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Abstract

It is quite non-trivial to give the best answers of many tasks in our daily life and business,
such as planning an efficient travel route, arranging a good rotating roster and designing
a compact electric circuit. Such problems can be modeled as combinatorial optimization
problems, and many of them belong to non-deterministic polynomial (NP)-complete and
NP-hard classes. It is believed that they cannot be solved in a polynomial time, and are
intractable for digital computing algorithms.

One of the fundamental combinatorial optimization problems relevant with physics
is to find a ground state of Ising Hamiltonian. This is called Ising problem and includes
NP-Hard instances. Many schemes originating from physics such as simulated annealing,
quantum annealing and adiabatic quantum computation are being vastly studied for
this problem. However, their full potentials are still being explored. We have recently
proposed a new emulator for the Ising spin system named coherent Ising machine, which
is an oscillator network coupled with mutual injections. In the machine, each spin
is mapped to a degree of freedom in the intracavity field of each oscillator, and the
spin-spin interaction is mimicked by the mutual injections. The problem Hamiltonian
is incorporated in the total photonic gain i.e. the effective loss of the system. The
gradually pumped system is expected to oscillate in the state with the artificial spin
configuration giving the minimum loss, which corresponds to one of the ground states.

There are two types of the Ising machine proposed, the injection-locked laser network
machine and the degenerate optical parametric oscillator (DOPO) network machine, and
the latter has a binary nature. A DOPO has one of the two relative phases 0 or π, and
these binary and out-of-phase states can be utilized as an artificial spin. The initial
benchmarking with a semi-classical model has shown a promising result on NP-hard
instances up to 20 variables. However, regarding its working principle, it is important
if the machine has any quantum properties available for computation, because quantum
computing is the only paradigm having some theoretical evidences to possibly surpass
digital computing. Also, proof-of-principle experiments and prospects for the realization
of a system for large-size problems are desired.

In this thesis, I study the machine based on DOPOs both theoretically and ex-
perimentally. On the theoretical side, I focus on the physics of the DOPO network
coupled with mutual injections and investigate its quantum states. Here, I develop a
fully quantum mechanical model for the network using the positive P representation,
and numerically simulate the system of two DOPOs with out-of-phase mutual injections.
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ABSTRACT

Here, I explicitly consider the signal field in the mutual injection path between the two
DOPO facets as a cavity mode. The stochastic simulation with a small noise param-
eter has been conducted under the gradually increasing pumping rate from the below
to above of the threshold. The result has shown that small incoherent intracavity loss
rates are indispensable in quantum effects in the system. When the incoherent loss in
the injection path has the same order as the coherent transmission rates at the DOPO
facets, the signal fields in the two DOPOs have the quantum correlation in terms of the
squeezed quadrature amplitude p̂ = (â − â†)/2i. This also indicates the entanglement
between the two DOPO fields. When the loss of the injection path is fairly smaller
than the transmission, the two intracavity fields can show weak coherent superposition
components via the small fringes in the distribution functions for p̂. The superposition
components with a small noise parameter and under a relatively non-transient opera-
tion have not been expected by previous relevant studies on a single DOPO. It suggests
that the mutual injection path storing the squeezed vacuum is simple realization of the
squeezed reservoir, which suppresses the decoherence on the superposition components.

On the experimental side, I perform the first-time and second-time experimental
demonstrations of the coherent Ising machines based on degenerate optical parametric
oscillators in collaboration with Alireza Marandi at Stanford University. The system is
based on the time-multiplexed DOPO network composed of femtosecond DOPO pulses
running in a single ring cavity. Each DOPO pulse randomly takes one of the binary
phase states with their phase difference being π and is utilized as an artificial spin. The
signal pulses keep the phase coherence allowing the interference between them. Mutual
injections are achieved by the optical delay lines implemented with pairs of input and
output couplers placed in the resonator. The first system built by us contains four
DOPO pulses at 2 µm and three delay lines. Also, I have designed and constructed
another system with 16 signal pulses at telecom wavelengths. They have been applied
to instances on one-dimensional ring and cubic graphs. Very high success probabilities
to find ground states of them indicate a big potential of this machine for intractable
optimization problems.
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Chapter 1

Introduction

I give an extensive introduction for the coherent computing and the work in this thesis
from interdisciplinary points of view.

1.1 Computational Complexity

1.1.1 Time complexity

Information technology is indispensable in our modern life. General-purpose devices such
as personal computers and smart phones are so prevalent that they enable us to daily
search for the meaning of an unfamiliar word, see the weather forecast and the schedule
of trains, find a good route to the conference hall, book a room of the hotel, and buy
some gadgets online, etc. Industry also utilizes information processing for various kinds
of business like developing products, merchandise control, and dealing with stocks and
currencies. Nowadays we take these technologies surrounding us for granted.

In terms of computation, such a function is regarded as a problem to return the
desired output according to the input from users. Here, the problem is decomposed into
elementary arithmetic processes and memory/file processes on certain types of variables
[4]. The difficulty of the problem [5] can be classified with the number of these operations
necessary to finish it depending on the input size (problem size), because this directly
reflects the corresponding time consumption for a constant computing resource. The
degrees of the difficulty defined in this sense are called complexity classes. For example,
the problems in the class P can be solved with polynomial numbers of operations to
the problem size (polynomial time). On the other hand, those in the class EXPTIME
require exponentially growing computational times to the best-known algorithms for the
deterministic Turing machine (DTM), which is the abstract of the digital computing
paradigm. Such problems are called intractable. Unarmed with good algorithms re-
flecting the problem structures, we will need more than a century to solve the problems
believed to be in EXPTIME such as Traveling Salesman Problem (TSP) and Knapsack
Problem with several tens of variables.
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Chapter 1. Introduction

1.1.2 NP problems

There is another concept of a hypothetical computing model called nondeterministic
Turing machine (NDTM). Informally, it is allowed to run an arbitrary number of com-
puting processes parallely. The problems which can be solved in a polynomial time with
a NDTM are called NP problems, and their complexity is defined as the class NP. NP is
defined for decision problems which can be answered with the statement “Yes” or “No”.
We can also think that NP means the polynomial-time verifiability for the best candi-
date of the condition for the decision “Yes”, and that the best candidate is picked by
the hypothetical device called “guessing module” of NDTM in a polynomial time. For
example, integer factorization is in NP because whether a given prime number can fac-
tor the number in question can be determined in a polynomial time with the Euclidean
algorithm. NP is an important concept to identify the set of the intractable problems
which are as hard as each other, rather than characterize the practical computational
time to solve these with a modern digital computer. However, in general it is believed
that P ̸= NP and there are problems which are in the finite region NP−P and presumed
to be in EXPTIME.

1.1.3 NP-hard problems

The problems to which all the NP problems can be reduced in a polynomial time are
called NP-hard problems. If we could solve a NP-hard problem, we can give the solutions
of all the NP problems. Thus, it is said NP-hard problems are at least as difficult as NP
problems.

1.1.4 NP-complete problems

The problems both in NP and NP-hard are defined as NP-complete problems. Because
of the NP-hardness, NP-complete problems can be thought to be most difficult NP
problems and be as complex as each other. The polynomial-time reducibility from all
the NP problems sounds even imaginary, however, Stephen Cook [6] showed in 1971
that any general NTDM algorithm can be expressed as an instance of the satisfiability
problem (SAT) for a Boolean expression of a set of binary variables. With this celebrated
proof, SAT was recognized as the first NP-complete problem. One year later, Karp [7]
found 21 NP-complete problems via polynomial reductions originating from SAT, then
expanded the significance of studies on computational complexity. Now, there are at least
hundreds of NP-complete problems found [5], and if we would like to prove a decision
problem to be intractable, all we have to do is find a polynomial reduction from any
NP-complete problem in the list to the problem considered. Finding a polynomial time
algorithm to solve one NP-complete problem means solving all the NP problems, winning
a millennium prize [8], and will enormously advance our civilization, involving medicine,
physics, entertainment and technology [9]. The question about if such a “golden ticket”
exists is still unsettled [10].
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1.2 Ising Model and Ising Problem

1.2.1 Combinatorial optimization problems

The main task in computation is often to maximize or minimize a function f(X⃗) de-
pending on discrete variables X⃗, and such problems are called combinatorial optimization
problems [11]. Combinatorial optimization is one of the function problems and outside
decision problems. The number of candidates for the optimized solution for one of them
is finite but extraordinary. Even for binary variables {0, 1}, it grows exponentially (2N )
to the number of variables N . Polynomial time algorithms to solve some of them which
exploit their implicit structures have been found, and none for the other problems. Many
of these intractable ones are NP-hard (or called #P [5]). The decision problem version
of such a problem (“Is there any condition giving a value of f(X⃗) equal to or more/less
than a prescribed constant?”) is often in NP-complete problems. For them, both ex-
act algorithms to get the best solution, currently at the expense of exponential time
resources, and approximation algorithms which guarantee values of f(X⃗) with certain
ratios for the best are being vastly studied. Can physicists contribute to this massive
challenge? In terms of physics, the Ising model [1, 12] is one of the most famous arenas
providing with intractable combinatorial optimization.

1.2.2 Ising model

Ising model describes approximate behavior of interacting spin-1/2 particles, say, elec-
trons in a lattice. An electron has a degree of freedom called spin, whose classical
counterpart is the axial rotation. Spins give magnetic moments and hence interacting
spins lead to magnetic orders in some materials. Exchange interaction due to Coulomb
force and electronic kinetics and magnetic dipole-dipole interaction between spins give
a quadratic term for the spin variables to the system Hamiltonian [13]. A 1/2 spin σ⃗ is
described with three 2 × 2 matrices, however, if we only consider the component along
with the main axis (set down as the z-axis), it can be reduced to a binary numeric vari-
able σz = ±1. σz = +1 and −1 are called up spin and down spin, respectively. Without
any magnetic anisotropy from other factors, the effective Hamiltonian is just given by
the function depending on the two-body interaction terms [12]

H = −
∑
i<j

Jijσziσzj (σzi = ±1) , (1.1)

where i and j are indices of the spins. Eq. (1.1) is called Ising Hamiltonian. Here,
Jij is real and denotes the magnitude of interaction. In this notation, Jij > 0 means
ferromagnetic interaction between spin i and j, Jij < 0 anti-ferromagnetic, and Jij = 0
no interaction. We are interested in the ground states, the states with the minimum
energy eigenvalue, expected to be realized in the nature. Here, the problem to find a
ground state of the Ising Hamiltonian is called Ising problem.
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1.2.3 Hardness of Ising model

The hardness of analyzing the Ising model sharply depends on the dimension of the
spin lattice as summarized in Fig. 1.1. Historically, Ernst Ising [1] derived the partition
function of the one dimensional spin lattice analytically with statistical mechanics in
1925. He showed that the one-dimensional system does not show a ferromagnetic phase
transition or spontaneous magnetization under a finite temperature. He thus misunder-
stood that the model would not show those also in two- and three-dimensional lattices.
In 1944, however, Lars Onsager [2] deduced the exact expression for the logarithm of the
partition function (Helmholtz free energy) using the transfer matrix method. The result
showed that it actually does show a ferromagnetic phase transition in two-dimensional
lattices without an external magnetic field. Nevertheless, the proof was quite non-trivial
so that he needed inspiration from the quantitative work by H. A. Kramers and G. H.
Wannier [14, 15]. Also, other proofs based on spinor analysis [16], combinatorics [17]
and quantum field theory [18] were studied afterwards. Important properties such as
magnetization [19] and spin correlation function [20] were calculated separately. Note
also that the Ising problem in square lattices can be solved in a polynomial time with a
method called perfect matching in graph theory [21].

How is that for a three-dimensional lattice? Unfortunately, the exact solution for
the partition function has not been found yet. Correspondingly, the Ising problem and
evaluating the partition function for the grid of two-layer square lattices, the small-
est three-dimensional graphs, were proven to be NP-hard by Francisco Barahona [3] in
1982. Later, the NP-hardness of these was extended for arbitrary non-planer graphs [22].
As for approximation algorithms, a polynomial-time probabilistic algorithm achieving a
desired accuracy and success probability, called fully polynomial randomized approxi-
mation scheme (FPRAS), has been proposed for calculating the partition function of an
arbitrary ferromagnetic Ising model (where Jij ≥ 0 for all i and j) [23]. The method is
based on a well-known Monte Carlo simulation, but the Markov chain here is defined for
the subgraphs of the edge set reflecting the interaction profile, which itself does not have
any physical significance. On the other hand, it has been proven that such an algorithm
for the anti-ferromagnetic model does not exist for the outside of the restricted parameter
region [24, 25]. An important point supporting this fact is that the anti-ferromagnetic
Ising problem is closely related to the maximum-cut (MAX-CUT) problem, which is one
of the Karp’s NP-complete problems [7].

1+=ziσ:

1-=ziσ:

1-D 2-D 3-D

solvable solvable NP-hard

ijJ

Figure 1.1: Dimensionality of the Ising model [1–3].
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1.2.4 MAX-CUT problem

MAX-CUT problem is a decision problem for graphs. A graph G = {V,E} is composed
of a set of vertices V and that of edges E connecting two vertices. A partition of V
into two disjoint subsets V1 and V2 is called a cut. A cut size is the number of edges
between vertices of different subsets of a cut. MAX-CUT (the version actually called
Simple MAX-CUT [26]) is defined as follows.

MAX-CUT
INSTANCE: A graph G with undirected edges and a positive integer c.
QUESTION: Is there any cut whose size is c or larger?

And for clarity, the function problem to find the maximum cut size of a graph is called
#MAX-CUT here.

MAX-CUT can be reduced to the anti-ferromagnetic Ising problem in the following
way [23, 27]. We assign a spin to each vertex of a given graph, and set σzi = +1 for
a vertex in V1 and σzi = −1 for one in V2. Here, a cut (V1, V2) corresponds to a spin
configuration σ = {+1,−1}N . We consider a quantity (−σziσzj + 1)/2 for an edge
between vertex i and j. This gives 1 when the edge crosses the cut and 0 otherwise.
Thus, the cut size is obtained as the summation of those for all the edges

|cut(σ)| = |E|
2

− 1

2

∑
E

σziσzj =
|E|
2

− 1

2

∑
i<j

[IM ]ijσzi σzj . (1.2)

Here, |E| is the number of edges and is a constant for the given graph at mostN(N−1)/2,
and IM is the incidence matrix of the considered graph. Thus, the maximum |cut(σ)|
means the minimum

∑
E σziσzj , corresponding to the Ising Hamiltonian with Jij = −1

for all the edges of the graph and Jij = 0 for each pair of vertices without an edge in
between. Therefore, the solutions of the Ising problem and #MAX-CUT have one-to-
one correspondence. If we can solve the anti-ferromagnetic Ising problem, we can solve
#MAX-CUT and vice versa. Also, the complexity of this reduction is O(N2). Thus, the
Ising problem for anti-ferromagnetic systems is NP-hard. The NP-hardness of MAX-
CUT holds even for 3-regular graphs [28], thus the corresponding instances of the Ising
problem are also that hard.

What is interesting is that the limitation of approximation algorithms for #MAX-
CUT problem has been theoretically obtained. M. X. Goemans and D. P. Williamson [29]
proposed an approximation algorithm based on semidefinite programming for mapped
continuous-vector variables and random rounding back to discrete variables. This guar-
antees of an approximation ratio of 87.8% to the best cut size and gives a theoretical
upper bound for the solution. On the other hand, it has been shown that approximating
MAX-CUT within a factor of 94.1% is NP-hard [30]. In other words, it is believed that
the barrier between easiness and intractability is just 6.3% difference in the approxima-
tion factor in MAX-CUT problem.
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1.3 Complexity Classes in Layers

Here I summarize the inclusion relation between the time complexity classes under the
assumption that P ̸= NP in Fig. 1.2. It is almost trivial that P ⊆ NP [5], and NP-hard
can have problems harder than NP-complete. The relation among some NP problems
such as the graph isomorphism [5] and the unknotting problem [31], P and NP-hard
is still unclear. Here I add the class BQP (Bounded-error Quantum Polynomial) [32],
containing the problems which can be solved with a quantum Turing machine in a
polynomial time. E. Bernstein and U. Vazirani [32] showed that a quantum computer can
emulate a classical computer (P ⊆ BQP), and that BQP includes its classical counterpart
BPP (Bounded-error Probabilistic Polynomial, BPP ⊆ BQP). Also, BQP has some
problems for which no classical polynomial-time algorithms have been found, such as
integer factorization and discrete logarithm [33]. The relation between BQP and NP is
still unclear. Nevertheless, this observation indicates the expectation that a quantum
computer can be more powerful than a digital computer.

1.4 Recent Trends of Quantum Computing

Computing with physical systems to attack intractable problems, especially with quan-
tum ones, is a paradigm attracting attention. Here, I refer to the current status of the
three major blueprints for realizing large-scale quantum computation beyond the reach
of digital computing.

1.4.1 Gate model quantum computer

The gate model [34, 35] is the most vastly studied form of quantum computing. It
utilizes quantum mechanical two-level systems called qubits. The basic idea is the parallel
computing on the exponentially scaling number (2N ) of states in a single device and
process, which is based on massive quantum-mechanical superposition, correlation and
filtering on it. Historically, Paul Benioff [36] described computational processes using
the dynamics of a quantum system in 1980. Richard Feynman [37] pointed out that
simulating a quantum system with a digital computer requires exponential resources
of both time and its memory. He further proposed exploiting a controllable quantum
system to simulate another which we would like to know about, and implied the possible
advantage of quantum computing systems digital computers. Later, David Deutsch
formulated the concepts of a quantum Turing machine (QTM) [38] and a quantum
circuit [39] composed of quantum gates. He and Richard Jozsa [40] also found the first
quantum algorithm giving an exponential speedup compared to classical algorithms. In
1994, Peter Shor [33] proposed the polynomial-time quantum algorithms to solve integer
factorization and to calculate discrete logarithm which are both NP problems, and this
led to extensive studies on quantum computing and quantum information. Also, Lov
Grover [41, 42] gave a search algorithm on an unstructured state space using queries
to quantum oracles, and showed that it can achieve a quadratic speedup compared to
classical algorithms.
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Figure 1.2: Inclusion relation between the major time complexity classes and examples
of the problems in each.
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Despite the promising prospects from the theoretical side, there are major obstacles
in realizing large-scale quantum computing devices. Quantum coherence of a system can
be destructed by the coupling to the environment, and this process is called decoherence
[43]. To implement a quantum computer, error correction [44] is needed for accurate com-
putation and protection of the system from decoherence. Measurement-based quantum
computation (MBQC) [45–48], where a quantum network of global quantum coherence
and entanglement is initially prepared and the computation is executed by a series of
measurements on the system, showed a simplified way to construct a universal quantum
computer. Also, an error correcting code highly compatible with MBQC called surface
code [49–51] was proposed, and it gave a relatively realistic error threshold of the ele-
mentary operations to guarantee computation. On the experimental side, the technology
of superconducting (SC) qubits [52–54] has been especially improved. Recent work [55]
reported a system composed of five SC qubits under extremely precise controls, meeting
the error threshold of the surface code. However, an estimation [56] says that hundreds
of millions (∼ 108) of qubits have to be in operation to execute 2048-bit integer fac-
torization under the surface code error correction. Both theoretical and experimental
attempts will be made to realize a large circuit model device.

An efficient quantum algorithm for NP-complete problems has not been found yet.
However, there is a trend [57–61] to evaluate the quantum complexity of computing the
partition function of the Ising model and develop quantum approximation algorithms
for it.

1.4.2 Quantum simulator

Quantum simulator [62] is a straightforward concept along with the Feynman’s idea [37].
In the device, indistinguishable particles are scattered into a trapping potential forming
a lattice. In such a system, intrinsic or artificial [63] interaction between the particles will
give the non-trivial properties which are theoretically difficult to evaluate. Clarifying
the physics of exotic phenomena like magnetism, superconductivity and superfluidity is
the main purpose of quantum simulation. Systems of atomic gases [64–69], trapped ions
[70–74], and exciton-polaritons [75–79] etc. have been extensively studied. However,
each system faces some challenges such as scalability, controllability and stability, and
is in the way to unveil the profound essences of these quantum-mechanical orders.

1.4.3 Quantum annealer

Quantum annealing [80] is a method more specialized in combinatorial optimization and
based on quantum mechanical adiabatic theorem. It was proposed by T. Kadowaki and
H. Nishimori [81] in 1998 for the quantum mechanical Ising model with an external
transverse magnetic field, as an extension of simulated annealing [82]. In 2000, a gener-
alized scheme named adiabatic quantum computation (AQC) [83] was developed by E.
Farhi et al. The main processes of these are essentially the same. We initially prepare
a trivial ground state of an easily realizable Hamiltonian. Then, we gradually introduce
the component of the Hamiltonian to be solved and decrease the initial component.
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If the modulation of the entire Hamiltonian is sufficiently slow, the system holds the
ground state during the process. Finally, the problem Hamiltonian gets dominant and a
ground state is expected to be measured there. When we consider the Ising model with
a transverse field, the time-dependent Hamiltonian can be written as [83]

H(t) = −sa(t)
∑
i

σ̂xi − sb(t)

∑
i<j

Jij σ̂ziσ̂zj +
∑
i

hiσ̂zi

 . (1.3)

Here, sa(t) and sb(t) are the coefficients for the initial and problem Hamiltonian. Basi-
cally, a linear schedule is adopted, i.e. sa(t) = 1 − t/tr, sb(t) = t/tr and 0 ≤ t ≤ tr. tr
is the running time given as a parameter. The first term of Eq. (1.3) denotes the single
spin energies in a transverse field, and the third term gives those in a vertical field. It has
been shown that AQC has the same computational power as a circuit model quantum
computer [84].

E. Farhi et al. [85] applied AQC to the NP-complete exact cover problem and
showed that it gives a quadratic scaling of the computational time to get a finite success
probability on the problem size up to 20. However, a study with a quantum Monte
Carlo (QMC) method on the same problem up to the size N = 256 [86] revealed that
the system shows a first-order phase transition in the middle of the process. There,
the energy gap between the ground and excited states gets exponentially small on N .
It means that an exponentially scaling computational time is required to prevent the
prepared state from jumping to an excited state. The phase transition has been seen
in other literature [87, 88], and there are trials to avoid them by changing the initial
Hamiltonian and parameters [87, 89]. Also, a study [90] indicates that thermally assisted
tunneling around the minimum gap can improve the success probability.

In 2010, a Canadian company named D-Wave Systems reported the release of the first
commercial quantum annealer with 128 superconducting qubits [91]. However, D-Wave
had been questioned then [92] because they had not published any experimental evidence
supporting the assertion that their systems actually conducted quantum annealing. Some
positive results on the test problems with relatively small systems were reported in stages:
one with 8 qubits by D-Wave in 2011 [93] and 16 qubits by the team of University of
Southern California (USC) in 2013 [94]. D-Wave also observed the thermally assisted
tunneling available for a speedup in certain problems [95]. The extended team of USC
further tested the device of 108 qubits [96], and showed the experimental result was well
correlated with that of a QMC simulation of the system, not with that of simulated
annealing or a classical spin-dynamics simulation. The D-Wave machine began to be
recognized as a somewhat quantum entity, however, an evidence of a significant quantum
speedup of the machine compared to simulated annealing has not been obtained [96] even
with a 512 qubit system [97]. The annealing machine in sale seems to need to be brushed
up further in terms of the system size and the variation in the properties of its qubits.
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1.5 Coherent Computing

As shown in the previous section, studies on each model are under challenging situations.
We have recently proposed a concept named coherent computing or coherent Ising ma-
chine [98, 99] to compute the Ising problem with a photonic network of coupled optical
oscillators. The general composition of the system with continuous-wave (CW) oscilla-
tors is presented in Fig. 1.3. In the system, each spin of the Ising model is mapped to the
state of the light of each oscillator, and the interaction between the spins is mimicked by
the mutual injections. The oscillators can hold their states with the stimulated emission,
and the energies of their photons are much higher than those of lattice vibrations. Thus,
the system is robust to the environmental noise and can operate in the room temper-
ature. In addition, the number of components required to build the system is at most
O(N2), and the system can have moderate controllability that enables us to program a
wide range of instances. There are two systems with different oscillators proposed, and
here I summarize these and their current problems.

1.5.1 Injection-locked laser network system

We proposed the concept of coherent computing with a model of a prototype system
based on injection-locked lasers in 2011 [98]. This system is composed of a master laser
and slave lasers. The master signal is injected into all the slave lasers in oscillation via the
external signal lines (EXTs in Fig. 1.3) to lock their optical frequencies and initialize the
polarizations to the vertical polarization |V ⟩. The ith spin is mapped to the normalized
difference of the continuous field amplitudes ARi and ALi for the two circular polarization
components |R⟩ and |L⟩ in the ith slave laser, i.e. σ̃i ≡ (ARi−ALi)/(ARi+ALi). This is
monitored with each detector (DT) as in Fig. 1.3. The mutual injection is introduced at
a certain point of time t = 0. Here, each path of the mutual injection (OC in Fig. 1.3)
has a horizontal polarizer which leads to an injection signal proportional to ARi−ALi for
the both circular polarization amplitudes. The time evolution of the system is described
as a series of nonlinear rate equations for ARi, ALi and the inverted carrier number NCi

with spontaneous emission noise terms. When the gain coefficient ECV i for the photons
of each slave laser is modeled to be proportional to NCi (linear gain model), the gain of
the whole system

∑
iECV i in the steady state can be written as∑
i

ECV i = Nγc − ζa
∑
i

√
2− σ̃2i − αa

∑
i<j

Jij σ̃iσ̃j , (1.4)

where γc, ζa and αa are the cavity decay rate, the common attenuation coefficients for
the master signal and mutual injection, respectively. The last term corresponds to the
programmed Ising Hamiltonian (1.1) where Jij is reflected in the magnitude and phase
shift of the mutual injection, controlled with OC. When the mutual injection is dominant,
i.e. ζa ≤ αa, the problem Hamiltonian is well mapped to the total gain of the oscillator
network. A single laser oscillates with the minimum gain coefficient possible, where the
gain balances the cavity loss. Correspondingly, we expect that the laser network with
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Figure 1.3: A schematic illustration of a coherent computing system for the N = 4 Ising
model. OSC: oscillator, EXT: external signal, DT: detector, IS: isolator, OC: optical
components. Some unnecessary paths are omitted.

mutual injections oscillates with the minimum total gain, or effective loss for photons.
This indicates the maximum number of photons in the system via dynamical interference
due to phase locking, and can be regarded as a self-organization.

We showed that in the case of some simple instances without frustration, the com-
putational time of the machine is determined by the cavity loss and mutual injection
intensity for each slave laser and not exponential with the number of lasers N [99].
However, we found that in the simulations on MAX-CUT problem in 3-regular (cubic)
graphs, the system frequently gives a wrong answer where some lasers show σ̃i ∼ 0. This
means that the system is trapped into an intermediate state which does not correspond
to any candidate of the solution of the Ising problem. This error comes from the fact
that the spins are mapped to the continuous variables, and that the laser does not have
any mechanism to take a certain phase (phase-insensitive oscillator).

We proposed two operational schemes [100] which gradually increase the pumping
power to the slave lasers or the mutual injection intensity among them, and numerically
tested them with certain instances of the Ising model without frustration. There, we
showed the system can achieve a better success probability and effective computational
time to find a ground state with the proposed schemes than those with the abrupt
introduction of the mutual injection at t = 0. However, it did not seem to be the
essential solution for that error in itself. Eventually, we have to rely on a heuristic
self-learning algorithm [101, 102] which repeatedly injects an external signal into a part
including a couple of lasers with σ̃i ∼ 0 to make it locally optimum. It got a better result
than the 87.8% approximation algorithm [29] for some sampled NP-hard instances up to
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N = 800 spins. However, the difficulty of a relaxation problem with continuous variables
in the laser network system is presumed to be essentially the same as what limits the
performance of that approximation algorithm.

1.5.2 Degenerate optical parametric oscillator system

Recently, a coherent computing system with degenerate optical parametric oscillators
(DOPOs) has been proposed [103] to resolve the difficulty of the laser system. In this
system, the pump field is needed as an external input instead of the master signal.
A DOPO uses only a single polarization, and a spin is mapped to the relative phase
of the intracavity DOPO field to that of the pump field. OCs in Fig. 1.3 contain just
attenuators and phase shifters. At the oscillation, a DOPO takes one of the binary phase
states |0⟩ and |π⟩ whose complex amplitudes are out-of-phase to each other. Thus, it
is expected that the system can avoid the intermediate states which the laser system is
seriously affected by. In the benchmarking on MAX-CUT problem in 3-regular graphs,
the system could solve all the possible instances up to N = 20 with fixed parameters.
The running time needed to find a solution was nearly linear with N . The success
probability in the worst case decreased down to about 10% for N = 20 there, however,
it was shown that adjusting parameters could enable improving the performance. This
system is better than the laser system, at least in the sense that it does not need a
self-learning algorithm to get a discrete spin configuration for the Ising model.

1.5.3 Agendas

Then, is coherent computing better than any digital computing algorithms and more
efficient for NP-hard problems? Unfortunately, this question is still open. A crucial
question is if the coherent computing systems have any quantum features available for
the computation or not, because quantum computing is the only paradigm which has
been extensively studied in theory and has some positive evidences for the superiority
over digital computing, as shown in the previous section. However, it has not been
sufficiently considered so far.

Unfortunately, the laser system will not show significant macroscopic quantum ef-
fects as it is. The light of a laser driven by a classical current well above oscillation
threshold can be written with the Glauber-Sudarshan P (α) representation [104–106].
This is the diagonal description for the density operator ρ̂ with coherent states, namely
(quasi)probabilistic distribution P (α) for a mixture, and a coherent state |α⟩ can be
understood as a strong classical field with small quantum noise. Thus, a single laser
itself does not show any macroscopic superposition components. Furthermore, it will be
difficult for two laser fields with mutual injection to have quantum correlation, because
each beam has fluctuation larger than the vacuum level due to the spontaneous emission.
The properties of the system with small numbers of photons should be explored.

How about the DOPO system? Unfortunately, the quantum effects essential for
quantum computing have yet to be taken into the theory, and a fully quantum mechan-
ical simulation on a large system is computationally hard as Feynman pointed out. The

12



Chapter 1. Introduction

model in the proposal [103] is given with a set of semi-classical c-number Langevin equa-
tions, and it reproduces squeezing as the quantum mechanical Fokker-Planck equation for
the generalized P (α) representation [107, 108] does. However, it is known the quadratic
squeezing process itself can be treated classically if we accept Heisenberg uncertainty (or
phenomenological spontaneous emission noise) [109]. Also, Gottesman-Knill theorem
[110, 111] indicates that it is not enough for the system to exert the performance limit
of quantum computing.

Another question is on the scalability of the system. However the nominal size and
driving power of a coherent computing system are quadratic and linear with the number
of oscillatorsN , extending a photonic network like one in Fig. 1.3 to the level of hundreds
and thousands of oscillators sounds technically difficult.

