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ABSTRACT

Cloud computing has become a common computing paradigm both for individual and

enterprise uses. As the use of cloud computing emerges, data centers for hosting clouds

are becoming huge. In particular, large amount of energy consumption by data centers

is one of the biggest issues in this cloud age. Energy consumption of data centers have

been evolving by more than 10% per year, and it counts for non-negligible part of the

whole energy consumption of countries such as the US.

In order to reduce energy consumption of data centers, the goal of this thesis is to

achieve green data centers with aggressive VM relocation at runtime using efficient live

migration. There are two problems that must be tackled to achieve this goal:

1. Live migration efficiency is not fully optimized yet. More concretely, a part of

memory transfer mechanism of live migration costs much despite of the efforts by

many live migration optimization researches.

2. Integrated evaluation of aggressive VM relocation at runtime and live migration is

missing in the research field. This lack causes a problem that actual energy saving

given by aggressive VM relocation cannot be easily estimated without using real

implementation and real servers.

To tackle these problems, this thesis has three contributions for reducing energy con-

sumption of data centers by improving efficiency of live migration.

1. First, this thesis discusses the requirements and the technical challenge toward

goal that are missing in existing studies. They include efficient live migration and

integrated evaluation of live migration and aggressive VM relocation and this the-

sis tackles both of them.

2. Second, this thesis proposes efficient live migration methods with two novel ideas:

memory reusing and parallel transfer of page cache.

The first idea is based on an observation that in an aggressive VM relocation sys-

tem VMs migrate many times among a certain set of PMs such as ones in the same

rack. In this situation, VMs can migrate “back” to a host on which it was exe-

cuted before. MiyakoDori, the proposed system, leverages this fact for efficient

live migration by caching the memory image of the target VM on a migration on

the source PM, and reuse the memory image when the VM migrates back in the
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future.

The latter idea is based on an observation that IO-intensive VMs have large

amount of page cache (also known as file cache or file buffer) in the memory.

In addition, modern data centers are equipped with a dedicated storage area

network (SAN) along with a general purpose network (GPN). Page cache telepor-

tation, the proposed system, utilizes the SAN and the GPN in parallel for efficient

live migration of IO-intensive VMs by transferring page cache from storage PMs

to the destination PM of a migration (instead of transferring it from the source

PM) via the SAN.

3. Third, this thesis evaluates MiyakoDori and Page cache teleportation in integrated

simulations with aggressive VM relocation algorithms. Although there are many

existing researches on live migration and VM relocation, they are done separately

and how much actual energy an efficient migration method can save is still not

revealed. As a result of the simulation, this thesis figures out that our methods can

reduce energy consumption of data centers up to a few percent, which is equiv-

alent with a large amount of electricity usage and energy cost because the whole

data center energy consumption is extremely huge.
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概要

クラウドコンピューティングは現在では企業，個人のいずれにおいても重要な計算パラダイ

ムの一つに成長した．クラウドコンピューティングの隆盛に伴い，クラウドをホストするデー

タセンタも巨大なものとなり，特にその消費電力が重大な課題となっている．データセンタの

消費電力量は毎年 10パーセント以上増加し，アメリカ等では一国の消費電力量全体のうち無

視できない割合を占める．

増大する消費電力に対し，本博士論文では，効率的な仮想マシンライブマイグレーションと

積極的な仮想マシン再配置による低消費電力なデータセンタを目指す．この目標を達成するた

めに解決すべき技術的課題は以下である．

1. ライブマイグレーション技術を様々な既存研究からさらに効率化する必要がある．具体

的には，ライブマイグレーションにかかるメモリ転送のコストの一部が未だ高いまま残

されている．

2. 積極的な仮想マシン再配置とライブマイグレーションの統合評価が必要である．既存研

究で統合評価がなされていないことにより，ある仮想マシン再配置アルゴリズムとライ

ブマイグレーション手法の組み合わせによるデータセンタ全体の消費電力削減量が実環

境でのテストなしには見積りできない．

これらの技術的課題に対処しデータセンタの消費電力を削減するため，本博士論文は以下の

三点の貢献をする．

1. 第一に，本博士論文の目標を達成するために必要な要素を議論する．必要な要素のうち

既存研究で達成されていないものは効率的なライブマイグレーションとその積極的仮想

マシン再配置との統合評価であり，以下ではこれらに対処する．

2. 第二に，本博士論文は効率的なライブマイグレーションを実現する手法として，メモリ

再利用とページキャッシュの並列転送を提案する．

メモリ再利用手法は，積極的仮想マシン再配置を利用するデータセンタでは仮想マシン

は少数のグループの物理マシン（例えば一つのラックに属する物理マシン）の間を何度

も移動するという着想に基づく．この状況下では，ある仮想マシンはその仮想マシンが

一度実行されたホストに「戻る」ことがある．そこで本論文では，仮想マシンが一度実

行されたホストに戻る際に，以前の実行時のメモリイメージを再利用して更新されたメ

モリページのみ転送するシステム「都鳥」を提案・実装する．

次にページキャッシュの並列転送手法は，ファイル入出力を多く行う仮想マシンではメ

モリの多くをページキャッシュ（ファイルキャッシュ，ファイルバッファとも呼ばれ
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る）が占めるという着想に基づく．また近年のデータセンタには通常のネットワーク

