w)− B̄t(w)} , (4.91)

where

B̄t(w) =
t∑

τ=1

(
1

ητ
− 1

ητ−1

)
Bψ(w,wτ ) (4.92)

where Ft = {w ∈ W|B̄t(w) ≤ R2/ηt} and R is a scalar with a positive value. When

a sequence of step sizes {ηt}t≥1 is positive and non-increasing, the function B̄t(w) is

always strongly convex because each Bψ(w,wτ ) is strongly convex and its summation

also becomes strongly convex. The strong convexity parameter is β/ηt. We assume that

dom(Vt) = dom(Ut).

We derive Lemma 12 in this setting.

Lemma 12. For any s ∈ dom(Vt) and t ≥ 0, we have

Ut(s) ≤ Vt(s) +
R2

ηt
. (4.93)

Proof. We start with the definition of Ut(s) and Ft,

Ut(s) = max
w∈Ft

{
⟨s,w −w1⟩ −

t∑
τ=1

Φτ (w)

}

= max
w∈W

min
β≥0

{
⟨s,w −w1⟩ −

t∑
τ=1

Φτ (w) + β

(
R2

ηt
− B̄t(w)

)}

≤ min
β≥0

max
w∈W

{
⟨s,w −w1⟩ −

t∑
τ=1

Φτ (w) + β

(
R2

ηt
− B̄t(w)

)}

≤ max
w∈W

{
⟨s,w −w1⟩ −

t∑
τ=1

Φτ (w) +

(
R2

ηt
− B̄t(w)

)}

= Vt(s) +
R2

ηt
. (4.94)

In the second inequality, we set β = 1.
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Let πt(s) be the unique maximizer of Vt(s), and then we have the following equation

for each t ≥ 1.

wt+1 = πt(−st) . (4.95)

The subgradient of the function Vt is given as:

∇Vt(s) = πt(s)−w1 . (4.96)

The function Vt is differentiable and strongly convex with convexity parameter β/ηt.

Therefore, its gradient is Lipschitz continuous with the constant ηt/β and we obtain the

following inequality for any vector a,b in dom(Vt).

Vt(a+ b) ≤ Vt(a) + ⟨b,∇Vt(a)⟩+
ηt
2β

∥b∥2∗ . (4.97)

Lemma 13. For each t ≥ 1, we have

Vt(−st) + Φt(wt+1) ≤ Vt−1(−st) +

(
1

ηt
− 1

ηt−1

)
Bψ(wt+1,wt) . (4.98)

Proof.

Vt−1(−st) = max
w∈W

{
⟨−st,w −w1⟩ −

t−1∑
τ=1

Φτ (w)− B̄t−1(w)

}

≥ ⟨−st,wt+1 −w1⟩ −
t−1∑
τ=1

Φτ (wt+1)− B̄t−1(wt+1)

= ⟨−st,wt+1 −w1⟩ −
t∑

τ=1

Φτ (wt+1)− B̄t(wt+1)

+ Φt(wt+1) +

(
1

ηt
− 1

ηt−1

)
Bψ(wt+1,wt)

= Vt(−st) + Φt(wt+1) +

(
1

ηt
− 1

ηt−1

)
Bψ(wt+1,wt) . (4.99)

From the definitions, Bψ(wt+1,wt) ≥ 0 and sequence {ηt}t≥1 is non-increasing. Thus,

we can derive the following function.

∀t ≥ 1 Vt(−st) + Φt(wt+1) ≤ Vt−1(−st) . (4.100)

From these lemmas, we will prove Theorem 14. To measure the quality of the solutions,

we define gap sequences {δt}t≥1 and use it for bounding the regret of FTPFRL. For each
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t ≥ 1, the following inequality is satisfied as:

δt = max
w∈FD

{
t∑

τ=1

(⟨∇ℓτ (wτ ),wτ −w⟩+Φτ (wτ ))−
t∑

τ=1

Φτ (w)

}

≥ max
w∈FD

{
t∑

τ=1

(ℓτ (wτ )− ℓτ (w) + Φτ (wτ ))−
t∑

τ=1

Φτ (w)

}

=
t∑

τ=1

(fτ (wτ ) + Φτ (wτ ))− min
w∈FD

{
t∑

τ=1

(fτ (w) + Φτ (w))

}
= Regretℓ+Φ(t) . (4.101)

In addition, we derive the upper bound for δt. To achieve this, we reformalize gap

sequences as:

δt =

t∑
τ=1

(⟨∇ℓτ (wτ ),wτ −w1⟩+Φτ (wτ )) + max
w∈Ft

{
⟨st,w1 −w⟩ −

t∑
τ=1

Φτ (w)

}

=
t∑

τ=1

(⟨∇ℓτ (wτ ),wτ −w1⟩+Φτ (wτ )) + Ut(−st)

≤
t∑

τ=1

(⟨∇ℓτ (wτ ),wτ −w1⟩+Φτ (wτ )) + Vt(−st) +
R2

ηt
. (4.102)

After that, we derive the upper bound for the right-hand side of inequality. By the similar

discussion of FRDA, we can derive

⟨∇ℓτ (wτ ),wτ −w1⟩+Φτ (wτ+1) ≤ Vτ−1(−sτ−1)−Vτ (−sτ )+
ητ−1

2β
∥∇ℓτ (wτ )∥2∗ , (4.103)

where τ ≥ 2 and for τ = 1,

⟨∇ℓτ (wτ ),wτ −w1⟩+Φτ (wτ+1) ≤ Vτ−1(−sτ−1)− Vτ (−sτ ) , (4.104)

We cut the discussion of this derivation because this procedure is almost the same as

FRDA. As a result, we obtain the following formula.

Regretℓ+Φ(t) ≤ δt ≤
R2

ηt
+
G2

2

t−1∑
τ=1

ητ + dV N , (4.105)

When we set ηt = γ/
√
t where γ > 0, we derive

Regretℓ+Φ(t) ≤
(
R2

γ
+G2γ

)√
t+ dV N . (4.106)
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4.4.4 Discussion

In the algorithm part, we select the L2 norm as the Legendre functions. We note in this

case that our derived regret bounds are optimal even up to the multiplicative constant of

the dominant term O(
√
t) when the input space is restricted to a L2-ball and we can select

an appropriate step size [127]. However, when the input space has other restriction (such

as the feasible region is D-dimensional simplex), the upper regret bounds of our proposed

algorithms become non-optimal with respect to the constant factor of the dominant term

O(
√
t) like COMID and RDA [73].

4.5 Experiments

We assessed the performance of our framework in several binary classification tasks. We

used the Amazon.com review sentiment classification datasets [12] and the news category

classification datasets for 20NewsGroups [13]. Table 5.2 lists the specifications of each

dataset, including the number of features, data, classes, and data types. The first one

is a sentiment classification task for reviews of Amazon.com goods. In this task, each

sparse online learning algorithm tries to determine whether each review text states a

positive or negative opinion for a specific category of products. We used four categories of

review documents: books, dvd, electronics, and kitchen. Feature vectors consisted of the

occurrence counts of unigram and bigram words in each review text. The second task is a

news categorization task in which sparse online learning algorithms predict the category

which each news article is assigned to. We used the 20Newsgroups datasets (news20).

This dataset consists of about 20, 000 news articles and each article is assigned to one of

20 categories. We used two subsets of the news20: ob-2-1 and sb-2-1 [128]. The name of

these datasets has specific meaning. The first letter indicates whether there is an overlap

between two categories. The ’o’ indicates ’overlap’, ’s’ indicates ’separated’ for the first

letter of each subset name. Predictions over the ’overlap’ dataset is more difficult than the

one over ’separated’. The second letter indicates the heterogeneity between categories.

We used the balanced dataset for each experiment. The first number shows the number

of categories. We used the binary classification datasets. Feature vectors consist of the

occurrence counts of unigram words in each document.

We conducted several types of experiments. First, we validated the effect of q toward

the predictive performance by setting 1, 2, or ∞. We compare the predictive performance

of our proposed algorithms, FR-COMID, FRDA, and FTPFRL, by changing the setting
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Table. 4.2. Dataset specifications

# of data # of features # of classes data type

books 4,465 332,440 2 review

dvd 3,586 282,900 2 review

electronics 5,681 235,796 2 review

kitchen 5,945 205,665 2 review

ob-2-1 1,000 5,942 2 news

sb-2-1 1,000 6,276 2 news

of q. After that, we validated the effect of our proposed feature-aware regularization

methods by comparing the predictive performance with the original COMID, RDA and

FTPRL. We also compared our methods with the AdaGrad versions of COMID and RDA

[73]. The results of AdaGrad versions were very similar to the original COMID and RDA.

We assume that it is natural because the optimal points are the same as the ones derived

from the original algorithms.

The detail experimental settings are introduced as below: We used the hinge loss func-

tion as loss functions, and we used a squared Euclidean distance of the form Bϕ(a,b) =
1
2∥a − b∥22 as Bregman divergence for all algorithms we used. A sequence of step sizes

is set so as to achieve the O(
√
T ) regret bound with respect to the number of rounds T .

Therefore, we set ηt = 1/
√
t in these algorithms*1. Moreover, we set V = 106 in order to

satisfy the upper bound of the value of r
(i)
t,q for our framework. However, in this experi-

ment, the value of r
(i)
t,q did not exceed 106; thus, the value of V did not influence the result.

