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ABSTRACT

Recent advances in the field of transportation, navigation, and virtual reality,
lead to the emergence of on-vehicle cameras. Different types of cameras are
mounted either on the outside, on top, on the dashboard of cars. These cameras
are used to take pictures or videos of the surrounding and are used in several
applications.

Virtual tours use these videos to create a virtual environment where in a
person with a monitor can view and navigate. Driving simulations use such
videos to create a realistic view of a certain street. Another application is the
3D reconstruction where several point of views of a certain place is necessary.
Digital archiving uses these videos to document historical places.

Several issues arise from the use of street videos. The most common issue
is the presence of pedestrians especially when the faces are clear enough to be
recognized. Another issue is the presence of artifacts such as dead or corrupt
pixels that are inherent to the camera. Some are adherent water or smudges and
occluding objects on the lens of the camera or on the windshield of a car. All of
these artifacts degrade the quality of the video and are problematic when used
in applications that require clear view of the surrounding.

In this thesis, we address these issues by completely deleting the information
(color, brightness, etc.) of the unwanted parts of the video and redrawing them
using the desired values. This redrawing process is called video completion.
Video completion is the process of recovering missing parts of videos either by
interpolation or duplication of the known parts. The goal of video completion is
a visually pleasing output video that is both spatially and temporally consistent.
Spatial consistency requires objects to maintain their geometry while temporal
consistency requires parts of the same object to move in the same manner.

Numerous methods have been formulated to solve the video inpainting prob-
lem. Some work directly extended image inpainting methods to videos. With the
addition of a third dimension (time), existing methods result in poorly inpainted
sequence, especially when both background and holes are moving. One partic-
ular approach is the use of optical flow to propagate pixels with known colors
toward the hole. This approach is straight-forward, as long as the optical flow
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is available in the immediately succeeding of preceding frame. However in most
practical cases, such as removing pedestrians in street videos, the holes extend
several frames which make immediate copying of colors using motion information
insufficient. To solve this problem, one approach is to also estimate the motion
inside the hole.

We present an iterative optimization approach that uses optical flow to com-
plete the color frames. Our objective is to find the optical flow and the color
of the hole such that the resulting video satisfies the requirement of the visually
pleasing video.

One of our contributions is the simultaneous optical flow estimation and in-
painting. By incorporating a spatially varying mask function in the data term of
the optimization function, we were able to estimate the motion inside the hole by
basing it to the motion at its boundary. We use two smoothness constraints to
achieve coherent motion among pixels. One is the spatial smoothness constraint
that is enforced by using a total variation minimization among neighboring mo-
tions. The use of spatial smoothness constraint on the motion allows us to keep
the motion of the hole and the boundary in check as well as the total motion
inside the hole itself.

The second constraint is the trajectory smoothness measure. We compute
the optical flow among three frames and we get a forward and backward flow
which we relate to each other via trajectory similarity measure. The trajectory
measure or prior is calculated as the ratio of the forward and backward optical
flow which is estimated by averaging many point values under the assumption
that the motion is purely translational or the rotational motion is very low.

Another contribution of this work is the iterative optimization framework
that allows us to use simultaneously compute the optical flow and propagate
the color from known parts of the video into the hole. In order to do this, we
modify the mask function used in data term the optical flow estimation function
by inferring the distance of the frames of the source pixel and the hole. The
source pixel is the known color where the optical flow inside the hole points.
This distance increases as the frame of the source pixel moves farther away from
the frame of the current inpainted hole. The distance is used to regulate the
mask function. In our method, we propose a negative exponential value which
decreases in value as the distance increases. Using this modified mask function
allows us to use the intensity or color values of the inpainted pixels inside the
hole as the optical flow estimation process runs. The error inside the hole is also
regulated such that the total error inside is less than the total error outside. Our
results show an increased quality of the completed video when the mask function
is modified in this way.

Finally, we propose a refinement method on the inpainted motion. By es-
timating the boundary of objects (or motion) inside the hole, we are able to
refine the boundary of the motion and therefore increase the accuracy of the
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completed video. We estimate the edges of objects inside the hole by using the
motion outside the hole and computing an affine transformation. We first es-
timate the location of the general area of the source pixels and then compute
the edges in those pixels. Then, the edge is transferred to the hole via affine
transformation. After estimating the edges, we then impose an edge preserving
optical flow refinement by using a weighted non-local smoothness regularizer.

The generalized framework in this thesis allows for the improvements in com-
puting time by using faster optical flow estimation techniques and graph-based
color propagation methods. The framework is designed to accommodate such
changes in the methodology and thus covers a wide variety of applications.
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CHAPTER

ONE

Introduction

1.1 Background

Recent advances in the field of transportation, navigation, and virtual reality
have caused the emergence of video cameras that are used to capture an urban
environment. These cameras are mounted in different places around a vehicle
such that they can view the scene of particular interest. For example, cameras
that are mounted on top of cars are used to document a cityscape for applications
such as virtual tours, 3D modeling, digital archiving, and driving simulation.
Dashboard cameras, on the other hand, are used to monitor the behavior of
intermediate vehicles or the driver itself and are useful for documenting different
traffic incidents.

Several issues arise from the use on-vehicle video cameras that could cause
problems in certain applications. For example, the presence of pedestrians in
videos that are used for virtual tours and digital archiving pose privacy issues
especially when the faces are clear enough to be recognized. This issue is very
common in crowded places such as tourist spots or streets. A simple and com-
mon solution to address this problem is to blur or blackout the people’s faces.
However, in some applications, simple blurring is not enough especially because
it removes the visual appeal of the video. Oftentimes, a complete view of the
facade of a building is also necessary and a complete removal of pedestrians is
needed.

Another issue is the presence of artifacts such as dead or corrupt pixels that
are inherent to the camera. Some are adherent water or smudges and occluding
objects on the lens of the camera or on the windshield of a car. All of these
artifacts degrade the quality of the video and are problematic when used in
applications that require a clear view of the surrounding.

We argue that the best solution to these issues is to completely delete the in-
formation (color pixels) containing the unwanted artifacts and redraw or replace
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2 . 1.2. VIDEO COMPLETION PROBLEM

them with the desired pixels. Although this could be done manually frame-by-
frame using any image/video editing software, the process requires accuracy and
time.

In this thesis, we call this process as video completion. In the succeeding
section, we will define the video completion problem and its objectives and we
will follow with the main contribution of this work in addressing this problem.

1.2 Video Completion Problem

Given an image sequence S, we define the deleted region (removed pedestri-
ans/artifacts) as the hole H. The completion process fills in H with information
from the known parts Ω = S \H of the sequence. The main objective of video
completion is to find an H that makes S visually pleasing.

In our criteria, a visually pleasing video should have spatial and temporal
consistency in both color and motion domains. We define these criteria in detail.

• Spatially Consistent Color. This criterion is most easily observed in
static frames because it is easier to discern the geometrical appearance
of an object when it is not moving. Having said that, an object that
appears to be geometrically impossible (floating objects, curved building
walls) is undesired. In video completion, a recognized object must satisfy
its geometrical definition (i.e. a building must have doors, and windows,
and its walls must be smooth.), therefore the completed parts must adhere
to the original structure. Any divergence from its preconceived appearance
is easily recognized by the viewer as an inconsistency.

• Temporally Consistent Color. This criterion suggests that if an object
appears in one frame, then it should appear in all frames unless it is oc-
cluded by another object. Violation of this objective results in flickering of
objects where it appears and disappears abruptly.

• Spatially Consistent Motion. This criterion constraints the motion of
the points belonging to a same object to be smooth. Ideally, we want the
motion of the hole and the boundary to be smooth such that the edge of
the hole will not be apparent in the resulting video. It also suggests that
the motion of the points inside the hole must be smooth.

• Temporally Consistent Motion. If we track a point among several
frames, the motion of that point must be smooth. Although this criterion
is violated in shaky videos, it still constraint the motion of a point to
the general motion of the shaking, which usually comes from the camera
motion.
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Using these criteria, different methods can be characterized into two cate-
gories: using color frames and using motion frames in inpainting. We build our
method based on the motion frames.

1.3 Thesis Contributions

This thesis addresses the problem of video completion through motion inpainting.
The contributions are summarized as:

• Our first contribution is the simultaneous optical flow estimation and in-
painting. By incorporating a spatially varying mask function in the data
term of the optimization function, we were able to estimate the motion
inside the hole by basing it to the motion at its boundary. We use two
smoothness constraints to achieve coherent motion among pixels. One is
the spatial smoothness constraint that is enforced by using a total variation
minimization among neighboring motions. The use of spatial smoothness
constraint on the motion allows us to keep the motion of the hole and the
boundary in check as well as the total motion inside the hole itself. The
second constraint is the trajectory smoothness measure which relates the
forward and backward flow computed among three frames. The trajectory
measure or prior is calculated as the ratio of the forward and backward
optical flow which is estimated by averaging many point values under the
assumption that the motion is purely translational or the rotational motion
is very low.

• Another contribution of this work is the iterative optimization framework
that allows us to use simultaneously compute the optical flow and prop-
agate the color from known parts of the video into the hole. In order to
do this, we modify the mask function used in data term the optical flow
estimation function by inferring the distance of the frames of the source
pixel and the hole. The source pixel is the known color where the optical
flow inside the hole points. This distance increases as the frame of the
source pixel moves farther away from the frame of the current inpainted
hole. The distance is used to regulate the mask function. In our method,
we propose a negative exponential value which decreases in value as the
distance increases. Using this modified mask function allows us to use the
intensity or color values of the inpainted pixels inside the hole as the optical
flow estimation process runs. The error inside the hole is also regulated
such that the total error inside is less than the total error outside. Our
results show an increased quality of the completed video when the mask
function is modified in this way.

• Finally, we propose a refinement method on the inpainted motion. By
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estimating the boundary of objects (or motion) inside the hole, we are able
to refine the boundary of the motion and therefore increase the accuracy of
the completed video. We estimate the edges of objects inside the hole by
using the motion outside the hole and computing an affine transformation.
We first estimate the location of the general area of the source pixels and
then compute the edges in those pixels. Then, the edge is transferred to the
hole via affine transformation. After estimating the edges, we then impose
an edge preserving optical flow refinement by using a weighted non-local
smoothness regularizer.

1.4 Thesis Organization

This thesis is organized in a successive manner. We address the issues in video
completion problem by following the criteria that we defined and propose a
method and test on real and synthetic videos. We successively handles the re-
maining issues by discussing improvements in the proposed method.

In Chapter 2, we will review the existing methods in video completion and its
immediate extensions. We will divide the methods in two categories from which
we will build our proposed methods. In Chapter 3, we will discuss the very basic
framework of motion inpainting using a spatially smooth motion assumption. In
Chapter 4 we will then extend this approach to multiple-frames which enables us
to use an additional trajectory constraint on the motion . In Chapter 5, we will
define the iterative optimization framework that simultaneously estimates and
inpaints the motion as well as the color frames. In Chapter 6, we will discuss the
refinement method that uses estimated edge information inside the hole. Finally,
we will conclude this thesis and discuss the future direction in Chapter 7.
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TWO

Review of Related Work

Video completion methods can be divided into two categories: using color or
brightness frames and using optical flow or motion frames. Methods that use
color or brightness frames rely on a similarity measure between pixels while
methods that use optical flow frames rely on the similarity of motion of neigh-
boring pixels.

2.1 Using Color Frames

Numerous methods have been formulated to solve the video completion problem.
Some work directly extended image inpainting methods [Criminisi et al. 2003] to
videos. With the addition of the time dimension, these methods result in poorly
inpainted sequence especially when the background and holes are both moving.

Non-parametric sampling is the most famous video inpainting method. A
global spatio-temporal optimization is proposed by [Wexler & Irani 2007]. They
use 3D patches including RGB channel and intensity gradient in the horizontal
and vertical directions. With the use of 3D patches the authors claim a solution
in the temporal discontinuity that result from extended image inpainting tech-
niques. However, this method suffers in both accuracy and efficiency when the
hole becomes very big and the inpainted background become large.

Jia et al [Jia et al. 2005] propose an extension of the previous method and use
large fragments based on color similarity instead of using fixed size patches and
use tracking to complete the video. A large improvement in time was achieved
but the quality of the inpainting is still the same. Another extension that
solve the time complexity of patch matching is by Granados et al [Granados
et al. 2012b] which allows a person to indicate locations in the video that the
source of the hole might come from. In this way, the search space was dramati-
cally reduced and the completion time was improved.