の他にストレージ専用のネットワーク（SAN）を持つことが多い．そこで本論文では，

ページキャッシュの一部を通常のネットワークからではなく SANから転送しメモリ転

送を並列に行うことでライブマイグレーションを高効率化するシステム「Page cache

teleportation」を提案・実装する．

3. 第三に，本博士論文では提案したライブマイグレーション高効率化によりデータセンタ

の消費電力量がどの程度削減されるかを統合評価する．動的 VM集約の研究およびラ

イブマイグレーション高効率化の研究は数多く行われているが，それらを統合し実際の

データセンタでどの程度消費電力が削減できるかの評価は行われていない．本論文では

シミュレーション評価の結果として，提案したライブマイグレーション高速化手法が

データセンタの消費電力量を数パーセント削減されることを示す．データセンタ全体の

消費電力量は極めて大きいため，数パーセントの削減は重要な結果である．
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CHAPTER 1

INTRODUCTION

1.1 CLOUD COMPUTING

Cloud computing is a computing paradigm where users can borrow/rent a virtually

infinite amount of computing resources behind the “cloud” of the internet. More pre-

cisely, cloud provider companies equip thousands or tens of thousands of computers on

their data centers and allow users to use a part of their computing resources on demand

through the internet.

Types of “computing resources” provided in cloud computing have a wide variety. In

the lowest layer, virtual computers are provided with all the privileges on them enabled

by hypervisors (e.g. KVM [1], Xen [2]) or OS level virtualization (e.g. OS containers [3]

such as Open VZ [4] or Jails in FreeBSD [5]). This type of cloud computing is called

Infrastructure as a Service (IaaS) and the most famous example is Amazon EC2 [6]. In

the middleware layer, clouds provide software platforms that make it possible to easily

develop, deploy, operate, and scale customized applications on them. This type of cloud

computing is called Platform as a Service (PaaS) and the examples include Google App

Engine [7] and Salesforce1 Platform [8]. In the top layer, software systems that used to be

hosted in each organization are replaced by using cloud computing. This type of cloud

computing is called Software as a Service (SaaS) and the examples include Office 365 [9]

(Microsoft Office in the cloud) and SAP Cloud Applications [10] (business management

software in the cloud).

The number of users and use-cases of cloud computing has become huge. According

to a report in which 141 chief information officers were involved, 9.7% of all computing

workloads are executed using cloud computing as of October 2013 and the amount is

predicted to rise to 30.2 % in five years [11]. Amazon introduces on the web site that its
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FIG. 1.1. Annual Growth of Data Center Energy Consumption between 2000 and 2005, cited
from [13]

cloud service is used by many big players of the IT industry, including Adobe, Citrix,

Nokia, NASA and FourSquare [12].

Building and maintaining clouds is involved in bodies of knowledge on system level

techniques such as operating systems, virtualization techniques, networking, filesys-

tems, and programming paradigms. Therefore, the trend of cloud computing has at-

tracted many system level researches. The contents of this thesis are categorized in vir-

tualization techniques, in the context of system level researches to build efficient clouds.

1.2 ENERGY CONSUMPTION OF CLOUD DATA CENTERS

In response to the emerging trend of cloud computing described in Section 1.1, energy

consumption of data centers that host the clouds is becoming enormous. In the United

States of America, it is reported by its Environmental Protection Agency (EPA) that 1.5%

of the overall electricity consumption in the country was due to data centers in 2006 [14].

The report claims that this consumption “is similar to the amount of electricity used by

the entire U.S transportation manufacturing industry (which includes the manufacture

of automobiles, aircraft, trucks, and ships)”. A research on data center energy efficiency

estimates that the sum of the energy cost across five Google data centers in the US reaches

up to $1.4 million per month [15]. Another study reports that average annual growth of

data center energy consumption between 2000 and 2005 was around 15% in Japan and
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the US, and 16.7% in the worldwide [13] (Figure 1.1).

Reducing energy consumption of data centers is thus an important topic both from

the economical and environmental aspects. Many researches have been done from var-

ious directions. Following are examples of researches that focus on reducing energy

consumption of data centers.