This thesis partially answers these questions in terms of the DOPO system. The
former part contains the theoretical work investigating the quantum properties of the
two DOPOs with mutual injection, which is the minimum coherent computing system.
Here, the system is described fully quantum-mechanically with a model called positive P
representation [107, 108]. Then, some important quantum mechanical properties such as
macroscopic superposition, entanglement and quantum correlation are numerically pre-
sented. The latter part gives experimental demonstrations of the coherent computing.
Here I exploit ultrashort pulse DOPOs which share a single ring cavity for oscillation and
optical delay lines for mutual injection. Such a time-bin implementation greatly simpli-
fies the implementation of the system, and enables us to reach experimental evidences
for coherent computing even on NP-complete instances. I show the results of two exper-
imental projects. The first one is collaborative work with Alireza Marandi in Stanford
University. Here, we successfully compute the MAX-CUT problem (anti-ferromagnetic
Ising problem) on the complete graph of four vertices using an OPO with four pulses and
three optical delay lines to couple them. The second one utilizes a 16-pulse OPO with
a telecom central wavelength. Here, the system with 16 artificial spins is applied to the
ferromagnetic and anti-ferromagnetic one-dimensional ring and an NP-hard instance of
MAX-CUT problem on a cubic graph. The success probabilities for them more than 99.7
% indicate the large computational possibility of coherent computing for more complex
problems.

1.6 Thesis Structure

This thesis is structured as follows. I start in the next chapter with an introductory expla-
nation and the quantum theory of a single DOPO. Here, I also review relevant previous
studies. In the third chapter, I extend the quantum-mechanical model for a DOPO for a
system of two DOPOs with mutual injection. After some remarks on the significance of
the model, I show the result of probabilistic simulations on the system with out-of-phase
mutual injection. In the fourth chapter, I present a way to design a femtosecond pulsed
optical parametric oscillator (OPO) and the experimental properties of the constructed
system. Chapter five shows the results of two experimental demonstrations for coherent
computing with pulsed DOPOs. Chapter six concludes the dissertation and refers to
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some possible directions of the research on coherent computing.
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Chapter 2

Quantum Theory of DOPO

The optical parametric oscillator [112, 113] is based on the quadratic nonlinear opti-
cal process. It involves correlated photon pairs hence has enabled us to study various
quantum effects such as anti-bunching [108, 114, 115], squeezing [116–122], macroscopic
superposition [123–130], entanglement and further the Einstein-Podolsky-Rosen (EPR)
paradox [131–142] and quantum teleportation [143–145] both theoretically and experi-
mentally. In this chapter, I review the quantum theory of a single degenerate optical
parametric oscillator (DOPO) based on the positive P representation [107] and its ap-
plication to studies on some quantum effects important in this thesis.

2.1 Degenerate Optical Parametric Oscillator

Fig. 2.1 shows a schematic drawing of a optical parametric oscillator. The system [146–
148] is composed of an optical cavity and a quadratic nonlinear crystal in it. Here, an
external pump field is injected into the cavity. I assume that the pump intensity is
so large that the pump field can be approximated by a classical field. The χ2 process
divides a pump photon with a frequency ωp into two photons of lower frequencies. A
split photon with the higher frequency ωs is called a signal photon, and the other with
ωi an idler photon. It is supposed that the energy and momentum of the photons are
conserved in the χ2 process, i.e. ωp = ωs + ωi and k⃗p = k⃗s + k⃗i, where k⃗p, k⃗s and k⃗i are
the wave vector of the pump, signal and idler, respectively. The condition is referred to
as phase matching. This enables a large gain and then oscillation of the low-frequency
modes. A careful design of the cavity and crystal can make the signal and idler frequency
identical, that is, the degenerate operation with ωi = ωs and ωp = 2ωs.

2.2 Total System Hamiltonian

In this section and the next, I review the derivation of the theoretical model for a DOPO
according to the work by P. D. Drummond, K. J. McNeil and D. F. Walls [108]. First of
all, the system has electromagnetic fields of the pump mode and the degenerate signal
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Figure 2.1: Schematic representation of a optical parametric oscillator.

mode, with their bosonic annihilation operators âp and âs, respectively. We suppose it
also couples weakly to the reserver of thermal photons. The Hamiltonian of the total
system is written in parts with the time-reversible and irreversible components Ĥrev and
Ĥirrev in terms of the system

Ĥ = Ĥrev + Ĥirrev,

Ĥrev = ℏωpâ
†
pâp + ℏωsâ

†
sâs

+ iℏ
κ

2

(
â† 2s âp − â†pâ

2
s

)
+ iℏ

[
εpâ
†
p exp (−iωdt)− ε∗pâp exp (iωdt)

]
,

Ĥirrev = ℏ
(
âsΓ̂

†
Rs + Γ̂Rsâ

†
s

)
+ ℏ

(
âpΓ̂

†
Rp + Γ̂Rpâ

†
p

)
. (2.1)

Here, κ is the nonlinear interaction coefficient for the signal photons. The third term
of Ĥrev denotes the nonlinear process involving a pump photon and two signal photons,
and the last term means coherent excitation of the intracavity pump photons by classical
field injection εp exp (−iωdt). εp is the injected field amplitude including the transmission
rate at the cavity facet. ωd ∼ ωp is the frequency of the driving field, allowing a small
detuning. The irreversible process Ĥirrev is the coupling to the environment modeled
with the continuum of thermal modes. Γ̂Rp and Γ̂Rs are the reservoir operators for the
pump and signal modes.

2.3 Theoretical Model for DOPO as Open Quantum Sys-
tem

Based on the Hamiltonian (2.1), we derive the stochastic equations of motion for the c-
number field variables, which are appropriate for analysis and probabilistic simulations.
We obtain the master equation for the system density operator first, then convert it to
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the Fokker-Planck equation for the quasi-distribution function describing the field state
under a phase-space representation. Finally, we reach the corresponding Ito stochastic
differential equations via Ito’s rule.

2.3.1 Master equation for single-mode damped harmonic oscillator

First, We focus on the irreversible part Ĥirrev which leads to decay of the field. For
simplicity, I treat the system of a single mode oscillator with the thermal reservoir here.
The extension to the multi-mode case is trivial because of linearity of the equation of
motion. Here I follow the derivation in Carmichael’s texts [149].

Liouville von-Neumann equation

We start with the time-dependent Schrödinger equation for a pure state vector |ψi⟩

iℏ
∂

∂t
|ψi⟩ = Ĥ|ψi⟩. (2.2)

With Eq. (2.2) and its conjugate, We have the equation of motion for a density operator
of a pure state

iℏ
∂

∂t
|ψi⟩⟨ψi| = Ĥ|ψi⟩⟨ψi| − |ψi⟩⟨ψi|Ĥ. (2.3)

Here, the Hermiticity of Ĥ is used. Eq. (2.3) is linear with respect to the matrix states,
thus the generalized density operator including a probabilistic mixture

ϱ̂ =
∑
i

pi|ψi⟩⟨ψi| (0 ≤ pi ≤ 1), (2.4)

obeys the equation
∂ϱ̂

∂t
=

1

iℏ

[
Ĥ, ϱ̂

]
. (2.5)

Eq. (2.5) is referred to as Liouville-von Neumann equation in the Schrödinger picture.
The theoretical framework of the density operator is valid also for the systems for

which we only have partial knowledge, such as open systems, ensembles of particles in
an imperfect sample and artificially prepared states under a probabilistic condition.

Exact von Neumann equation in interaction picture

The Hamiltonian of a damped harmonic oscillator ĤDO reads

ĤDO = ĤS + ĤR + ĤSR, (2.6)

where ĤS and ĤR are the Hamiltonians only for the system and reservoir operators,
respectively. ĤSR is the interaction Hamiltonian including both operators. We aim at
getting the equation of motion for the system density operator ρ(t) which is the partial
trace of that for the total system ϱ(t)

ρ̂(t) = trR [ϱ̂(t)] , (2.7)
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because the expectation value of an arbitrary system operator ÔS can be obtained with
the system density operator

⟨ÔS⟩ = trS{ÔS trR [ϱ̂(t)]} = trS

[
ÔS ρ̂(t)

]
. (2.8)

It means that the dynamics of the system density operator suffices to know the phenom-
ena we are interested in.

To simplify the calculation, we switch to the interaction picture. Here, all the oper-
ators in the interaction picture {Õ(t)} are in charge of the free processes of the system
ĤS and reservoir ĤR themselves as

Õ(t) = e(i/ℏ)(ĤS+ĤR)tÔe−(i/ℏ)(ĤS+ĤR)t, (2.9)

where Ô is the original operator in the Schrödinger picture. Instead, the density operator
in the interaction picture is virtually affected only by the interaction Hamiltonian

∂ϱ̃

∂t
=

1

iℏ

[
H̃SR(t), ϱ̃

]
, (2.10)

though we have to consider the time dependency of H̃SR(t) due to Eq. (2.9). Formal
integration of Eq. (2.10) gives

ϱ̃(t) = ϱ(0) +
1

iℏ

∫ t

0
dt′
[
H̃SR(t

′), ϱ̃(t′)
]
. (2.11)

And, straightforward substitution of Eq. (2.11) into Eq. (2.10) leads to the integro-
differential equation up to the second order to H̃SR(t)

∂ϱ̃

∂t
=

1

iℏ

[
H̃SR(t), ϱ̃(0)

]
− 1

ℏ2

∫ t

0
dt′
[
H̃SR(t),

[
H̃SR(t

′), ϱ̃(t′)
]]
. (2.12)

Born and Markov approximation

We apply some approximations to Eq. (2.12). First, we assume that the system and
reservoir do not have any correlation at the initial state t = 0. Then, ϱ̃(0) = ϱ̂(0) can
be written as a product state of the initial density operators for the system ρ̂(0) and
reservoir R̂0

ϱ̂(0) = ρ̂(0)R̂0. (2.13)

Next, we consider taking the partial trace of Eq. (2.12) in terms of reservoir states. We

can easily see that e(i/ℏ)ĤRt and e−(i/ℏ)ĤRt in ϱ̃ vanish in the trace operation by using
the energy eigenvectors for the reservoir, namely,

trR(ϱ̃) = e(i/ℏ)ĤSt ρ̂ e−(i/ℏ)ĤSt = ρ̃. (2.14)

As a result, we have the equation for the system density operator

∂ρ̃

∂t
= − 1

ℏ2

∫ t

0
dt′trR

{[
H̃SR(t),

[
H̃SR(t

′), ϱ̃(t′)
]]}

. (2.15)
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Here, we have eliminated the first term of Eq. (2.12) with the assumption trR

[
H̃SR(t)R0

]
=

0. It means that the average coupling between R0 and the system is zero, and this can

be always achieved by changing the energy reference of the system by trR

[
H̃SR(t)R0

]
.

The assumption for the process is that the system and reservoir are uncorrelated
at the initial state, and that the interaction between them is very weak. Thus, it is
reasonable to suppose that the system ρ̃(t) deviates from a separable state only by the
first order in ĤSR. In addition, the reservoir is so huge that its state R0 is virtually
unaffected by the interaction. They lead to the expression

ϱ̂(t) = ρ̃(t)R̂0 +O(ĤSR). (2.16)

Correspondingly, the terms higher than second order of ĤSR in the differential equation
(2.15) are not significant, thus we neglect them. Then we have

∂ρ̃

∂t
= − 1

ℏ2

∫ t

0
dt′trR

{[
H̃SR(t),

[
H̃SR(t

′), ρ̃(t′)R̂0

]]}
. (2.17)

This is our first major approximation and called Born approximation.
The second major approximation limits the dynamics to a Markov process. It means

that the time evolution of the system is determined only with its present state, thus we
replace ρ̃(t′) in Eq. (2.17) by ρ̃(t). The resulting master equation under Born-Markov
approximation is

∂ρ̃

∂t
= − 1

ℏ2

∫ t

0
dt′trR

{[
H̃SR(t),

[
H̃SR(t

′), ρ̃(t)R̂0

]]}
. (2.18)

Markov approximation is based on the assumption that the reservoir is large and hardly
influenced from the interaction hence the correlation time for the reservoir variables is
very short. We return to the equation only with Born approximation, and reconsider
this later.

We write the interaction Hamiltonian in a bilinear form for system and reservoir
operators si and Γi

ĤSR = ℏ
∑
i

ŝi Γ̂i. (2.19)

It keeps the same form also in the interaction picture, namely

H̃SR(t) = ℏ
∑
i

s̃i(t)Γ̃i(t). (2.20)

We substitute this somewhat explicit expression for the interaction into the equation
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under the Born approximation (2.17) and obtain

∂ρ̃

∂t
=−

∑
i,j

∫ t

0
dt′trR

{[
s̃i(t)Γ̃i(t),

[
s̃j(t

′)Γ̃j(t
′), ρ̃(t′)R̂0

]]}
=−

∑
i,j

∫ t

0
dt′
{[

s̃i(t)s̃j(t
′)ρ̃(t′)− s̃j(t

′)ρ̃(t′)s̃i(t)
]
⟨Γ̃i(t)Γ̃j(t

′)⟩R

+
[
ρ̃(t′)s̃j(t

′)s̃i(t)− s̃i(t)ρ̃(t
′)s̃j(t

′)
]
⟨Γ̃j(t

′)Γ̃i(t)⟩R
}
, (2.21)

Here, the cyclic relation of the trace tr(ÂB̂Ĉ) = tr(ĈÂB̂) = tr(B̂ĈÂ) has been used.
Also, the two-time correlation functions for the reservoir operators read

⟨Γ̃i(t)Γ̃j(t
′)⟩R = trR

[
R0Γ̃i(t)Γ̃j(t

′)
]
, (2.22)

⟨Γ̃j(t
′)Γ̃i(t)⟩R = trR

[
R0Γ̃j(t

′)Γ̃i(t)
]
. (2.23)

After all, the effect of the reservoir has been written as a series of two-time correlation
functions for reservoir operators. The time dependence of the system operator s̃j(t

′) is
not essential and can be canceled in the Schrödinger picture. Thus, Markov approx-
imation, namely replacement ρ̃(t′) by ρ̃(t) means a very short correlation time of the
reservoir operators compared to the time scale where ρ̃(t) varies. Ideally,

⟨Γ̃i(t)Γ̃j(t
′)⟩R ∝ δ(t− t′). (2.24)

Master equation for a dampled oscillator

We move to an explicit model composed of a single mode cavity field with a frequency
ωC as the system, and a continuum of traveling thermal modes as the reservoir. They
couples via a partially transmitting mirror. We do not assume certain mode properties
of the reservoir because it is parametrized later with their spectral density G(ω). The
Hamiltonian of the total system Eq. (2.6) is written in parts as

ĤS = ℏωC â
†, â (2.25)

ĤR =
∑
j

ℏωj r̂
†
j r̂j , (2.26)

ĤSR =
∑
j

ℏ
(
κ∗j âr̂

†
j + κj â

†r̂j

)
= ℏ

(
âΓ̂† + Γ̂†â

)
(2.27)

Here, and â are â† the annihilation and creation operators for the system mode. ωj

is the frequency of the jth mode of the reservoir, and r̂j and r̂†j are the corresponding
annihilation and creation operators. The system-reservoir interaction under the rotating
wave approximation comprises the couples of an annihilation and a creation operator, i.e.
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âr̂†j and â†r̂j . And, its magnitude is parametrized by the coupling coefficients κj . The
reservoir is in the thermal equilibrium at temperature T and has the density operator

R̂0 =
∏
j

e−ℏωj r̂
†
j r̂j/kBT

(
1− e−ℏωj/kBT

)
, (2.28)

which is diagonal in terms of the Fock state basis. kB is the Boltzmann’s constant.
The correspondence of the operators for Eq. (2.21) is

ŝ1 = â, ŝ2 = â†, (2.29)

Γ̂1 = Γ† =
∑
j

κ∗j r̂
†
j , Γ̂2 = Γ =

∑
j

κj r̂j , (2.30)

in the Schrödinger picture. With the commutation relation
[
âi, â

†
i

]
= 1 and

[
r̂i, r̂

†
j

]
= δij ,

we have the operators in the interaction picture as follows

s̃1 = eiωC â†âtâe−iωC â†ât = âe−iωCt, (2.31)

s̃2 = e−iωC â†âtâ†eiωC â†ât = â†eiωCt,

Γ̃1(t) = Γ̃†(t) = ei
∑

n ωnr̂
†
nr̂nt

∑
j

κ∗j r̂
†
j

 e−i
∑

n ωnr̂
†
nr̂nt (2.32)

=
∑
j

κ∗j r̂
†
je

iωjt, (2.33)

Γ̃2(t) = Γ̃(t) =
∑
j

κj r̂je
−iωjt. (2.34)

Eqs. (2.19) and (2.27) show that the indices take i = 1, 2 and j = 1, 2. Substitution of
Eqs. (2.31) - (2.34) into Eq. (2.21) yields the equation with sixteen terms

∂ρ̃

∂t
= −

∫ t

0
dt′
{[

ââρ̃(t′)− âρ̃(t′)â
]
e−iωC(t+t′)⟨Γ̃†(t)Γ̃†(t′)⟩R + h.c.

+
[
â†â†ρ̃(t′)− â†ρ̃(t′)â†

]
eiωC(t+t′)⟨Γ̃(t)Γ̃(t′)⟩R + h.c.

+
[
ââ†ρ̃(t′)− â†ρ̃(t′)â

]
e−iωC(t−t′)⟨Γ̃†(t)Γ̃(t′)⟩R + h.c.

+
[
â†âρ̃(t′)− âρ̃(t′)â†

]
eiωC(t−t′)⟨Γ̃(t)Γ̃†(t′)⟩R + h.c.

}
. (2.35)

Here, the reservoir correlation functions can be obtained explicitly with the multi-mode
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Fock state basis as

⟨Γ̃†(t)Γ̃†(t′)⟩R = 0, (2.36)

⟨Γ̃(t)Γ̃(t′)⟩R = 0, (2.37)

⟨Γ̃†(t)Γ̃(t′)⟩R =
∑
j

|κj |2eiωj(t−t′)n̄ (ωj , T ) , (2.38)

⟨Γ̃(t)Γ̃†(t′)⟩R =
∑
j

|κj |2e−iωj(t−t′) [n̄ (ωj , T ) + 1] , (2.39)

where

n̄ (ωj , T ) = trR

(
R0r̂

†
j r̂j

)
=

e−ℏωj/kBT

1− e−ℏωj/kBT
, (2.40)

is the mean number of photons with a frequency ωj in thermal equilibrium at temperature
T . Eqs. (2.38) and (2.39) have a summation over the reservoir oscillator modes. We
transform the summation into an integration for the density of states G(ω), such that
G(ω)dω means the number of modes in the interval from ω to ω + dω.

After changing the variable t′ by τ = t− t′ and substituting Eqs. (2.36) - (2.39) into
(2.35), we have

∂ρ̃

∂t
= −

∫ t

0
dτ

{[
ââ†ρ̃(t− τ)− â†ρ̃(t− τ)â

]
e−iωCτ ⟨Γ̃†(t)Γ̃(t− τ)⟩R + h.c.

+
[
â†âρ̃(t− τ)− âρ̃(t− τ)â†

]
eiωCτ ⟨Γ̃(t)Γ̃†(t− τ)⟩R + h.c.

}
,

(2.41)

with the expressions for the finite reservoir correlation functions

⟨Γ̃†(t)Γ̃(t− τ)⟩R =

∫ ∞
0

dωeiωτG(ω)|κ(ω)|2n̄ (ω, T ) , (2.42)

⟨Γ̃(t)Γ̃†(t− τ)⟩R =

∫ ∞
0

dωe−iωτG(ω)|κ(ω)|2 [n̄ (ω, T ) + 1] . (2.43)

Here, n̄ (ω, T ) has the same form as Eq. (2.40).
A sufficiently short correlation time for the reservoir means that G(ω), |κ(ω)|2 and

n̄ (ω, T ) are spectrally broad enough around the cavity frequency ωC . There are some
positive discussions for the condition in the text [149], thus we proceed with the assump-
tion that it is well satisfied. We just replace ρ̃(t− τ) with ρ̃(t) and leave the integration
in (2.42) and (2.43) for the later estimation. We then have the master equation under
the Born-Markov approximation as

∂ρ̃

∂t
= αd

(
âρ̃â† − â†âρ̃

)
+ βd

(
âρ̃â† + â†ρ̃â− â†âρ̃− ρ̃ââ†

)
+ h.c., (2.44)
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with the coefficients

αd =

∫ t

0
dτ

∫ ∞
0

dω e−i(ω−ωC)τG(ω)|κ(ω)|2, (2.45)

βd =

∫ t

0
dτ

∫ ∞
0

dω e−i(ω−ωC)τG(ω)|κ(ω)|2n̄ (ω, T ) . (2.46)

Here, the upper limit t in the integrations in Eqs. (2.45) and (2.46) denotes a
typical time scale where ρ̃ evolutes. It is assumed to be much longer than the reservoir
correlation time within which the integrand significantly varies, thus we can formally
take t→ ∞ and get

lim
t→∞

∫ t

0
dτe−i(ω−ωC)τ = πδ (ω − ωC) + i

PC

ω − ωC
, (2.47)

where PC is the Cauchy principal value. With Eq. (2.47), αd and βd are more explicitly
evaluated as

αd = πG(ωC)|κ(ωC)|2 + i∆, (2.48)

βd = πG(ωC)|κ(ωC)|2n̄ (ωC , T ) + i∆′, (2.49)

with

∆ = PC

∫ ∞
0

dω
G(ω)|κ(ω)|2

ωC − ω
, (2.50)

∆′ = P ′C

∫ ∞
0

dω
G(ω)|κ(ω)|2

ωC − ω
n̄ (ω, T ) . (2.51)

After we set
γ = πG(ωC)|κ(ωC)|2, n̄ = n̄ (ωC , T ) , (2.52)

as parameters, we get the master equation for a damping oscillator in the interaction
picture

∂ρ̃

∂t
= −i∆

[
â†â, ρ̃

]
+ γ

(
2âρ̃â† − â†âρ̃− ρ̃â†â

)
+ 2γn̄

(
2âρ̃â† + â†ρ̃â− â†âρ̃− ρ̃ââ†

)
. (2.53)

To transform the equation back into the Schrödinger picture, we write ρ̂ with ρ̃(t)

ρ̂ = e−(i/ℏ)(ĤS+ĤR)t ρ̃(t) e(i/ℏ)(ĤS+ĤR)t, (2.54)

and differentiate it in time, resulting in

∂ρ̂

∂t
=

1

iℏ

[
ĤS , ρ̂

]
+ e−(i/ℏ)ĤSt

∂ρ̃

∂t
e(i/ℏ)ĤSt. (2.55)
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The first term in Eq. (2.55) adds a phase rotation term −iωC

[
â†â, ρ̂

]
, and the second

term gives the same form as Eq. (2.53) just with ρ̃ replaced by ρ̂. Finally, we reach the
master equation for a cavity mode in a thermal bath as

∂ρ̂

∂t
= −iω′C

[
â†â, ρ̂

]
+ γ

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
+ 2γn̄

(
âρ̂â† + â†ρ̂â− â†âρ̂− ρ̂ââ†

)
. (2.56)

with
ω′C = ωC +∆. (2.57)

2.3.2 Master equation for a DOPO

Let us get back to the Hamiltonian of the DOPO, Eq. (2.1). Now, we can reduce the
irreversible part Hirrev using Eq. (2.56). Here, we ignore the frequency detuning due to
the thermal bath, namely ∆ = 0 in Eq. (2.57), and apply Eq. (2.56) for both the pump
and signal modes. The resulting master equation for the DOPO is given by

∂ρ̂

∂t
=

1

iℏ

[
Ĥrev, ρ̂

]
+ γs

(
2âsρ̂â

†
s − â†sâsρ̂− ρ̂â†sâs

)
+ γp

(
2âpρ̂â

†
p − â†pâpρ̂− ρ̂â†pâp

)
+ 2γsn̄s

(
âsρ̂â

†
s + â†sρ̂âs − â†sâsρ̂− ρ̂âsâ

†
s

)
+ 2γpn̄p

(
âpρ̂â

†
p + â†pρ̂âp − â†pâpρ̂− ρ̂âpâ

†
p

)
. (2.58)

Here, γs and γp are the cavity decay rate for the signal and pump fields. n̄s and n̄p
are the mean photon numbers at temperature T for the signal and pump frequencies ωs

and ωp. Note that the free phase rotation terms −iωs

[
â†sâs, ρ̂

]
and −iωp

[
â†pâp, ρ̂

]
are

included in 1
iℏ

[
Ĥrev, ρ̂

]
.

2.3.3 Positive P -represention

To treat the master equation using numerical variables, we need to expand the density
operator ρ̂ explicitly with a certain basis set [150]. The discrete Fock state basis {|n⟩} is
the most elementary and complete in the Hilbert space. However, the resulting equation
has infinite density matrix elements and hence we have to truncate ones for states with
large numbers of particles. Thus, the accuracy of the analysis is limited by the trunca-
tion, and it is not suitable for systems of many particles, such as optical oscillators and
electronic ensembles.

The coherent state basis {|α⟩} enables us to deal with such systems via complex
variables {α} and quasi-distribution functions for them. There are some forms to ex-
pand the density operator with coherent states, and such schemes are called phase space
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representations. The Glauber-Sudarshan P -representation ρ̂ =
∫
P (α)|α⟩⟨α|d2α [104–

106], a diagonal expansion with coherent states, was firstly proposed and led to the
theoretical analysis on the quantum statistics and spectra of the laser light. “Quasi-
distribution” here reflects the fact that coherent states are not orthogonal to each other,
and the function is not always positive and analytical. Such a case, where the quasi-
distribution cannot be regarded as a genuine probabilistic distribution, is a major prob-
lem when the system is numerically analyzed by stochastic simulations [151]. Unfortu-
nately, it is known that the Glauber-Sudarshan P -representation does not always have
a well-behaved positive P (α) function. In the Wigner representation [152], the quasi-
distribution W always exists but can be negative. Husimi’s Q-representation [153] has
a positive quasi-distribution Q(α) = ⟨α|ρ̂|α⟩, however, the corresponding density oper-
ator is not necessarily positive-semidefinite and Hermitian. The R-representation [106]
provides a function R(α∗, β) without any singularity, however, that is generally complex.

P. D. Drummond and C.W. Gardiner [107] proposed the generalized P -representations
which involve two variables α and β as the R-representation and have a variation in the
integration element. Especially, the positive P-representation

ρ̂ =

∫
P (α, β)

|α⟩⟨β∗|
⟨β∗|α⟩

d2αd2β, (2.59)

has all the properties favorable for a statistical analysis. First, there exists a positive
P -representation for any quantum density operator ρ̂. Also, P (α, β) is always positive
(0 ≤ P (α, β) ≤ 1) and normalizable (

∫
P (α, β) d2αd2β = 1). Here, α and β can vary

in the whole complex plane independently. Furthermore, the Fokker-Planck equation
corresponding to the master equation for the time evolution of P (α, β), if exists, only has
drift terms and a positive semidefinite diffusion matrix, which are physically appropriate.

In the positive P -representation, normally ordered moments can be obtained via a
Monte-Carlo integration as other probabilistic simulation schemes do, namely

⟨(â†)n(â)m⟩ =
∫
βnαmP (α, β) d2αd2β. (2.60)

It enables us to investigate various physical quantities in numerical studies with this
scheme.

Operator algebra

Here, I show how an operator equation is converted into one for the quasi-distribution
P (α, β). We define and deform explicitly the projection operator in Eq. (2.59) as [107]

Λ̂(α, β) =
|α⟩⟨β∗|
⟨β∗|α⟩

= exp
(
αâ† − αβ

)
|0⟩⟨0| exp (βâ) . (2.61)
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The eigen-equation for the coherent state and partial differentiation on Λ̂(α, β) give

âΛ̂(α, β) = αΛ̂(α, β), (2.62)

â†Λ̂(α, β) =

(
∂

∂α
+ β

)
Λ̂(α, β), (2.63)

Λ̂(α, β)â =

(
∂

∂β
+ α

)
Λ̂(α, β), (2.64)

Λ̂(α, β)â† = βΛ̂(α, β). (2.65)

For Eqs. (2.63) and (2.64), we have transfered the differential operators from Λ̂(α, β) to
P (α, β) via integration by parts, provided that the boundary terms vanish. It means
that P (α, β) decays sufficiently fast for both α and β and is zero at infinite distances.
As a result, we have the operator algebra rules for the generalized P -representation

âρ̂ =

∫ [
αP (α, β)

]
Λ̂(α, β)d2αd2β, (2.66)

â†ρ̂ =

∫ [(
− ∂

∂α
+ β

)
P (α, β)

]
Λ̂(α, β)d2αd2β, (2.67)

ρ̂â =

∫ [(
− ∂

∂β
+ α

)
P (α, β)

]
Λ̂(α, β)d2αd2β, (2.68)

ρ̂â† =

∫ [
βP (α, β)

]
Λ̂(α, β)d2αd2β. (2.69)

Note that Λ̂(α, β) remains unchanged under the annihilation and creation operations,
thus successive applications of Eqs. (2.66) - (2.69) are allowed.

2.3.4 Quantum mechanical Fokker-Planck equation

The master equation together with the operator algebra Eqs. (2.66) - (2.69) lead us to the
quantum-mechanical Fokker-Planck equation (FPE) for time evolution of the distribution
for the signal and pump variables [108]

∂

∂t
P (α⃗) =

{
∂

∂αs
[(γs + iωs)αs − κβsαp]

+
∂

∂βs
[(γs − iωs)βs − καsβp]

+
∂

∂αp

[
(γp + iωp)αp − εp exp (−iωdt) +

κ2

2
α2
s

]
+

∂

∂βp

[
(γp − iωp)βp − ε∗p exp (iωdt) +

κ2

2
β2s

]
+

1

2

[
∂2

∂α2
s

(καp) +
∂2

∂β2
s

(κβp) + Γs
∂2

∂αs∂βs
+ Γp

∂2

∂αp∂βp

]}
P (α⃗) ,

(2.70)
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where α⃗ = (αs, αp, βs, βp). Γm = 4γmn
th
m (m = p, s) is the thermal diffusion amplitude.