Upon evaluating the predictive performances of sparse online learning algorithms, 10-fold

cross-validation was used to tune the hyper-parameter λ to achieve high precision through

a sparse weight vector. After tuning λ, sparse online learning algorithms were iterated

20 times to optimize weight vectors; that is, we ran these algorithms through all training

data 20 times. Because the definition of the regret changed between the feature-aware

version of sparse online learning algorithms and the original ones, we compare the result

by the prediction accuracy and sparseness rate of the finally derived weight vector over

the test dataset. This score matches how the derived weight vector can precisely predict

the label of the next coming data or not. This criterion is introduced in Section 2.2.

*1 The value of ηt has an insignificant effect on the result as long as these variables satisfy ηt ∝ 1/
√
t.
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Table. 4.3. Precision (sparseness) of FR-COMID versus parameter q (Iterations : 20)

FR-COMID

(q = 1) (q = 2) (q = ∞)

books 83.91 85.24 84.46

(47.04) (72.69) (87.05)

dvd 81.26 82.10 83.52

(49.43) (73.69) (85.57)

electronics 86.24 87.68 88.05

(53.26) (71.76) (85.62)

kitchen 88.63 88.95 90.11

(53.04) (78.29) (83.84)

ob-2-1 95.00 93.90 94.90

(52.89) (76.00) (70.14)

sb-2-1 96.50 95.80 97.20

(66.33) (78.32) (78.31)

Table. 4.4. Change in the truncation parameter r
(i)
t,q versus parameter q

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

q = 1 1 2 3 4 5 6

q = 2 1
√
2

√
3 2

√
5

√
6

q = ∞ 1 1 1 1 1 1

4.5.1 Experimental Results of the Feature-aware Regularization Methods

We first check the performance of sparse online learning algorithms with the feature-aware

L1-regularization by changing the variable q. Tables 4.3, 4.5, and 4.6 show the experi-

mental results for FR-COMID, FRDA, and FTPFRL against the change in parameter q.

The figures written in parentheses represent sparseness rates of the finally derived weight

vectors. The sparseness rates is calculated by the formula: ”(the number of non-zero

features) is divided by (the number of features) * 100.0”. With respect to each dataset,

the figures representing the lowest error rate or the highest sparseness rate are written in

a bold form.

We note that when q = 1, it is very difficult to obtain a sparse weight vector except
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for the 100% sparseness rate, in other words the zero vector. When we set q = 1, we

cannot derive the helpful sparse weight vector with sufficient predictive ability by these

sparse online learning algorithms. This phenomenon occurs due to the over-truncation

originated from the incremental value of r
(i)
t,q added in round t, which is equal to the i-th

element of the t-th subgradient vector (∇ℓt(wt))
(i)

as described in Figure 4.1. Therefore,

once the feature-aware parameters, that is, r
(i)
t,q in FR-COMID and r̄

(i)
t,q in FRDA and

FTPFRL, become large, it is hard to recover the parameter of the i-th feature because

these parameters increase linearly. These phenomena make it very hard to control hyper-

parameters λ and as a result, to obtain sparse weight vectors that are helpful for prediction.

When q > 1, this problem is unlikely to occur because r
(i)
t,q added in round t decreases

as the round number t increases. Table 4.4 show these characteristics in the table form,

which indicates the changes in the truncation parameter r
(i)
t,q when the subgradient value

(∇ℓt(wt))
(i)

= 1 for all t.

From these results shown in Table 4.3, we can say that FR-COMID q = ∞ outperforms

the other FR-COMID algorithms in most experiments. In particular, q = ∞ settings

obtain very good solutions in terms of sparsity. These experimental results show that it

is relatively difficult for COMID-type algorithms to obtain a sparse solution. Table 4.5

indicates that there are no significant differences between FRDA q = 2 and FRDA q = ∞.

In addition, FRDA algorithms obtain the most sophisticated results in terms of precision

compared with FR-COMID and FTPFRL. The results shown in Table 4.6 indicate that

FTPFRL q = ∞ outperforms the other q settings of FTPFRL in most experiments.

These results show that FTPFRL can obtain more sparse solution than other two types

of algorithms while preserving its predictive ability.

4.5.2 Comparisons with Previous Work

Table 4.7 shows the experimental results of the comparisons between feature-aware reg-

ularization frameworks and the original sparse online learning algorithms. The figures of

the lower error rate or higher sparsity rate between the original sparse online learning

algorithm and the one with the feature-aware regularization methods are written in bold.

First, we compare the results of FR-COMID q = ∞, the best-performer in Table 4.3,

with the original COMID. It is clear from this table that FR-COMID outperforms COMID

in terms of the precision rate in all datasets; however, from the viewpoint of the sparsity

rate, FR-COMID is inferior to COMID in two out of six datasets. These experimental

results reveal that feature-aware COMID algorithms had better precisions than the orig-
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Table. 4.5. Precision (sparseness) of FRDA versus parameter q (Iterations : 20)

FRDA

(q = 1) (q = 2) (q = ∞)

books 86.35 86.88 86.50

(30.34) (87.73) (91.13)

dvd 87.34 87.23 86.31

(31.31) (82.97) (94.74)

electronics 90.14 89.49 89.30

(31.98) (95.89) (88.93)

kitchen 92.11 91.02 90.95

(35.08) (95.90) (97.36)

ob-2-1 98.50 97.20 96.20

(54.39) (80.74) (82.30)

sb-2-1 99.20 98.60 98.80

(60.25) (86.99) (93.69)

Table. 4.6. Precision (sparseness) of FTPFRL versus parameter q (Iterations : 20)

FTPFRL

(q = 1) (q = 2) (q = ∞)

books 84.10 85.15 84.71

(47.90) (94.37) (97.27)

dvd 81.06 83.29 83.32

(49.48) (90.94) (98.46)

electronics 85.83 86.80 88.29

(53.93) (96.93) (99.11)

kitchen 88.41 89.03 90.28

(54.15) (97.12) (97.50)

ob-2-1 95.10 93.90 94.90

(52.47) (87.56) (90.50)

sb-2-1 96.50 96.00 97.10

(68.10) (74.56) (96.98)
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inal method, but did not always derive sparse solutions due to the unstable behavior of

the COMID-based algorithms.

After that, we show that FRDA outperformed in terms of both the precision rate and

sparseness rate in four out of six datasets compared with the original RDA. We used q = ∞
as the best competitor of the FRDA. FRDA is inferior to RDA on the electronics and

ob-2-1 dataset; however, FRDA q = 2 outperformed RDA on them. The results mean that

the feature-aware truncation methods improve the prediction accuracy by retaining rare

but informative features. At the same time, FRDA could truncate unimportant features

to attain the same sparseness. Comparing FRDA with FR-COMID, we see that FRDA

significantly outperforms FR-COMID in terms of precision on all datasets and had better

sparsity as well. This result indicates that the RDA-based algorithms have significant

advantages over the COMID-based ones we described in Chapter 2 and 4. These results

back up the experimental results presented in some other papers [64, 72, 31, 32] showing

that RDA is superior to FOBOS.

Finally, we compared FTPFRL q = ∞ with FTPRL. Experimental results show that

FTPFRL outperform FTPRL in terms of precision on all datasets. On the other hand,

there is no significant difference between FTPFRL and FTPRL with respect to the sparsity

rate. From these experimental results, we conclude that the feature-aware truncation

methods improve the prediction performance of weight vectors with at least similar than

and the same sparseness as the state-of-the-art methods.

Furthermore, to check how our proposed feature-aware regularization methods work,

we conduct experiments that check what features FRDA and RDA obtain as important

discriminative ones (Table 4.8). We used the books dataset in this experiment. The listed

features are for where one algorithm has determined that these features are important

while the other algorithm has determined that these are unimportant. Important features

were chosen from a set of features in the Top-100 relative to the size of the values. The

result of Figure 4.8 indicates that FRDA could retain rare features, e.g., ”smearing” and

”some interesting”, while these features were overly truncated by RDA. On the other

hand, we can see that FRDA truncated frequently occurring but non predictive terms,

such as ”his” and ”more”, while RDA retained.

4.5.3 Comparison with Feature-based Feature-aware Regularization Methods

Furthermore, we show the validity of the subgradient-based definition of the feature-aware

L1-regularization compared with the feature-based definition. For feature-based definition
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Table. 4.7. Comparison with the original sparse online learning algorithms with respects

to precision (sparseness) rate (Iterations : 20)

FR-COMID COMID FRDA RDA FTPFRL FTPRL

(q = ∞) (q = ∞) (q = ∞)

books 84.46 84.28 86.50 86.00 84.71 83.83

(87.05) (80.39) (91.13) (88.69) (97.27) (93.08)

dvd 83.52 81.87 86.31 85.58 83.32 81.68

(85.57) (91.60) (94.74) (93.23) (98.46) (99.38)

electronics 88.05 87.41 89.30 88.94 88.29 87.59

(85.62) (90.54) (88.93) (91.93) (99.11) (99.59)

kitchen 90.11 89.27 90.95 90.23 90.28 89.39

(83.84) (90.36) (97.49) (91.23) (97.50) (99.06)

ob-2-1 94.90 94.00 96.20 96.90 94.90 93.80

(70.14) (83.05) (82.30) (76.96) (90.50) (80.16)

sb-2-1 97.20 96.00 98.80 97.70 97.10 95.70

(78.31) (70.91) (93.69) (89.74) (96.98) (86.45)

Table. 4.8. Samples of important features.