WORKLOAD ANALYTICS This type of researches analyze characteristics of workloads

running on the target data center to adopt suitable energy strategy for each work-

load. Verma et al. predict suitable number of VMs a-priori by analyzing static

daily load patterns [16]. Tsai et al. exploit static load pattern of real data center to

propose semi-static VM placement, which prevents live migration because it is a

high-cost operation as focused on this thesis [17]

SOFTWARE IMPROVEMENT This type of researches change/improve software or algo-

rithms used in the workloads. Xu et al. reduce the peak energy consumption of

a data center by partial execution of workloads; a web search task is terminated

before the full completion when it has consumed too much energy [15]. DeVuyst et

al. propose process migration between heterogeneous instruction set architectures

to utilize the difference of energy characteristics between them [18].

FACILITY IMPROVEMENT This type of researches change/improve the data center fa-

cility itself, but not servers/software, to improve energy efficiency. Endo et al.

make servers fan-less by fully utilizing facility fans of a data center to reduce en-

ergy consumption of cooling [19]. Durr et al. offload idle applications from servers

to raspberry-pies, which consume just few Watts [20]. The offloading is achieved

by designing the applications as stateless ones, because state migration between

an x86 server and an ARM-based low power machines is not yet achieved.

CLEAN ENERGY PROMOTION This type of researches encourage the use of clean en-

ergy (or carbon-free energy in other words) instead of actually reducing energy

consumption. Moghaddam et al. migrate VMs across data centers to use clean

energy as much as possible [21]. Singh et al. introduce a new type of virtualized

server, named transient server, that is powered by clean energy [22]. Stability of

clean energy supply is sensitive to climate changes, but they mitigate this prob-

lem by letting the VM users allow shutdown or partial data lost of their transient

servers, in return of cheaper pricing.
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FIG. 1.2. Traditional Data Center v.s. Future Data Center.

1.3 THE GOAL AND THE REQUIREMENTS

1.3.1 FUTURE DATA CENTER MODEL

Given the situation that data center energy consumption is of great concern today, the

goal of this thesis is to achieve green data centers with aggressive VM relocation using

efficient live migration. The word “relocation” means to change the mapping of VMs and

PMs (e.g. VMn is hosted on PMm before relocation, but it is moved to PMm′ after relo-

cation), in order to achieve lower energy consumption. Live migration is a virtualization

technique to move VMs from one PM to another, which is explained later in Section 2.1.

The differences between the data center model this thesis aims and a traditional data

center model are illustrated in Figure 1.2 and described in the following.

TRADITIONAL DATA CENTER MODEL In traditional data centers, mapping of VMs

over PMs is decided offline at the time of involving VMs, and VM relocation

occurs only when a relatively large situation change happens. Examples of large

situation changes are physical maintenance of a whole rack (all VMs of the rack

are relocated to another rack) or large load change based on the users’ access

patterns such as dramatic load increase during lunch time. This model yields
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unnecessary uptime of PMs because even if the load of a PM turns to be light the

PM cannot be turned off.

FUTURE DATA CENTER MODEL On contrast to the traditional data center model, VM

relocation occurs aggressively at runtime. This model can reduce uptime of PMs

by consolidating VMs into small number of PMs, which in turn reduces the total

energy consumption of the whole data center. Requirements to achieve this model

are discussed in Section 1.3.2.

1.3.2 WHAT THIS THESIS TACKLES TOWARD THE GOAL

To achieve the greener data center model, this thesis tackles two requirements.

EFFICIENT LIVE MIGRATION TECHNIQUE Live migration is used to relocate VMs dy-

namically at runtime of the data center operation. Although live migration is an

established technique and there are many researches on accelerating it, this thesis

claims that live migration is still a high-cost operation in some cases. Therefore

this thesis explores how to lower the cost of live migration with regard to energy

consumption.

OVERALL EVALUATION OF ENERGY CONSUMPTION “Overall” evaluation means that

time and energy cost of live migration must be taken into account when evalu-

ating energy aspect of dynamic VM consolidation. Existing studies of dynamic

VM consolidation simply ignore all cost of live migration, or take only the time

cost into account. However, some studies have pointed out that live migration

incurs a certain amount of extra energy overhead due to the load increase. There-

fore, this thesis evaluates energy consumption of a data center with both time and

energy cost of live migration calculated.

1.3.3 WHAT THIS THESIS DOES NOT TACKLE

The future data center model this thesis aims requires another piece: VM relocation algo-

rithms to calculate the best mapping of VMs over PMs. The algorithms are also known

as VM “consolidation” algorithms, if one wants to emphasize to consolidate VMs. How-

ever, this thesis does not explore the algorithms because VM relocation algorithms have

been widely and deeply researched as described below.