5
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Some methods use frame alignment using features (low-rank [Zhang et al. 2010],
SURF [Granados et al. 2012a], etc.) with variants such as separately inpainting
background and foreground using layers [Jia et al. 2004]. Frame alignment only
works with planar scenes and with very few visible planes. These methods also
require that objects have the same size throughout the video and therefore is not
applicable in most applications. Moreover, detecting planes become problematic
when there are multiple planes that affect the desired value of the hole.

The most common issue with these methods is the absence of an explicit
motion constraint. The success of the inpainting results depends solely on the
effective comparison between neighboring pixels and the source patches. Consis-
tent motion are somehow achieved by using 3D patches (including neighboring
frames), however this approach relies too much on the presence of a periodic
motion. In other words, the inpainting will only be successful if the patch has a
match.

Another problem with this approach is that patches tend to diverge from
consistency when the hole is too big. Even periodic motion fails because the
information at the boundary is too far from the inside of the hole. In order to
solve this problem, image pyramids are used which greatly improves the inpaint-
ing results.

2.2 Using Optical Flow Frames

Another approach in solving the video completion problem is the use of optical
flow to propagate the pixels with known colors toward the hole. The methods
that falls in this category uses two steps in completing the video. The first step
is to estimate the optical flow inside the hole and then propagate the information
from known parts of the video into the hole using the optical flow values. [Shi-
ratori et al. 2006] complete the motion by using motion patches similar to the
approach used in color frames. [Tang et al. 2011] also inpaint the motion but use
weighted priority of patches to select the best matching patch.

Video completion can benefit from frame interpolation methods that use mo-
tion inpainting [Chen & Lorenx 2011]. The difference between the two problems
is the unavailability of the spatial information in the latter. Instead of exclu-
sively interpolating the trajectory, color and motion consistency assumption at
the boundary of the hole could be used to improve the inpainting results. [M.
et al. 2011] used optical flow to estimate the velocity of pixels between two consec-
utive frames and applied a TV-L1 denoising algorithm to inpaint holes. However,
in their method, the solution for optical flow and inpainting are separately done.

After motion inpainting, color propagation is trivial. The success of these
methods rely heavily on the accurate estimation of optical flow at the boundary
of the hole. Moreover, working on the optical flow field does not ensure consistent
motion between the hole and the boundary. Since most of the motion inpainting
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methods use only two frames, the consistency is also limited within two frames.
Aside from that, when the hole becomes very large, the motion information at
the boundary will have difficulty in reaching the center of the hole.

2.3 Summary

To summarize the existing video completion methods, we present Table 2.1.
Most of the effort in video completion have been focused on solving the spatial
and temporal consistency in color. However, the motion characteristics of the
completed video have not been sufficiently addressed. With methods that uses
only color frames, the motion consistency was not addressed because there is no
explicit motion constraints applied during the inpainting process. Even with the
use of 3-dimensional patches for patch matching, the color channels are still not
enough to sufficiently address the motion inconsistencies.

Although methods that uses motion frames implicitly address the motion
consistencies, the method still lacks in several aspects. First, spatial consistency
is hard to achieve if the holes become very big because the information outside
the boundary of the hole could not reach the center. The convergence of global
similarity measures takes longer time to a point of non-convergence. The tem-
poral motion consistency on the other hand is hard to solve if the size of patches
are small. However, increasing the patch size will result in including unnecessary
information hence, a control becomes necessary.

In the next chapters, we will address the shortcomings of the methods pre-
sented here by presenting a techniques that handles all the video completion
criteria into one solution.
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Video Completion
Objectives

Using Color Frames
Using Motion Frames

(existing methods)

Spatial Consistency
in Color

◦ ◦

Temporal Consistency
in Color

◦ ◦

Spatial Consistency
in Motion

×
(no motion
constraints)

◦/×
big holes have less

information

Temporal Consistency
in Motion

×
(no motion
constraints)

◦/×
limited by the size

of patches

Table 2.1: Summary of Existing Methods
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Spatially Consistent (Two Frame) Motion Inpainting
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One requirement of a visually pleasing video completion that has not been
successfully addressed in prior works is having a spatially consistent motion. To
review, spatially consistent motion means that the motion of points inside the
hole moves in the same manner as the points along its boundaries. The human
eye can detect very tiny inconsistencies [Smith et al. 2006] in motion and these
are undesirable when inpainting videos. Moreover, these inconsistencies become
more apparent when the background is stationary and the inpainted object is
moving (i.e. walking pedestrians on the street).

Existing video inpainting methods [Wexler & Irani 2007], [Jia et al. 2005],
[Granados et al. 2012b], can solve spatially consistent intensity values (differen-
tiate from spatially consistent motion). These methods can inpaint objects that
are geometrically acceptable (i.e. straight walls, smooth surface etc.) Some solu-
tions to video inpainting are direct extension of image inpainting methods [Cri-
minisi et al. 2003] with the additional temporal dimension. The time axis makes
it possible to also rely on the object motion instead of just pixel values.

Spatially consistent motion can be achieved by forcing the motion inside the
hole to be smooth and agrees to its boundary. Some methods that addresses this
spatially consistent motion use spatio-temporal patches [Shiratori et al. 2006].
However, patch-based methods only works well on objects with periodic move-
ments and suffers from over-smoothing, flickering and long computation time.
Variants of this methods include separating background and foreground and us-

9
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Figure 3.1: Interpolating the motion from the boundary to the hole.

ing object contours. Some of these methods directly address motion smoothness
by object tracking and using motion patches instead of color.

Say for example we have two frames. If all the color in both frames are
known, it is possible to solve an accurate optical flow (see Figure 3.1). However,
if we introduce a hole in any of the frame, it will be impossible to know the flow
of points inside it. In fact, the flow is undefined. However, we can approximate
the hole motion by inferring on the relationship between it and the boundary. In
this work, we assume that the motion of the boundary and the hole is smooth
and therefore we can deduce the unknown motion by minimizing of the difference
in motion between neighboring pixels. Then, once we have an estimate of the
motion, we can propagate the color from the known parts towards the hole by
following the estimated motion.

In this chapter, we present an optimization method that solves the motion
inside the hole given only the optical flow values at its boundary. The overview
of the method is summarized in Figure 3.2. We first describe a motion inpainting
framework in Section 3.1 followed by a straightforward color propagation tech-
nique in Section 3.2. We then discuss the results and limitations in Section 3.3
and concludes the chapter in Section 3.4.

3.1 Total Variation Motion Inpainting

Given an optical flow (u, v), we impose a smoothness constraint directly on the
optical flow frames. This approach solves the motion of pixels in the hole based
on the motion of its boundary. For example, given a background that is planar
and rigid, the equivalent motion will be uniform and therefore forces the motion
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Figure 3.2: Overview of the video completion using spatally consistent motion
inpainting.

in the hole to be uniform, too. Similarly, this approach also forces the motion
within the hole to be smooth.

We implement the smoothness constraint by applying a total variation mini-
mization on the optical flow per frame. This is similar to earlier work in image
inpainting [Chan et al. 2005] [Shubhangi 2012] [Dahl et al. 2010] instead we ap-
ply TV on the motion domain. Note that the ”per frame” implementation is
justified because we do not assume that the camera motion is smooth (can be
shaking and abruptly change direction or speed) at this point.

The goal of TV optimization is to minimize the following:

min
u
|∇u|TV + |u− f |22 (3.1)

where u is the estimated value and f is the observed variable.

The TV term is discretized as:

|∇u|TV =
∑
i

√
(∇xu)2 + (∇yu)2 (3.2)

where∇xu and∇yu are the motion gradient in the x and y direction, respectively.

TV regularized problems can be iteratively solved using split Bregman method
as proposed by [Goldstein & Osher 2009]. TV can be solved by alternatively min-
imizing the following:

min
d,u
|d|+ λ

2
|u− f |22 +

γ

2
|d−∇u− b|22 (3.3)

where b is the Bregman iteration variable. It is updated every iteration k such
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that:

bk+1 = bk +∇u− d (3.4)

Function (3.3) is solved by alternating between d and u. The d-subproblem
is given by:

dk+1 = min
d
|d|+ γ

2
|d−∇u− b|22 (3.5)

Equation (3.5) can be explicitly solved by using a generalized shrinkage for-
mula:

dk+1 = max

(
sk +

1

γ
, 0

)
∇uk + bk

sk
(3.6)

where sk =
√
|∇uk + bk|2

The u-subproblem is solved by finding the optimal u that satisfies the follow-
ing equation:

1

γ
λu+ δu =

1

γ
λf − div (d− b) (3.7)

where div is the discrete divergence and δ is the Laplacian. To use the TV
optimization in inpainting, the variable λ is allowed to have spatially varying
values in the image (λ = 0 in the inpainted region D and positive elsewhere).
Since denoising task is not performed, the u-subproblem in this case reduces to
δu = div (d− b).

The u-subproblem is solved using one sweep of the Gauss-Seidel method per
iteration. δ is evaluated as the 5-point Laplacian δu = −4ui,j + ui−1,j + ui+1,j +
ui,j−1 + ui,j+1. The discrete divergence is given by div(u) = ux,i−1,j − ux,i,j +
uu,i,j−1 − uy,i,j.

To summarize the algorithm, we have:

Algorithm 1: TV motion inpainting

initialize u, d, b = 0
while min > tolerance do

solve d-subproblem
solve u-subproblem
update bk

end while

3.2 Color Propagation

After completing the optical flow, the color frames are then solved. This is
done by propagating the color based on the motion information. The process is
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illustrated in Fig.(REF). The inpainted region is labeled as D and the known
region is Ω. To solve for an unknown pixel (yellow), the optical flow information
at that point is used to trace that point on to the next frame t+ 1. In the next
frame, the color becomes available and therefore it is copied to the yellow square
in frame t.

Figure 3.3: Simple color propagation. The hole color is completed by following
the motion to other frames and copy the known values.

Since the hole is very large, it is possible that this simple transfer will not
work. For cases where the pixel is not found on the immediate frame, the motion
is followed to the succeeding frames until a known value is reached. Take for
example the green pixel at frame t. To solve this problem, the pixel is traced
again, following the optical flow information this time at frame t + 1 until a
known pixel is found at frame t + 2. We then copy that color to grame t + 1
and then to frame t. By tracing all the flows in this manner, the hole is filled
completely.

It is important to note that by using this method, there is a possibility of
having very few source pixels near the beginneing and end of the video especialy
when the hole spans the width of the whole frames. This is the reason why we
use both the forward and backward flow. However, using both flows results in
inconsistency during color propagation when the flows directs to two differently
colored source pixels. To solve this issue, we propagate starting from the hole
boundary one pixel at a time for the whole sequence. Using this technique, we
prioritize the flow which copies the color from the closest known frame and limit
error building up from the propagation.
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3.3 Results and Discussion

For the initial experiment, the method is tested on SINTEL [Wulff et al. 2012]
[Butler et al. 2012] database called ’alley’ (See Figure 3.4). This database is
chosen because it contains a complete and ground truth optical flow frames. It
is a computer generated 3D movie available for public use and as promotional
video.

The video clip we used contains 50 frames of 1024x436 pixel resolution. The
mask is manually created. First the region is estimated using the data in the
optical flow. By doing a bilevel filtering, the human figure is partially extracted
from the images. This partially solved mask is then manually edited to cover the
entire human body. After that, the mask is dilated using a 5-point box filter to
address the inconsistent intensity along the boundary.

After applying the mask on the optical flow, the inpainting method defined
in the previous section is performed. The resulting frame is shown in Figure 3.4.
By following the color propagation algorithm, the final result is obtained. The
inpainting process takes approximately 35 seconds per frame in our MATLAB
implementation on a 2.00 GHz Intel Pentium CPU with 4GB RAM.

The performance of the method is also tested on an actual road scene video
(130 frames, 360x160 pixel resolution) taken from a moving vehicle. The pro-
cessing time varies per frame between 30 and 50 seconds due to difference in hole
size. Inpainting the whole video takes approximately 1 hour and 20 minutes.
The result of inpainting is shown in Figure 3.5.

Figure 3.4: Representative frames from SINTEL database.

3.4 Chapter Summary

Maintaining spatially consistent motion is achieved by extrapolating the known
motion values from the boundary into the hole using the neighborhood rela-
tionship defined by the total variation regularizer. This is done by solving the



CHAPTER 3. SPATIALLY CONSISTENT (TWO FRAME) MOTION INPAINTING/ 15

Figure 3.5: Representative frames from the road scene video.

optical flow outside of the hole using two frames. In cases where the object
being inpainted is planar or have a straight edge, TV inpainting can success-
fully approximate its motion. Results show that by imposing this smoothness
assumption, we remove the ghosting effect and allows the movement of objects
to be in accordance to its surrounding.

