
TEMPORAL AND SPATIAL MOTION STYLE IMITATION

BASED ON PHYSICAL CONSTRASINTS

FOR HUMANOID ROBOT

(人型ロボットのための物理的制約に基づいた

時間的ならびに空間的動作スタイルの模倣)

BY

TAKAHIRO OKAMOTO
岡元崇紘

A DOCTORAL DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL OF

THE UNIVERSITY OF TOKYO

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF INFORMATION SCIENCE AND TECHNOLOGY

DECEMBER 2014

博士論文





c⃝ Copyright by Takahiro Okamoto 2014
All Rights Reserved





Committee:

Kiyoharu AIZAWA (Chair)
Takeshi NAEMURA

Yoichi SATO
Takeshi Oishi

Toshihiko YAMASAKI

Supervisor:

Katsushi IKEUCHI



ABSTRACT

Recently entertainment area is becoming one of promising applications of
robotics technologies. Humanoid robots have appearance resembling a human
being, therefore, they are suitable for entertainments such as singing, dancing,
and natural interaction with guests at theme parks or stage shows.

For such applications, methods for creating contents such as natural and
human-like motions for humanoid robots are important. One of those meth-
ods is capturing human motions, using a motion capture system, and applying
them to robots.

On the other hand, just repeating the performances will soon become obsolete.
To avoid this and to improve the live aspect of entertainment robots, capability
of showing various behaviors according to situation will be desirable. In case
of dance performance, autonomously synchronizing the whole-body dance mo-
tions with the musical tempo is an important task for a dancing robot. To create
such motion variation, in the CG community, there are many studies to reuse
captured motion data by editing and processing as necessary. But unfortunately
these are unavailable on physical humanoid robots with severe constraints.

In this thesis, we propose methods to automatically generate variations of
whole-body motions feasible for humanoid robots. As approaches, we observe
how human motions vary according to situations, and then use insights from
the observation for robot motion generation. Those motion variations specific
to particular constraints are called motion styles in this thesis. Proposed method
first analyze the given human motions via a learning-from-observation (LFO)
paradigm, and then extract parameters which abstract those motions. Finally,
natural and human-like robot motions are generated by optimizing those param-
eters to represent the humans motion styles well within the physical constraints
of robots.

In thesis, we propose two type of motion styles and frame works to imitate
those styles using physical humanoid robots.

We present a method to generate dance motions according to various musical
tempos. When a same human dancer performs a dance to a same musical piece,
the details of the dance movements vary tempo to tempo. It would appear
that dance motions are abbreviated, preserving only essential factors as dance,
to follow tempos within the ability to exercise. We call these motion styles,
which are specific to temporal constraints such as music tempos, as Temporal
Motion Styles. In this research, we observed temporal motion styles, and present
a method to imitate those styles using a physical humanoid robot. First of all,
we observed a same dance by three dancers in various tempos. As a result of
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observation, we obtained insights that specific postures, which we call keypose,
tend to be preferentially preserved even if tempos becomes faster. Based on
the insights we designed a framework to generate the dance motion variations
according to musical tempos and within the physical constraints of the robot
platform. Additionally, as an application of the temporal motion styles, we
present a method to generate dance motions in real-time to realize a dancing
robot that can dance to live music with changeable tempo.

We present a method to generate motion variations by imitating person-
specific styles in motions. We assume such person-specific motion styles derive
from difference in physical characteristics, and call them Spatial Motion Styles. In
this thesis we chose a ring toss game as a target motion and observed demonstra-
tions, captured from seven players whose motion style are different from each
other, representing them as abstract parameters defined in a LFO paradigm. As
a result of observation, we found that statistical distribution of the parameter
differ according to personality. Based on the insights, we propose a framework
for generating robot motions that reflect person-specific motion styles which are
automatically extracted from human demonstrations. To verify our proposed
method we applied it to a ring toss game, and generated motions for a physical
humanoid robot. Styles from each of three random players were extracted au-
tomatically from their demonstrations, and used for motion generation. Finally
the robot could imitate the styles of each player without exceeding the limitation
of its physical constraints, while tossing the rings to the goal.

Thus, in this thesis, we focused on motion styles which are not actively devel-
oped in the filed of robotics, proposed methods to generate motion variations by
extending a LFO paradigm, and finally validated via experiments with physical
humanoid robots.

Imitation of temporal motion styles described in this thesis will be applicable to
other dances. Imitation of spatial motion styles will also applied widely to other
activities other than ring toss motions. Additionally, such kind of generation of
motion variations by imitating motion styles are not only extend the expression
of entertainment robots but also applicable to such as digital archive of intangible
cultural heritages which are heirless and vanishing.
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論文要旨

近年，エンターテイメントはロボット技術の応用として有望な分野の一つになっ
ている．特に，ヒューマノイドロボットは人間に近い外見を有しているため，テー
マパークやステージショーなどにおいて，歌や踊り，人との自然なインタラクショ
ンといった娯楽を提供するなど様々な活用が期待される．
そのような応用のために，ヒューマノイドロボットの自然で人間らしい動作と

いったコンテンツを作成する手法は重要である．例えば，モーションキャプチャシ
ステムによって取得した人間の動作をロボットに適用する事は，そうした解決方法
の一つである．
一方で，事前にプログラムされたパフォーマンスを繰り返すだけではすぐに陳腐

化してしまう．これを避け，エンターテイメントロボットとしてのライブ感を向上
させるためには，オンボードのカメラやマイクロフォンなどを通じて実環境をセ
ンシングしながら，ロボットが状況に応じた様々な振る舞いを提示出来ることが望
ましい．ダンスパフォーマンスの場合であれば，全身動作の動きと音楽のテンポを
自律的に同期させる事は，踊りロボットにとって重要なタスクである．こうした動
作のバリエーションを作成するために，コンピュータグラフィックスの分野では，
必要に応じてモーションキャプチャデータを加工・編集し，再利用するための研究
が多くある．しかし残念ながら，これらは厳しい制約条件を持つロボット実機の
ヒューマノイドロボットには適用できない．
そこで本研究では，ヒューマノイドロボットで実行可能な全身動作のバリエー

ションを自動的に生成する手法を提案する．アプローチとして，我々は状況に応じ
てどのように人間の動きが変化するかを観察し，その観察から得られた知見をロ
ボットの動作生成に利用する．本稿では特定の制約条件に固有な動作のバリエー
ションを「動作スタイル」と呼ぶ．提案手法はまず，与えられた人間の動きを観察
学習パラダイムによって解析し，それらの動作を抽象化するパラメータを抽出す
る．それらのパラメータを，ロボットの物理的制約の範囲内で人間の動作スタイル
をよく表現するように最適化する事で，自然で人間らしいロボットの動作が生成さ
れる．
本論文では，2つのタイプの動作スタイルと，実機ロボットを使ってそれらのス

タイルを模倣するためのフレームワークを提案する．
一つ目の研究では，我々は様々な音楽のテンポに応じた舞踊動作を生成する手法

を提案する．本手法は，ある同一の楽曲に合わせて様々なテンポで踊る，人間の変
形ストラテジーの観察に基づいている．ある同一の舞踊者が同一の楽曲に合わせて
踊る場合，動きの細部はテンポによって異なっている．これは，運動能力の範囲内
でテンポに追従するために，舞踊によって本質的な部分を残しながら，舞踊動作を
省略しているためであると考えられる．我々はこれら音楽のテンポなど，時間的な
制約に固有の動作スタイルを「時間的動作スタイル」と呼ぶ．本研究では，我々は
時間的な動作スタイルを観察し，実機ロボットで模倣する方法を提案する．まずは
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じめに，我々は様々なテンポにおける 3人の舞踊者の同一の舞踊を観察した．観察
の結果，我々がキーポーズと呼ぶ特定の姿勢が，テンポが速くなっても優先的に保
存される傾向があるという知見を得た．この知見に基づいて，我々は音楽のテンポ
に応じてロボットの物理的な制約の範囲内で舞踊動作のバリエーションを生成する
フレームワークを設計した．加えて，時間的な動作スタイルの応用例として，テン
ポが変化する生演奏に合わせて踊る舞踊度ロボットを実現するための，リアルタイ
ムな舞踊動作生成手法を提案する．
二つ目の研究では，我々は人に固有な動作スタイルによるバリエーションの生成

手法を提案する．本手法では，タスクモデルによってある人の複数回の動作を解析
し，共通する振る舞いをその人に固有なスタイルとして抽出する．我々はそのよう
な人に固有の動作スタイルが身体特性の違いによるものであると仮定し，「空間的
動作スタイル」と呼ぶ．本稿では我々は輪投げ動作を対象の動作として選択し，ス
タイルの異なる 7人のプレイヤーから抽出された動作を LFOで定義される抽象パ
ラメータによって表現し観察した．観察の結果我々は統計的な分布が個性によって
異なるという知見を得た．この知見に基づき，我々は人間の動作から自動的に抽出
された人に固有の動作スタイル反映したロボットの動きを生成するフレームワーク
を提案する．提案手法の妥当性を検証するために，我々はそれを輪投げ動作に適用
し，実機ロボットの動作を生成した．ランダムに選ばれた 3人のプレイヤーの動作
スタイルが動作生成に用いられ，最終的にロボットは輪を目標に向かって投げなが
ら，物理的な制約の範囲内でそれぞれのプレイヤーのスタイルを模倣することが出
来た．
以上，本稿ではこれまでにロボティクスの分野であまり扱われて来なかった動作

スタイルの模倣について着目し，LFOのフレームワークの拡張によって，ロボッ
トの全身動作パターンのバリエーションとして表現する手法を提案，実際のヒュー
マノイドロボットを用いたデモンストレーションによってその有効性を示した．
本研究で提案する時間的スタイルの模倣は，舞踊動作というドメインの中であれ

ば多くの異なる舞踊にも有効であり，空間的な動作スタイルの模倣は輪投げ動作以
外の様々な全身動作について広く適用可能であると考えられる．また，このような
動作スタイルの模倣によるバリエーションの生成は，エンターテイメントにおける
ヒューマノイドロボットの表現の幅を広げるだけでなく伝統舞踊など後継者不足に
より失われつつある無形文化財のアーカイブ化においても活用が期待されるもので
ある．
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Chapter 1

Introduction

1.1 Background

Recently entertainment area is becoming one of promising applications of
robotics technologies. Animal robots and humanoids are becoming popular as a
personal hobby. Humanoid robots have appearance resembling a human being,
therefore, they are suitable for entertainments such as singing, dancing, and
natural interaction with guests at theme parks or stage shows [Got07, KFI∗03,
SWA∗02, Got07, KKM∗09].

For such applications, methods for creating contents such as natural and
human-like motions for humanoid robots are important. For example, one of
those methods is capturing human motions, using a motion capture system,
and applying them to robots [NNK∗07, PHRA02, YRA13, JM02, SYK∗08, NK12,
MYN13]. However, in most cases, direct mapping of human motions to robots
does not work because of the differences in physical characteristics such as
body type, mass distribution, degrees of freedom, angular range, and speed
range. Therefore, in previous works, modification of human motions according
to physical constraints of the robot and dynamic compensations of motions, such
as balance adjustment, have focused on and actively studied.

On the other hand, just repeating the performances, which are preliminar-
ily programmed, will soon become obsolete. To avoid this and to improve
the live aspect of entertainment robots, capability of showing various behav-
iors according to situation, sensing the actual environment via on-board cam-
era/microphones, will be desirable. In case of dance performance, autonomously
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Temporal Motion Style Spatial Motion Style

Specific to Temporal constraints Spatial constraints

Instance of constraints Music tempo Physical feature

Table 1.1: The definition of temporal and spatial motion styles.

synchronizing the whole-body dance motions with the musical tempo is an im-
portant task for a dancing robot; When tempos of music become faster, the
dancing robot have to dance more faster according to recognized tempos with-
out losing balance. In this case the robot needs variation of dance motions whose
tempos are different from each other. To create such motion variation, in the CG
community, there are many studies to reuse captured motion data by editing
and processing as necessary [BW95, HPP05, HKG06, MPS06]. But unfortunately
these are unavailable on physical humanoid robots with severe constraints.

In this thesis, we propose methods to automatically generate variations of
whole-body motions feasible for humanoid robots. As approaches, we observe
how human motions vary according to situations, and then use insights from
the observation for robot motion generation. Those motion variations specific
to particular constraints are called motion styles in this thesis. Proposed method
first analyze the given human motions via a learning-from-observation (LFO)
paradigm, and then extract parameters which abstract those motions. Finally,
natural and human-like robot motions are generated by optimizing those param-
eters to represent the humans motion styles well within the physical constraints
of robots.

In thesis, we propose two type of motion styles as shown in table 1.1 and
frame works to imitate those styles using physical humanoid robots.

Temporal Motion Styles and Imitation by a Humanoid Robot

We present a method to generate dance motions according to various musical
tempos. This method is based on insights from observation of humans modifi-
cation strategies to dance to a same musical piece in various tempos. When a
same human dancer performs a dance to a same musical piece, the details of the
dance movements vary tempo to tempo. It would appear that dance motions are
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abbreviated, preserving only essential factors as dance, to follow tempos within
the ability to exercise. We call these motion styles, which are specific to temporal
constraints such as music tempos, as Temporal Motion Styles. In this research, we
observed temporal motion styles, and present a method to imitate those styles
using a physical humanoid robot. First of all, we observed a same dance by three
dancers in various tempos. As a result of observation, we obtained insights that
specific postures, which we call keypose, tend to be preferentially preserved even
if tempos becomes faster. Based on the insights we designed a framework to
generate the dance motion variations according to musical tempos and within
the physical constraints of the robot platform. Additionally, as an application of
the temporal motion styles, we present a method to generate dance motions in
real-time to realize a dancing robot that can dance to live music with changeable
tempo.

