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Abstract

Understanding of social groups has recently attracted a lot of interest
due to its application to various research fields. Social group cues have been
used to improve the accuracy of pedestrian tracking in low frame rate videos,
to analyze human behaviors, or to provide more realistic results for crowd
simulation tasks.

It can be observed that members of social group tend to act in uni-
son rather than individually, and activities performed in social groups also
differ from those performed by individuals. Humans from the same social
group tend to talk and pay attention to one another while ignoring those
from different social groups, and social group members also tend to stay in
close proximity and move in similar direction. These observations suggested
that social group discovery can be performed with two types of visual cues,
attention-based cues, such as how pedestrians pay attention to one another,
and position-based cues, such as relative distances or movement direction
between pedestrians.

This paper describes our approach to utilize these cues to discover so-
cial groups. Position-based cues are acquired through pedestrian tracking to
collect spatial information of pedestrians in the video, while attention-based
cues are calculated by analyzing various aspects of the attention of pedes-
trians in the video. The first part of this thesis describes an approach to
estimate human attention. Using walking direction as a cue to infer head
poses, our approach obtains human attention estimates without the need of
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any prior training data. This approach also handles large variations that
occur in head appearance within the same scene by segmenting a scene into
multiple regions according to the similarity of head appearances.

A social group discovery approach is described in the second part of this
thesis. We aim to improve social group behavior models by incorporating
attention-based cues, which indicate social interactions such as conversation
or discussion events of pedestrians in the video. Attention-based cues are
modeled as a set of features based on human attention, and these features
are used to learn a set of decision trees that represent the behaviors of social
groups.

Finally, we propose an unsupervised approach to discover types of social
groups by analyzing interactions among their members. A histogram of visual
words is used to represent the characteristic of each social group. Social
groups are then categorized by clustering these histograms. We also propose
an approach to discover social groups that can change over time. Social
groups are discovered separately in each frame with previous social group
structures taken into account to help removing outliers.

This paper shows that social group information can be robustly acquired
throughout these approaches. This would surely enrich current social group
analysis processes and makes it possible for more detailed and real-time anal-
yses, which would open up new possibilities for vast array of applications.
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Chapter 1

Introduction

1.1 Background

Vision-based sensing and understanding of human activities have been
considered to be key components in techniques developed for many appli-
cation domains such as security and marketing. Those components include
human detection, tracking, identification, path prediction, and action recog-
nition.

One aspect of human activity understanding is to comprehend how and
what type of social groups human form. The definition of social groups
has been studied since a long time ago. Some psychological studies define
social groups in social cohesion context based on social interaction within
groups [1, 2]. In this definition, members of social groups share some char-
acteristics such as their interests, social backgrounds, or their common goal.
Conversely, some works defined social group in cognitive context as “two or
more individuals who share a common social identification of themselves” [3,
4]. These works perceive social groups as a unit where each member identify
themselves as a member of the group. Social groups can also be categorized
into primary groups which are formed by intimacy, such as the family, and
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secondary groups formed by the task-oriented needs, such as sports team and
school students [5, 6].

Although it is difficult to directly measure psychological states of human
mind, social group states of human can often be estimated through their
social interactions, which is also a common aspect of social groups in the
previous studies. It can be observed that members of social group tend to act
in unison rather than individually, and activities performed in social groups
also differ from those performed by individuals. Humans in the same social
group move in similar direction and often engage themselves in conversation.
Social interactions have been exploited in various computer vision literatures.
In pedestrian tracking in low frame rate videos [7, 8], such information was
used to improve ambiguous tracking results so that pedestrians in the same
group are estimated to be near each other. Social group information was also
used to aid human behavior analysis [9, 10] and even for tasks such as crowd
simulation [11] to provide more realistic results.

In previous literatures, cues based on the spatial information such as po-
sition, walking direction and movement velocity of pedestrians in the video
have been used for group discovery applications [8, 7, 12, 13, 14, 15]. Mea-
surements of these position-based cues are derived based on the observation
that pedestrians in the same social group tends to stay together and move in
the same direction. However, human attention which is an important aspect
in social interaction has been seldom taken into account in recent approaches.

Human attention is the process of concentrating on a discrete aspect of
information while ignoring other perceivable information [16]. There are sev-
eral types of attention such as tactile, auditory, and visual attention, and a
lot of discussions have been made whether humans can have multiple atten-
tion at a time [17, 18]. While certain types of attention are extremely difficult
to be estimated, visual focus of human is usually estimated as the attention
of human in computer vision literatures and has served as a great cue to
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many applications. Recent advances have also shown that social behaviors
such as group conversations or group discussions can be effectively estimated
by using attention-based cues [19, 20] and suggests their great potential to
solve the problem of social group discovery.

Attention-based cues are derived from human visual focus of attention,
or where the person is looking at. Although visual focus of attention of
human does not always coincide with their gaze such as when the person is
turning his head during the attention shift [21], it is often accurate enough
to estimate the attention by using their gazes in real scenario as is reported
by several literatures [22, 23, 24]. However, stable gaze estimates are difficult
to be obtained from surveillance videos where high-level features such as eye
positions cannot be accurately obtained, and head pose estimates of humans
are proved to be a sufficiently accurate estimation of human attention in
such videos [25, 26, 27, 28], and as such is used in our work as an estimate
of human attention for calculating the attention-based cues.

Social group type is also one of the interesting aspect of social groups
which has a lot of potential applications. Supermarket owners might benefit
from separating group of pedestrians standing near a shop stand and looking
at the products from those who are passing without looking at it, in order to
measure the attractiveness of the products. However, manual observation of
such human behaviors in lengthy videos is time consuming and almost im-
possible to be conducted, and automatic detection and classification of such
social groups are desired. Moreover, important social groups types are not
always obvious. Pedestrian groups knowing each other slow down when they
walk past, or those who are choosing what to buy in the convenience store
will walk slowly near the stands they are interested in, and an unsupervised
approach to discover these social group types is desired.
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1.2 Related Works

We categorized the related works section into three parts. The first part
describes approaches aimed at estimating human attention by means of head
pose estimation, the second part describes state-of-the-art approaches on so-
cial group discovery, and the third part describes previous approaches related
to social group types discovery.

1.2.1 Human attention estimation

Estimating human attention has always been an active topic in the field
of computer vision studies. It is generally accepted that human attention
coincides with their gaze, and several approaches have used human gazes
to estimate their attention [22, 23, 24]. However, it is often difficult to do
so in crowded scenes, and head poses are often regarded as acceptable esti-
mates of human attention [25, 26, 27, 28]. Several approaches have proposed
to estimate human attention in crowded scenes from head poses. Robert-
son et al. [29] used skin color as a descriptor and a binary tree algorithm to
construct the head direction classifier. Body direction is also used to filter
out poses that are not physically plausible. Benfold and Reid [30] proposed
a descriptor that learns a model of skin color automatically and used ran-
domized ferns for head direction estimation. Orozco et al. [31] proposed an
image descriptor using similarity distance maps with class-mean appearance
templates, and a multi-class support vector machine (SVM) for classifying
head poses and estimating human attention. Benfold and Reid [32] acquired
stable head tracking using a Kalman filter and estimated head poses using a
randomized ferns classifier with the histogram of oriented gradients (HOG)
features and color triplets comparisons (CTCs) as fern decisions to estimate
human gazes and their attention. An approach by Schulz et al. [33] integrated
pedestrian head localization and head pose estimation techniques to achieve
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Chapter 1. Introduction 5

highly accurate head pose estimates. Schulz and Stiefelhagen [34] trained
eight head pose detectors to detect pedestrians’ heads. The predictions were
integrated over time to achieve improved robustness and efficiency.

These studies used head images with resolution as low as 20 × 20 pixels
for training and testing the classifiers. While they are shown to work well
for low resolution head images, they suffer from one important problem: a
large number of training images with ground-truth labels, i.e., correct head
orientations, are required. Orozco et al. [31] used 800 manually cropped head
images, 100 for each direction class from the i-LIDS [35] dataset. Gourier
et al. [36] turned downsampled images from the Pointing’04 dataset into
low resolution 23 × 30 dimension images. Robertson et al. [37, 29] used
ground-truth samples produced by a human user drawing the line-of-sight of
pedestrians in the images. Schulz et al. [33] used 7675 positive head pose
samples and a set of negative non-head samples to construct the head pose
classifier.

Unsupervised approaches have also been the focus of recent research on
head pose estimation techniques to alleviate the cost of manual acquiring
head pose training data. Benfold and Reid [38] constructed an unsupervised
head pose estimator using a conditional random field model based on the
same premise that people turn their heads toward where they are walking. An
approach by Chen and Odobez [39] jointly estimated the body pose together
with the head pose. This made it possible to filter out physically impossible
head poses, which made their method more robust. Chamveha et al. [40]
proposed an approach that automatically aggregated labeled head images by
inferring head pose labels from the walking direction. Their approach also
dealt with large variations that occurred in the appearance of heads within
the same scene such as those caused by camera position and illumination
differences.

5
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1.2.2 Social group discovery

Social group discovery has recently attracted a great deal of interest, and
several approaches have been proposed to discover social groups from surveil-
lance videos. Position-based cues such as the relative position or walking di-
rection of pedestrians have been used as the main measurements to discover
social groups. Ge et al. [41] proposed a method that aggregated pairwise
spatial proximity and velocity cues and clustered them into groups based on
the Hausdorff distance. Trajectories of individuals together with their groups
were jointly estimated by applying decentralized particle filtering in an ap-
proach by Bazzani et al. [13]. Sochman and Hogg [12] proposed a method of
inferring social groups based on the social force model (SFM), which speci-
fies several attractive and repulsive forces that influence each individual. A
modified approach of agglomerative clustering was then applied to infer social
groups. Zanotto et al. [14] introduced an unsupervised approach to discover
social groups using pedestrians’ positions, walking directions, and velocities
with an online inference process of Dirichlet process mixture models.

Social group discovery approaches have also been used to aid pedestrian
tracking in low frame-rate videos. Pellegrini et al.’s method [8] jointly es-
timated both pedestrians’ trajectories and their group relations by using
third-order conditional random fields (CRFs) based on human appearance
and motion models. Yamaguchi et al. [7] proposed a behavioral model based
on energy functions to predict the behaviors of pedestrians. Group informa-
tion was modeled as one of the energy functions based on position-based cues
and was calculated based on SVMs with trajectory-based feature descriptors.
Group information served as an important cue to predicting the motion of
pedestrians in a video. Qin and Shelton [15] proposed an approach to solving
the problem with tracklet association. This approach was used to maximize
the consistency of human appearances, human motions, and grouping cues
and simultaneously solved the problems in both tracklet-tracklet associa-
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tion and tracklet-grouping assignment. Position-based cues were exploited
in these approaches to discover social groups in videos. However, attention-
based cues were not taken into account to discover social groups in any of
their work.

1.2.3 Social group type discovery

Although there have been no research to directly estimate social group
types, it can be considered a form of group activity recognition, which is
one of the most active fields of research. Previous works on group activ-
ity recognition are categorized into several types. The first type considers
group activities where each group member has its own role. Zhang et al. [42]
used layered HMMs to recognize group activities in the meeting room. Dai et
al. [43] proposed to recognize hierarchical structure of meeting using dynamic
bayesian network (DBN). The second type of group activity recognition fo-
cuses on the motion of members in the group. Vaswani et al. [44] describes
group activity as a shape which deforms over time, and abnormal activities
are detected by comparing the shape polygons. Khan and Shah [45] fits a
3-D polygon to the group formation. The polygon is used to check whether
the group is rigid or undergoing non-rigid deformation. Ryoo et al. [46] used
description-based approach to recognize group. Their description can repre-
sent many group types due to the use of universal and existential quantifiers,
specifying events that need to be performed by some or all of the members.

Unsupervised approach to group activity recognition has been done by
Tang et al. [47]. Group activities in this work is defined as a group of people
with similar activities in the video such as group of dancing people or people
crossing the street. In this work, interest points extracted for each individual
are used to learn a dictionary for each individual. Their dictionaries are then
compared in order to find similar activities. Wang et al. [48] divided video
into short clips and quantize local motion of each clip into visual words. The
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Chapter 1. Introduction 8

distribution of visual words are used to discover atomic activities, in which
its distribution is used to discover interaction types in the video clip. These
approaches, however, did not take into account interactions between human,
which is the main components that constitute social groups.

1.3 Overview of this thesis

In this thesis, attention-based cues and their relations to social groups
are thoroughly examined through series of experiments. We first described
an approach to accurately estimate human attention in the video. Attention-
based cues are then applied to improve the accuracy of social group discovery
task, and we finally demonstrated that they can also help identifying social
group types in an unsupervised manner.

First of all, Chapter 2 describes an unsupervised approach to head pose
estimation. Human head pose is used as an approximation to their visual
focus of attention, which is the basic component for attention-based cues. By
exploiting the observation that human looks at where they are walking most
of the time, we proposed a head pose estimation approach that do not require
any prior train data and can also handle appearance differences within scene.