Here, we move to the rotating frame of the driving field. αp and αs implicitly have
their frequencies near to −ωp and −ωs due to their free Hamiltonians. Then, we define
the slowly varying fields on the rotating frame

α′p(t) = αp exp (iωdt) , α′s(t) = αs exp
(
i
ωd

2
t
)
, (2.71)

where ωd ∼ ωp and ωd/2 ∼ ωs. We substitute Eq. (2.71) into Eq. (2.70) with the chain
rules for partial differentiation written explicitly as

∂

∂αp
f
(
α′p(αp)

)
=
∂α′p
∂αp

∂f

∂α′p
= exp (iωdt)

∂f

∂α′p
, (2.72)

∂

∂αs
f
(
α′s(αs)

)
=
∂α′s
∂αs

∂f

∂α′s
= exp

(
i
ωd

2
t
) ∂f

∂α′s
, (2.73)

then have

∂

∂t
P (α⃗(t), t) =

∂

∂t
P (α⃗) +

[
− ∂

∂α′s

(
i
ωd

2
α′s

)
+

∂

∂β′s

(
i
ωd

2
β′s

)
− ∂

∂α′p

(
ωdα

′
p

)
+

∂

∂β′p

(
iωdβ

′
p

) ]
P (α⃗(t), t) ,

(2.74)

where α⃗(t) = (αs(t), αp(t), βs(t), βp(t)). Eqs. (2.70) - (2.74) give the FPE in the rotating
frame

∂

∂t
P (α⃗) =

{
∂

∂α′s

[
(γs + i∆s)α

′
s − κβ′sα

′
p

]
+

∂

∂β′s

[
(γs − i∆s)β

′
s − κα′sβ

′
p

]
+

∂

∂α′p

[
(γp + i∆p)α

′
p − εp +

κ2

2
α′

2
s

]
+

∂

∂β′p

[
(γp − i∆p)β

′
p − ε∗p +

κ2

2
β′

2
s

]
+

1

2

[
∂2

∂α′2s

(
κα′p

)
+

∂2

∂β′2s

(
κβ′p
)
+ Γs

∂2

∂α′s∂β
′
s

+ Γp
∂2

∂α′p∂β
′
p

]}
P (α⃗) ,

(2.75)

∆s = ωs − ωd/2 and ∆p = ωp − ωd are the frequency detuning between the cavity fields
and the driving field. Later, we take back the notation and use it for the variables in
the rotating frame, namely (α′s, α

′
p, β
′
s, β
′
p) → (αs, αp, βs, βp).
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2.3.5 Stochastic differential equations

Here we derive a series of stochastic differential equations [154] for the variables whose
distribution function obeys a given Fokker-Planck equation. A stochastic differential
equation describes a probabilistic time evolution with mathematical rigor, avoiding sin-
gularities as in Langevin equations. We adopt the Ito stochastic integral and start with
an Ito stochastic differential equation (SDE) for a single variable X(t)

dX(t) = AI [X(t), t] dt+BI [X(t), t] dW (t), (2.76)

where AI [X(t), t] and BI [X(t), t] are the drift and diffusion coefficients, respectively.
dW (t) = W (t+ dt)−W (t) is the Wiener increment in an infinitesimal time interval dt
dependent on the Wiener process W (t), the mathematical description of the Brownian
motion. dW (t) is independent of those at other time points dW (t′) (t ̸= t′) and obeys
the normal distribution N(0, dt), indicating ⟨dW (t)⟩ = 0 and ⟨dW (t)2⟩ = dt. For the
stochastic increment in the time interval between t and t+ dt, the Ito integral evaluates
the diffusion coefficient BI [X(t), t] at the initial point t. This ensures the martingale
property of the process.

Ito’s rule

We show the correspondence between an SDE for a single variable X and the Fokker-
Planck equation for the distribution P (X), and extend to multi-variable cases, according
to Gardiner’s text [154]. First, when X(t) satisfies the SDE (2.76), Ito’s formula for time
evolution of an arbitrary function f [X(t)] is

df [X(t)] =

{
AI [X(t), t]

(
∂f [X(t)]

∂X

)
+

1

2
BI [X(t), t]2

(
∂2f [X(t)]

∂X2

)}
dt

+BI [X(t), t]

(
∂f [X(t)]

∂X

)
dW (t). (2.77)

Using the stochastic average of Eq. (2.77) with ⟨dW (t)⟩ = 0, we have

⟨df [X(t)]⟩/dt = d

dt
⟨df [X(t)]⟩

= ⟨AI [X(t), t] ∂Xf +
1

2
BI [X(t), t]2 ∂2Xf⟩, (2.78)

where the partial derivative in X is written in short as ∂X . On the other hand,
(d/dt)⟨f [X(t)]⟩ can also be described with a conditional probability density P (X, t|X0, t0)
for a transition from a initial condition (X0, t0), thus

d

dt
⟨f [X(t)]⟩ =

∫
dXf(X)∂tP (X, t|X0, t0)

=

∫ [
AI(X, t)∂Xf +

1

2
BI(X, t)

2 ∂2Xf

]
P (X, t|X0, t0).

(2.79)
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Here, we have used Eq. (2.78). Note that ∂tf(X) = 0. As we did for Eqs. (2.67) and
(2.68), we integrate the second line of Eq. (2.79) by parts provided that all the boundary
terms vanish. As a result, we get∫

dXf(X)∂tP =

∫
dXf(X)

{
−∂X [AI(X, t)P ] +

1

2
∂2X
[
BI(X, t)

2P
]}

. (2.80)

Since f(X) is arbitrary, this means

∂tP (X, t|X0, t0) = −∂X [AI(X, t)P (X, t|X0, t0)] +
1

2
∂2X
[
BI(X, t)

2P (X, t|X0, t0)
]
.

(2.81)
This is the FPE equivalent to the SDE (2.76) up to second order in dW (t). Eq. (2.81)
is also valid for an initial state with a fixed distribution.

The connection between SDEs and FPEs can be extended for the SDE of N -variable
vector X⃗

dX⃗ = A⃗
(
X⃗, t

)
dt+B

(
X⃗, t

)
dW⃗ (t), (2.82)

where B
(
X⃗, t

)
is a diffusion amplitude matrix and dW⃗ (t) is an N -variable Wiener incre-

ment. The corresponding FPE for the conditional probability density P
(
X⃗, t|X⃗0, t0

)
≡

P is

∂tP = −
∑
i

∂Xi

[
Ai(X⃗, t)P

]
+

1

2

∑
i,j

∂Xi∂Xj

{[
B(X⃗, t)BT (X⃗, t)

]
ij
P

}
. (2.83)

Here, note that BBT is not changed under an orthogonal transformation B → SB with
SST = 1. Thus, the SDE corresponding to an FPE is not unique.

Stochastic differential equations for a DOPO

Eqs. (2.75), (2.82) and (2.83) give the SDEs for α⃗ describing a DOPO in the rotating
frame [108]

d

[
αs

βs

]
=

[
− (γs + i∆s)αs + κβsαp

− (γs − i∆s)βs + καsβp

]
dt+

[
καp Γs

Γs κβp

]1/2 [
dWαs(t)
dWβs(t)

]
, (2.84)

d

[
αp

βp

]
=


εp − (γp + i∆p)αp −

κ

2
α2
s

ε∗p − (γp − i∆p)βp −
κ

2
β2s

 dt+ [ 0 Γp

Γp 0

]1/2 [
dWαp(t)
dWβp(t)

]
. (2.85)

Here, αs, βs, αp and βp undergo independent noise processes when Γs and Γp are neg-
ligible. However, αm and βm (m = s, p) are complex conjugate in terms of statistical

averages, i.e. ⟨βm⟩ = ⟨αm⟩∗ because ⟨âm⟩ = ⟨αm⟩ and ⟨â†m⟩ = ⟨βm⟩ from Eq. (2.60).
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Adiabatic elimination of the pump field

Here, we neglect the thermal noise (Γs = Γp = 0) considering the fact that the energies
of pump and signal photons are much higher than those of thermal photons in the
environment. In addition, the driving field is set to be completely resonant for the pump
(∆s = ∆p = 0). Furthermore, I choose the phase reference as that of the driving field,
representing ε∗p = εp. When the damping rate for the pump mode is much larger than
that of the signal (γp ≫ γs), the pump variables can be approximated as those for the
steady state. It means dαp/dt = dβp/dt = 0 in Eq. (2.85) and hence gives

αss
p =

1

γp

(
εp −

κ

2
α2
s

)
, βssp =

1

γp

(
εp −

κ

2
β2s

)
. (2.86)

We substitute Eq. (2.86) into (2.84) and take the diagonal diffusion amplitude matrix
to get the SDEs for the DOPO under the adiabatic elimination of the pump field

dαs =

[
−γsαs +

κ

γp

(
εp −

κ

2
α2
s

)
βs

]
dt+

√
κ

γp

(
εp −

κ

2
α2
s

)
dWαs(t), (2.87)

dβs =

[
−γsβs +

κ

γp

(
ε∗p −

κ

2
β2s

)
αs

]
dt+

√
κ

γp

(
ε∗p −

κ

2
β2s

)
dWβs(t). (2.88)

Normalized equations

I also show the normalized SDEs for the signal variables useful for an analysis and
simulation [124]

dη =
[
−η + µ

(
λ− η2

)]
dτ + g

√
λ− η2dWη(τ), (2.89)

dµ =
[
−µ+ η

(
λ− µ2

)]
dτ + g

√
λ− µ2dWµ(τ). (2.90)

Here, η = gαs, µ = gβs and g = κ/
√

2γsγp is the normalized parametric gain coefficient
serving as a noise parameter. λ = εp/εth is the positive and real pumping rate and εth =
γsγp/κ is the classical oscillation threshold for the DOPO. The time is scaled with the
lifetime of the signal field, i.e. τ = γst. dWη(τ) and dWµ(τ) are independent real Wiener
increments satisfying ⟨dWη(τ)⟩ = ⟨dWµ(τ)⟩ = 0 and ⟨dW 2

η (τ)⟩ = ⟨dW 2
µ(τ)⟩ = dτ .

Staring with the vacuum state η = µ = 0, the system does not go beyond the region
|η| ≤

√
λ, |µ| ≤

√
λ because of the continuity of the drift term and Wiener process.

Also, η and µ do not fail to be real because all the terms are real. It is therefore enough
to discuss the inside of the limited range for Eqs. (2.89) and (2.90), and this is called
classical subspace.

2.4 Properties of DOPO

2.4.1 Classical solution for steady state

Here, I review the important properties of the DOPO. First, the semi-classical rate
equations for the mean field variables ⟨αs⟩ = αsa and ⟨αp⟩ = αpa can be derived by
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taking the statistical average of Eqs. (2.84) and (2.85) as [155]

∂αsa

∂t
= κα∗saαpa − γsαsa, (2.91)

∂αpa

∂t
= εp +

κ

2
α2
sa − γpαpa, (2.92)

where ⟨βs⟩ = α∗sa and ⟨βp⟩ = α∗pa. Considering the stability of the solutions via the
eigenvalue equation for the fluctuation, the mean field variables in the steady state are
given by

αss
sa = 0, αss

pa =
εp
γp

(εp ≤ εth) , (2.93)

αss
sa = ±

√
2

κ
(εp − εth), αss

pa =
γs
κ

(εp > εth) , (2.94)

where εth = γsγp/κ is the classical oscillation threshold. The system shows a critical
point phase transition at εp = εth where the state jumps to another stable branch. When
in oscillation, the signal amplitude can take one of the two amplitudes, which are phase-
locked to the driving field and completely out-of-phase to each other. Here, the pump
amplitude saturates. Fig. 2.2 shows the mean photon numbers of the signal |αss

sa|2 and
pump |αss

pa|2 modes for the classical model. The photon number of the signal above the
threshold grows linearly with the pumping rate.

2.4.2 Potential solution in quantum theory for steady state

For the model with the pump variables adiabatically eliminated (2.87) and (2.88), we can
obtain the quasi-distribution P (αs, βs) in the steady state. The corresponding Fokker-
Planck equation is

∂

∂t
P (αs, βs) =

{
∂

∂αs

[
γsαs −

κ

γp

(
εp −

κ

2
α2
s

)
βs

]
+

∂

∂βs

[
γsβs − καs

κ

γp

(
εp −

κ

2
β2s

)]
+

1

2

[
∂2

∂α2
s

κ

γp

(
εp −

κ

2
α2
s

)
+

∂2

∂β2s

κ

γp

(
εp −

κ

2
β2s

)]}
P (αs, βs) ,

(2.95)

and we find a potential solution [150] in the condition ∂P/∂t = 0. When a Fokker-Planck
equation is written as

∂tP (X⃗) =

−∑
i

∂XiAi(X⃗) +
1

2

∑
i,j

∂Xi∂XjDij(X⃗)

P (X⃗) = 0, (2.96)
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Figure 2.2: Average photon numbers of the signal and pump modes depenent on the
pumping rate in the classical model. γs = 1, γp = 10, κ = 0.14142.

we suppose that each differential component is zero, i.e.

∂Xi

−Ai(X⃗)P (X⃗) +
1

2

∑
j

∂XjDij(X⃗)P (X⃗)

 = 0. (2.97)

This indicates that each variable is static in time. First, we expect that the inside of the
bracket of Eq. (2.97) is zero and obtain∑

j

Dij(X⃗) [∂Xj lnP ] = 2Ai(X⃗)−
∑
j

∂XjDij(X⃗). (2.98)

Here I used (∂XjP )/P = ∂Xj lnP . If we write − lnP ≡ ϕ(X⃗),

−∇⃗ϕ(X⃗) = 2D−1
{
A⃗(X⃗)−

[
∇⃗TDT

]T}
≡ F⃗ (X⃗). (2.99)

We can say that ϕ and F⃗ have a relation for a generalized potential and force. If the
elements of F⃗ satisfy the potential condition

∂Fj

∂Xi
=

∂Fi

∂Xj

(
= − ∂2ϕ

∂Xi∂Xj

)
, (2.100)

we can integrate {Fi} and obtain the potential ϕ such that

P (X⃗) = Nm exp
[
−ϕ(X⃗)

]
. (2.101)

Eq. (2.100) means that ϕ does not depend on the integration path.
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We can find the generalized force for Eq. (2.95) as

Fα = − ∂ϕ

∂αs
= 2βs +

4γp

(
κ2

2γp
− γs

)
αs

2κεp − κ2α2
s

(2.102)

Fβ = − ∂ϕ

∂βs
= 2αs +

4γp

(
κ2

2γp
− γs

)
βs

2κεp − κ2β2s
(2.103)

which obviously meet the potential condition (2.100). We can easily integrate Eqs.
(2.102) and (2.103) and find a potential satisfying both of them. As a result, we have
the quasi-distribution for the steady state [108]

P (αs, βs) = Nm exp

[
2αsβs +

2γ̄sγp
κ2

ln
(
c2p − κ2α2

s

)
+

2γ̄sγp
κ2

ln
(
c2p − κ2β2s

)]
, (2.104)

where

cp =
√

2κεp, γ̄s = γs −
κ2

2γp
. (2.105)

In the classical subspace, we can set the variables αs = Xα, βs = Yβ as real numbers. Fig.
2.3 displays the quasi-distribution for the pumping rate below and above the threshold.
In (a), the distribution gets broader in the direction where Xα = Yβ due to the pump
below the threshold. In (b), the DOPO is in oscillation and the distribution is divided
into two parts for the finite amplitudes out-of-phase, with ⟨Xα⟩ = ⟨Yβ⟩. It takes the
nonlinear pump noise into account in addition to the classical solution (2.93) and (2.94).
Here, the normalization factor Nm is calculated by integration in the classical subspace.
Note that Eq. (2.104) has some numerical instability because the distribution quickly
diverges with αsβs and 2γ̄sγp/κ

2, and it makes difficult to investigate the cases of many
photons.

Generalized moments

Although the integration of P (αs, βs) in Eq. (2.104) on the path where βs = α∗s diverges,
it is known that it can be computable in the complex P -representation which has the
same Fokker-Planck equation as the positive P -representation but the integral element
dαdβ on a certain path in the phase space. When the path where all the singular points
are surrounded and the boundary terms vanish is taken, we can acquire the general
moments as follows [108]

Inm = ⟨â†nâm⟩ = N ′m

∞∑
l=0

2l

l!

(
−cp
κ

)l+n(−cp
κ

)l+m

×2F1 (−(l + n), j1; j2; 2) 2F1 (−(l +m), j1; j2; 2) ,

(2.106)

j1 =
2γsγp
κ2

, j2 =
4γsγp
κ2

, (2.107)

where 2F1 is the Gaussian hypergeometric function. Note that the normalization factor
N ′m can be obtained with the identity I00 = 1.
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(a) (b)

Figure 2.3: Quasi-distribution function P (αs, βs) in the classical subspace for a DOPO
under the adiabatic elimination. (a) λ = εp/εth = 0.5. (b) λ = 2. γs = 1, γp = 2 and
κ = 1.

Photon number in quantum theory

The photon number of the signal mode ⟨n̂s⟩ = ⟨â†sâs⟩ can be calculated as I11 = ⟨βsαs⟩
in Eq. (2.106). It is shown in Fig. 2.4 as dependence on the normalized pumping rate
λ. Here I add the line given by the classical model to the figure. Unlike the classical
solution, the rigorous curve obtained by quantum theory shows finite intensities also
below the threshold. This indicates squeezing of the noise intensity in the quadrature
amplitudes, leading to finite photon numbers. When above the threshold, a DOPO has
less photons than the classically expected values. However, it converges at the line from
the classical theory as the pumping rate increases. Here, the summation in Eq. (2.106)
is truncated at l = 300 in the calculation. Again, I note that the formula (2.106) can
have numerical instability where the value rises discontinuously at a certain pump rate
and becomes unphysical. Thus, it is difficult to consider a large loss rate and a small
nonlinear coefficient.

Quadrature amplitude operators

We can also see the intracavity squeezing property in the quadrature amplitudes, which
can be defined as [156]

x̂ =
âs + â†s

2
, p̂ =

âs − â†s
2i

. (2.108)

Classically, x̂ and p̂ correspond to the cosine (real) and sine (complex) components of the
complex field amplitude, respectively. In a DOPO, the signal field is phase-locked to the
driving field in average, thus ⟨x̂⟩ = (⟨αs⟩ + ⟨βs⟩)/2 gets finite above the threshold. On
the other hand, it means that the mean field does not have any orthogonal component
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Figure 2.4: The average photon numbers dependent on the normalized pumping rate.
γs = 0.2, γp = 1 and κ = 0.2.

and hence ⟨p̂⟩ = (⟨αs⟩−⟨βs⟩)/2i = 0 for any pumping rates, as seen in (2.93) and (2.94).
x̂ and p̂ are a pair of canonical operators satisfying the commutation relation

[x̂, p̂] =
i

2
, (2.109)

which is straightforward from
[
â, â†

]
= 1. This excludes the possibility of simultaneous

determination of the eigenvalues of x̂ and p̂.

Intracavity squeezing in quadrature amplitudes

Squeezing [116] is referred to as a process where the quantum noise in a quadrature
amplitude is enlarged while that in the other amplitude is reduced below the vacuum
fluctuation level. They can be evaluated as the variances of the fluctuation of the oper-
ators ∆x̂ = x̂− ⟨x̂⟩ and ∆p̂ = p̂− ⟨p̂⟩

∆x2 = ⟨x̂2⟩ − ⟨x̂⟩2

=
1

4

[
1 + ⟨â2s⟩+ 2⟨â†sâs⟩+ ⟨â†2s ⟩ −

(
⟨âs⟩+ ⟨â†s⟩

)2]
, (2.110)

∆p2 = ⟨p̂2⟩ − ⟨p̂⟩2

=
1

4

[
1− ⟨â2s⟩+ 2⟨â†sâs⟩ − ⟨â†2s ⟩+

(
⟨âs⟩ − ⟨â†s⟩

)2]
, (2.111)

which includes the moments up to second order. The relative magnitudes of them to the
vacuum level 1/4 are shown in Fig. 2.5. The noise level for the orthogonal component
∆p2 falls down near to -3 dB (1/2) around the oscillation threshold. This is because
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Figure 2.5: The variances in the fluctuation of the quadrature amplitudes which show
squeezing. γs = 0.2, γp = 1 and κ = 0.2.

the pumping works as a loss for αs − βs. ∆x2 increases with the pumping rate due
to the nonlinear gain and pump noise and keeps a finite value at the threshold, while
the linearized analysis introduced later shows a divergence there. The realistic result in
quantum theory comes from the fact it rigorously considers the nonlinearity of the noise
term, namely the depletion of the pump field.

2.4.3 Output squeezing spectra

Earlier, I showed that squeezing can be seen in the variances of the fluctuation from the
average field. Here, we further see that the spectral noise intensity for the output field
at the steady state can be computed by the linearized analysis [150] on the SDEs for
such fluctuation variables. In the SDEs (2.84) and (2.85) with a resonant driving field
and thermal noise neglected, we decompose the field variables into their classical steady
solutions and small fluctuation components around them, i.e.

α⃗(t) =
(
αss
s +∆αs(t), β

ss
s +∆βs(t), α

ss
p +∆αp(t), β

ss
p +∆βp(t)

)T
. (2.112)

We substitute (2.112) into (2.84) and (2.85), and neglect the second and higher order
terms with regard to fluctuation variables. Furthermore, we approximate the pump
variables in the diffusion terms as their steady values. As a result, we have a series of
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linearized SDEs for fluctuation variables as follows

d∆⃗α = −A∆⃗α+B dW⃗ (t), (2.113)

A =


γs −καss

p −κβsss 0

−κβssp γs 0 −καss
s

καss
s 0 γp 0
0 κβsss 0 γp

 , (2.114)

B =


√
καss

p 0 0 0

0
√
καss

p 0 0

0 0 0 0
0 0 0 0

 , (2.115)

where ∆⃗α = (∆αs(t),∆βs(t),∆αp(t),∆βp(t))
T. (αss

s , β
ss
s , α

ss
p , β

ss
p ) are computed by

Eqs. (2.93) and (2.94) as real numbers. Eq. (2.113) has a linear drift matrix and
constant diffusion amplitude. Such a model is called an Ornstein-Uhlenbeck process.

The Noise spectra for quadrature amplitudes in the normalized order are defined as
the Fourier transform of the two-time fluctuation variances. For example [150],

Sx(ω) =

∫
T ⟨: x̂s(t+ τ)x̂s(t) :⟩e−iωτdτ, (2.116)

T⟨: x̂s(t+ τ)x̂s(t) :⟩ =
1

4

[
⟨âs(t+ τ), âs(t)⟩+ ⟨â†s(t), â†s(t+ τ)⟩

+⟨â†s(t+ τ), âs(t)⟩+ ⟨â†s(t), âs(t+ τ)⟩
]
.

(2.117)

Here, “::” means the normal ordering for the bosonic operators, and “T” is the time
ordering where âs(t + τ) is placed at the left of âs(t) and â†s(t + τ) comes to the right

of â†s(t) when τ > 0. ⟨Â, B̂⟩ = ⟨ÂB̂⟩ − ⟨Â⟩⟨B̂⟩ is the covariance of the two operators.
Note that the model is in the rotation frame, thus ω = 0 corresponds to the resonant
frequency of the signal ωs.

Let us limit to the signal mode for simplicity. The normal- and time-ordered covari-
ance matrix for the bosonic operators [117, 118]

T : C(τ) : =

(
⟨âs(t+ τ), âs(t)⟩ ⟨â†s(t), âs(t+ τ)⟩
⟨â†s(t+ τ), âs(t)⟩ ⟨â†s(t), â†s(t+ τ)⟩

)
, (2.118)

corresponds to that of the c-number variables αs and βs in the positive P -representation

CPP (τ) =

(
⟨αs(t+ τ), αs(t)⟩ ⟨αs(t+ τ), βs(t)⟩
⟨βs(t+ τ), αs(t)⟩ ⟨βs(t+ τ), βs(t)⟩

)
. (2.119)

It is based on the trivial extension of the correspondence between the operator descrip-
tion and Glauber-Sudarshan P -representation. Also, the noise spectrum density for an
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Ornstein-Uhlenbeck process in the steady state, that is the Fourier transform of (2.119),
is given by [154]

Sα(ω) = (A+ iωI)−1BBT
(
AT − iωI

)−1
, (2.120)

where I is the identity matrix. Note that the covariance does not depend on t in the
steady state. The spectrum (2.120) for (2.113) - (2.115) include the components for
the pump variables, but we can concentrate on the 2 × 2 partial matrix for the signal
components. Also, the input-output analysis in the Heisenberg picture has revealed the
relation between the covariance of the internal and output fields in the cases of the
vacuum and a coherent input field [117]

⟨âs,OUT (t+ τ), âs,OUT (t)⟩ = 2γs⟨âs(t+ τ), âs(t)⟩,
⟨â†s,OUT (t), â

†
s,OUT (t+ τ)⟩ = 2γs⟨â†s(t), â†s(t+ τ)⟩,

⟨â†s,OUT (t), âs,OUT (t+ τ)⟩ = 2γs⟨â†s(t), âs(t+ τ)⟩. (2.121)

Here, note that γs is the decay rate for the field variable and that for the photons is two
times larger. Finally, (2.116), (2.120) and (2.121) lead to the normally ordered spectral
noise amplitude for the output quadrature amplitudes

: Sx,OUT (ω) : =
2γs
4

{[Sα(ω)]11 + [Sα(ω)]22 + [Sα(ω)]12 + [Sα(ω)]21} ,

(2.122)

: Sp,OUT (ω) : =
2γs
4

{− [Sα(ω)]11 − [Sα(ω)]22 + [Sα(ω)]12 + [Sα(ω)]21} .

(2.123)

They are dimensionless quantities, and the observable output noise spectra contain the
vacuum fluctuation 1/4 due to the commutation relation for the bosonic operators in
the frequency domain. The final result therefore is

Sx,OUT (ω) =
1

4
+ : Sx,OUT (ω) :

=
1

4
+
γs
2
{[Sα(ω)]11 + [Sα(ω)]22 + [Sα(ω)]12 + [Sα(ω)]21} ,

(2.124)

Sp,OUT (ω) =
1

4
+ : Sp,OUT (ω) :

=
1

4
+
γs
2
{− [Sα(ω)]11 − [Sα(ω)]22 + [Sα(ω)]12 + [Sα(ω)]21} ,

(2.125)

and they are computed with Eqs. (2.93), (2.94), (2.114), (2.115) and (2.120).
Eqs. (2.93) and (2.94) indicate that Eqs. (2.124) and (2.125) result in different

expressions for the cases of the above and below of the threshold. When below the
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threshold, the spectra are written in relatively simple forms as [150]

Sx,OUT (ω) =
1

4
+

εpκ
γp
γs(

εpκ
γp

− γs

)2
+ ω2

=
1

4
+

γ2sλ

γ2s (λ− 1)2 + ω2
, (2.126)

Sp,OUT (ω) =
1

4
−

εpκ
γp
γs(

εpκ
γp

+ γs

)2
+ ω2

=
1

4
− γ2sλ

γ2s (λ+ 1)2 + ω2
, (2.127)

where the introduction of the normalized pumping rate λ = κεp/(γsγp) eliminates γp and
κ in the rightmost side. Especially, we see that the resonant components Sx,OUT (ω = 0)
and Sp,OUT (ω = 0) depend only on λ within the first order. When in the case of the
above the threshold, the result is much more complicated so I compute it numerically.

Fig. 2.6 displays the pumping dependence of the resonant fluctuation variance of the
output signal amplitudes (a) below and (b) above the threshold. Here, Sx,OUT (ω = 0)
diverges at the threshold as seen in Eq. (2.126). Above the threshold, it converges
at 1/4, which is the value of a coherent state. The noise in p shows perfect squeezing
Sp,OUT = 0 at the threshold regardless of any parameters in the scope of the first
order approximation. Also, it also converges at 1/4 well above the threshold, thus a
highly pumped DOPO with many photons will emit light being approximately a coherent
state as a laser does. In (b), I had some points very near to the threshold which gave
negative values of Sp,OUT . Considering that the deformation and substitution are done
appropriately with Mathematica and the absolute values of the points are beyond the
extent of tiny errors, I presume we have to take the nonlinear components out of this
model into account to obtain realistic values there.

Fig. 2.7 shows the spectra of the fluctuation in the output quadrature amplitudes
for (a) at the threshold and (b) above the threshold. As shown in (a), the fluctuation
in x diverges and that in p vanishes at resonance, while they approach the vacuum level
1/4 as the frequency deviation increases. When well above the threshold [Fig. 2.7(b)]
they look like more symmetric and have more than one peak, i.e. a side-peak response,
as reported previously [150].

The fluctuation variance of the intracavity single-mode field corresponds to the total
noise in the frequency domain. Thus, the normally ordered variances of the internal
quadrature amplitudes can be obtained by integral of the noise spectra

⟨: ∆x̂2 :⟩ = 1

2π

1

2γs

∫ ∞
−∞

: Sx,OUT (ω) : dω, (2.128)

⟨: ∆p̂2 :⟩ = 1

2π

1

2γs

∫ ∞
−∞

: Sp,OUT (ω) : dω, (2.129)

where Eq. (2.121) is used again to get back to the internal field variables. Especially,
⟨: ∆p̂2 :⟩ at the threshold (λ = 1) can be calculated easily with (2.127) as

⟨: ∆p̂2 :⟩|λ=1 = − 1

4π

∫ ∞
−∞

γs
4γ2s + ω2

dω = −1

8
, (2.130)
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(a) (b)

Figure 2.6: The resonant output fluctuation variance SOUT (ω = 0) dependent on the
pump rate (a) below the threshold and (b) above the threshold. γs = 0.2, γp = 1 and
κ = 0.2.

Figure 2.7: The output fluctuation spectra for quadrature amplitudes with (a)λ = 1 and
(b)λ = 10. γs = 0.2, γp = 1 and κ = 0.2.

40



Chapter 2. Quantum Theory of DOPO

which results in -3 dB squeezing [118].
Fig. 2.8 shows the steady-state intracavity fluctuation variances for the quadrature

amplitudes in the first order approximation. Here I adopt relative variances to the
vacuum level 1/4 to compare this with the result from quantum theory, i.e. Fig. 2.5.
We see there is a sharp contrast of characteristics in ⟨∆x2⟩. In the linearized analysis,
⟨∆x2⟩ diverges at the threshold and falls back nearly to the vacuum level well above the
threshold [Fig. 2.8(a) and (b)]. On the other hand, the full quantum theory predicts
that ∆x2 keeps finite at the threshold. However, the difference between ⟨∆x2⟩ in the
linearized analysis [Fig. 2.8] and ∆x2 in the full quantum theory [Fig. 2.5] above the
threshold originates from just the difference in the reference of x. The former considers
the reference (αss

s +βsss )/2 ̸= 0, while the latter takes ⟨x̂⟩ = 0. The maximum squeezing
of ⟨∆p2⟩ in the quantum theory [Fig. 2.5] is about -3 dB, which is exactly obtained in
the linearized analysis. In the latter, however, we find some discontinuity of the curve
at the threshold, reflecting the deterministic bifurcation at the critical point.

2.4.4 Macroscopic superposition state

The macroscopic superposition states [157], also called Schrödinger’s cat states, are
quantum-mechanical superpositions of two coherent states with opposite phases, namely

|Ψ±(α)⟩ =
1√

2± 2e−2α2
(| − α⟩ ± |α⟩) , (2.131)

where the normalization factor 1/
√

2± 2e−2α2 comes from the fact that | − α⟩ and |α⟩
are not orthogonal to each other. If we explicitly expand |Ψ±(α)⟩ with the Fock states,
we have

|Ψ±(α)⟩ =
eα

2/2√
2± 2e−2α2

∞∑
n=0

αn

n!
[(−1)n ± 1]|n⟩. (2.132)

Here, we see that |Ψ+(α)⟩ has only the states of even numbers of photons and |Ψ−(α)⟩
includes only those of odd numbers. Thus, |Ψ+(α)⟩ and |Ψ−(α)⟩ are called even cat and
odd cat states, respectively.