Spatial Motion Styles and Imitation by a Humanoid Robot

We present a method to generate motion variations by imitating person-
specific styles in motions. In this method, a robot analyzes multiple demonstra-
tions performed by a person using task models, and then extracts the common
behaviors as styles for that particular person. We assume such person-specific
motion styles derive from difference in physical characteristics, and call them
Spatial Motion Styles. In this thesis we chose a ring toss game as a target motion
and observed demonstrations, captured from seven players whose motion style
are different from each other, representing them as abstract parameters defined
in a LFO paradigm. As a result of observation, we found that statistical distribu-
tion of the parameter differ according to personality. Based on the insights, we
propose a framework for generating robot motions that reflect person-specific
motion styles which are automatically extracted from human demonstrations.
To verify our proposed method we applied it to a ring toss game, and generated
motions for a physical humanoid robot. Styles from each of three random players
were extracted automatically from their demonstrations, and used for motion
generation. Finally the robot could imitate the styles of each player without
exceeding the limitation of its physical constraints, while tossing the rings to the
goal.
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1.2 Thesis Overview

Chapter 2 reviews the concept of a LFO paradigm, and then describes a
framework of robot motion generation based on task models defined in a LFO
paradigm. Proposed method in this thesis are extension of task models and
described in the context of LFO.

Chapter 3 describes about observation of temporal motion styles. First of
all, we report the analysis of dance motions to various musical tempos. Then we
present a method to modify dance motions based on insights from analysis, and
generate variations according to arbitrary musical tempos. This is done by ex-
tending a dance motion generation based on task model introduced in chapter 2.
Proposed method in this chapter is applied to the Don-pan dance, a Japanese
folk dance from Akita prefecture. Experiments with a physical humanoid robot
HRP-4C validated that dance motions generated by our proposed method are
feasible for robots. Additionally, as an application of temporal motion styles,
we present a framework for on-line dance motion generation based on temporal
motion styles. This is a key-component for a robot dancer that can dance to live
music with changeable tempos

Chapter 4 describes about observation of spatial motion styles. First of all,
we observe demonstrations of a target motion performed by several persons and
then model the common structure of the target motion based on task models.
Then multiple demonstrations from each person are analyzed based on the model
and parameterized using abstract parameters. The person-specific statistical
distribution of the abstract parameters is characterized as spatial motion styles
of the person. Then we introduce a framework to generate robot motions that
are considered similar in motions styles automatically extracted from multiple
demonstrations of a particular person.

Finally, Chapter 5 concludes this thesis. We summarize this thesis, discuss
our contribution, and then mention about future work.
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Chapter 2

Learning-from-Observation Paradigm

Our proposed method in this thesis are extension of a concept of a LFO
paradigm. This chapter first gives an explanation of the concept of the paradigm,
and then describes how to imitate human motions in those context.

2.1 Learning from Observation

Teaching robots has been one of the most important issues in the field of
robotics. Learning skills through observing human demonstrations is an intel-
lectual ability we desire from intelligent robots. Especially for versatile robots
which work in our living environment for end-users, such capability will be es-
sential. Because end-users does not necessarily have special expertise in robotics
enough to program the robot.

To achieve such learning capability Ikeuchi et al [IS94, SI92] has introduced
a learning from observation (LFO) paradigm and developed an abstract model
called task model in the concept. In contrast to a burst of reinforcement learn-
ing approach [CGB07, MK98, Sch99, Ude99], this model first gives robots the
prior knowledge to understand what a human is doing and to extract reusable
essences within a specific task domain. The concept of task models has been
successfully applied to complex manipulation tasks [IS94, KI97, TMO∗06a]. The
use of robots is expanding beyond industrial purposes to the entertainment
area. It is also used to imitate full-body human motions such as a dance perfor-
mance [NNK∗07]. These examples illustrate a potential of task models in a wide
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Figure 2.1: Learning from Observation.

range of applications, and accumulation of such applications to demonstrate the
potential is one of our ultimate goals.
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2.2 Task Models

As mentioned above, the LFO enables robots to learn how to perform various
tasks from observing human performance [IS94, SI92]. As shown in Figure 2.1,
the LFO generates robot actions through the following three steps:

1) A human dancer performs actions in front of the robot (Figure 2.1 left).

2) The robot recognizes those demonstrated actions based on pre-defined ab-
stract task models, and constructs a series of task models (Figure 2.1 mid-
dle).

3) The robot converts those recognized task models into robot physical actions
(Figure 2.1 right).

In general, performing the same action does not require mimicking the entire
action performed. It is difficult, if not impossible, to repeat the same trajectories to
be mimicked, because the humanoid robot has different dimensions from those
of the human dancer. Instead, for this purpose, characteristics or important
features of the actions are extracted and performed.

Essential and nonessential parts in each action are defined based on the
knowledge of task domains. This top-down approach of designing domain-
specific task models distinguishes our approach from other bottom-up learning
approaches such as those developed by the Nakamura group [ITN03b, ITTN03,
ITN03a] or the Kawato group [MK98, Sch99, Ude99]. Our top-down approach
first defines task domains such as polyhedral-world operations [IKS93], flex-
ible rope handling [TMO∗06b], grasping motions[KI97], and whole body mo-
tions [OTKI03]. Then we define task models to represent all necessary essential
actions based on domain knowledge.

The LFO introduces abstract task models to represent essential parts in a
sequence of actions. Each abstract task model describes the task, i.e., what to
do. Each task model also contains skill parameters that explain how to do the
specific task. Usually recognizing tasks and extracting skill parameters are done
automatically from an input data.
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2.3 Motion Imitation Based on Task Models

Our humanoid robots are based on the LFO. In this section we explain how
to imitate human motions based on task models taking a dancing robot as an
example.

Our method handles upper-body, middle-body, and lower-body motions
separately by defining different types of task models. This separation is natural
because although the whole body dance motion is conducted simultaneously,
the lower, middle, and upper bodies have different roles or constraints to play
in the performance of the dance. Considering how human dancers are taught
a dance in lessons, those body motions are often taught separately. Thus this
separation is natural also for humans, and does not destroy the basic structure
of the dance.

The constraint of lower-body motion is to stably support the whole body
while performing a dance. The lower-body task model [NNK∗07] is defined
based on two foot-floor contacting conditions, STEP and STAND tasks (Fig-
ure 2.2). For the lower-body motion a continuous foot motion is segmented
and recognized using these defined task models. The skill parameters defined
for each task model characterize the trajectory of the foot, such as highest po-
sitions and length of stride (Figure 2.3). The obtained skill parameters modify
the default trajectory of STEP tasks while stably supporting the whole body.
Inverse-kinematics provides the joint angles of the robot’s foot.

The aim of middle-body, i.e. the waist, motion is two-fold: expression of the
dance, and balance maintenance by controlling zero moment point (ZMP). For
dance expression, the SQUAT task [NNK∗07] is defined to lower the waist posi-
tion. The skill parameters attributed to this SQUAT task are: how deep the squat
is, and the duration of each squat (Figure 2.4). The horizontal trajectory of the
middle-body is generated by computing the balance of the whole body [NkK∗02].
Although some dance categories may include artistic expressions with the hori-
zontal movements of middle-body, those are out of our current scope to maintain
dynamic stability.

The purpose of upper-body motion is to express the dance. Shiratori
et al [SNI04] introduced keyposes for representing such dance characteristics.
A keypose is defined as a fixed posture of a dancer for the purpose of providing
the viewers with expressions and meanings of a dance. Figure 2.5 shows some
of the keyposes in the Aizu-bandaisan dance, a Japanese traditional folk dance,
depicted by a dance teacher. Some expert dancers indicate that these keyposes
are the main points during the dance, and to mimic these keyposes is one of the
important tasks in showing the beauty of the dance. Thus, we define the perfor-
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mance of keyposes as the upper-body task models. Shiratori et al [SNI04] have
developed a method of extracting keyposes from continuous dance motions by
detecting brief stop motions of dancers corresponding to music beats as shown
in Figure 2.6. Upper body motions of a robot follow exactly its configurations
at the keypose timing. The trajectory between keyposes, regarded as a skill
parameter, is represented with a hierarchical B-spline.

By concatenating lower-body, middle-body, and upper-body motions using
Nakaoka system [NNK∗07], we can obtain the entire robot motion.
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Figure 2.2: Lower-body task models. This models are based on transitions of
foot-floor contact states. The STEP tasks and STAND tasks are complementary
to each other in lower-body motions.
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Figure 2.3: Lower-body skill parameters. The skill parameters obtained from
human motions modify the default trajectory of each task.

11



Depth

Duration

Timing

Squat

Figure 2.4: Middle-body skill parameters. The skill parameters obtained from
human motions modify the default trajectory of SQUAT tasks.
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Figure 2.5: Keyposes in Aizu-bandaisan dance. upper row: keyposes depicted
by a dance teacher. bottom row: brief stop motions of dancers corresponding to
music beats extracted by [SNI04].
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Figure 2.6: A method to detect keyposes. Keyposes are detected by extracting
motion frames where the speed of movement become locally minimum at the
timing of musical beats [SNI04].

14



Chapter 3

Temporal Motion Style

3.1 Introduction

The entertainment area is one of the promising application areas of hu-
manoid robots. Entertainment applications such as dancer robots or musician
robots, which even a human performer needs special practice to perform, require
special skills for robots, and, as a result, push the horizon of robotics technolo-
gies. When successful, the performance of entertainment robots fascinates an
audience.

Recently, development of such entertainment robots has accelerated as a
showcase of robotics technologies [KFI∗03, SWA∗02, Got07, KKM∗09]. Toyota
introduced musician robots at a recent AICHI expo [Got07]. Kosuge devel-
oped a dance partner robot for dance practice [KHHT03]. At the University
of Tokyo, our group have been developing a dancing robot based on the LFO
paradigm [NNK∗07, ISK∗08]. In a different context, AIST developed a healing
robot, PARO, for elderly people. As reported in psychological user studies rele-
vant to robots [SW11], if people are to become interested in a robot, they expect it
to achieve intelligent interaction, as if the robot were an actual human or animal.
Therefore, an entertainment robot needs to have intelligent interaction with its
environment as well as skillful motions.

Our dancing humanoid robot is based on task models, defined in the paradigm
of LFO. The robot has the capability of observing human dance motion, analyzing
such human dance motions using task models, and, finally, generating imitation
motions with balance maintenance within motor limitations.
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This chapter focuses on a human’s capability for dancing to music perfor-
mances of varying tempos, and proposes an algorithm to realize this capability in
a humanoid robot. The previous algorithm, proposed by Nalaoka et al. [NNK∗07]
realized a pre-defined static interaction with the environment; the resulting robot
can only perform a dance at a pre-fixed tempo. Proposed method in this chap-
ter considers dynamic interactions for the robot to be able to modify its motion
according to tempos of a given music piece.

3.1.1 Prior Works

Prior Works in the CG Community

Adjusting timings or time warping of captured human motions is pop-
ular in the field of computer graphics (CG) and animation. Bruderlin et al.
[BW95] proposed a method to synthesize a new walking motion from the orig-
inal one at different speeds based on a dynamic time warping (DTW) [SC78]
technique, and many researchers are applying DTW for adjustment of mo-
tion [HPP05, HKG06]. In addition, methods for synchronizing a motion pattern
with music [ABB05, LL05, SNI06] or retiming based on physical properties such
as gravity [MPS06] are proposed for editing the motion of CG characters. How-
ever, these methods cannot be applied to the motions of a physical humanoid
robot, which need consideration of joint limitations and maintaining balance.
Since even slow motions such as those of a Japanese traditional dance in its
original tempo need consideration of joint and balance limitation, faster motions
proportionally scaled would easily exceed the limitations. Additionally, keep-
ing artistic expression of faster dance motion within the limitations is necessary
in our case. Shiratori et al. [SKNI07, SI08] proposed a method to temporally
scale the captured motion data with such constraints; Their approach is based
on observation of human dancing at various music tempos and keeps artistic
expressions within the constraints. The only problem is, however, their method
can not be applied to lower-body motions because it may cause a slip of the foot.
So another method is required for lower-body motions.

Prior Works in the Robotics Community

Interaction via musical expression has been investigated in the robotics field.
Murata et al. [YNT∗07, MNY∗08] have described a humanoid robot that can step
to musical tempos using robot audition. Their work is focused on catching the
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target sound in a noisy environment including footstep or motor noise, and dif-
fers from our goal. Mizumoto et al. [MLO10] proposed a robot musician that
mutually interacts with a human musician using musical instruments, such as a
flute. Kojima et al. proposed a method to recognize various type of dance step
performed by a user and to create imitation motions off-line for a humanoid
robot with balance maintenance. Oliveria et al. [OGR08] proposed a small robot
that moves its limbs according to detected onset timings and features of mu-
sic in real time. Similarly, Grunberg et al. [GEKO09] proposed a humanoid
robot that reacts to musical tempo, beat, and style. Additionally proposed are
a robot that interacts with a human via simple dance [TS04, TFAM05, KMN09],
a robotic percussionist [WDP05] that listens to human playing in real time and
playback, a dance partner robot [KHHT03], and multiple quadrocopters flying
to music [SAD10]. However, complicated whole body motion such as human
dance and balance maintenance using legs were not dealt with in their works.
Our target is more challenging in the way that our humanoid robot not only
imitate artistic dance patterns using the whole body but also changes the speed
of dance motions according to musical tempos via robot audition. A temporal
scaling technique is necessary for the achievement of such a humanoid robot;
dance motions have to be modified according to arbitrary musical tempos.

3.1.2 Approach

This chapter, first, analyzes human dancing, and extracts modification strate-
gies, which we call temporal motion styles, used by skillful dancers to adapt
motions to music tempos. Then motion modification strategies, based on the
temporal motion styles, is proposed to create a dance motions at an arbitrary
musical tempo.

Here, before modification, the algorithm assumes that robot motion at a
certain music tempo is generated by using the Nakaoka system [NNK∗07]. The
validation of our proposed algorithm is conducted using a physical humanoid
robot HRP-4C.
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Figure 3.1: Observation of the Aizu-bandaisan dance performed by a dance
master. Dance motions are captured using an optical motion capture system
from VICON.