FRDA (p = ∞) RDA

”some interesting” (117) ”his” (1491)

”was blatantly” (101) ”more” (877)

”be successful” (64) ”time” (1161)

”a constructive” (29) ”almost” (376)

”smearing” (30) ”say” (2407)

of the feature-aware regularization methods, we redefine r
(i)
t,q by using the information of

a sequence of input vectors as follows:

r
(i)
t,q =

q

√√√√ t∑
τ=1

∣∣∣x(i)τ ∣∣∣q . (4.107)

We compare the original subgradient-based regularization methods with the feature-based

regularization methods by using FRDA. Table 4.9 shows the experimental results.

From the results, we can see that FRDA q = ∞ based on the subgradient information

definition outperform other algorithms in terms of both sparseness and precision in four
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Table. 4.9. Experimental results of FRDA with the subgradient-based feature-aware reg-

ularization methods and feature-based feature-aware regularization methods

: the rates of error and sparseness (Iterations : 20). The sparseness rate are

in parentheses. The best figures among all algorithms except FRDA (q = 1)

for each dataset are written in bold.

FRDA (q = ∞) FRDA (q = 1) FRDA (q = 2) FRDA (q = ∞)

Subgradient-based Feature-based Feature-based Feature-based

books 86.50 87.14 86.56 86.36

(91.13) (32.28) (86.77) (91.09)

dvd 86.31 87.12 85.36 86.12

(94.74) (32.36) (89.23) (89.12)

electronics 89.30 89.92 89.07 89.49

(88.93) (39.66) (87.44) (88.56)

kitchen 90.95 92.04 90.46 90.88

(97.36) (40.51) (89.40) (88.34)

ob-2-1 96.20 95.10 94.60 93.80

(82.30) (78.28) (78.44) (75.01)

sb-2-1 98.80 90.80 97.40 97.30

(93.69) (78.92) (87.80) (87.87)

out of six tasks. In the other two tasks, the subgradient-based feature-aware regularization

methods derive the most sparsest predictive model with a competitive prediction ability.

These results support the discussion in Section 4.3.

We note that the results are very unstable in FRDA q = 1 even if we define the feature-

aware regularization through the feature-based information.

4.6 Chapter Summary

In this chapter, we establish the notion of the truncation bias happened in the sparse

online learning settings. We first point out the effect of the truncation bias as the crucial

component to alleviate the predictive performance of sparse online learning. To heal the

truncation bias in an online manner, we propose the feature-aware L1-regularization meth-

ods for sparse online learning. Our proposed feature-aware truncation methods integrate

the information on all previous subgradients into the L1-regularization term to adjust the

truncation effect of each feature in an online manner without pre-processing. By introduc-
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ing the feature-aware regularization methods into the state-of-the-art subgradient-based

sparse online learning algorithms, we solve the difficulties of the simple L1-regularization

in an online setting, where rare or low value range features are truncated on a priority

basis even if these features were important for prediction. We mathematically formalize

the feature-aware L1-regularization methods and apply them to several novel sparse on-

line learning algorithms. In addition, we prove theoretical guarantees of our framework

by deriving upper bounds on regret and show several computational efficient form for fast

computations. We conduct several experiments by using six binary classification datasets.

Experimental results reveal that the feature-aware L1-regularization methods outperform

the plain sparse online learning algorithms in terms of predictive ability, while preserv-

ing similar sparsity rates. Moreover, we show that our methods could retain rare but

informative features in these experiments.

There are several remaining issues about the feature-aware regularization methods.

The first issue is whether we can modify the algorithm to choose the optimal parameter

q in an online setting. In this thesis, we only evaluate the performances of two-types of

classification tasks and in these tasks, FRDA outperformed the others. We would like to

investigate what algorithms are the best to be applied to other tasks, such as regression

and learning-to-rank. In addition, there are some other novel subgradient-based sparse

online learning algorithms (e.g. [129]). We need to explore the effect of the feature-aware

L1-regularization methods for these other algorithms. The applicability for stochastic

learning setting and the combination with AdaGrad are other directions of the future

research. The feature-aware regularization methods do not have the guarantee of the

online to batch conversion due to the existence of the time-varying regularization yet. We

will investigate these questions and further extend our proposed methods.
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Chapter 5

Online and Stochastic Learning with a

Human Cognitive Bias

Incremental learning framework, such as online learning and stochastic learning, is an

effective for supervised learning tasks in the machine learning community. In particular,

online learning and stochastic learning are advantageous for massive data analysis owing

to the sequential processing nature of the data compared with batch learning framework.

Among a large variety of machine learning tasks, binary classification problems are one of

the most important tasks. In binary classification tasks, algorithms learn how to classify

each datum into {−1, 1}. For binary classification tasks, these incremental learning al-

gorithms process a bunch of data one by one, make predictions over the received datum,

and update its classification rule at every round. We focus on these binary classification

problems in this chapter.

In this chapter, we focus on another bias originating from the human’s perception. Due

to its incremental learning procedure, incremental learning algorithms sometimes make

wrong predictions on the data that were correctly classified in the past. The standard per-

formance evaluation measures for incremental learning, such as the regret or the expected

loss, do not reflect the history of the past prediction results. Therefore, state-of-the-art

online and stochastic algorithms have not considered this inconsistent behavior as a crucial

factor. The key statement in this thesis is that such an inconsistent phenomenon has a

crucial impact on the evaluation of algorithms when humans are evaluators. We find that

the performance evaluation conducted by humans does not match the standard objective

functions of incremental learning algorithms, such as the normal regret and expected loss,

due to a human cognitive bias. Humans have a cognitive bias that they attach a higher

value to the data that were correctly classified in the past than the other data. This



104 Chapter 5 Online and Stochastic Learning with a Human Cognitive Bias

effect originates from the endowment effect that has been widely analyzed in the field of

behavior economics. We show two motivating examples in which this cognitive bias has

important roles:

User utility maximization

Incremental learning algorithms has been used in many services such as email filtering [9]

and advertisement placement optimization [10]. Many users continuously utilize services

whose prediction rules have been changed over time. Furthermore, users sometimes receive

the same data with prediction results as previously seen. Negative flips for these data,

in other words, the misclassification over the data which were correctly classified in the

past, may drastically decrease the utilities of these users.

Interactive annotation

There are many human-computer interaction systems based on incremental learning

framework such as annotation systems based on active learning framework [130]. These

interactive annotation systems is important to improve generalization ability with a

small amount of data and reduce the annotation cost. To generate less noisy labeled

data, encouraging people to make annotations is crucial for better performance. Some

annotators may feel frustrated annotating the data correctly classified in the past as

wrong ones.

We find that this phenomenon should be treated appropriately to maximize the hu-

man’s utility. A human cognitive bias becomes the key to appropriately deal with the

effect of such an inconsistent prediction behavior. We first explain how such an inconsis-

tent prediction behavior affects the human utility through the endowment effect. Then,

we conduct an experiment to verify whether such a prediction behavior negatively affects

human’s evaluations and show its effect for user utilities as a human cognitive bias. From

this result, we see that we need to internalize this cost as the divestiture loss and inte-

grate this bias into objective functions to formalize new evaluation measures for online

and stochastic learning. Therefore, we formulate the new objective functions with the hu-

man cognitive bias for online and stochastic learning framework. We note that we easily

solve these problems if algorithms could store all previous examples and their prediction

results in the memory and scan all data in each round; however, the memorization and

scan of all data are unpractical for massive data analysis due to the memory size and

computational resource constraints. In addition, memorization and scan violates the ad-

vantages of incremental learning framework. To maximize the availability of incremental
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learning algorithms, these algorithms which interact with humans need some methods

to heal the human cognitive bias derived from the past prediction history. We develop

new algorithms without the memorization and scan of the past prediction history. This

algorithm is based on OGD/SGD algorithms and our proposed variants achieve the the-

oretical guarantees with respect to the new objectives. We lastly conduct experiments to

evaluate the performance of our proposed algorithms and the results show our algorithms

outperform the conventional ones with respect to the new objectives.

Our framework is similar to the cost-sensitive learning framework wherein the impor-

tance of false positives is different from the one of false negatives. For example, Langford

and Beygelzimer [131] provides a reduction technique that works for classification ranging

from cost-sensitive to simple binary problems. Wang, Zhao, and Hoi [132] proposes a

cost-sensitive online classification framework. In our framework, the cost of each example

dynamically changes depending on the history of past prediction results. Therefore, the

problem becomes more complicated than these cost-sensitive frameworks.

The constitution of this chapter is as follows: In Section 5.1, we introduce the notion

of the human cognitive bias and in particular the endowment effect to be used for further

analysis. Furthermore, we verify the effect of the endowment effect in the incremental

learning framework through the subjective experiment. In Section 5.2, we formulate new

objective functions with a human cognitive bias in the online and stochastic learning

settings. In Section 5.3, we develop new subgradient-based incremental algorithms based

on OGD/SGD to solve the newly defined problems with a human cognitive bias. In Section

5.4, we show the theoretical properties of our developed algorithms from the perspectives of

both online and stochastic learning frameworks. In Section 5.5, we conduct several online

learning experiments to verify the practical performance of our developed algorithms by

using massive data. In Section 5.6, we summarize the discussion of this chapter and

discuss several future work to be solved.