With the density operators for those pure states |Ψ+(α)⟩⟨Ψ+(α)| and |Ψ−(α)⟩⟨Ψ−(α)|,
we can write their probability distribution functions for the quadrature amplitudes as

P±,α(z) = ⟨z|ρ̂|z⟩ = 1

2± 2e−2α2 (⟨z| − α⟩ ± ⟨z|α⟩) (⟨−α|z⟩ ± ⟨α|z⟩) , (2.133)

where z = x, p. If we limit α to finite real numbers for simplicity, the inner products for
the eigenstates of α and (2.108) [125]

⟨x|α⟩ =
(
π

2

)− 1
4

exp

(
−2x2 + 2xα− α2

2
− |α|2

2

)
,

⟨p|α⟩ =
(
π

2

)− 1
4

exp

(
−2p2 − i2pα+

α2

2
− |α|2

2

)
, (2.134)
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(a) (b)

Figure 2.8: The intracavity fluctuation variance for quadrature amplitudes (a)below and
(b)above the threshold in the first-order approximation. γs = 0.2, γp = 1 and κ = 0.2.

lead to the explicit expressions for Eq. (2.133) as [156]

P±,α(x) =

√
2

π

1

1± e−2α2

[
±e−2(x2+α2) +

1

2
e−2(x+α)2 +

1

2
e−2(x−α)

2

]
,

(2.135)

P±,α(p) =

√
2

π

1

1± e−2α2 exp
(
−2p2

)
[1± cos (4pα)] . (2.136)

Fig. 2.9 displays an example of a series of the distribution functions P±,α(x) (2.135) and
P±,α(p) (2.136) with α = 5. Both P+,α(x) and P−,α(x) are divided into two parts with
their peaks at x = ±α [Fig. 2.9(a), (b)]. P+,α(p) and P−,α(p) show sinusoidal fringes
characteristic of quantum interference between | − α⟩ and |α⟩. P+,α(p) for an even cat
has a peak at p = 0, while P−,α(p) for an odd cat has a dip there, i.e. P−,α(p = 0) = 0.

A DOPO also shows bifurcation in x around the threshold, and when the photon
number is small quantum noise will allow switching among the states with positive and
negative amplitudes. Also, subharmonic generation is an intrinsic two-photon process
for the signal mode, thus it is likely to realize a state of even-number photons in a DOPO
with a small loss. We therefore expect that it may have such quantum superposition
components.

Quasi-distribution function in the classical subspace

Regarding a possible superposition in a DOPO, M. Wolinsky and H. J. Carmichael [124]
investigated the quasi-distribution function for the normalized variables in the classical
subspace of the positive P -representation. As shown before for Eq. (2.104), the potential
method for the normalized SDEs (2.89) and (2.90) enables us to reach the distribution
for real variables η = Xη and µ = Yµ

Pss(Xη, Yµ) = Nm

[(
λ−X2

η

) (
λ− Y 2

µ

)]1/g2−1
e2XηYµ/g2 , (2.137)
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(a) (b)

(c) (d)

Figure 2.9: Distribution functions for the quadrature amplitudes of the cat states with
α = 5. (a) P+,α(x), (b) P−,α(x), (c) P+,α(p) and (d) P−,α(p).

where |Xη|, |Yµ| ≤
√
λ. This is essentially the same form as Eq. (2.104), however, the

parameter determining the noise magnitude is only g in Eq. (2.137). Thus, this improves
the numerical stability.

When g ≥ 1, the nonlinear process gets dominant over the dissipation and the
distribution dramatically changes from that of an ordinary DOPO (Fig. 2.3) as shown
in Fig. 2.10. Here, quantum noise sweeps the state to the corners of the boundary
where the noise is canceled due to pump depletion. Furthermore, the distribution has
the components indicating Xη = −Yµ = ±

√
λ, which correspond to non-diagonal states

|
√
λ/g⟩⟨−

√
λ/g| and | −

√
λ/g⟩⟨

√
λ/g| and are impossible in the classical model. This

happens also below the classical threshold, and the non-diagonal parts decay as the
pumping rate increases. They showed that it approaches a set of δ functions

Pss(Xη, Yµ)

=
1

2
(
1 + e4λ/g2

) [δ(Xη −
√
λ)δ(Yµ −

√
λ) + δ(Xη +

√
λ)δ(Yµ +

√
λ)
]

+
1

2
(
1 + e−4λ/g2

) [δ(Xη −
√
λ)δ(Yµ +

√
λ) + δ(Xη +

√
λ)δ(Yµ −

√
λ)
]
,

(2.138)

which qualitatively reproduces the property seen in Fig. 2.10. Eq. (2.138) indicates that
in the large noise limit 4λ/g2 ≪ 1, the system is in an even cat state |Ψ+(α)⟩.
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(a) (b) (c)

Figure 2.10: Quasi-distribution functions for the normalized variables Pss(Xη, Yµ) in the
classical subspace of the positive P-representation. (a) λ = 0.5, (b) λ = 1 and (c) λ = 2.
g = 3.

On the other hand, M. D. Reid and B. Yurke [156] investigated the approximated
steady-state Wigner function and distribution functions for the quadrature amplitudes
corresponding to Eq. (2.137) with some parameters. Also, they argued that features of
quantum states such as a negative Wigner function and an oscillation in the distribution
P (p) were not seen in the cases of finite photon numbers. It is not surprising that the
large pumping and small noise regime would not give these properties as seen in Eq.
(2.138), Fig. 2.3 and 2.10. Nevertheless, there still remains a fundamental question
in their model and its numerical convergence, namely if it can reproduce a state well
approximated as an even cat with a small pumping amplitude and large quantum noise,
as Fig. 2.10 (a) does.

L. Krippner, W. J. Munro and M. D. Reid [125] simulated the normalized Stratonovich
SDEs for a DOPO extensively and studied the transient distribution functions for the
quadrature amplitudes by numerical integration on the formula

P (z) = ⟨z|ρ̂|z⟩ =
∫
P (α, β)

⟨z|α⟩⟨β∗|z⟩
⟨β∗|α⟩

d2αd2β (z = x, p). (2.139)

As a result, they found an oscillation and at least some deviation from a Gaussian
function in P (p) with various parameters, and concluded that a sufficiently large noise
parameter (g ≳ 2.5) and a strong pumping would be enough to obtain a transient
macroscopic superposition component in a DOPO.

I simulated the Ito SDEs (2.89) and (2.90) with a set of parameters (g = 3, λ = 15)
comparable with one in the study [125] to see if these reproduce oscillations in P (p). Ito
SDEs keep the martingale property of the processes while the impulsive noise processes
eliminate their ordinary analyticity. Fig. 2.11 (a) presents the time evolution of P (x) in
a DOPO. A large pumping rate makes P (x) bifurcate into two peaks within a short time
τ = 0.15. Fig. 2.11 (b) displays the transient of P (p). Corresponding to the bifurcation
of P (x), small side peaks are formed in P (p) around τ = 0.15. They get less visible as
time advances, however, P (p) keeps the gentle slopes deviated from Gaussian curves on
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(a) (b)

Figure 2.11: Transient of the distribution functions (a) P (x) and (b) P (p) of the DOPO
signal field. g = 3, λ = 15 and ∆τ = 2 × 10−5. The system is abruptly pumped at
τ = 0. 20000 samples were used. I made sure that the distribution functions were well
convergent by 10000 samples.

its sides. It indicates weak transient superposition components kept after the oscillation
of the DOPO with a finite x.

2.4.5 Entanglement Between Two DOPOs Under Evanescent Coupling

Relatively recently, the entanglement between the fields in two DOPOs has been stud-
ied. Here, I introduce the theoretical results [137, 139] on them coupled by evanescent
coupling, which have successfully demonstrated the feature. Evanescent coupling is near-
field interaction of light waves leaking from one medium to another, and is modeled with
the Hamiltonian for a two-DOPO system

Hevc = ℏJs
(
âs1â

†
s2 + â†s1âs2

)
+ ℏJp

(
âp1â

†
p2 + â†p1âp2

)
, (2.140)

where Js and Jp are the coupling strength for the signal and pump fields, and the numbers
(1 and 2) are indices of the DOPOs. Hence the master equation is linear in terms of
Hamiltonian components, we can derive the FPE and SDEs for the system by just adding
the components coming from Eq. (2.140) to the equations for two distinct DOPOs. We
can use the standard methods from (2.58) to (2.89) and (2.90) introduced before, and
the resulting SDEs for the signal and variables (αs1, βs1, αs2, βs2, αp1, βp1, αp2, βp2) in the
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positive P -representation are

dαs1 = [−(γs + i∆s)αs1 + κβs1αp1 + iJsαs2] dt+
√
καp1dWαs1,

(2.141)

dβs1 = [−(γs − i∆s)βs1 + καs1βp1 − iJsβs2] dt+
√
κβp1dWβs1,

(2.142)

dαs2 = [−(γs + i∆s)αs2 + κβs2αp2 + iJsαs1] dt+
√
καp2dWαs2,

(2.143)

dβs2 = [−(γs − i∆s)βs2 + καs2βp2 − iJsβs1] dt+
√
κβp2dWβs2,

(2.144)

dαp1 =
[
εp1 − (γp + i∆p)αp1 −

κ

2
α2
s1 + iJbαp2

]
dt, (2.145)

dβp1 =
[
εp1 − (γp − i∆p)βp1 −

κ

2
β2s1 − iJbβp2

]
dt, (2.146)

dαp2 =
[
εp2 − (γp + i∆p)αp2 −

κ

2
α2
s2 + iJbαp1

]
dt, (2.147)

dβp2 =
[
εp2 − (γp − i∆p)βp2 −

κ

2
β2s2 − iJbβp1

]
dt, (2.148)

Here, the evanescent coupling lets the field variables shift each other’s phases due to the
±π/2 phase terms (±i). I again assume that the drive fields are the phase reference.

Criterion for entanglement

An entangled state [34] is defined as a state of more than one particles which cannot be
described as a product state (for example, ρ̂ ̸=

∑
i piρ̂1i ⊗ ρ̂2i for two-particle systems).

For continuous variable states with the quadrature amplitude operators x̂i and p̂i (2.108)
satisfying (2.109), we consider the pairs of EPR-type operators which characterize the
correlation between them

û± = x̂1 ± x̂2, v̂∓ = p̂1 ∓ p̂2, (2.149)

and their fluctuation operators

∆û± = û± − ⟨û±⟩, ∆v̂∓ = v̂∓ − ⟨v̂∓⟩. (2.150)

The sufficient criterion for the entanglement in two continuous variable states with these
operators is [158]

⟨∆û2+⟩+ ⟨∆v̂2−⟩ < 1, or ⟨∆û2−⟩+ ⟨∆v̂2+⟩ < 1. (2.151)

It means that the correlation between the quadrature amplitudes of the two particles is
beyond the vacuum fluctuation level, and that is classically impossible. An entangled
state is also referred to as a state which cannot be produced with a vacuum state and local
operations and classical communication (LOCC) [159]. Thus, it guarantees the existence
of a quantum communication channel which is realized by the interaction between the
particles.
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Linearized analysis for fluctuation in EPR-type operators

To examine the entanglement, we can apply the linearized analysis introduced before.
Here, we assume that the pump variables are adiabatically eliminated and equal to each
other, αss

p1 = αss
p2 = βssp1 = βssp2 = εss. Also, the detuning parameters are set to be equal

to the coupling coefficients, i.e. Js = ∆s, Jp = ∆p. This allows the interfered fields
defined as

A+s = αs1 + αs2, B+s = βs1 + βs2,

A−s = αs1 − αs2, B−s = βs1 − βs2, (2.152)

to obtain the steady solutions in average

Ass
+s = Bss

+s = Ass
−s = Bss

−s = 0
(
εp <

γsγp
κ

)
. (2.153)

Ass
+s = Bss

+s = ±2

√
2

κ

(
εp −

γsγp
κ

)
, Ass

−s = Bss
−s = 0

(
εp >

γsγp
κ

)
.

(2.154)

Note that the oscillation threshold εth = γsγp/κ is the same as that of a single DOPO.
Taking the summations and subtractions of the Eqs. (2.141) - (2.144), we have the SDEs
for the sum and difference modes

dA+s = [−(γs + i∆)A+s + κεssB+s + iJsA+s] dt+
√
κεss(dWαs1 + dWαs2),

(2.155)

dB+s = [−(γs − i∆)B+s + κεssA+s − iJsB+s] dt+
√
κεss(dWβs1 + dWβs2),

(2.156)

dA−s = [−(γs + i∆)A−s + κεssB−s − iJsA−s] dt+
√
κεss(dWαs1 − dWαs2),

(2.157)

dB−s = [−(γs − i∆)B−s + κεssA−s + iJsB−s] dt+
√
κεss(dWβs1 − dWβs2).

(2.158)

Let us limit the analysis to the below-threshold case [137]. Here, the average signal
fields vanish thus we do not need to consider the nonlinear dependence in the steady
pump modes. Then we have εss = εp/γp, and a drift and a diffusion amplitude matrix
for the fluctuation variables (∆A+s,∆B+s,∆A−s,∆B−s) are obtained

A± =


γs −κεss 0 0

−κεss γs 0 0
0 0 γs + 2iJs −κεss
0 0 −κεss γs − 2iJs

 , (2.159)

B± =


√
κεss 0

√
κεss 0

0
√
κεss 0

√
κεss√

κεss 0 −√
κεss 0

0
√
κεss 0 −√

κεss

 . (2.160)
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The variables corresponding to the EPR-type operators can be defined as

u+ = xs1 + xs2 =
1

2
(As+ +Bs+), (2.161)

u− = xs1 − xs2 =
1

2
(As− +Bs−), (2.162)

v+ = ps1 + ps2 =
1

2i
(As+ −Bs+), (2.163)

v− = ps1 − ps2 =
1

2i
(As− −Bs−). (2.164)

Thus, we can compute the normally ordered noise spectra for the EPR-type operators
using Eqs. (2.120), (2.122) and (2.123). Adding the vacuum fluctuation of the two
DOPOs to each component, the observable output fluctuation spectra of the EPR-type
operators are given as

Su+,OUT (ω) =
1

2
+

2γsγpκεp
(γsγp − κεp)2 + γ2p + ω2

, (2.165)

Sv+,OUT (ω) =
1

2
− 2γsγpκεp

(γsγp + κεp)2 + γ2p + ω2
, (2.166)

Su−,OUT (ω) =
1

2
+

2γsγpκεp((γsγp + κεp)
2 − γ2p(4J

2
s − ω2))

(γ2p(γ
2
s + 4J2

s − ω2)− κεp)2 + 4γ2sγ
4
pω

2
,

(2.167)

Sv−,OUT (ω) =
1

2
−

2γsγpκεp((γsγp − κεp)
2 − γ2p(4J

2
s − ω2))

(γ2p(γ
2
s + 4J2

s − ω2)− κεp)2 + 4γ2sγ
4
pω

2
.

(2.168)

The spectral properties in the fluctuation in ⟨∆u2−⟩+ ⟨∆v2+⟩ are depicted in Fig. 2.12.
In (a), we see that the spectral components around the resonant frequency satisfy Eq.
(2.151), meaning that they are lower than the total vacuum fluctuation and the system
shows the entanglement. The fluctuation there gets larger for the system with less inter-
action. Fig. 2.12 (b) shows that the fluctuation at resonance dependent on the pumping
rate. Larger interaction leads to a stronger correlation. However, the improvement in
noise suppression by the coupling is not so drastic in Js > 1. On the other hand, when Js
is smaller than the cavity loss rate, the system can lose the entanglement before reaching
the oscillation threshold.

The result indicates that when the system has interaction of the same extent as
dissipation, the system can acquire entanglement between its elements. Note that the
condition for obtaining a state with the EPR paradox [133] is tighter, while this system
can satisfy it. This condition involves the fluctuation of each quadrature amplitude and
their covariances, which can be obtained with the calculation in Sec. 2.4.3. In addition,
it has been shown that the linearized analysis for this system above the threshold can
also achieve the criterion for the entanglement [139].
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(a) (b)

Figure 2.12: Fluctuation spectrum of the sum of the EPR-type operators ⟨∆u2−⟩+⟨∆v2+⟩.
(a) Frequency dependence with εp = 0.5εth. (b) Pump rate dependence at resonance
ω = 0. γs = γp = κ = Jp = ∆p = 1. Js = ∆s. Su−,OUT + Sv+,OUT < 1 represents the
entanglement between the fields in the two DOPOs.

2.5 Coherent Ising machine

Finally, I refer to the theory of a coherent Ising machine based on DOPOs proposed
by Z. Wang et al [103]. They deduced a set of c-number Langevin equations with
phenomenological mutual injection terms by approximating the operators in the corre-
sponding Heisenberg-Langevin equations as c-numbers. They are equivalent to the SDEs
in the Wigner representation which truncates the third order components in the original
Fokker-Planck equation. Here, the mapped Ising spin is expressed as the sign of the
in-phase quadrature amplitude xi = (αi + α∗i )/2 in each DOPO, i.e. σi = 1 if xi > 0
and σi = −1 if xi < 0 where i is the index for DOPOs. The coupled semi-classical rate
equations for the quadrature amplitudes xi and pi = (αi − α∗i )/(2i) are given as

d

dτ
xi =

[
−1 + λ− (x2i + p2i )

]
xi +

N∑
j ̸=i

ξijxj , (2.169)

d

dτ
pi =

[
−1− λ− (x2i + p2i )

]
pi +

N∑
j ̸=i

ξijpj . (2.170)

Here, the orthogonal components pi are damped due to the nonlinear loss, namely pssi =
0. Also, a perturbation expansion method leads to the fact that the total effective gain
for the in-phase amplitudes

∑
i λ − (x2i + p2i ) at the steady state above the threshold

depends on the mapped Hamiltonian∑
i

λ− (x2i + p2i ) = N −
∑
i ̸=j

ξijσiσj +O
(

ϵ3N4

(λ− 1)3

)
(2.171)

with some finite error terms. ϵ is the small number appeared in the perturbation expan-
sion. Extensive numerical benchmarking with Eqs. (2.169) and (2.170) starting with
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randomized vacuum states has been conducted. An example of transits of the c-number
amplitudes xi for a two-site anti-ferromagnetic Ising model is shown in Fig. 2.13. The
DOPOs have a mutual injection which has a coupling phase of π, namely ξ12 < 0.
Pumped above the threshold, the system settles into a state with an out-of-phase order
of the coherent signal amplitudes due to the mutual injection, in a time with the order
of the cavity lifetime. This corresponds to the ground state of the mapped Hamilto-
nian, that is an anti-ferromagnet of two spins in opposite directions. They found the
ground states in all the instances of the unweighted anti-ferromagnetic Ising model (the
MAX-CUT problem) in cubic graphs with the number of spins up to N = 20. Also,
they showed that though the success probability in the worst instance decreases with
the problem size, they can make some improvement by changing the parameters.

2.6 Summary

In this chapter, I reviewed the quantum theory of a degenerate optical parametric os-
cillator and the properties predicted by it. I introduced the positive P -representation
exploiting two c-number variables to describe a continuous variable field state inside a
cavity. Then, the series of stochastic differential equations suitable for numerical sim-
ulations were derived via the Fokker-Planck equation. We saw that the quantum noise
from the pump field could affect the characteristics of a DOPO. The rigorous potential
solution for the Fokker-Planck equation predicted that the photon number would be fi-
nite also below the oscillation threshold, and that above the threshold would be smaller
than that of the classical solution. Furthermore, the squeezing properties for both the
intracavity and output fields are calculated and discussed with the rigorous formula for
the moment and the linearized analysis. When the nonlinear process was dominant,
the system would have a macroscopic superposition component at the steady state in
the small photon number limit, and also in a transit with a finite photon number. The
system of two DOPOs could also show entanglement between the two field states via
evanescent coupling. Finally I referred to a semi-classical model for a coherent Ising
machine based on a network of DOPOs. The Ising Hamiltonian was mapped to the
total gain for the in-phase amplitudes, and the system would get toward the ground
state via the nonlinear dynamics due to the mutual injection. The benchmarking with
the rate equations showed that the performance bounded by its classical framework was
good enough to obtain the ground states of all the instances of the anti-ferromagnetic
Hamiltonians for the cubic graph systems with up to twenty nodes.
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Figure 2.13: Transit of the in-phase quadrature amplitude xi in a coherent Ising machine
composed of two DOPOs with an out-of-phase mutual injection. λ = 2 and ξij = −1.
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Chapter 3

Quantum States in Two DOPOs
Coupled with Mutual Injection

3.1 Introduction

An important open question is if the coherent Ising machines have any quantum features
available for the computation. It is because quantum computation [34] is the only phys-
ical computing paradigm which has the theoretical evidences that it possibly surpasses
digital computing [33, 42]. The previous theoretical models [98, 99, 103] for the Ising ma-
chines can deal with quantum effects up to the quadratic squeezing process. However, It
is known that squeezing can be reproduced by a classical model which takes the vacuum
fluctuation into account phenomenologically [109, 160]. In addition, Gottesman-Knill
theorem [110, 111] shows that such a quadratic process is not enough for the system to
exert the performance limit of quantum computing. On the other hand, the coherent
superposition (Schrödinger’s kitten and cat) states [157] are well generated by the third-
order process (Kerr effect) [161] and can show negative values of the Wigner function
[126], thus they can be an essential resource for quantum computation. Furthermore, to
preserve quantum information of a pure state with correlated particles, there need to be
entanglement between them. Fortunately, a transient state with superposition compo-
nents in a single DOPO [125] and entanglement between two DOPOs with evanescent
coupling [137, 139] have been theoretically reported, as seen in the previous chapter.
However, the previous models including mutual injections are all in the semi-classical
framework in the sense that there is the one-to-one correspondence between the sim-
ulation variables and the physical quantities under a single-shot measurement. Such
a model in principle cannot treat the quantum effects where non-diagonal components
of the density operator play a crucial role. At least, there is an argument that even
if a coherent Ising machine can be a good quantum computing device, the simulated
benchmarking can give only the performance of its classical counterpart.

In this chapter, I study a fully quantum mechanical model for the system of two
DOPOs with out-of-phase mutual injections using the positive P -representation [107].
Here, I extend the theoretical model for a single DOPO [108] to the one for the considered
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system by adding the sub-harmonic cavity mode in the mutual injection path between
the facets of the two DOPOs (called mid cavity afterwards). This provides a quantum-
theoretical framework for an oscillator network coupled with mutual injections. In this
model, the loss rate for this mid cavity comes to be an important factor of the dissipation
for the whole system. Also, the adiabatic elimination of this mid cavity mode results
in the linear mutual injection terms for the DOPO field variables, which have been
introduced phenomenologically in the previous study [103]. In this limit, the mid cavity
works as a coherent communication channel for the two DOPOs, and the intracavity
fields of them below the oscillation threshold can be entangled due to the quantum
correlation between the squeezed quadrature amplitudes p̂ = (â − â†)/(2i). When the
system is sufficiently closed, the mid cavity mode becomes a shared noise store containing
a squeezed vacuum. This destroys the entanglement because of an enhanced fluctuation
in the extended quadrature amplitude x̂ = (â+ â†)/2. However, the noise induces weak
fringes of the distribution functions of p in the transit, indicating coherent superposition
components in the DOPOs even with a small noise parameter. This suggests that an
empty feedback path for DOPOs is realization of a “squeezed heat bath” [123, 162],
which was introduced as hypothetical environment to protect macroscopic superposition
from dephasing.

This chapter is organized as follows. In Sec. 3.2, I describe the Ito stochastic differ-
ential equations (SDEs) for the field variables in the system and relate the mid-cavity
mode to the phenomenological injection term which was previously studied. In Sec. 3.3,
I give the simulation setting and review some ingredients for the simulated quantities
and properties. In Secs. 3.4 and 3.5, I discuss the simulation result and simulation
schemes for this system. Sec. 3.6 concludes this chapter.

3.2 Derivation of Theoretical Model

3.2.1 System overview

First of all, I describe the system treated in this chapter. Fig. 3.1 shows schematic
illustrations of it. As shown in (a), it is composed of two DOPOs and the mutual
injection path between them as the mid cavity. The two angled mirrors in this central
cavity are assumed to be dielectric. It means that they can highly reflect and confine the
signal field of a frequency ωs while entirely transmit the driving field with a frequency
ωd ∼ ωp = 2ωs, where ωp is the frequency of the pump mode. The identical strong driving
field εp enters each DOPO to excite the pump mode. It is assumed to be classical and
the phase reference. The bosonic annihilation and creation operators for the pump and
signal modes in the DOPOs are defined as (âpj , â

†
pj) and (âsj , â

†
sj), where j = 1, 2 is the

index for the DOPOs. Also, those for the mid-cavity signal mode are written as (âc, â
†
c).

Fig. 3.1 (b) displays the coupling between the DOPO signal fields and the mid cavity
field as beamsplitter interaction. Here, the mid cavity field interacts with the two DOPO
fields at distant points, thus we have to consider the spatial phase term explicitly. When
I take the z axis as shown in Fig. 3.1 (a), with its origin at the facet of DOPO#1, the
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Figure 3.1: Schematic drawings of the system. (a) The whole system comprising two
DOPOs and the mutual injection path between them as a cavity. The two dichroic
mirrors in this mid cavity are assumed to pass the pump field completely and highly
reflect the signal field. (b) Beamsplitter interaction between the DOPO fields and the
central cavity mode. The spacial phase of the mid cavity field needs to be considered.

electric field operator for the signal mode in the center cavity can be written as

Ê(z, t) = ϵ⃗kc

(
Ekc âc e−iωst+ikcz + E∗kc â†c eiωst−ikcz

)
, (3.1)

where ϵ⃗kc is the polarization vector, Ekc is the characteristic electric field amplitude and
kc is the wave number. Thus, the bosonic operators at the facet of DOPO#2 have
phase factors depending on the center cavity length and are written as âc exp (ikcz) and

â†c exp (−ikcz). When exp (ikcz) = exp (−ikcz) = 1 the mutual injection is an in-phase
coupling, and it is out-of-phase if exp (ikcz) = exp (−ikcz) = −1.

3.2.2 System Hamiltonian

The Hamiltonian for the system is an extension of that for a single DOPO [108], and
can be written as

H = Hfree +Hint +Hpump +Hres +HBS , (3.2)

where the free Hamiltonian for the relevant modes is

Hfree =
2∑

j=1

(
ℏωpâ

†
pj âpj + ℏωsâ

†
sj âsj

)
+ ℏωsâ

†
câc. (3.3)
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The quadratic nonlinear interaction Hamiltonian is

Hint = iℏ
2∑

j=1

[κ
2

(
â† 2sj âpj − â†pj â

2
sj

)]
, (3.4)

where κ denotes the coupling coefficient in terms of the subharmonic mode. The driving
Hamiltonian is described by

Hpump = iℏ
2∑

j=1

[
εpâ
†
pj exp (−iωdt)− εpâpj exp (iωdt)

]
, (3.5)

where the classical pumping flux εp is set to be positive and real. The reservoir Hamil-
tonian for the signal and pump modes is written as

Hres = ℏ
2∑

j=1

(
âsjΓ̂

†
Rsj + Γ̂Rsj â

†
sj + âpjΓ̂

†
Rpj + Γ̂Rpj â

†
pj

)
+
(
âcΓ̂
†
Rc + Γ̂Rcâ

†
c

)
, (3.6)

where Γ̂Rsj , Γ̂Rpj and Γ̂Rc are the heat bath operators for the signal, pump and mid-
cavity signal mode. Finally, the beamsplitter interaction Hamiltonian between the cen-
tral cavity mode and DOPO signal modes is denoted by

HBS = iℏζ
(
âcâ
†
s1 − â†câs1 + âs2â

†
ce
−ikcz − â†s2âce

ikcz
)
, (3.7)

where ζ is the interaction coefficient. Note that HBS considers a part of dissipation of
the signal fields as coherent transmissions and reflections at the cavity facets.

3.2.3 Stochastic equations

With the standard technique to treat the thermal bath [149] (in Chapter 2), I have the
master equation for the density operator of the system. Here, I neglect the thermal
detuning term. Furthermore, I introduce the positive P representation [107] for the five
modes

ρ̂ =

∫
P (α,β)

|α⟩⟨β∗|
⟨β∗|α⟩

d10αd10 β, (3.8)

to expand the density operator with a well-behaved probability distribution function
P (α,β). Here, α = (αs1, αs2, αp1, αp2, αc)

T and β = (βs1, βs2, βp1, βp2, βc)
T contain

ten c-number variables to describe the state. |α⟩ = |αs1⟩ |αs2⟩ |αp1⟩ |αp2⟩ |αc⟩ and
⟨β∗| = ⟨β∗c | ⟨β∗p2| ⟨β∗p1| ⟨β∗s2| ⟨β∗s1| are the coherent product states for the total system.
The positive P representation never fails to give a positive and appropriately normal-
ized distribution function for every quantum state. αX and βX undergo statistically
independent processes in probabilistic simulations while they are complex conjugate in
average, i.e. ⟨αX⟩ = ⟨βX⟩∗.

I substitute Eq. (3.8) into the master equation and use the operator algebra [107]
for the probability distribution description. After switching to the rotating frame with
the driving frequency ωd for the pump and ωd/2 for the signal mode, we obtain the

Fokker-Planck equation (FPE) for the distribution P
(
α⃗, β⃗

)
:
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∂

∂t
P
(
α⃗, β⃗

)
=

{
2∑

j=1

[
∂

∂αsj

(
(γs + i∆s)αsj − κβsjαpj

)

+
∂

∂βsj

(
(γs − i∆s)βsj − καsjβpj

)
+

∂

∂αpj

(
(γp + i∆p)αpj − εp +

κ2

2
α2
sj

)
+

∂

∂βpj

(
(γp − i∆p)βpj − εp +

κ2

2
β2sj

)
+

1

2

(
∂2

∂α2
pj

καpj +
∂2

∂β2
pj

κβpj +
∂2

∂αsj∂βsj
Γsj +

∂2

∂αpj∂βpj
Γpj

)]

+

[
∂

∂αc
(γc + i∆s)αc +

∂

∂βc
(γc + i∆s)βc +

1

2

∂2

∂αc∂βc
Γc

− ∂

∂αs1
ζαc −

∂

∂βs1
ζβc +

∂

∂αs2
ζαce

iθ +
∂

∂βs2
ζβce

−iθ

+
∂

∂αc
ζ
(
αs1 − αs2e

−iθ
)
+

∂

∂βc
ζ
(
βs1 − βs2e

iθ
)]}

P
(
α⃗, β⃗

)
,

(3.9)

where θ = kcz, and ∆s = ωs − ωd/2 and ∆p = ωp − ωd are the detuning between the
cavity modes and the driving field. The components of the last three columns in Eq.
(3.9) come from the beamsplitter coupling.