3.2 Observation of Temporal Motion Styles

The LFO method [NNK∗07] provides a new way for a robot to learn how to
dance at a fixed tempo when a human performance is observed. These learned
dance motions are, unfortunately, fixed to that particular tempo when learned.
One of the important features in performing a dance is for a dancer to vary its
body motions along with the tempo performed at that moment. When the music
tempo increases, the robot should dance more quickly; when the music tempo
decreases, the robot should dance more slowly. The research described in this
chapter aims to build such capability.

The variation strategy needs to be consistent with that of humans. This is
because we aim to design a dance robot that gives an impression similar to that
of a human dancer. For this purpose we first observed and analyzed how a
human dancer modifies his or her motions along with music tempos [OSKI10].
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Dance performances by human dancers at several different music tempos
were captured through an optical motion capture system, VICON (See Fig-
ure 3.1). We sampled them at the original tempo, 1.2 times faster, 1.5 times
faster, 1.8 times faster, and 2.0 times faster. Music at double speed is actually not
practical for the dance, but, because human can move more quickly than robots,
we need to investigate human performance to the music whose tempo is too fast
for human to move perfectly. We used the Aizu-bandaisan dance, a Japanese
traditional folk dance, as a dance example. This dance consists of cyclic patterns,
each of which takes about 10 seconds. Three dancers performed the 10-15 cycles
of the dance to each music tempo.

As was done in the previous task model design [NNK∗07], we assumed that
lower-body, middle-body, and upper-body would have different modification
strategies. As for upper-body motions, observation of temporal motion styles
for the Aizu-bandaisan dance and a modification algorithm are reported by
Shiratori et al. [SKNI07, SI08]. So we conduct observation of middle and lower
body motions separately, and then review the observation of the upper-body
motions [SKNI07, SI08] in the following subsection for consistency.
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Figure 3.2: STEP tasks in a cycle of the Aizu-bandaisan dance. We extracted 11
STEP tasks for one cycle of 9 seconds. Here, R-STEPn and L-STEPn denote the
n-th right and the left foot steps, respectively.

3.2.1 Lower-body Motions

The lower-body motions consist of STEP and STAND tasks. The STEP tasks
and STAND tasks are complementary to each other in the lower-body motions.
In the entire duration of one cycle of the dance, when the STEP tasks occur, the
STAND tasks do not occur, and when the STEP tasks do not occur, the STAND
tasks occur.

The Aizu-bandaisan dance consists of cycles of a sequence of tasks. In
Figure 3.2, we extracted 11 STEP tasks for one cycle of 9 seconds. Here, R-STEPn
and L-STEPn denote the n-th right and the left foot steps, respectively.

We observed start and end timing, length of stride, and the maximum speed
of foot tips as well as the trajectories for STEP tasks, and only the start and end
timing of the STAND tasks, as was done in our preliminary experiments reported
in [OSKI10, OSK∗14].
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Maximum Speed of the Foot-tip

Figure 3.3 shows how the maximum speed of the foot-tip varies with the
music tempo. As the music tempo become faster, the maximum speed of the
foot-tip also become faster. However, the maximum speed is 1.5 times faster
than original even in double tempo. From this observation, we learned that
the maximum speed of the foot-tip does not vary as much as that of the musical
tempo, probably due to the physical limitation of the dancer. Thus, the following
discussion focuses on timing, length, and trajectories.

Timing

Figure 3.4 shows the variance of start and end timings of step motions
depending on music tempos. Lines of different colors in the graph represent
different tempos. Here we have normalized the horizontal axis so that one cycle
of dance is always depicted from 0 to 1, independent of the music tempos. As
can be seen in the graph, when the tempo of music increases, the variance of non-
keypose steps become larger, while keypose steps have lower variance. Thus,
we can conclude:

L-1 Timing of a STEP near a keypose will be maintained.

L-2 Timing of a STEP far from any keypose will be adjusted when necessary to
accommodate music tempos.

Length of Stride

Figure 3.5 shows how the stride varies with the music tempo. The length of
a stride is maintained even though the tempo increases. We have also observed
a couple of examples of breakdown at a higher tempo. Thus, we can summarize
that:

L-3 The length of a stride will be maintained as much as possible up to a certain
threshold. Over this threshold, it will be reduced accordingly.

Trajectories of a Foot Tip

Figure 3.6 shows the trajectories of a foot tip in a STEP tasks at each tempo.
The STEP task has a special trajectory like kicking up at the last part of each cycle
of the dance. The trajectories become smaller when the music tempo increases.
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Figure 3.3: Maximum speed of foot-tip: each marker represents the average
maximum speed of foot-tip and length of stride in STEP tasks at each musical
tempo.

L-4 Trajectories of the foot tip become compact with increased music tempo.
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Figure 3.7: a SQUAT task in a cycle of the Aizu-bandaisan dance

3.2.2 Middle-body Motions

For SQUAT tasks we observe timing to reach the maximum depth, the
maximum depth, and the maximum speed of the waist. For the timing, as
shown in Figure 3.8 (a), we find that even though the music tempo increases as
depicted in the horizontal axis, the average timing does not change. The dancers
try to maintain the SQUAT timing as much as possible. In the Aizu-bandaisan
dance, this SQUAT corresponds to the keypose. The speed of the SQUAT and
the depth of the SQUAT are depicted in Figure 3.8 (b) and (c), respectively. As
shown in Figure 3.8 (b) as the music tempo increases, the speed of the SQUAT
increases and the depth of the SQUAT is maintained. However, beyond a certain
point, when it becomes difficult to increase the speed, the depth of the SQUAT
gradually decreases.

From observation, we found the following characteristics:

M-1 The timing of the SQUAT, which usually occurs at the keypose, is main-
tained independently of the music tempo. There is no difference in timing
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even when the music speed increases to twice the original.

M-2 Dancers try to maintain the depth of the SQUAT by increasing the speed
of the waist up to a certain music tempo. However, beyond this threshold
tempo, the dancers accommodate the faster music tempos by reducing the
depth.
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Figure 3.8: Maximum speed, maximum depth, and average timing of SQUAT
task with varying music tempos: red, green, and blue lines represent three
dancers.
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Figure 3.9: Comparison of hand trajectory differences depending on music
speed. The green and yellow curves represent the hand trajectories at a normal
musical speed and a 1.3 times faster musical speed, respectively [SKNI07, SI08].

3.2.3 Upper-body Motions

Here, we describe the observation of the upper-body motions conducted by
Shiratori et al. [SKNI07, SI08]. The setup for observation is same as ours. They
depicted the trajectories of hand motions of various music beats as shown in Fig-
ure 3.9. Apparently, as the music tempo becomes faster, the trajectories becomes
more compact as was the case in the foot tip trajectories. It is reasonable for the
dancer to move his or her hands along a shorter path in order to accommodate
the music tempo.

Along this line of observation, they decomposed a dancer’s motion using
the hierarchical B-spline technique [LS99, SKNI07, SI08] (See Figure3.10). (a)
mean motion using a single-layer B-spline, (b) mean motion using a three-layer
hierarchical B-spline, and (c) mean motion using a five-layer hierarchical B-
spline. These trajectories are in the logarithmic space of a quaternion. Variation
of trajectory according to tempos in Figure (c) is greater than that in Figure (a);
Higher order motions are omitted preferentially with increased music tempo. At
the first layer, by using a certain number of knots points sets based on the original
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music tempo, the dancer motion was represented by using B-Spline as shown in
Figure3.10(a). Then, the difference of the original motion and resulting B-Spline
is further represented by using a B-Spline of a finer interval of knots as shown
in Figure3.10(b). This process is repeated iteratively as shown in Figure3.10(c).
As expected, when the music tempo becomes faster, the higher order motion is
omitted.

For a different aspect, how the variance of motion coincides with the music
tempo was plotted, as shown in Figure 3.11. The top row shows the variance
sequences of a joint angle at various musical tempos, and the bottom row shows a
sequence of corresponding postures to the common local minimum. This figure
shows that the local minimum of variance occurs at certain musical points, and
in fact, those postures at those timings correspond to the keyposes defined by a
human dancer.

We can summarize their findings as follows:

U-1 Keypose timings and postures will be preserved even if the musical tempo
becomes faster.

U-2 High-frequency components of motion will decrease when the musical
tempo becomes faster.
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Figure 3.10: Comparison of mean joint angle trajectories at the original musical
tempo (red), 1.2 times faster tempo (green), and 1.5 times faster tempo (blue).
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Figure 3.11: Comparison of variance sequences. Top row: postures correspond-
ing to the common local minimum. Bottom row: variance sequences at the
original musical tempo (red), 1.2 times faster tempo (green), and 1.5 times faster
tempo (blue). Variance sequences for each speed tend to become local minimum
at keyposes.
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3.3 Imitation of Temporal Motion Styles

This section presents modification strategies of dance motions of a humanoid
robot to accommodate various music speeds. The assumption before we begin
this motion adjustment is that the human dance motions at a standard music
tempo has been learned as a sequence of task, which we call a task sequence,
based on the LFO method [NNK∗07].

This section is organized as follow: First subsection presents temporal scal-
ing algorithms, i.e., methods to create a cycle of dance motions for whole-body
at a certain music tempo, from human motion at an original music tempo, based
on keyposes. Then following subsection presents a method to realize a dancing-
to-music capability for varying music tempos as an application; when robots
dance to time-varying music tempo, they need to be able to change dancing
speed satisfying required constraints. To achieve this we focus on a method to
create robot motions on-line.

3.3.1 Temporal Scaling Algorithms Based on Motion Styles

This subsection presents a method to create whole-body motions for robots at
a certain music tempo, from human motion at an original music tempo. When a
music tempo becomes slower than the standard tempo, modifying the trajectories
is relatively easy; we simply make each joint rotate more slowly by adjusting
skill parameters of start/end timings and reconstructing the whole body motions
based on the skill parameters. When the music tempo becomes faster than the
standard tempo, a robot needs to make joints rotate faster in the same way. The
payload of motors increases and sometimes may exceed the limit of the motor
as shown in Figure 3.12. In order to avoid this situation, we derive modification
strategies based on the observations in the previous section.

Keypose-based Integration of Lower-, Middle-, and Upper-body Motions

From the observation results in the previous section it would appear that
the keypose is an essential factor for the dance performance as was found in
L-1, M-1, and U-1. As stated earlier, a keypose is defined as a fixed posture of
a dancer for the purpose of providing the viewers with expression and mean-
ings of the dance. Other Japanese dances, such as Nou and Kabuki, also have
keyposes that are often referred to as Kime, Tome, or Mie. In these traditional
dances, dance masters regard it as very important to represent these keyposes
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Keypose timings

R-STEP

L-STEP

STANDING
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Figure 3.13: STEP and STAND tasks grouped by keypose timings. Tasks
between two adjacent keypose times are considered as a group. Such a group
consists of several STEP and STAND tasks

in appropriate timings. A dance performance with sophisticated keyposes is
considered a skillful performance. The dancers tend to keep keypose postures
in the appropriate relative timings in the cycle as much as possible, even if they
have to attenuate the motions to follow a faster tempo of music.

Thus, we use these keyposes as anchor points when synchronizing the lower,
middle, and upper-body motions for generating the whole-body motions on a
humanoid robot.

Lower-body Motions

Our algorithm for lower-body motions consists of the following three phases:

• Phase 1: the task sequence of lower-body motions is temporally scaled
proportionally, and STAND tasks are adjusted if they are shorter than a
certain threshold (L-1).

• Phase 2: STEP tasks in which joint angular velocity exceeds the limit are
detected by calculating inverse kinematics .

• Phase 3: skill parameters of the STEP tasks are modified by changing
parameters of duration and stride (L-2,3,4).
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Phase 1: This operation is based on the observation of L-1. As the first
operation, proportional temporal shrinkage of performance durations along with
the music tempo is applied to the task sequence of lower-body motions. The start
and end timings for all tasks are divided by the speed rate of the musical tempo.
As a result, all the lower-body motions corresponding to keyposes occurred at
the appropriate music timings. However, such shrinkage causes an overload of
joint motors. Avoidance of such overload is the issue in this subsection.

Tasks between two adjacent keypose times are considered as a group. Such
a group consists of several STEP and STAND tasks as shown in Figure 3.13; the
start of the first STAND task and end timing of the last STAND task among the
group are fixed so as to maintain the keypose timings. Note, however, that,
execution periods of STAND tasks are need to be longer than certain threshold
for stable balance maintenance. The minimal length of the execution periods is
called Minimum Non-Step Interval (MNSI), and we use empirical value of 0.07 sec.
MNSI is a time interval required in order for the Zero Moment Point (ZMP) can
move stably in the support polygon during STAND tasks. If the execution
periods of STAND tasks are not enough as a result of the first operation, Each
of period are preferentially extended by adjusting start/end timings of adjacent
STEP tasks. For the first and the last STAND task among the group, we use the
half of MNSI exceptionally. Although modification may change the end timing
of tasks around keyposes, the modification is not noticeable because MNSI is
significantly small.

Phase 2: For all the STEP tasks in a group, the system increases the speeds of
the joint motors to achieve shortened execution periods. First, the speeds of the
joint motors are computed using the inverse kinematics method at each newly
created start and ending timing. Then, those speeds are examined to determine
whether they exceed the motor capability limit or not. This inspection is executed
on all of joints of both legs. For each of STEP tasks, a velocity excess ratio E is
calculated as follow:

e j = max{vmax

ub
,

vmin

lb
}, (3.1)

E = max{e j, j = 1, 2, · · · , numJoints}, (3.2)

where definitions of vmax, vmin, ub, and lb are given in Figure 3.14.
Phase 3a: This process is based on the observation of L-2. From among

those STEP tasks in the group, the duration of the tasks, with the exceeding speed
limitation, are extended so as to satisfy the motor limitation. This is achieved by
first reducing the period of the following STAND task. If this is not enough, the
STEP and STAND tasks with capacity allowance in the group are considered as
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Figure 3.15: Sampling method to consider keypose information for hierarchical
motion decomposition [SKNI07, SI08]. Vertical lines represent sampled time
instants, and a dashed curve represents ground truth of a continuous joint angle
trajectory. Data sampled by our method (black dots) are used.

candidates for duration reduction. This operation is conducted iteratively along
the descending order of the exceeding tasks within the group.