5.1 Background: Human Cognitive Bias

As a background, we show the human cognitive bias in this section. Human cognitive

biases and their effects toward the utility of human have been actively investigated in

several research fields. Theories and subjective experiments about human cognitive biases

largely affect the economics, social science, and many other fields including the human

involvement. Among several human cognitive biases such as the anchoring effect [133]

and the loss aversion effect [134], the endowment effect is a key component to analyze
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the evaluation measure of incremental learning algorithms. In the incremental learning

setting, the endowment effect [135, 136] becomes an essential factor to newly formalize

the incremental learning framework, algorithms, and objectives. We first introduce what

the endowment effect is in the next subsection. Then, we show how the endowment

effect affects objectives in the incremental learning setting. In the last, we conduct the

experiment to verify the existence of the endowment effect in the incremental learning

setting.

5.1.1 Endowment Effect

We introduce the endowment effect as one of the major human cognitive bias in this

section. The endowment effect [135] induces in humans a cognitive bias to prevent rational

decision-making. The endowment effect states that people tend to put a higher value

on preventing the loss of an item they already possess than on buying the same item

they do not possess. This human psychological bias has an important role for utility

maximization and human engagements. There are many work on theoretical explanations

and experimental tests of the endowment effect [136]. The endowment effect suggests that

the cost of compensation is larger than the cost of paying.

From the nature of incremental update procedure, incremental learning algorithms

sometimes make mistakes on the data that were correctly classified in the past. Here, the

notion of the endowment effect suggests that people would pay more in order to sustain

the correct prediction result for past data than to pay for a correct prediction on new data.

When the predictive model misclassifies the data where they are correctly predicted by

the past predictive model, the utility of humans using these incremental machine learning

systems may be decreased even if the incremental learning algorithms pursue to minimize

the predictive error. As a result, incremental learning algorithms must take the processed

data in the past into consideration when updating the predictive model. To maximize

the utility of humans, this notion should be incorporated into objective functions as an

additional cost.

5.1.2 Experiment on the Endowment Effect

In this section, we show that the human cognitive bias induced by the endowment effect

largely affects user utilities neglected in the context of the standard incremental learning

setting. After that, we propose a new objective taking in this human cognitive bias.

Here, we describe an experiment to verify how the endowment effect has an impact on
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Table. 5.1. Experimental result on the endowment effect. The table shows the number of

people who evaluate each session’s predictability.

1 2 3 4 5 Average

type-I 2 3 15 73 7 3.80

type-II (duplicate) 2 11 26 54 7 3.53

the user utility of the machine learning-based services. This result demonstrates that the

endowment effect is prominent in the user utilities. We conduct a subjective experiment

using a crowdsourcing market place to assign tasks to humans. We set up a synthetic scene

recognition task as a binary classification problem using the indoor recognition dataset*1.

We use pictures of bookstores and restaurants from this large dataset.

We assign a certain amount of tasks to each worker. Each session consists of two phases,

training phase and evaluation phase. In the training phase, workers receive eight pairs of

pictures and their predicted labels. After seeing the given pairs, workers check whether

each label is correct and then send their answers to the system as user feedback. In the

evaluation phase, the system show eight different pairs of pictures and their prediction

results to workers. Workers are told that the previous user feedbacks are used to classify

samples in the evaluation phase. After checking the prediction results derived from the

predictive models, workers evaluate the learnability of this system on a five-star scale.

Each worker deals with two types of sessions. In the type-I, the pictures displayed in the

training phase do not appear in the evaluation phase. Therefore, the endowment effect is

not activated in this session. In the type-II, two pictures are redisplayed in the evaluation

phase. These pictures are correctly classified in the training phase but misclassified in the

evaluation phase. The number of correctly classified pictures in both phases is fixed; there

were four correctly classified pictures in both phases. Therefore, if worker evaluations are

largely different between two sessions, we can see that the endowment effect influence

workers’ evaluations. In each session, 100 workers evaluate its learnability and verifies

whether there is any difference of workers’ cognition between these two types or not.

Table 5.1 shows an experimental result. The result in the table indicates that the type-

II sessions have a lower evaluation in comparison with the type-I. The p-value calculated

by Mann-Whitney test is less than a 1% level of significance (p = 0.0093). This result

shows that the endowment effect largely affects workers’ evaluations.

*1 http://web.mit.edu/torralba/www/indoor.html
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5.2 Online and Stochastic Learning with the Endowment Effect

We define this negative side-effect as a divestiture loss. The divestiture loss is actualized

when the classifier makes an inaccurate prediction but it correctly classifies the same data

in the past. To internalize this loss explicitly, we integrate this loss into the optimization

problem. To simplify the following discussion, we denote a pair of the input vector and

the corresponding label as z = (x, y). For each datum, algorithms predict the label of

the datum as ŷ = sgn(⟨w,x⟩) by using the weight vector. When incremental learning

algorithms already processed t data ({zτ}τ=1:t) and predicted labels for them ({ŷτ}τ=1:t),

the divestiture loss is defines as:

C(w; z, {ŷτ}τ=1:t, {zτ}τ=1:t) = γ1prev(z, {ŷτ}τ=1:t, {zτ}τ=1:t)ℓ(w; z) , (5.1)

where

1prev(z, {ŷτ}τ=1:t, {zτ}τ=1:t) = min

(
1,

t∑
τ=1

1[[z = zτ ]]1[[yτ = ŷτ ]]

)
. (5.2)

γ is a non-negative trade-off parameter between the original objectives and the divesti-

ture loss. γ is chosen according to the stakeholder’s preference. If γ = 0, the divestiture

loss disappears and the objective function becomes the conventional one. If γ → ∞, the

divestiture loss becomes the dominant factor. When the problem is non-separable, that

is, there is no hypothesis to correctly classify all received data, the value of the objec-

tive function is always ∞. The function 1prev indicates whether the algorithm correctly

classified z in the past. When z is correctly classified in the past, 1prev outputs 1 and

the algorithm incurs an additional loss γℓ(w; z) from the definition of the divestiture loss.

Otherwise, 1prev becomes 0 and this loss will not be activated. We assume that if we

correctly classify the same datum more than once, the divestiture loss does not change.

New objective functions consist of the sum of the original losses and the divestiture loss.

First, we introduce the new regret with the human cognitive bias. The new regret is

defined as follows:

Regret(T ) =
T∑
t=1

Ft(wt)− min
u∈W

T∑
t=1

Ft(u) ,

where Ft(w) = ℓt(w) + C(w; zt, {ŷτ}τ=1:t−1, {zτ}τ=1:t−1) , (5.3)

where ℓt(·) = ℓ(·; zt). The difference between the new regret and the original regret (2.2)

is the divestiture loss. When we set γ = 0, (5.3) becomes exactly the same as (2.2). After



5.3 Endowment-induced Algorithms 109

that, we define the new objective in the stochastic learning framework by inducing the

notion of the human cognitive bias. The new objective is defined as follows:

EDT

[
Ez∼D

[
ℓ(w; z) +

1

T

T∑
t=1

C(w; z, {ŷτ}τ=1:t−1, {zτ}τ=1:t−1)

]]
. (5.4)

The difference between the new objective function and the original objective in the stochas-

tic learning setting (3.1) is in the part of the divestiture loss. The effect of the divestiture

loss is averaged over the all rounds processed to optimize the weight vector. The first

expectation is calculated over the sequence of the training examples, and this sequence

affects a sequence of {zτ}τ=1:t−1 and {ŷτ}τ=1:t−1. The optimal weight vector is defined

as:

w∗ = argmin
u∈W

EDT

[
Ez∼D

[
ℓ(w; z) +

1

T

T∑
t=1

C(w; z, {ŷτ}τ=1:t−1, {zτ}τ=1:t−1)

]]
. (5.5)

We focus on the minimization of these two objectives defined in the online learning setting

and the stochastic learning setting.

5.3 Endowment-induced Algorithms

In the incremental learning setting with a human cognitive bias, the original OGD/SGD

and other subgradient-based incremental algorithms do not achieve a good experimental

result because of the existence of divestiture loss. Although the divestiture loss appears

only when the corresponding examples were correctly classified, these algorithms treat all

examples the same without referring to on-the-fly prediction results. These algorithms

cannot capture this skewness.

We devise the Endowment-induced Online Gradient Descent (E-OGD) to incorporate

the notion of the endowment effect into the original OGD/SGD to solve these difficulties.

To simplify the following discussion, we use the name ”E-OGD” when we apply this algo-

rithm in the stochastic learning setting. The key idea is to heavily weigh the importance

of correctly classified examples in order to absorb the skewness.