With the Ito’s rule [154] which gives the correspondence between the FPEs and
SDEs, we reach a series of Ito SDEs for the c-number variables α and β

d

[
αs1

βs1

]
=

[
− (γs + i∆s)αs1 + κβs1αp1 + ζαc

− (γs − i∆s)βs1 + καs1βp1 + ζβc

]
dt

+

[
καp1 Γs

Γs κβp1

]1/2 [
dWαs1(t)
dWβs1(t)

]
, (3.10)

d

[
αs2

βs2

]
=

[
− (γs + i∆s)αs2 + κβs2αp2 − ζαce

iθ

− (γs − i∆s)βs2 + καs2βp2 − ζβce
−iθ

]
dt

+

[
καp2 Γs

Γs κβp2

]1/2 [
dWαs2(t)
dWβs2(t)

]
, (3.11)

d

[
αp1

βp1

]
=


εp − (γp + i∆p)αp1 −

κ

2
α2
s1

εp − (γp − i∆p)βp1 −
κ

2
β2s1

 dt+ [ 0 Γp

Γp 0

]1/2 [
dWαp1(t)
dWβp1(t)

]
, (3.12)
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d

[
αp2

βp2

]
=


εp − (γp + i∆p)αp2 −

κ

2
α2
s2

εp − (γp − i∆p)βp2 −
κ

2
β2s2

 dt+ [ 0 Γp

Γp 0

]1/2 [
dWαp2(t)
dWβp2(t)

]
, (3.13)

d

[
αc

βc

]
=

 − (γc + i∆s)αc − ζαs1 + ζαs2e
iθ

− (γc − i∆s)βc − ζβs1 + ζβs2e
−iθ

dt
+

[
0 Γc

Γc 0

]1/2 [
dWαc(t)
dWβc(t)

]
, (3.14)

where dWX(t) is the real Wiener increment statistically independent of each other. This
corresponds to the noise term in the equivalent Langevin equation whose autocorrelation
is a delta function.

Here, I consider the case of a resonant driving ∆s = ∆p = 0 and zero temperature
Γs = Γp = Γc = 0. In addition, I adiabatically eliminate the pump variables with an
assumption that the pump fields decay sufficiently faster than the signal fields. We can
take diagonal diffusion amplitude matrices for the DOPO signal fields, then we have a
simplified model as follows

dαs1 =

[
− γsαs1 +

κ

γp

(
εp −

κ

2
α2
s1

)
βs1 + ζαc

]
dt

+

√
κ

γp

(
εp −

κ

2
α2
s1

)
dWαs1(t), (3.15)

dβs1 =

[
− γsβs1 +

κ

γp

(
εp −

κ

2
β2s1

)
αs1 + ζβc

]
dt

+

√
κ

γp

(
εp −

κ

2
β2s1

)
dWβs1(t), (3.16)

dαs2 =

[
− γsαs2 +

κ

γp

(
εp −

κ

2
α2
s2

)
βs2 − ζαce

iθ

]
dt

+

√
κ

γp

(
εp −

κ

2
α2
s2

)
dWαs2(t), (3.17)

dβs2 =

[
− γsβs2 +

κ

γp

(
εp −

κ

2
β2s2

)
αs2 − ζβce

−iθ
]
dt

+

√
κ

γp

(
εp −

κ

2
β2s2

)
dWβs2(t), (3.18)
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dαc =
(
−γcαc − ζαs1 + ζαs2e

iθ
)
dt, (3.19)

dβc =
(
−γcβc − ζβs1 + ζβs2e

−iθ
)
dt. (3.20)

Adding oscillators and injection paths is straightforward, thus this model allows a
quantum mechanical treatment of oscillator networks with the positive P representation.

3.2.4 Adiabatic elimination of mid cavity mode

We further consider the limit where the mid-air mode is also adiabatically eliminated i.e.
γc ≫ γs, to investigate the model. For the purpose of emulating the Ising Hamiltonian
with the procedure in Ref. 103, we are interested in the in-phase (eiθ = e−iθ = 1) and
out-of-phase (eiθ = e−iθ = −1) mutual injections. This is indeed the case where the
injection path behaves as a cavity. Here, the mid cavity field at the steady state is given
by

αss
c =

1

γc
(−ζαs1 ± ζαs2) , (3.21)

βssc =
1

γc
(−ζβs1 ± ζβs2) . (3.22)

Regarding the plus-minus sign, the plus is for eiθ = e−iθ = 1 and the minus is for
eiθ = e−iθ = −1. At the stable steady state under the in-phase and out-of-phase mu-
tual injections, (⟨αs1⟩, ⟨βs1⟩) = (⟨αs2⟩, ⟨βs2⟩) and (⟨αs1⟩, ⟨βs1⟩) = (−⟨αs2⟩,−⟨βs2⟩) are
expected. Hence, the center cavity is thought to be empty there, i.e. ⟨αss

c ⟩ = ⟨βssc ⟩ = 0.
Substituting Eqs. (3.21) and (3.22) into (3.15) - (3.18), we have the SDEs for the

intracavity signal fields with adiabatic elimination of the pump and mid cavity modes

dαsj =

[
−
(
γs +

ζ2

γc

)
αsj +

κ

γp

(
εp −

κ

2
α2
sj

)
βsj ±

ζ2

γc
αsk

]
dt

+

√
κ

γp

(
εp −

κ

2
α2
sj

)
dWαsj(t), (3.23)

dβsj =

[
−
(
γs +

ζ2

γc

)
βsj +

κ

γp

(
εp −

κ

2
β2sj

)
αs1 ±

ζ2

γc
βsk

]
dt

+

√
κ

γp

(
εp −

κ

2
β2sj

)
dWβsj(t), (3.24)

where (j, k) = (1, 2), (2, 1). The plus and minus signs are for the in-phase and out-
of-phase injections. Eqs. (3.23) and (3.24) indicate that the beamsplitter interaction
results in the transmission loss ζ2/γc for each field and the mutual injection terms with
a coefficient ±ζ2/γc.

We further define the effective signal loss γ′s and the normalized beamsplitter coupling
ξ as

γ′s = γs +
ζ2

γc
, ξ = ± ζ2

γsγc + ζ2
. (3.25)
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Finally, we reach the normalized SDEs for the signal modes as follows

dηj =
[
−ηj + µj

(
λ− η2j

)
+ ξηk

]
dτ + g

√
λ− η2jdWηj(τ), (3.26)

dµj =
[
−µj + ηj

(
λ− µ2j

)
+ ξµk

]
dτ + g

√
λ− µ2jdWµj (τ). (3.27)

Here, ηj = gαsj , µj = gβsj and g = κ/
√

2γ′sγp is the normalized parametric gain co-
efficient serving as a noise parameter. λ = εp/εth is the normalized pumping rate and
εth = γ′sγp/κ is the classical oscillation threshold. The time is scaled with the signal
cavity lifetime, i.e. τ = γ′st. dWηj(τ) and dWµj (τ) are rescaled Wiener increments. The
linear mutual injection terms ξηk and ξµk have the same forms as those phenomenolog-
ically introduced in the semi-classical model [103]. Therefore, the theoretical framework
studied here guarantees the validity of the injection model called coherent injection or
coherent drive also in the quantum mechanical phase space representations, if the dy-
namics in the injection path can be neglected.

3.3 Simulation Substances

3.3.1 Simultion setting

In this section, I discuss and review other elements important for the simulation. First,
I describe the simulation setting. Here, I focus on the out-of-phase mutual injection,
namely eiθ = e−iθ = −1. In this case, the out-of-phase correlation between the two
intracavity DOPO fields and even-number macroscopic superposition components | −
α⟩ + |α⟩ in each DOPO is expected. For the simulation, we introduce the normalized
equations also corresponding to Eqs. (3.15) - (3.20) as

dηj =
[
−γsnηj + µj

(
λ− η2j

)
+ ζnηc

]
dτ + g

√
λ− η2jdWηj(τ), (3.28)

dµj =
[
−γsnµj + ηj

(
λ− µ2j

)
+ ζnµc

]
dτ + g

√
λ− µ2jdWµj (τ). (3.29)

dηc = (−γcnηc − ζnη1 − ζnη2) dτ, (3.30)

dµc = (−γcnµc − ζnµ1 − ζnµ2) dτ, (3.31)

where

γsn =
γs
γ′s

=
γsγc

γsγc + ζ2
, (3.32)

γcn =
γc
γ′s

=
γ2c

γsγc + ζ2
, (3.33)

ζn =
ζ

γ′s
=

ζγc
γsγc + ζ2

. (3.34)

I simulate the normalized equations (3.26) - (3.27) and (3.28) - (3.31) in all cases, hence
the time unit in all the results here is the effective cavity lifetime 1/γ′s.
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Here, I again refer to the fact that the beamsplitter coupling can take into account
a large part of dissipation for the DOPO cavities explicitly in this model. The rest
incoherent and non-resonant decay, which may phenomenologically include absorption
and scatting in the nonlinear crystal, is considered by the conventional parameter γs.
Therefore, we can expect the case ζ > γs, and this is an important condition for the
system to show non-trivial quantum effects. I set ζ = 1, and γs and γc can be smaller
in the simulations on Eqs. (3.28) - (3.31).

The noise parameter g = κ/
√

2γ′sγp determines the typical order of the photon
number inside the DOPOs above the oscillation threshold. Basically, I focus on the
case of potentially larger photon numbers from the practical point of view, thus fix this
parameter as g ∼ 0.01. This gives 1/g2 ∼ 10000 photons in the DOPOs at oscillation.
For different decay parameters γ′s and γp, the nonlinearity κ is changed accordingly to
keep the value of g.

3.3.2 Observable moments and distribution functions

Drummond and Gardiner [107] have shown that normally ordered moments of the single
mode oscillator can be obtained by the expectation value of corresponding c-number
products. The trivial extension to the two-mode case with the commutability of bosonic
operators for different modes indicates

⟨â† js1 â
† k
s2 â

l
s1â

m
s1⟩ =

∫
βjs1β

k
s2α

l
s1α

m
s2 P ({α}, {β}) d2αs1d

2αs2d
2βs1d

2βs2. (3.35)

Here, {α} = {αs1, αs2}, {β} = {βs1, βs2} and other irrelevant modes are traced out.
I consider and simulate the moments up to second order including ones with different
modes, by unrestricted sampling Monte Carlo integration.

In this study, I define the quadrature amplitudes in the DOPOs as x̂j = (âj + â†j)/2

and p̂j = (âj − â†j)/(2i). The distribution functions [161] of them are given by the
diagonal element of the density operator for the corresponding eigenstates

P (xj) = ⟨xj |ρ̂sj |xj⟩ =
∫
P (αsj , βsj)

⟨xj |αsj⟩⟨β∗sj |xj⟩
⟨β∗sj |αsj⟩

d2αsjd
2βsj

=

√
2

π

∫
P (αsj , βsj) e

−2x2
j+2xj(αsj+βsj)−(αsj+βsj)

2/2 d2αsjd
2βsj , (3.36)

P (pj) = ⟨pj |ρ̂sj |pj⟩ =
∫
P (αsj , βsj)

⟨pj |αsj⟩⟨β∗sj |pj⟩
⟨β∗sj |αsj⟩

d2αsjd
2βsj

=

√
2

π

∫
P (αsj , βsj) e

−2p2j−i2pj(αsj−βsj)+(αsj−βsj)
2/2 d2αsjd

2βsj . (3.37)

Here, ρ̂sj is the partial density operator for the signal field in DOPO#j, with the other
states traced out. Also, I used the expressions of the wavefunctions for the quadrature
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amplitudes defined here

⟨xj |αsj⟩ = (π/2)−1/4 exp
(
−2x2j + 2xjαsj − α2

sj/2− |αsj |2/2
)
, (3.38)

⟨pj |αsj⟩ = (π/2)−1/4 exp
(
−2p2j − i2pjαsj + α2

sj/2− |αsj |2/2
)
, (3.39)

and the inner product of the coherent states

⟨β∗sj |αsj⟩ = exp
(
−|αsj |2/2− |βsj |2/2 + αsjβsj

)
. (3.40)

It is known that a fringe in P (pj) is a clear evidence for the existence of coherent super-
position components [156]. In Eq. (3.37), we see that in the classical subspace where αsj

and βsj are real, the oscillation in P (pj) comes from the integration of the component
exp [−i2pj (αsj − βsj)]. Here, the quantum noise causing stochastic discrepancy between
αsj and βsj is found to be essential for the fringe. Also, in the other phase space rep-
resentations where β = α∗, P (pj) does not show any fringe in principle due to the real
exponent in the integrand.

3.3.3 Criterion for entanglement

To examine the entanglement between two intracavity signal fields, we adopt the criterion
proposed by Duan et al [158]. Here, we consider the pair of Einstein-Podolsky-Rosen
(EPR)-type operators [131] û+ = x̂1 + x̂2, v̂− = p̂1 − p̂2 and their fluctuation operators
∆û+ = û+−⟨û+⟩ and ∆v̂− = v̂−−⟨v̂−⟩. The quadrature amplitudes defined here satisfy
the commutation relation [x̂j , p̂k] = iδjk/2. Thus, the condition for the entanglement
(inseparability) between the two DOPO signal fields is given by

⟨∆û2+⟩+ ⟨∆v̂2−⟩ < 1. (3.41)

3.3.4 Quantum discord

Finally, I refer to quantum correlation and the quantum discord [163] which is computed
in this study. Quantum correlation is referred to as the property of a composite system
that a local measurement changes the state of the whole system. It is a weaker, but
broader characteristic than entanglement, showing that even separable states can have
some quantum features such as lack of complete distinguishability due to a nonorthogonal
basis, and pure quantumness of each partial system.

Quantum discord [163] is a measure of quantum correlation, based on two different
ways to describe the mutual information of a bipartite system. Suppose we have a system
AB composed of partial systems A and B. The mutual information based on the total
system entropy is

I(ρ̂AB) = S(ρ̂A) + S(ρ̂B)− S(ρ̂AB), (3.42)

where S(ρ̂) = −Tr (ρ̂ log ρ̂) is the von Neumann entropy. On the other hand, that based
on the conditional entropy S(A|B)

J←(ρ̂AB) = S(ρ̂A)− S(A|B), (3.43)
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is not unique in quantum theory. It is because S(A|B), the information left in the
system after a local measurement on B, varies dependent on the measurement basis
for B. It means that the local measurement can perturb the total system. Here, the
measurement basis which disturbs the system least is chosen. As a result, the conditional
mutual information in quantum theory is defined as its maximum in terms of the local
measurement

J←(ρ̂AB) = S(ρ̂A)− inf
ΠB

i

∑
i

piS(ρ̂A|i), (3.44)

where i is the index for the components of the POVM measurement basis {ΠB
i } for B.

ρ̂A|i is the posterior state of A provided that the ith state is measured at B. Finally, the
quantum discord is defined as the difference of them

D←(ρ̂AB) = I(ρ̂AB)− J←(ρ̂AB)

= S(ρ̂B)− S(ρ̂AB) + inf
ΠB

i

∑
i

piS(ρ̂A|i). (3.45)

In the case of classical states, these two quantities are equal due to Bayes rule thus the
discord is always zero. If a bipartite system has a finite discord, the system surely has
quantum correlation between its elements. A system without entanglement can have
nonzero discord, and it has been reported that such a “dirty” state may be available for
a nontrivial speedup in certain problems [164] with a quantum computing model called
DQC1 [165].

Gaussian quantum discord

In general, the optimization about the measurement basis in Eq. (3.45) and evaluation
of the discord is hard. However, for Gaussian states, whose quasi-distribution functions
are Gaussian, a good analytic formulae [166, 167] for the discord has been derived.
In this study, I compute the approximate quantum discord between two DOPO signal
fields as the Gaussian quantum discord. Here, I consider the unnormalized quadrature
amplitudes for the two modes

[r̂] = [2x̂1, 2p̂1, 2x̂2, 2p̂2] . (3.46)

Then, a two-mode Gaussian state is characterized with the covariance matrix of them

σG =

[
1

2
⟨r̂j r̂k + r̂kr̂j⟩ − ⟨r̂j⟩⟨r̂k⟩

]
=

(
αM γM

γT
M βM

)
. (3.47)

where αM , βM and γM are 2× 2 matrices. The state can also be equivalently featured
by the quantities called symplectic invariants defined as

ASI = detαM , BSI = detβM , CSI = detγM , DSI = detσG. (3.48)

When we write the binary entropy function as

fB(X) =

(
X +

1

2

)
log

(
X +

1

2

)
−
(
X − 1

2

)
log

(
X − 1

2

)
, (3.49)
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and the quantities called symplectic eigenvalues as

ν2± =
1

2

(
∆±

√
∆2 − 4DSI

)
, ∆ = ASI +BSI + 2CSI , (3.50)

the Gaussian quantum discord is given by

D←(σG) = fB

(√
BSI

)
− fB(ν−)− fB(ν+) + inf

σ0

fB

(√
det ϵ

)
. (3.51)

Here, σ0 is the measurement basis for the partial system B. ϵ is the covariance matrix
for the partial system A after B has been locally measured. The last term in Eq. (3.51)
can be optimized analytically within the range of Gaussian POVMs (adding Gaussian
ancilla bits, symplectic transformations and a homodyne detection), yielding [167]

inf
σ0

det ϵ =

2C2
SI + (BSI − 1) (DSI −ASI) + 2|CSI |

√
C2
SI + (BSI − 1) (DSI −ASI)

(−1 +BSI)
2

if (DSI −ASIBSI)
2 ≤ (1 +BSI)C

2
SI (ASI +DSI) ,

ASIBSI − C2
SI +DSI −

√
C4
SI + (DSI −ASI)

2 − 2C2
SI (ASIBSI +DSI)

2BSI

otherwise. (3.52)

In addition, a simpler formula for two-mode squeezed thermal states (including squeezed
vacuum) has been also derived as [166]

D←(σG) = fB

(√
BSI

)
−fB(ν−)−fB(ν+)+fB

(√
ASI + 2

√
ASIBSI + 2CSI

1 +
√
BSI

)
. (3.53)

A bipartite state with D←(σG) ≥ 1 always has entanglement between its elements. On
the other hand, an entangled state can have a value of the quantum discord smaller than
1.

In my simulation, the smaller value in those calculated with Eqs. (3.51), (3.52)
and (3.53) is taken for each point to achieve a good approximation and avoid possible
numerical instabilities, especially in the case of small pumping rates.

3.4 Simulation Result

In this section, I show the result of the numerical simulation on the system with out-of-
phase mutual injection. Here, the initial state is fixed in the vacuum state, i.e. α = β =
0. The system is gradually pumped [100], meaning that the pumping rate λ is slowly
increased in time so that the DOPOs are continuously driven from the below to above
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of the oscillation threshold. This helps the DOPOs hold the state with the minimum
effective gain and avoid being dragged into an unstable solution created by the mutual
injection terms. I set the linear schedule for the pumping as

λ(t) =
λf t

tf
, (3.54)

where λf and tf are the pump and time parameters for the final state. Note that the
state is always transient because the pumping rate is continuously increased. Transient
effects get clear when the damping of the mid-cavity is small. However, the sweeping
is sufficiently slow so that the DOPOs keeps themselves steady to the given instant
environment. For the numerical integration on the SDEs, we adopt a second-order
weak scheme [168] originally proposed by Kloeden and Platen [169], with a time step
∆t = 2× 10−3.

I consider three cases here. In the first case, the signal intracavity decay rate γs
is varied under the condition that the loss in the injection path γc is larger than it.
Here, I hold γc = 2γs, meaning that the loss of the total system is increased with those
parameters. In the second case, we change only γc, keeping γs small (γs = 0.01). Eqs.
(3.28) - (3.31) are numerically integrated with fixed parameters tf = 200, λf = 1.5,
γp = 100, ζ = 1 and g ∼ 0.01 for these two. The results for the first and second cases
are symbolized as (a) and (b) in the following figures, respectively. In the last case,
we simulate Eqs. (3.26) and (3.27), where the central mode is adiabatically eliminated.
Here, the intracavity signal fields in the DOPOs are “directly” injected into each other.
The parameters used here are tf = 100, λf = 1.1 and g = 0.01. The figures for this case
are marked by (c). I take 20000 stochastic trials to compute the observables for all the
cases.

The classical stable solution of Eqs. (3.26) and (3.27) under the expected condition
ηj = µj , η2 = −η1 is given by

ηj = µj = 0 (λ < 1− |ξ|), (3.55)

η1 = µ1 = −η2 = −µ2 = ±
√
λ+ |ξ| − 1 (λ > 1− |ξ|). (3.56)

Here, their absolute values never get larger than
√
λ. The mutual injection path is

empty, thus it has only noise fields inside below the threshold and its average amplitude
is zero. Above the threshold, the two DOPOs are expected to give off the fields with
the same amplitude and opposite phases in average, and they will cancel out in the mid
cavity. Also, gradual pumping restricts highly transient behavior so that the magnitudes
of the field variables converge at the steady values from the smaller side. Considering
all of these, I implement the boundary condition in the numerical algorithm to assure
that the trajectories do not go out of the manifold ηj ≤

√
λ, µj ≤

√
λ.

3.4.1 Mean photon number

Fig. 3.2 shows the transits of the mean photon numbers in the first DOPO. Those
in the second oscillator are omitted because they look the same. The photon number
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rises, as the pumping rate increases linearly in time. The difference in the effective
oscillation threshold and resulting intensity comes from the difference in the magnitude
of the mutual injection. Eqs. (3.25), (3.26) and (3.27) are convenient to evaluate the
threshold. When in the assumption that η1 = µ1 = −η2 = −µ2 and the mid-cavity
field is eliminated, the effective classical threshold is given by λth = 1 − |ξ|. For the
cases of γs = (0.05, 0.1, 0.5, 1, 5) in Fig. 3.2 (a), the corresponding coupling coefficients
and approximate thresholds are ξ = (0.995, 0.980, 0.67, 0.33, 0.020) and λth = (0.0050,
0.020, 0.33, 0.67, 0.98), respectively. Also, for γc = (0.1, 0.5, 1, 5, 10) in Fig. 3.2 (b),
ξ = (0.999, 0.995, 0.990, 0.952, 0.909) and λth = (0.0010, 0.0050, 0.0099, 0.048, 0.091).
Note that λ = (1.5/200)t for (a) and (b). The evaluation for (c) is straightforward
and λ = (1.1/100)t there. A sufficiently closed system with a mutual injection has a
drastically lower threshold than a single DOPO. At the same time, however, quantum
noise in the system interrupts oscillation of the DOPOs and leads to less photons around
the threshold than those classically expected by the extrapolation of the linear region.
Also, the curve for γs = 0.05 in (a) shows a relaxation oscillation due to the mid cavity.
Such a dynamics suggests a possibility that the variables escape the classical subspace.
Thus, the simulation with this condition might not be reliable. The line γc = 0.1 in (b)
is also the case.

3.4.2 Correlation function of quadrature amplitudes

Fig. 3.3 displays the second order correlation functions for the quadrature amplitudes.
Here, they are normalized with the products of the standard deviations of the relevant
amplitudes. The negative correlation in x1 and x2 enhances as the pumping rate and
hence the photon number in the DOPOs increases. It means that the system gives the
macroscopic anti-phase order in x due to the mutual injection, corresponding to the
anti-ferromagnetic order of the most fundamental Ising model Ĥ = σ̂z1σ̂z2 programmed
in the system. When the loss of the system (γs, γc) is small, the relaxation oscillation
in ⟨x̂1x̂2⟩ due to the center cavity occurs as seen in the curve for γs = 0.05 of Fig. 3.3
(a). The curves of ⟨p̂1p̂2⟩ show that the instantaneous amplitudes p1 and p2 correlate
positively, despite that ⟨p̂1⟩ = ⟨p̂2⟩ = 0 due to the phase-sensitive nature of DOPOs.
Also, in contrast to ⟨x̂1x̂2⟩, the correlation in p vanishes as the photon number rises.
This indicates that it is a microscopic correlation induced by the quantum noise and
mutual injection. In (a), ⟨p̂1p̂2⟩ decays fast with the increase in γs and γc because of
both more dissipation and a less effective injection ξ.

In (b), the correlation in x with γc = 1 grows faster than those for γc = 0.1. Also,
that in p with γc = 0.1 is worse than those with γc = 0.5 and γc = 1. It means that
a highly closed injection path interrupts the formation of the correlation between the
squeezed vacua in the DOPOs. It is clearly because of the cavity effect in the injection
path. The mid cavity stores the squeezed vacuum outputs from the DOPOs because
ζ > γc. Thus, it works effectively as an additional noise source to the DOPOs. A larger
γc also degrades ⟨p̂1p̂2⟩ due to dissipation, however, the effect is not so significant. We
see that the system with γc = 10 gives a detectable correlation when before oscillation.
Note that broader peaks with γc = 5 and 10 come from larger oscillation thresholds,
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Figure 3.2: Transient of the intracavity photon number in a DOPO dependent on (a)
the signal loss of the system under γc = 2γs, (b) the mid-cavity decay rate γc and (c)
the mutual injection coefficient ξ. In (c), the center cavity is adiabatically eliminated.
The normalized oscillation threshold depends on the effective mutual injection strength,
varying with the parameters. 20000 stochastic runs for each curve.
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Figure 3.3: Time dependency of the correlation functions for the signal quadrature
amplitudes. (a) The loss in the system with γc = 2γs, (b) the center cavity loss γc and
(c) the mutual injection strength ξ are varied. xj are nagatively and macroscopically
correlated along with the oscillation. pj are positively and microscopically correlated
before the oscillation. 20000 stochastic runs for each curve.
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as seen in Fig. 3.2. The model for the system with an adiabatically eliminated mid
cavity mode predicts a straightforward property that a larger injection gives a better
correlation, as shown in Fig. 3.3 (c).

3.4.3 Total fluctuation of EPR-type operators

Fig. 3.4 presents the total variance of the EPR-type operators varying with time.
⟨∆u2+⟩ + ⟨∆v2−⟩ < 1 represents the entanglement between the DOPO signal fields. As
shown in Fig. 3.4 (a), when the loss in the system is small the total fluctuation sharply
rises from the vacuum level in spite of a respectable correlation in p, seen in the previous
figure. This means that the fluctuation of v̂− = p̂1 − p̂2 falls under the vacuum level
of 0.5 before oscillation while that of û+ = x̂1 + x̂2 gets much larger than that due to
the squeezed noise field accumulated in the center cavity. Larger γs and γc denote more
dissipation and a less mutual injection, thus the curves in (a) do not satisfy the criterion
except for the small region around τ = 20.

We see in Fig. 3.4 (b) that when only γc is increased, the total noise comes to drop
clearly under the bound before oscillation. Thus, the system has the entanglement there.
This is because the damping of the mid cavity field gets faster while the system keeps a
fair amount of the mutual injection in this case. Here, a good part of the output fields
from the DOPOs coherently inject to each other. It is known that an entangled state
cannot be produced only with local operations and classical communication (LOCC)
[159], thus the coherent mutual injection can be a quantum communication channel.
As expected from the time range where the system shows the entanglement, it solely
reflects the quantum correlation in p, i.e. ⟨∆v2−⟩ < 0.5. In fact, ⟨∆u2+⟩ comes only down
nearly to 0.5 hence the total noise level is always larger than 0.5. This indicates that the
system is not in the EPR paradox, and in this sense the quantum correlation between
the DOPOs is incomplete here.

In Fig. 3.4 (c), we can see the total noise level around the oscillation which is depen-
dent on the magnitude of the injection ξ for the case of completely coherent coupling.
When ξ becomes small, the curve has a region where the noise gets over the bound. To
keep the entanglement until the oscillation we need ξ ≳ 0.5, i.e. 25 % in the feedback
power from the injection path.

3.4.4 Quantum discord

Fig. 3.5 shows the approximate quantum discord when the state is considered as a Gaus-
sian state. It basically reflects the quantum correlation in pj . When pj is squeezed and
a some positive correlation with that in the other DOPO, the system holds a relatively
large discord. In addition, many curves converge at a finite value D← ∼ 0.02, except
for the ones with γs = 0.05, 1, 5 in (a) and one with γc = 0.1 in (b). It is worth noting
that this finite discord does not attribute to the squeezing in the DOPOs as previously
discussed [166] for the case of squeezed thermal states, but the mixture of coherent states
with perfect classical communication. I have found that the variance in xj and pj quickly
verge on 1/4 after oscillation in the data here, thus the states there are well described as
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Figure 3.4: Time evolution of the total fluctuation in the EPR-type operators ⟨∆u2+⟩+
⟨∆v2−⟩ dependent on (a) the loss in the system with γc = 2γs, (b) the mid-cavity loss γc
and (c) the coupling coefficient ξ. ⟨∆u2+⟩+ ⟨∆v2−⟩ < 1 means the entanglement between
the DOPO signal fields. 20000 stochastic runs for each curve.
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coherent states. Also, the lines with the finite discord give an almost perfect correlation
of x (injection-locking) at the final state such as ⟨x̂1x̂2⟩ = -0.9999 and -1.0000. On the
other hand, a closed central cavity or significant dissipation cancels out the discord. The
lines without discord for γs = 0.05, 1, 5 in (a) and one with γc = 0.1 in (b) have ⟨x̂1x̂2⟩ =
-0.957, -0.9975, -0.6036 and -0.9615, respectively.

The ideal field state of the two DOPOs well above the threshold with the classical
out-of-phase correlation and its covariance matrix are given by

ρ̂cl =
1

2
|αcl⟩1 | − αcl⟩2 2⟨−αcl| 1⟨αcl|+

1

2
| − αcl⟩1 |αcl⟩2 2⟨αcl| 1⟨−αcl|, (3.57)

σ(ρ̂cl) =


4α2

cl + 1 0 −4α2
cl 0

0 1 0 0
−4α2

cl 0 4α2
cl + 1 0

0 0 0 1

 , (3.58)

where αcl is the real and positive amplitude of the coherent states in the DOPOs. I have
found that the Gaussian discord calculated with Eq. (3.58) verges on D← ∼ 0.02356
for αcl ≳ 50, which is in a good agreement with the values in the simulation. Eq.
(3.57) clearly represents a mixture of Gaussian states, thus the result indicates a genuine
quantum correlation between coherent states with the coherent classical communication
at the limit.

3.4.5 Distribution functions for quadrature amplitudes

Fig. 3.6 shows instantaneous distribution functions for the quadrature amplitudes at
some time points for γs = 0.1, γc = 0.2. In (a), the distribution for x gets broadened as
the pumping rate increases. The dashed lines are Gaussian fitting curves for each time
point. We see that it has some deviation from the fitting curve at τ = 33 and 35. This
indicates that the system is at the onset of the macroscopic bifurcation in x.

As shown in (b), after a while from the beginning of the pumping, both P (p1) and
P (p2) come to have small humps at the sides of their central peaks. They are basically
kept until the clear bifurcation in P (x1) and P (x2). The side peaks in P (p1) and P (p2)
are as clear as those in an even cat state |−α⟩+ |α⟩ with α ∼ 0.9. This is reasonable be-
cause a squeezed vacuum state with a Gaussian distribution function for x with its peaks
at xj = 0 does not correspond to any pure cat state with a finite amplitude. Therefore,
P (p1) and P (p2) suggests the existence of the coherent superposition components in a
sufficiently closed two-DOPO system. Here, the simultaneous humps completely vanish
when γs, γc ≳ 1 = ζ. This indicates that the quantum noise stored in the injection path
is essential in the formation of superposition components. The central cavity here is asso-
ciated with the realization of a squeezed heat bath [123, 162], which has been considered
to prevent a macroscopic superposition state from decoherence. It is worth noting that
the model considered here is totally different from that in the previous studies.