Phase 3b: This process is based on the observations of L-3 and L-4. If this
period adjustment is not enough, the strides and trajectories of all the exceeding
tasks are reduced iteratively so as to satisfy the motor limitation.

r f ← α(E)(r f − r0) + r0, (3.3)

h ← α(E) · h, (3.4)

where α is given according to the velocity excess ratio provided by Phase 2. r0, r f ,
and h represents a starting position, a landing position, and a maximum height
of the swing foot while stepping respectively. This stride reduction satisfies the
limitation, because eventually the strides and a maximum height of the swing
foot will become under an executable threshold, and the robot is simply standing
with upper body motions only.

Upper-body Motions

For generation of upper-body motions, we employ Shiratori et al.’s method
based on observation of temporal motion styles for upper-body [SKNI07, SI08].
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Figure 3.16: Skill parameter adjustment for temporal scaling of upper body mo-
tion [SKNI07, SI08]. This adjustment process gradually decreases the weighting
factors from the finest layer of the hierarchical B-Spline.

Joint trajectories are represented by hierarchical B-splines. Here, in order
to preserve posture information of keyposes in the following operations, The
algorithm sample joint trajectories around keyposes more densely than those in
other parts. This sampling method is illustrated in Figure 3.15. Then, propor-
tional temporal scaling, fitting to the new music tempo, is applied to each layer
of B-spline representation so that the resulting motion is consistent with the new
music tempo. This operation satisfies the observation U-1; whatever the music
tempo is, keyposes occur at particular music timings. However, the resulting
motion may exceed motor capability. Thus, this excess joint speed is amended
in the hierarchical manner.

The algorithm examine the motor capacity by examining the layers of the
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hierarchical B-spline iteratively from higher to lower layers. It recalculate the
motor load by reducing the amplitude of the highest level of the hierarchical
B-spline. If it cannot achieve the motor load within the capacity by setting the
amplitude of this highest level to zero, it repeat the same operation in the next
layer of the hierarchical B-spline, iteratively. This adjustment is illustrated in
Figure 3.16.

Middle-body Motions

As we explained above, we consider vertical and horizontal movements
separately for middle-body motions.

For vertical movements, abstracted as SQUAT tasks, we found that the most
important factor is to maintain the timing of squat (M-1) while adjusting the
depth (M-2). Thus, along with lower and upper-body motions, proportional
temporal shrinkage of performance durations along with the music tempo is
applied to the task sequence of middle-body motions. The start and end timings
for all tasks are divided by the speed rate of the musical tempo.

Then SQUAT tasks in which joint angular velocity exceeds the limit are
detected by calculating inverse kinematics. Unlike in the case of lower-body
motions, SQUAT tasks in which acceleration of the waist link exceeds that of free
fall are detected as unrealistic tasks. The depth of SQUAT, with the exceeding
speed limitation and acceleration of free fall, is gradually reduced up to a certain
value to satisfy the motor limitation and dynamic limitation.

If the reduction of the depth to the limit does not provide the allowance
of motor capability, then we expand the period of the SQUAT task. If this is
still not sufficient, we eliminate the SQUAT task from the task sequence. These
actions are not based on the observation, but it is inevitable to avoid exceeding
the payload limit of the motors.

For horizontal movements, the desired horizontal trajectories of the waist
are calculated using a ZMP compensation filter [NkK∗02]. This calculation is
done considering lower- and upper-body motions.
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Figure 3.17: Two options for how to change the speed of dancing.

3.3.2 Dancing-to-music Capability for Varying Music Tempos

In previous subsection, we presented algorithms to create dance motion
variations at arbitrary music tempo, from human motion at an original tempo.
As an application of the algorithms, this subsection presents a strategy for on-
line dance motion generation on the assumption that a robot is dancing to music
with time-varying tempo such as live-music. Our method make it possible for
the robot to modify timings of dance motions, even if the robot motions are not
synchronizing with music tempos. Such dynamic interactions with time-varying
tempos of a given music piece is the focus of this subsection. Here, we assume
that music tempos will increase/decrease by 20 percent at most.

Keypose-based On-line Generation

When music tempos are changed while a robot is dancing, the robot also
need to change the speed of dance motions, to keep up with the music. To
change the speed of dancing, there are at least two options for how to change
the speed; continuous one or discrete one as shown in Figure 3.17. Continuous
means that the robot can change the speed continuously, even during stepping.
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Figure 3.18: On-line dance motion generation based on keyposes. Gray broken
curves are trajectories generated for each segment. To avoid discontinuity at
keyposes, we modify trajectories as shown by green curves.

Discrete means that the robot update the speed at some intervals, beats or bars
for instance.

In this research, we employ the latter one. Because, from the observation,
we found that keyposes are essential in the dance and assume that a dancer
changes the speed of dance based on keyposes too. Additionally our strate-
gies for dance motion generation described in this thesis is based on keyposes,
which correspond to music beats. As described above, we employed keyposes
for segmentation of a continuous dance motions and use as anchor points for
integration of whole-body dance motions. Thus, we generate motion segments,
defined based on keyposes, separately and update on-line as illustrated in Fig-
ure 3.18.

On the other hand, two motion segments generated for different music
tempos are need to be connected continuously. A method for such connection is
described as follow.
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Continuity of Motion Trajectories

Upper-body Motions: Our method is illustrated in Figure 3.19. Now, we
generate upper body motions for the segment k at a certain music tempo and
connect to motions for the previous segment k−1 at a keypose timing. However,
as a result of generation based on Shiratori et al.’s method [SKNI07, SI08], a
discontinuity of trajectory may occur at the keypose timings. Therefore we need
to modify the trajectory for segment k to avoid such discontinuity and to connect
continuously.

Constraints for modification here are only C2 continuous and joint limi-
tations of the robot. We use a trajectory tracking method proposed by Pol-
lard et al. [PHRA02] and generate a new trajectory (the green curve in Figure 3.19)
within the joint limitations. For all time step i in k-th segment, a new trajectory
θF,i is obtained as follow:

θ̇i = θi − θi−1, (3.5)

θ̈F,i+1 = 2ks
(
θ̇i − θ̇F,i

)
+ k2

s
(
θi − θF,i

)
, (3.6)

θ̇F,i+1 = max
(
θ̇L(θF,i),min

(
θ̇U(θF,i), θ̇F,i + θ̈F,i+1

))
, (3.7)

θF,i+1 = θF,i + θ̇F,i+1, (3.8)

where θi represents a original trajectory (the gray broken curve in Figure 3.19),
and the discontinuity frame corresponds to a frame with i = 0. Additionally,
our refinement on a stiffness parameter ks increase it while i < t′. This avoid
precipitous tracking. θ̇L(θF,i) and θ̇U(θF,i) represent the lower and upper limits
of the joint angular velocity at θF,i given as follow:

θ̇U(θF,i) =

 θ̇max
U · θU−θF,i

α (θU − θF,i ≤ α)
θ̇max

U (otherwise)
(3.9)

θ̇L(θF,i) =

 θ̇min
L · θF,i−θL

α (θF,i − θL ≤ α)
θ̇min

L (otherwise),
(3.10)

where θL and θU represent the lower and upper limits of the joint angle,
respectively. θ̇max

U and θ̇min
L represent the minimum and maximum values of θ̇max

U
and θ̇min

L , which are depend on the actuator.

Lower-body Motions: In lower-body motions, we generate foot trajectories
for a new segment. In leg task models [NNK∗07], a trajectory of a swing foot in
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Figure 3.19: Connection of upper body motions.

a STEP task is reconstructed using a smooth interpolation function based on a
cubic polynomial that passes along three points computed from skill parameters:
the starting point (t0, r0), the middle point (t1, r1), and the landing point(t f , r f ).
This function is expressed as follows:

f n⟨(t0, r0), (t1, r1), (t f , r f )⟩(t). (3.11)

There are two ways to determine the middle point. One is the case of a
normal step, in which a captured trajectory of the swing foot is similar to a step in
usual walking. For a normal step, the middle point calculated by the following
equations is used:

t1 =
t0 + t f

2
, (3.12)

r1 =

r0
x + r f

x

2
,

r0
y + r f

y

2
, h


T

, (3.13)

where h is a predefined value as the normal step height. The other case is
when the captured trajectory differs largely from the trajectory of a normal step.
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For such a stylistic action, the middle point is determined directly from the
foot position of human motion data at the timings of the middle point. In our
implementation, these two cases are distinguished by a degree of the difference
between the middle point of the captured trajectory and the point calculated by
Equation (3.13).

In this context, constraints on generation will be consistency of foot positions;
the starting point (t0, r0) of the first STEP task in the new segment of task sequence
is computed from the finishing state of the last STAND task in the previous
segment.

Middle-body Motions: Vertical positions of the middle-body are recon-
structed using skill parameters like foot trajectories described above. Velocities
and accelerations at keyposes are always 0, therefore, these elements are satisfy
the boundary conditions in the same way as lower-body.

The horizontal positions of the middle-body, on the other hand, is not becom-
ing zero at keyposes except for start/end timings of the whole dance motions.
This is because the balance maintenance of biped robots is basically different
from that of human beings and based on ZMP. The ZMP positions, while stand-
ing with foot, need to be within the support polygon defined using a foot or both
feet contacting floor. The transition of ZMP to under the next support foot is
always executed while STAND tasks. This transition is controlled indirectly by
translation of the horizontal positions of the middle-body.

Considering the observation, it might be best if the robot can explicitly stop
the horizontal movements of the middle-body. To translate horizontal positions
within the execution period stably, however, it is not in a realistic way.

Thus we connect the horizontal positions continuously without stopping
at keyposes. And the ZMP need to be within the support polygons in this
connection.

In our implementation, as shown in Figure 3.20, positions of the middle-
body from before the beginning of the last STEP task to the end of next segment
(the green curve) are computed for the next segment k. The positions are ac-
tually computed by modifying an initial positions, which are calculated from
foot positions, using an approximate computation method proposed by Nishi-
waki et al. [NkK∗02]; The ZMP positions are, first, computed based on the initial
positions of the middle-body and then positions of the middle-body are modi-
fied iteratively so that the ZMP positions are corresponds to the desired positions
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Figure 3.20: Generation of horizontal waist trajectory.

within the support polygon. The minute discontinuity at the beginning frame
of the green curve, as a result of the approximate computation, is interpolated
using an interpolation function based on the quintic polynomial equation.

The quintic polynomial equation is as follow:

r(t) = 6t5 − 15t4 + 10t3, (3.14)

Strictly speaking, as a result of this interpolation, the ZMP positions are
actually not correspond to the desired position. However, the error is within the
acceptable range for actual use as shown in our experiments in the following
section.
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Figure 3.21: Capsule-shaped volumes for collision detection.

Physical Constraints

When a robot execute a task on-line, generated motions must be feasible
for the humanoid robot. One of factors to be considered for feasibility is self-
collisions. Especially, to imitate stylistic human motions such as dance, body
links of the robot need to be always close each other in peril of collisions. This
make our on-line generation more complicated comparing to other researches
such as on-line working pattern generation or real-time control of dance patterns
preliminarily designed for the robot.

We assume that task sequences executable for the original music tempos
are given as input via previous works. However, adaptation to a certain music
tempo modify horizontal positions of the waist link for balance maintenance, and
as a result, self-collision may occur. Therefore we need to inspect the generated
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Figure 3.22: Parameters for collision detection.

motion segment for collisions and modify the skill parameters to avoid it.
To execute collision avoidance in a low-cost way, we approximate the link to

be inspected by capsule-shaped virtual volumes. In this research we handle the
self-collision between legs only, because we assume that modification strategy
for upper-body is free from care about collisions. Six links of lower-body is
wrapped by capsule-shaped virtual volume as shown in Figure 3.21, and we
defined link pairs to be checked collision as follow:

Pair 1 Right thigh - Left thigh

Pair 2 Right thigh - Left shin

Pair 3 Right shin - Left thigh
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Figure 3.23: An example of the result of collision avoidance.

Pair 4 Right shin - Left shin

Pair 5 Right shin - Left foot

Pair 6 Right foot - Left shin

Pair 7 Right foot - Left foot

Geven link positions for each leg task, we inspect collision between two
capsule-shaped volumes by calculating cp = (r1,p + r2,p) − dp, where dp, r1,p, and
r2,p are the minimal distance between axes and radii of each volume of the p-th
pair respectively as shown in Figure 3.22.

When a collision between a pair of capsule-shaped volumes is detected at
a certain task, we compute the minimal translation of swing foot under the
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constraints as follow:
minimize

ṙ
||ṙ||2

subject to Jd · ṙ ≤ C,

where ṙ represents the minimal translation of the foot. Jd represents a Jacobian
determinant for a collision vector C = c1, c2, ...., c7.

The minimal translation of the foot is reflected on the skill parameters of the
corresponding task. Then we reconstruct the robot motions using the updated
skill parameters.
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3.4 Experiments

This section reports the implementation of the system on a physical hu-
manoid robot for validating our proposed algorithm.

3.4.1 System Overview

Overview of our implementation of the system is shown in Figure 3.24.
Given a dance motion and information about the original music, our system
automatically detects each task in the motion and extracts task sequences that
is based on the previous method [NNK∗07, SKNI07, SI08]. The speed rate and
segments of task sequence are passed to the system as inputs.

The temporal scaling algorithm 1 changes the speed of the dance motion
by adjusting skill parameters of each task in the segments of task sequence.
A task reconstructor create elements of motions, such as foot positions, waist
positions, desired ZMP potions, and joint angles of upper-body, for each task in
the segments of task sequence. Here, horizontal waist positions are calculated
based on foot potions and modified by a ZMP compensation filter [NkK∗02] so
that actual ZMP positions are close to desired ZMP positions.