E-OGD divides all examples into two categories:

1. correctly classified examples, i.e., ŷt = yt

2. wrongly classified examples, i.e., ŷt ̸= yt

We see that the loss corresponding to the former examples is bigger than that of the latter

examples due to the divestiture loss. Therefore, correct examples should be treated as
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Algorithm 7 Endowment-induced Online Gradient Descent

Require: scaling constant c, trade-off parameter γ

Initialize w1 = 0

for t = 1, . . . , T do

Receive xt

Predict corresponding output ŷ = sgn (⟨wt,xt⟩)
Unveil true output yt

if yt = ŷt then

vt+1 = wt − c(1 + γ)∇ℓ(wt; zt)/
√
t

else

vt+1 = wt − c∇ℓ(wt; zt)/
√
t

end if

wt+1 = argmin
w∈W

∥w − vt+1∥2
end for

being more important than wrong ones. E-OGD first classifies each example into one of

two types it should belong to. After the type identification, E-OGD updates parameters

heavily with the trade-off parameter γ with respect to correctly classified examples. In

summary, weight vectors are updated as follows:

wt+1 = ΠW (wt − ηt∇ℓ(wt; zt))

where ηt =

c(1 + γ)/
√
t if ŷt = yt

c/
√
t if ŷt ̸= yt

. (5.6)

Algorithm 7 is the pseudo-code of E-OGD. We note that this E-OGD can update

parameter by using only the currently received datum. We show that an appropriate

step size setting makes the algorithm adaptive to the endowment effect in the following

theoretical analysis.

5.3.1 Importance-aware Update for E-OGD

When E-OGD receives a correctly classified example, weight vectors are updated by 1+γ

scaling. This update can be viewed as an approximate update of the original OGD at

1 + γ times. An importance-aware update can be established in order to make an exact

1 + γ times update through an one-time update [76] written in Section 2.4.3.

The original OGD and E-OGD do not hold some important properties such as the
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invariance and safety. In particular, when the endowment effect is strong (γ is large), the

plain E-OGD would be in danger of overshooting when the prediction is correct. The safety

property guarantees to prevent this type of overshooting. We derive the importance-aware

version of E-OGD.

5.4 Theoretical Analyses

Let us analyze the theoretical aspects of E-OGD. For simplifying the following discussions,

we introduce a new term:

rt(z, {ŷτ}τ=1:t−1, {zτ}τ=1:t−1) = 1 + γmin

(
1,
t−1∑
τ=1

1[[z = zτ ]]1[[yτ = ŷτ ]]

)
. (5.7)

Furthermore, to simplify the discussion, we denote rt(zt, {ŷτ}τ=1:t−1, {zτ}τ=1:t−1) as rt

and ℓ(·; zt) as ℓt(·). We analyze the upper regret bound and the upper bound of the

expected loss of E-OGD in this section. Furthermore, we analyze another option of step

sizes and its theoretical analysis in the Appendix A.

First, we show the relationship between a sequence of step sizes in E-OGD and the

endowment effect. We set a sequence of step sizes as:

ηt =

c(1 + γ)/
√
t if ŷt = yt

c/
√
t if ŷt ̸= yt

, (5.8)

where c is some positive constant. Regret (5.3) is rewritten as:

Regret(T ) =
T∑
t=1

rtℓt(wt)− min
u∈W

T∑
t=1

rtℓt(u) . (5.9)

The next theorem gives the regret upper bound of E-OGD.

Theorem 15. Let {wt}t=1:T+1 be derived according to E-OGD’s update rule according

to (5.8). Assume that for all t ≥ 1, ∥wt∥2 ≤ R and ∥∇ℓt(wt)∥2 ≤ G. In addition,

we assume that counts of consecutive classifications are less than O(
√
T ). When we set

c =
√
2R/G(1 + γ), the upper bound of regret is obtained as follows:

Regret(T ) ≤ 2
√
2RG(1 + γ)

√
T . (5.10)

From this theorem, E-OGD is guaranteed to converge to obtain the optimal average

loss with respect to the online learning setting with a human cognitive bias. To prove

Theorem 15, we first introduce two lemmas.
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Lemma 14. When we set {ηt}t=1:T as following the rule of E-OGD, values of rt and

ηt become one of the following two types: (1) rt = 1, ηt = c/
√
t, (2) rt = 1 + γ, ηt =

c(1 + γ)/
√
t, or (3) rt = 1 + γ, ηt = c/

√
t.

Proof. This lemma is proved directly from the definition of rt and ηt. When yt = ŷt is

satisfied, rt = 1 + γ and ηt = c(1 + γ)/
√
t. When yt ̸= ŷt and it has never been correctly

classified in the past, rt = 1 and ηt = c/
√
t. If the datum was correctly classified in the

past, rt = 1 + γ. In summary, rt and ηt becomes one of three pairs of values.

Lemma 15. For all t ≥ 3, when (rt/ηt)− (rt−1/ηt−1) < 0, there is t > s ≥ 2 such that

rs
ηs

=

√
s

c
. (5.11)

In addition, let us define st as the largest s < t such that (rt/ηt) − (rt−1/ηt−1) < 0 and

rs/ηs =
√
s/c are satisfied. Then, the following inequalities are satisfied.

t∑
τ=st+1

(
rτ
ητ

− rτ−1

ητ−1

)
≥ 0 , (5.12)

(
rm
ηm

− rm−1

ηm−1

)
≥ 0 . (5.13)

where m is arbitrary data ID such that st < m < t.

Proof. This result can be obtain directly from the results of Lemma 14. We see that

(rt/ηt) − (rt−1/ηt−1) < 0 is satisfied only when (3) occurs at round t − 1 and (1) or (2)

occurs at round t. (3) occurs only when the same datum is correctly classified in the past.

Therefore, there is the round s such that the same datum is correctly classified and (1)

happens at round s. When (1) occurs, rs/ηs =
√
s/c. Furthermore, from the definition

of st and m, (3) occurs for all m. Therefore, rm/ηm − rm−1/ηm−1 > 0 is always satisfied

regardless of the round m − 1 result. In addition, the following inequality is satisfied

because at round t and st, (1) or (2) occurs.

t∑
τ=st+1

(
rτ
ητ

− rτ−1

ητ−1

)
=
rt
ηt

− rst
ηst

≥ 0 . (5.14)

Lemma 16. Let us define st as the largest s < t such that (rt/ηt) − (rt−1/ηt−1) < 0

and rs/ηs =
√
s/c are satisfied. In addition, the conditions defined in Theorem 16 are
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satisfied. Then, for all t ≥ 3 such that (rt/ηt)− (rt−1/ηt−1) < 0, the following inequality

is satisfied for all u ∈ W.

t∑
τ=st+1

(
rτ
ητ

− rτ−1

ητ−1

)
∥wτ − u∥22 ≤

(
rτ
ητ

− rτ−1

ητ−1

)
R2 + o(

√
T ) . (5.15)

Proof. From the update formula (5.6), we see ∥wt −wt−1∥ ≤ c2(1 + γ)2∥∇ℓt(wt)∥2/t for
any t ≥ 2. Therefore, when rt/ηt − rt−1/ηst−1

≥ 0 is satisfied,(
rτ
ητ

− rτ−1

ηsτ−1

)
∥wτ+1 −wτ∥22 ≤ c(1 + γ)2∥∇ℓτ (wτ )∥2

(1 + γ)
√
t−

√
t− 1

t

≤ c(1 + γ)2G2 (1 + γ)
√
t−

√
t− 1

t
. (5.16)

From the property of norms, we see that ∥wt − u∥ ≥ ∥wt−1 − u∥+ ∥wt −wt−1∥.
t∑

τ=st+1

(
rτ
ητ

− rτ−1

ητ−1

)
∥wτ − u∥2

≤
t∑

τ=st+1

(
rτ
ητ

− rτ−1

ητ−1

)
∥wt − u∥2 +

t−1∑
τ̃=st+1

t−1∑
τ=τ̃

(
rτ
ητ

− rτ−1

ηsτ−1

)
∥wτ+1 −wτ∥2

≤
t∑

τ=st+1

(
rτ
ητ

− rτ−1

ητ−1

)
R2 +

t−1∑
τ̃=τ

t−1∑
τ=st+1

c(1 + γ)2G2 (1 + γ)
√
t−

√
t− 1

t
. (5.17)

The second term of the last formula becomes less than O(
√
T ) from the assumption that

the consecutive classification counts is less than O(
√
T ).

From these lemmas, we can analyze the upper bound of regret of E-OGD in the online

learning setting with a human cognitive bias. Below is the proof of Theorem 15.

Proof of Theorem 15. For simplicity, let us denote ∇ℓ(wt; zt) as gt. The convexity of loss

functions guarantees that the first-order approximation inequality is satisfied for all u,

i.e.,

ℓt(u) ≥ ⟨gt,u−wt⟩+ ℓt(wt) . (5.18)

This convexity property reformulates the regret bound.