Chapter 3 describes our approach to group discovery. We aim to im-
prove social group behavior models by incorporating attention-based cues,
which indicate social interactions such as conversation or discussion events
of pedestrians in the video. Attention-based cues are modeled as a set of fea-
tures based on human attention, and these features are used to learn a set of
decision trees that represent the behaviors of social groups. Thorough exper-
iments are performed to demonstrate the effectiveness of the attention-based
cues to the group discovery task.

In Chapter 4, an unsupervised approach to discover social group types is
presented. Social group types are discovered by analyzing the interactions

8



Chapter 1. Introduction 9

of pedestrians within the group. A set of visual words is constructed by
clustering interaction vectors between pedestrians. A histogram of visual
words is used to represent the characteristic of each social group. Group
types are then identified by clustering these histograms. We also proposed
an approach to discover social groups that can change over time. Social
groups are discovered separately in each frame with previous social group
structures taken into account to help removing outliers. Both quantitative
and qualitative experiments were performed to evaluate the effectiveness of
our approach.

Throughout the thesis, approaches to analyze human social groups are
discussed as well as the effectiveness of attention-based cues used in the
approach. Conclusions and possible directions for future works are given in
Chapter 5.

9



Chapter 2

Unsupervised Head Pose
Estimation with Scene
Adaptation

In order to obtain visual focus of attention of human, one of the great-
est cues is their head pose. Human head pose conveys a lot of information.
Human looking at the pictures in the gallery often turn their head to the pic-
ture, while those having conversations would turn their head to the speaker.
Therefore, in modern literatures, head pose of human is used as an approx-
imation of their attention, and various researches reported to obtain highly
accurate results [25, 26, 27, 28].

2.1 Introduction

Estimating the human visual focus of attention has recently become a
popular research trend, as such research has numerous applications in our
daily life. For example, it can be used to estimate the attention of people
walking along the street [32, 49]. Having attention information enables us to

10
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easily infer interaction between people and to consequently analyze human
interaction or identify on-going activities without requiring any human as-
sistance [20, 19]. Head pose is known to be an important factor in inferring
the focus of attention of humans. Therefore, techniques for estimating head
pose are considered important and have attracted great interest recently.

Various image-based approaches have been proposed for estimating eye
gaze. However, most of them1 require high resolution images [51, 52] or
special equipment such as depth cameras [53, 54] or actively controlled pan-
tilt-zoom cameras [55]. However, head regions in in visual surveillance images
are often quite small and therefore contain limited information. Accurately
estimating head pose in such cases remains a challenging task.

The use of appearance-based approaches is thought to be promising for es-
timating head pose from low resolution images. Compared with model-based
methods such as active appearance models [56, 57], which rely on geometric
facial models and require localization of facial elements, appearance-based
methods directly use pixel values of an image as an input to extract image
features and are known to be effective even with low resolution images.

Appearance-based head pose estimation approaches rely heavily on a
dataset used for training estimators. This is due to the fact that head ap-
pearances can change significantly from scene to scene. Even in the same
scene, there could be substantial differences in head appearance due to ex-
treme differences in illumination or camera viewing angle. Therefore, a train-
ing dataset is best taken from the same location as the target data. How-
ever, collecting ground-truth training samples is a labor-intensive and time-
consuming task, and it is prohibitively expensive to collect ground-truth data
manually every time a head pose estimation method is applied to different
scenes.

We propose an appearance-based head pose estimation method in order
1We refer readers to [50] for a recent survey on approaches to head pose estimation.

11
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to overcome these problems. Our method is based on two key ideas: auto-
matically acquiring a training image dataset with ground-truth head pose
and segmenting a scene into multiple regions with similar head appearances.
We first construct a training image dataset by tracking pedestrians in a scene
of interest to capture head images where their pose is regarded as a ground
truth head orientation. To address the problem of appearance differences
within a scene, the scene is segmented into multiple regions based on the
similarity of head appearances, and a head pose estimator is then trained
for each region. This approach enables us to test each head image with the
estimator trained with data taken from the same region. Higher accuracy
can thus be expected because the data used to train the estimator have a
similar appearance to the test data.

2.2 Proposed Framework

Appearance-based head pose estimation involves determining a head pose
p from a feature vector h of an input head image. We define p as the head
pose in an image plane. In our work, head pose estimation is defined as a
regression task, where head pose is defined as continuous angles as illustrated
in Figure 2.1.

With a set of training samples D = {(hk, pk)}, the mapping p = f(h)

between the head pose and the feature vector can be learned through various
regression algorithms. The mapping function then can be used to estimate
a head pose p∗ from a new feature vector h∗ in test scenes.

As discussed above, an important problem yet largely ignored in previous
studies is how to obtain appropriate training samples D. Since we implic-
itly assume the mapping function f(h) is identical in both training and test
datasets, estimation accuracy highly depends on how similar the head images
are in both datasets. Due to various factors such as lighting conditions or

12
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Figure 2.1: Illustration of a head pose regression task in which head pose is
defined as continuous angle values in an image plane.

camera positions, head appearances in different scenes and even within the
same scene can be significantly different. An example of such differences in
appearance of people within the same scene is shown in Figure 2.2. Even
though pedestrians are walking in the same direction, their head appear-
ances are different when captured from different locations. In other words,
if lighting conditions or camera positions are significantly different between
the locations where training and test images are taken, mappings between
the direction and the appearance would also be different. Nevertheless, it is
not always possible to collect training samples for every test case.

The framework of our proposed method is summarized in Figure 2.3. Our
method acquires training data from an input video sequence by using walking
directions as a cue to infer head pose. The scene is then segmented into
multiple regions with similar head appearances, and a head pose estimator
is constructed for each region.

13
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Figure 2.2: An example of differences in appearance of people in a scene.
Even when the pedestrians are walking in the same direction, the head ap-
pearance is different when captured from different locations in the scene.

In order to obtain walking trajectories of pedestrians in the video, we
employed the head tracking method by Benfold and Reid [32]. The method
is based on a Kalman filter [58] with two types of measurements: the head
locations given by a HOG-based head detector [59] and the velocity of head
motion computed from multiple corner features [60, 61]. In each frame, a
head image I, a head location u = (x, y) in the image plane, and a mea-
surement error c = (c(x), c(y)) are collected for analysis, where the terms c(x)

and c(y) are the respective variances of the measurement on x and y axes of
the Kalman filter. The pedestrian tracking algorithm is applied to the entire
input sequence, and a trajectory, i.e., a set of head images {I1, . . . , IN}, head
locations {u1, . . . ,uN} and error measurements {c1, . . . , cN}, is acquired for
each pedestrian. Here, N denotes the length of the trajectory and it varies
depending on the trajectory.

14
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Figure 2.3: The proposed framework. From an input video sequence, our
method acquires head pose training data by using walking directions as a
cue to infer head pose. The scene is then segmented into multiple regions
with similar head appearance on the basis of acquired training samples, and
head pose estimators are constructed separately for each region.

2.3 Training Data Acquisition

This section describes our technique to aggregate a scene-specific dataset.
Given tracked trajectories of pedestrians, we estimate their walking direction,
which can be assumed to indicate their head pose in the images. Erroneous
samples that will cause errors in the trained estimators are rejected, and then
we collect the remaining training samples to construct the head pose dataset.
The proposed method is described in more detail in the following sections.
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2.3.1 Estimating Walking Directions

To account for the fact that pedestrians do not always walk straight,
our method first divides each possibly curved trajectory into straight line
segments. More specifically, each trajectory S is divided into segments
{S1, . . . , SM} by polyline simplification using the Douglas-Peucker algorithm [62].
This algorithm constructs a minimal set of lines so that the orthogonal dis-
tances from each point to its nearest line is less than a given threshold dmax.
Since pedestrians get to appear smaller as they move away from the camera,
the threshold dmax should be defined in a location-dependent way. Therefore,
based on the fact that the physical size of the curve is proportional to the
observed head size, we define the threshold dmax as dmax = τp · s̄t, where τp is
a scale-invariant constant and s̄t =

∑N
i=1

√
sx(ui) · sy(ui)/N is the average

head length calculated assuming a square shape observed over a trajectory.
sx(u) and sy(u) are the expected width and height of the head at the po-
sition u. They are calculated assuming that the average human height is
1.7 meters, and heads are modeled as cylinders that are 22.0 centimeters tall
and 20.0 centimeters in diameter, in the same manner as [32]. An example
of polyline simplification is shown in Figure 2.4. In the figure, the curved
line shows the raw tracking result, and the straight lines show line segments
obtained using the polyline simplification algorithm.

2.3.2 Rejecting Outlier Segments

Walking directions obtained from polyline simplification of a trajectory do
not always correspond to head orientations since people can move their heads
freely even while they are walking. This brings errors in the training labels.
Head pose estimation algorithms are not always robust to such outliers, and
thus it is preferable to reject them prior to the learning stage. To address
this problem, we introduce a strategy to reject unreliable segments from the
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Figure 2.4: An example of polyline simplification. The curved line shows a
tracking result and straight lines show the result of polyline simplification.

tracking results.
There are three kinds of segments that cause erroneous training samples:

1) segments with large tracking errors, 2) segments with short length or slow
movement, and 3) segments with large image variance. The details of each
kind are as follows. Let us assume that a segment contains T head locations
{u1, . . . ,uT}.

Segments with large tracking errors: Although the pedestrian trackers can
resume their tracking and are robust to a few mis-detections, a large number
of mis-detections can produce erroneous trajectories and poor head image
localizations. These situations will result in a large number of erroneous
points and large line fitting errors, which should be rejected.

To calculate the number of erroneous points, a point ut is identified to

17
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be erroneous if the error measurement of the tracker is significantly large:√(
c
(x)
t

sx(ut)

)2

+

(
c
(y)
t

sy(ut)

)2

> α. (2.1)

where ct = (c
(x)
t , c

(y)
t ) is the measurement error of the tracker. Since these

measurement errors should be evaluated according to their physical size, head
width sx(ut) and height sy(ut) at the location of the tracker ut are introduced
to scale the measurements.

Using this measure, we reject segments if the ratio of erroneous segment
points to the total number of points in the segment is larger than a prede-
fined threshold τe. Note that α indicates the acceptable error level, while τe
controls the number of acceptable erroneous points in the segment. These
parameters are not independent to each other, thus we first chose α to reject
trajectory points where the head detector failed. When the head detector
of the tracker module failed twice in a row, α is set to the error level of the
tracker at that moment. After α is selected, τe is then chosen accordingly.

To reject segments with large line fitting errors, we calculate the summa-
tion of the orthogonal distances from each point to the estimated line over a
segment and divide the summation by the length of the segment. We then
reject a segment if

1

|uT − u1|
·

T∑
t=1

|a · xt + b · yt + c|√
a2 + b2

≥ τl, (2.2)

where τl is a threshold indicating the maximum acceptable level of line fit-
ting errors. ut = (xt, yt) is a point in the segment. The left-hand side of
equation (2.2) is a scale-independent line fitting error of the estimated line
ax+ by + c = 0.
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Segments with short length or slow movement: Pedestrians making slow or
no movements are often seen in a scene, e.g., people talking to each other
in the same location. Using the walking direction to estimate head pose in
such situations would give erroneous results. Therefore, segments that are
short in length or that have slow movements need to be rejected. Rejecting
segments with short length also removes cases where false positive objects
are detected as heads, which usually stay within a small area. Therefore, we
reject a segment if

|uT − u1|
s̄s

≤ τn or |uT − u1|
T · s̄s

≤ τv (2.3)

where τn and τv are predefined thresholds for detection of segments with short
length and slow movements, respectively, and s̄s =

∑T
i=1

√
sx(ui) · sy(ui)/T

is the average of the head-length factors over the segment.

Segments with large image variance: Pedestrians in the video are sometimes
observed turning their head while they walk, which also leads to erroneous
direction estimation results. Because large variations in head appearance
are expected in such cases, segments with large image variations should be
rejected. We calculate the variance of resized head image vectors {Î} whose
dimensions are denoted by C. A segment is considered to have large variance
if ∑T

t=1 |Ît − Ī|2
T · C

≥ τvar, (2.4)

where Ît denotes the t-th resized image, Ī is a mean image calculated from all
resized images Î in the segment, and τvar is a predefined constant. While high
τvar makes the algorithm accept more samples, low τvar makes the algorithm
more selective about the stability of head images.
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2.3.3 Representative Image Selection

Most outlier segments are rejected in the outlier segment rejection process,
and the remaining segments contain correct data. Since only one orientation
is assigned to each segment, most of the images in each segment are redun-
dant. Using all the images for training would result in an excessively large
dataset, which increases the computational time for many machine learning
tools. Therefore, one representative image per segment is selected and used
as training data.

In this work, we select the image that is most similar to the mean image
of the segment. For each segment, the Mahalanobis distance from the mean
image is calculated for every resized image Ît in the segment and the image
with the lowest distance is selected. This enables us to select the represen-
tative image while avoiding effects that can be seen in the mean image, e.g.,
blur or distortion.