However, street videos are often cluttered with different objects and becomes
difficult to inpaint especially when the hole becomes very big. In this case, TV
inpainting will fail. Moreover, since the optical flow is solved using two frames
only, the motion smoothness is only limited between two frames. Since there is
no explicit relationship among the image pairs, the motion consistency will be
violated if the optical flow of known values fail to cohere with each other.

Needless to say, this method relies heavily on the successful estimation of the
optical flow. The good news is that numerous methods have been proposed in
solving the optical flow and their accuracy have improved greatly. Choosing a
good estimation method is key to the success of the method proposed here.
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In the previous chapter, we have shown that two-frame motion inpainting can
be done by assuming that the optical flow between the hole and its boundary is
smooth. This spatial smoothness assumption, however, can only be applied to
one optical flow frame.

Ideally, an object in a video could appear on all frames with an almost con-
tinuous motion (violated only by occlusions). Because of this, it is possible to
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Figure 4.1: Two-frame vs. multi-frame motion inpainting.

characterize the motion of this object and therefore define the relationship among
its motion as observed in the neighboring frames. During motion inpainting, we
can use this idea to put additional constraints on the estimated motion of the
hole and not rely exclusively on the data outside its boundary within one frame
but also with that of the neighboring frames.

Take for example the motion inpainting problem in Figure 4.1. In the two-
frame case, we have a known red pixel in both frames 1 and 2. We also have
a known green pixel in frame 1 an unknown yellow pixel in frame 2. Since the
position of the red pixel is known for both frames, we can solve for its optical
flow, ur. Following a spatially smooth motion constraint, we can assume that
the green pixel will move in the same manner as the red pixel (ug ≈ ur) because
they are neighbors. By reasoning on the motion of the red pixel, we can say
that the position of the green pixel in the second frame is indeed labeled by the
yellow pixel.

Other than relying on the neighboring motion, it is safe to say that there is no
other way of guessing the optical flow of the green pixel, hence the disadvantage
of two-frame motion inpainting.

We will follow the same steps for the multi-frame case. In all three frames,
the red pixel is present. The green pixel is present only in frames 1 and 2 and
unknown in frame 3. In the same manner as the two-frame case, we can solve
for the optical flow of the red pixel (ur1 and ur2) but the green pixel can only
be solved between the first and second frame (ug1). By following the spatial
smoothness assumption, it is safe to claim the constraint ug2 ≈ ur2.
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In this case however, it is still possible to add another constraint on ug2. If
we assume that the green pixel has a constant velocity, we can also claim that
ug2 ≈ ug1. Combining this with the spatial constraint, we can estimate ug2 using
least squares:

ug2 = min
ug2

(ug2 − ug1)2 + (ug2 − ur2)2 (4.1)

In general cases where the velocity is not constant, we can approximate the
relationship between ug1 and ug2 based on the total motion of the red pixel, with
an assumption that both are rigid objects and the motion is due only to the
translational motion of the camera.

Equation 4.1 can be easily extended to a continuous case, where ur1, ur2 and
ug1 are the known optical flow values uΩ and ug2 is the optical flow inside the
hole uH . As a solution, we need to compute first uΩ and then perform the least
squares approximation in Equation 4.1 and modify it as:

min
uH

∑
i

(uΩ − uH)2 (4.2)

This is, in fact, a straightforward extension of the method presented in Chapter
3 with a less robust penalty function (least squares vs. total variation).

This simple approach poses two problems as is in two-frame motion inpaint-
ing.

• If the optical flow is miscalculated outside the hole, this error will obviously
propagate into the hole.

• Since there are two separate optimization problem - optical flow estima-
tion and TV (or least squares) inpainting - the computational time is also
doubled.

In this chapter we will present a methodology that addresses these issues and
show great improvement in estimating the motion inside the hole. In the suc-
ceeding sections, we will introduce a simultaneous optical flow estimation and
inpainting method that is both spatially and temporally consistent. In order to
do so, we will first extend the standard two-frame optical flow estimation frame-
work to three frames by adding the trajectory constraint. Then we will discuss
a joint optical flow estimation and inpainting method and a generalized method
for multiple frames (N > 3) followed by the experimental results, comparisons
with other methods and conclusions.
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4.1 Related Work

In order to implement a multi-frame motion inpainting, we first need to be able
to estimate the optical flow among several frames. In prior works, multi-frame
estimation is achieved by using a temporal smoothness constraint ( [Zimmer
et al. 2011] and [Nagel 1990]) which is an assumption that the optical flow in
one pixel position, say (x, y), among succeeding frames, {j|j = (1, 2, ..., N)}, is
consistent. That is, ux,y,j ≈ ux,y,j+1 ≈ ux,y,j+N . This constraint, however, holds
only if the pixels in two different frames belong to the same object, hence the
similar motion. Nevertheless, even though temporal smoothness holds only for
areas inside a single object, it has achieved better optical flow estimation results
compared to using only the spatial smoothness constraint especially for constant
velocity motion.

Another approach to multi-frame optical flow is the use of smooth trajectory
constraint which ensures that real-world points register smooth motion among
all frames. Trajectory smoothness, however, requires that points are tracked in
every frame. Several works use smooth trajectory as an additional constraint
to the optical flow functional. [Werlberger et al. 2009] solve the optical flow
using three frames by imposing a hard constraint between the forward and the
backward flow. In this work, since the authors assume that both motions are
equal which is not always true, they reported a degradation in the result on
some of their data. [Salgado & Sánchez 2007] impose a soft constraint between
the flows however, their method require warping of the flows to each other, which
makes it difficult to solve because flow fields refer to many different coordinate
frames. [Volz et al. 2011] on the other hand, solve the flow fields with respect
to one reference frame thus removing the need to warp them. In their method,
the authors used multiple frames and only one direction which makes solving the
trajectory simpler.

4.2 Three-Frame Optical Flow Estimation Frame-

work

It is necessary to define the optical flow estimation framework in this chap-
ter to fully explain the proposed motion inpainting method. We will revisit
the widely implemented two-frame optical flow estimation proposed by [Horn &
Schunck 1981] with generalized penalty functions in order to accommodate dif-
ferent formulations from prior works. Then, we will extend the method to three
frames in Section 4.2.2 and introduce an additional trajectory constraint.
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4.2.1 Horn-Schunk Model

The standard Horn-Schunck optical flow estimation function consists of an L2
data penalty term and the total variation (TV) term. The standard TV smooth-
ness term allows for the optical flow to be estimated where the data penalty fails
due to the absence of gradients. In motion inpainting, TV ensures that the flow
field is smooth and consistent among neighboring pixels as we have discussed in
Chapter 3.

We define the vector u = (u, v) as the optical flow between frames I0 and
I1, where u and v are in the x and y direction, respectively. The Horn-Schunk
formulation is as follows (Eq. EQREF).

min
u
|I1(x+ u)− I0(x)|22 + |∇u|TV (4.3)

Generally speaking, the L2 penalty function (s2) can be replaced by ANY
CONVEX FUNCTION ψ(s). In literature, the common penalty functions are the
L1 [Papenberg et al. 2006] [Wedel & T. 2008], Charbonnier [Bruhn et al. 2005],
and Lorentzian [Black & P. 1996]. The L1-norm is non-differentiable in contrast
to the Charbonnier and the Lorentzian functions which are often used in varia-
tional estimation methods. From this point, we will designate a standard form
ψTV (s) to represent the TV term. As a result, the generalized two-frame optical
flow function can be defined as:

min
u
ψ (I1(x+ u)− I0(x)) + ψTV (∇u) (4.4)

Given this generalized two-frame optical flow estimation function, we can now
move on to define the three-frame framework that we will be using in our motion
inpainting method.

4.2.2 Three-Frame Optical Flow

Using three frames, it is possible to compute two optical flows, namely forward
and backward flows, that are both based on a single reference frame. In prior
works [Randriantsoa & Berthoumieu 2000], the forward and backward flows are
estimated using only two frames. This is done by designating the forward flow
as the mapping of pixels from I1 to I2, and the backward flow from I2 to I1 (see
Figure 4.2). As a result, the two flows are spatially incoherent because they are
based on two different reference frames. In other words, if we look at pixel (x, y)
in the forward flow, the value is not the direct opposite (negative) of the same
pixel (x, y) in the backward flow.

We will differentiate the terminologies used in our method from this definition.
In our work, the forward and backward flows are defined from the same reference
frame, namely Ij. The forward flow is the mapping of pixels from Ij to Ij+1
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Figure 4.2: Forward and backward optical flow difference in definition between
two-frame [Randriantsoa & Berthoumieu 2000] and three-frame methods.

and the backward flow is the mapping from Ij to Ij−1. To simplify the following
definitions, we will use the subscript {b, 0, f} instead of {j−1, j, j+1} to represent
{backward, reference, forward} terms.

Using the function in 4.4, we can define the forward and backward flows uf
and ub, respectively, as:

min
uf

ψ (If (x+ uf )− I0(x)) + ψTV (∇uf ) (4.5)

min
ub

ψ (Ib(x+ ub)− I0(x)) + ψTV (∇ub) (4.6)

As we can see, the two functions are still independent of each other and
can be minimized entirely separately. However, since both uf and ub are based
on a single reference frame, under certain assumptions it is possible to derive
a relationship between the two. For example, we can say that uf and ub have
the same magnitude but opposite in direction (i.e., if the pixels are moving in
a constant velocity), therefore we can derive the constraint uf + ub = 0. Other
relationships can be derived from constrained camera models and rigid object
motions. These relationships will be left for discussion in the next chapter.

For simplicity reasons, let us assume that the relationship between uf and ub
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can be described by a general function φ(uf , ub). Under this assumption, we can
subject 4.5 and 4.6 to the following strict constraint:

φ(uf , ub) = 0 (4.7)

We will call Equation 4.7 as the trajectory constraint and assume that φ
is convex and differentiable. By using the concept of augmented Lagrangian
method of multipliers, we must be able to combine 4.5 and 4.6 into one function
by introducing a dual update variable bk = (bku, b

k
v) as follows:

min
uf ,ub

ψ (If (x+ uf )− I0(x)) + ψTV (∇uf )

+ψ (Ib(x+ ub)− I0(x)) + ψTV (∇ub)

+
λ2

2

∣∣φ(uf , ub)− bk
∣∣2
2

+ const. (4.8)

The function in 4.8 can be thought of as three separate energy functions
that affects different aspects of the estimation process - data fidelity and the two
smoothness constraints, spatial and trajectory. The data term contributes to the
correct motion when the color channel is available. It also allows for the esti-
mated motion along the boundary of the hole to be precise which helps correctly
estimating the unknown flow inside the hole. On the other hand, the spatial en-
ergy term constricts neighboring motions to be smooth and the trajectory energy
term assumes object to have a smooth velocity.

It is also possible to control the effect of each terms on the resulting optical
flow. We can do this by multiplying spatially dependent variables on each of
the terms. This technique is particularly useful in cases where we want to limit
the strength of one energy and increase the influence of another. For example,
we can base the limitation in smoothness of the motion on the image gradients
and say that if the color channel has a strong boundary, the motion along that
boundary should have a discontinuity. This technique is not new and has been
used in many work [Black & P. 1991] [Li et al. 2012] among others.

Specifically, in the motion inpainting process, we can completely remove the
effect of color inside the hole by assigning a binary function to label the hole (0)
and the known region (1) and multiply it to the data term. It is also possible
to assign a function based on the accuracy of the color inside the hole after the
completion process in order to refine the estimated flow (see Chapter 5 and 6).
As a summary, the three energy terms are given by:
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Edata(uf , ub) = λd [ψ (If (x+ uf )− I0(x)) + ψ (Ib(x+ ub)− I0(x))] (4.9)

Espatial(uf , ub) = λs [ψTV (∇uf ) + ψTV (∇ub)] (4.10)

Etrajectory(uf , ub) =
λt
2

∣∣φ(uf , ub)− bk
∣∣2
2

+ const. (4.11)

with λd, λs and λt as the spatially dependent variables. For visual simplicity,
the three-frame optical flow estimation function can be represented by:

min
uf ,ub

Edata(uf , ub) + Espatial(uf , ub) + Etrajectory(uf , ub) (4.12)

4.3 Joint Optical Flow Estimation and Inpaint-

ing

To make this paper self-sufficient, we describe the solution to (4.12) in detail and
summarize in Algorithm 2.