Srikantaiah et al. figure out that the least energy consumption per transaction is
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achieved when a server is moderately loaded [23], Lee et al. evaluate various consolida-

tion heuristics in terms of performance impact on various resources [24], Cao et al. focus

on energy-performance tradeoff and reduces energy consumption while guaranteeing

SLAs by establishing a mathematical algorithm to decide if a host can violate SLAs

with high probability [25]. Some studies take the time cost of live migration into

account when designing dynamic VM consolidation algorithms. Goiri et al. propose

an energy-aware scheduling of VMs with time overhead of live migration taken into

account [26], and Lim et al. introduce margins to server and data center capacities to

absorb latencies of VM consolidation changes due to the time cost of live migration [27].

1.4 LIVE MIGRATION EFFICIENCY

1.4.1 HOW IT IMPACTS DATA CENTER ENERGY

TABLE. 1.1. Impact of Migration Efficiency on Data Center Energy Saving. The reduction ratio is
calculated against the case that all PMs are always on without dynamic VM consoli-
dation.

Method Migration Efficiency Energy Reduction

Naı̈ve Slow, Large memory transfer 25.7 %

MiyakoDori (Chapter 3) Fast, Small memory transfer 29.6 %

Table 1.1 briefly introduces impact of total migration time on data center energy ef-

ficiency. The “energy reduction” columns show how many percentage of energy con-

sumption is reduced against the case where all PMs are always turned on, by applying

a simple dynamic VM consolidation algorithm (detailed settings and results are showed

in Chapter 5). The reduction ratio is 25.7 % when a naı̈ve live migration mechanisms

implemented in the original QEMU/KVM is used and it improves to 29.6 % when an

accelerated live migration mechanism developed by us is used.

The difference by 4% in Table 1.1 is a large one because the overall energy consumption

of a data center is huge as shown in Section 1.2. Suppose the Power Usage Effectiveness

(PUE) of google data centers described in [15] is less than 2. This means that more than

the half of total energy consumption of the data centers is used for servers (Note that

The values in the table are calculated on server energies). Therefore, the 4% difference

is regarded more than 2% of the total energy consumption, which results in more than

$28,000 / month energy cost difference.
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TABLE. 1.2. Focuses of Existing Live Migration Studies

Focus Example of Existing Studies

Accelerating 1st phase [28], [29], [30]

Accelerating 2nd phase [31], [32], [33], [34], [35], [36], [37], [38], [39]

Other aspects of live migration [40], [41], [42], [43], [44]

1.4.2 TECHNICAL CHALLENGE

Given that live migration is used within a data center as focused in this thesis, the main

concern is how to efficiently transfer memory pages of the target VM (for the technical

details of live migration please refer Section 2.1 in Related Work). The memory transfer

can be factored into two phases that are equally important: the 1st phase where all mem-

ory pages of the target VM are transferred sequentially, and the 2nd phase where memory

pages updated during the 1st phase are transferred again repeatedly (details are also in

Section 2.1 in Related Work). The amount of memory transferred in the 1st phase is equal

to the size of the target VM’s memory usage. Thus, to migrate a VM that occupies 4 GB

of memory, a 4 GB of data transfer is required in the 1st phase. The amount of memory

transferred in the 2nd phase, on the other hand, depends not on the memory usage but

on the size and the update speed of the working set of the VM.

Among the two phases of live migration, the cost of the 1st phase is not yet fully re-

duced in existing studies. The 1st and the 2nd phases are equally important as a target of

optimization, because they both can transfer many memory pages. For workloads that

do not update memory pages frequently, the 1st phase is more time consuming than the

2nd phase. Table 1.2 shows the focuses of existing studies on efficient live migration. The

table shows that many existing studies focus on the 2nd phase of live migration.

This thesis defines the technical challenge for efficient live migration to achieve greener

data center is how to reduce the cost of the 1st phase of live migration. A biggest technical

difference between reducing the cost of the 1st phase and the 2nd phase of a migration is

that in the 2nd phase the destination PM of the migration has an old copy of the memory

pages, but in the 1st phase it has almost no information about the target VM. Therefore,

this thesis claims reducing the cost of the 1st phase is more technically challenging than

reducing the cost of the 1st phase.
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FIG. 1.3. Overview of This Thesis.

1.5 OUTLINE OF THIS THESIS

The outline and the structure of this thesis is explained here. Figure 1.3 shows the rela-

tionship of the three main parts (chapters 3, 4, and 5).