2.4 Adaptive Scene Segmentation for Local-

ized Direction Estimation

As mentioned before, appearance differences of training samples in the
scene can reduce the accuracy of the estimator. This section addresses our
approach of segmenting a scene into multiple regions in each of which the
heads with the same direction have a similar appearance. Because there is
no definitive way to define regions with similar head appearances, an unsu-
pervised clustering approach is taken to segment a scene into such regions.
In this work, spectral clustering is used to segment a scene. Given a set of
points and a similarity matrix defining the similarity of each pair of points,
spectral clustering techniques cluster the set into disjoint subsets with high
intra-cluster similarity and low inter-cluster similarity. Normalized cut [63],
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Figure 2.5: An example of dividing a scene into 10 × 10 unit regions (K =
100). These regions serves as the smallest unit to construct each region.

which is one of the most common spectral clustering algorithms, is applied
in our approach.

Our approach first divides the scene into K rectangular unit regions V =

{v1, . . . , vK} which are used as the set of nodes. Figure 2.5 shows an example
of 10× 10 unit regions (K = 100). Then normalized cut is applied to cluster
the regions V into R clusters, A = {A1, . . . , AR}, where Ai ̸= ∅, Ai ⊂ V ,
Ai∩Aj = ∅ (1 ≤ ∀i, j ≤ R, i ̸= j) and

∪R
i=1Ai = V . In the following sections,

we discuss how to calculate the similarity weight function w(vi, vj) for each
pair of unit regions and how to choose the appropriate number of regions.

2.4.1 Weight Function

With the dataset D obtained using the method described in Section 2.3,
we define Dv as training samples captured at the unit region v. Our proposed
similarity weight w(vi, vj) between two unit regions vi and vj is defined with
the distance weight wd and the sample weight ws as w(vi, vj) = wd(vi, vj) ·
ws(vi, vj).

The distance weight, wd(vi, vj), measures how close two unit regions vi
and vj are. This takes into account the fact that training samples acquired
from nearby locations tend to be more similar than those acquired from
distant locations. The distance weight also makes segmented regions spatially
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smooth. We define distance weight wd as follows:

wd(vi, vj) = e
−

∥Xi−Xj∥
2
2

σd , (2.5)

where Xi and Xj are the positions of the unit regions vi and vj, respectively
and σd is a predefined constant.

Sample weight ws(vi, vj) measures the similarity between training samples
acquired from the two unit regions vi and vj. Two unit regions vi and vj

should be merged into the same region if the training samples Dvi are similar
to Dvj . Sample weight is defined as

ws(vi, vj) = e−
du(vi,vj)

σs , (2.6)

where σs is a constant and du(vi, vj) is a function that measures the differ-
ence between samples in two unit regions. The comparison is done between
training samples corresponding to similar head pose, i.e.,

du(vi, vj) =

∑
(hi,pi)∈Dvi ,(hj ,pj)∈Dvj

d(hi,hj) · ϕ(pi, pj)∑
(hi,pi)∈Dvi ,(hj ,pj)∈Dvj

ϕ(pi, pj)
, (2.7)

where (hi, pi) and (hj, pj) are the feature vectors and head pose labels for a
training sample in the dataset Dvi and Dvj , respectively. Here, ϕ(pi, pj) is
defined using a threshold2 θ:

ϕ(pi, pj) =

 1 if |pi − pj| < θ

0 otherwise.
(2.8)

The value d(hi,hj) measures differences between a pair of samples, and is
2In our experiments, head samples with differences less than 45.0 degrees were defined

as being similar, i.e., we set θ = 45.0 (degrees).
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defined as the weighted distance between the feature vectors:

d(hi,hj) =
√

(hi − hj)TM(hi − hj), (2.9)

where M = diag[Mi] is the diagonal matrix indicating the importance of
each feature in the feature vectors. Mi should be large if the i-th feature
has a strong impact on distinguishing head pose. Although the importance
matrix M can be obtained by using several approaches, in this work, M was
obtained from the variable importance vector calculated from the random
trees estimator [64], which was trained using the whole dataset D.

2.4.2 Determining the Number of Regions

In addition to the weight function w, it is also important to select the
appropriate number of regions. It is preferable for a scene to be segmented
into as many regions as possible to take advantage of having samples with
similar appearances inside the same region. However, if a region is too small,
the number of training samples will be insufficient, and the trained estimators
will have significant generalization errors.

We perform cross validation on the scene segmented with different num-
bers of regions and select the one that minimizes the cross-validation error.
The cross validation errors is defined as the weighted sum of the validations
errors in each region: for a segmentation A = {A1, A2, . . . , AR},

Eg(R) =
1

|D|

R∑
r=1

Ec(Dr) · |Dr|, (2.10)

where Dr is the set of training samples captured within region Ar, and Ec(Dr)

is the 5-fold cross validation error using the training data Dr. For each se-
quence, cross-validation errors for scene segmentation with R (1 ≤ R ≤
Rmax) are calculated, and the number R∗ that minimizes the cross-validation
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error is then selected, i.e., R∗ = arg minREg(R). We consider head poses es-
timated by using our proposed method in Section 2.3 as ground-truth data,
and therefore we do not use manually-labeled ground truth data for comput-
ing cross-validation errors.

2.4.3 Training Estimators

As a result of the above processes, we obtain a set of regions A′ =

{A′
1, . . . , A

′
R∗} in each of which the appearance of the training samples is

similar. Estimators f1, . . . , fR∗ are then created for each region, and each of
them is trained with the samples in its corresponding region; i.e., estima-
tor fj for region A′

j is trained with the dataset Dtrain,j =
∪
{Dv; v ∈ A′

j}.
The estimator in each region is applied for test samples captured in its cor-
responding region; i.e., the test samples in region A′

j are tested with the
estimator fj. Note that test samples are separated from training samples
and are not included in the dataset D.

2.5 Experimental Results

We conducted experiments using five video sequences that were recorded
using different cameras in different scenes. The details of each sequence and
the numbers of samples obtained as a result of the training data acquisition
approach are summarized in Table 2.1. Example frames in the videos are
shown in Figure 2.6. Examples of the obtained head images are also shown
with the estimated walking direction shown next to the image.

The parameters were set as follows for every scene; τp = 0.8, α = 0.5,
τl = 5, τe = 0.4, σd = 1000, σs = 0.1, τn = 3.0, τv = 0.02, τvar = 0.0035. The
effect of applying the rejection methods is analyzed in Section 2.5.3, and the
robustness against the parameter setting is analyzed in Section 2.5.4.

3The Town Centre Sequence was the publicly available sequence from [38].
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Table 2.1: Details of sequences used in our experiments. The first three
columns show the name, resolution and length of each sequence, respectively.
The fourth column indicates the number of test samples captured from each
sequence, and the last column shows the number of training samples acquired
with the proposed method.

Sequence Name Resolution Length Test Obtained
(minutes) Samples Samples

Sequence 1 1920× 1080 420 300 7841
Sequence 2 1120× 780 10 100 1312
Sequence 3 1280× 720 10 135 693
Sequence 4 1920× 1080 90 305 3075

Town Centre3 1920× 1080 22 4347 6190

2.5.1 Estimation of head pose

To evaluate the performance of our proposed method, we compared our
method with regressors trained with a generic dataset that consists of head
images collected from other scenes. We constructed a generic dataset using
1477 training samples taken from the Gaze Direction Dataset [65], which
was used in [32]. Figure 2.7 shows examples of head images included in the
generic dataset.

All of the head images were resized to 40 × 40 pixels (C = 1600), and
all of the scenes were divided into 16× 9 unit regions (K = 144). An image
descriptor similar to the one in [38] was used here. The descriptor is the
concatenation of two features. The first feature measures color difference
between two pixels at two different locations. The second feature measures
difference between two different bins from Histograms of Gradients (HOGs)
features extracted from the head images divided into 4 × 4 cell grids and
normalized spatially across 2 × 2 blocks of cells. In our work, 400 pairs of
points were chosen randomly for each feature.

The experiment was conducted using two regressors: Support Vector Re-
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Figure 2.6: Example frames in test video sequences. The input video frames
are overlaid with pedestrian tracking results. Examples of obtained head im-
ages are also shown; the white line in the right part of each image represents
the estimated walking direction.

gression (SVR) and regression with random trees [64]. Both of them were
implemented by using OpenCV library [66]. SVR is one of the most common
machine learning tools used in head pose and gaze estimation [31, 67]. The
combination of random trees and the above-discussed descriptor is similar to
the estimator in [38] and was used for a fair comparison between our results
with those reported in [38]. Our method finished training within 10 minutes,
and testing took less than 1 ms per test sample on an Intel Core 2 Duo
3.00GHz CPU.
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Figure 2.7: Example images in the Gaze Direction dataset.

A comparison of the mean absolute angle errors (MAAE) between our
method and the baseline using the generic dataset is summarized in Fig-
ure 2.8. Here, we also compared the results without using the scene segmen-
tation method. The Generic results were calculated based on regressors
trained using the generic dataset, the Undivided results were calculated
based on regressors trained using samples acquired without scene segmenta-
tion, and Proposed results were calculated based on our proposed method.
Benfold result shows the angle error stated in [38].

The graphs show that the errors in regression tasks using the dataset
obtained with our method are significantly smaller than those of the generic
dataset. Scene segmentation further reduces errors for scenes with large
variations in lighting conditions, such as sequence 3, or large differences in
camera viewing angles such as sequence 4. Our result is comparable to that
of Benfold and Reid [38].

2.5.2 Adaptive Scene Segmentation

To test the effectiveness of region segmentation in our method, we mea-
sured the relation between cross-validation errors and actual estimation er-
rors. We applied our method with different numbers of regions and recorded
their respective cross validation errors. In our experiments, we set the max-
imum number of regions to calculate cross-validation errors to 10. The com-
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Figure 2.8: Errors of head pose estimation for SVR and random trees re-
gressors. Generic results were calculated based on regressors trained using
the generic dataset; Undivided results were calculated based on our sample
collection approach without scene segmentation; Proposed results were cal-
culated based on regressors trained using samples acquired with our method,
and Benfold result shows the angle error stated by Benfold and Reid [38] on
Town Centre dataset using their proposed method. The errors were measured
using the mean absolute angle error (MAAE). Standard errors are indicated
as error bars.

parison of estimation errors and cross-validation errors for SVR with different
number of regions are shown in Figure 2.9. Both the cross-validation errors
and the estimation errors increase when the number of regions increases to
more than 5 and have been omitted from the graph for clearer representation.
The number of regions that minimizes cross validation errors was chosen as
the optimum number of regions. It can be seen that minimizing the cross-
validation errors on training samples also minimize the estimation errors on
test samples. The results of scene segmentation are shown in Figure 2.10. It
can be seen that in sequences 3 and 4, areas with a large camera angle or illu-
mination differences were segmented automatically. No significant change in
performance was seen in the other sequences where head appearances remain
relatively uniform in the scene.
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Figure 2.9: Comparison of estimation errors and cross-validation errors with
varying number of regions. The values of R∗ where cross validation errors
were minimum were selected and are shown as dotted lines in the graphs.

2.5.3 Analysis of Outlier Rejection

To measure the effectiveness of our outlier rejection rules descibed in
Section 2.3.2, we tested our proposed method with omitting each rule. An
example result from Sequence 4 is shown in Figure 2.11. Similar trends were
observed in the other datasets, although we did not include those results
here. It can be seen that our proposed method achieves the best estimation
accuracy while maintaining the smallest dataset size.

These results indicate that short segment length and slow movement cri-
teria significantly reduce estimation errors. This is intuitively reasonable
because these rules reject trajectories where pedestrians are talking to each
other, which are often observed in scenes. Rejection of short length segments
also further reduces the errors by rejecting trajectories generated by false
positive objects. In addition, it can be seen that rejection of samples with
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(a) Sequence 1 (b) Sequence 2 (c) Sequence 3

(d) Sequence 4 (e) Town Centre

Figure 2.10: Scene segmentation results with the proposed method. The
figure is best viewed in color.

high variance significantly reduces the number of captured samples. This
improves the training speed for large datasets.

2.5.4 Analysis of Parameter Settings

In this section, the effects of different parameter values on the results are
analyzed. We conducted experiments by applying the proposed method and
changing each parameter value by twenty percent. We did not perform the
analysis on the Town Centre dataset because the tracking results provided by
the authors were used, and tracker error variance values were not available.

We show two example results of parameter tests in Figure 2.12. In the
figure, the center columns with dotted lines show the default value mentioned
in Section 2.5. The left and right columns show the default values that
were changed by twenty percents. In each experiment, only one parameter
was changed, and the other parameters were kept at their default values.
Generally speaking, if the parameters are set too strictly, estimation errors
increase due to the lack of sample variations. If the parameters are set to be
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Figure 2.11: Errors and number of samples captured from Sequence 4 with
various outlier rejection methods omitted using SVR as regressor. Pro-
posed column shows our proposed method. Track Error and Line Error
columns omitted the rejection of segments with erroneous tracking and large
line fitting errors, respectively. Length and Velocity columns omitted the
rejection of segments with short length and slow movement, respectively.
Variance column omitted the rejection of segments with high image vari-
ance.

more tolerant, the number of samples increases while the estimation errors
are not significantly reduced.