4.3.1 Linearization of the Data Penalty Term

We first need to make the inner terms of the data energy in Equation 4.9 dif-
ferentiable. To do this, we linearize the image If using the first order Taylor
approximation near x+ uf . This yields:

If (x+ uf , y + vf ) = If (x, y) + uf
dIf
dx

+ vf
dIf
dy

(4.13)

The inner data term for If therefore becomes:

ψ (If (x+ uf , y + vf )− I0(x, y)) = ψ
(
ufIfx + vfIfy + Ift

)
(4.14)

where Ifx and Ify are the partial derivatives of If in the x and y directions and
Ift = If (x, y)− I0(x, y)

We do the same for Ib and the whole data term can be rewritten as:

Edata(uf , ub) = λd
[
ψ
(
ufIfx + vfIfy + Ift

)
+ ψ

(
ubIbx + vbIby + Ibt

)]
(4.15)

By linearizing Edata, the term is now differentiable and can be minimized
using variational techniques.
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4.3.2 Continuous Refinement and Bicubic Warping

In practice, the linearization in Equation 4.15 will not be satisfied because the
image gradients will have large variations between If and I0 especially when the
motions are large. This will result in a failed estimation of the optical flows.
A famous method to address this issue is to use image pyramids [Burt 1981]
to make the images smaller and hence the estimated motion lesser. Using a
smaller image, the optical flow is solved and is used as an initial value for the
larger image. Another approach is to solve for a sparse optical flow using patch
matching [Bao et al. 2014] or point correspondences of invariant features such as
SIFT [Li et al. 2012].

Assuming that uf is already a close approximation of the desired value, we
warp the If using this uf and then solve for the differential ∆uf = (δuf , δvf )
instead. The new warped image is given by Īf (∆uf ) = If (x + uf + ∆uf ). We
then rewrite the data term again using the warped image for the forward flow
as:

Edata(uf ) = λd
[
ψ
(
δuf Īfx + δvf Īfy + Īft

)]
(4.16)

We then minimize the energy in terms of ∆uf as:

min
δuf

λd
[
ψ
(
δuf Īfx + δvf Īfy + Īft

)]
(4.17)

In other words, an initial guess of uf is refined by solving the optimization
function within ∆uf . This step is often called continuous refinement.

To use the above refinement technique, we first need to warp image If to the
reference frame using the initial value of uf . The optical flow (uf , vf ) maps the
pixels of the warped Īf from its source values in If (see Figure 4.3). A pixel in Īf ,
(x̄, ȳ) will obviously point to an inexact location in If . To estimate the value of
while considering all the four points, we follow the bicubic interpolation method.
It is an extension of the cubic interpolation to two-dimensional domain. We use
this type over the bilinear one because it results in a smoother warping that is
closer to the original image. Figure 4.4 shows an example of the warped image
If−warped using the optical flow uf and the residual with the reference frame I0.

4.3.3 Solving the Image Gradients

After warping the images, we now solve for the image derivatives Ifx and Ify .
The continuous image derivatives can be approximated by solving the discrete
image gradients. We do this by convolving the image with a kernel filter given
by Equation 4.18 in both x and y directions. The image gradients are shown in
Figure 4.5.

K =
1

12

[
1 −8 0 8 −1

]
(4.18)
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Figure 4.3: Mapping of the pixel in the warped image using the optical flow
points to an inexact location in the source frame. The problem is solved using
bicubic interpolation.

Figure 4.4: Warping of frame If to the reference frame I0 using the optical
flow uf yields If−warped. The bottom right image shows the residual between
the reference frame and the warped image. Notice the error localized along the
motion boundaries.



CHAPTER 4. SPATIO-TEMPORALLY CONSISTENT (MULTIFRAME) MOTION

INPAINTING / 27

Figure 4.5: Image gradients Ix and Iy of the top image in the x and y directions,
respectively.

Since we are assuming brightness constancy, we can say that the image gra-
dient of the warped If is equal to I0. However, this is not always the case due
to non-uniformity of illumination, noise, and arbitrary brightness variations. To
compensate on these changes, the image gradients of both image is averaged:

Īfx =
1

2
(Ifx + I0x) (4.19)

We do the same thing in the y component of the images. The time derivative
Ift remains as the difference If (x, y)− I0(x, y).

4.3.4 Hole Warping

In this section, we will discuss the need to warp not only the images but also the
hole (or mask frames) (λd). Take a look at the example optical flow estimation
in Figure 4.6. In this illustration, we are estimating the flow uf between frames
I0 and If . We warp If using an initial estimate uf0 to get Īf . We then overlay
Īf with a warped mask and non-warped mask (hole labeled by a dashed line).

In the case where we did not warp the hole, notice that the supposedly
removed object h was existing in Īf . In contrast, the removed object is completely
covered by the mask if we indeed warp the hole. As a result of this, the optical
flow of the case without hole warping yield more error in the results (labeled x)
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Figure 4.6: Effect of mask warping on the estimated flow with the mask in
dashed lines. Removing the pixels labeled h, the non-warped hole yields more
miscalculated optical flow labeled as x.

compared to the one where we warped the hole.

We show an example of the improvement in the optical flow estimation in
Figure 4.7. In this sequence, we introduce a hole that moves from right to left.
We tested the motion inpainting method with and without warping the hole. The
results show that not only does non-warped hole creates error in excess regions
(parts not masked at the warped image), but also the error seems to propagate
into the hole, thus degrading the whole inpainting process. In this example, the
maximum end-point difference is 0.6720.

4.3.5 Alternating Direction Method of Multipliers

The next step in the joint estimation and inpainting is to numerically solve the
optimization function. We do this by using the augmented Lagrange method
of multipliers, also known as alternating direction method. Combining the lin-
earized data term, the warped images and hole and the image gradients, we want
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Figure 4.7: Effect of hole warping on the inpainted motion in the hole.

to minimize Function 4.20 for ∆uf and ∆ub.

min
∆uf ,∆ub

λd
[
ψ
(
δuf Īfx + δvf Īfy + Īft

)
+ ψ

(
δuf Ībx + δvf Īby + Ībt

)]
+ λs [ψTV (∇(uf + ∆uf )) + ψTV (∇(ub + ∆ub))]

+
λt
2

∣∣φ(uf + ∆uf , ub + ∆ub)− bk
∣∣2
2

+ const. (4.20)

We first solve for uf by holding ub and bk constant, then solve for ub with
uf and bk constant. After that, we update the dual variable bk. The alternating
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direction method is:

ukb = const. : uk+1
f = min

∆uf
λdψ

(
δuf Īfx + δvf Īfy + Īft

)
+ λsψTV (∇(uf + ∆uf ))

+
λt
2

∣∣φ(uf + ∆uf , ub + ∆ub)− bk
∣∣2
2

ukf = const. : uk+1
b = min

∆ub
λdψ

(
δubĪbx + δvbĪby + Ībt

)
+ λsψTV (∇(ub + ∆ub))

+
λt
2

∣∣φ(uf + ∆uf , ub + ∆ub)− bk
∣∣2
2

bk+1 =φ(uf + ∆uf , ub + ∆ub)− bk (4.21)

The uf and ub sub-problem can be solved in the same manner. We do this
by solving for the Euler-Lagrange equations and finding the expression for ∆uf
and ∆ub. For this implementation, we use the Charbonnier penalty (ε = 0.001),
and define a scaling coefficient βd and βs such that:

βd =
1√(

δuf Īfx + δvf Īfy + Īft
)2

+ ε2

βs =
1√

(∇uf )2 + (∇vf )2
(4.22)

The Euler-Lagrange equations for uf become:

0 = λdβdIfx
(
δuf Īfx + δvf Īfy + Īft

)
+ λsβs∇2 (uf + δuf ) + λtψ

′(δuf )

0 = λdβdIfy
(
δuf Īfx + δvf Īfy + Īft

)
+ λsβs∇2 (vf + δvf ) + λtψ

′(δvf ) (4.23)

For the TV term, we use the approximation of the Laplacian:

∇2u = u− ū (4.24)

where ū is obtained using a 4-point box filter ū = 0.25(ux+1,y + ux−1,y + ux,y+1 +
ux,y−1).

As an example, if we assume a constant velocity motion, the trajectory con-
straint is given by ψ(δuf ) = (uf − ub + ∆uf −∆ub)

2. We substitute the Lapla-
cian with the approximation above and rewrite the Euler-Lagrange equations in
4.23 can be as a linear equation in the form:

A

[
δuf
δvf

]
= B (4.25)

where

A =

[
λdβdI

2
fx

+ λsβs + λt λdβdIfxIfy
λdβdIfxIfy λdβdI

2
fy

+ λsβs + λt

]
(4.26)
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and

B =

[
λsβs ¯δuf − (λt + λsβs)uf + λsβsūf − λtub − λdβdIfxIft
λsβs ¯δvf − (λt + λsβs)vf + λsβsv̄f − λtvb − λdβdIfyIft

]
(4.27)

After we solve for
[
δuf δvf

]T
we update the actual flow uf

k+1 = uf
k+∆uf .

There is no need to allow the solution to converge at this point, because any
progress that we make will be compensated by the dual update variable, thus
we only run the sub-problems once. To reduce the errors and to speed up the
convergence, we also perform a median filter after every sub-problem using a
5x5 neighborhood. We follow the same process for ub and then update the dual
variable bk+1.

Algorithm 2: Inner Iteration

Require: uf , ub;
initialize uf , ub, b

0, k ← 0
while convergence 6=TRUE do

linearize If , Ib
Hole Warping
ub = constant, solve uf
uf = median(uf )
uf = constant, solve ub
ub = median(ub)
update bk+1

k ← k + 1
end while

4.4 Extension to Multiple Frames

In the previous section, we have described a three-frame optical flow estimation
and inpainting using only three frames. It is logical to say that we can extend
the method we described to multiple frames and modify the constraints to ac-
commodate all the included frames. Luckily, the data and spatial terms do not
change at all and are independent among all the frames. The additional burden
goes to characterizing the motion of the objects and defining a new trajectory
constraint.

We can limit the coverage of the multiple frame case if we allow the pairing
of optical flows based on the distance of the frame to the reference (j + 1 and
j − 1, j + 2 and j − 2, etc.) We then extend three-frame technique using these
pairs.
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The extension of the three-frame motion inpainting framework to multiple
frames is not very straightforward. If we redefine function 4.12 to multi-frame,
we have:

min
uj+n

N∑
n=−N

Edata(uj+n) + Espatial(uj+n) + Etrajectory(uj+n) (4.28)

where N is the number of optical flow pairs that we want to compute (i.e.,
1 for three frames, 2 for five frames and so on...). By following the solution in
Section 4.3.5, Function 4.28 can be minimized by alternately solving:

ukj−n = const. : uk+1
j+n = min

∆uf
λdψ

(
δuj+n ¯Ij+nx

+ δvj+n ¯Ij+ny
+ ¯Ij+nt

)
+ λsψTV (∇(uj+n + ∆uj+n))

+
λt
2

∣∣φ(uj+n + ∆uj+n, uj−n + ∆uj−n)− bk
∣∣2
2

ukf = const. : uk+1
j−n = min

∆uj−n

λdψ
(
δuj−n ¯Ij−nx

+ δvj−n ¯Ij−ny
+ ¯Ij−nt

)
+ λsψTV (∇(uj−n + ∆uj−n))

+
λt
2

∣∣φ(uj+n + ∆uj+n, uj−n + ∆uj−n)− bk
∣∣2
2

bk+1 =φ(uj+n + ∆uj+n, uj−n + ∆uj−n)− bk (4.29)

Assuming that the velocity of all points in every frame is constant, the dual
update is given by:

bk+1 = uj+n + uj−n + bk (4.30)

However, the convergence of 4.29 is difficult to prove. In fact, as of this
writing, there is no literature that have proven the convergence of 4.29 without
certain assumptions [Chen et al. 2014] [Lin et al. 2014]. Luckily, it is possible
ensure convergence if we can prove the orthogonality of any N − 1 pair of the
coefficient matrices in 4.30.

It is possible to modify the trajectory constraint such that the resulting aug-
mented Lagrangian will converge. First, we will show a simple example using five
frames and constant velocity assumptions. Again, we will use a simpler notation
{bb, b, 0, f, ff} to represent subscripts {j − 2, j − 1, j, j + 1, j + 2}. The optical
flows that we want to estimate are ubb,ub,uf , and uff .