CHAPTER 1. INTRODUCTION

This chapter explains the background, the goal that this thesis aims, and the technical

challenge to achieve the goal.

CHAPTER 2. RELATED WORK

This chapter refers related work of this thesis in the origin of live migration, its well-

known implementations, and recent researches that achieved accelerated live migration

using various techniques.

CHAPTER 3. MIYAKODORI

This chapter describes a new live migration acceleration mechanism called MiyakoDori,

which reduces total migration time and amount of transferred memory in a migration.

The idea is that, in a dynamic VM consolidation system, VMs can migrate among a small

set of PMs and a VM can migrate back to a PM on which it was executed before.

MiyakoDori leverages this situation to accelerate live migration by caching VMs’ mem-
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ory images in PMs and transfer only update memory pages in live migration. The evalu-

ation shows that MiyakoDori reduces total migration time and the amount of transferred

memory more than 90% in CPU intensive and web server based workloads.

MiyakoDori reduces total migration time and amount of transferred memory and re-

sults in improving both extra energy consumption and short sleep time incurred by live

migration, and the impact on the overall energy saving of a data center is evaluation in

Chapter 5.

CHAPTER 4. PAGE CACHE TELEPORTATION

This chapter describes another new live migration acceleration mechanism called Page

cache teleportation. First, this chapter figures out that large amount of page cache in VM

memory is the biggest cause of long total migration time under IO-intensive workloads.

After that the system to mitigate large page cache problem by utilizing SAN in data

centers in parallel with normal migration network is proposed. The evaluation shows

that Page Cache Teleportation shortens total migration time under various IO-intensive

workloads.

Page cache teleportation reduces total migration time and results in improving short

sleep time incurred by live migration, whose concrete impact on the overall energy sav-

ing of a data center is evaluation in Chapter 5.

CHAPTER 5. ENERGY OVERHEAD OF LIVE MIGRATION

This chapter conducts an integrated evaluation of energy overhead of live migration

and energy reduction achieved by dynamic VM consolidation. The thoughts behind this

chapter is that there are few studies that conduct this integrated evaluation even though

plenty of live migration studies exist. This chapter shows how to model MiyakoDori

in terms of energy overhead, total migration time and amount of transferred memory

and executes large scale simulations to show how MiyakoDori reduces overall energy

consumption of a data center.

CHAPTER 6. CONCLUSION AND FUTURE WORK

This chapter summarizes the thesis and gives future directions on the whole live migra-

tion research area, focusing on requirements to make live migration applicable in real

data centers.
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CHAPTER 2

RELATED WORK

2.1 LIVE MIGRATION OF VIRTUAL MACHINES

2.1.1 OVERVIEW

Live migration is a technique that allows VMs to move around from one physical ma-

chine (PM) to another. Unlike a naı̈ve method that first makes the target VM sleep on the

source PM and then resume it on the destination PM (also kown as cold migration), the

greatest advantage of live migration is that target VM undergoes short period of service

disruption.

Live migration is an essential technique to aggressively relocate VMs of a data center at

runtime because users of the VMs never want their services to be interrupted by changes

of VM allocations. Suppose cost migration takes one minute to transfer all VM states and

a cold migration occurs once per week, then the ratio of the VM downtime against the

whole data center operation is:

1÷ (60× 24× 7) ≈ 0.01%. (2.1)

This is the longest service downtime in order no to violate the SLA of 99.99% uptime,

which is common in today’s cloud era. Therefore, cold migration cannot be used for

aggressive VM relocation and live migration is essential.

2.1.2 TECHNICAL DETAILS

The main technical focus of live migration when it is used within a data center is how to

efficiently transfer the memory of a target VM from the source PM to the destination PM.
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vCPU (< 1MB) Memory (1 GB ~ 32 GB)

Disk image
(~ 1 TB)

NFS etc.

FIG. 2.1. Data to be Transferred in Live Migration. The main focus is memory pages of the target
VM. The disk image is shared using NFS in practice, and CPU registers/device states are
negligibly small.

FIG. 2.2. Memory Transfer in Pre-copy Live Migration

Live migration of a VM requires to transfer three types of data of the target VM which

are described in Figure 2.1.

1. Memory pages (1 GB to tens of GB)

2. Disk image (tens of gigabytes to a terabytes)

3. Device states such as CPU registers (less than a megabyte)

The disk image is too large to transfer at a migration time thus the practice is to locate it

on a shared storage such as NFS or iSCSI. The device states are in contrast very small and

never incur problems on transferring them. Therefore, the biggest issue of live migration

is how to transfer the memory of the target VM efficiently.
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The very original method of live migration, Pre-copy live migration, was proposed by

Nelson et al. [45] and Clark et al. [46] in 2005. Since then it has been widely adopted

by hypervisors such as KVM [1] and Xen [2], and also by production software such as

VMWare vSphere [47] and Oracle VirtualBox [48]*1. Figure 2.2 shows the procedure of

pre-copy live migration that is explained as follows:

1. All the memory pages of the migrated VM are transferred at first. For example,

if the VM’s memory footprint is 1 GB, the amount of transferred memory in this

phase is also 1 GB (1st phase).