Although rejecting segments with large variance reduces estimation errors
as stated in Section 2.5.3, it is apparent that estimation errors significantly in-
crease with a stricter threshold. This indicates that although image variance
helps in rejecting images with incorrect head pose, variations in head appear-
ance are also important for training regressors. Increasing the threshold value
by twenty percent, however, did not significantly affect the estimation result.
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Figure 2.12: Variations of estimation errors and number of collected samples
with varying parameters. Center columns with dotted lines indicate the
default value of each parameter.

This is because image segments where people turn their head usually have
large variance, and thus, there is a large margin for the variance threshold
to reject such segments. Increasing the polyline fitting threshold will cause
curved lines to be estimated as straight lines. This significantly increased
estimation errors, especially in sequence 2 and sequence 3 which contain a
small number of samples. Reducing the threshold increased the number of
samples but did not significantly reduce estimation errors. This is because if
the line estimated by polyline simplification is sufficiently straight, reducing
the threshold will further divide the line but will not yield any benefits.
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2.6 Conclusion

We proposed a method of appearance-based head pose estimation that
can automatically adapt to test scenes. The key idea behind the proposed
framework is to use walking directions as a cue to infer head pose. A pedes-
trian tracker is first applied to the input video sequence, and then head pose
for each pedestrian is estimated based on his/her walking direction. Out-
lier segments are rejected, and then a scene-specific dataset of head images
labeled by their walking directions is automatically acquired. Each scene is
then segmented into multiple regions according to the appearance of acquired
head images with the same direction. Finally, a head pose estimator for each
region is created by using training samples acquired from that region. The
results of our experiments verified that our method estimates head pose ac-
curately without any need to manually collect a ground-truth dataset in real
scenes. This is a significant advantage compared to existing methods when
applied to practical scenarios.

Appearance-based head pose estimation from low-resolution images is
itself a difficult task, and there is still room for improvement in both feature
description and estimation techniques. We believe that investigating the
learning algorithm itself is an important future task.
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Chapter 3

Social Group Discovery using
Attention-based Cues

3.1 Introduction

Group discovery has recently become an active research topic in com-
puter vision literatures. In order to understand how humans form social
groups, it is important to distinguish behaviors of humans in the same social
group from behaviors of those in a different social group. It can be observed
that humans in the same social group tend to act in unison rather than in-
dividually and activities performed in social groups also differ from those
performed by individuals. For example, humans from the same social group
tend to talk and pay attention to one another, while ignoring those from
different social groups. They also tend to stay in close proximity and their
motion direction tends to be similar. These social group behaviors suggest
that social group discovery can be performed with two types of visual cues,
attention-based cues, such as how pedestrians pay attention to one another,
and position-based cues, such as relative distances or movement direction
between pedestrians.
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Recent approaches have demonstrated that position-based cues can be
applied to the social group discovery problem [8, 7, 12, 13, 14, 15]. While
position-based cues are useful for discovering social groups in scenes with
distinctive group movements, they do not work well in scenes where social
groups in close proximity are standing still or have similar movement direc-
tions. Social events also tend to cause unstable trajectory of pedestrians in
social groups, and make them difficult to be discovered using position-based
cues alone. Figure 3.1 has an example of a set of pedestrians in the same
group during a conversation event. The relative distance between the right-
most person and the rest varies greatly over the trajectories. This makes it
hard to robustly estimate the social group using position-based cues alone.
However, social behaviors such as a conversation between pedestrians can be
a great cue to discovering this social group.

Recent advances have shown that social behaviors such as group conver-
sations or group discussions can be effectively estimated by using attention-
based cues [19, 20]. This suggests their great potential to solve the problem
of social group discovery. Therefore, we propose that attention-based cues
be incorporated into our approach to social group discovery. Several re-
searchers in the computer vision literature have estimated human attention
from their gazes [22, 23, 24]. However, stable gaze estimates are difficult to
be obtained from surveillance videos where high-level features such as eye
positions cannot be accurately obtained, and head pose estimates of humans
are often used instead of their gazes in order to approximate human attention
in such videos [25, 26, 27, 28]. Appearance-based approaches to estimating
head poses have demonstrated significant advantages over other approaches
in low resolution images [50], and recent advances have allowed us to ro-
bustly infer the head poses of pedestrians in real time even without having
to use manually prepared training data [38, 39, 40]. We therefore employed
the appearance-based approach to acquire the head poses of pedestrians in
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Figure 3.1: Example of ambiguous group relationship without head pose
information. Squares and curved lines indicate tracked trajectories of pedes-
trians in social group. Straight lines in squares indicate estimated head poses.
Relative distance between rightmost person and rest varies greatly over tra-
jectories. This makes it hard to robustly estimate this social group using
position-based cues alone. Attention-based cues such as people’s eye gazes
strongly suggest social groups, and can be used to help in this case.

videos.
After attention-based and position-based cues have been acquired, our

approach combines them to learn human behavior models and discover social
groups in videos. This is the first work, to the best of our knowledge, to
propose: 1) a method that uses the statistics of both attention-based and
position-based cues over trajectories to discover social groups, and 2) a data-
driven approach to find attentional behavior models for the social group
discovery task. We used a set of basic measurements obtained from the cues,
and implicitly trained a set of decision trees by using a supervised learning
algorithm without enforcing explicit modeling of social group behaviors.

Our proposed approach was extended from that by Chamveha et al. [68]
with the following additions: 1) The previous work [68] focused on discovering
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pairwise social group relationships between pairs of pedestrians, but did not
address how to find all of the members of social groups. Our extension
addresses this problem by modeling social relationships of pedestrians using
a graph representation and perform a clustering algorithm to discover social
groups and all of their members in a video. We also measured the results with
different variants of the clustering algorithm. 2) The effectiveness of each
attention-based cue is more carefully studied. 3) Moreover, our proposed
approach is more thoroughly tested on the UCLA Courtyard dataset [69], in
addition to the two datasets used by Chamveha et al. [68].

3.2 Proposed Framework

The framework for our method is outlined in Figure 3.2. We first collect
measurements based on two types of cues from the training video: attention-
based cues and position-based cues. Attention-based cues are derived from
human behaviors related to their attention, and position-based cues are de-
rived from the observed trajectories of pedestrians. We then aggregate these
measurements into feature vectors which are then used learn the group be-
havior models. We calculate the group probability scores for every pair of
pedestrians in the test scene by using the constructed models, and clustered
the pedestrians into groups using a graph clustering approach.

With Q = {q1, q2, . . . , qn} defined as the set of pedestrians in the video,
we define a social group as Gi = {qi1, qi2, . . . , qim}, where qij ∈ Q, Gi ∈ G,
where G = {G1, G2, . . . , GN} is a set of all social groups in the video. We
define group mapping function g : Q → G as a map from the pedestri-
ans to their respective group, i.e., g(q) = G ⇐⇒ q ∈ G. In this work,
we determine social groups given information on past states of pedestrians.
Specifically, given past states {st} of pedestrians in the video, the goal is to
find the mapping function ĝ that estimates the real mapping function g for
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pedestrians in the video.
To discover mapping ĝ, we model social group relationships among pedes-

trians as a weighted graph K = (V,E) with its corresponding weights W ,
which we will later refer to as group probability scores. Graph nodes V =

{v1, v2, . . . , vn} represent pedestrians in the video, where each node vi repre-
sents a pedestrian qi. Edges E represent relationships between pedestrians.
Each edge eij = (vi, vj) connecting two nodes is associated with its group
probability score wij ∈ W specifying the likelihood that their corresponding
pedestrians qi and qj are from the same group. Note that edges eij = (vi, vj)

only exist if pedestrians qi and qj share a nonzero existence, i.e., they simul-
taneously appear in the video for at least one frame.

Edges connecting pedestrians from the same group will have a group prob-
ability score of one in the optimal case, while edges connecting pedestrians
from different groups will have a group probability score of zero, i.e.,

wij =

1, g(vi) = g(vj)

0, otherwise.
(3.1)

Group probability scores are crucial to the accuracy of the algorithm for
social group discovery and therefore it is important to have precise group
probability scores for each pair of pedestrians. However, it is almost impos-
sible in reality to obtain group probability scores explicitly for every pair of
pedestrians. Therefore, we propose the group probability score wij for each
edge eij be inferred from the given pair of pedestrian states {s(i)t } and {s(j)t }
of pedestrians qi and qj. The scores are calculated based on the attention-
based and position-based cues of both pedestrians. Group mapping function
ĝ is then recovered through a graph clustering approach.
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Figure 3.2: Proposed framework. Pedestrian behavior model is first con-
structed from two types of cues: attention-based cues and position-based cues.
Attention-based cues are derived from observed human behaviors related to
attention, and position-based cues are derived from observed trajectories of
pedestrians. Group probability scores are calculated for every pair of pedes-
trians in scene by using constructed model, and pedestrians are clustered
into groups with graph clustering approach.

3.2.1 Group Clustering

This section describes the approach to clustering pedestrians into social
groups based on their relative group probability scores. The core idea un-
derlying the clustering approach is that pairs of pedestrians with high group
probability scores should be assigned to the same social group, while those
with low scores should be assigned to different social groups. However, be-
cause pedestrians in the same social group do not always have strong social
behaviors toward the others, high group probability scores cannot be ex-
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Figure 3.3: Example of social group where pedestrians do not always have
strong social behavior toward others. White lines indicate pairs of pedes-
trians with high group probability scores. Although pedestrians in white
squares do not have high group probability scores, they are correctly as-
signed same social group by transitional property of social group.

pected from every pair of pedestrians in the same social group. Figure 3.3
has an example of such a case, where the white lines indicate pairs of pedes-
trians with high group probability scores. It can be seen that the pair of
pedestrians in white squares do not have strong social behaviors toward each
other and it is therefore difficult to evaluate whether these two belong to
the same social group or not. However, it can be seen that the relation-
ship between the two pedestrians can be discovered through the chain of
relationships of the others in the social group. This chain can be seen as a
transitional property of the social group, i.e., if pedestrians q1 and q2 are in
the same social group and q2 and q3 are in the same social group, q1 and q3

should also be in the same social group.
We use agglomerative hierarchical clustering algorithm with a generalized

version of the single-linkage criteria [70] to address the transitional property
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of the social group. The hierarchical clustering algorithm is well-known for
its flexibility in terms of the freedom it allows in choosing the linkage crite-
ria for merging clusters, and the single-linkage criteria can be satisfactorily
generalized to fully address the transitional property of social groups.

With a weighted graph as an input, the algorithm assigns each node in
the graph to be in a cluster with itself as the only member. Scores between
each pair of clusters, indicating how similar the two clusters are, are then
calculated according to the linkage criteria, and the pair with the highest
score is then merged. The algorithm repeats the procedure until the highest
score is less than a threshold or until every cluster is merged into a single
cluster.

In hierarchical clustering with the single-linkage criteria, the score be-
tween two clusters is calculated as the maximum group probability scores
between pairs of nodes in the cluster. However, hierarchical clustering with
the single-linkage criteria is prone to errors, where a single incorrectly esti-
mated weight could cause two different groups to be mistakenly merged into
one. Therefore, we generalized the single-linkage criteria to top-k linkage
criteria, where the score between each pair of clusters is defined by the aver-
age value of k-maximum of the weight between pairs of nodes in the cluster.
The single-linkage criteria can be seen as specialized cases of top-k linkage
criteria with k = 1. We achieve the average-linkage criteria with k = ∞,
which calculates the average weight between each pair of nodes in the cluster
as its score. In other words, we define the score with top-k linkage criteria as
top_k_score(Gi, Gj) =

1
Tk

∑
w∈Hij

w, where Tk is a constant and Hij is the
set of Tk highest group probability scores between each pair of nodes in the
clusters Gi and Gj. The pseudo-code for the clustering algorithm is given in
Algorithm 1.
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Algorithm 1 Social group clustering with single-linkage criteria
Input: Graph K = (V,E), group probability scores W , a constant Tk and

a clustering threshold Tw.
Output: Group assignments G = {G1, G2, . . . , GN}

G := {G1, G2, . . . , G|V |}, where Gi = {vi}
while |G| > 1 do
Gi, Gj := argmax

Gi,Gj∈G
(top_k_score(Gi, Gj))

wmax := max(top_k_score(Gi, Gj))
if wmax < Tw then

return G
else

Remove Gi and Gj from G
Add Gi ∪Gj to G

end if
end while

3.2.2 Group Probability Score Calculations

Group probability scores between each pair of pedestrians denote the like-
lihood that they belong to the same social group. It is crucial to precisely
calculate such scores to ensure estimates are accurate in the approach. In this
approach, the likelihood of two pedestrians being in the same social group are
estimated from the behaviors observed from their past states e.g., two pedes-
trians talking and walking alongside each other for a long period are likely to
be in the same social group. Histograms of measurements of attention-based
and position-based cues are collected over the entire trajectory to capture
these behaviors. The collected histograms are then concatenated as a fea-
ture vector to train the estimator for the group probability scores.