First, we let:
F (u) = Edata(u) + Espatial(u) (4.31)

We also regard u1 = (uf , ub) and u2 = (uff , ubb). Then we can rewrite 4.28
as:

min
u1,u2

F (u1) + F (u2) + Etrajectory(u1, u2) (4.32)
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where Etrajectory(u1, u2) = λt
2

∣∣2u1 − u2 − bk12

∣∣2
2
. The augmented Lagrangian

method simply becomes:

uk+1
1 = min

u1

F (u1) +
λt
2

∣∣2u1
k − u2

k − bk12

∣∣2
2

(4.33)

uk+1
2 = min

u2

F (u2) +
λt
2

∣∣2u1
k+1 − u2

k − bk12

∣∣2
2

(4.34)

bk+1 = 2u1
k+1 − u2

k − bk12 (4.35)

Obviously, the solutions to 4.33 and 4.34 take the same process. For 4.33, we
substitute uf and ub for u1. If we elaborate the function, we can see:

min
uf ,ub

F (uf ) + F (ub) +
λt
2

∣∣∣2(uf , ub)
k − u2

k − bk12

∣∣∣2
2

(4.36)

subject to uf+ub = 0. Again, we will perform another ROUND of augmented
Lagrangian method. To do this, we have to separate the forward and backward
variables as was done in 4.8. We alternatively solve:

min
uf ,ub

F (uf ) + F (ub) +
λt
2

∣∣2(uf , ub)− u2 − bk12

∣∣2
2

+
λt
2

∣∣∣uf + ub − bk̂fb
∣∣∣2
2

(4.37)

The alternating variable method then becomes:

uk+1
f = min

uf
F (uf ) +

λt
2

∣∣2(uf , ub)
k − u2

k − bk12

∣∣2
2

+
λt
2

∣∣uf k + ub
k − bkbf

∣∣2
2

(4.38)

uk+1
b = min

ub
F (ub) +

λt
2

∣∣2(uf , ub)
k+1 − u2

k − bk12

∣∣2
2

+
λt
2

∣∣uf k+1 + ub
k − bkbf

∣∣2
2

(4.39)

bk+1
fb = uf

k+1 + ub
k+1 − bkfb (4.40)

It may not be ideal to use more than two pairs of optical flows (five frames)
especially if the motion is really large. The distance between the farthest frame to
the reference frame might result in larger and more occlusion regions. However,
it is beneficial when the motion is slow, because we will have more areas covered
for more accurate estimation along the boundary. Besides, using more frames
will result in longer processing time though, the increase in time is linear in n,
O(n).
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4.5 Experimental Results

4.5.1 Comparison with TV Inpainting

We tested the motion inpainting result on Middlebury datasets with ground
truth optical flow. We first introduce holes in critical parts of the images where
the method might fail. We present the results of the rubberwhale, hydrangea
and grove2 in Figure 4.8. We compare the results both qualitatively and quan-
titatively between the TV inpainting and the method described in this chapter.
In all of the datasets, we were able to produce more detailed results in the in-
painted motion. We also test the datasets grove3, urban2 and urban3 and show
the inpainting result in Figure 4.9.

We then calculate the difference between the ground truth optical flow and
the results and show the endpoint error map in Figures 4.10 and 4.11. In all the
results, we show that the spatio-temporal inpainting was able to achieve more
accurate inpainted motion. The error however are noticeable in areas around the
object boundaries.

We then plot the endpoint error (EPE) and average angular error (AAE)
of all the dataset and show the results in Figure 4.12. Aside from the urban3
dataset, the spatio-temporal inpainting has achieved better results based on the
average angular error with the ground truth.

4.5.2 Comparison with Prior Work

We compare the result of the motion inpainting with our implementation of
the method described in [Shiratori et al. 2006]. We tested the prior method
with the rubberwhale and hydrangea dataset with introduced hole as in the
previous section. We the solved the endpoint error between the results and the
groundtruth.

Our method was able to produce more accurate results compared to [Shiratori
et al. 2006].

4.6 Chapter Summary

The use of three frames to utilize trajectory information is effective in improving
the estimated motion. Also using the masking function during motion estimation
improves the estimated motion at the boundaries of objects. We showed in our
results the effectiveness of our method and tested them on a database to compare
with the ground truth results. We also compared our method with an existing
work and showed that our method works better.
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Figure 4.8: Results of motion inpainting of rubberwhale, hydrangea, and grove2
dataset with introduced hole.
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Figure 4.9: Results of motion inpainting of grove3, urban2, and urban3 dataset
with introduced hole.
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Figure 4.10: Endpoint error map of motion inpainting of rubberwhale, hy-
drangea, and grove2 dataset with introduced hole.
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Figure 4.11: Endpoint error map of motion inpainting of grove3, urban2, and
urban3 dataset with introduced hole.
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Figure 4.12: EPE and AAE comparison between the TV inpainting and spatio-
temporal motion inpainting method.

Figure 4.13: Comparison with our implementation of [Shiratori et al. 2006] us-
ing the rubberwhale dataset. Our method produced more accurate inpainting
results.
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Figure 4.14: Comparison with our implementation of [Shiratori et al. 2006] using
the hydrangea dataset. Our method produced more accurate inpainting results.
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Using optical flow frames in video completion requires two general steps: 1)
motion inpainting and 2) color propagation. We have presented in Chapter 4
how to obtain a spatio-temporally consistent motion inside the hole with the
absence of color information by inferring on the optical flow of its boundaries.
It is now possible to follow this motion to other frames until a known pixel is
found and copy that pixel to the hole to complete the color frames of the video.

41
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Figure 5.1: Overview of the iterative optimization technique.

However, we argue that it is still possible to use the newly inpainted color of
the hole to the brightness constraint Edata to further improve the motion esti-
mation. This time, instead of using a binary label for the mask of the brightness
constraint, we use a probabilistic mask function that is dependent on the distance
between the inpainted frame and the source frame of the color used.

With the modified mask function, we propose to combine the motion esti-
mation and inpainting process in Chapter 4 and the color propagation method
into one iterative optimization problem. The overview of the proposed method
is illustrated in Figure 5.1.

In the following sections, we will discuss how to solve the trajectory constraint
when the velocity is not constant. We then introduce the improved color prop-
agation technique and then define and characterize the mask function. Then,
we will show the overall method combining the motion inpainting technique in
Chapter 4 and the steps that we propose here. Finally, we will show the exper-
imental results and comparisons with existing methods followed by the chapter
summary.

5.1 Trajectory Prior Estimation

The trajectory function is defined as the relationship between the forward and
the backward flow. The simplest way to use the this constraint is to assume a
constant velocity motion uf + ub = 0 and assign a small value to λt. However,
there are several cases that this poses a problem.

The obvious case is when the velocity is not constant and the change is abrupt
that the difference between two consecutive optical flow frames is large.

The other case has to do with changing perspective due to camera motion
and occlusions. This problem is two-folds. First, let us assume that the motion
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of the objects in the video is only due to the camera’s ego motion. In the case
where the camera decelerates or accelarates at a constant rate, the velocity will
not be linearly varying. Although this problem can be addressed by limiting
the effect of the trajectory constraint, a difficult case happens if an object being
inpainted suddenly changes it’s appearance due to the changing perspective.

We will limit this problem to a simple case where the motion is all due to the
camera and the objects being inpainted is stationary and rigid (with respect to
the world coordinate system).

Say for example we are inpainting a wall. On the other side of the hole, we
the wall is seen as planar and runs at a diagonal with the camera plane. When
the wall reappears on the other side of the video, it suddenly maps to a straight
line. If the camera velocity is constant, it is possible to trace the motion of all
the points in the wall and they will culminate as a line on the other side. The
motion can then be estimated when the wall is still visible and simply follow that
motion to the other side of the hole.

The problem occurs when the velocity is not constant. Take for example the
second case in Figure 5.2. The wall that is being inpainted was visible on both
side of the hole but with different perspective (one side is more perpendicular to
the camera plane). During the time when the wall is still behind the hole, the
camera is changing speeds. If we follow the same idea in the first case, we will
run into a problem where tracing the motion of the points in the wall will result
in a different reconstructed perspective of the wall.

Another way to view this problem is when we try to connect the motion
from both sides of the hole. Take for example Figure 5.3. A constant velocity
corresponds to a straight line in the epipolar plane. If we trace the movement
of two corresponding points from both end of the hole, we will find that the two
points will jot meet at the center.

To address the problem we have just discussed, we propose to estimate the
relative motion of the points in the by reasoning on the motion of the known
points. We call this relationship as the trajectory prior and can be described in
the trajectory energy of the optical flow estimation as:

Etrajectory = λt |uf − pf |22 (5.1)

where the pf term is the trajectory prior. The expression can be illustrated as
in Figure 5.4.

We allow the forward optical flow uf to be around the same value as the
trajectory prior by minimizing their difference instead of with the backward flow.
Given ub it is possible to solve for the trajectory of uf by using this technique.
In most cases, the two directions are unknown, therefore the difference serves as
a weak constraint on their estimated values.

Assuming that the motion in the video is due to the camera motion, and
that the camera motion is dominantly translational with the parameters T =
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Figure 5.2: Sequence with a wall changing its appearance on either side of the
hole with the camera changing its speed at the same time.

Figure 5.3: Sequence with a wall changing its appearance on either side of the
hole with the camera changing its speed at the same time.

Figure 5.4: Illustration of the trajectory prior.
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(Tx, Ty, Tz), the trajectory prior can be defined as:

pfx =
−Txf + xTxf
−Txb + xTxb

ub = ρub (5.2)

we call ρ as the transition ratio because it defines the transition of the trajectory
from the backward to the forward direction. The next step of the trajectory prior
estimation is to solve for this ρ from the camera motion parameters. First, we
will estimate the camera parameters in the following subsection using structure
from motion techniques and use that parameter to derive the transition ratio.

5.1.1 Method using Structure from Motion

One way to solve the transition ratio ρ is to derive the camera motion parameters.
Assuming that this egomotion is dominantly translational, we can ignore any
rotational motion and the transformation matrix can be written as:

Xc

Yc
Zc
1

 =

[
0 T
0 1

]
X
Y
Z
1

 (5.3)

We first solve the point correspondence using scale invariant feature transform
(SIFT) [Lowe 2004]. Then using the matching points, we solve for the camera
translation [Hartley & Zisserman 2004]. We then use the camera translation
parameters to derive the transition ratio. We test this approach on a synthetic
video where the camera is moving along the x-axis in constant velocity and
suddenly changes its speed (see Figure 5.5. The derived translation in the x-axis
( Tx is shown in the bottom left plot and the derived transition ration on the
bottom right plot. We can observe that the transition ratio has an abrupt dip in
the value at around the tenth frame and goes back to its almost constant range.

There are several issues in using this method in solving for the transition
ratio of all the frames. First, inherent to structure from motion techniques is
the requirement of having several features to be visible on all frames being used.
Apparently, this is hardly the case, especially when the camera is moving fast.
Also, for the estimation to be accurate, the method requires many frames and it
takes a long time to be estimated.

5.1.2 Method using Point Correspondences

We propose another method in solving for the trajectory prior. Instead of solving
for the camera parameters, we utilize the definition of the transition ratio, where
in we could solve the ratio between the camera motion if we assume that either
of the motion is constant. For example, if we assume that the camera does not
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Figure 5.5: Top row: input frames. Bottom row: (left) camera translation along
the x-axis, which shows a sudden change in speed about the 11th frame, and
(right) calculated transition ratio. Notice the spike at the 11th frame which
indicates a sudden change in speed.
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Figure 5.6: Comparison in the calculated transition ratio between the methods
using SFM and only point correspondences.

change its depth much compared to its motion along the x-axis, we can ignore
the contribution of the Tz parameter in the equation. We then approximate the
transition ratio as:

ρ ≈ Txf
Txb

(5.4)

We can solve ρ instead by taking the average ratio of the known optical flow
ufi and ubi of all i outside the hole. We first solve again the SIFT features, this
time only between three frames. The transition ratio is then given by:

ρ =
1

N

N∑
i

ufi
ubi

(5.5)

We compare the result of this method with the one using structure from
motion in Figure 5.6. We show that this method is very close to the result of the
SFM with several advantages. First, it only requires three frames to be able to
estimate all the average ratio. Moreover, with the reduction in frames, we can
estimate ρ very fast. Moreover, since we are already given the optical flows of
the known points outside the hole, this step can be calculated only once.