Here, I show the extra squeezing of the intracavity DOPO fields which supports the
effect by the injection from the mid cavity mode. Fig. 3.7 displays the variances of
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Figure 3.5: Quantum discord when the state is approximated as a bipartite Gaussian
state. Squeezing in the DOPOs below the threshold and the mutual injection give a
large discord. Coherent fields above the threshold in them and a coherent classical
communication lead to a finite discord. 20000 stochastic runs for each curve.
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Figure 3.6: Distribution functions at different time points for (a) xj and (b) pj . The
dashed lines in (a) are Gaussian fitting curves with σ = (6.6, 9.1, 13.5, 20.0) for τ = (29,
31, 33, 35). The insets in (b) show the zoomed curves around the side peaks. 200000
trajectories are used. γs = 0.1, γc = 0.2 and g = 0.01.
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p1 and p2 dependent on time (i.e. the pumping rate). When the system is below the
threshold, they decrease with the rise in the pumping rate. Following the oscillation
of the DOPOs, they get back to the value for a coherent state and the vacuum state
(0.25). The minimum value ∼ 0.043 is smaller than that for a single intracavity DOPO
field [117] (0.125, meaning -3 dB squeezing). It clearly suggests that the squeezing in
the both DOPOs is enhanced due to the mutual injection vie the center cavity.

Compared to expectation values of observables (e.g. Fig. 3.7. See also Appendix
A), the convergence of the distribution functions (Fig. 3.6) to the number of sampling is
slower, because the sampled points have to cover the whole space where the distribution
can have a non-negligible value. Thus, I have taken 200000 runs to draw the curves here.
Simultaneous formation of the side peaks in both P (p1) and P (p2) is a good indicator
that the accuracy is not bad, because the two DOPOs obey the SDEs of the same form.
However, numerical errors still lead to obvious negative values in some curves. Also, one
of the p distribution functions is fluctuated a lot at some time points, leading to a larger
fringe and negative values.

3.5 Discussion

In this section, I discuss other potential theoretical schemes to simulate the system
considered here and the validity of the simulation in this study.

3.5.1 Other theoretical schemes

First, I refer to the difficulty in the simulation in this study with other theoretical
schemes. Regarding a numerical analysis for an open quantum system, direct integra-
tion on the master equation with the Fock state basis is the most standard method as
investigated in the previous relevant studies [123, 162]. It treats a series of ordinary
differential equations for the components of the density matrix for the system. Single-
shot numerical integration for them gives all the information of the solution, thus we do
not have to repeat stochastic simulations nor take ensemble averages over a number of
samples. Also, it is relatively easy to get a good accuracy in numerical integration of an
ordinary differential equation. However, the basis has an infinite number of eigenstates
hence we have to truncate some of them. Here, the more photons possible in the system,
the more eigenstates needed. In addition, the number of modes crucially affects the
complexity of the simulation. When we consider two DOPOs and the mid cavity with
m eigenstates for each, the number of components of the density matrix is m6. This
amounts to unrealistic numbers such as 10006 and 100006 thus the simulation will be
too costly.

Solving the Fokker-Planck equation will useful if we can find a potential solution.
However, it supposes a system at the steady state thus cannot treat the transient regime,
which is thought to be important for a DOPO to have coherent superposition components
[125, 156]. Also, when the mutual injection path is explicitly considered, we will not be
able to find a potential solution.
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Figure 3.7: Variances of p1 (blue curve) and p2 (red curve). The two curves are almost
identical due to the same form of the SDEs for each DOPO. 200000 trajectories are used.
γs = 0.1, γc = 0.2 and g = 0.01.

The linearized analysis has been used to investigate the output squeezing spectra for
the quadrature amplitudes of a DOPO [150] and the entanglement between the output
fields of two DOPOs coupled with evanescent coupling [137, 139]. We can apply this
method to get some information about the intracavity fields of the DOPOs. However, this
is also limited in the steady state, and basically gives a result in the frequency domain.
To consider the properties in the time domain, we have to integrate the noise spectra
over the entire frequency space. Here, a well-known relation between the covariance
of input and output bosonic operators [117] is not satisfied. It is because the input
field originating from the mutual injection is not a coherent or vacuum state but a
squeezed state. Straightforward application of this relation results in negative values in
the spectrum of ⟨∆v2−⟩.

3.5.2 Accuracy and limit of simulation

Next, I discuss the stability of the simulation in this study. I recognize that the positive P
representation can give unreliable results in some cases [170]. However, the simulation
here is considered to be relatively stable, because the dynamics of the variables are
bounded in a finite manifold, as explained before. In the theoretical model, the pump
modes are adiabatically eliminated. This significantly helps DOPO fields be bounded as
Ref. 170 pointed. It is also supported by the fact that the Fokker-Planck equation for a
DOPO with the adiabatic elimination has the solution [108] which comprises Gaussian
components decaying exponentially in the phase space. In addition, a real and diagonal
diffusion amplitude matrix assists them to be real. The classical solution (3.55), (3.56)
and the gradual pumping scheme also help the variables be bounded. For all of the
reasons, the simulation here are thought to be hardly affected by the instability of the
dynamics in the complex phase space.

Nevertheless, the center cavity can enhance the numerical error of the simulation,
especially when its loss γc is quite small. As mentioned, a relaxation oscillation might
be a sign for the unreliability of the simulation. We have not seen large variance in the
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amplified quantities such as the photon number, the correlation, and fluctuation for x.
However, those for the damped amplitude p directly reflects the feature of the noise in
the system. Thus, it can be difficult to acquire a good accuracy for them. We see that
the curves for them with γs = 0.05 in the first case and γc = 0.1 in the second have large
dispersions and visible spikes, around which the simulation is unreliable [170]. Thus, I
have taken γs = 0.1, γc = 0.2 and 200000 samples for the distribution functions to avoid
large numerical errors. The critical fluctuation around the oscillation can also be another
difficulty because the range of the variables here is big due to a small g. However, it is
worth noting that the noise in p is rather decreased there, and that in x does not diverge
in principle because the nonlinear pump depletion is fully taken into account here. To
reduce the number of samples by removing unexpected correlation in the noise terms
and the instability, the introduction of the gauge terms [171] would be needed.

3.5.3 Application for coherent Ising machine

Finally, I comment on possible applications of the quantum states in the DOPOs for
a coherent Ising machine [103], an oscillator network emulating the Ising model with
mutual injections. Here, the system assigns the up and down spin states to the discrete
phase states |0⟩ and |π⟩ with a finite amplitude and opposite phases (Eq. (3.56) for the
two-site case). Coherent superposition components are presumed to be important for
the machine to oscillate with the minimum total gain which corresponds to the lowest
eigenvalue of the mapped Ising Hamiltonian. In a hard instance, the network has to avoid
local minima whose number scales exponentially with the problem size. Therefore, it
will need to hold the information of all the eigenstates simultaneously at the onset of
the oscillation. To exploit the superposition components in the DOPOs, we have to keep
the loss of the system as small as possible, and pursue large nonlinear interaction in the
gain media.

Another possible direction is using the quantum correlation. Here, there might exist
a scheme to drive the system using quantum correlation, such as one where we exploit
a measurement to detect hidden relative instability of the quadrature amplitudes in
the DOPOs and apply some feedback to push the state along with a good direction in
the phase space and kick out of a local minimum. It looks like rather realization of a
chaotic neural network [172, 173] which jumps between metastable states searching for
the optimum, while hopefully has a better efficiency. It is challenging and beyond the
scope of this study to investigate whether or not there is a systematic algorithm like this
which explicitly utilizes the quantum correlation and shows a sensible quantum speedup.

3.6 Conclusion

I have founded and simulated a fully quantum mechanical model of the system of two
DOPOs with the out-of-phase mutual injection. The field between the two DOPO facets
is introduced as a cavity mode to treat the input-output relation and the memory effect
in the mutual injection path correctly. The model can be extended easily to the case of
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a larger network. I have shown that the linear mutual injection terms in the positive P
representation are derived ab initio in the limit where the dynamics of the injection path
is neglected. The simulation result has revealed that the gradually pumped system can
have quantum correlation, entanglement and weak coherent superposition components.
The quantum correlation and entanglement require a noise-free mutual injection with
some loss in its path, and this is referred to as a quantum communication channel via the
existence of the entanglement. On the other hand, additional quantum noise stored in the
low-loss injection path is rather essential to generate coherent superposition components
in the DOPOs. This suggests that the closed injection path with squeezed vacuum inputs
is realization of the squeezed heat bath alleviating decoherence with a practical system.
Quantum effects of the reservoir in such a simple setup may also play a role not only in a
coherent Ising machine but also in broader contexts such as nano- and opto-mechanics,
circuit QED and superconducting devices.
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Chapter 4

Design and Operation of Pulsed
Sub-Harmonic OPO

In this chapter, I design and show the experimental result of a pulsed optical parametric
oscillator (OPO) with telecom wavelengths which is applied to the implementation of a
coherent computing system.

4.1 Introduction and Basic Theory

4.1.1 Pulsed OPO

The early idea and study of the OPO by R. H. Kingston [146] date back to 1962. He had
already been aware that the energy conservation and “coherence” in the amplification
process were indispensable to the device. Soon after that, a semi-classical theory for the
nonlinear polarization and the well-known wave equation model considering the phase
matching condition were investigated by J. A. Armstrong et al [148]. The studies on
the parametric process at that time [146–148, 174, 175] focused on the possibility of
realization and application of optical parametric oscillators and amplifiers. The main
topics then were such as the quantum noise in the amplified light and the condition for
an enough parametric gain in terms of the optical wavelength, the material length and
refractive index. The first experimental realization of an OPO was reported in 1965
[176]. It was not until 1980s that its quantum features were studied as referred to in the
previous chapters.

When an ordinary bulk nonlinear crystal is used for parametric amplification based
on the birefringent phase matching, the requirement on the optical wavelength, polar-
ization and incident angle is severe due to the inflexibility of material properties such as
the refractive index and nonlinear susceptibility tensor. Also, the nonlinear coefficient is
relatively low. These had constricted the wide application of the OPO. The idea of quasi
phase matching (QPM), which relaxes the difficulty using a gain medium with periodi-
cally modulated dipole moments, was in the work by J. A. Armstrong et al [148]. And, it
is 1990s when the techniques were well established to realize QPM OPOs [177, 178] with
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periodically poled crystals. This enabled a variety of available nonlinear crystals and
dramatically extended the operation range of parametric amplification and oscillation.
Currently, the OPO draws broad attentions as a tunable light source [113, 179].

The great potential of the pulsed OPO has been recognized especially since the real-
ization of femtosecond mode-locked lasers with stable frequency and phase characteristics
[180], and the advent of optical frequency combs with them [181, 182]. The frequency
comb is referred to as a pulsed coherent light source with a stabilized and precise repe-
tition frequency ωR. Its spectrum looks like a comb of narrow peaks aligned at regular
intervals (ωR for each) around its optical frequency. The relative phase between the
pulse envelope and carrier is called carrier envelope offset (CEO) ∆ϕ. And, the CEO
frequency ωCEO = ∆ϕ/TR (TR: the pulse repetition period) is the other important pa-
rameter of the comb. These two frequencies are in the radio frequency regime hence can
be precisely determined with conventional techniques. Thus, taking the beat frequency
between the comb and a target light results in an extremely precise measurement of the
optical frequency. It has been applied mainly to metrology and standards of physical
quantities as typified by optical clocks [183].

Femtosecond pulsed DOPOs [184–189] are good implementation of frequency combs
complementary to mode-locked lasers [190]. It has been in the spotlight because of
its desirable properties such as (i) a high effective conversion efficiency and hence low
threshold pump power (< 100 mW), (ii) a broad optical gain spectrum and its robust-
ness to environmental noise, (iii) intrinsic phase locking of the signal pulse carriers hence
the comb modes to the pump modes and (iv) a broad range of available central wave-
lengths ranging the mid-infrared (IR) regime. The techniques to build and handle it
have been rapidly developed recently. Here, I exploit the femtosecond pulsed DOPOs
with telecom [189] and mid-IR [188] wavelengths as genuinely self-phase-locked light
sources to construct time-multiplexed networks of oscillator pulses for two experimental
demonstrations of the coherent Ising machine based on DOPOs.

4.1.2 Condition for large gain

In the following, I review the classical theory of parametric amplification [112, 179] which
is convenient for designing a pulsed OPO. To obtain a large parametric gain, the energy
and momentum of the relevant photons need to be conserved in the process. We can
write the energy conservation with the common coefficient ℏ removed as

ωp = ωs + ωi, (4.1)

where ωp, ωs and ωi are the pump, signal and idler frequencies, respectively. Similarly,
the momentum conservation is

kp = ks + ki, (4.2)

where kp, ks and ki are the pump, signal and idler wave numbers in the propagation
direction. Here, we consider the type-0 phase matching where the relevant modes are
all co-propagating extraordinary waves. The wave-vector mismatch is defined as

∆k = kp − ks − ki, (4.3)
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and characterizes the coherence of the process. Eq. (4.2) means ∆k = 0 and is called
phase matching condition. The wave number is expressed with the mode refractive index
n as k = nω/c (c: the speed of light in the vacuum). Thus, the condition is actually
imposed on the mode refractive indices for the pump np, signal ns and idler ni dependent
on their wavelengths and the material. This was a major obstacle to the wide range of
operations as previously mentioned.

4.1.3 Quasi phase matching

QPM with a periodically poled crystal drastically eases the phase matching condition.
It is known that the three wave equations derived from Maxwell equations [179] for
the electric fields of the pump, signal and idler modes suffice to argue the properties
of a pulsed OPO. These consider the superposition of the three continuous-wave (CW)
complex fields for the pump Ep, signal Es and idler Ei and are given by

dEs

dz
= i

ωsdQ
nsc

EpE
∗
i exp (i∆kQz) , (4.4)

dEi

dz
= i

ωidQ
nic

EpE
∗
s exp (i∆kQz) , (4.5)

dEp

dz
= i

ωpdQ
npc

EsEi exp (−i∆kQz) . (4.6)

Here, the waves propagate in the z axis. dQ and ∆kQ are the effective nonlinear inter-
action coefficient and the wave-vector mismatch under QPM.

In QPM, we introduce the spatial periodicity of the material nonlinear interaction
coefficient d(z). It can be expanded as a Fourier series

d(z) = deff

∞∑
m=−∞

Gm exp (−ikmz) . (4.7)

deff is the nonlinear interaction coefficient of the bulk crystal. In this study, I use
a LiNbO3 crystal and extraordinary beams, and its value is deff = d33 = 27 pm/V.
km = 2πm/Λ is the grating vector of the mth Fourier component with m an integer.
Λ is the poling period determined by the device fabrication. The expansion coefficient
Gm depends on the actual form of d(z). The most prevalent realization of d(z) is the
rectangular function with a magnitude of deff and sign inversions at each interval of Λ/2,
and here Gm is

Gm =
2

mπ
sin
(mπ

2

)
. (4.8)

In QPM, we can consider the phase matching condition for a grading vector of a certain
order m. In fact, dQ in Eqs. (4.4) - (4.6) is the coefficient for the selected order and
given by

dQ = deffGm. (4.9)
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Also, the wave vector mismatch is modified to

∆kQ = kp − ks − ki − km

= kp − ks − ki −
2πm

Λ
. (4.10)

The effective interaction dQ gets smaller with a larger m. Thus, we take m = 1 and
design Λ to satisfy the “first order” QPM condition

0 =
npωp

c
− nsωs

c
− niωi

c
− 2π

Λ
. (4.11)

Here, the effective interaction coefficient for (4.8) is

dQ =
2

π
deff . (4.12)

The mode refractive indices np, ns and ni depend also on temperature. Therefore,
choosing a good pump laser, designing the poling period Λ and controlling the crystal
temperature enable us to amplify and oscillate the signal beam with a desired wavelength
and frequency.

4.1.4 Gain bandwidth

Eqs. (4.4) - (4.6) can be solved and the solution can be expressed with elliptic functions.
It gives the approximate intensity gain G(L) when the beams propagates by a small
distance L [191]

G(L) =
|Es(z = L)|2

|Es(z = 0)|2
− 1

≈ Γ2
gL

2sinc2

(∆k2Q
4

− Γ2
g

) 1
2

L

 , (4.13)

where

Γ2
g =

(
ωsdQ
nsc

)2

|Ep|2 =
2ωsωid

2
QIp

nsninpϵ0c3
. (4.14)

Here, Ip is the pump intensity. This provides the gain spectrum for the signal and
idler modes with a given pump field. ∆kQ includes ωs and ωi, thus the sinc function
dominantly affects the gain bandwidth. It shows that a smaller L gives a broader gain
spectrum. Signal pulses with a short duration require a broad optical spectrum, hence
a short crystal. However, a small L leads to a small absolute gain due to its quadratic
dependence on L.
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4.1.5 Phase sensitive gain and phase states at degeneracy

When in the degenerate operation, the signal and idler photons get indistinguishable.
Here, their frequencies and electric fields are identical, i.e. ωs = ωi, Es = Ei. Thus, the
wave equations are simplified as

dEs

dz
= i

ωsdQ
nsc

EpE
∗
s exp (i∆kQz) , (4.15)

dEp

dz
= i

ωpdQ
npc

E2
s exp (−i∆kQz) . (4.16)

We further decompose these fields into the real and positive amplitudes and phases

Es = Ẽs exp iϕs, Ep = Ẽp exp iϕp, (4.17)

and substitute these into Eqs. (4.15) and (4.16) to obtain the equations for the ampli-
tudes and phases, resulting

dẼs

dz
=
ωsdQ
nsc

Ẽp cos
(
2ϕs − ϕp −

π

2

)
Ẽs, (4.18)

dϕs
dz

= −
ωsdQ
nsc

Ẽp sin
(
2ϕs − ϕp −

π

2

)
, (4.19)

dẼp

dz
= −

ωpdQ
npc

Ẽ2
s cos

(
2ϕs − ϕp −

π

2

)
, (4.20)

dϕp
dz

= −
ωpdQ
npc

Ẽ2
s

Ẽp

sin
(
2ϕs − ϕp −

π

2

)
. (4.21)

The right hand side of Eq. (4.18) represents the gain for the signal amplitude Ẽs. We
see that it is maximum when

ϕs −
ϕp
2

− π

4
= 0 or π. (4.22)

Also, when Eq. (4.22) is satisfied, the gain for the pump Ẽp gets minimum. In addition,
from Eqs. (4.19) and (4.21) the phase equilibrium state fulfills Eq. (4.22). This means
that the signal mode in a DOPO oscillates with one of the two possible phases (4.22)
which are different by π. These distinct phase states were firstly reported with a CW
DOPO in 1990 [192].

4.1.6 Frequency states

As well known, there are two resonant conditions for pulsed cavity modes. One is that
the cavity length equals to an even multiple of the half of the effective central wavelength.
Here, the signal carrier phase of the pulses at a certain spatial point is the same after
round trips. On the other hand, when the cavity length is an odd multiple of the
half wavelength, the pulses flip their phases with each round trip. These two kinds of
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longitudinal modes for the signal pulses correspond to the two frequency states of the
sub-harmonic frequency comb [187]. The coherent Ising machine explicitly utilizes the
interference of the resonating signal pulses with discrete phases, thus their phases have
to be static in round trips. We therefore need to prepare degenerate signal pulses in an
“even” frequency state by tuning the cavity length.

4.2 Design of a Pulsed OPO

4.2.1 Pump laser

Fig. 4.1 displays a schematic illustration of the pulsed OPO designed for the sixteen-pulse
experiment. The pump laser here (Laser Quantum Ltd., Taccor-s 10) is a mode-locked
Ti:Sapphire laser with a central wavelength of 794 nm, a spectral width (FWHM) of 50
nm and a pulse duration of 15 fs. The pulse repetition frequency measured with a RF
spectrum analyzer is 1.009 GHz. The maximum output power detected by a thermal
sensor tuned for 794 nm is 1.688 W. The beam diameter at the output shutter is 2 mm,
and the output beam divergence is 2.5 mrad. The half wave plate (HWP) and polarizing
beamsplitter (PBS) placed in front of the pump output works as a power controller.

4.2.2 Cavity stability

The bow-tie ring cavity with a round trip length of about 4.8 m can contain separate
sixteen pump pulses with a repetition rate of 1 GHz inside. It will result in as many
independent degenerate OPO pulses running in a single ring resonator, and they can be
used to emulate sixteen-spin systems.

M1 and M2 in Fig. 4.1 are concave mirrors and compose a short-arm concentric
cavity. This focuses the beam spot and gives a large spatial power density at the inside
of the nonlinear crystal placed in the middle. According to the previous study [188],
it is desirable to get a signal spot size smaller than 10 µm at the center of the crystal.
Then, I investigated the stability of the whole cavity in terms of the signal mode using
an analysis software named BeamSim which is based on the ray transfer matrix method
[109]. Here, I use curved mirrors with a radius of curvature (ROC) of 50 mm. The
nonlinear medium is a 1-mm thick periodically poled LiNbO3 (PPLN) crystal with an
approximate refractive index of 2.1. I set a well-collimated eigenmode with a spot size
(1/e2 intensity radius) of 2 mm and the expected signal central wavelength 1.588 µm as
the input. The free-space propagation length out of the short cavity is 4.750 m. The
spot sizes in the vertical direction and horizontal direction (set as x and y axis) are
assumed to be the same. Fig. 4.2 shows the minimum spot size wmin in the crystal
dependent on the short cavity length which satisfies the stability condition. It indicates
that the system has a stability range of the short cavity length centered at 50.8 mm with
a width of 520 µm. The central point (50.8 mm) is the stablest point for the cavity. The
minimum spot size there is found to be 8.2 µm, which is small enough for the oscillation.
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Figure 4.1: Schematic illustration of the pulsed OPO system. HWP: half wave plate.
PBS: polarizing beam splitter. M: mirror. PD: photo detector. OC: output coupler.
PZT: piezoelectric transducer.

Figure 4.2: Cavity stability dependent on the short cavity length. The width of stability
range is found to be 520 µm. The minimum spot size in the crystal is 8.2 µm for the
stablest short cavity length.
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4.2.3 Mode matching

To obtain an enough gain for the signal, we also have to tune the size of the pump
beam incident on the crystal. According to the detailed theoretical study on the para-
metric process of focused beams [193], the condition to achieve the minimum oscillation
threshold possible is

wp =
ws√
2
, (4.23)

where wp and ws are the minimum spot sizes of the pump and signal beams in the
middle of the nonlinear crystal. Thus, wp = 5.80 µm is needed to achieve the optimum
oscillation of the signal with the designed spot size ws = 8.2 µm.

To match the two spatial modes, I compute the spatial transition of the desired pump
spot size first. Here, the spot size is given by the back calculation of the complex beam
parameter q(z) defined as [109]

1

q(z)
=

1

R(z)
− i

λ0
πnw(z)

, (4.24)

where R(z) is the ROC of the phase front and λ0 is the wavelength of the beam in the
vacuum. The spot size w(z) is obtained from the imaginary part of q(z). The beam
parameter qf after the propagation in an optical system with the ray transfer matrix
(AT , BT , CT , DT ) can be represented with the initial parameter qi by

qf =
AT qi +BT

CT qi +DT
. (4.25)

I start with the center of the crystal with z = z0 where the beam waist is located, i.e.
R(z0) = ∞ and w(z0) = 5.80 µm. Applying Eq. (4.25) and the ray transfer matrices
for propagation, refraction at a flat surface and reflection at a curved mirror lead to the
desirable z dependence of the pump spot size [194].

Next, I design a lens pair to achieve the divergence of the pump beam which fits the
desired curve as well as possible. The original beam waist and divergence of the pump
laser are obtained with the fitting by the measured spot sizes at different points with
a beam profiler. The lens pair works as a Keplerian telescope and collimator, meaning
that it changes both the spot size and divergence of the incident beam. When the focal
lengths of the input and output lenses are fi and fo, a good interval between the lenses
is ∼ fi + fo. Also, the ratio of the input and output spot size is ∼ fo/fi. I search for
a good position of the first lens and interval between the lenses, repeatedly calculating
the transition of the spot size.

Fig. 4.3 presents the simulated and desirable pump spot size dependent on propa-
gation distance of the beam. The calculated position of the waist inside the pump laser
is the reference of the distance. The solid line shows the simulated spot size with the
measured data of the pump laser and a lens pair. The dashed line gives the desired size
from the waist at the middle of the crystal. The dots are the averages of the measured
spot sizes in x and y directions. Here, fi = 50 mm and fo = 40 mm are used. The
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positions 20 cm and 29.19 cm for the input and output lenses accomplish good sizes and
divergence of the simulated beam compared to the desired characteristics. Note that
fitting the divergence is more important than small differences in the spot size because
it affects the focusing in the crystal more.

4.2.4 Astigmatism compensation with angled mirors

The nonlinear crystal in the short arm cavity has angled surfaces at the Brewster angle to
the incident beam. It allows almost perfect transmissions of the pump and signal beams,
while it results in different effective propagation lengths of the x and y components of
the beam in the crystal. This astigmatism degrades the coherence of the beam, however,
it is known that the angled concave mirrors M1 and M2 can compensate it [195].

Fig. 4.4 shows the simplified illustration of the system. The reference in the prop-
agation direction (z axis) is taken so that the propagation lengths before and after the
short cavity are the same. The mirror angle to the symmetry axis is denoted by θM . tC
is the crystal thickness. v and h represent the vertical and horizontal axes. Here, the
ray transfer matrix for one round trip of the signal beam is written as(

A1 B1

C1 D1

)
=

(
1 lL

2
0 1

)(
1 0

− 2
Rd

1

)(
1 lS

2
0 1

)(
1 td
0 1

)
×
(

1 lS
2

0 1

)(
1 0

− 2
Rd

1

)(
1 lL

2
0 1

)
, (4.26)

where lS and lL are the free-space propagation lengths in and out of the short arm
cavity, respectively. d = v, h is the index for the spatial component of the beam. The
effective ROC of the curved mirrors and the thickness of the crystal dependent on the
spatial axes are given by [195]

Rv =
RC

cos θM
, (4.27)

Rh = RC cos θM , (4.28)

tv =
tC
n2

√
n2 + 1, (4.29)

th =
tC
n4

√
n2 + 1, (4.30)

where RC is the ROC of the concave mirrors. The system can be regarded as the
periodic sequence of the one round trips (4.26). Therefore, the stability condition for
the resonator is given by [196]

−1 <
1

2
(A1 +D1) < 1. (4.31)

The used parameters are n = 2.13, RC = 50 mm and tC = 1 mm. I change lS around
lS = RC = 50 mm. The effective round trip length for the beam is L = 4.8 m, and the
length out of the short cavity is obtained with lL = L− lS − td.
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1st lens

2nd lens

Figure 4.3: The pump spot size dependent on the propagation distance. Solid line: the
simulated spot size with the measured data of the pump laser and a lens pair. Dashed
line: the desired spot size calculated from the waist wp = 5.80 µm at the middle of
the crystal. Dots: mean of the measured spot sizes in vertical (x) and horizontal (y)
directions.

Figure 4.4: Simplified drawing of the system with angled concave mirrors. FM: flat
mirror. CM: concave mirror. θM : mirror angle. tC : thickness of the crystal. The
reference in the propagation direction (z axis) is taken so that the free-space propagation
lengths before and after short arm cavity are the same.
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Fig. 4.5 (a) shows the stability ranges with colored points for both the vertical and
horizontal components of the beam which depend on the short cavity length lS + tC
and mirror angle θM . The regions of stability for both components move in opposite
directions as θM increases. The overlap of the two regions means the stability range
of the signal beam. We see that θM = 5 degrees hence the beam angle of 10 degrees
gives the broadest stability range. 4.5 (b) represents the width of the stability range as
a function of θM . The broadest width for θM = 5 degrees is found to be 504 µm. Thus,
to achieve the stable oscillation of the sub-harmonic pulses, we have to tune the beam
angle to be 10 degrees with a good accuracy, and set the spacing between the concave
mirrors to be within the range with a width of 504 µm in the construction.

4.2.5 Poling period of nonlinear crystal

Next, we design the poling period of the nonlinear crystal which satisfies the type-0 (e +
e → e) QPM condition (4.11). Here, I rewrite the equation so that we can see the explicit
dependence of the quantities on the wavelength and temperature in the degenerate case
(λp = λs/2, λs = λi) as [197]

2π

[
2
ne(λs/2, T )

λs
− 2

ne(λs, T )

λs
− 1

Λ(T )

]
= ∆kopt. (4.32)

∆kopt is the optimum wave vector mismatch dependent on beam focusing [193], although
it is ignored here, i.e. ∆kopt = 0 (plane wave approximation). ne is the refractive index
of the extraordinary wave in 5% MgO-doped congruent LiNbO3, which is determined
with the Sellmeier equation [197]

n2e = a1 + b1fT +
a2 + b2fT

λ2 − (a3 + b3fT )2
+
a4 + b4fT
λ2 − a25

− a6λ
2, (4.33)

where a1 = 5.756, a2 = 0.0983, a3 = 0.2020, a4 = 189.32, a5 = 12.52, a6 = 1.32× 10−2,
b1 = 2.860 × 10−6, b2 = 4.700 × 10−8, b3 = 6.113 × 10−8 and b4 = 1.516 × 10−4. The
temperature dependent parameter fT is defined as

fT = (T − 24.5)(T + 570.82), (4.34)

where the temperature T here is in degree Celsius. Eq. (4.33) gives the results showing
a good agreement with the experiments with telecom and mid-IR wavelengths.

The poling period meeting the QPM condition for the expected degenerate signal
wavelength λs = 1.588 µm is plotted as a function of the crystal temperature in Fig. 4.6
(a). Here I consider the room temperature operation because heating the crystal can be
an additional noise source, though it may allow the self phase-locked operation without
an electric controller for a longer crystal. Also, I expect that the MgO-doped PPLN
crystal is well resistant to the photorefractive damage [198]. A period of 20.4 µm is seen
to achieve phase matching at about 38 degrees. There is a commercialized ready-made
crystal with that period and a thickness of 1 mm (Covesion MSHG1550-1.0), thus I use
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(a) (b)

Figure 4.5: Simulated stability range depending on the short cavity length for a 4.8 m
cavity with curved mirrors with a ROC of 50 mm and a 1-mm long PPLN crystal at
Brewster angle. (a) Stability ranges for the two orthogonal components of the beam and
different mirror angles θM drawn by colored points. (b) Width of the range of the whole
signal beam for varying θM .

(a) (b)

Figure 4.6: Quasi phase matching condition (a) for the poling period and crystal tem-
perature under a fixed degenerate signal wavelength λs = 1.588 µm. (b) That for the
degenerate signal wavelength and temperature in a crystal with a period of 20.4 µm.
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one after having it cut at Brewster angle. The spectral intensities from 790 nm to 798
nm of the pump laser are nearly equal, thus the DOPO will operate in a good range
of temperatures. Fig. 4.6 (b) depicts the phase matching condition for the degenerate
signal wavelength and temperature under a poling period of 20.4 µm. This indicates
that the main spectral components of the pump will allow phase matching up to about
100 degrees.