Specifically, group probability score for nodes vi and vj is calculated from
their corresponding pedestrian states {s(i)t } and {s(j)t }. Several measurements
of both cues are calculated at each time step t ∈ T (i,j), where T (i,j) is a set
of time at which both pedestrians qi and qj are observed and a collection of
|T (i,j)| measurements are acquired for each measurement over the state pair.
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We aggregate the measurements into histograms to evaluate the frequencies
of each behavior over the entire trajectory. Since not all histogram bins are
informative for social group discovery, we model social group behaviors as
decision trees so that only informative histogram bins are used for decisions.
A random forest regressor [64] was used in our approach to construct the
trees. At each time step t, state variable s(i)t representing pedestrian qi is
defined as s(i)t = (x

(i)
t ,v

(i)
t ,h

(i)
t ), where x

(i)
t , v(i)

t , and h
(i)
t correspond to the

position, the velocity, and the unit-length head direction of pedestrian qi, as
illustrated in Figure 3.4. We denote the image-plane angle of h(i)

t as θ(i)t , that
of v(i)

t as ψ(i)
t , and that of the displacement vector d(i,j)

t = x
(j)
t −x

(i)
t as ϕ(i,j)

t .
The angles are measured in radians.

3.2.3 Attention-Based Cues

Two types of attention-based cues are exploited in this work. The first
cue is the gaze exchange between pedestrians. Pedestrians in the same social
group often exchange gazes and fix their attention on one another when they
are engaged in group events, e.g., conversation events. The second cue is the
mutual attention of pedestrians in the same social group. This is based on
the observation that pedestrians often pay attention to the same object of
interest. We took an approach to learning the decision rules of these cues in a
supervised manner by using histograms of several measurements, as was dis-
cussed earlier. This subsection introduces the details on the measurements,
i.e., the required building blocks to model these attention-based cues. For
clarity, we have omitted the subscript t from what follows.

Difference between head pose and relative position. The first mea-
surement is introduced to infer the gaze exchange cue. This measurement is
defined as a(i,j)1 = |θ(i)−ϕ(i,j)|, and calculates the degree to which pedestrian
qi is directly looking at pedestrian qj, which strongly indicates group events
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Figure 3.4: Relationships between pedestrian velocity v
(i)
t , head pose h

(i)
t ,

and displacement d(i,j)
t and their corresponding image-plane angles θ(i)t , ψ(i)

t ,
and ϕ(i,j)

t , respectively. Parentheses next to vectors indicate their correspond-
ing one-dimensional angles. Measurements of a(i,j)1 and a

(i)
3 have also been

provided.

such as a group conversation or a group discussion. This measurement is
illustrated in Figure 3.4.

Head pose difference. The second measurement, a(i,j)2 = |θ(i) − θ(j)|, is
intended to capture the mutual attention of pedestrians qi and qj. Since it
is a difficult task to define objects of interest in every scene, we assumed
that they would be sufficiently distant from the pedestrians, i.e., they shared
mutual attention when the differences in their head poses were small.

Difference between head pose and walking direction. While the previ-
ous two measurements are expected to capture attention-based cues, several
different measures are required to obtain efficient decision models. For ex-
ample, if pedestrians are walking, they naturally tend to look toward the
direction in which they are walking. Therefore, looking toward the direction
in which they are walking does not suggest that pedestrians are focusing their
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attention on particular objects or other people in that direction, and the pre-
vious measurements are not necessarily informative. We introduced a third
measurement to infer the walking focus of the pedestrians. This measurement
is defined as a(i)3 = |ψ(i) − θ(i)|. This measures how steep pedestrian qi turns
his head away from the direction he/she is walking in. This measurement is
illustrated in Figure 3.4.

Figure 3.5a has an example when a1 and a3 are low for both pedestrians.
Although both pedestrians are looking at each other, it is still ambiguous as
to whether they are in the same social group. Figure 3.5b has an example
when a1 is low and a3 is high for both pedestrians. The two pedestrians in
this case are likely to be in the same social group. With the walking focus
measurements as decisions in the decision tree, our model can handle these
two cases by taking into consideration a1 and a2 measurements only when a3
measurements are sufficiently high.

Walking speed. The above assumption that pedestrians tend to look where
they are walking does not hold for pedestrians walking slowly, i.e., strolling
or wandering around. The fourth measurement, a(i)4 = ∥v(i)∥, calculates
the walking speed of each pedestrian, and has been included to control the
walking focus measurements.

3.2.4 Position-Based Cues

Measurements of position-based cues are derived from the trajectories of
two pedestrians as people usually walk in the same direction and at the same
speed as people in their group. Recent work by Yamaguchi et al. [7] has
proposed a set of measurements of position-based cues and demonstrated
that it could effectively be used to discover social groups. Therefore, we
defined the measurements similarly as follows.
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(a) (b)

Figure 3.5: Examples of a3 measurements. (a) Example when a1 and a3 mea-
surements are low for both pedestrians. (b) Example when a1 measurement
is low and a3 measurement is high for both pedestrians.

• Displacement: p(i,j)1 = ∥d(i,j)∥ The distance between two pedestrians.
Pedestrians in the same social group tend to keep close to one another.

• Difference in velocity: p
(i,j)
2 = |∥v(j)∥ − ∥v(i)∥| The difference in

velocity between two pedestrians. Pedestrians in the same social group
tend to walk at the same speed.

• Difference in walking direction: p(i,j)3 = |ψ(i) −ψ(j)| The difference
in direction between two pedestrians. Pedestrians in the same social
group tend to walk in the same direction.

• Difference between walking direction and relative position:
p
(i,j)
4 = |ψ̄(i,j) − ϕ(i,j)| The angle between the average walking direction

and the displacement vector between two pedestrians, where ψ̄(i,j) =
(ψ(i)+ψ(j))

2
is the average walking direction of two pedestrians. Pedes-

trians in the same social group tend to walk side-by-side, i.e., in a
direction perpendicular to their relative position.

• Time overlap: p
(i,j)
5 =

|T (i)∩T (j)|
|T (i)∪T (j)| . The length of overlapping time

when pedestrians qi and qj appear on the scene up to time t, where
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Table 3.1: Details of datasets used in our experiments. First three columns
correspond to name, resolution, and duration of each sequence, respectively.
Fourth column indicates number of trajectories annotated with group num-
bers. Fifth column indicates number of annotated groups for each sequence,
and last column indicates average size of annotated groups in each sequence.

Sequence Name Resolution Duration No. of No. of Average
(min) trajectories groups group size

UT-Surveillance 1920× 1080 75 430 230 1.87
Town Centre 1920× 1080 22 276 251 1.10

UCLA Courtyard 2560× 1920 14 125 51 2.45

T (i) = {t′|t′ ≤ t, s
(i)
t′ ̸= ∅} is a set of time steps where pedestrians qi

appear on the scene up to time t. Pedestrians in the same social group
tend to simultaneously enter the scene.

Measurements of the gaze exchange cue a1, mutual attention cue a2, walk-
ing focus cue a3, walking speed cue a4, displacement cue p1, difference in
velocity cue p2, difference in walking direction cue p3, difference between
walking direction and relative position cue p4, and time overlap cue p5 are
collected at each time step.

3.2.5 Modeling of Social Behaviors

Measurements for each pair of pedestrians are aggregated into a feature
vector in the next step to train the random forest. We want to construct
the random forest in such a way that the decision rule of each tree node is
based on a single threshold on a measurement, e.g., how often people look
at one another with less than τh degree angles, and we therefore aggregate
each measurement of attention-based cues into a cumulative histogram.

We calculate a set of measurements for every pair of pedestrians with
the overlapping existent, i.e., {(s(i)t , s

(j)
t )|t ∈ T

(i,j)
t , T

(i,j)
t ̸= ∅} by using an
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annotated dataset of pedestrian states,. As a1, a3, and a4 measurements
are made for each pedestrian, two sets of their measurements are calculated.
Therefore, a total number of seven measurements, a(i,j)1 , a(j,i)1 , a(i,j)2 , a(i)3 , a(j)3 ,
a
(i)
4 , and a

(j)
4 are collected at each time step for measurements of attention-

based cues. Each measurement of position-based cues is calculated once and
a total five measurements are collected for each pair of pedestrians at each
time step.

Each cumulative histogram is constructed with Ba equally-spaced bins.
The bins for a1, a2, and a3 are placed between the range [0, π]. We calcu-
late the maximum speed, vmax, for pedestrians in the training set for the a4
measurement, and the histogram bins for a4 are placed between the range
[0, vmax]. Measurements of position-based cues are aggregated into standard
histograms in the same manner as that by Yamaguchi et al. [7]. Each his-
togram is constructed with Bp equally-spaced bins. Histogram bins for p1 are
placed between the range [0, dmax], where dmax is the diagonal length of the
frames in the video. Histogram bins are placed between the range [0, 2 ·vmax]
for the p2 measurement, [0, π] for the p3 and p4 measurements, and [0, 1] for
the p5 measurement. Because training samples contain a different number of
frames, both the standard and cumulative histograms are normalized so that
the total count in each histogram is summed to 1. The histograms are then
aggregated into feature vectors to train the random forest. Feature vectors
aggregated from pairs of pedestrians from the same social group are assigned
label 1, while those aggregated from pairs of pedestrians from different social
group are assigned the label 0.

3.2.6 Pedestrian Tracking and Head Pose Estimates

This section describes how the tracked trajectories as well as head poses
of pedestrians were acquired. We chose an approach to pedestrian tracking
that was able to provide stable head images, as they are crucial for head
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pose estimation approaches in crowded scenes. An approach by Benfold
and Reid [32] was able to achieve stable tracking results and therefore we
employed their approach to generating pedestrian tracks in a video. Their
head tracking method was based on a Kalman filter [58] with two types of
measurements: the head locations given by a HOG-based head detector [59]
and the velocity of head motion computed from multiple corner features [60,
61].

After we had obtained the pedestrian trajectories along with their head
images, we applied the unsupervised approach proposed by Chamveha et
al. [71] to obtain head poses. Their approach automatically aggregated la-
beled head images by inferring head pose labels from the walking direction.
After outliers that were facing different directions had been rejected, their
walking directions were used as ground truth labels of their head orienta-
tions. These ground truth labels were used to train the head pose estimator
in our approach. Head poses on 2-D image plane were used to approximate
of actual head poses in our approach similarly to what had been done ear-
lier [40, 38, 39].

3.3 Experimental Results

We conducted experiments by using three sequences: the UT-Surveillance
sequence used by Chamveha et al. [71], the Town Centre sequence used by
Benfold and Reid [38], and the UCLA Courtyard dataset [69]. The UT-
Surveillance sequence contained pedestrians walking along a pathway, often
in large groups. The Town Centre sequence contained pedestrians walking
along a street. The majority of pedestrians in this dataset walked individu-
ally and the dataset therefore contained many negative samples, i.e., pairs
of pedestrians that did not belong to the same social group. The UCLA
Courtyard dataset contained pedestrians who were engaged in several activ-
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Figure 3.6: Sample frames from sequences used in our work.

ities, such as those waiting in queues to buy food, talking to one another, or
walking in groups.

Pedestrian trajectories and head poses were collected from the UT-surveillance
dataset using the method described in Subsection 3.2.6. Trajectories pro-
vided along with the dataset were used for the Town Centre and UCLA
Courtyard dataset, and the head poses were obtained in the same way as
the UT-Surveillance dataset. Correctly tracked trajectories were manually
annotated with social group IDs. The details on each dataset, the num-
ber of trajectories annotated with group numbers, the number of annotated
groups, and the average size of groups are summarized in Table 3.1, and
example frames in the sequences are in Figure 3.6.

We divided our annotated social groups into three disjoint sets and car-
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(a) Ground-truth: +1, In-
ferred: +1

(b) Ground-truth: +1, In-
ferred: -1

Figure 3.7: (a) Example case where our method succeeded in inferring social
group and (b) failed to infer social group. Same-group relationship between
two pedestrians is correctly inferred in (a). Two pedestrians are inferred to
be from different groups, while ground-truth is stated otherwise in (b).

ried out three-fold cross-validation on the accuracy of estimates to evaluate
the performance of our proposed method. Measurements of attention-based
cues were calculated and aggregated into cumulative histograms with seven
equally-spaced bins (Ba = 7), and measurements of position-based cues were
aggregated into histograms with seven equally-spaced bins (Bp = 7). These
histograms were then concatenated as a 84-dimensional feature vector. The
random forest was implemented using the OpenCV library [66] with the num-
ber of trees set to 400, the maximum depth of each tree set to 15, and the
minimum samples in each leaf node set to 1% of the total training samples.
Unless stated otherwise, the clustering threshold Tw was set to 0.7.