5.2 Prior Color Propagation Techniques

We first present a simple color propagation technique used in [Shiratori et al. 2006]
based on linear warping and pose the problems that it implies.

The method starts with an inpainted motion inside the hole. The values
of the optical flow in each frames forms a graph that maps the pixels between
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Figure 5.7: Color propagation as graph. The optical flow is treated as undirected
graphs that maps the correspondence of pixels among the frames.

neighboring frames. The optical flow is treated as an undirected edges and is
illustrated in Figure 5.7.

By following a graph technique, the color propagation method can handle
several situations. Take for example the red pixel in frame 1. Its optical flow u2

1

directs to a known pixel in frame 2 represented by the blue pixel. This blue pixel
will then be copied to the position of the red pixel, thus completing the color.

Practically speaking, only the values close to the boundary of the hole will
have a mapping on the known pixel in the succeeding frame. Unfortunately, the
holes closer to the center points, in most cases, points to another hole in the next
frame. Take for example the yellow pixel in frame 1. By following its optical
flow u1

1, we can see that it directs to an unknown pixel in frame 2 labeled by
the orange pixel. Obviously, we cannot copy this pixel to frame 1, thus we need
to find another mapping for the yellow one. If we again trace the flow of the
orange pixel, we can see that it points now to a known pixel in frame 3 labeled
by the green pixel. We then copy this green pixel to the orange position thus
completing the hole in frame 2. In another run of the color propagation, the
yellow pixel in frame 1 will now point to a known orange pixel, thus we copy this
value to the position of the yellow one and completing the hole.

Ideally, we want the optical flows to point to an exact location in another
frame. However, this is seldom the case. A motion vector usually always point
to an inexact pixel and therefore the mapping of the pixels become incomplete.

A quick solution to this problem is to discretize the values of the motion vector
using nearest neighbor and winner-take-all algorithm. To do this, a pixel closest
to where the motion points become the color in the hole. This solution, however,
results in cases where a multiple flow points to a single pixel and therefore allows
spatial discontinuity (or gaps) in the inpainted hole.
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Figure 5.8: Color propagation as graph. The optical flow is treated as undirected
graphs that maps the correspondence of pixels among the frames.

Consider the case in Figure 5.8. To inpaint the hole in frame 1, [Shiratori
et al. 2006] proposed to use the sizes of the overlapping areas in the intermediate
frame 2 as weights to determine the contribution of each of the pixels. The color
of the hole in frame 1 is then a weighted average of the four neighboring pixels.
Assuming that the weight is given by w(x, y), the color c(x̄, ȳ) is given by:

c(x̄, ȳ) =

∑
x,y w(x, y)c(x, y)∑

x,y w(x, y)
(5.6)

Another way to think of this problem is to warp the known pixels to the hole
via bicubic interpolation (see Chapter 4). The four pixels in the vicinity of the
hole and their neighboring pixels is used as the initial values of the interpolation
method. The image derivatives are solved about these four points and the value
of (x̄, ȳ) is determined using a bicubic polynomial.

Although the color propagation technique described above will work, several
issues still need to be addressed. First for every pixel inside the hole, we have
estimated optical flow in two directions, namely backward and forward flow.
Problem arises when these two pixels point to different values. Secondly, prop-
agating a color from a distant frame using linear warping causes the inpainted
color to be blurred. This happens when the flow points to another hole in the
next frame. Since the color in that position is already a warped value, warping
it again to the current frame causes the color to be further smoothed.
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5.3 Improved Color Propagation Method

5.3.1 Handling Two Directions (Forward and Backward
Flow)

We perform the color propagation technique in Section 5.2 for each of the forward
and backward flow directions. As an additional step, we record/save the distance
between the current frame and the source frame. Say, we are completing the
nth frame In (current frame) of the image sequence. For each pixel xi, we are
propagating the color x̄i of the known region in (n+ si)

th frame In+si . We define
a distance µ(x) as:

µ(x) = (n+ si)− (n) = si. (5.7)

After color propagation, we will have two differently inpainted frames IHb

and IHf
(see Figure 5.9). If we calculate the first order derivative of each frame,

we can see a large discontinuity in the spatial smoothness of the inpainted color
around the boundaries of the hole. If we look closely, a discontinuity occurs on
the leading edge (labeled by the yellow dashed line in the second row) of the hole
in either directions.

We show in the third column of Figure 5.9 the map of the difference of the
image gradients of the leading edge of the forward flow and the lagging edge of
the backward flow and vice versa. As we can see, the gradients is very steep along
the boundary due to 1) discontinuity in the color of the hole and the boundary
and 2) difference in the smoothness at different edges. In the last column, we
show the sampled value at the middle row pixel of the gradient map for clearer
visualization of the smoothness gap.

The error along the leading edge boundary is correlated µ(x). It appears
that as the distance of the source frame increases, the discontinuity in spatial
smoothness becomes more apparent. In Figure 5.10, we show the value of the
µ(x) with the white value being highest and black as the lowest. Obviously,
outside the hole, this value is zero. Inside the hole, the leading edges of both
directions have a larger µ and gradually decreases as we go to the lagging edge.
Simply saying, the discontinuity in the smoothness of the inpainted hole increases
as the source frame of that hole moves farther away from the reference frame.

We can also interpret this in another way. Take for instance the forward
direction frame. Its leading edge correspond to the direction which the object
moves in the opposite direction of the camera. In other words, as the hole moves,
it occludes more object and hides the background more and more towards the
center of the hole. What happens then is that it becomes almost impossible for
us to know the value at the leading edge in the forward direction if we continue
on moving in this direction.

On the other hand, the lagging edge in the forward direction reveals more
background as it moves along. Hence, we can interpret the value at the lagging
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Figure 5.9: Forward and backward image, show the leading edge and lagging
edge, show gradient, show line plot for one line
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Figure 5.10: µ(x)

edge almost immediately as the hole uncovers it. Obviously, at the lagging edge,
it becomes easier to fill up the hole.

It is important to note though, that at the lagging edge of the hole, the
inpainted color is very accurate. And since we have two lagging edges that
compensate each other, we can use their differences to our advantage. This
means that we can combine the results of both directions correctly and reduce
the discontinuity error at the leading edges.

We perform this combination using two steps. First, in regions close to the
hole boundary, we choose the direction which has the lower µ value. As we move
further inside the hole, we blend the color from both directions using:

IH =
µ2
b

µ2
b + µ2

f

IHf
+

µ2
f

µ2
b + µ2

f

IHb
(5.8)

We show the comparison in Figure 5.11 between the inpainted result using
both direction with and without using the blending technique in Equation 5.8.
Looking at the original frame for the reference of where the deleted part is (this
case the pedestrians are removed, thus corresponding to the position of the hole),
we can see that without blending, there is a sharp edge in somewhere in the
middle of the hole. Fortunately, the part along the boundary of the hole seems
to be smooth and without detectable breaks.

We improved the output using the blending technique around the center of
the hole. In the bottom image of Figure 5.11, we were able to remove the sharp
edge around the center of the hole. This improvement is two-folds. First, the
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Figure 5.11: Comparison between blended and non-blended directions
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blending technique obviously smooths the results between the forward and the
backward direction. By increasing the area being blended, we can make are
smoother. However, this will result in a smoothness that is apparent to the
viewer.

Fortunately, this is not very case. As we will discuss in the succeeding chap-
ters, the improvement is propagated from the coarsest scale of the image pyramid.
Therefore, as we improved the result in the coarsest scale, the smoothness grad-
ually reduces because we are able to compute a more accurate color in the hole.
If the color between the propagated values using the forward and the backward
direction is very close, the smoothing effect is greatly reduced.

5.3.2 Reducing the Blurring Effect Due to Warping

Effect of Consecutive Warping

We also address the blurring effect caused by the linear warping technique and
increasing µ. As we have observed in our experiments, consecutive linear warping
results in a blurred inpainted color. Since the color of the pixel in the hole is
only an interpolated value of the surrounding pixels, subsequent interpolation
will result in averaging effect. This effect is more apparent with large holes
which inner parts can only be inpainted using sources from distant frames.

To be more clear, we illustrate this problem with a synthetic video. In Figure
5.12, we introduce a hole with increasing depth (number of frames) and show
the qualitative change in the blurring.

As we can see, as the blurring seem more apparent as the hole depth increases.
We also compute the interpolation error (the difference between the inpainted
frame and the ground truth frame) and plot (in Figure 5.13) the result with
respect to increasing hole depth. The interpolation error (IE) [Baker et al. 2007]
is computed as in Equation 5.9.

IE =

√
1

N

∑
(x,y)

(I(x, y)− IGT (x, y))2 (5.9)

Reducing the Blurring Effect

To reduce the blurring effect, we use the following techniques illustrated in Figure
5.14. As of now, we are inpainting a frame by interpolating the values in the
source frame on a frame-by-frame basis. Say for example, we are completing the
hole in frame 1. We do this by propagating the color following u(1,2) to frame 2
and if this points to the hole, we follow to u2,3 and so on. Then, we warp the
colors from frame 3 to frame 2 using u(2,3) and then the colors from frame 2 to
frame 1 using u(1, 2).
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Figure 5.12: Blurring effect as the source frame distance increases. The hole
is increased in increments to illustrate the blurring effect and frame distance
relationship.
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Figure 5.13: Interpolation error due to the blurring effect with increasing hole
depth. The error increases as the hole becomes deeper which means that the
source frame of the hole moves farther away from the reference frame and there-
fore incurs more interpolated result.

Figure 5.14: Warping of motion.
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We propose that instead of the above method, we directly interpolate the
values in frame 3 to frame 1 by solving for the optical flow u(1,3). Fortunately,
we do not need to solve for this again.

First, we solve for µ(x) of all the frames using the method in Section 5.3.1.
The µ(x) contains the frame location of the source pixel in all x inside the hole.
To illustrate, say, we are completing the nth frame In. For a pixel x in the hole
in In, we have the location of the source frame n+ µ(x). We then linearly warp
the optical flow of that frame un+µ(x) using the flow of the proceeding frame
un+µ(x)−1. We iterate this linear warping kk times until we get to the current
frame n+ µ(x)− k = n. As a result, we will get the optical flow un+µ(x) of point
x that maps it to frame n + µ(x). We repeat this process for all the pixels in
parallel.

With the updated motion, we update IHb
and IHf

and perform the weighted
combination to get IH as in Equation 5.8.

5.4 Mask Function

So far, we are able to create a completed video through our proposed motion
inpainting and color propagation methods. However, we argue that the color in
the initially completed hole can still be used to further improve the result of the
motion inpainting.

To do this, we modify the binary label mask function m(x) to have a spatially
varying value based on the reliability of the inpainted pixel. We define the
reliability of the pixel as:

m(x) = γ−mu(x) (5.10)

where γ is a positive real number. The value of gamma controls how much the
inpainted pixel affects the overall error.

Choosing an arbitrary γ value will result in unstable minimization. In theory,
we want the total error inside the whole to be less than that of its boundary
[Wexler & Irani 2007] [Criminisi et al. 2003]. This will help in the convergence
and allows the information to gradually propagate towards the hole. Choosing
a small value of γ however, will let the newly inpainted color at the center of
the hole more effect on the minimization rather than the spatial and trajectory
smoothness. This results in wrong inpainted motion. On the other hand, a
very large value results in the information not reaching the center of the hole,
especially if it is too big. In our experiments, we choose γ = 1.3 and find this
value suitable in most situations.
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Figure 5.15: Image Pyramids

5.5 Iterative Inpainting and Color Propagation

Method

The first stage of the iterative motion inpainting and color propagation is to
solve for the image pyramids (see Figure 5.15) through a coarse to fine strategy
[Burt 1981], [Burt 1983], [Burt & Adelson 1983]. We do this by repeatedly down-
sampling the image by a factor of α. The higher level l+ 1 image (or the coarser
scale) given the current level l image Gl is solve as:

Gl+1(x, y) =
2∑

m=−2

2∑
n=−2

0.25Gl(2x+m, 2y + n) (5.11)

Using this approach, we compensate for large pixel motions that is usually
present in our videos. We use α > 0.5 so that each of the succeeding pyramid is
a blurred version of the lower pyramid. For this implementation we limit the size
of the pyramid by allowing the width of the coarsest scale image to be greater
than 30 pixels.

We start the iteration from the coarsest level of the pyramid. We use an
initial value of the mask to be zero inside the hole. We then orderly choose a
frame, I0, and its two neighboring frames If and Ib. The unknowns (ub, uf , b

k)
are initialized to zero. We then iterate the joint motion estimation and inpainting
technique described in Chapter 4, the color propagation method and the mask
update discussed in this chapter.