2. Some memory pages are updated while other pages are transferred because the

VM keeps running during a migration. The updated memory pages are repeat-

edly transferred until the number of remaining memory pages become sufficiently

small (2nd phase).

3. The VM is instantly suspended to transfer the remaining memory pages and de-

vice states (3rd phase).

There are two terminologies related to the time taken by live migration:

TOTAL MIGRATION TIME refers the time length that a migration takes from its begin-

ning to the end. This is almost dominated for the time consumed to transfer the

memory pages, because other data to be transferred (vCPU registers and device

states) are negligibly small compared to the main memory as described above.

Typical total migration time ranges from several seconds to few minutes.

DOWNTIME refers the time length during which the migrated VM is suspended due to

a migration. Downtime depends on the speed of memory update of the target VM

and the actual bandwidth available to transfer memory. Typical downtime ranges

from tens of milliseconds to few seconds.

Among the two, this thesis focuses on total migration time, which largely impacts the

energy efficiency of data centers when VMs are aggressively relocated with live migra-

tion.

*1 Live migration is called vMotion in the VMWare terminology, and teleporting in the Oracle terminology.
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2.2 THE ORIGIN OF LIVE MIGRATION

Sapuntzakis et al. [49] was the first to propose migrating a virtual machine (called capsule

in their terminology) in 2002. 20 years of gap is there between this and inventions of two

concepts from which it can directly stem, namely virtual machine and process migration.

Virtual machine technology had been proposed by IBM in 1960s [50], and process migra-

tion had already been implemented in some operating systems in early 1980s [51]. An

important reason of the birth of the virtual machine migration is changing demands of

users. A year before [49], Chen et al.claimed in [52] that process migration is not enough

to serve users’ demand of mobility. Sapuntzakis et al.also claim that usages of their vir-

tual machine migration include user mobility as well as easy management of underlying

physical machines, both of which are regarded to be unique characteristics of today’s

cloud computing.

The main focus of [49] was how to transfer a large disk state with a narrow DSL link.

The migrated virtual machine is suspended during a migration thus the migration was

not “live”. As the cloud paradigm becomes popular, it evolved into “live” migration and

researches have also focused on how to efficiently transfer memory pages while they

are being updated by the running VM. This focus shift is because of two reasons. From

the user demand perspective, cloud users require availability more than 99%, therefore

live migration is mandatory. From the technical perspective, gigabits or even 10 gigabits

ethernet have become common in data centers, thus large disk images can be simply

located on a shared storage if storage performance is not the primary concern.

2.3 ACCELERATING PRE-COPY LIVE MIGRATION

Many researchers have tried to accelerate pre-copy live migration using various tech-

niques.

Similarities between memory pages are important to accelerate pre-copy live migra-

tion. Svärd et al. [31] exploit “temporal” similarity within VM memory by a fixed-size

cache to store memory pages that are once transferred during a migration. When the

memory pages are updated and transferred again, only the difference between previous

versions are transferred. This technique can reduce both the total migration time and

the downtime because the downtime depends largely on the ratio between the speeds
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of memory transfer and memory updating. They claim that in the normal pre-copy live

migration downtime-sensitive applications such as SAP system cannot be migration be-

cause the database transactions are lost, but with their acceleration VMs hosting SAP

systems can be safely migrated.

Zhang et al. [32] exploit “spatial” similarity within VM memory by detecting data du-

plications within it. When a memory page is transferred, they transfer only the difference

between it and a reference page that is similar to it and that has already been transferred.

They report that a great portion of memory pages are similar in VMs running various

workloads, for example, 43.02% of non-zero memory pages have similarity above 80%

each other in an Ecommmerce workload. Jin et al. [33] also use “spatial” similarity, with

thorough analysis of characteristics of the similarity in various workloads. They found

that similarness largely differs depending on the workload running on the VM. From

this observation, they adopt a memory compression mechanism that has two phases: (1)

detecting in-page similarness of each memory page (2) compression the target page with

appropriate compression algorithm.

Another direction of accelerating pre-copy live migration is to use memory access

patterns as hints to decide which memory pages should be transferred before others.