Regret(T ) =
T∑
t=1

rt(ℓt(wt)− min
u∈W

ℓt(u))

≤ max
u∈W

T∑
t=1

rt(ℓt(wt) + ⟨gt,wt − u⟩ − ℓt(wt))

= max
u∈W

T∑
t=1

rt⟨gt,wt − u⟩ . (5.19)
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We define for all t, vt+1 = wt − ηt∇ℓt(wt). From this definition, we obtain the following

equations.

vt+1 − u = (wt − u)− ηtgt

∥vt+1 − u∥22 = ∥wt − u∥22 − 2ηt⟨gt,wt − u⟩+ η2t ∥gt∥22
∥wt+1 − u∥22 ≤ ∥wt − u∥22 − 2ηt⟨gt,wt − u⟩+ η2t ∥gt∥22

⟨gt,wt − u⟩ ≤ 1

2ηt
(∥wt − u∥22 − ∥wt+1 − u∥22) +

ηt
2
∥gt∥22

Through these inequalities and some assumptions on the norms of weight vectors and

gradients, the following reformulation can be applied for any u,

T∑
t=1

rt⟨gt,wt − u⟩ ≤
T∑
t=1

rt
2ηt

(∥wt − u∥22 − ∥wt+1 − u∥22) +
ηtrt
2

∥gt∥22

≤ r1
2η1

∥w1 − u∥22 −
rT
2ηT

∥wT+1 − u∥22

+
1

2

T∑
t=2

(
rt
ηt

− rt−1

ηt−1

)
∥wt − u∥22 +

G2

2

T∑
t=1

ηtrt (5.20)

From Lemma 16, we can reformulate as follows:

T∑
t=1

rt⟨gt,wt − u⟩ ≤ 2R2

(
r1
η1

+
T∑
t=2

(
rt
ηt

− rt−1

ηt−1

))
+
G2

2

T∑
t=1

ηtrt

=
2R2rT
ηT

+
G2

2

T∑
t=1

ηtrt . (5.21)

The assumption ∥g∥2 ≤ G is used in the second inequality and ∥w∥2 ≤ R is used in the

third inequality.

The following inequality is derived by setting rt = 1 + γ and ηt = c(1 + γ)/
√
t for all t

in the second term.

Regret(T ) ≤

(
2R2

√
T

c
+
G2(1 + γ)2

2

T∑
t=1

c√
t

)

≤
(
2R2

c
+ cG2(1 + γ)2

)√
T . (5.22)

by using
∑T
t=1

1√
t
≤ 2

√
T . When c =

√
2R/G(1 + γ), we have

Regret(T ) ≤ 2
√
2RG(1 + γ)

√
T .
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For stochastic learning setting, we assume that the data are i.i.d. sampled from a distri-

bution D. The final goal is to minimize the sum of the expected loss and divestiture loss,

as described by formula (5.4). Lemma 17 reformulates the optimization problem into an

easily analyzable form.

Lemma 17. The optimization problem in the stochastic learning setting can be reformu-

lated through rt(z).

EDT

[
Ez∼D

[
1

T

T∑
t=1

rt(z)ℓ(w; z)

]]
. (5.23)

Furthermore, it can be reformulated through a new distribution DP and an appropriate

constant value HDT conditioned on {zt}t=1:T as

EDT [HDTEz∼DP [ℓ(w; z)]] . (5.24)

We prove Lemma 17.

Proof. When E-OGD runs in the stochastic setting, algorithms implicitly construct a set

of correctly classified examples P . These examples are sampled from D and chosen with

an on-the-fly prediction. For simplifying the discussion, we define

r̄(z) =
1

T

T∑
t=1

rt(z) . (5.25)

All examples in P are distinct for the sake of simplicity. It is easy to extend the following

proposition to a general case.

Let us define p(x, y) as a probability density function according to a distribution D. The

set P is constructed from examples sampled from D. For any datum in P , the datum’s

occurrence probability in D becomes necessarily greater than 0. The optimization formula

can be reformulated according to basic probabilistic properties:

Ez∼D
[
ℓ(w; z) + C̄(w; z)

]
= Ez∼D

[
ℓ(w; z) +

γ

T

T∑
t=1

min

(
1,
t−1∑
s=1

1[[z = zs]]1[[ys = ŷs]]

)
ℓ(w; z)

]
= Ez∼D [r̄(z)ℓ(w; z)] . (5.26)

Furthermore, we can construct a new distribution DP as follows: The probability func-

tion q of DP is defined as

q(z) =
r̄(z)p(z)∫
r̄(z)p(z)dz

. (5.27)
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We denote the denominator of formula (5.27) as HDT . In this case, the optimization

problem can be reformulated according to basic probabilistic properties:

Ez∼D [r̄(z)ℓ(w; z)] = HDTEz∼DP [ℓ(w; z)] . (5.28)

The following theorem is derived from Theorem 15 and Lemma 17 in order to upper

bound the expected loss with a human cognitive bias (5.4).

Theorem 16. Assume that the conditions in Theorem 15 are satisfied and there is an

integer tp such that rt(z) = rtp(z) for any t ≥ tp. In this setting, the following formula is

satisfied for any u ∈ W.

EDT [Ez∼DP [ℓ(w̄; z)]]− EDT [Ez∼DP [ℓ(u; z)]]

≤
√
2RG(1 + γ)

(
√
T − (tp + 1)/

√
T )/(2−

√
tp − 1/

√
T )

, (5.29)

where w̄ =
∑T
t=tp

wt/(T − tp + 1).

Lemma 17 derives that the left-hand side of the formula (5.29) equals the original

objective function (5.4). From this theoretical result, the average weight vector converges

to the optimal one that minimizes the sum of the expected loss and the divestiture loss.

If tp ≪ T , the convergence speed is O(1/
√
T ). And, when the number of data is finite,

there is some constant tp such that rt(z) = rtp(z) for any t ≥ tp.

We prove Theorem 16 below.

Proof. First, we analyze the regret bound from round tp to T .

Regret(tp : T ) ≤

2R2
√
T

c
+
G2(1 + γ)2

2

T∑
t=tp

c√
t


≤
(
2R2

c
+ cG2(1 + γ)2

)√
T − cG2(1 + γ)2

√
tp − 1 . (5.30)

When we set c =
√
2R/G(1 + γ),

Regret(tp : T ) ≤
√
2RG(1 + γ)

(
2
√
T −

√
tp − 1

)
. (5.31)

For simplicity, we will describe HDTEz∼DP
[ℓ(·; z)] as DP (·). Let us take the expectation

of the regret in the online learning framework with a human cognitive bias. Now let us

analyze the first term and the second term of the expectation of the regret. Note that



5.4 Theoretical Analyses 117

this reformulation uses Lemma 4.3. The expectation of the second term is reformulated

as follows:

EDT

 T∑
t=tp

rt((xt, yt))ℓt(u)

 =
T∑

t=tp

EDT [rt((xt, yt))ℓt(u)]

=
T∑

t=tp

EDt−1EDt

[
rt((xt, yt))ℓt(u)|Dt−1

]
=

T∑
t=tp

EDt−1Ez∼D [rt(z)ℓ(u; z)]

= EDTEz∼D

 T∑
t=tp

rt(z)ℓ(u; z)


= (T − tp + 1)EDT [DP (u)] . (5.32)

The expectation of the first term can be reformulated with a similar procedure.

EDT

 T∑
t=tp

rt((xt, yt))ℓt(wt)

 =
T∑

t=tp

EDT [rt((xt, yt))ℓt(wt))]

=
T∑

t=tp

EDt−1Ez∼D [rt(z)ℓ(wt; z)]

= EDTEz∼D

 T∑
t=tp

rt(z)ℓ(wt; z)


= EDT

HDTEz∼DP

 T∑
t=tp

ℓ(wt; z)


≥ (T − tp + 1)EDT [HDTEz∼DP

[ℓ(w̄t; z)]]

= (T − tp + 1)EDT [DP (w̄)] . (5.33)

The inequality is satisfied from the convexity of loss functions. The following formula is

obtained by combining these two formula with Lemma 17.

EDT [DP (w̄)]− EDT [DP (u)] ≤
1

T − tp + 1
EDT [Regret(tp : T )]

≤
√
2RG(1 + γ)

(
√
T − (tp + 1)/

√
T )/(2−

√
tp − 1/

√
T )

.
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Table. 5.2. Dataset Specifications. T is the number of training data. S is test data size.

D is the number of features.

T S D

news20 15,000 4,996 1,335,191

rcv1 20,242 677,399 47,236

algebra 8,407,752 510,302 20,216,830

BtA 19,264,097 748,401 29,890,095

webspam-t 315,000 35,000 16,609,143

5.5 Experiments

We conduct experiments to test the performance of the conventional OGD and E-OGD

as stochastic learning framework with a human cognitive bias. We use five large-scale

datasets from the LIBSVM binary data collections*2. The specifications of these dataset

are listed in Table 5.2. news20 and rcv1 are news category classification tasks. algebra and

BtA (Bridge to Algebra) are KDD Cup 2010 datasets to predict whether students correctly

answer algebra problems. webspam-t is a tri-gram webspam classification dataset used in

the Pascal Large Scale Learning Challenge. The original webspam-t dataset is not splited

to two sets, therefore, we randomly sample 90% data from the dataset and used them as

a training set and remaining data as a test set.

We use these datasets to compare the performances of OGD and E-OGD in a new

stochastic learning setting. We incur both expected loss and divestiture loss. To evaluate

the divestiture loss, we replace some examples in the test data with some training examples

at a specific rate. The training examples are randomly extracted from the training set.

If the algorithm correctly classified in the training phase but it misclassifies the same

example in the test phase, they incur a divestiture loss. We conduct experiments by

setting the replacement rate of the test examples by training examples as 5, 10, and 30%.