4.2.6 Gain bandwidth

In the sub-harmonic generation process of pulses, the signal spectrum is expected to
get about twice as broad as that of the pump. Thus, it has to be made sure that the
crystal provides a good gain bandwidth to keep the whole modes down-converted from
the pump. Fig. 4.7 presents the normalized gain spectrum simulated with Eq. (4.13) for
different crystal lengths. Here, I numerically bound ∆k2Q/4 − Γg in the equation to be
positive. The refractive indices for the relevant modes are obtained with Eq. (4.33). A
shorter crystal gives a broader bandwidth, while the spectrum for a 1 mm-long crystal
also keeps nearly its maximum in a large range from 1.54 µm to 1.64 µm. This almost
covers the expected major spectral range of the signal pulses whose peak is at λs = 1.588
µm and FWHM is 50× 2 = 100 nm.

4.2.7 Pulse walk off

The temporal walk off between the signal and pump pulses is a critical factor which limits
the parametric gain with ultrashort pulses. Because the signal and pump wavelengths
are separate, their group velocities can be significantly different. With small durations
of the pulses, the time where they overlap and induce the parametric gain is short.

The walk off can be estimated with the group velocity mismatch defined as the
difference of the inverse group velocities [199]

GVM =

∣∣∣∣ 1

vg,s
− 1

vg,p

∣∣∣∣. (4.35)

vg,s and vg,p are the group velocities of the signal and pump in the nonlinear crystal.
The temporal walk off after a propagation distance L is given by L×GVM . Also, the
efficient nonlinear interaction is present only from the onset of the overlap until the walk
off reaches the pump duration τp. Thus, the propagation length for the interaction is
estimated as τp/GVM . Here, the group velocity can be obtained with Sellmeier equation
(4.33) as [199]

vg = c

(
n− λ

dn

dλ

)−1
, (4.36)

and hence GVM for the pump wavelength λp = 794 nm in LiNbO3 at 38 degrees is
calculated as 2.78 × 10−10 s/m. Accordingly, τp/GVM for 100 fs pump pulses is 0.36
mm and that for 15 fs pulses is only 0.054 mm. Thus, the crystal length of 1 mm is long
for the output pump-pulse duration 15 fs, although I expect some pulse broadening for
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Figure 4.7: Normalized gain spectrum for the signal mode. Different curves are for
different crystal lengths. A 1 mm-long crystal has a good bandwidth for the given pump
laser properties.

the pump due to group velocity dispersion in the optical components such as the HWP,
PBS, OCs, PPLN crystal and dielectric mirror M0 (shown in Fig. 4.1).

4.2.8 Electrical cavity locking system

The pulsed OPO oscillates only in some limited ranges of the round-trip cavity length
whose centers are multiples of the half central wavelength and widths are about 100 nm.
For the continuous operation, the cavity length needs to be locked to the one where
the longitudinal signal mode is resonant and the output signal power is maximal. Here,
an electronic servo controller system (TEM Messtechnik, LaseLock Digital) is used to
stabilize the cavity. It produces the error signal based on the Pound-Drever-Hall method
[200], and applies PID feedback to the cavity length using that error signal.

Fig. 4.8 displays a schematic drawing of the servo controller, It places an electric
sinusoidal modulation of several kHz on the PZT with the internal local oscillator. The
modulated detector output has the information of the differential power of the signal
and undergoes the synchronous detection. Here, it is mixed with the modulation signal,
then the error signal is detected as the DC output after passing through the low-pass
filter. The integral term in the PID feedback signal gets indispensable when there is
some drift noise in the system.

4.2.9 Other information of the system

Here I describe some missing information of the system drawn in Fig. 4.1. The mirror
M0 is a dielectric mirror with a high transmission for the pump (T > 90% in 750 - 850
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Figure 4.8: A schematic of the servo controller used to keep the signal output power
maximum.

nm) and a high reflectivity for the signal (R > 99.8% in 1500 - 1700 nm). Each output
coupler OC is a beamsplitter which has 10 % reflection of the signal and about 20 %
for the pump. The optical filter is long-pass so that PDs pick only the signal pulses. To
change the operating point, I sometimes replace the filter in front of PD1 with a band-
pass filter with a narrow bandwidth of 12 nm. PD1 (Thorlabs PDA20C) is a InGaAs
detector with a bandwidth of 5 MHz to see the average power of the signal pulses. I
call it “slow detector” afterwards. PD2 (Newport 818-BB-51) is an extended InGaAs
detector with a cut-off frequency of 12.5 GHz. This measures the intensity of each signal
pulses coming from the unequal-arm Michelson interferometer in front. I call this “fast
detector”. The interferometer superposes pairs of spatially adjacent signal pulses picked
from the OPO.

4.3 Operation of a 16-Pulse OPO with Telecom Wave-
lengths

The construction and operation of a pulsed OPO are performed in the two modes.
First, I run the system in the scanning operation, where the cavity length is scanned
over hundreds of micrometers with a periodical triangular modulation signal (at about 1
Hz). This modulation is applied to another PZT stage (with Newport NPM140) on M3
in Fig. 4.1. This mode is used for (i) the alignment for the parametric oscillation and fine
tuning and (ii) the characterization of the longitudinal modes and oscillation threshold.
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Next, I move to the continuous operation, where the OPO keeps the maximum power in
one longitudinal mode with the servo controller. I define the oscillation threshold of the
OPO as the pump power where all the oscillation peaks get invisible, and it is 113 mW
for the system with two OCs here.

4.3.1 Cavity modes in scanning operation

A well-aligned system gives some resonant longitudinal down-converted modes in the
scanning operation as shown in Fig. 4.9. Here, the cavity has two 90:10 output couplers
as shown in Fig. 4.1, and the average pump power is 300 mW. The normalized signal
power at the slow detector has separate peak structures with their intervals about a half
wavelength (∼ 0.79 µm). I call them oscillation peaks afterwards, and put numbers on
the three highest peaks. The reference of the cavity length is set as the one at the top of
the highest peak. The number of resonant peaks increases as the pumping power rises.
Peak 1 is the degenerate peak and has the narrowest range of resonant cavity lengths
in the three. It is probably because the degenerate peak has a narrower spectral range
of the oscillating modes than a non-degenerate peak which has separate signal and idler
spectral peaks. Peak 3 is a totally non-degenerate peak. We can see a small dip in peak
2, indicating that it has both degenerate and non-degenerate components [189].

4.3.2 Power stability in continuous operation

Next, the servo controller is turned on and the cavity is locked to the top of the highest
peak (peak 1). Fig. 4.10 depicts the stability of the average output power in time. We
see that the system achieves a stable continuous operation with the fluctuation up to
about 20% of the average power. This fluctuation includes the fictitious electric noise
in the detector and the oscilloscope and the small modulation from the controller with
a frequency of 8.5 kHz. The fine structure of the peak also affects the magnitude of the
fluctuation. In addition, the resonant cavity length drifts in time possibly because of
the temperature drift of the coolant in the cooling system due to a large thermal burden
of the pump laser. This seems to be a major noise source in the continuous operation.
However, the integral feedback signal can well compensate for the drift, and the system
can keep the oscillation as long as the peak stays in the travel range of the fast PZT
(∼ 15 µm).

4.3.3 Pulse pattern

The fast detector and the filter is put before the interferometer, and the pulse envelope
patterns of oscillation peak 1, 2 and 3 are measured as in Fig. 4.11 (a), (b) and (c),
respectively. Unsplit signal pulses for all the longitudinal modes are considered to be
good signs of a broad gain bandwidth of the crystal and the self-phase-locking among the
comb lines. While peak 1 and 3 give stable pulses, those for peak 2 have some instability
in their tail shapes and peak powers. It also indicates that peak 2 contains comparable
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Peak 1

Peak 2

Peak 3

Figure 4.9: Average power of the OPO output dependent on the cavity length, showing
longitudinal oscillation peaks. The average pump power is 300 mW.

Figure 4.10: Temporal stability of the average output power of the OPO locked to the
strongest oscillation peak. The average pump power is 300 mW.

(a) (b) (c)

Figure 4.11: Temporal pulse envelopes for (a) peak 1, (b) peak 2 and (c) peak 3. The
average pump power is 300 mW.
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degenerate and non-degenerate components, because it appears that the fluctuation in
(b) is of more than GHz and other physically inessential noises are not that fast.

4.3.4 Output power

The average powers of the three strongest peaks as functions of the pump power are
presented in Fig. 4.12. The signal power is measured with the output port from OC2.
OC1 and PD1 are also used to lock the cavity. The mode of Peak 2 oscillates with a
smaller pump power than peak 1 probably because peak 2 has a broader wavelength
range in the optical spectrum. However, the mode of peak 1 has a larger nonlinear gain
hence a large external quantum efficiency than that of peak 2. On the other hand, those
for peak 2 and 3 are close. Considering the phase matching, this indicates that peak
1 is degenerate while the major components of peak 2 and 3 are non-degenerate. The
efficiencies are 1.8, 1.3 and 1.2 % for peak 1, 2 and 3, respectively. Such small values
are because of a small reflection rate of 10 % of OC2 and the existence of two OCs in
the system. In the case of only one output coupler, the threshold is 85 mW. Another
factor in the restriction of an efficient conversion is the sum frequency generation, which
consumes the pump and signal then generates a bright green beam in this experiment.

4.3.5 Spectrum

The output beam from OC2 is coupled to a multi-mode fiber and directed into an optical
spectrum analyzer. The optical spectrum is measured as the average of 1000 sweep data
and shown in Fig. 4.13 for the three oscillation peaks. We see that the spectrum for
peak 1 is degenerate. Its peak wavelength and FWHM are 1574 nm and about 80 nm.
Those for peak 2 and 3 have two separate spectral peaks, meaning that they are non-
degenerate. Here, peak 2 has more spectral components including small spikes around
the sub-harmonic wavelengths centered at 1588 nm. While the data is taken under the
stable locking at the top of each oscillation peak, a large fluctuation sometimes makes
the spectrum of peak 2 instantly switch to a single-peak structure like that for peak
1. This suggests that the second highest top in the right of peak 2 in Fig. 4.9 is a
degenerate or intermediate mode as the previous study referred to [189].

4.3.6 Pulse duration

The temporal pulse duration for the degenerate signal mode (peak 1) is obtained by
the autocorrelation measurement with a Michelson interferometer. Here, an interference
fringe via the two-photon absorption in a Si detector (Thorlabs PDA36A) is depicted in
Fig. 4.14. The measured FWHM of the trace is 127 fs. When assumed as a sech2 pulse,
the sub-harmonic pulses have a duration of 80 fs [199], corresponding to about 15 optical
cycles. The spectral width of degenerate pulses in frequency is 9.6 THz, thus a pulse
length of 32.7 fs is expected for a transform-limited sech2 pulse [199]. I presume that
the deviation of the measured duration from that in the transform limit mainly comes
from the GVD and chirping on the pump pulses at the power controlling part (HWP:
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Figure 4.12: Average output powers of the tops of the three oscillation peaks dependen-
dent on the pump power. One of the two output couplers with 10% reflection is used to
take the signal.

Figure 4.13: Optical power spectra for the three oscillation peaks.
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Figure 4.14: Autocorrelation trace of the two-photon absorption for the degenerate OPO
pulses.

Thorlabs AHWP10M-980, PBS: Newport UPBS-1). The duration of the pump pulses
coming from OC2 has been measured with a GaAsP photodiode (Hamamatsu G6262)
and found to be 44 fs, which is much larger than the value in the specification (15 fs).

4.3.7 Coherence property

The ring cavity contains 16 spatially separate signal pulses with the repetition rate 1
GHz. It is expected that the mode-locked pump pulses have a good phase correlation thus
there is a good coherence between degenerate OPO pulses, which oscillate with one of the
two relative carrier phases 0 and π. It is measured with the unequal-arm interferometer
which couples adjacent pulses. The difference of the arm lengths is locked so that the
output power of interfered pump pulses is nearly at the maximum, using another channel
of the servo controller. Fig. 4.15 shows two examples of patterns of the interferometer
output pulses in the degenerate signal mode measured with the fast detector. When two
adjacent DOPO pulses have the same phase state, the interferometer output pulse has a
high intensity. If they are of different phase states, the output pulse is low-intensity. The
period of pulse patterns is about 16 ns, meaning sixteen oscillating DOPO pulses in the
cavity. In (a), the arm length is kept so that the interference output has a high visibility.
The pulses are detected with an interval of 1 ns, and the low-intensity interfered pulses
are of the power level comparable with pulse tails and noise. The power fluctuation
high-intensity pulses is up to about 10% to the maximum. The data indicates that the
DOPO pulses in the whole ring cavity are well described by the two phase states and
keep the phase coherence [187]. Fig. (b) is another example with a detuned arm length
hence a lower visibility so that the low-intensity pulses are visible. The pulse intensity
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(a) (b)

Figure 4.15: The interference output of pairs of adjacent DOPO pulses. (a) A high-
visibility example. (b) A low-visibility example. High-intensity pulses come from pairs
of in-phase pulses. Low-intensity pulses are because of pairs of out-of-phase pulses. Each
pulse randomly takes a relative phase of 0 or π, leading to a random pulse-intensity
configuration at every operation.

hence the phase state configuration holds up without a large fluctuation in the average
power. The pattern changes with every oscillation, meaning the random choice of binary
phases [201] by each pulse.

4.4 Summary

I designed and operated a 16-pulse degenerate femtosecond OPO for a coherent Ising
machine. The system has a 4.8 m ring cavity and a pulse repetition rate of 1 GHz. The
servo controller with PID feedback can stably lock the cavity length to the tops of the
longitudinal oscillation peaks. The telecom-band frequency comb has a 9 THz spectral
bandwidth and a peak wavelength of 1.58 µm. The oscillation threshold for the system
with two 90:10 output couplers is 113 mW. The mode-locked Ti:sapphire pump laser has
an average output power as large as 1.6 W, thus I can increase the number of output
couplers and implement the mutual injection among the DOPO pulses. The degenerate
pulses randomly take one of the binary phase states and keep the phase coherence over
the whole cavity by self-phase-locking among the comb modes. This enables the time-
division multiplexing implementation of the coherent Ising machine, which assigns each
spin in the simulated Ising model to binary phase states of each DOPO pulses.
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Chapter 5

Demonstration of Coherent Ising
Machine with Time-Multiplexed
DOPO Networks

In this chapter, I present the results of the two projects for the first-time and second-
time experimental demonstrations of the coherent Ising machine based on DOPOs. The
first experiment [202] has been conducted in Byer laboratory at Stanford University and
in collaboration with Dr. Alireza Marandi. Here, the network of four 2 µm DOPO
pulses are implemented with a single ring cavity, and three optical delay lines are used
to couple all the pulses. The smallest instance of an NP-hard problem is programmed,
and the result has shown no computational error. The second demonstration in RIKEN
has been performed with a 16-pulse DOPO of telecom wavelengths. Here, the couplings
along with the 1-D ring structure and a cubic graph are implemented with two and
three delay lines. The ground states for the Ising models on the ferromagnetic ring,
anti-ferromagnetic ring and the anti-ferromagnetic cubic graph have been obtained with
probabilities of as high as 99.8 %, 99.7 % and 99.8 %, respectively.

5.1 Background

5.1.1 Short introduction

There are many non-trivial tasks in our daily life and business, such as planning an effi-
cient travel route, doing efficient packing, arranging a good rotating roster and designing
a compact electric circuit [5, 27]. They can be modeled as combinatorial optimization
problems [11], however, many of them are believed to be computationally difficult. Such
problems belong to the complexity classes called non-deterministic polynomial (NP)-
complete and NP-hard problems, and it is believed that they require a computational
time scaling exponentially with the number of input variables (called problem size).
Efficient schemes to compute these problems have been extensively searched for.

One of the most familiar combinatorial optimization problems relevant with physics
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is finding a ground state of the Ising Hamiltonian

H = −
N∑

i,j=1

Jijσiσj −
N∑
i=1

hiσi. (5.1)

Here, σi = +1,−1 is a normalized eigenvalue of a 1/2-spin and called an Ising spin, and
Jij determines the order and magnitude of magnetic interaction. hi denotes a magnetic
field affecting the energy of each spin. This problem is called Ising problem here, and is
important to understand mysterious properties of spin glasses and magnetic disorders.
However, the task for planer systems with external fields and for three-dimensional
systems has been proven to be NP-hard [3]. Also, their decision problem versions are
NP-complete. Many NP-complete and hard problems such as the MAX-CUT problem,
graph partitioning problem and some families of SAT problems can be reduced to the
Ising problem [23, 203]. Thus, the physical realization of an efficient simulator and
computer for the Ising model will be of a wide range of applications.

Meta-heuristic algorithms originating from physics have also been vastly studied to
attack these intractable problems. Simulated annealing (SA) [82] is one of the most
prevalent and successful schemes in practice. Quantum annealing (QA) [80, 81] has
been proposed as a method which can potentially give better solutions than SA. The
commercial hardwares to physically perform QA has also been quickly developed [93–96],
although there is still controversy over its true performance [97]. Adiabatic quantum
computation [83, 85] is closely related to QA and based on the Hamiltonians of adiabatic
systems. Here, some attempts [87, 88] are made to avoid the transition [86, 89] from a
ground state to an excited state mainly due to the closing energy gap between them.

We have recently proposed a computational system [98, 99], called a coherent Ising
machine, based on a laser network with mutual injections for the Ising problem. In the
system, the circular polarization of each injection-locked laser is regarded as an artificial
spin. In addition, the mutual injections between the lasers induce the optical coupling
emulating Ising interaction. The Ising Hamiltonian is mapped to the effective total gain
per photon in the coupled oscillator system, and the system is expected to self-organize
for the minimum gain, meaning the maximum number of intracavity photons. However,
it has been found that the complex instances lead to almost the same photon numbers
of the two circular modes in some lasers, and this is the major source of computational
errors [102]. It is because lasers do not have intrinsic phase-ordering forces in themselves.

5.1.2 Phase transition in DOPOs

The bistable nature of the DOPO field is the key to improve the performance of a
coherent Ising machine [103]. Fig. 5.1 shows the schematic of the non-equilibrium phase
transition in the distribution function for the complex field amplitude written as α. In a
single DOPO pumped below the oscillation threshold, the fluctuation in the component
of the real axis (corresponding to (â+ â†)/2) is magnified, while that for the orthogonal
component ((â− â†)/2i) is damped (squeezed vacuum). When the pumping power gets
above the threshold, the distribution is divided into the two parts whose phases are
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Figure 5.1: Schematic illustration of the optical field for an OPO pumped (a) below the
threshold and (b) above the threshold

differed by π. Here, the state synchronizing the pump is written as {|0⟩} ≡ {0}, and
that with the opposite phase denoted by {|π⟩} ≡ {π}. The Ising machine assigns σi = +1
to {0}i and σi = −1 to {π}i in the DOPO pulse #i.

5.1.3 Gradual pumping scheme of the Ising machine

We have proposed the operational scheme named gradual pumping [100, 202], which
helps the system oscillate at the state with the minimum total gain corresponding to the
exact or approximate ground states of the mapped Ising Hamiltonian [Fig. 5.2]. Here,
the pumping power into the system is slowly increased. In the system, the effective loss
landscape is considered to be realized when the mutual injection paths are implemented.
When pumped below the oscillation threshold [Fig. 5.2 (a)], the DOPO network has the
squeezed vacua only weakly correlating with each other in the real components. When
the pumping power is increased and approaches the net oscillation threshold, the state
with the minimum gain will oscillate after the phase transition [Fig. 5.2 (b)]. Further
rising the pump will lead to deamplification of other states with the gain saturation.

5.2 Experiment on the 4-pulse system

5.2.1 Setup and implementation

Here, I describe the first experimental demonstration of a coherent Ising machine for 4-
spin systems with a 4-pulse DOPO [202], which has been conducted in Stanford Univer-
sity. Fig. 5.3 displays the schematic of the system. The system is based on time-division
multiplexing with the DOPO pulses running in a single ring cavity. The pump laser
(Menlo Systems Orange) is a mode-locked Yb-doped fiber laser emitting pulses with a
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Figure 5.2: Mapped energy and probability landscapes in the DOPO network (a) below
the threshold and (b) above the threshold, illustrating the gradual pumping scheme.

duration of about 80 fs, a central wavelength of 1045 nm and a repetition frequency of
250 MHz. A mechanical chopper (CP) is placed in front of the pump laser and period-
ically blocks the pump beam with a frequency of ∼ 1 kHz. This high-speed switching
enables many independent trials. Also, the pump beam has a finite spot size of about
1 mm, thus the chopper gives a rise time for the average pump power (10 % - 90 %
of the maximum) of 180 µs. It achieves the gradual pumping. The round-trip length
of the ring cavity composed of M1 - M4 are 4.8 m. Thus, it contains four independent
degenerate signal pulses at regular spatial and temporal intervals (1.2 m and TR = 4 ns
for each). The dielectric mirror M1 transmits 99.8 % of the pump power while reflects
99 % of the signal. The mirrors M3 and M4 are gold-coated concave mirrors with a
radius of curvature of 50 mm. These focus the pump and signal beam at the nonlinear
crystal and achieve a large parametric gain. The nonlinear crystal is a MgO-doped 1-mm
periodically poled lithium niobate (PPLN) with a poling period of 31.254 µm and put
at the Brewster angle. Tuning the cavity length enables the degenerate operation with
the type 0 (e + e → e) quasi phase matching. The degenerate signal pulses [188] have
a central wavelength of 2090 nm, a spectral width of 91 nm and a pulse duration of 85
fs.

The couplings between the DOPO pulses are implemented with the three pairs of
output and input couplers in the cavity. Each of them has a reflection of ∼ 4% in power
of DOPO pulses. It means that the pairs of output and input couplers result in ∼ 4% of
field couplings between them. Fig. 5.4 illustrates the couplings given by different delay
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Figure 5.3: A schematic of a coherent Ising machine based on a 4-pulse DOPO. The
pump laser is a femtosecond fiber laser with a center wavelength of 1045 nm. The
three delay lines implement the optical coupling between the pulses. An unequal-arm
Michelson interferometer measures the relative phases of adjacent DOPO pulses.

lines in Fig. 5.3. Delay 1 feeds back the pulses with the shortest temporal delay TR = 4
ns and couples OPOn to OPOn+1, giving (J12, J23, J34, J41). Delay 2 is twice as long as
Delay 1 and gives the mutual injections between OPOn to OPOn+2 (J13, J24, J31, J42).
Delay 3 is for the couplings from OPOn to OPOn+3 (J14, J21, J32, J43).

The measurement is achieved with the unequal-arm Michelson interferometer. The
path length difference is the spatial interval of the pulses (1.2 m), thus the interferometer
output after the long-pass filter gives the relative phases between adjacent DOPO pulses.
When an output pulse has high and low intensities, the adjacent pulses interfered are in-
phase and out-of-phase, respectively. I write the high- and low-intensity output pulses as
[1] and [0] here. We measure both the intensity of each output pulse with a fast detector
and their average power with a slow detector. The output coupler for the interferometer
has a reflection of ∼ 15%.

Fig. 5.5 presents all the possible output pulse patterns measured with a fast detector.
The measured intensity configuration of each pattern (e.g. [0000]) is written above the
corresponding graph. There are four DOPO pulses oscillating in the cavity, thus the
period of the patterns is four times of the repetition period (4TR = 16 ns). Here, we
do not have a time reference in the measurement hence we do not distinguish a pulse
pattern and its cyclic permutations. Table 5.1 gives all the possible phase states of
the four DOPO pulses and corresponding interferometer pulse patterns and average
powers. Here, Im denotes the maximum power in terms of phase states. Considering
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Figure 5.4: Illustration of the couplings between DOPO pulses with the optical delay
lines. Delay 1, 2 and 3 give (J12, J23, J34, J41), (J13, J24, J31, J42) and (J14, J21, J32,
J43), respectively.

cyclic permutations, we see that the output pulse patterns [0000], [1100], [1010], [1111]
originate from 2, 8, 4 and 2 phase states, respectively. On the other hand, the average
power can have the three distinct levels (0, Im/2 and Im) according to the numbers of
high-intensity output pulses ([1]s).

We use servo controllers which produce the error signals from the detector readouts
with the Pound-Drever-Hall technique [200] and place their proportional feedback to
lock the optical paths. The average power of DOPO pulses is harnessed to lock the main
ring cavity. The interference output powers of the pump pulses coming out from ICs
and the Michelson interferometer are utilized for the delay lines and the interferometer,
respectively.

5.2.2 Result

First, we drive the system with the delay lines blocked for a test of the randomness
[201] of the binary phase states {0} and {π} in the DOPO pulses. Here, the 4-pulse
phase states are expected to be distributed uniformly. The resulting ratio of frequencies
of the interferometer output pulse patterns [0000], [1100], [1010] and [1111] reflects the
numbers of corresponding phase states hence is 2 : 8 : 4 : 2 = 1 : 4 : 2 : 1 as seen in
Table 5.1. Same applies to that of the output average intensity levels 0, Im/2 and Im,
and it will be 2 : 12 : 2 = 1 : 6 : 1. Fig. 5.6 (a) presents the slow detector readout in
this case. The system is turned on every 1 ms and held for 500 µs by the chopper. The
low, middle and high levels of the PD output correspond to these expected, i.e. 0, Im/2
and Im, respectively. The numbers of them in the graph are 5, 34 and 5, which well
reproduce the expected ratio. Fig. 5.6 (b) displays the frequencies of the interferometer
output pulse trains out of 1000 independent trials. The error of the measured counts for
every pattern from the expected is within 20 counts. It also represents the randomness
and independence of the binary phase states in the DOPO pulses.

Next, we implement an instance of an NP-hard problem in the system. Here, we
introduce all the delay lines and set all the coupling phases to π, i.e. Jij ∈ R and
Jij < 0 with the servo controllers. The OCs and ICs for the delay lines all give the same
reflection rate, thus the well-aligned system implements almost the same magnitude of

103



Chapter 5. Ising Machine with Time-Multiplexed DOPO Networks

Table 5.1: Measurement of phase states
Phase state Interferometer Average

pulse pattern intensity

{0000} [1111] Im
{π000} [1001] Im/2
{0π00} [0011] Im/2
{ππ00} [1010] Im/2
{00π0} [1001] Im/2
{π0π0} [0000] 0
{0ππ0} [0101] Im/2
{πππ0} [1100] Im/2
{000π} [1100] Im/2
{π00π} [0101] Im/2
{0π0π} [0000] 0
{ππ0π} [1001] Im/2
{00ππ} [1010] Im/2
{π0ππ} [0011] Im/2
{0πππ} [0110] Im/2
{ππππ} [1111] Im

the couplings. It emulates the uniformly anti-ferromagnetic Ising model of four spins in
the tetrahedral lattice, and corresponds to the smallest instance of the NP-hard MAX-
CUT problem in cubic graphs. The solutions of the instance are two {0}s and two {π}s,
which are shown as the blue entries in Table 5.1. Also, it exactly corresponds to the
output pulse patterns [0000] and [1010]. Fig. 5.7 (a) depicts the slow detector output for
the NP-hard instance. Only low and middle intensity levels are seen. Their frequencies
13 and 29 out of 42 trials nearly correspond to the expected ratio 1:2 for 0 and Im/2
seen in Table 5.1. However, Im/2 corresponds to both answer and non-answer states,
thus we need to see the fast detector signal to evaluate the success rate in this case. Fig.
5.6 (b) shows the necessary histogram of the interferometer pulse patterns out of 1000
runs. The measured patterns are distributed to only the answer states [0000] and [1010],
and no computational error is obtained. It indicates the potential of the precisely tuned
system for more complex problems.

5.3 Experiment on the 16-pulse system

5.3.1 Implementation

The computational possibility of the coherent Ising machine based on pulsed DOPOs
is further investigated using another medium-scale system. Here, we continue to adopt
a free-space femtosecond pulsed DOPO. The system is not subject to significant group
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Figure 5.5: All the possible pulse patterns of the output of the unequal-arm Michel-
son interferometer in the 4-DOPO system. We do not have a time reference in the
measurement hence we do not distinguish a pulse pattern and its cyclic permutations.

(a) (b)

Figure 5.6: (a) Slow detector readout and (b) histogram of the measured interferometer
output pulse patterns for the system with no mutual injection. The expected frequencies
of the low, middle and high intensities of the detector signal in (a) is 1:6:1. That for the
output pulse trains [0000], [1100], [1010] and [1111] in (b) is 1:4:2:1.
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(a) (b)

Figure 5.7: (a) Slow detector readout and (b) histogram of the measured interferometer
output pulse patterns for the system with out-of-phase couplings between all the DOPO
pulses via the three delay lines. Here, the MAX-CUT problem for the four-node complete
graph is programmed in the system. The expected frequencies of the low, middle and
high intensities of the detector signal in (a) is 1:2:0. That for the output pulse trains
[0000], [1100], [1010] and [1111] in (b) is 1:0:2:0. No errorneous pattern is obtained in
1000 independent trials as seen in (b).

velocity dispersion and third-order nonlinear effects [199] which might be strong in other
technical candidates such as optical fibers and planer wave circuits, and hence allows a
simple setup. Fig. 5.8 depicts a schematic of the 16-pulse DOPO Ising machine studied
here. Here, we use a mode-locked Ti:sapphire femtosecond pulse laser with a repetition
rate of 1 GHz (Laser Quantum, Taccor 10s) for the pump so that the system contains 16
resonating DOPO pulses in the ring cavity with the same length as that utilized in the
previous section (4.8 m). The spatial and temporal interval between the pulses are 30 cm
and 1 ns. The central wavelength of the pump is 794 nm, whose subharmonic is in the
telecom band [189]. The pump pulse duration is specified as 14 fs at the output shutter,
while the evaluated pulse length with an autocorrelation measurement is 44 fs. It is
possibly because of the group velocity dispersion and chirping at the power controlling
part composed of a half wave plate (HWP) and polarizing beam splitter (PBS). The
mirror M0 is a dielectric mirror which has a high transmission rate for the pump of
T > 90% in 750 - 850 nm and a high reflection rate for the signal of R > 99.8% in 1500 -
1700 nm. The spot size and divergence of the pump beam is matched to the short cavity
comprised of the two concave mirrors M1 and M2, to minimize the oscillation threshold
of the DOPO. The radius of curvature of M1 and M2 is 50 mm. The nonlinear crystal
placed at Brewster angle is a 1 mm thick MgO-doped PPLN with a poling period of
20.4 µm, which meets the type-0 (e + e → e) quasi phase matching condition for 1588
nm at 38 degree Celsius. All the input and output couplers (ICs and OCs) are 1 mm
thick plate beamsplitter with a reflection of R ∼ 10% for the sub-harmonic wavelengths.
PD1 is a slow detector for the average signal power and is used for monitoring and
cavity stabilization. The main servo controlling system (Controller 1, TEM Messtechnik,
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Figure 5.8: A coherent Ising machine based on a 16-pulse DOPO. The pump laser is a
Ti:sapphire femtosecond pulse laser with a center wavelength of 794 nm. The two servo
controllers are used to operate the system stably under the operation of the chopper.
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LaseLock Digital) places a PID feedback based on the Pound-Drever-Hall error signal to
the cavity length via the piezoelectric transducer (PZT). The mechanical chopper (CP)
enables automated and independent trials, while the resulting abrupt changes in the
PD output induce some instability in the cavity locking by Controller 1. We thus use
another servo controlling circuit with a very low cut-off frequency (Controller 2). Here,
we put another small and relatively fast modulation of 20 kHz on the fast PZT channel
of the pump laser, then the circuit gives the proportional feedback with the fast error
signal to the slow PZT channel. The measured central wavelength and -3 dB spectral
width of the strongest degenerate signal mode is 1574 nm and 80 ns. Its pulse duration
is 80 fs. Each pair of an IC and OC establishes an optical delay line and provides ∼ 10%
field couplings between the DOPO pulses. Delay 1 is 30 cm-long and gives the couplings
from OPOn to OPOn+1 and Jnn+1. Delay 2 is 4.5 m-long and gives the couplings from
OPOn+1 to OPOn and Jn+1n. Delay 3 is 2.4 m and provides the couplings between
OPOn and OPOn+8, corresponding to Jn n+8(mod 16). The oscillation threshold of the
system with only PD1 and the interferometer is 113 mW, an that including the three
delay lines is 334 mW. The unequal-arm interferometer is again for the measurement
of the relative phases between adjacent signal pulses via both a slow and fast detector.
The servo controllers of the same model as Controller 1 also lock the interferometer and
delay lines with the interference of the pump pulses, although they are omitted from the
figure for simplicity.