Du et al. [34] clusters memory pages of the target VM into fixed-size regions and trans-

fer them in ascending order of the updated speed of each region. Once accumulated

updated speed exceeds the available network bandwidth for the migration, remaining

regions are not transferred in the iteration, because it is highly possible that transferring

them turns into vain by new updates to the region. Ibrahim et al. [40] examines how

memory pages are updated and transferred in a pre-copy live migration for HPC appli-

cations. They found that there are three patterns: (a) memory update rate is far beyond

memory transfer rate thus continuing live migration is impossible, (b) the application

sometimes enters into slow memory update phase (e.g. in a synchronization operation)

thus the VM should be suspended and moved to the destination PM at this moment, and

(c) memory transfer rate is competitive to memory update rate thus pre-copy live migra-

tion works well. They detect a pattern applicable to the target VM by sampling memory

update/transfer rates and change migration strategy depending on the detected pattern.
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FIG. 2.3. Memory Transfer in Post-copy Live Migration

2.4 POST-COPY LIVE MIGRATION

Post-copy live migration was a big step toward more efficient live migration. It was pro-

posed and implemented by some researchers almost at the same time. Mirkin et al. [35]

achieved post-copy migration of containers, Hines et al. [36] achieved it for Xen virtual

machine monitor, and Hirofuchi et al. [37] showed that it can be implemented with small

modifications on the existing QEMU/KVM architecture.

Post-copy live migration accelerates live migration by omitting the iterative copy

phase of pre-copy live migration entirely. It transfers device states of a target VM before

transferring memory pages and the execution host of the VM is switched right after

the migration is invoked. Memory pages of the VM is lazily fetched while the VM is

running on the destination PM. The important point is that the memory pages left on

the source PM are never updated thus a memory page is transferred only once.

A drawback of post-copy live migration is that it degrades performance of the mi-

grated VM due to page faults occurred by lazy memory page transfers. In order to miti-

gate this issue, memory pages are pre-fetched using locality of memory accesses in [36]

and [37]. Bryant et al. [53] clusters memory pages into kernel pages, user pages, and free

pages by analyzing page table entries and OS specific information to find which memory

pages should be transferred in priority.



16 CHAPTER 2 RELATED WORK

2.5 OTHER DIRECTIONS OF MIGRATION RESEARCH

2.5.1 MIGRATING GROUP OF VMS

How to migrate a group of VMs efficiently has also attracted research interests. Typical

use cases of migrating a group of VMs are moving all VMs hosted on a PM to escape

from hardware faults/maintenance and migrating a logical set of VMs (e.g. set of web

servers owned by the same user) from a PM to another.

Deshpande et al. [28] propose an efficient way to migrate a group of VMs. The basic

idea is that VMs running the same/similar OSes or applications have many memory

pages identical/similar to each other. They exploit this characteristic by transferring

identical memory pages only once and transferring only the difference between the target

page and a similar page that has already been transferred.

Ye et al. [41] survey the impact of various live migration strategies on the performance

of migrating a group of VMs. The strategies include migrating VMs one by one, mi-

grating some VMs concurrently, and also some patterns for migration order of VMs;

suppose there are two groups (VMs 1, 2, 3 and VMs a, b, c) to be migrated, the question

is weather two groups should be transferred sequentially (migrate 1, 2, 3 then a, b, c)

or interleaved (1, a, 2, b, 3, c). Their claims include that concurrent migrations must be

in a suitable granularity; i.e. migrating many VMs at once decreases the migration per-

formance due to excessive network load, and that interleaved migration order should

be avoided because it causes inter-PM communications by VMs belonging to the same

group but hosted temporarily in different PMs.

2.5.2 VMS WITH PASS-THROUGH DEVICES

Pass-through devices (e.g. SR-IOV [54]) greatly decrease IO performance overhead of

VMs thanks to reduced guest/host switching, but they make live migration much diffi-

cult.

Zhai et al. [42] enable migrating VMs using pass-through NICs. Device states of NICs

inside the migrated VM are first saved into the VM memory by utilizing PCI hotplug

technology. NICs are plugged off on the source PM before a migration, and then re-

plugged on the destination PM after the migration finishes. In order to guarantee net-

work connectivity while pass-through NICs are plugged off, Linux bonding driver is
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used to automatically switch to virtualized NICs.

Takano et al. [43] push this technique a step forward; they migrate VMs using pass-

through Infiniband interfaces into PMs that do not have Infiniband. A typical usage of

their proposal is to migrate VMs from an Infiniband-capable cluster into a spare cluster

with ethernet networking in an emergency. The most important issue in this work is that

switching from Infiniband to ethernet (on which TCP/IP can be used) means switch-

ing from one networking protocol to another. Therefore, distributed applications that

consist of multiple VMs should aware of the fact that one of the VMs switch from Infini-

band to ethernet. They mitigate this issue by forcing all VMs composing a distributed

application switch to ethernet at the same time with the help of Symbiotic Virtualization

technique [55].