Joint angles and link positions of the whole-body is reconstructed from the
elements of motions using inverse kinematics. Then a fault inspector detects
collisions and overload of actuators and refine the skill parameters based on
algorithms described in this chapter. Task reconstructor create elements of mo-
tions again using the refined skill parameters. Those process are repeated while
a fault inspector find faults in the whole-body motions.

To reduce the computation time of the iterative process, we skip a ZMP
compensation filter while faults are found in the motions without the filter. When
a fault inspector find no faults, we enable the ZMP compensation filter to get
down to the wire. However, modification of waist positions may occur the faults
again. To avoid this situation, we use an algorithm described in Algorithm 3.1.
Using this algorithm, we obtain initial positions of the waist more similar to a
result of modification by a ZMP compensation filter than that calculated using
previous works as shown in Figure 3.25, 3.26.

When the generation process is finished, finishing states of the motions are
returned to a task reconstructor as the next initial conditions for next segments of
task sequence. This system is implemented as a Plug-in of Choreonoid [Nak12],
a robot simulation tool.

51



A task sequence for 

Lower-body 

Swing/support

foot positions
Joint angles of 

upper body

Desired ZMP 

positions

A task sequence for 

Middle-body 

Vertical waist 

positions

Joint angles of

chest-waist

Hierarchical B-splines

for Upper-body

Joint angles 

of whole body
Link positions

Actual ZMP positions

Yaw moment

ZMP / Yaw-moment

comp. filter

Task reconstructor

Temporal scaling algorithm 1

Horizontal waist 

positions

Temporal scaling 

algorithm 2

Overload 

information

Collision 

information
Next initial 

condition

Speed Rate

Fault  inspector 

Collision 

Avoidance

mechanism

Figure 3.24: System Overview.
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Algorithm 3.1 Initial waist positions

input: R-Foot positions pr

input: L-Foot potisions pl

input: an array of STEP task S

input: end timing of whole motions tlast

local: weighting factor w

local: start timing of a STEP task tst

local: mid timing of a STEP task tmid

local: interpolation function based on a cubic polynomial f

output: waist positions pwt

1 f ← SetPoint(0, pr.at(0)+pl.at(0)
2 )

2 for i in 1 : length S − 1

3 tst ← S[i].tst

4 tmid ← S[i].tmid

5 if S[i].support == le f t f oot then

6 f ← SetPoint(tmid, pl.at(tst) · w + pr.at(tst) · (1 − w))

7 else

8 f ← SetPoint(tmid, pr.at(tst) · w + pl.at(tst) · (1 − w))

9 end for

10 f ← SetPoint(tlast,
pr.at(tlast)+pl.at(tlast)

2 )

11 pwt ← InterpolatePoints( f )
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3.4.2 A Robot Platform and a Target Dance

In our experiments, HRP-4C [KKM∗09] was selected as a physical robot
platform as shown in Figure 3.27. The height and the weight are 1.58[m] and
47[kg] including the weight of batteries in the waist link. Totally 44 DOFs are
available. We used 12 DOFs for lower-body motions and 13 DOFs for upper-
body motions. Joint angles and angular velocities for each joint of generated
motions were always within the 80 percent and 65 percent of the specific limit of
actuators, respectively. We always set this value for the sake of safety.

We chose the Don-pan dance, a famous folk dance in Akita prefecture, as
a target dance for experiments. The Don-pan dance also consists of cyclic pat-
terns, each of which takes about 32 seconds. Figure 3.29 shows the reference of
keyposes in the Don-pan dance captured using a magnetic motion capture sys-
tem, MotionStar Wireless. Along with the hierarchical B-splines for upper-body
motions, a task sequence of lower- and middle-body motions extracted from a
skillful dancer as shown in Figure 3.29.
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Roll

Pitch

Yaw

Figure 3.27: A robot platform: HRP-4C. The height and the weight are 1.58[m]
and 47[kg] including the weight of batteries in the waist link. Totally 44 degree
of freedom are available.
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Figure 3.28: Examples of keyposes in the Don-pan dance.
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3.4.3 Preliminary Generation in Off-line

For preliminary experiments, whole-body motions of the Don-pan dance
were generated to increase/decrease tempos of music. Target tempos of music
were fixed to the original, 0.85 times and 1.2 times faster than the original,
respectively. In this experiments, the whole sequences of task are passed to the
system at a time.

Figure 3.31, Figure 3.30, and Figure 3.32 show sequences of the Don-pan
dance motions whose tempos are fixed to the original, 0.85 times and 1.2 times
faster than the original, respectively. Each poses in figures are correspond to the
reference of keyposes shown in Figure 3.29. Each sequence of the dance start
from the far left in the top row and end at the far right in the bottom row in a
Figure. The robot expressed the keyposes using the whole-body in appropriate
timings in the sequence, and provided viewers with an artistic dance pattern in
which upper-body and leg motions were fully harmonious. Although the dance
motions are modified separately according to musical tempos using different
strategies, differences between keyposes at each music tempo are difficult to
find. In both music tempos, our proposed system generated feasible motions
within the joint limitations, and the HRP-4C could perform without falling down.

The joint angular velocities in the above two experiments are shown in
Figure 3.34 and Figure 3.33. Velocity sequences of the right knee angle generated
for the original tempo and 0.85 times faster tempos than the original one are
shown. The green lines represent the joint angular velocities of the motions
generated using the proposed system. The orange lines represent log data of
the execution recorded by a sensor of the robot. The gray lines represent the
upper/lower limits of the velocity. Motions generated using our method satisfy
the limitations and were feasible for the physical humanoid robot.
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Figure 3.30: The Don-pan dance at the tempo 0.85 times faster than the original.
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Figure 3.31: The Don-pan dance at the original tempo.
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Figure 3.32: The Don-pan dance at the tempo 1.2 times faster than the original
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Figure 3.33: Velocity sequences of the right knee angle generated for the tempo
0.85 times faster than the original.
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Figure 3.34: Velocity sequences of the right knee angle generated for the original
tempo.
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3.4.4 Quasi On-line Generation

To validate our method for keypose-based on-line generation, the dance
motions whose tempo are different from each other are created for segments
defined by keyposes and grafted one segment after another. As an input, a
task sequence which is optimized for original tempo is given to the system. As
shown in Figure 3.35, in this experiment, the task sequence is divided into three
segments based on keyposes.

Our system, first of all, processed a segment surrounded by first and 9th
keyposes and created dance motions whose tempo is fixed to 0.85 times faster
than original. The computation time was 1.97 sec for a 10.08-second motion. The
system processed a segment surrounded by 9th and 14th keyposes and created
dance motions whose tempo is fixed to the original and grafted to the previous
segment. The computation time was 1.227 sec for a 10.71-second motion. Finally,
the system processed a segment by 14th and the last keyposes and created dance
motions whose tempo is fixed to 1.2 times faster than original and grafted to
the previous segment. The computation time was 4.85 sec for a 8.933-second
motion. The time intervals for blending and grafting segments are represented
by green-colored area. This experiment shows that the computation time is small
enough to use on-line.

As a result of grafting segments using an interpolation function, there are
fluctuation of the actual ZMP positions during time intervals for interpolation.
Error between desired and actual ZMP positions is shown in Figure 3.36. At
the last few seconds of each segment, actual ZMP positions fluctuate, however,
the errors are within a few centimeters and sufficiently-small for feasibility.
Although two precipitous peaks of error are found around 5.67 sec and 27.255
sec, the error come from translation of actual ZMP little earlier than the desired
one. To validate this, we executed the motions generated via experiments above
using a physical humanoid robot HRP-4C. The result of the experiment is shown
in Figure 3.37. The robot could perform the motions without falling down.

The joint angular velocities in the experiment are shown in Figure 3.38.
Velocity sequences of the right knee angle are shown. The green lines represent
the joint angular velocities of the motions generated using the proposed system.
The orange lines represent log data of the execution recorded by a sensor of
the robot. The gray lines represent the upper/lower limits of the velocity. The
time intervals for grafting segments are represented by light-green-colored area.
Motions generated by our proposed method satisfy the limitations and were
feasible for the physical humanoid robot.

From these experiments, we believe that our system can actually generate
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feasible robot motions on-line, and will make it possible for the robot to modify
timings of dance motions, even if the robot motions are not synchronizing with
music tempos.
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Figure 3.37: The Don-pan dance motion, whose tempo varies twice, performed
by HRP-4C.
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3.5 Discussion

Although temporal motion styles are extracted from observation of the Aizu-
bandaisan dance in various music tempo, our algorithm was applicable to an-
other folk dance, the Don-pan dance, and generated dance motions feasible for
a physical humanoid robot. This shows the generality of our method to a certain
extent.

Our algorithm for on-line generation is based-on keyposes and does not
handle the real-time control such as changing speed while stepping foot. This is
because we found that keyposes are essential in the dance from observation and
assume that a dancer changes speed of dance based on keyposes too. As a result
of experiments, our method did not make unnatural impression, and moment
of changing of dancing speed was unnoticeable.

Because physical humanoid robots have some noise in motor control, we
equipped a security crane in case of failure for experiments. Our dancing robot
successfully performed without a falling down and the security crane was not
used in the experiments. However, the control noise often cause landing of the
swing foot on a tilt. This make the robot unstable if the swing foot is used for
next support foot, especially in motions such as turning the body trunk. For safe
control, additional compensation mechanism will be desirable.

3.6 Summary

In this chapter, we focused on a human’s capability for dancing to music
performances of varying tempos, and proposed an algorithm to realize this ca-
pability in a humanoid robot. As approach, we first, analyzed human dancing,
and extracts modification strategies, which we call temporal motion styles, used
by humans to adapt to music tempos, and then, proposed motion modification
strategies, based on the temporal motion styles, to create a dance motions at
an arbitrary musical tempo. From the observation, we found that keyposes are
essential in the dance and can be employed as anchor points for integration of
whole-body dance motions. We integrated individual temporal scaling algo-
rithms for lower-body, middle-body, and upper-body motions obtained from
modeling of human capability of dancing to various musical tempos. Then we
presented a method for on-line dance motion generation on the assumption that
a robot is dancing to music with time-varying tempo such as live-music. Our
on-line generation is also based on keypose, because our observation shows that
keyposes are essential in the dance and proposed temporal scaling techniques
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are also based on keyposes. Validation of our algorithm via experiments using a
physical humanoid robot HRP-4C is conducted. In the experiments, the Don-pan
dance was generated to the original, 0.85 times, and 1.2 times faster tempo. The
robot expressed the keyposes using the whole-body in appropriate timings in the
sequence, and provided viewers with an artistic dance pattern in which upper-
body and leg motions were fully harmonious. This experiments demonstrated
that our algorithm based on temporal motion style is effective to generate mo-
tion variations according to various music tempos. The temporal motion styles
obtained from observation of a Japanese folk dance, the Aizu-bandaisan dance,
was applicable to another folk dance, the Don-pan dance.
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Chapter 4

Spatial Motion Style

4.1 Introduction

Synthesizing human-like and stylistic robot behavior [KNG∗11][YRA13] is
becoming more important as entertainment robots become popular. This kind
of topic has been tackled in the animation community to synthesize realistic,
emotional and animated motions of CG characters [TH00][SCF06]. Similarly we
expect such technologies that generate expressive motions according to scenarios
can make robots very human-like and amiable.

Developments of learning-from-demonstration approaches have enabled
robots to learn and imitate human motions in various task domains. The only
problem is that a few of those approaches explicitly consider the person-specific
differences in motions: To achieve a specific task, observed human demonstra-
tions are often generalized and used to generate an instance of robot motion.
However, as shown in Figure 4.1, even when we achieve a simple task such
as tossing rings to the goal, details of the throwing motions vary according to
individuals. In the Aizu-bandaisan dance, a Japanese traditional folk dance, it
is no secret that there are many variations in motions according to gender or
individual as shown in Figure 4.2. Thus, human motions to specific tasks varies
according individuals and are refereed as styles. We are interested in character-
izing this vaguely defined concept and imitating it using humanoid robots. We
expect that such ability would expand the capability of entertainment robots.

In this chapter we focus on person-specific styles in motions, which we call
spatial motion style. The proposed method in this chapter allows a humanoid
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Time

Person

Figure 4.1: An example of person-specific motion styles in ring toss motions.
Four players are tossing rings in their own way. Differences in hand position,
attitude of body trunk, and bend angle are especially noticeable.
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Time

Person 

Figure 4.2: An example of person-specific motion styles in the Aizu-bandaisan
dance.
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robot to extract spatial motion styles from human demonstrations. And it allows
the robot to imitate the motion based on the extracted styles within the physical
limitations of robots. This is done automatically by extending the task model
representation [NNK∗07] without losing its high applicability. In our method
a robot analyzes multiple demonstrations performed by a person, and then
extracts the common behaviors as styles for that particular person.

In a motion analysis, a human demonstration is decomposed into a sequence
of predefined primitive actions called task, which describe “what to do”. Skill
parameters for each task describe “how to do” it. We characterize the tendencies
of how to do each task from multiple demonstrations of one particular person
as styles and focus on them.

Our framework for a robot motion generation first extracts skill parameters
for all demonstrations of a person. Then a robot motion is computed by solving
a non-linear optimization problem. The set of skill parameters, together with
other constraints, is used in the objective function to generate the motion that is
considered similar in style.

To verify the proposed framework, we used a ring toss game. The task
model for a ring toss game is designed by analyzing multiple demonstrations of
various players. The statistical distribution of all sets of skill parameters that are
extracted from the same player, defines the spatial motion styles for that player.
The generated motions based on the styles were actually performed by a physical
humanoid robot, and compared with each original motion of the players. The
robot could imitate their style of tossing the rings to the goal within the limitation
of its physical constraints.