The result after the motion inpainting are the optical flows uf and ub of all
the frames. We perform one sweep of the inpainting process and use the output
to do the color propagation. We then get from here the value for µ(x) which we
use to update the mask function.
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We repeat this process in the same level of the pyramid until we reach conver-
gence. We define the convergence as a lower limit in the mean difference between
the colors of successive inpainted frames for every iteration. We summarize the
steps of this method in Algorithm 3.

Algorithm 3: Iterative motion inpainting and color propagation.

Require: color of H
solve trajectoryprior
solve image pyramids
initialize m(x ∈ H) = 0
for level < max level do

while error > thresh do
Inner Iteration
Color Propagation
update m(x)

end while
upsample uf , ub

end for

After we reach the threshold, we up-sample the optical flows by 1
α

again by
using bicubic interpolation and perform the iterative step again until we get to
the finest level of the pyramid.

5.6 Experimental Results

5.6.1 Videos with Changing Velocities

We first test the effectiveness of the trajectory prior estimation method with
different videos. We first used a video where the camera suddenly change its
velocity. We compare the results between the trajectory prior estimation using
SFM and point correspondence. We also compare them from the result of a
constant velocity assumption. We show the representative frames in Figure ??
and plot the error (difference between the ground truth video and the inpainted
video) in Figure 5.18.

We also use a shaking video (in x-axis only) to demonstrate the effectiveness
of point correspondence method in solving the trajectory prior. We show an
improvement in the inpainting result and show them in Figures 5.17 and 5.18.
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Figure 5.16: Representative frames of the result of the video completion method
on a synthetic video with changing velocity. We compare the results using a
constant velocity trajectory assumption and with the trajectory prior solutions
using SFM and point correspondences.
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Figure 5.17: Representative frames of the result of the video completion method
on a synthetic video with shaking. We compare the results using a constant
velocity trajectory assumption and with the trajectory prior solutions using SFM
and point correspondences.

Figure 5.18: Plot of the error in completion of video with (left) changing ve-
locity and (right) shaking. In both cases, the trajectory prior solution shows a
significant reduction in error.
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Figure 5.19: Result of reducing the blurring effect on the ’humanc’ sequence for
representative frames 26 and 38.

5.6.2 Blur Reduction Tests

We quantify the improvement in the results by measuring the gradient-based
sharpness measure (Tenengrad function [Krotkov 1989]:

fsharp(I) =
1

N

N∑
i=1

√(
dIi
dx

)2

+

(
dIi
dy

)2

(5.12)

We tested the technique using several image sequences and show the improvement
in Figure 5.19. We also show the comparison between the sharpness measure of
the ground truth sequence and the inpainted ones in Figure 5.20 and 5.21.

5.6.3 Effect of Mask Function

We compare the result of the motion inpainting using the new mask function
and the binary label and calculate the end-point error with the ground truth.
We show the results in Figures 5.22 - 5.25.

Using this method, we consistently improved the sharpness of the resulting
inpainted image. However, it is important to note that the remaining blurring
effect now only comes from the one-time linear warping and the blending of
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Figure 5.20: Result of reducing the blurring effect on the ’army’ and ’schefflera’
sequence.
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Figure 5.21: Result of reducing the blurring effect on the ’grove’ and ’wooden’
sequence.
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Figure 5.22: Inpainted motion with γ = 1.3 vs. γ = 0.
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Figure 5.23: Inpainted motion with γ = 1.3 vs. γ = 0.
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Figure 5.24: Endpoint error map of the inpainted motion with γ = 1.3 vs. γ = 0.



68 . 5.6. EXPERIMENTAL RESULTS

Figure 5.25: Endpoint error map of the inpainted motion with γ = 1.3 vs. γ = 0.
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forward and backward propagation around the center of the hole.

5.6.4 Test on Street Videos

We tested the whole video completion process on real street videos where we
remove the walking pedestrians. We show the representative frames of two image
sequences ’human’ and ’person’ in Figures 5.26 and 5.27.

5.7 Chapter Summary

In this chapter, we proposed a simultaneous motion inpainting and color propa-
gation method by using an iterative optimization method. We obtained better
results when we used the newly inpainted pixels inside the hole to refine the op-
tical flow estimation inside it. We control the effect of the newly inpainted pixels
using our proposed mask function that relates the frame distance of the source
pixel to the reference pixel in the hole. We also introduced a trajectory prior
estimation method to handle the trajectory constraint during non-smooth mo-
tion. Our method comprised of only three frames and therefore was implemented
really fast. We also improved the standard color propagation method to include
a technique in combining the result of two directions, namely the forward and
the backwards. We combined the propagated color from both directions using
our proposed blending technique. We then showed in our result that this method
can accomplish video completion results accurately.

One issue that was not addressed in this chapter is that the inpainted motion
does not have refined details and the boundaries of motion are not well-defined.
We address this issue in the next chapter.



70 . 5.7. CHAPTER SUMMARY

Figure 5.26: Representative frames of the result of completion of a real street
video where the pedestrians are removed.
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Figure 5.27: Representative frames of the result of completion of a real street
video where the pedestrians are removed.
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In the previous chapters, we have presented a spatio-temporal motion inpaint-
ing and color propagation method. So far, we have assumed that the motion of
the hole and its boundary is smooth in both spatial and temporal domains. In
actual applications, this assumption is not always correct. The motion of an
object is, in fact, restricted within the object itself and therefore smooth motion
is violated along its boundaries (i.e. the motion between a building and the sky,
a pole and a planar background etc.)

In cases where the inpainted hole contains more than one object that have
different depth with respect to the camera, there is a need to limit the effect of
the smoothness constraint along the boundary of these objects. In traditional
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motion inpainting techniques where the optical flow is corrected in occluded
regions, this is done by inferring the correct value of the flow from its color and
the color of the neighboring pixels. If their colors are very close to each other,
the optical flow is therefore mostly related to one another.

Similarly, the edges of objects gives some information on the motion bound-
ary. Almost all the time, a motion boundary corresponds to an object bound-
ary (the converse is not true). It is possible, however, to estimate the motion
boundary by assuming that the optical flow is discontinuous along the object
boundaries. In effect, if this boundary is in fact a motion one, the estimated
optical flow will be highly accurate.

Obviously, the motion inpainting techniques for estimating the optical flow
in occlusion regions, and the use of edge information to estimate the motion
boundaries, will not work when applied to video completion because neither the
color nor the edge information is available inside the hole. In Chapter 5, we
proposed to gradually include the newly inpainted color inside the hole after
one iteration of the color propagation back to the brightness constraint of the
optical flow. In this manner, we were able to refine the result of the video
completion. However, this method is still problematic because the initial values
solved (the first optical flow estimated when the hole is still empty) is basically
spatio-temporally flat. This means that the method in Chapter 5 works well
in cases where the inpainted background is smooth or the difference of motion
along boundaries is not very large.

In this chapter, we first propose to improve the initial estimated value of
the optical flow inside the hole by guessing the edge information and therefore
limit the spatial smoothness of the motion. We estimate the edges in the hole
by transferring the edges from the known parts of the video following an affine
transformation based on the optical flow along the hole boundary. We show an
improvement in the results of the spatio-temporal motion inpainting in Chapter
4.

This chapter is organized as follows. First, we will present our edge transfer
method that is based on tracking. Then, we will modify the spatio-temporal
optical flow estimation and inpainting framework to accommodate the changes
induced by usage of edge information. After that, we will show how the improved
motion boundary poses a problem in color propagation in lower resolution of the
image pyramid due to undetected occlusion regions and present a method to
solve this problem. Finally, we show some experimental results followed by the
chapter summary.
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6.1 Related Work

6.2 Optical Flow-Based Edge Transfer Method

Suppose we have an rth frame Ir with hole Hr and edge information represented
by a binary label Dr = DrH + DrΩ , where DH and DΩ are the edges inside and
outside the hole, respectively. Our goal is to find an estimate of DrH . Since we
do not have any color inside the hole, it is necessary to solve for DrH by basing
it on the edge information from the known regions in other frames DΩ \DrΩ .

We first estimate the boundaries of objects in the whole sequence using Canny
edge detector. We label the detected edges as {0 = edge, 1 = non − edge}. We
also run an initial estimate of the optical flow u of Ω.

Then, we select the region of points pr along the boundary of Hr and track
these points ps in frame Is by following u, assuming that the desired value of Hr

from is completely visible in Is. This can be successfully done through proper
inference from u. We select the highest velocity (in pixels/frame) upr in the
region pr and the actual velocity of the hole uHr . Assuming that the hole does
not change in diameter, we let �(Hr) as the diameter of Hr. If we also assume
that the velocity of pr and Hr are constant, the temporal distance, (r − s),
between frames Ir and Is can be solved using Newtonian relativity. That is:

r − s =
�(Hr)

uHr − upr
(6.1)

Since the points pr and ps correspond to different objects, they will eventually
be scattered according to the movement of the object they belong to. If the
points belong to one object, we can assume that these points will move in a
relatively similar manner. With that said, we can cluster all the tracked points
according to their optical flow values to segment ps into different objects. That
is, ps =

∑j
k=1 ck for j number of objects.

The problem lies in choosing which cluster to follow that will transfer the
appropriate edge information to the hole. Since we have clusters belonging to
different objects with varying depths, it is possible that the edges that contains
the object will vanish due to occlusion from other objects. With this in mind,
however, we can say that edges belonging to foreground objects (or lesser depth)
will have a higher probability of being preserved.

With this assumption, we arrange the clusters according to their optical flow
value (object velocity). At this point, we will assume that the motion of objects
in the video are largely due to the camera motion, and therefore we can say that
objects with higher velocity will have lesser depth (or closer to the camera).

After choosing a cluster, say cs, we then roughly estimate the size of the region
Hs
r (same size as the hole in Ir in our implementation) that will be transfered

from Is. We solve the transformation matrix between cs and cr using affine
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Sequence Error (Average Distance) No. of missed pixels

rubberwhale 0.240 47
urban3 0.561 32
urban2 0.838 68

Table 6.1: Difference in the estimated edge and actual edge measured using the
distance and the difference in the number of detected pixels.

transformation assumptions:
(6.2)

Using this transformation, we transfer the edges in Hs
r to Hr. We illustrate

the whole process in Figure 6.1.
We test this method using several image sequences and we show the results

in Figure 6.2 and 6.3. We also compare the estimated edge on the actual edge
data and show that our result is very close to the actual value. The findings are
summarized in Table 6.1 for the Middlebury set in Figure 6.2.

6.3 Refining the Boundaries of Motion Inpaint-

ing

In this section BLah blah blah

6.3.1 Modifying the Spatial Term of the Optical Flow

Now that we have estimated the edge inside the hole, it is still necessary to modify
the spatial smoothness constraint of the motion inpainting method presented in
Chapter 4. We have found out in our experiments that variational optical flow
methods, as we have implemented in this work, have problems when it comes to
varying the spatial smoothness constraint (or the regularizer in general).

Variational methods have a large dependency on the median filtering step
after every iteration in the estimation process (SEE APPENDIX). Sun ET AL
proposed to implement a weighted non-local regularizer in addition to the general
TV spatial term to incorporate the median filter in the optimization function as:

Espatial = min
u,û

ψTV (∇u) +
1

2
‖u− û‖2 +

N∑
k

wk |ûi − ûk|22 (6.3)

However, in their method, it appears that they still use the output of the
median filter to be the final value. We found out, however, that the median
filter in the final step is actually necessary because another run of the iteration
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Figure 6.1: Edge transfer method.
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Figure 6.2: Result of edge transfer method on Middlebury dataset. From left to
right: rubberwhale’, ’urban3’ and ’urban2’. From top to bottom: 1) reference
and source frame, 2) selected points around the hole in the reference frame (red),
3) tracked points in the source frame (green), 4) clustering based on optical flow
of the points, 5) selected cluster in the source frame with highest velocity (green)
end estimated hole position (blue) with detected edge to be transferred, and 6)
transfered edges in the hole.
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Figure 6.3: Result of edge transfer method on real dataset. From left to
right: ’tree’, ’human’. From top to bottom: 1) reference, 2) source frame, 3)
selected points around the hole in the reference frame (red), 4) tracked points
in the source frame (green), 5) clustering based on optical flow of the points, 6)
selected cluster in the source frame with highest velocity (green) end estimated
hole position (blue) with detected edge to be transferred, and 7) transfered edges
in the hole.
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Sequence End-Point Error Runtime (s)

Sun et al. Our method Sun et al. Our method
rubberwhale 0.180 0.187 135.9 120.1
hydrangea 0.339 0.350 138.4 123.2

grove2 0.175 0.179 186.5 180.5
grove3 0.747 0.744 186.7 126.3
urban2 0.854 0.909 183.3 177.4
urban3 0.874 0.831 209.2 123.6

Table 6.2: TV+median [Sun et al. 2010] vs. median only regularizer. The small
decrease in the end-point error, which is almost negligible, is a better trade-off
for a faster and more efficient solution of the optical flow estimation.

gives far more outliers without it. We also found out that using the median
filter at the end of every iteration neglects the effect of the TV term. In this
effect, even if the Espatial is modified using a spatially varying value, such as
λs(x)Espatial, where λs(x) is based on the edge information, the result will still
largely depend on the median filter. Hence, if the median filter is not spatially
varied as Espatial, the resulting optical flow will not have a discriminating effect
on the object boundaries.