5.3.2 Result

Random phase states of each pulse

I show the result of the experiment on the 16-pulse OPO Ising machine. Here, I drive the
system with the DOPO pulses in an even frequency state, which keeps the fixed carrier
phase with every round trip. In this case, the number of high-intensity pulses of the
interferometer output never fails to be an even number. First, I introduce delay 1 and
2 and drive the system with them blocked. The pump power is 2.5 times the oscillation
threshold. Fig. 5.9 (a) displays an example of the interferometer output pulse patterns
measured with the fast detector. The period of 16 pulses (∼ 16 ns) in the pattern means
the system contains as many pulses. The binary intensity levels indicate that the signal
pulses are degenerate. An even number of high-intensity pulses (eight here) suggests
that the DOPO pulses have an even frequency state. The power fluctuation of about
5 % mainly reflects that of the pump laser and the fine structure of the cavity length
dependence of the DOPO pulse intensity. I observed various pulse patterns in an even
frequency state via 100 automated measurements.

When we consider to test the randomness of the binary phase states, the possible
output pulse patterns is too many to list. Here, I use the average power of the interfer-
ometer output under the chopping with a frequency of 60 Hz. Fig. 5.9 (b) is the average
power normalized by the twice of the mean of the DOPO signals (with the chopper
open). Here, the number of high-intensity pulses are even thus the normalized average
power is discretized to n/8 (n = 0, 1, . . . , 8). The change in the average power at restarts
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(a) (b)

(c)

Figure 5.9: Detector readouts for the system without the mutual injection. (a) An
example of the interferometer pulse patterns measured with the fast detector. (b) The
average output power under the chopping with a frequency of 60 Hz. (c) Distribution
of the average output power out of 1500 trials.
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is seen, indicating that the DOPO pulses are damped at each blocking of the pump by
the chopper.

5.9 (c) presents the probabilities of detecting the normalized output power levels out
of 1500 independent trials. The measured data is close to that in the case of random
phase states calculated by the brute-force counting. The observation here supports the
randomness and independence of the binary phase states of each DOPO pulse.

Phase locking by injection with a single delay line

Next, I introduce the shortest delay line and run the system without the chopping. 5.10
(a) and (b) depict the fast detector outputs of the signal interference in this case. Tuning
and locking the length of the delay line with the pump interference enable us to obtain
the DOPO pulse with the in-phase and out-of-phase order at steady states as represented
in 5.10 (a) and (b), respectively. The locking points for the in-phase and out-of-phase
order appear alternately because the center wavelength of the pump is about twice longer
than that of the sub-harmonic mode. 5.10 (c) is a slow detector readout of the signal
interferometer output when the delay path length is scanned with a PZT. The high- and
low-level signal correspond to the states in the in-phase and out-of-phase order (5.10 (a)
and (b)). The maximum path detuning of 12 µm is computed by the specification of
the PZT. It corresponds to about 7.6 cycles for the carrier wave at the sub-harmonic
wavelength 1.574 µm, giving a good agreement with the number of interference cycles in
the figure. The slopes in the graph are possibly because of different extents of overlaps
between the pulses for different locking points, in terms of the peak amplitudes and
chirping. The graph has been obtained by decreasing the detuning, while that acquired
by increasing it gives the levels corresponding to the erroneous states referred to later.

Phase states in the case of two delay lines

Then, I unblock delay 1 and 2 and implement the mutual injections which bidirectionally
couple the DOPOs along with the one-dimensional ring. The 60Hz-chopping of the pump
is turned on, and the probability to obtain a ground state of the 1-D ring Ising Hamilto-
nian (success probability) is evaluated for both the ferromagnetic and anti-ferromagnetic
cases. Here, the locking points of the delay lines significantly affect the performance
probably due to the residual coupling phases arising in each frequency component when
the resonator pulses and the feedback pulses do not completely overlap. Fig. 5.11 shows
the examples of the fast detector outputs from the interferometer in the case of in-phase
mutual injections emulating the ferromagnetic Ising model (Ji i+1 ≈ Ji+1 i > 0). I add
an schematic mapped spin configuration expected from each pulse pattern. The phase
states with the global in-phase order identified by Fig. 5.11 (a) are the most probable,
and the power fluctuation here is smaller than that seen in the unidirectional injection
case (Fig. 5.10 (a)). On the other hand, some excited phase states are detected with a
finite probability. Major erroneous states have two domains of in-phase DOPO pulses
corresponding to two ferromagnetic domains as shown in Fig. 5.11 (b) and (c). The
real-time observation of the fast detector output indicates that patterns similar to Fig.
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(a) (b)

(c)

Figure 5.10: The temporal interferometer output power for the system with a single
delay line. (a) Fast detector readout in the case of in-phase unidirectional couplings.
(b) That for out-of-phase unidirectional couplings. (c) Slow detector readout under the
scanning of the delay path length.
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5.11 (b) are dominant when the success probability is high. It suggests that the deviation
of the coupling phase from zero is very small in each delay line hence the phases of the
boundary pulses are stable. Meanwhile, the error rate depends on the locking points and
can be relatively high. In this case, we see pairs of sequential output pulses whose powers
are not binary, as shown in Fig. 5.11 (c). Their powers also vary in time, indicating that
the phase of the pulse at the domain boundary gets unstable due to the residual cou-
pling phases in the delay lines. Same applies also to the case of the out-of-phase mutual
injections (emulating the anti-ferromagnetic Hamiltonian Ji i+1 ∼ Ji+1 i < 0) as shown
in Fig. 5.12. Fig. 5.12 (a) comes from the stablest phase-state configuration with the
global out-of-phase order, while major excited phase states like in Fig. 5.12 (b) indicate
two anti-ferromagnetic domains. When the locking points are not good ones, the phases
of the boundary pulses rotate and output peak powers around them get non-discrete.

Success probability in emulation of one-dimensional Ising model

The ground states of the emulated one-dimensional Ising model can be identified by
the average power measured with the slow detector, as seen in the previous figures. In
the ferromagnetic case, the only interference pulse pattern giving the maximum average
power (Imax) corresponds to the two ground states, and the other states all denote excite
states. When the couplings are anti-ferromagnetic, all the interference peak powers
hence the average power gets minimum (Imin ∼ 0) in the case of the two ground states.
The average power difference between the answer and non-answer states is at least
(Imax − Imin)/8, thus we can tell apart a success and failure as done in Fig. 5.9 (b)
and (c). I take the data for 1200 trials in 10 times (2 s for each record) for both the
ferromagnetic and anti-ferromagnetic cases and estimate the success probabilities. The
path length of the interferometer is locked to the one where the average pump power is
maximum during all the measurements.

Fig. 5.13 (a) presents the normalized average interferometer output power of the
signal when the ferromagnetic 1-D Hamiltonian is programmed in the system. The
maximal level obtained by each restart corresponds to Imax and fluctuates by less than
±5% to the mean level, except for the last peak. Its level is less than 0.875 thus denotes
an error. However, it originates from the instant degradation of the visibility of the
interferometer due to environmental noise. Fig. 5.13 (b) shows the average power of
the pump interference. Here, we see that the last two peaks give lower visibilities than
the other ones. Such errors are detectable and do not reflect the essential performance
of the machine, thus we discard them. Also, a peak where its power relaxes onto the
optimum by tuning off is counted as a success. Under the good locking condition, we
have obtained 1193 successes and 7 failures out of 1200 trials. 5 failures have been found
to be due to low visibilities of the interferometer, thus the estimated success probability
is 1193/1195 ∼ 99.8%.

Fig. 5.14 (a) depicts the average signal output power for the anti-ferromagnetic
case. The PD signal here is normalized by the maximum level in the ferromagnetic
case. The level of the arrowed peak is higher than the others by ∼ 0.1 thus this peak
is detected as an error. The corresponding average pump interference output is shown
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Figure 5.11: Fast detector readouts of the interferometer output for the 16-DOPO pulse
system with the bidirectional in-phase couplings in the form of the one-dimensional
ring. The performance depends on the temporal inteference between the cavity pulses
and injected pulses. (a) The stablest state corresponding to the ground state of the
ferromagnetic Hamiltonian. (b) An excited state with two domains of in-phase pulses.
(c) An excited state seen when the locking points of the delay lines are not good. Finite
residual coupling phases rotate the phases of the boundary pulses and make the output
peak powers non-disrete around them. The mapped spin configuration for each output
is added.

(a) (b) (c)

Mapped spin configuration Mapped spin configuration Mapped spin configuration

Figure 5.12: Fast detector signal of the output for the 16-DOPO system with the bidi-
rectional out-of-phase couplings in one dimension. (a) The state with the minimum
gain, corresponding to the ground state of the anti-ferromagnetic Hamiltonian. (b) An
excited state with two clusters of out-of-phase pulses. (c) An excited state for the case
of bad locking points of delay lines. The output peak powers are not binary around the
boundary pulses. The mapped spin configuration for each output is added.
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(a) (b)

Figure 5.13: An example of the normalized slow detector readout for the (a) signal and
(b) pump interference in the case of the emulation of the 1-D ring ferromagnetic Ising
model of 16 spins. The peaks around the maximum level in (a) correspond to the phase
state configuration with the global in-phase order hence one of the ground states of the
ferromagnetic Ising model. The power fluctuation of them is about 5% to the mean thus
the ground states can be detected with the average power. The arrowed peak in (a) is a
possible error, however, it can be seen in (b) that it is just due to a sudden degradation
of the visibility of the interferometer by environmental noise. Such inessential and few
errors are omitted in the evaluation of the success probability.

(a) (b)

Figure 5.14: An example of the slow detector readout for the (a) signal and (b) pump
interference in the case of the emulation of the 1-D ring anti-ferromagnetic Ising model
of 16 spins. The PD signal is normalized by the maximum power in the ferromagnetic
case. The arrowed peak with a relatively high level in (a) is counted as an intrinsic error
because the corresponding power level of the pump interferometer output is as high as
the other ones.
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in 5.14 (b). Here, the visibility of the pump interference for the erroneous peak is not
bad, meaning that this peak is counted as an intrinsic error occurring in the system.
In the anti-ferromagnetic case, we have achieved 1196 successes and 4 failures. Here,
no error due to the interferometer is detected, thus the success probability is estimated
1196/1200 ∼ 99.7%. It suggests that the machine can accomplish almost the same and
high rate of success regardless whether the mutual couplings are in-phase or out-of-phase.

Computation on a cubic graph case

Finally, delay 3 is introduced and all the delay lines are opened with their coupling phases
π. Fig. 5.15 (a) displays the graph implemented in the system. Here, the couplings along
with the diameter chords are added to the previous 1-D ring graph. This is one of the
cubic graphs (or 3-regular graphs) where each node is connected to three other nodes
with as many edges. The anti-ferromagnetic Ising problem programmed here is an NP-
hard instance, because that on cubic graphs is NP-hard due to its equivalence to the
MAX-CUT problem. The pump power is set to 900 mW, being 2.7 times the oscillation
threshold. The blade of the chopper is changed so that it can switch the machine with
20 Hz.

5.15 (b) presents the fast detector signal for the interferometer output corresponding
to the ground states of the problem. The ground states forms two anti-ferromagnetic
domains including eight spins and have two frustrated couplings at the boundaries be-
tween them. When the numbering of the spins (i.e. high-level pulses in Fig. 5.15 (b))
is considered, the sixteen spin configurations are counted as the ground states. These
cannot be identified from the average power obtained by a slow detector, thus the fast
detector signal is automatically and repeatedly measured with a programmed oscillo-
scope. Here, each measurement is locked to the trigger signal from the chopper with a
constant time delay. In addition, time intervals more than 1/20 = 0.05 s are artificially
introduced between measurements so that the scope can record the results of different
trials for different measurements.

The computation is performed with the system in the enclosure of black hardboards.
With the optimized locking points for the main cavity and delay line lengths, the system
has given ground states for 998 times out of 1000 measurements, meaning a success
rate of 99.8 %. Fig. 5.16 depicts the interferometer outputs obtained as the two failed
cases. Both are ones of the 34 local minima. Fig. 5.16 (a) reflects Jn n+8(mod 16) and
the corresponding state has six frustrated couplings. Fig. 5.16 (b) indicates the anti-
ferromagnetic order along with the 1-D ring and gives eight frustrated edges along with
the diameter chords. These results of local minima mean that the interaction between
artificial spins works well also in the cases of failure.
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(a) (b)

Mapped spin configuration

Figure 5.15: (a) The cubic graph implemented in the system with the three delay lines of
0.3, 2.4 and 4.5 m. (b) Fast detector signal of the interferometer output corresponding
to the ground states of the anti-ferromagnetic Ising problem on (a). A mapped spin
configuration along with the spatial pulse sequence in the ring cavity is added. Red
dashed lines denote the frustration between adjacent artifitial spins.
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(a) (b)

Mapped spin configuration Mapped spin configuration

Figure 5.16: The interferometer output pulse patterns for the two failed cases both of
which correspond to local minima. (a) reflects the couplings along with the diameter
chords of the graph. (b) is affected by the anti-ferromagnetic order of the 1-D ring
structure. Red dashed lines for the mapped spin configuration in (a) mean the frustration
between adjacent spins. Note that all the couplings along with the diameter chords
(Jn n+8(mod 16)) are frustrated in (b), although it is not directly reflected in the output
signal.
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5.4 Discussion

Erroneous states

Here, I discuss possible reasons for the erroneous states of the system. First, the resid-
ual coupling phases depending on the lengths of the delay lines seem to be probable
factors, as discussed with the experimental data for the 1-D case. Here, the frequency
components with phase deviations can also resonate in the cavity and repeatedly pass
through the delay lines. The effective phase deviations in the total pulse system can get
larger than that in the single delay line, and the erroneous components can be amplified.
Thus, increasing the number of delay lines might enhance the error. To achieve a fine
tuning of the locking point, we have to adjust the set point of the error signal in the
servo controlling system.

Second, the power fluctuation in the pump pulses can vary the timing of the oscil-
lation of each DOPO pulse. This can break down the mapping protocol of the Ising
machine around the oscillation and result in getting a local minimum dominated by the
pulses which oscillate early. A well-stabilized pump laser is indispensable for a good
performance of the system.

Working principle

I have shown the good experimental capabilities of the two time-multiplexed Ising ma-
chines with essentially the same, simple implementation. Here, considering the prospect
for high-performance computing of large-scale and complex problems, it is interested in
whether the systems have any quantum computing ability. Unfortunately, it is currently
difficult to state that the present systems utilize quantum effects other than quantum
noise for the efficient search for the mapped ground states, because implementing a delay
line with a pair of beamsplitters never fails to introduce some loss for the signal photons.
I have shown in Chapter 3 that the amplitude feedback ratio needs to be large (≳ 0.5)
to keep the quantum correlation between the DOPO fields, and that the losses in the
DOPOs and mutual injection paths have to be small for the system to hold coherent
superposition components. On the other hand, the amplitude feedback ratios to the
out-coupling flux for each delay line are

√
0.04 ∼ 0.2 (4 DOPOs) and

√
0.1 ∼ 0.31 (16

DOPOs). In addition, the actual effect of the feedback is smaller due to the additional
losses of the readout part, detector in the main cavity and the input couplers (ICs).
These losses induce the dephasing of the coherent superposition components [157] and
also degrade the magnitude of squeezing [122]. Nevertheless, the story above is limited
in the continuous-wave and single mode case. Broadband DOPO pulses have numerous
frequency modes which are phase-locked to each other [184, 185], and such correlated
modes [204] may cooperate to attack the problem in a non-trivial way. Nonetheless, the
experiment so far is considered to be in the optical computing regime [205], and pursuing
the quantumness of the machine by closing the system is an important direction. Fig.
5.17 presents a proposition of replacing a cavity mirror with a partially transmitting one
and introducing an empty ring cavity as a closed delay line.
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Figure 5.17: A possible implementation for a closed delay line. It replaces a cavity mirror
(M3, 4 or 5 in Fig. 5.8) with a partially transmitting mirror. The transmitted pulses
are fed back with a short ring cavity. The cavity length is locked with the resonance of
the pump beam detected by the Si PD.

5.5 Conclusion

We have build time-multiplexed DOPO networks working as coherent Ising machines
for the first time. The machines are based on femtosecond pulsed DOPOs, and they
contain independent but identical signal pulses corresponding to as many artificial spins
in a single ring cavity. Pairs of input and output couplers introduce the delayed mutual
couplings between the DOPO pulses. The first system composed of 4 signal pulses at 2
µm is applied to the NP-hard instance on the smallest cubic graph, and has shown no
computational error in 1000 trials. The second system has 16 pulses at 1.57 µm and its
performance has been investigated for the one-dimensional ring and an NP-hard cubic-
graph instance. The result has given the success probabilities more than 99.7% for both
the ferromagnetic and anti-ferromagnetic ring. It indicates no intrinsically erroneous
factors dependent on the order of coupling (in-phase or out-of-phase). The machine
has kept a success probability of 99.8 % also for the case of a cubic graph and the anti-
ferromagnetic couplings. This suggests that we can realize an optimized condition where
adding delay lines does not significantly accumulate the error due to their instability.
The proof-of-principle result has shown a good possibility of the application of the system
to more complex problems, and there has already been propositions for next steps, such
as improving the programmability with a measurement-feedback technique [206] and
increasing the number of oscillators with the fiber technology [202].
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Conclusion

6.1 Summary

A coherent computing system or coherent Ising machine [98, 99, 103] is referred to as
a coupled oscillator network coupled with mutual injections emulating the Ising model.
In this dissertation, I have theoretically and experimentally studied the machine based
on degenerate optical parametric oscillators (DOPOs), whose binary phase states can
be utilized as artificial spins. On the theoretical side, it is important if the machine can
have any quantum state and effect which possibly contribute to quantum speedup com-
pared to digital computing algorithms. Here, I have developed the quantum mechanical
model for the DOPO network coupled with mutual injections based on the positive P
representation [107, 108], and numerically investigated the system of two DOPOs with
out-of-phase mutual injections. In this model, I explicitly consider the signal field in the
mutual injection path between the two DOPO facets as a cavity mode. When the system
is in the limit where the damping in the mutual injection path is sufficiently fast, the
injection terms in the stochastic differential equations are linear with respect to the field
variables, as in the previous phenomenological model [103]. The stochastic simulation
has been conducted under a small noise parameter and the gradually increasing pump-
ing rate from below to above the threshold. The result has shown that small incoherent
intracavity loss rates are indispensable in quantum effects in the system. When the
incoherent loss in the injection path is of the same order as the coherent transmission
rates at the DOPO facets, the signal fields in the two DOPOs have the quantum corre-
lation in terms of the squeezed quadrature amplitude p̂ = (â− â†)/2i. This indicates the
entanglement between the two DOPO fields. When the loss of the injection is smaller
than the transmission, the two intracavity fields can show weak coherent superposition
components via the fringes in the distribution functions for p̂. The superposition com-
ponents with a small noise parameter and under a relatively non-transient has not been
expected by the previous relevant studies on a single DOPO [125, 162]. It suggests
that the mutual injection path storing the squeezed vacuum is simple realization of the
squeezed heat bath or squeezed reservoir [123], which suppresses the decoherence on
the superposition components. Such an effect can play a role in other systems such as
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nano- and opto-mechanical devices and superconducting circuits as well as in the Ising
machine.

On the experimental side, I have achieved the first-time and second-time experimental
demonstrations of the coherent Ising machines based on degenerate optical parametric
oscillators in collaboration with Dr. Alireza Marandi at Stanford University. The system
is based on the time-multiplexed DOPO network which is composed of femtosecond
DOPO pulses [188, 189] running in a single ring cavity. Each DOPO pulse randomly
takes one of the binary phase states with their phase difference being π [201], and these
states are utilized as artificial spins. Also, the signal pulses keep the phase coherence [187]
allowing the interference between different pulses. Mutual injections between the DOPO
pulses are implemented by the optical delay lines with pairs of input and output couplers
placed in the resonator. We have built the first system containing four DOPO pulses at 2
µm and three delay lines which introduce all the possible couplings between them. It has
been applied to the instance of the NP-hard MAX-CUT problem on the smallest cubic
graph, and the result has shown no computational error out of 1000 trials. Next, I have
constructed another system with 16 signal pulses at telecom wavelengths. Here, I have
realized the couplings effectively aligned in the periodically bounded one-dimensional
ring and a cubic graph with two and three delay lines, respectively. The system has
been applied to the ferromagnetic and anti-ferromagnetic 1-D ring and the NP-hard
anti-ferromagnetic cubic graph instances. Despite some instability of the Ti:sapphire
pump laser, the system has found ground states of all the corresponding Ising spin
systems with probabilities more than 99.7 %. The result suggests that the system does
not give significant intrinsic errors originating from the change in the order (i.e. sign)
of the couplings and adding delay lines, showing a big potential of this machine for
intractable problems.

6.2 Future prospects

The studies on coherent computing systems are getting more and more extensive. There
has already been a proposition to improve the programmability of the machine using
the effective couplings between the signal pulses via a measurement-feedback technique
[206]. Also, the prospect for applying the fiber technology to this machine expects
the realization of the systems with 1000 and 10000 artificial spins [202]. Numerical
benchmarking on such large systems with a semi-classical model expects that the Ising
machine shows a better performance than a well-known approximation algorithm based
on semidefinite programming which assures the worst approximation ratio of 87.8 %
[103]. On the other hand, both theoretical and experimental evidences in terms of
its working principle are still desired. Considering the simulation result in this thesis,
it is possible that the current experimental systems do not have quantum correlation
between DOPOs or coherent superposition components in its states due to large losses
of the system, in spite of their promising performances. Also, there is a comment that
it will not be in the quantum computing but optical computing regime [205]. Possible
objections to this story are quantum correlation (discord) in phase-locked coherent states
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Chapter 6. Conclusion

shown in this thesis and that among the massive comb modes in DOPO pulses. Quantum
mechanical properties of the pulsed photonic states in the machine may be explored
both theoretically and experimentally. At the same time, a more closed system may be
considered for both free-space and fiber-based cases to pursue its quantumness. I have
proposed an example of the implementations of closed feedback lines. In addition, a
well-designed measurement-feedback algorithm might make use of quantum correlation
in the coherent states and possibly exert a good efficiency. In the meantime, when the
system is considered as an optical or semi-classical computing device, how good is the
performance limit of the Ising machine? For example, the theory on coherent feedback
control [207–209] can treat oscillator networks with linear quantum feedback. Does such
a framework give any properties of the Ising machine in terms of its performance? Or,
does the theory on quantum and chaotic systems [210] provide some knowledge about
the machine? Can we apply a quantum mechanical simulation scheme like Monte-Carlo
wavefunction method [211] to this machine and compare the result with that of the
semiclassical benchmarking? There are various directions to develop and study the
coherent computing systems, and I hope that this thesis might inspire and help the
arising projects.
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Appendix A

Simulation Result of the
Two-DOPO System with
Statistical Convergence

Here, I show the various data from the simulation on the two DOPOs with the mutual
injection. They are the statistical averages of 200000 trajectories and well statistically
convergent. Fig. A.1 presents the result for the parameters γs = 0.1, γc = 0.2 and
g ∼ 0.01. Fig. A.2 depicts those for γs = 0.03, γc = 0.25 and g ∼ 0.03. The parameters
for Fig. A.2 leads to an intracavity photon number being about ten times smaller than
that for Fig. A.1. Both reproduce the properties introduced in Chapter 3 in this thesis.
A point worth noting is that the total fluctuation of the EPR-type operators (Fig. A.1
(e)) has oscillatory behavior due to the cavity effect of the mutual injection path and
the gradually increasing pumping rate.

123



Appendix A. Simulation result of the two-DOPO system

(a)

(c)

(e)

(b)

(d)

(f)

Figure A.1: Simulation result of the 2-DOPO system with 200000 samples. γs = 0.1,
γc = 0.2 and g ∼ 0.01. (a) Signal photon number in DOPO1. (b) Variances of the
quadrature amplitudes V (x1) and V (p1) indicating the intracavity squeezing. (c) Cor-
relation function ⟨x1x2⟩. (d) Correlation function ⟨p1p2⟩. (e) Total fluctuation of the
EPR-type operators ⟨∆u2⟩+ ⟨∆v2⟩. (f) Gaussian quantum discord in the system.
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Appendix A. Simulation result of the two-DOPO system

(b)

(d)

(f)

(a)

(c)

(e)

Figure A.2: Simulation result of the 2-DOPO system with 200000 samples up to τ = 50.
γs = 0.03, γc = 0.25 and g ∼ 0.03. (a) Signal photon number in DOPO1. (b) Variances
of the quadrature amplitudes V (x1) and V (p1) indicating the intracavity squeezing. (c)
Correlation function ⟨x1x2⟩. (d) Correlation function ⟨p1p2⟩. (e) Total fluctuation of the
EPR-type operators ⟨∆u2⟩+ ⟨∆v2⟩. (f) Gaussian quantum discord in the system.
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Appendix B

Additional Data of the
Experiment

Here, I show the extra data of the pulsed DOPO.

B.1 RF spectrum

Fig. B.1 (a) and (b) show the RF spectra of the degenerate and non-degenerate os-
cillation peaks (peak 1 and 2 in Chapter 4) of the pulsed DOPO without delay lines.
The spectral peak frequency reflecting the pulse repetition rate is 1.00957 GHz and is
fluctuated by the order of 1 kHz. Peak 1 (Fig. B.1 (a)) has larger background spectral
components than peak 2 (Fig. B.1 (b)). It is probably because the locking of peak
1 is more unstable due to a narrower oscillation peak in terms of the cavity detuning.
Fig. B.1 (b) (peak 2) has clear side peaks about ±200 kHz away from the main peak.
This indicates the unstable operation of the oscillator because of the co-existence of a
degenerate and non-degenerate modes, as was reported previously [212].

B.2 Beam spot

Fig. B.2 displays the beam spots of the degenerate signal modes in the system with eight
beamsplitters. A slit beam profiler is used for the measurement. The pump power is 900
mW, and the delay lines are blocked expect for an output port for the measurement. Fig.
B.2 (a) is the spot for an even frequency state, and (b) is one for an odd frequency state.
The spot size (radius) in the horizontal (wx) and vertical (wy) directions are (wx, wy) =
(1.7 mm, 1.9 mm) and (1.7 mm, 1.5 mm) for Fig. B.2 (a) and (b), respectively. The
shape of the spot for the odd frequency state is closer to that of the pump beam indicating
that the odd frequency state is closer to the stablest condition for the main OPO ring
cavity.
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Appendix B. Data of the experiment

(a) (b)

Figure B.1: RF spectra for the signal modes of the DOPO without delay lines. The
peak frequency is 1.00956 GHz and corresponds to the pulse repetition frequency. The
pump power is 300 mW. (a) The strongest degenerate mode (peak 1 in Chapter 4). (b)
The second strongest non-degenerate mode (peak 2). (b) has side peaks indicating the
unstable operation.

(a) (b)

Figure B.2: Beam spots measured with a slit beam profiler for the DOPO with three
delay lines. The system is strongly pumped and has degenerate modes in an odd and even
frequency state. (a) Spot of an even frequency state (suitable for coherent computing).
(b) One in an odd frequency state.
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[204] J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, et al. Wavelength-multiplexed
quantum networks with ultrafast frequency combs. Nature Photonics, 8(2):109–
112, 2014.

[205] Claude Fabre. Optical computing: The optical Ising machine. Nature Photonics,
8(12):883–884, 2014.

[206] Y. Haribara, Y. Yamamoto, Ken ichi Kawarabayashi, and S. Utsunomiya. A coher-
ent ising machine with quantum measurement and feedback control. arXiv:quant-
ph/1501.07030.

[207] J. E. Gough, R. Gohm, and M. Yanagisawa. Linear quantum feedback networks.
Physical Review A, 78(6):062104, 2008.

[208] J. Gough and M. R. James. The series product and its application to quantum
feedforward and feedback networks. IEEE Transactions on Automatic Control,
54(11):2530–2544, 2009.

[209] J. E. Gough, M. R. James, and H. I. Nurdin. Squeezing components in linear
quantum feedback networks. Physical Review A, 81(2):023804, 2010.

[210] L. Reichl. The Transition to Chaos: Conservative Classical Systems and Quantum
Manifestations. Springer-Verlag, Berlin Heidelberg, 2004.

[211] K. Mølmer, Y. Castin, and J. Dalibard. Monte Carlo wave-function method in
quantum optics. Journal of Optical Society of America B, 10(3):524–538, 1993.

[212] A. Marandi. Sub-harmonic generation of frequency combs for spectroscopy and
quantum optics. Ph. D. Thesis, Stanford University, 2012.

142



List of Related Publication

1. S. Utsunomiya, K. Takata, and Y. Yamamoto. Mapping of Ising models onto
injection-locked laser systems. Optics Express, 19(19): 18091-18108, 2011.

2. K. Takata, S. Utsunomiya, and Y. Yamamoto. Transient time of an Ising machine
based on injection-locked laser network. New Journal of Physics, 14(1): 013052,
2012.

3. Y. Yamamoto, K. Takata, and S. Utsunomiya. Quantum computing vs. coherent
computing. New Generation Computing, 30(4): 327-356, 2012.

4. K. Takata, and Y. Yamamoto. Data search by a coherent Ising machine based
on an injection-locked laser network with gradual pumping or coupling. Physical
Review A, 89(3): 032319, 2014.

This thesis partially includes the following paper.

5. A. Marandi, Z. Wang, K. Takata, R. L. Byer, and Y. Yamamoto. Network of time-
multiplexed optical parametric oscillators as a coherent Ising machine. Nature
Photonics, 8(12): 937-942, doi:10.1038/nphoton.2014.249, 2014.

The publication of other parts of this thesis is in preparation.

6. K. Takata and Y. Yamamoto. Quantum states in degenerate parametric oscillators
coupled with mutual injection. In preparation.

7. K. Takata, A. Marandi, D. Maruo, S. Tamate, H. Sakaguchi, S. Utsunomiya and
Y. Yamamoto. In preparation.

143