4.1.1 Prior Works

In the robotics community synthesizing human-like motions from motion
capture data has been investigated. To absorb kinematic differences, Pollard
et al[PHRA02] modified joint-angle trajectories preserving the wave pattern of
them within the constraints. On the other hand, Nakaoka et al [NNK∗07] ab-
stracted dance motions based on task models. Deriving motions from a pre-
segmented motion capture database [YRA13] [JM02] also have been actively
developed. To make robot motions look as much like original human motions
as possible, optimization-based methods [SYK∗08] [NK12] [MYN13] have been
developed. However their cost functions in optimization are fixed regardless
of target tasks; There is no guarantee that those functions are essential for any
other motions. In addition to those factors, our proposed method considers the
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variability in motions of one particular person.
In the animation community there are also a number of studies on stylistic

motion synthesis. Neff [NK09] extracts correlations between components of mo-
tion for an interactive editing tool of motion styles. Torresani et al [THB06] used
Laban Movement Analysis to describe styles in the domain of three-dimensional
perceptual space: flow, weight, and time. These factors are quantified manu-
ally by the designer. Various studies analyze and learn time-varying vectors in
joint angles using HMMs [BH00], PCA [UGB∗04], ICA [SCF06], and DP match-
ing [NNI04]. Comparing styles in terms of mood/emotion-specific variations,
few studies consider spatial motion styles.
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4.2 Characterization of Spatial Motion Styles

This section characterize the spatial motion style by extending a concept of a
LFO paradigm. Our focus is the tendencies of how to do each task from multiple
demonstrations of one particular person, and in this thesis those tendencies are
characterized as the styles. The following subsections begin with the description
of a task model that is used to represent motions in a ring toss game. Then, a
detail of the method to extend the task model to represent the styles is given.

4.2.1 Task Models

In task models, a series of movements are segmented based on transitions
of state, and a segment is recognized as a primitive action called task. Skill
parameters of a task explain how this is done. Whole motions are abstracted
into a sequence of tasks and then reused to generate robot motions.

Tasks

First, to design tasks in a ring toss game, we asked seven human players
chosen at random to toss the ring to the goal from the same standing position
without any other specific instructions. Fig. 4.1 shows sample motion sequences
from four, out of a total of seven, human players. Each player has their own
style of motions, but a common structure also can be discovered among them;
they first take the ring back spontaneously and then release it through the air to
the goal.

Secondly we analyzed movements of the dominant hand in a typical sample
motion of a player (See Fig. 4.3). Upper graph shows time-series data of hand
speeds, and lower graph shows that of hand positions represented in the X-axis
of the world coordinate. To define the world coordinate, the standing position
of a human player is considered as the origin, and the goal of a ring toss game
is assigned to be on the X-axis. Timings circled with purple and blue represent
a local maximum of hand positions and the global maximum of hand speeds,
respectively. The upper graph suggests that the player stops the hand just
anterior to, and behind, the timing of maximum speed (circled with blue). The
former is the end timing of a preliminary action before throwing rings, where
the hand is pulled closer to the player’s body trunk. The latter is that of releasing
rings, where the hand is the closest to the goal and then pulled back. We labeled
these two stopping states as AIM state and FINISH state, while labeling the initial
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Figure 4.3: Movements of the dominant hand in a sample motion of a player.
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X
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TAKEBACK 

task

RELEASE

task

Figure 4.4: Design of task sequence in the ring toss motion.

state of the whole motion as READY state. This chapter focuses on movements
from READY state to FINISH state, while movements after FINISH state are not
considered as essential behavior for the ring toss game. When a player throw
the ring in a row, a FINISH state transits to a READY state for the next trial.

Based on these specific states, the series of movements can be divided into
two segments. We defined those two segments as two different tasks: TAKE-
BACK and RELEASE (See Fig. 4.4).

TAKEBACK
is a preliminary action before throwing rings, and is defined as a transition
from READY state to AIM state.

RELEASE
is a throwing action, and is defined as a transition from AIM state to FINISH
state.

From this analysis, a series of movements for a trial of the ring toss can
be represented as transitions between three states. Actually all of the human
demonstrations we captured could be automatically segmented based on the
task definitions described above. This supports the generality of our task repre-
sentation in the domain of the ring toss. There might be other alternative motion
structures to toss the ring if we observe other players. however, in this paper,
we assume that the motions of human players from this observation covers all
patterns of tossing.
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Figure 4.5: Design of skill parameters for each task in the ring toss. These skill
parameters characterize the trajectory of each task by giving details at end timing
and a specific intermediate timing of each task.

Skill parameters

This subsection gives description about skill parameters.
For tasks we defined in the previous subsection, we defined skill parameters

based on an observation of the ring toss motions as shown in Fig. 4.5. Skill
parameters are defined in common for each task, TAKEBACK and RELEASE.
These skill parameters characterize how to do the task by describing the status
at the initial state, the specific intermediate timing, and the finishing state of the
task. Concrete definitions are given as follows. Without loss of generality, all
players are assumed to be right-handed and throw the ring with their right hand.

r : Hand position
represents a position of the right hand in a Cartesian coordinate. It is
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defined in a Cartesian coordinate with the origin at the right shoulder and
each axis is parallel to the corresponding axis of the world coordinate. To
neglect the effect from the difference in limb length, the position of the right
hand is normalized by the length of the right arm.

θH, ψH : Wrist angle
represents a pitch angle and a yaw angle of the right wrist. The yaw axis
corresponds to the direction from the right wrist to the right elbow, and
the pitch axis is orthogonal to the yaw axis in a plane parallel to the flat of
the right hand.

θE, φE : Elbow direction
represents angles corresponding to the position of the arm from the right
shoulder to the right elbow in the spherical coordinate with the origin at
the right shoulder. X,Y, and Z-axis of the spherical coordinate are parallel
to the world coordinate axes.

ϕB, θB, ψT : Bend and Twist angle
A roll angle represents a torso leaning, a pitch angle represents a torso
bending, and a yaw angle represents the twisting of the upper body. It
should be noted that the order of the torso joint is assumed to be yaw-roll-
pitch.

ψS : Stance to the goal
represents a yaw angle of the attitude of the waist. This is used to represent
the stance to the goal of the ring toss.

Duration
represents the interval of time required for the task execution.

Midtiming
represents a specific intermediate timing in the task execution. A mid
timing in TAKEBACK is defined as a timing corresponding to a local max-
imum of hand position in Fig. 4.3 between READY state and AIM state
(circled in purple). If candidates are more than two, the closest inflection
point to AIM state is chosen as the mid timing in TAKEBACK. If there is no
candidate in TAKEBACK, the intermediate timing between READY state
and AIM state is chosen. A mid timing in RELEASE is defined as a timing
corresponding to a global maximum of hand speed (circled in blue).

Skill parameters described above cover also some features which are not
parameterized as skills. For example, a speed of the hand is partially overlapped
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with r and timings of task execution. A ring position can be described by r, θH,
and ψH. Although our skill parameters might not be enough to represent the
all of features in motions for each player, skill parameters can be added flexibly
according to the capability of the robot platform or according to the belief of the
designers on what is important or noticeable from observation.

Based on task models described above, humans demonstrations of ring toss
motions are abstracted as a task sequence and corresponding skill parameters.
Those abstracted information used for reconstruction of the trajectories, in robot
motion generation, to imitate the original human motions. However, imitating
features represented by skill parameters perfectly is often difficult for robots
because of differences in length of limbs, joint limitations, and performance of
actuators. Actually, for such case in previous works, a final check and manual
refinement with ad-hoc rules by engineers were often inevitable for feasibility.
In those process, preservation of the spatial motion styles of a person will be
difficult and the generated motions may become unnatural according to the
target motion.

Style parameters newly introduced in the following subsection solve this
problem. We observe multiple demonstrations of a person and then parameterize
the features of the movement statistically. In execution of a task by a robot, skill
parameters with higher priority is estimated and optimized under the constraints
of the robot. Based on this approach, we achieve the imitation of essential factors,
by absorbing the difference of physical constraints between the robot and human.
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4.2.2 Style Parameter

This subsection describes the representation of spatial motion styles in the
task model. We first observed the difference in statistical distributions of skill
parameters of a task between human players, and then defined a style parameter
to represent the individual differences in the context of the task model.

Observation of Individuality in Statistical Distributions of Skill Parameters

For observation, we captured a total of 60 ring toss motions from three
human players (20 motions per player) using an optical motion capture system
from VICON. The distance between the specified standing point and the goal
on the floor was set to 2.5 [m] for each player. We focus on the difference in
statistical distributions of skill parameters in RELEASE tasks in this observation.
First, distribution of skill parameters of hand positions r in RELEASE tasks were
plotted for each player (See Fig. 4.6). Clusters circled in the same color mean
statistical distributions of hand positions at start, a specific intermediate, and
end timings in RELEASE tasks by a specific human player. The comprehensive
transitions from start to end timings in RELEASE tasks are indicated by arrows.
The color of the plot, circles, and arrows differentiates human players. Similarly,
distributions of bend angle ϕB and θB in RELEASE tasks were plotted for each
player (See Fig. 4.7).

These figures show that the statistical distribution of each skill parameter
varies from player to player. Fig. 4.6 shows that a player with blue markers tends
to throw rings at higher positions, in a Cartesian coordinate with the origin at
the right shoulder, compared to the other players. On the other hand, a player
with green markers tends to throw rings from lower positions. A player with red
markers has a style which is similar to that of the player with green markers, but
the difference appears at the end timings. Additionally, this player moves the
hand carefully; variances at each timing tend to be small compared to the others.
Fig. 4.7 shows that the player with blue markers tends to bend more both forward
and sideways, while the subject with red markers does not bend as much. In
this way we can compare and discover the differences and similarities in style
of two or more human players based on the distributions of skill parameters.
Moreover, the variance of these distributions can also suggest the importance of
each skill parameter.
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Figure 4.6: Distributions of skill parameters r in RELEASE tasks in a total of 60
ring toss motions from three human players (20 motions per player). Note that r
is defined in a Cartesian coordinate with the origin at the right shoulder. Clusters
circled in the same color represent statistical distributions of hand positions r at
start, a specific intermediate, and end timings in RELEASE tasks by a specific
human player. The comprehensive transitions from start to end timings in
RELEASE tasks are indicated by arrows. The color of the plot, circles, and
arrows differentiates human players.
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Figure 4.7: Distributions of skill parameters ϕB and θB in RELEASE tasks in a
total of 60 ring toss motions from three human players (20 motions per player).
Clusters circled in the same color represent statistical distributions of hand po-
sitions ϕB and θB at start, a specific intermediate, and end timings in RELEASE
tasks by a specific human player. The color of the plot, circles, and arrows
differentiates human players.
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Characterization of Style Parameter

As illustrated in the observation, distributions of skill parameters of a task
vary from player to player. In fact, those distributions describe the person-
specific differences in the domain of the specific task. We use the distributions of
skill parameters to represent spatial motion style. To describe the distributions,
we introduce style parameters in the concept of task model, one style parameter
for each task (See Figure 4.8). A style parameter consists of vectors of averages
and variances of all skill parameters in the task. Skill parameters are assumed to
be normally-distributed.

A style parameter d for a task is defined as follow based on mean and
variance of skill parameters:

d = (s̄,σ), (4.1)

s̄ = (s̄1, s̄2, s̄3, · · · , s̄k, · · · , ¯sN)T, (4.2)

σ = (σ1, σ2, σ3, · · · , σk, · · · , σN)T, (4.3)

where N is the number of skill parameters for the task, s̄ is the vector consisting
of s̄k which represents the mean of the k-th skill parameter, and σ is the vector
consisting of σk which represents the variance of the k-th skill parameter.

In the context of this extended task model, a style parameter describes “tend
to do” of the skill parameters, while skill parameters describe “how to do” of the
task. s̄ represents the most typical set of skill parameters for the task of a specific
person. On the other hand, σ represents the flexibility of each skill parameter
for the style. skill parameters with small σ tend to be same value, and can be
considered as important factors for the spatial motion stylex of the person. A set
of skill parameters which consist of s̄ can be used to reconstruct a typical motion
that reflects a style of a person. However, as mentioned above, executing the
motions which is the most typical for the style is often impossible because of
the physical constraints. Therefore, in our proposed method for robot motion
generation, an optimization, which use s̄ and σ extracted from the multiple
demonstrations of a person effectively, achieve the natural motions imitating the
style.
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4.3 Imitation of Spatial Motion Styles

This section describes a proposed framework to generate robot motion based
on style parameters described in the previous section. The framework consists
of three phases:

• Phase 1: Style parameters are extracted from the demonstrations of a
player.

• Phase 2: A set of skill parameters are optimized based on the style param-
eter so that robots can imitate the style while satisfying the constraints.

• Phase 3: Whole body motions are reconstructed by the optimized skill
parameters.

Phase 1: Using multiple demonstrations of a player as inputs, states are
detected based on their definitions. Motions are segmented as tasks and their
corresponding skill parameters are extracted. Then, style parameters for each
task are calculated from the mean and variance of skill parameters of multiple
demonstrations.

Phase 2: Skill parameters for each task are optimized based on the style
parameters so that the reconstructed trajectory can mimic the style as closely
as possible within the physical constraints. This optimization is executed by
minimizing an objective function which consists of terms that are derived from
physical constraints of the robots, distance between the ring and the goal, and
preservation of the style.

Phase 3: Whole body motions are reconstructed from the fully optimized
skill parameters. Kinematics of the robot at each time frame are reconstructed
from skill parameters. Then, trajectory in joint angle space of the robot is calcu-
lated.

4.3.1 Skill Optimization Based on Style Parameter

Initial entry of skill parameters is set to the s̄ of the style parameter. Then
values of each component are updated iteratively to minimize the objective func-
tion based on physical constraints of the robots, distance between the ring and
the goal, and preservation of the style. The objective function to be minimized
is designed as follows:

EStyle + λ1ERing + λ2(EAngle + EVelocity + ECollision), (4.4)
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EStyle =

N∑
i=1

(
s̄i − si

σi
)
2
, (4.5)

EStyle is a term for preserving the style. si is the i-th skill parameter, and N
is the number of skill parameters. The value of EStyle is increased in direct
proportionality to the difference between si and s̄i. In addition, each term is
weighted by 1/σi. A skill parameter with a smaller variance is preserved by a
larger weight coefficient, and that with a larger variance is adjusted preferentially
by a smaller weight coefficient.