With this in mind, we simplify the method presented by [Sun et al. 2010] and
completely remove the TV term. As a result, we have

Espatial = min
λm
2
‖u− û‖2 +

N∑
k

wk |ûi − ûk|22 (6.4)

We compare the optical flow estimation results of using (6.3) and (6.4) and
show the sample outputs in Figures 6.4 and 6.5 and the end-point error and
running time in Table 6.2. There results show that there is no significant decrease
in the end-point error without using the TV spatial term. However, we were
able to consistently improve the iteration time by using only the median filter as
spatial constraint.

6.3.2 Motion Estimation and Inpainting

Following the method in Chapter 4, we perform a joint motion estimation and
inpainting algorithm. With the changes in the previous section, the new opti-
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Figure 6.4: TV+median [Sun et al. 2010] vs median only regularizer.
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Figure 6.5: TV+median [Sun et al. 2010] vs median only regularizer.
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mization function we need to solve is:

min
uf ,ub

λd [ψ (If (x+ uf )− I0) + ψ (Ib(x+ uf )− I0)]

+
λm
2
‖uf − ûf‖2 +

N∑
k

wk |ûfi − ûfk |
2
2 (6.5)

+
λm
2
‖ub − ûb‖2 +

N∑
k

wk |ûbi − ûbk |
2
2 (6.6)

+
λt
2

∣∣φ(uf , ub)− bk
∣∣2
2

+ const. (6.7)

The estimated edge inside the hole DH is dilated and graduated by using a
3x3 box filter. This expands the edge by one more pixel in order to eliminate
the boundary during median filtering. We use the edge value in as the weighting
wk.

To minimize 6.5, we perform the following ADMM technique. First we hold
ub and bk constant and minimize:

min
uf ,ûf

m(x) |If (x+ uf )− I0(x)|+λs‖uf−ûf‖2+
N∑
k

wk

∣∣∣ûfi − ˆufk
∣∣∣+λt ∣∣ψ(uf , ub)− bk

∣∣
(6.8)

Again, to solve for the above function, we alternately minimize between uf
and ûf :

min
uf

m(x)
∣∣If(x+ uf )− I0(x)|+ λs‖uf − ûf‖2 + λt ||ψ(uf , ub)− bk

∣∣+ const.

(6.9)

min ûfm(x)λs‖uf − ûf‖2 +
N∑
k

wk

∣∣∣ûfi − ˆufk
∣∣∣+ const. (6.10)

The solution for uf can be found by solving the Euler-Lagrange equations for
both directions and performing a simple point-wise algebraic manipulation. For
ûf , the solution is proposed in [Li & Osher 2007]. The same is done for ub and
the bk is updated as bk+1 = φ(uf , ub)− bk.

6.4 Improvement of Simultaneous Motion In-

painting and Color Propagation Method

The method discussed in the previous section can be further extended to the
method described in Chapter 5. We use the optimization function in 6.5 instead
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and perform the Algorithm 3. The improvement in the method is two-folds.
First, the initial inpainted motion used for the first iteration of the color propa-
gation is more accurate and therefore, the convergence to a better solution can
be achieved. Second, the combined edge refinement strategy and the spatially
varying mask function will further improve the resulting estimated motion.

There are several assumptions that needed to be discussed here. First, one
can say that a wrong estimation of the edge information will instead degrade
the quality of the estimated motion rather that improve it. We can argue that,
however, the effect of the spatial smoothness will have to be lessen just enough
to have the data and trajectory constraint to be stronger.

By dilating the area of the edges (instead of just a strict 1 pixel wide line), we
can expand the reduction effect on the spatial smoothness of the flow. This will
have two effects on the inpainted motion, if ever we made a wrong guess. First, if
an edge is wrongly placed on a supposedly smooth area, the spatial smoothness
constraint will in fact be lessen. However, since there is no real boundary in
the motion, the data and trajectory constraint will not have greater influence on
the estimation than the spatial smoothness. Therefore, the optical flow will be
estimated as if there is no boundary there.

Secondly, if no edge is placed on a real motion boundary, the quality of the
inpainting will just be similar to the one without the edge transfer method. In
other words, the improvements in the inpainting results will only be increased
if the estimated edge lies correctly on a real motion boundary, and will have no
effect otherwise.

6.5 Occlusion Handling during Color Propaga-

tion

With the improvement of the edges of the inpainted motion, the problem of
occlusion become more apparent. This problem is due to color and motion
ambiguity. We illustrate this problem in Figure 6.6. Say, we are inpainting the
hole in frame 2 which is located at the background and project very near to
the boundary of the foreground (gray cylinder). Assuming that we get a very
accurate motion of the hole through motion inpainting, we then propagate the
colors from both directions (frames 1 and 3). For frame 1, the backward flow
points to a point in the background which is correct. In frame 2, the forward
flow points to the foreground region which is wrong.

With the previous color propagation technique described in Chapter 5, the
two values will be averaged since they are only 1 frame distance away from frame
2 (µ = 1). Therefore, if we look at its inpainted color, we will see a smoothed
version of the foreground and the background. This effect is shown in Figure 6.7.
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Figure 6.6: Color and motion ambiguity.

Figure 6.7: Degradation in the inpainted color along the boundary of the fore-
ground and the background region due to color and motion ambiguity.
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We solve this problem by simple reasoning on the order of propagation. By
using the intermediate inpainted motion, we estimate the occlusion region in
all frames. If the motion points to this region, we ignore this value and find a
different value from other frames. Most of the time, this will be compensated
on both direction and therefore only occlusion region that creates ambiguity
between equidistant frames are needed.

6.6 Experimental Results

In this section we show the final result of the refined edge transfer and compare
and contrast the results obtained from the previous chapter.

6.6.1 Comparing Edge Refined Inpainting

We first compare the inpainting results obtained by using the method in Chapter
5. We chose a part of a street video where there is a foreground tree with a well
defined texture and a background with textureless facade of a building. The case
that we want to emphasize is that when two depths in the hole are inpainted,
there will be an oversmoothing in the resulting inpainted motion. This happens
especially if the background is without texture and therefore its optical flow is
hard to estimate. As a result, the values tend to be interpolated on the more
textured foreground which results in inpainting error.

The comparison between the inpainted motion (and result of optical flow in
general) is shown in Figure 6.8. Before the improvement in the edge estimation
of the optical flow, the motion of the background and the foreground is mixed
along the boundary. Moreover, the boundaries of motion in other parts of the
video is not very well defined. We then perform the whole process in Chapter
4 and was able get a result with better quality. We show this in Figure 6.9.
Note that in the result of the method before edge refinement, the background
building seems to move with the tree. If we look closely, the details are distorted
near their boundaries. In the improved method, the background was successfully
inpainted because its motion was accurately estimated. The remaining problem
(averaging of tree and building color) in occlusion regions is addressed by the
improved color propagation and the result is shown in the next section.

6.6.2 Comparing Improve Color Propagation with Occlu-
sion Handling

We now compare the results of edge refined motion between the improved color
propagation with occlusion handling and the one without it. We use the previous
image sequence and perform the iterative inpainting and propagation on both
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Figure 6.8: Comparison of the motion inpainting with and without the edge
refinement method.
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Figure 6.9: Comparison of the completed video with and without the edge refine-
ment method. The color propagation used in this results does not have occlusion
handling.
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Figure 6.10: Results of motion inpainting after occlusion handling improvement
of the color propagation. The inpainted motion is also improved.

techniques. The improvement in the motion inpainting is shown in Figure 6.10
and the resulting video in Figure 6.11.

The improvement in the output is two-folds. First it is obvious that with the
occlusion handling, the averaging effect will be removed along the boundary of
the background and foreground as shown in the results. Second, since the color
propagation output is improved, when we perform the iterative approach, the
improved estimated color also improves the inpainted motion. In other words,
we were able to remove the errors in motion inpainting that was caused by the
wrong color propagation results.

6.7 Chapter Summary

In this chapter, we proposed a boundary refining method on the inpainted motion
inside the hole by estimating the edges in it and by using a spatially weighted
median regularizer. Since there is no color information in the hole, we proposed
an edge transfer method that copies the edges from known frames by following
an affine transformation assumption. We computed the affine transformation by
using the known points along the boundary of the hole and compare them with
the points in the frame with known edges.
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Figure 6.11: Results of video completion after occlusion handling. The ambi-
guity was completely removed along the boundary of the foreground and the
background.
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We also improved the color propagation technique to handle occlusion prob-
lems that occurred after the improvement in the motion boundaries. We then
tested our results in both synthetic and real videos. We showed that our method
can handle difficult problems such as the presence of multiple depths (foreground
and background) which is handled in other works using layering and user assis-
tance. Compared to these methods, our work is fully automatic and does not
require detection of a foreground and a background region.





CHAPTER

SEVEN

Conclusion

7.1 Summary

In this thesis we proposed to solve the video completion problem by using a
spatio-temporally consistent motion inpainting. To summarize, the contribution
of our work are three-folds. First, we proposed a framework in inpainting motion
using multiple frames by imposing a smooth spatial and trajectory constraint on
the motion among the frames. We did this using a joint motion estimation and
inpainting algorithm that utilizes a binary label mask to eliminate the effect
of the color information inside the hole. The smoothness constraints proved to
be effective in propagating the known motion from the boundaries towards the
hole. We tested this method, compared them with prior work and showed that
our method works better in inpainting motion.

Secondly, we proposed a simultaneous motion inpainting and color propa-
gation method by using an iterative optimization method. We obtained better
results when we used the newly inpainted pixels inside the hole to refine the op-
tical flow estimation inside it. We control the effect of the newly inpainted pixels
using our proposed mask function that relates the frame distance of the source
pixel to the reference pixel in the hole. We also introduced a trajectory prior
estimation method to handle the trajectory constraint during non-smooth mo-
tion. Our method comprised of only three frames and therefore was implemented
really fast. We also improved the standard color propagation method to include
a technique in combining the result of two directions, namely the forward and
the backwards. We combined the propagated color from both directions using
our proposed blending technique. We then showed in our result that this method
can accomplish video completion results accurately.

Finally, we proposed a boundary refining method on the inpainted motion
inside the hole by estimating the edges in it and by using a spatially weighted
median regularizer for motion estimation. We estimated the edge inside the hole
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by transferring the known edges from other frames to the reference frame using
affine transformation which is based on the motion of the surrounding pixels.
We then again improved the color propagation technique to handle occlusion
problems that occured after improving the boundary of the inpainted motion.
We showed in our results that this proposed method works very well even if there
are multiple depths in the hole.

7.2 Future Direction

Our optimization framework is designed to be extended to virtually any optical
flow estimation method. A choice of a good functional will result in faster ap-
proximation of the motion inside the hole and eventually faster video completion
results. A real-time implementation is also desired since a lot of application,
such as mixed reality, require that an object is removed and inpainted in real-
time. Since the motion can be estimated by using only three frames, a real-time
implementation is very possible. The only limitation is when the hole extends
several frames that the first available source pixel is very far from the current
frame.

A desired extension is to combine the masking of the hole and the inpainting
method proposed in this thesis into one automatic framework. The burden is
put on the detection and tracking of the unwanted object on all the frames in
real-time.

Another possible improvement is to modify the constraints to handle more
dynamic motion such as those of non-rigid objects and to consider more complex
scenes such as places with clutters.

We conclude this thesis by saying that video completion is a very hard task
and requires a lot of engineering in order to be useful in most applications.
However, with the emergence of fast computers and algorithms, this problem is
not really far from being perfectly solved.
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