We quantified the performance as

1

S

S∑
s=1

ℓ(w; zs) +
γ

S

∑
zp∈P

ℓ(w; zp) . (5.34)

The first term corresponds to the expected loss, and each datum zs corresponds to one

datum in the test set or a replaced training example. S is the number of test data. The

*2 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Table. 5.3. Experimental results compared to the conventional OGD: the expected loss,

divestiture loss, and cumulative loss (Iteration: 1). The lowest values in each

replace rate r, loss type, and dataset are written in bold.

r = 0.05 r = 0.1 r = 0.3

Loss Type E-OGD OGD E-OGD OGD E-OGD OGD

Expected 5.10 × 10−2 5.31 × 10−2 5.67 × 10−2 5.84 × 10−2 9.18 × 10−2 9.32 × 10−2

news20 Divestiture 8.71 × 10−3 1.39 × 10−2 7.73 × 10−3 1.27 × 10−2 6.71 × 10−3 1.07 × 10−2

Cumulative 5.97 × 10−2 6.70 × 10−2 6.44 × 10−2 7.11 × 10−2 9.85 × 10−2 1.04 × 10−1

Expected 7.39 × 10−2 7.37 × 10−2 7.83 × 10−2 7.80 × 10−2 9.71 × 10−2 9.65 × 10−2

rcv1 Divestiture 1.10 × 10−2 1.84 × 10−2 1.04 × 10−2 1.74 × 10−2 8.04 × 10−3 1.35 × 10−2

Cumulative 8.49 × 10−2 9.21 × 10−2 8.87 × 10−2 9.54 × 10−2 1.05 × 10−1 1.10 × 10−1

Expected 3.31 × 10−1 3.06 × 10−1 3.30 × 10−1 3.06 × 10−1 3.26 × 10−1 3.03 × 10−1

algebra Divestiture 6.00 × 10−2 1.01 × 10−1 5.68 × 10−2 9.60 × 10−2 4.41 × 10−2 7.46 × 10−2

Cumulative 3.91 × 10−1 4.08 × 10−1 3.87 × 10−1 4.02 × 10−1 3.70 × 10−1 3.78 × 10−1

Expected 3.29 × 10−1 3.11 × 10−1 3.27 × 10−1 3.10 × 10−1 3.18 × 10−1 3.03 × 10−1

BtA Divestiture 7.64 × 10−2 1.17 × 10−1 7.24 × 10−2 1.11 × 10−1 5.63 × 10−2 8.62 × 10−2

Cumulative 4.05 × 10−1 4.28 × 10−1 3.99 × 10−1 4.21 × 10−1 3.74 × 10−1 3.90 × 10−1

Expected 3.45 × 10−2 3.51 × 10−2 3.49 × 10−2 3.53 × 10−2 3.75 × 10−2 3.76 × 10−2

webspam-t Divestiture 8.11 × 10−3 1.09 × 10−2 7.72 × 10−3 1.04 × 10−2 5.63 × 10−3 7.73 × 10−3

Cumulative 4.29 × 10−2 4.60 × 10−2 4.26 × 10−2 4.57 × 10−2 4.32 × 10−2 4.54 × 10−2

second term corresponds to the divestiture loss, and each datum zp corresponds to the

example regarding the divestiture loss. P is an example set that satisfies two conditions:

(1) the example was extracted from the training dataset in exchange for test examples;

(2) the example was correctly classified when the example appeared in the training phase.

The cumulative loss is defined as the sum of these two losses.

Let the weight vector spaces W be a D-dimensional Euclidean space where D is the

number of features. We use the logistic loss as a loss function. Each algorithm learns the

weight vector from training set through 1 iteration. Learning rates are ηt = η/
√
t. We

vary η from 103 to 1.91× 10−3 with common ratio 1/2 to minimize cumulative loss.

5.5.1 Experimental Results

Table 5.3 shows the experimental results when we apply OGD and E-OGD to five datasets.

These results indicate E-OGD has a crucial advantage to make divestiture losses lower

in all settings, and this effect contributes to low cumulative losses. As a result, E-OGD

outperforms OGD on all datasets. Figure 5.1 plots loss values in each 10,000 rounds

when we used BtA dataset to evaluate the performance. These results show that E-OGD

has obtained significantly lower divestiture losses than OGD during most rounds. Low
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Fig. 5.1. Experimental results on BtA dataset in each 1,000 rounds: the expected loss,

divestiture loss, and cumulative loss. The x-axis is the number of rounds. The

y-axis describes the value of each loss. The solid curves are the results obtained

by E-OGD. The dotted curves are the results by OGD.

divestiture loss leads to low cumulative loss, and E-OGD has constantly outperformed

OGD with respect to cumulative loss. The difference of expected losses between two

algorithms becomes smaller while the number of received data increases. On the other

hand, the difference of divestiture losses between two algorithms becomes bigger. This

result means that E-OGD becomes superior to the normal OGD with respect to the

cumulative loss while the data increases.

Table 5.4 shows the results of importance-aware update versions. These results indicate

that the importance-aware update improves the performance of E-OGD in most exper-

imental settings. Moreover, E-OGD largely outperforms OGD in terms of cumulative

losses.

In addition to the normal setting, we perform several experiments. We show a brief

result here. First, we verify that E-OGD outperformed OGD in most datasets when we

set the hinge loss as a loss function. After that, we make the value of γ bigger and
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Table. 5.4. Experimental results among importance-aware update family: the expected

loss, divestiture loss, and cumulative loss (Iteration: 1). The lowest value in

each replace rate r, loss type, and dataset are written in bold.

r = 0.05 r = 0.1 r = 0.3

Loss Type E-OGD OGD E-OGD OGD E-OGD OGD

Expected 3.11 × 10−2 3.85 × 10−2 3.40 × 10−2 4.14 × 10−2 5.20 × 10−2 5.86 × 10−2

news20 Divestiture 1.37 × 10−2 2.20 × 10−2 1.31 × 10−2 2.08 × 10−2 9.84 × 10−3 1.59 × 10−2

Cumulative 4.48 × 10−2 6.05 × 10−2 4.70 × 10−2 6.22 × 10−2 6.18 × 10−2 7.46 × 10−2

Expected 3.53 × 10−2 3.80 × 10−2 3.95 × 10−2 4.18 × 10−2 5.69 × 10−2 5.79 × 10−2

rcv1 Divestiture 1.25 × 10−2 1.78 × 10−2 1.18 × 10−2 1.68 × 10−2 9.10 × 10−3 1.30 × 10−2

Cumulative 4.79 × 10−2 5.58 × 10−2 5.13 × 10−2 5.87 × 10−2 6.60 × 10−2 7.09 × 10−2

Expected 3.35 × 10−1 3.13 × 10−1 3.34 × 10−1 3.13 × 10−1 3.30 × 10−1 3.09 × 10−1

algebra Divestiture 5.89 × 10−2 1.02 × 10−1 5.58 × 10−2 9.68 × 10−2 4.33 × 10−2 7.52 × 10−2

Cumulative 3.94 × 10−1 4.16 × 10−1 3.90 × 10−1 4.09 × 10−1 3.73 × 10−1 3.85 × 10−1

Expected 3.29 × 10−1 3.11 × 10−1 3.27 × 10−1 3.10 × 10−1 3.18 × 10−1 3.03 × 10−1

BtA Divestiture 7.64 × 10−2 1.17 × 10−1 7.24 × 10−2 1.11 × 10−1 5.62 × 10−2 8.61 × 10−2

Cumulative 4.05 × 10−1 4.28 × 10−1 3.99 × 10−1 4.21 × 10−1 3.74 × 10−1 3.89 × 10−1

Expected 2.62 × 10−2 2.75 × 10−2 2.61 × 10−2 2.74 × 10−2 2.79 × 10−2 2.90 × 10−2

webspam-t Divestiture 8.29 × 10−3 1.16 × 10−2 7.94 × 10−3 1.11 × 10−2 5.87 × 10−3 8.30 × 10−3

Cumulative 3.45 × 10−2 3.91 × 10−2 3.40 × 10−2 3.85 × 10−2 3.38 × 10−2 3.73 × 10−2

verify that E-OGD has maintained an advantage over OGD. These results indicate that

the advantage of E-OGD becomes more crucial as the importance of the divestiture loss

becomes larger.

5.6 Chapter Summary

We establish an online and stochastic learning framework with a human cognitive bias by

incorporating the notion of the endowment effect. We establish an online and stochas-

tic learning framework with a human cognitive bias by incorporating the notion of the

endowment effect. In this framework, algorithms need to focus on minimizing not only

the original loss but also the divestiture loss. We developed new algorithms applicable to

this framework; Endowment-induced Online Gradient Descent (E-OGD). We theoretically

show that E-OGD has strong guarantees to have some desirable properties for both online

and stochastic learning frameworks with a human cognitive bias. Finally, we experimen-

tally show that our derived algorithms are effective at a large number of tasks involving

human engagements in this framework.

The incremental learning framework with a human cognitive bias has several open

issues. The first challenge is a more sophisticated choice of ηt. To obtain the lowest

convergence rate, it is the best to set ηt as proportional to rt(zt). However, exact matching
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is almost impossible because the parameter rt(zt) is conditioned on a sequence of previous

predictions. In the standard incremental learning setting, algorithms cannot preserve the

history of observations and its prediction results. Online density estimation is one possible

way to bridge this gap for precisely reproducing the data distribution D and dynamically

refining step size ηt.

Another difficulty is how to deal with the similarity of data. When we use the machine

learning algorithm, sometimes we encounter situations in which several data are similar to

but not exactly the same as previously seen data. We will verify whether the endowment

effect is activated even when data are quite similar to each other. Furthermore, we

will incorporate this effect into the optimization problem as a modified version of this

framework.