3.3.1 Estimation of Group Probability Scores

Group probability scores represent one of the most crucial components
of our approach. Accurate estimates of group probability scores results in
social groups being correctly clustered. This section explains our evaluation
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Table 3.2: Accuracy of estimates from our dataset. Accuracy was measured
as average accuracy between two classes to avoid bias problems in test sam-
ples. UTS stands for UT-Surveillance dataset [71], TC stands for Town
Centre dataset [38], and UCLA for UCLA Courtyard dataset [69]. Baz-
zani indicates results from the approach proposed by Bazzani et al. [9].
P+SVM presented results using measurements of position-based cues and
SVM as classifier, similar to Yamaguchi et al. [7]. P+RT indicates re-
sults using measurements of position-based cues with random forest classifier.
P+A+RT (Proposed) indicates results with our proposed approach that
used measurements of both attention-based and position-based cues with
random forest classifier. Note that frame rate in datasets is 30 fps.

Dataset Approach Npast

0 30 60 120 240 ∞

UTS

Bazzani 52.5
P+SVM 75.1 75.3 75.2 75.3 75.8 75.8
P+SVM 74.9 75.8 76.5 75.8 76.0 76.4
P+RT 70.1 73.3 75.9 76.6 78.5 78.1

P+A+RT
(Proposed) 76.4 76.6 77.9 77.9 80.3 81.2

TC

Bazzani 51.4
P+SVM 67.3 72.5 73.8 76.3 77.5 78.5
P+RT 67.6 73.3 75.8 76.2 75.1 76.4

P+A+RT
(Proposed) 68.3 73.9 75.4 75.2 81.4 81.8

UCLA

Bazzani 53.1
P+SVM 78.3 79.1 79.1 80.2 81.5 81.2
P+RT 77.5 78.3 79.0 79.3 81.1 81.4

P+A+RT
(Proposed) 82.2 82.6 84.1 84.0 84.5 85.9

of our approach to calculate group probability scores from both attention-
based and position-based cues and compares the results with an approach
from previous work. Pedestrian tracks cannot always be accurately obtained
from low resolution videos, and the existence of some pairs of pedestrians
only overlap for a short time. We therefore conducted tests with different
trajectory durations in order to measure how our proposed approach performs
in such events.

We compared our method to that by Yamaguchi et al. [7] and Bazzani et
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Table 3.3: Accuracy of estimates using our dataset video downsampled to
0.625 fps.

Dataset Approach Npast

0 1 2 4 8 ∞

UTS P+SVM 75.1 75.3 75.2 75.3 75.8 75.8
P+A+RT
(Proposed) 75.3 77.1 78.0 77.7 78.1 79.1

TC P+SVM 67.0 67.6 69.1 67.3 67.3 67.3
P+A+RT
(Proposed) 66.2 66.7 68.2 72.7 71.2 72.7

UCLA P+SVM 77.3 78.0 79.4 80.4 81.1 80.9
P+A+RT
(Proposed) 80.7 81.1 81.2 81.9 82.3 82.9

al. [9] who proposed solving the problem of pairwise social group discovery
in a similar setting to that in our approach to estimating group probability
scores. Comparisons were done by varying the number of available past
frames: Npast = 0, 30, 60, 120, 240, and Npast = ∞. Measurements in these
tests were calculated from at most Npast frames of each pair of pedestrians
in the test set with overlapping time steps. 1 Pedestrians in this test were
estimated to be in the same social group if the output from the random
forest was more than 0.5 and vice versa. We also conducted experiments on
a random forest trained with feature vectors obtained from measurements of
position-based cues alone to demonstrate the accuracy of the random forest
on position-based cues.

Since the numbers of positive and negative samples were unbalanced in
all of the datasets, class accuracy, i.e., the average between the accuracy of
each class was used to evaluate accuracy. The results are listed in Table 3.2.
It can be seen that the approach by Bazzani et al. [9] that assumes station-
ary pedestrians cannot be applied with our case, and our approach improved

1Accuracy of the approach by Bazzani et al. [9] were calculated by comparing estimation
result of pedestrians in each frame to the ground truth label, and therefore listed in
Npast = 0.
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the accuracy of social group discovery tasks in every case. However, it can
also be seen that with no past frame information (Npast = 0), our approach
only slightly improved accuracy, but with more available past frames, the
improvements from the approach by Yamaguchi et al. [7] became more sig-
nificant. These can be explained by the fact that attention-based cues are
not always observed in every frame, e.g.pedestrians in the same social group
did not always talk to one another, and therefore the improvements to ac-
curacy were small in cases with low Npast. However, attention-based cues
can strongly suggest social group relationships even if such cues are rarely
observed, e.g., a talking event is a strong indicator of a social group, even
if it occurs in a few frames. This makes improvements to accuracy more
significant with large Npast. However, long tracking trajectories are usually
obtained from the tracker in real applications, and situation with low Npast

are not typical. Therefore, high levels of accuracy can be expected in real
situations with the proposed approach. It can also be seen that the accuracy
of the random forest estimators trained with position-based cues is compara-
ble to that achieved by Yamaguchi et al. [7]. This indicates that the random
forest is also an appropriate choice for position-based features.

We also measured the accuracy of our approach with the same settings as
Yamaguchi et al. [7], who used low frame-rate videos. We tested our method
with the datasets down-sampled to 0.625 fps and the numbers of available
past frames were Npast = 0, 1, 2, 4, 8, and Npast = ∞. The results are
summarized in Table 3.3. Our approach also did not improve accuracy in
low resolution videos with limited numbers of available past frames Npast,
but it improved accuracy with more available past frames, similarly to that
in the previous discussion. This demonstrates that our approach can also be
applied to low frame-rate videos, and can greatly improve the accuracy of
estimates given that some past frame information is available.

Figure 3.7a has an example of a case where our approach correctly inferred
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(a) UT-Surveillance
(position)

(b) Town Centre
(position)

(c) UCLA Courtyard
(position)

(d) UT-Surveillance
(proposed)

(e) Town Centre
(proposed)

(f) UCLA Courtyard
(proposed)

Figure 3.8: Results obtained from our clustering approach. Position indi-
cates that group probability scores used in clustering approach were calcu-
lated using measurements of position-based cues and Proposed indicates
that they are calculated using both attention-based and position-based cues.
K = 1, K = 3, and K = 5, indicate top-k linkage criteria with TK = 1, 3, 5,
and Complete and Average indicate complete-linkage and average-linkage
criteria, respectively. Straight lines on graph plot the accuracy obtained
from pairwise group probability scores without graph clustering. Figure is
best viewed in color.

that the two pedestrians were in the same social group. Even though they
were walking at non-constant speed, the social groups were correctly inferred
from attention-based cues. Our approach failed in inferring social groups, on
the other hand, in cases where our assumptions about pedestrian behaviors
did not hold. Figure 3.7b shows an example of such limitations, where the
two pedestrians in the same social group are walking toward each other. We
assumed that the gaze exchange cues were not informative when pedestrians
turned their heads in the direction they were walking in. Therefore, although
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(a) UT-Surveillance

(b) Town Centre

(c) UCLA Courtyard

Figure 3.9: Examples of results for our clustering approach on three datasets.
Images have been cropped for better visibility.

the pedestrians are looking at each other, such information is disregarded and
caused our approach to fail in this case. This suggests that more complex
assumptions are needed to handle such cases.

3.3.2 Social Group Clustering Test

This section explains our evaluation of the proposed social group cluster-
ing algorithm. Accuracy was calculated similarly to the pairwise accuracy in
Subsection 3.3.1, except that pedestrians were estimated to be in the same
social group if they were clustered into the same social group by the algo-
rithm.

We carried out tests using hierarchical clustering with top-k linkage crite-
ria, and compared the results with those using complete-linkage and average-
linkage criteria, which are common criteria used in hierarchical clustering
algorithms. Hierarchical clustering with complete-linkage criteria calculates
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the score for each pair of clusters as the minimum of the weights between
each pair of nodes in the clusters, and the one with average-linkage criteria
calculates the score as an average of the weights between each pair of nodes
in the clusters.

We conducted tests on three datasets with different clustering criteria and
clustering threshold Tw to evaluate the clustering approaches. The results are
plotted in Figure 3.8. Position indicates the accuracy of the graph cluster-
ing approach with group probability scores calculated using measurements
of position-based cues. Proposed indicates the accuracy of our proposed
approach which used measurements of both attention-based and position-
based cues to calculate the group probability scores. The K = 1, K = 3,
and K = 5 indicate the accuracy of the graph clustering approach with
top-k linkage criteria with Tk = 1, Tk = 3 and Tk = 5, respectively. Com-
plete and Average indicate the accuracy of the graph clustering approach
with complete-linkage and average-linkage criteria, respectively. The straight
lines on the graph plot the accuracy obtained from pairwise group probability
scores without graph clustering. It can be seen that in the UT-Surveillance
dataset and UCLA Courtyard dataset, the approach yields highest accuracy
with TK = 3, while there are no significant changes in accuracy by varying
TK in the Town Centre dataset. This is because while the top-k linkage cri-
teria yielded little improvements in scenes with small social groups such as
in the Town Centre dataset, it was crucial for distinguishing large groups of
pedestrians in the UT-surveillance dataset. The results also revealed that the
highest accuracy was achieved with top-k linkage criteria with Tw = 0.7 and
TK = 3 in both UT-Surveillance and UCLA Courtyard datasets. Examples
of results for our clustering approach on three datasets are in Figure 3.9.

Clustering results from the same scene with different approaches are given
in Figure 3.10. Squares with same color in top image indicate ground truth
social groups. Edges with group probability scores wij > 0.7 are indicated
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by white lines in figure, and black circles indicate a pair of pedestrians with
group probability score of 0.3. Subfigures (a)-(d) show results obtained from
our approach using top-k linkage criteria with (a) TK = 1, (b) TK = 3, (c)
average-linkage criteria and (d) complete-linkage criteria.

It can be seen from the figure that although the pair of pedestrians in
the black circles has a low group probability score, it is correctly estimated
to be in the same social group by top-k linkage criteria. This demonstrates
the effectiveness of top-k linkage criteria in discovering social groups. It can
also be seen from the figure that with TK = 1, two different social groups
are mis-detected as being the same social group by an outlier link between
them. With TK = 3, the top three group probability scores are used to
calculate the score and make the approach robust to the outlier link. With
average-linkage criteria, the leftmost pedestrian in the top social group is
mis-detected as being in a different social group due to the low probability
score with the rest of the pedestrians in the social group. Further, complete-
linkage criteria separated pedestrians from the same social group due to the
low probability scores of some pairs of pedestrians. It can be seen that with
appropriate TK , the best clustering results can be achieved with top-k linkage
criteria.

Figure 3.11 presents the results obtained from our approach with differ-
ent linkage criteria and clustering threshold Tw. Pedestrians in the same
social group are separated with Tw = 0.9 because the confidence threshold
is too high causing the algorithm to prematurely terminate. With Tw = 0.7,
single-linkage criteria (TK = 1) grouped two pedestrians in the middle with
the social group at the bottom of the scene. The social groups are correctly
detected with top-k linkage criteria with TK = 3. Average-linkage criteria
correctly detected the social groups with Tw = 0.5, but failed to detect a
pedestrian with Tw = 0.7. This also demonstrates that we can achieve cor-
rect clustering results with appropriate TK and Tw. However, it can also be
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(a) TK = 1 (b) TK = 3

(c) Average (d) Complete

Figure 3.10: Example results obtained from our clustering approach. Squares
with same color in top image indicate ground truth social groups. Edges with
group probability scores wij > 0.7 are indicated by white lines in figure, and
black circles indicate a pair of pedestrians with group probability score of
0.3. Subfigures (a)-(d) show results obtained from our approach using top-k
linkage criteria with (a) TK = 1, (b) TK = 3, (c) average-linkage criteria and
(d) complete-linkage criteria. Figure is best viewed in color.

seen that average-linkage criteria also yielded correct results with Tw = 0.5

and this suggests that the criteria might be more effective under certain
circumstances. This also suggests further investigations are needed to de-
termine the properties of social groups and to find which linkage criteria to
apply to such social groups.
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3.3.3 Analysis of Attention-based Cues

We carried out two tests to measure how each attention-based cue con-
tributed to the accuracy of the proposed approach and the relative impor-
tance of these cues when applied to different scenes.

The first test analyzed the variable importance matrix obtained from the
random forest. The variable importance measured the impact of each feature
in the training feature vectors. The importance of the j− th feature was cal-
culated by permuting the value of the j−th feature in the training data. The
difference in out-of-bag (OOB) error before and after permutation was then
compared. Features that produced large differences in errors were ranked as
being more important than features that produced small differences.

The results are plotted in Figure 3.12. The normalized average values of
the importance of all bins of each feature are shown. It can be seen that in the
UT-Surveillance and UCLA Courtyard dataset, the gaze exchange cue has the
highest importance values amongst the attention-based cues. This is intuitive
because several large groups were observed in the UT-Surveillance scene.
As conversation events usually occurred in large groups, it made the gaze
exchange cue powerful in determining social groups. Pedestrians standing
still who were having conversations were observed in the UCLA Courtyard
dataset. Position-based cues could not distinguish pedestrians from different
groups standing close together, and therefore the gaze exchange cue greatly
helped in detecting these groups. Furthermore, pedestrians in this video
walked with relatively similar speeds and directions, making attention-based
cues crucial to discovering social groups in this scene. The importance of
the mutual attention cue was higher than other attention-based cues in the
Town Centre dataset, where only small groups were observed. This can be
interpreted as the mutual attention cue, which is measured based on the
assumption that pedestrians from different groups usually looked in different
directions, contributed more to separating pedestrians who were not from
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the same social group than the gaze exchange cue, which helped to detect
pedestrians from the same social group as was done in the UT-Surveillance
dataset.