ERing = |rgoal − rring(s)|2, (4.6)

ERing is a term relevant to a distance between the goal and the landing points
of rings thrown by the robot. A landing point rring(s) is simulated from a robot
motion generated using a value set of skill parameters s. Initial positions and
initial velocities of rings are given as those of the hand positions at the moment
in which hand speed becomes maximum during RELEASE task. The gravity
acceleration is assumed to be 9.8 [m/s2]. The air resistance and frictions are
ignored in the calculations of landing points. The larger the difference between
a position of goal rgoal and a landing point rring(s) is, the more the value of this
term will increase.

EAngle =

K∑
k=0

N∑
j=0

α2
j,k(s), (4.7)

α j,k(s) =


q j,k(s) − qmax

j (q j,k(s) > qmax
j )

qmin
j − q j,k(s) (q j,k(s) < qmin

j )

0 (otherwise)

, (4.8)

EAngle is a term relevant to constraints of joint angles. First, trajectories in joint
angle space generated using the skill parameters s are simulated. Then exceeding
of joint limitations is detected for each time frame, and it increases the term
according to the level of excess. q j,k(s) represents the angle of j-th joint at the k-th
time frame. qmax

j and qmin
j represents the upper boundary and lower boundary of
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the j-th joint angle. The value becomes zero if the joint angle is within the limit.

EVelocity =

K∑
k=0

N∑
j=0

β2
j,k(s), (4.9)

β j,k(s) =


q̇ j,k(s) − q̇max

j (q̇ j,k(s) > q̇max
j )

q̇min
j − q̇ j,k(s) (q̇ j,k(s) < q̇min

j )

0 (otherwise)

, (4.10)

EVelocity which is relevant to the constraint of joint angular velocity is also treated
in the same way as EAngle.

ECollision =

K∑
k=0

N∑
p=0

γ2
p,k(s), (4.11)

γp,k(s) =

r1,p + r2,p − dp(s) (r1,p + r2,p > dp(s))

0 (otherwise)
, (4.12)

ECollision is a term relevant to the constraint of self collisions. In this implemen-
tation, collision is detected by calculating the distance between swept sphere
volumes which wrap around body segments. First, positions of each body seg-
ment in the whole motion are simulated using the skill parameters s. Then upper
body, lower body, right upper arm, right lower arm, and right hand are wrapped
around by each of the five swept sphere volumes. The radius of each sphere is
determined empirically to wrap around each body segment with enough mar-
gin. γp,k(s) which represents collision level of p-th joint pair at the k-th time frame
is calculated by (r1,p+ r2,p)−dp. Where dp is the minimal distance between axes of
each swept sphere volume of the p-th pair and r1,p, r2,p are each radii of a sphere.
Considering the movement of the ring toss, collision pairs to be checked are set
as follow:

Pair 1 Hand - Upper body

Pair 2 Hand - Lower body

Pair 3 Right upper arm - Upper body

Pair 4 Right upper arm - Lower body

Pair 5 Right lower arm - Upper body

Pair 6 Right lower arm - Lower body
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ERing, EAngle, EVelocity and ECollision are factors that should be considered by hard
constraints if it is possible. However each component of s does not represent
joint angles or landing points of the ring linearly. Therefore, in this framework,
these factors are dealt with as soft constraints, and satisfied by adjusting weight
coefficients and thresholds.

Optimization of value set of skill parameters is executed by minimizing the
objective function described above. To solve this optimization problem, we used
the Levenberg-Marquardt method [MNT04]. λ1 and λ2 are given empirically.

4.3.2 Motion Generation From Executable Skill Parameters

This subsection describes the process to reconstruct the trajectory of a task
from a set of skill parameters for imitation bu humanoid robot.

A trajectory of a task is reconstructed by interpolating the state transition
during the task execution. Timings of each key frame: a start, an intermedi-
ate, and an end timing of the task, are given by skill parameters Duration and
Midtiming. Then skill parameters of hand position r, hand direction θH, elbow
direction θE, twist and lean ψT ϕB θB, and stance ψS at those key frames are in-
terpolated. Interpolation of each component is performed using a cubic natural
spline function.

Robot motions in the form of joint positions are calculated using the in-
terpolated skill parameters. The postures of the robot in each time frame are
determined by the joint positions. Finally, motions in the form of joint posi-
tions are converted to trajectories in joint angle space of the robot by solving
inverse kinematics. As mentioned above, the exceeding of physical limitations
in interpolated motions is also checked during the optimization process.
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4.4 Experiments

4.4.1 A Robot Platform

In this experiment, we employed a physical humanoid robot as shown in
Figure 4.9. The robot has 39 degrees of freedom and each joint is driven by
hydraulic motors. The feet are fixed on the base. In default setting, the posture
of the robot is updated at 30 [fps] by the input data. Seven degrees of freedom
on the right arm and four degrees of freedom on the torso are used. In addition,
an auxiliary plate for grasping the ring is designed as shown in Figure 4.9. The
ring set on the plate is fixed and released by the right thumb.

Delay Compensation in Robot Control

Each actuator of robots are controlled so that they follow the each desired
value given by inputs. However, there are robots with non-negligible delays
for the actuators to be updated. These non-negligible delays make it difficult
for the robot to trace inputted desired motions accurately. Therefore there are
major gaps between inputted motions and outputted sensor data of the robot as
shown in Figure 4.12. Not only temporally delaying but also impairing of the
shape also occur. Therefore, to control such type of robots, we developed a delay
compensation filter for input motion as follows.

As described above, a hydraulic motor system is employed for the A100
robot. Therefore, time constants are too large to compensate delays by con-
structing feedback loops, and feed-forward delay compensations are required.
So we identified systems from some Gaussian noise inputs and outputs using
a system identification technique based on discrete-time state space model, and
acquired transfer functions for each actuator. To estimate discrete-time state
space models, we applied a prediction error method.

Then, inverse operations for input motions are performed based on identi-
fied systems so that output will correspond to the desired motion. Here, input
motions for the ring toss in 30[fps] have around 150 frames at most. Therefore,
in this situation, compensated input motions for each actuator can be found by
solving a constrained optimization problem:

arg min
q

K∑
i=1

(Re fi − Sim(q)i)
2, (4.13)

lbi < qi < ubi (4.14)

95



①
②
③

⑦⑥⑤

⑧

⑩
⑪

④
⑨

① : TORSO ROLL

② : TORSO PITCH

③ : TORSO YAW

④ : WAIST PITCH

⑧ : ELBOW

⑩ : WRIST ROLL

⑪ : WRIST PITCH

⑨ : WRIST YAW

⑤ : SHOULDER PITCH

⑥ : SHOULDER ROLL

⑦ : SHOULDER YAW

Figure 4.9: A100 robot and its degree of freedoms.
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Figure 4.10: A hand plate for grasping on the right hand.

97



Figure 4.11: A ring and the goal for ring toss.
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Figure 4.12: Input motion and output motion with delay.

Where, Re f represents desired trajectory of the actuator of a total K frames, and
Re fi represents the desired value of the actuator at i-th frame. q represents the
input trajectory of the actuator, and qi represents the input value of the actuator
to i-th frame. Sim(q) represents the simulated output of the actuator to the input
q. Sim(q)i represents the output value of the actuator at i-th frame．In addition,
initial entry of q is set to Re f , and lower bounds and upper bounds of values of
actuator are set to lbi and ubi.

An output trajectory from an compensated input and a desired trajectory
for an actuator are shown in Figure 4.13. As the result of the compensation, the
output trajectory shown in a green line can be fully following the desired trajec-
tory shown in a blue line. On the other hand, the output from an input without
compensation could not follow the desired trajectory as shown in Figure 4.12.

4.4.2 Experimental Condition

Our system extracted style parameters for each of the three players (A, B,
and C), from demonstrations captured at Sec. 4.2, then it generated robot motions
for each style. Distance between standing position of the robot and the goal is
set to 2.5[m]. Instead of an on-board camera system, position of the goal is given
manually in the current implementation.
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Figure 4.13: Desired motion and output motion with our delay compensation.

4.4.3 Result

100



G
o
a
l

R
in
g

R
in
g

Fi
gu

re
4.

14
:

Im
it

at
io

n
of

M
ot

io
n

St
yl

e
of

Pl
ay

er
A

.T
op

ro
w

:
th

e
se

qu
en

ce
of

th
e

pl
ay

er
’s

de
m

on
st

ra
ti

on
.

Bo
tt

om
ro

w
:

th
e

se
qu

en
ce

of
ro

bo
t

m
ot

io
n

m
im

ic
ki

ng
th

at
pl

ay
er

’s
st

yl
e.

Pl
ay

er
A

te
nd

s
to

ta
ke

th
e

ri
ng

ba
ck

sl
ig

ht
ly

,a
nd

to
ss

th
e

ri
ng

in
th

e
fr

on
t.

H
is

be
nd

in
g

is
re

la
ti

ve
ly

sm
al

l
co

m
pa

re
d

to
th

e
ot

he
rs

’,
an

d
hi

s
ha

nd
po

si
ti

on
,e

sp
ec

ia
lly

at
th

e
en

d
ti

m
in

g
of

R
EL

EA
SE

ta
sk

,t
en

ds
to

be
hi

gh
er

.T
he

se
fe

at
ur

es
ar

e
im

it
at

ed
by

th
e

ro
bo

ta
s

sh
ow

n
in

th
e

pi
ct

ur
e.

101



R
in
g G
o
a
l

R
in
g

Fi
gu

re
4.

15
:

Im
it

at
io

n
of

M
ot

io
n

St
yl

e
of

Pl
ay

er
B.

To
p

ro
w

:
th

e
se

qu
en

ce
of

th
e

pl
ay

er
’s

de
m

on
st

ra
ti

on
.

Bo
tt

om
ro

w
:

th
e

se
qu

en
ce

of
ro

bo
t

m
ot

io
n

m
im

ic
ki

ng
th

at
pl

ay
er

’s
st

yl
e.

Pl
ay

er
B

te
nd

s
to

ta
ke

th
e

ri
ng

ba
ck

lo
w

er
,

an
d

to
ss

th
e

ri
ng

in
th

e
fr

on
t.

H
is

be
nd

in
g

is
re

la
ti

ve
ly

de
ep

er
th

an
fir

st
pl

ay
er

,a
nd

hi
s

ha
nd

po
si

ti
on

du
ri

ng
R

EL
EA

SE
ta

sk
te

nd
s

to
be

lo
w

er
.

A
lt

ho
ug

h
th

e
ro

bo
t

se
em

s
to

be
nd

ex
ce

ss
iv

el
y,

pr
ob

ab
ly

to
sa

ti
sf

y
th

e
re

qu
ir

ed
fly

in
g

di
st

an
ce

of
th

e
ri

ng
w

it
hi

n
th

e
jo

in
t

co
ns

tr
ai

nt
s,

fe
at

ur
es

de
sc

ri
be

d
ab

ov
e

ar
e

im
it

at
ed

by
th

e
ro

bo
t.

102



R
in
g

G
o
a
l

R
in
g

Fi
gu

re
4.

16
:

Im
it

at
io

n
of

M
ot

io
n

St
yl

e
of

Pl
ay

er
C

.T
op

ro
w

:
th

e
se

qu
en

ce
of

th
e

pl
ay

er
’s

de
m

on
st

ra
ti

on
.

Bo
tt

om
ro

w
:

th
e

se
qu

en
ce

of
ro

bo
tm

ot
io

n
m

im
ic

ki
ng

th
at

pl
ay

er
’s

st
yl

e.
Pl

ay
er

C
te

nd
s

to
ta

ke
th

e
ri

ng
ba

ck
sl

ow
ly

an
d

la
rg

el
y,

an
d

th
ro

w
fr

om
th

e
si

de
po

si
ti

on
.H

is
be

nd
in

g
te

nd
s

to
be

de
ep

.T
he

se
fe

at
ur

es
ar

e
im

it
at

ed
by

th
e

ro
bo

ta
s

sh
ow

n
in

th
e

pi
ct

ur
e.

103



The robot imitated a total three types of styles in ring toss motion. The three
types of ring toss are shown in Fig. 4.14, Fig. 4.15, and Fig. 4.16. Each upper row
shows the sequence of the player’s demonstration, and each lower row shows
the sequence of robot motion mimicking that player’s style.

Player A shown in Fig. 4.14 tends to take the ring back slightly, and toss the
ring in the front. His bending is small compared to the others’, and his hand
position, especially at the end timing of RELEASE task, tends to be higher. These
features were imitated by the robot as shown in the picture. Player B shown in
Fig. 4.15 tends to take the ring back lower, and toss the ring in the front. His
bending is deeper than first player, and his hand position during RELEASE
task tends to be lower. Although the robot seems to bend excessively, probably
to satisfy the required flying distance of the ring within the joint constraints,
features described above were imitated by the robot. Player C shown in Fig. 4.16
tends to take the ring back slowly and largely, and throw from the side position.
His bending tends to be deep. These features were imitated by the robot as
shown in the picture.

4.5 Discussion

Although we parameterized style using s̄ and σ, we may need to improve
considering correlation between skill parameters.

Additionally, for validation of our method, we only generated robot motions
using style parameters extracted from each of three player and compared with
the original motions. But applications such as personal recognitions and inter-
polation of styles may emphasize our contribution in this chapter. Those will be
one of our future work.

In the experiments self collisions did not occur and excess of joint limitations
are avoided as shown in Fig. 4.17. However, these factors should be considered
as hard constraints in the optimization process for safety. Additionally, success
rate of the ring toss was not very high because we did not consider the air and
frictional resistances in this implementation. These considerations will be a part
of our future work.

To validate the generality of proposed method, we need to apply our method
to another kind of target motion and robot platform. We expect our method has
equal applicability to previous task models, and we will validate this.