The third issue is an extension to other frameworks of large-scale learning, such as the

mini-batch and distribution frameworks. To incorporate the endowment effect into these

settings, the divestiture loss should be internalized into the optimization problems and

the appropriate definition of the divestiture loss should be analyzed. We will integrate a

human cognitive bias into other frameworks to achieve a user-friendly machine learning

architecture.

The last issue is the integration of the regularization term, especially for sparsity-

inducing regularization methods. The above analyses are focused on the condition where

the regularization terms does not exist. It is not easy how to integrate these regularization

terms into the online and stochastic learning framework with a human cognitive bias.



123

Chapter 6

Conclusion

This thesis focuses on the analysis and design of subgradient-based online and stochas-

tic learning frameworks applicable to real-world problems. In applying these learning

algorithms to real tasks, the characteristics of the data and the humans that evaluate

prediction results affect the performance of the algorithms, and we have seen that several

biases occur. Here, we focus on the truncation bias and cognitive bias in an attempt to

improve the applicability of learning algorithms.

In Chapter 1, we described how machine learning is being used for massive data analysis.

In particular, we introduced the supervised learning framework and described the basics of

linear learners, loss functions, regularization methods, and the subgradient-based learning

framework. Furthermore, we described some of the basic mathematical tools, such as

sparse vectors, convex analysis, Bregman divergence, and duality. These tools have been

frequently used in analyses of online and stochastic learning algorithms.

In Chapter 2, we introduced the online learning framework, in particular, the

subgradient-based online learning framework. Online learning processes a bunch of data

on datum at a time. This sequential process can be applied to numerous kinds of data,

such as streaming data and adversarial data. We summarized the subgradient-based

online learning algorithms, including the parameter update procedure, the performance

measures (i.e., regret), and several state-of-the-art subgradient-based online learning

algorithms. In addition, we showed several extensions and mistake-bound-based online

learning algorithms as alternatives to regret-based algorithms. In Chapter 3, we in-

troduced the stochastic learning framework. Stochastic learning is based on stochastic

optimization, and it works by iteratively updating a hypothesis function through an

unbiased estimator of the subgradient of the objective function. Similar to Chapter 2, we

described the parameter update procedure of the subgradient-based stochastic learning
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algorithms and their performance measure (i.e., expected loss). Next, we described

several approaches to giving an upper bound to the objective function: the generalization

bound and online-to-batch conversion. After that, we described several state-of-the-art

stochastic learning algorithms. In particular, we described Pegasos, a novel algorithm

which utilizes online-to-batch conversion. Moreover, as a novel way of efficiently utilizing

the generalization bound, we showed a family of stochastic gradient descents with a linear

convergence property.

These frameworks and algorithms are very efficient; however, we find that several unique

biases occur when subgradient-based incremental learning algorithms are used in practi-

cal applications. These biases critically affect the performance of incremental learning

algorithms. We analyzed the characteristics of these biases and showed that they make

the conventional objective definitions in online and stochastic learning frameworks inap-

propriate as performance measures.

In Chapter 4, we dealt with the truncation bias. The truncation bias appears in the

sparse online learning framework. Sparse online learning has recently gained a lot of at-

tention because it enables us to obtain a compact predictive model with an online update

scheme, which saves memory space and speeds up computations. First, we described

sparsity-inducing regularization methods and sparse online learning as a combination of

sparsity-inducing regularization and the online learning framework. Then, we introduced

the truncation bias by showing how the heterogeneity of each feature characteristic affects

the algorithm’s predictive performance through toy examples. Through the effect of this

bias, many features tend to be removed regardless of their importance to the prediction.

To solve this problem, we mathematically formulated the truncation bias, integrated it

into the objective functions, and developed new algorithms to solve this problem in an

online manner. We proposed feature-aware L1-regularization methods to dynamically

integrate information on all previous subgradients for alleviating the effect of the trunca-

tion bias without pre-processing. We theoretically proved that our algorithms maintain

the advantages of computational efficiency and a convergence guarantee and empirically

demonstrated their superiority over the state-of-the-art algorithms in terms of prediction

performance and sparsity of the predictive models.

In Chapter 5, we solved the human cognitive bias problem. Incremental learning al-

gorithms iteratively update predictive models, therefore, they sometimes make incorrect

predictions on the data that were correctly classified in the past. We find that such incon-

sistent predictions have a big effect on the humans who conduct the evaluations, and that

the effect originates from cognitive biases, especially the endowment effect theory. For
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example, when developing services based on the incremental learning algorithms, maxi-

mization of the user utility becomes the objective. In these cases, cognitive bias is a very

important consideration. We experimentally showed how such inconsistent prediction be-

havior affects the user utility through subjective experiments. The results verified that

this effect on the user utility is non-negligible. After that, we formalized the divestiture

loss, which is a mathematical model to represent this cognitive bias and its effect on user

utility. We then developed new objective functions and new algorithms by integrating

this new loss as an objective measure we would like to minimize. We showed theoretical

and empirical results verifying the effectiveness of our algorithms.
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Appendix A

Another Choice of Step Sizes for

E-OGD

As an alternative to the setting of (5.6), we utilize another sequence of step sizes in the

appendix. We set the step size as follows:

ηt =
c√
t

1

(1 + γ)Nt
(A.1)

where Nt is the number of wrong prediction from round 1 to round t.

Lemma 18. When we set step sizes as (A.1) , (rt/ηt)− (rt−1/ηt−1) ≥ 0 for all t ≥ 2.

Proof. It is straightforward to show that for any t ≥ 2, ηt < ηt−1 is satisfied from the

definition of ηt. From this property, we see that (rt/ηt) − (rt−1/ηt−1) ≥ 0 is always

satisfied when rt = 1 + γ (regardless of whether rt−1 = 1 or 1 + γ). When rt = 1,

the algorithm misclassified the example at t-th round. Therefore, Nt is incremented

and rt/ηt > (1 + γ)/ηt−1 is satisfied. In summary, (rt/ηt) − (rt−1/ηt−1) ≥ 0 is always

satisfied.

The next theorem gives the regret upper bound of E-OGD.

Theorem 17. Let {wt}t=1:T+1 be derived according to E-OGD’s update rule. Assume

that for all t ≥ 1, ∥wt∥2 ≤ R, ∥∇ℓt(wt)∥2 ≤ G. When we set {ηt}t=1:T as in (A.1) and

c =
√
2R/G, the upper bound of regret becomes

Regret(T ) ≤
√
2RG

(
(1 + γ)NT+1 + (1 + γ)

)√
T .

If NT ≪ T , the regret bound becomes sublinear. In general, the probability of mistakes

gets lower when the algorithm converges and NT would not get larger.
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Proof. The main procedure of the proof follow the one of Theorem 15, we obtain

T∑
t=1

rt⟨gt,wt − u⟩ ≤ 2R2rT
ηT

+
G2

2

T∑
t=1

ηtrt . (A.2)

In addition,
T∑
t=1

ηt ≤
T∑
t=1

c√
t
≤ 2c

√
T (A.3)

The following inequality is derived by setting rt = 1 + γ for all t in the second term.

Regret(T ) ≤ (1 + γ)

(
2R2

ηT
+
G2

2

T∑
t=1

ηt

)

≤
(
2R2(1 + γ)NT+1

c
+ cG2(1 + γ)

)√
T . (A.4)

When c =
√
2R/G, we have

Regret(T ) ≤
√
2RG

(
(1 + γ)NT+1 + (1 + γ)

)√
T .

Theorem 18. Assume that the conditions set in Theorem 17 are satisfied and there is

an integer tp such that rt(z) = rtp(z) for any t ≥ tp. The following formula is satisfied

for any u ∈ W,

EDT [Ez∼DP
[ℓ(w̄; z)]]− Ez∼DP

[ℓ(u; z)] ≤
√
2RG

(
(1 + γ)NT+1 + (1 + γ)

)
√
T − (tp − 1)/

√
T

. (A.5)

If NT ≪ T and tp ≪ T , the convergence speed is O(1/
√
T ). When the number of data

is finite, there exists a constant tp such that rt(z) = rtp(z) for any t ≥ tp.

Proof. First, we analyze the regret bound from round tp to T .

Regret(tp : T ) ≤ (1 + γ)

2R2

ηT
+
G2

2

T∑
t=tp

ηt


≤ (1 + γ)

(
2R2(1 + γ)NT

c
+ cG2

)√
T (A.6)

When c =
√
2R/G,

Regret(T ) ≤
√
2RG

(
(1 + γ)NT+1 + (1 + γ)

)√
T .
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For simplicity, we will describeHDTEz∼DP
[ℓ(·; z)] as DP (·). By the reformulation as in the

same case of Theorem 16, the expectation of the second term is reformulated as follows:

EDT

 T∑
t=tp

rt((xt, yt))ℓt(u)

 = (T − tp + 1)EDT [DP (u)] .

The expectation of the first term can be reformulated as:

EDT

 T∑
t=tp

rt((xt, yt))ℓt(wt)

 = (T − tp + 1)EDT [DP (w̄)] .

The following formula is obtained by combining these formulas with Lemma 17

EDT [DP (w̄)]− EDT [DP (u)] ≤
1

T − tp + 1
EDT [Regret(tp : T )]

≤
√
2RG

(
(1 + γ)NT+1 + (1 + γ)

)
√
T − (tp − 1)/

√
T

. (A.7)