We evaluated the importance of each feature in the second test by cal-
culating the accuracy of our proposed approach by omitting measurements
from the feature vector. The results are plotted in the graphs in Figure 3.13.
Similar results to those from the previous tests can be observed. The greatest
drop in accuracy is observed when mutual attention and gaze exchange mea-
surements have been omitted and this suggests that these cues are important
in the task of social group discovery in all scenes.

It can be seen from the results that attention-based cues greatly helped in
discovering social groups in our task. The importance of attention-based cues
varied with different kinds of scenes. The gaze exchange cue contributed more
to scenes with pedestrians who were standing still, where position-based cues
would have failed to discover groups due to limited information on movements
of pedestrians. The cue was also important in scenes with large social groups,
which usually had more conversation events than smaller ones. The mutual
attention cue helped to separate pedestrians who were not in the same social
group, especially in scenes with many small social groups. The walking focus
and walking speed cues generally helped to increase the accuracy in every
case. This suggests that future work is to develop an approach that can
assign weights to cues in order to focus on discovering specific kinds of social
groups. For example, assigning more weight to the gaze exchange cue could
help tasks that were aimed at discovering large social groups, while more
weight on mutual attention could help tasks that were aimed at discovering
pedestrians who did not belong to any groups.
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3.4 Conclusion

We proposed a data-driven method to discover social groups in surveil-
lance videos by using attention-based and position-based cues. The introduc-
tion of attention-based cues allows complex relationships between pedestrians
in the same social group to be implicitly modeled as decision trees. The re-
sults from our experiments verified that our method improved the accuracy
of social group discovery over an approach that only used measurements of
position-based cues. We believe that there are still other cues humans can
use to discover social groups, and investigating and discovering these cues
will be important in future work.
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TK = 1

(a) Tw = 0.5 (b) Tw = 0.7 (c) Tw = 0.9

TK = 3

(d) Tw = 0.5 (e) Tw = 0.7 (f) Tw = 0.9

Average

(g) Tw = 0.5 (h) Tw = 0.7 (i) Tw = 0.9

Figure 3.11: Results from our approach with different linkage criteria and
clustering threshold Tw. Three rows correspond to result with top-1, top-
3, and average-linkage criteria, respectively. Three columns correspond to
results with Tw = 0.5, Tw = 0.7, and Tw = 0.9, respectively. Figure is best
viewed in color.
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(a) UT-Surveillance dataset

(b) Town Centre dataset

(c) UCLA Courtyard dataset

Figure 3.12: Normalized variable importance of measurements. Average
value of variable importance of each bin is shown.
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(a) UT-Surveillance dataset

(b) Town Centre dataset

(c) UCLA Courtyard dataset

Figure 3.13: Accuracy calculated by omitting measurements of attention-
based cues from proposed approach. Names below columns indicate omitted
measurements.
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Chapter 4

Unsupervised Social Group
Type Discovery

4.1 Introduction

One aspect of social group analysis is how humans interact within the
group. Groups of pedestrians standing near a shop stand can imply their
interests in products at the shop stand, while those who talk to each other
while walking might imply their lack of interests in those products. However,
manual observation of such human behaviors in lengthy videos is time con-
suming and almost impossible to be conducted. Moreover, important social
groups types are not always obvious. Pedestrian groups knowing each other
slow down when they walk past, or those who are choosing what to buy in
the convenience store walk slowly near the stands they are interested in, and
labeling these groups is not a trivial task.

In the previous chapter, it is shown that various social group behaviors
can be modeled with attention-based and position-based cues. Therefore, we
expect to be able to find important insights on what types of social groups
are found in each scene by examining outputs from unsupervised social group
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type discovery which take into account these cues.
In real life, social groups are not always rigid; one social group in a frame

can be separated into multiple groups involving in different actions in the
subsequent frames, or two different groups can be merged and conduct the
same action. However, social groups discovered by many approaches [41, 8,
12, 7, 15] including our previous work in Chapter 3 assumed social groups
to be rigid and do not take into account this fact, therefore, we proposed to
include transient group constraint to our approach. Groups with transient
constraints can change over time, either one group can split into two groups,
and two groups can merge into one group over time, and this constraint al-
lows for more realistic applications. Bazzani et al. [13] proposed an approach
that can handle merging and splitting of groups by using decentralized par-
ticle filtering. However, the groups are modeled as pedestrians with similar
walking speed and direction, and did not take into account the attention of
each pedestrians.

We proposed an approach to discover transient social groups in video
in real time based on our previous work in Chapter 3. The simplest way
to cope with transient constraint is to discover social groups at each time
unit separately. Discovering group in this manner, however, is prone to
erroneous results due to noisy input data, causing groups to frequently shift.
Therefore, we applied evolutionary clustering approach proposed by [72] in
order to consider group structure from the previous time unit in order to
filter out noisy results.

4.2 Proposed Framework

In order to discover types of social groups, pedestrians are first clustered
into groups in each frame using an evolutionary clustering approach proposed
by [72]. This approach is based on hierarchical clustering with an additional
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Figure 4.1: Proposed framework. Pedestrians are first clustered into groups
in each frame using an approach similar to that in the previous chapter.
Descriptors for each pair of pedestrians in the group are collected over the
entire video and clustered into distinct visual words. A normalized histogram
measuring the frequency of visual words in each group are then calculated
and the histograms are collected from social groups over the entire video are
then clustered into multiple social group types.

approach to preserve group structures from previous time step. With the
groups discovered, we apply bag-of-features-based approach to cluster the
social groups into multiple types. Descriptors for each pair of pedestrians in
the group are collected over the entire video and clustered into distinct visual
words. A normalized histogram measuring the frequency of visual words in
each group are then calculated and the histograms are collected from social
groups over the entire video are then clustered into multiple social group
types. The framework for our method is outlined in Figure 4.1.
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4.2.1 Social Group Discovery with Temporal Smooth-
ness

To take into account decomposible social groups, we estimate social group
memberships separately for each time unit t. At each time unit t, we collect
measurement descriptors similar to those used in Chapter 3 within the γ-
sized time window centered at t, i.e., collect measurements from time unit
tw ∈ [t− γ

2
, t+ γ

2
]. Histograms of measurements for each pedestrian are then

calculated and concatenated into a feature vector, and the feature vectors
collected from train data is used to train a random forest regressor. In
test scene, this regressor is applied to the feature vector between each pair of
pedestrians to calculate the group probability score, estimating the likelihood
that two pedestrians belong to the same group. We refer readers to Chapter 3
for more details.

For each time unit t, we obtain a graph K = (V,E), where graph nodes
V = {v1, v2, . . . , vn} where n is the number of pedestrians in the scene,
represents pedestrians in the scene. Edges E represents relationships between
pedestrians. Each edge e connecting two nodes vi and vj is associated with
group probability score wij specifying the likelihood that their corresponding
pedestrians are from the same group. We perform hierarchical clustering in
order to assign groups Gi to each node vi. The clustering steps are similar
to the one used in Chapter 3. The algorithm starts with each node vi in
their own cluster. The algorithm then merges two nodes with maximum
merge benefit in each iteration until the maximum merge benefit falls below
a threshold Tw.

In the standard hierarchical clustering approaches, the merge benefit be-
tween two clusters only considers the weights of their members. However, we
applied the evolutionary clustering [72] in order to take into account group
structure from the previous time unit. Evolutionary clustering is an approach
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for clustering while considering the previous cluster structures from the pre-
vious frames, and the paper proposed several heuristics for calculating merge
benefits in order to merge two clusters. In our work, we applied the heuristic
stated to be the best from the paper to calculate merge benefit mb(m), which
is calculated as

mb(m) = sim(m)− cp · E
vi∈leaf(ml)
vj∈leaf(mr)

(dK′(vi, vj))− (dmK(vi, vj)) (4.1)

+cp · E
vi∈leaf(m)
vj /∈leaf(m)

(dK′(vi, vj))− (dmK(vi, vj)), (4.2)

where m is the merge point of the two clusters, where ml and mr are the two
clusters being considered. sim(m) is the similarity of two clusters, calculated
using k-top linkage criteria. cp is a threshold specifying how past clusters
affect the result of current cluster. dK(vi, vj) and dK′(vi, vj) are the tree
distance between node vi and vj, respectively.

The first term, sim(m), measures the similarity of two clusters as in stan-
dard hierarchical clustering. Clusters of pedestrians with high group proba-
bility score will have high sim(m). The second term, E

vi∈leaf(ml)
vj∈leaf(mr)

(dK′(vi, vj))−

(dmK(vi, vj)), calculates the similarity between current clustering and the clus-
tering result in the previous frame. Tree distance between each node vi in
the first cluster ml, and each node j the second cluster, mr, is calculated as
dmK(vi, vj). The tree distance dmK(vi, vj) is calculated by counting the number
of steps required to traverse from node vi to vj if ml and mr is merged. This
distance is compared to the previous clustering result, dK′(vi, vj). If the dis-
tances are similar, merging at m is more likely to be correct. The last term,

E
vi∈leaf(m)
vj /∈leaf(m)

(dK′(vi, vj)) − (dmK(vi, vj)), calculates the benefit if the other nodes

are merged instead. Tree distance between merged nodes vi ∈ leaf(m) and
unmerged nodes vj /∈ leaf(m) is calculated and compared to the distance
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Algorithm 2 Social group clustering with single-linkage criteria
Input: Graph K = (V,E), group probability scores W , a clustering thresh-

old Tw, the clustering result from previous frame K ′ = (V ′, E ′) and a
threshold cp.

Output: Group assignments G = {G1, G2, . . . , GN}
G := {G1, G2, . . . , G|V |}, where Gi = {vi}
while |G| > 1 do
Gi, Gj := argmax

Gi,Gj∈G
mb(Gi, Gj, K

′))

wmax := max(mb(Gi, Gj, K
′))

if wmax < Tw then
return G

else
Remove Gi and Gj from G
Add Gi ∪Gj to G

end if
end while

between these two nodes in the past. Similar distance from vi to vj implies
that the cluster containing vi and the cluster containing vj should be merged
in this step, and impose the penalty of not doing so. The pseudo-code for
this algorithm is given in Algorithm 2.

The clustering threshold, Tw, which determines when to stop the clus-
tering approach, plays an important role in determining the accuracy of our
approach. However, it is not trivial to set the threshold, and therefore we
propose to select an appropriate Tw from the train data. In order to select
an appropriate Tw, we perform grid searching approach which select values
T̂w from a search grid with a certain interval, e.g., T̂w ∈ {0.0, 0.1, . . . , 1.0}
and conducted N-fold cross validation with train data using T̂w as clustering
threshold. The value of T̂w that yields maximum cross validation accuracy
is expected to provide maximum accuracy with test data, and thus selected
as Tw.

With this algorithm, we obtain an estimation of pedestrian groups G =

{G1, G2, . . . , GN}, where Gi = {qi1, qi2, . . . , qim} denotes a group of pedestri-
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ans and Q = {q1, q2, . . . , qn} denotes a set of pedestrians in the scene at each
time unit t.

4.2.2 Unsupervised Social Group Type Discovery

In this section, we describe our approach to cluster pedestrian group types
by the interactions of their members. A group of pedestrians standing and
talking to each other and pedestrians walking together can be separated by
their movement speed and their attention. However, it is not clear what cues
and what are the thresholds needed to separate these groups. Therefore,
we use an approach similar to bag-of-features model [73]. This approach
first apply an unsupervised clustering is applied to cluster the interactions
between pedestrians into multiple types. Each group in the video is then
described by the distribution of these interaction types, and the distribution
of groups in the video are collected and then further clustered into multiple
group types.

We first collect a feature vector from each pair of pedestrians (qi, qj) ∈
Q×Q from each time unit. The feature vectors from the entire video were col-
lected and clustered using K-means algorithm into Tnc clusters C = {Ci}, i =
1, · · · , Tnc, where Tnc is a constant. These clusters represent distinct types
of interaction between pedestrians, and are treated as a feature in the bag-
of-features model.

At each time unit t, the cluster cij of the feature vector captured from
pair of pedestrians (qi, qj) is determined. For each group Gk discovered at
time t, the distribution of clusters cij of pedestrians in the group (qi, qj) ∈ Gk

are calculated as a histogram hk. The histograms H = {h} is then collected
throughout the video and finally clustered into Tgt group types using K-means
clustering, where Tgt is a constant for the number of group type clusters. In
this manner, groups are clustered into distinct types in an automatic manner.

72



Chapter 4. Unsupervised Social Group Type Discovery 73

4.3 Experimental Results

We conducted experiments by using a subset of the UT-Surveillance se-
quence with the length of 125 minutes. The groups are re-labeled to incor-
porate transient groups that can change over time.