104



0

1000

2000

3000

4000

0 0.1 0.2 0.3 0.4 0.5 0.6

0

1000

2000

3000

4000

0 0.1 0.2 0.3 0.4 0.5 0.6

Sensor data of the joint

Reference data

Upper 

limit

Lower 

limit

Upper 

limit

Lower 

limit

R-Shoulder  Yaw

Torso  Yaw

Figure 4.17: Command trajectories of generated robot motions and the trajec-
tories executed by robot: Gray lines show the upper and lower limits. Blue
lines show the inputted command trajectories for R-shoulder yaw and torso yaw
joints. Red lines show the executed trajectories captured via sensors equipped
to each joint of the robot.
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4.6 Summary

This chapter presented a method to extract spatial motion styles in motions,
and a framework to imitate them using physical humanoid robots. Our approach
is an extension of the concept of task model and focuses on such styles in the
domain of task representations.

First we chose a ring toss game for a target motion and designed a task
model for it. We defined tasks and corresponding skill parameters based on
observations. Then we introduced a style parameter to the concept of task
model. We observed statistical distributions of skill parameters and used means
and variances of them to represent styles. The framework for generation of robot
motion consists of three phases: First phase extracts style parameters for each
task from human demonstrations. The second phase optimizes a set of skill
parameters based on style parameters so that robots can imitate the style while
satisfying their physical constraints. The last phase generates whole motions
using the fully optimized set of skill parameters.

To verify the proposed framework, we conducted experiments with a phys-
ical humanoid robot. The robot performed the ring toss motions imitating each
style, while tossing rings to the specific goal. We were able to find features of
each style in the robot motions.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, we have presented methods to generate variations of whole-
body motions, which are feasible for physical humanoid robots. As approaches,
we have observed how human motions vary according to constraints such as
music tempos or personality. Then we have extracted styles of motions based
on insights from the observation. Our proposed method first analyze given
human demonstrations via task models defined in a learning-from-observation
paradigm, and then extract tasks and skill parameters to be imitated by hu-
manoid robots. Finally, to generate stylistic robot motions, extracted motion
styles are used in optimization for executable skill parameters, which represent
the motion styles best within physical constraints of the robot.

Temporal Motion Styles and Imitation by a Humanoid Robot

We have presented a method to generate dance motions according to arbi-
trary musical tempos. Proposed method is based on insights from observation
of motion styles specific to temporal constraints. When a same human dancer
performs a dance to a same musical piece, the details of the dance movements
vary tempo to tempo. It would appear that dance motions are modified, preserv-
ing only essential factors as dance, to follow quicker tempos within the ability
to exercise. We have focused on these dance variation, which are specific to
musical tempos, as temporal motion styles. In this research, we have observed
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temporal motion styles and presented a method to imitate them using a physical
humanoid robot.

First of all, we have observed dance motions performed by three dancers in
various tempos of a same musical peace. As a result of observation, we have
obtained insights that particular postures, called keyposes, and their timings
tend to be preferentially preserved even in extremely quicker tempos. Based on
the insights, we have developed a temporal scaling algorithm to generate dance
motion variations according to tempos under sever physical constraints of the
robot platform.

We have integrated individual temporal scaling algorithms for lower-body,
middle-body, and upper-body motions. Those algorithms modify the dance mo-
tions by individual process but preserve keyposes in common. Thus we have
used keyposes as anchor points of each body parts. Then, we have presented
a method for on-line dance motion generation on the assumption that a robot
is dancing to a music with time-varying tempo such as live-music. Our on-line
generation is also based on keypose, because our observation shows that key-
poses are essential in the dance, and proposed temporal scaling techniques are
also based on keyposes. In the experiments to validate our algorithm, a physical
humanoid robot HRP-4C have been used, and the Don-pan dance have been
generated to the original, 0.85 times, and 1.2 times faster tempo. The robot could
express keyposes using its whole-body at appropriate timings in the sequence,
and provide viewers with an artistic dance pattern in which upper-body and leg
motions were fully harmonious. The experiments have demonstrated that our
algorithms based on temporal motion style are effective to generate motion vari-
ations according to music tempos. Although the temporal motion styles have
been obtained from observation of a Japanese folk dance, the Aizu-bandaisan
dance, they have been applicable to another folk dance, the Don-pan dance.

Spatial Motion Styles and Imitation by a Humanoid Robot

We have presented a method to generate motion styles which are specific to
spatial constraints such as body type, length of limbs, and so on. Especially we
have focused on styles, which are specific to the person, as spatial motion styles.
Our approach is an extension of the concept of task model and focuses on such
styles in the domain of task/skill representations.

First of all, we have chose a ring toss game as an instance of target motion
and designed task models for it. We have defined tasks and corresponding skill
parameters based on a common structure of ring toss motions, obtained from
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observation of seven player’s demonstrations. Then we have introduced a style
parameter into the concept of task model. We have observed statistical distri-
butions of skill parameters and used means and variances of those to represent
styles, supposing each of skill parameter are normally-distributed. The frame-
work for generation of robot motion consists of three phases: The first phase
extracts style parameters for each task from human demonstrations. The second
phase optimizes a set of skill parameters based on style parameters so that robots
can imitate the style while satisfying their physical constraints. The last phase
generates whole motions using the fully optimized set of skill parameters.

To verify the proposed framework, we have conducted experiments with a
physical humanoid robot A100. The robot could perform the ring toss motions
imitating each style, while tossing rings to the specific goal. We have found
features of each style in the robot motions.

5.2 Contributions

The contributions of this research are as follows:

• We have observed human dancing and analyzed humans modification
strategies for the lower- and middle-body motions to dance to a same
musical piece in various tempos. This analysis have revealed how human
dancing changes according to musical tempos for the whole-body motions,
by combining with Shiratori et al.’s analysis [SKNI07, SI08].

• We have designed algorithms for temporally scaling of the lower- and the
middle-body motions based on the observation. These algorithms allow
robots to modify the speed of dancing while avoiding overload of joint
motors.

• We have integrated the lower-, middle-, and upper-body which are mod-
ified separately according to musical tempos using different strategies,
using keyposes as anchor points. This integration allow robots to syn-
chronize the lower, middle, and upper-body motions, modified based on
different strategies.

• We have proposed a framework for on-line motion generation based on
keyposes and effective refinement of faults in motions.

• We have conducted preliminary experiments with a physical humanoid
robot HRP-4C. These experiments validated our system can generate fea-
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sible whole-body motions, in which each body parts are fully harmonious,
for arbitrary music tempos.

• We have conducted an experiment of keypose-based on-line motion gener-
ation with a physical humanoid robot HRP-4C. Although we have changed
dancing speed twice in midstream of the whole sequence of dance motions,
computation time was enough small and the robot could perform without
falling down.

• We have designed task models for ring toss motions and it allowed hu-
manoid robots to imitate the ring toss motions by human players.

• We have observed how skill parameters varies according to individuality.
This observation revealed that statistical distributions of skill parameters
can be used to identify the individuals.

• We have defined style parameter and it allowed to characterize the person-
specific motion styles, which we call spatial motion styles.

• We have designed a framework to optimize the skill parameters based on
style parameters. It allowed robots to preserve spatial motion styles in
motion imitation as much as possible within the physical constraints.

• We have proposed a method for delay compensation in robot control. It
made it possible to compensate the control error of a physical humanoid
robot.

• We have conducted experiments with a physical humanoid robot A100.
These experiments validated our method can preserve features of each
style in the robot motions.

5.3 Discussion

In this thesis we have introduced a concept of motion style in a learning-from-
observation paradigm. We have characterized how humans move according to
specific constraints. As examples of those constraints, we have handled temporal
and spatial constraints.

For examples of temporal motion style, we have focused on styles which are
specific to music tempo in the chapter 3. As a result of observation of human
dancing in various music tempo, we could extract statistical tendencies which
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are common among dancers. The fact shows that such tendencies are actually
specific to music tempos and are independent on dancers.

Insights relevant to preserving keyposes are corresponds to those reported
by Shiratori et al. [SKNI07, SI08]. Considering their observation were focusing
on upper body motions performed by other dancers, those insights can be quite
general in the domain of dance. In the chapter 3, we applied the temporal
motion styles extracted from the Aizu-bandaisan dance to Don-pan dance. The
generated dance motions were quite natural, and feasible for a humanoid robot.
This suggest the applicability of our proposed method in the domain of dance.
We believe that our method can be applied to dances which consist of transition
between keyposes. To widen the applicability of our temporal motion style,
observation of motion styles in slower tempos and other kind of dance motion
such as waltz will be necessary in future works.

On ther other hand, we extracted person-specific motion styles, as one of
spatial motion styles in chaper 4. Motion styles extracted from multiple demon-
strations of a same specific person are parameterized as style parameters, and
used for robot motion generation. We could find features of the styles in the sta-
tistical distribution of skill parameters and generated robot motions. We believe
that proposed method can be applied to dance for parameterizing person-specific
keyposes. Additionally statistical distribution of skill parameters shows that hu-
man motions by a same person are slightly different every time. Robot motion
generation considering such factor can make the robot more human-like. These
are also our future work.

5.4 Future Work

Integration with a Real-time Music Analysis Our system for a dancing-to-music
capability enabled robots to modify dance motions on-line according to
music speed. However, to achieve this, integration with a real-time music
analysis will be necessary to recognize the musical beats while dancing.
For such purpose, there are number of researches for detection of musical
beats in motor noise of a dancing robot.

A Strategy for Real-time Dance Speed Control To achieve a dancing-to-music
capability, how to control the dancing speed to keep up with the music will
also be issue. To keep up with the music, the robot need to predict musical
tempos of a few seconds later and compute the appropriate dancing speed.

111



Validation of Spatial Motion Styles in Other Motions For validation of spatial
motion styles, we only generated robot motions using style parameters ex-
tracted from each of three player and compared with the original motions.
But applications such as personal recognitions and interpolation of styles
may emphasize the possibility of application.

Collision Avoidance in a Non-linear Optimization Problem In the experiments
in Chapter 4, self collisions did not occur and excess of joint limitations are
avoided as shown in Fig. 4.17. However, these factors should be considered
as hard constraints in the optimization process for safety.
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Appendix A

Motion Capture System

This chapter describe about motion capture system we used to capture the
human motions. In this thesis, we used two type of motion capture system.

To capture the Aizu-bandaisan dance 3 and ring toss motions in chapter 4, we
used an optical motion capture system from VICON. We attached over 30 optical
markers to the whole-body of subject as shown in Figure A.1, and then the sub-
ject performed demonstrations being surrounded by the VICON cameras. The
system recorded the positions of the optical markers in a Cartesian coordinate
in C3D format. The frame rate was fixed to 120 [fps] in our observation.

To capture the Don-pan dance 3, we used MotionStar Wireless, a mag-
netic motion capture system from Ascension. We attached 15 markers to the
whole-body of subject as shown in Figure A.2, and then the subject performed
demonstrations in front of a transmitter. The system recoded the positions in a
Cartesian coordinate and rotation of the magnetic markers in FBX format. The
frame rate was fixed to 30 [fps] in our observation.

To process each type of input motions in the same manner, we converted the
optical/magnetic motion capture data to a common configuration as shown in
Figure A.3. The motion data in this unified configuration are used for observation
of motion styles and inputted to our system for robot motion generation. The
frame rate of input data was fixed to 120 [fps] in this thesis.
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Optical 

Marker

Figure A.1: Optical motion capture system from VICON. We used this system to
capture the Aizu-bandaisan dance in chapter 3 and ring toss motions in chapter 4.
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Figure A.2: Magnetic motion capture system from Ascension. To capture the
Don-pan dance, totally 15 markers are attached to the dancer in chapter 3.
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Figure A.3: A common configuration of input data. We unified configuration of
input data of our proposed system in this thesis as shown in this figure.
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Appendix B

The Aizu-bandaisan Dance by HRP-2

In Chapter 3, we proposed a method to imitate temporal motion styles using
a humanoid robot HRP-4C. And we used the Don-pan dance for validation.
This appendix shows additional experimental results of our proposed method
reported in our preliminary experiments [OSKI10, OSK∗14]. In the experiments
[OSKI10, OSK∗14], the Aizu-bandaisan dance was performed by HRP-2. Target
tempo was the original, 1.2 times faster, and 1.5 times faster than the original
tempos.

Figure B.1 shows a demonstration of the Aizu-bandaisan dance performed
by a dance master. Pictures of No.1, No.2, No.3, No.4, and No.9 correspond
keyposes of the Aizu-bandaisan dance.

Figure B.2 shows a demonstration of the Aizu-bandaisan dance at the orig-
inal tempo performed by HRP-2. The task sequences for dance motions at the
original tempo are learned from a demonstration performed by the dance master,
and whole body motions for HRP-2 are obtained from the task sequences based
on Nakaoka system [NNK∗07].

Figure B.3 shows a demonstration of the Aizu-bandaisan dance at the tempo
1.2 times faster than the original performed by HRP-2. The HRP-2 could per-
formed the dance without exceeding the physical constraints, expressed the
keyposes using the whole-body in appropriate timings in the sequence, and
provided viewers with an artistic dance pattern in which upper-body and leg
motions were fully harmonious.

Figure B.4 shows a demonstration of the Aizu-bandaisan dance at the tempo
1.5 times faster than the original performed by HRP-2. At this tempo, strides of
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STEP tasks were notedly reduced to follow the faster tempo. However HRP-2
could performed the dance even at this tempo within the limitations.
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Figure B.1: Demonstration of the Aizu-bandaisan dance performed by a dance
master. No.1, No.2, No.3, No.4, and No.9 correspond keyposes of the Aizu-
bandaisan dance.
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Figure B.2: Demonstration of the Aizu-bandaisan dance at the original tempo
performed by HRP-2.
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Figure B.3: Demonstration of the Aizu-bandaisan dance at the tempo 1.2 times
faster than the original performed by HRP-2.
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Figure B.4: Demonstration of the Aizu-bandaisan dance at the tempo 1.5 times
faster than the original performed by HRP-2.
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