Pedestrian trajectories were collected from the UT-surveillance dataset
using the method described in Subsection 3.2.6, and the head poses were
obtained in the same way as the UT-Surveillance dataset. Correctly tracked
trajectories were manually annotated with social group IDs. We collected a
total number of 251 pedestrians and labeled a total of 87 groups.

4.3.1 Social Group Clustering with Temporal Smooth-
ness

To evaluate the social group clustering approach, we divided our anno-
tated social groups into three disjoint sets and carried out three-fold cross-
validation on the accuracy of estimates to evaluate the performance of our
proposed method. The parameters were set similarly to the previous chapter
(Ba = 7, Bp = 7), and the random forest was set as follows: the number of
trees set to 400, the maximum depth of each tree set to 15, and the minimum
samples in each leaf node set to 1% of the total training samples.

In each frame in test scene, social group clustering was applied and group
membership of each pedestrian pairs was then tested and compared with
the ground truth and the result is collected throughout the video. Similar
to the previous chapter, class accuracy, i.e., the average between the accu-
racy of each class, was used to evaluate accuracy. The results are shown in
Figure 4.2. The figure shows results of our approaches with different cp val-
ues. Small stars on the graph show the value of Tw obtained by performing
three-fold cross-validation on the train dataset. We also performed tests with
previous approach using this dataset shown as Static. Due to its inability to
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Figure 4.2: Group discovery results of our approaches with different cp values.
Static shows the result using the approach from Chapter 3. Small stars on the
graph show the value of Tw obtained by performing three-fold cross-validation
on the train dataset. Class accuracy was used to evaluate accuracy.

handle multiple social groups for one pedestrian, the social group that each
pedestrian spent the most time in is selected as his social group for train-
ing the estimator. It can be seen that the previous approach underperformed
when applying to transient group environment, and the approach yields most
accuracy with values cp = 0.1 and Tw = 0.7. This shows that using informa-
tion from previous frames not only increase the smoothness of the results,
but also increases the estimation accuracy. The results also show that our
approach correctly selects an appropriate Tw for most of the cp values.

An example of the results is shown in Figure 4.3. The figure shows clus-
tering results of consecutive frames in the video using our approach with
cp = 0 and cp = 0.1. I can be seen that using the history cluster structures
help to make the result clusters smooth and less prone to error.
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Figure 4.3: Clustering results of consecutive frames in the video using our
approach with cp = 0 and cp = 0.125, respectively. I can be seen that using
the history cluster structures help to make the result clusters smooth and
less prone to error.

4.3.2 Social Group Type Clustering Test

We performed two tests to evaluate the social group type clustering. The
first test compared the results to that of human clustering. The annotator
was asked to divide social groups found in the dataset into a number of types
which served as a ground truth for the comparison with discovered types. The
second test was visual evaluation by human to interpret the results.

The first test was done by asking the annotator to divide pedestrian
groups into 3 types, groups of pedestrians walking without talking, groups
of pedestrians talking while walking, and groups of pedestrians standing and
talking to each other. We set Tnc = 10 and Tgt = 3 and applied the algorithm
with the social groups obtained from the discovery approach using cp = 0.1

and Tw = 0.7. In each frame, social group clustering was applied to cluster
the pedestrians. We constructed a confusion matrix between the estimated
and the annotated group types in order to evaluate the result. Because
clustering was done in an unsupervised manner, we aligned the matrix so
that maximum diagonal values were maximized. The confusion matrix is
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Table 4.1: Confusion matrix between ground truth and estimated group
types. Estimated type labels were given by human and are aligned to maxi-
mize values along the diagonal line. W indicates groups of pedestrians walk-
ing without talking, S indicates groups of pedestrians standing and talking
to each other, and WT indicates groups of pedestrians talking while walking.

Estimated type

W S WT

G
ro

un
d

tr
ut

h

W 0.87 0 0.13

S 0.12 0.89 0

WT 0.49 0 0.51

Table 4.2: The average measurement values of each discovered visual word.
Values from z1 to z10 describe visual words, and the columns from left to right
show the averaged measurement values for distance between pedestrians (p1),
velocity difference (p2), walking direction difference (p3), difference between
walking direction and relative position (p4), gaze exchange (a1), head pose
difference (a2), walking focus (a3), and velocity (a4), respectively. Measure-
ments are scaled to [0, 1]. Cells with high values are colored green, while cells
with low values are colored red. This table is best viewed in color.

dist ∆vel ∆dir dirpos gaze ∆pose focus velocity

z1 0.17 0.07 0.19 0.25 0.44 0.24 0.35 0.11

z2 0.20 0.10 0.04 0.37 0.45 0.19 0.30 0.52

z3 0.19 0.07 0.05 0.70 0.42 0.20 0.30 0.41

z4 0.28 0.14 0.08 0.43 0.35 0.57 0.46 0.48

z5 0.18 0.12 0.04 0.06 0.43 0.26 0.38 0.46

z6 0.57 0.15 0.05 0.46 0.44 0.21 0.29 0.54

z7 0.56 0.14 0.05 0.10 0.44 0.22 0.30 0.43

z8 0.16 0.05 0.29 0.27 0.39 0.67 0.31 0.05

z9 0.47 0.19 0.22 0.13 0.32 0.69 0.36 0.23

z10 0.83 0.39 0.28 0.37 0.41 0.63 0.39 0.48

displayed in Table 4.1. The average feature values of each discovered visual
word are displayed in Table 4.2, and the distribution of visual words in each
discovered group type is shown in Table 4.3.
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Table 4.3: The distribution of visual words in each discovered social group
type. Ten columns correspond to the ratio of each visual word in each dis-
covered group type. Major visual words in each group type are colored green.

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10
W 0.01 0.47 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.08 0.00

WT 0.01 0.08 0.04 0.20 0.58 0.00 0.01 0.00 0.05 0.02

It can be seen that groups of pedestrians walking without talking (W )
and standing pedestrians (S) are clustered correctly with more than 80%
accuracy. However, as talking event did not always occur even in the WT

group, they were clustered into W in frames where pedestrians in this group
are not talking. This can be thought of a more detailed labeling of the social
group and might be preferable depending on the application. This suggests
more sophisticated tests might need to be performed in order to analyze these
groups.

It can also be seen that the distributions of discovered pedestrian groups
follow our assumption of social groups. Walking pedestrians (W ) are de-
scribed mainly by visual words z2 and z3, which describe pedestrians with low
relative distance, high velocity and low walking direction difference. Stand-
ing pedestrian groups (S) are explained by visual word z8 with low relative
distance, low velocity, and high gaze exchange activity (indicated by low
gaze exchange value). Pedestrians who talk while walking (WT ) are mainly
described by visual words z4 and z5, which signified pedestrians with low
relative distance, high velocity, and high gaze exchange activity.

The second test is performed by setting Tnc = 10 and Tgt = 4 and ask
human annotator to interpret the meaning of each social group type. The
results are shown in Figure 4.4. Three discovered social group types were
identified similarly as in the previous section, which are groups of pedestrians
walking without talking, groups of pedestrians talking while walking, and
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Figure 4.4: Examples of results obtained by the proposed approach with
Tnc = 10 and Tgt = 4. Social groups are represented by colored blocks, and
the text with the same color as the boxes states the estimated group type for
the corresponding social group. Spread shows pedestrian groups walking in
a spread-out manner, Tight shows pedestrian groups walking more tightly,
Stand shows pedestrian groups standing and talking, and Talking shows
pedestrian groups talking while walking.

groups of pedestrians standing and talking to each other. The fourth social
group type is identified by human as groups of people walking in a spread-out
manner. In the figure, social groups are represented by colored blocks, and
the text with the same color as the boxes states the estimated group type for
the corresponding social group. Spread shows pedestrian groups walking in
a spread-out manner, Tight shows pedestrian groups walking more tightly,
Stand shows pedestrian groups standing and talking, and Talking shows
pedestrian groups talking while walking. It can be seen that a potentially
important social group types can be identified by this approach. Setting Tgt
to values more than 4, however, yields no interpretable results. However, we
believe that applying this to other type of scenes will yield different results
and this approach could discover potentially important groups in that scene.
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4.4 Conclusion

We proposed an unsupervised social group type discovery approach that
can operate without human labels. Our approach has the key idea that hu-
man social groups can be categorized by analyzing interaction of pedestrians
within the group. The experimental results show that our approach can
discover several important group types without any prior labels. We also
proposed an approach to discover social groups with transient property. So-
cial groups are discovered separately in each frame with previous social group
structures taken into account to help removing outliers. The experimental
results confirmed that the accuracy is significantly improved by factoring in
the social group structures from previous frame.

We believe that there are still various feature types that can possibly
discover important groups that are not covered in our work, and there are
still various clustering approaches that can yield better results. There are
numerous ways to improve each component of this framework, and the it
is our goal to seek the perfect set of components that can achieve the best
results.
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Chapter 5

Conclusions

5.1 Summary

This thesis demonstrated approaches to discover social group and social
group types by using attention-based and position-based cues. Attention-
based cues are derived from human attention estimated from their head pose,
while position-based cues are acquired from spatial information of the pedes-
trians acquired from pedestrian tracking. We first described an unsupervised
approach to acquire head pose for pedestrians in the scene without manual
labeling process. A group discovery approach is then established by train-
ing a random forest with attention-based and position-based measurements.
Our approach demonstrated that human social groups can be robustly esti-
mated and the use of attention-based cues increases the accuracy over using
position-based cues alone. We also utilized attention-based and position-
based cues to discover social group types in an unsupervised manner with
the key idea that human social groups can be categorized by analyzing in-
teraction of pedestrians within the group. Both quantitative and qualitative
experiments show that important social group types can be categorized in
an unsupervised manner by using these cues.

80



Chapter 5. Conclusions 81

This paper shows that social group information as well as different types
of social groups in the video can be robustly acquired with our proposed
approach. This would surely enrich current social group analysis processes
and makes it possible for more detailed and real-time analyses, which would
open up new possibilities for vast array of applications.

5.2 Contributions

Main contributions of this thesis are summarized as follows.

Unsupervised head pose estimation

We proposed an unsupervised head pose estimation approach that is
based on two key ideas: automatically acquiring a training image dataset
with ground-truth head pose and segmenting a scene into multiple regions
with similar head appearances. This is the first work to use walking direc-
tions as a cue to infer head pose and solve head pose estimation task in an
unsupervised manner. The accuracy is further improved by our approach
to handle large variations that occur in head appearance within the same
scene. The whole method is fully unsupervised, which is a significant advan-
tage when applied to practical scenarios.

Social group discovery using attention-based cues

We proposed an approach to discover social groups by using attention-
based and position-based cues. While attention-based cues were applied with
several researches in computer vision, we were the first work to apply these
cues to social group discovery. Attention-based cues are modeled as a set of
features based on human attention, and these features are used to learn a set
of decision trees that represent the behaviors of social groups. Experimental
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results show that social groups can be robustly estimated and the use of
attention-based cues increases the accuracy over using position-based cues
alone

Unsupervised social group type discovery by modeling
human interactions

We propose a group discovery approach which takes into account the
transient group property and an evolutionary clustering approach is applied
removing erroneous results. The discovered social groups are then catego-
rized by analyzing interactions among their members in an unsupervised
manners. Our approach is the first that propose to categorize social groups
by examining the interactions between their members. Both quantitative
and qualitative experiments show that important social group types can be
categorized in an unsupervised manner by using these cues.

5.3 Future Directions

Accurate unsupervised head pose estimation methods

The advance in unsupervised head pose estimation make the approach
more peactical for real scenarios. However, there are still a lot of remaining
challenges to be solved. One of them is the assumption of the approach itself.
In our method, human walking direction is used as a cue to their head poses.
However, by studying how human paid attention to their surroundings, we
believe there are still vast arrays of cues other than walking direction to be
considered.

Another possible direction is to utilize image samples from multiple cam-
eras in order to provide more accurate results. In recent years, scenarios
with multiple cameras are becoming more common due to quick advances of
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camera manufacturing technologies. By the use of multiple cameras, sophis-
ticated measurements can be made in order to acquire ground-truth data in
an unsupervised manner and provide accurate results.

Features and estimators for social group detection

Our approach have shown that social groups can be discovered accurately
by using attention-based and position-based cues. These cues are originated
from analyzing how humans themselves identify social groups from the video.
We believe that there are still other cues humans use to discover social groups,
and investigating and discovering these cues will be beneficial to the group
discovery task. We also believe that more sophisticated framework can be
built by carefully observing social group behaviors of humans.

Human action prediction using social group type cues

Recent advances on human action predictions based on social group mem-
berships have shown promising results to be used in real scenarios. With the
addition of information on social group types, even more accurate prediction
results can be expected. Due to the unsupervised nature of our approach,
it can be easily integrated into these approaches to improve the prediction
accuracy. In this sense, in addition to their applications in analytical studies,
the discovery of social groups and their types can also be applied to real life
scenarios.
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