2.5.3 INTROSPECTION-BASED APPROACHES

VM Introspection is a technique to allow the host OS of a VM to analyze the contents of

the VM memory without injecting any program inside the VM. This technique has been

applied to many purposes, and live migration is one of the applications.

Bryant et al. [53] uses VM Introspection for VM cloning instead of migration, but the

main task is the same as VM migration (i.e. how to transfer memory pages efficiently).

They use page table information and OS-specific information (namely the list of page

structures in Linux) to distinguish memory pages of the target VMs into five categories:

kernel data, kernel code, user code, user data, and page cache. The categories are used

to find the best number of pages to pre-fetch in their post-copy based VM cloning.

Chiang et al. [29] uses VM Introspection to detect free memory pages to accelerate

live migration. The point here is that free memory pages cannot be detected by merely

observing the binary because a free memory page is not necessarily filled with zero val-

ues. Their technique is advanced than existing ones in the sense that they do not need

OS-specific hard coding to achieve VM Introspection.

2.5.4 OTHER ACCELERATION TECHNIQUES

Recent researches try to accelerate live migration by breaking through the pre-

copy/post-copy schema.

Liu et al. [56] and Gerofi et al. [39] utilize checkpoint and restart technology to achieve

fast live migration. The first phase of their methods are the same as normal pre-copy live
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migration; i.e. all memory pages are transferred once in the beginning. However, they

do not transfer updated memory pages but they transfer execution logs of the migrated

VM instead. An execution log is smaller than the actual memory content that the log

reproduces in design, therefore the methods take less time than pre-copy live migration.

Kim et al. [30] switch the execution host of the target VM right after a migration is

invoked, but they keep the VM on the source node running even after that. The VM left

on the source node is used to guide memory transfer during the migration; the memory

access pattern of the left VM is used as a hint to know which memory pages have stronger

possibility to be accessed by the migrated VM.

2.5.5 HETEROGENEOUS PLATFORM LIVE MIGRATION

Live migration between heterogeneous platforms is also an important issue. For ex-

ample, live migration between KVM and Xen enables moving VMs between two data

centers hosted by different organizations.

Liu et al. [57] propose a broker-based approach to achieve heterogeneous platform live

migration. They analyze abstraction and migration protocol differences among KVM

and Xen, and implement a system that buffer the differences and enable live migration

between them. Takahashi et al. [58] propose WinKVM, a KVM port onto Windows by

providing an abstraction layer that emulates needed Linux kernel APIs. They claim that

WinKVM enables live migration a VM into laptops when the user must be offline during

commuting or so.

2.5.6 HETEROGENEOUS ISA LIVE MIGRATION

Leveraging characteristic differences of multiple instruction set architectures (ISAs),

most commonly x86 and ARM, is a traditional methodology to reduce energy cost.

x86 has been adopted for high power servers because of its performance, while ARM

has been adopted for SoC, mobile phones, or network facilities because of its energy

efficiency.

Virtualization and live migration are also catching up this direction. DeVuyst et al. [18]

theoretically achieve process migration between x86 and ARM architectures on a simu-

lator. Although their work is still on a simulator due to the lack of actual hardware that

supports multiple ISAs, the approach is cutting-edge to achieve more energy efficient

data centers. Dall et al. [44] propose KVM on the ARM architecture, and their outcome



2.6 LIVE MIGRATION V.S. DATA CENTER ENERGY SAVING 19

has already been adopted by the mainline Linux kernels. Combining these two tech-

niques could bring heterogeneous ISA live migration, which enables a VM to migrate

from an x86 server to an ARM server. This direction will surely open a new frontier for

energy efficient data centers.

2.6 LIVE MIGRATION V.S. DATA CENTER ENERGY SAVING

A big motivation to accelerate live migration is to help reduce energy consumption of

cloud data centers, as focused in this thesis.

2.6.1 MODELING LIVE MIGRATION IN TERMS OF ENERGY

Model energy consumption of live migration is one direction. Liu et al. show extra en-

ergy consumption caused by the pre-copy live migration depends only on the amount

of transferred memory [38]. Even though they figure out faster network bandwidth con-

sumes much energy per time unit, the accumulated sum during the total migration time

is shown to be the same. Aikema et al. compare how extra energy consumption of live

migration changes depending on workload type and transport type of memory data (en-

crypted and non-encrypted) [59].

2.6.2 CONSIDERING COST OF LIVE MIGRATION

It is also important to considering cost of live migration when designing VM relocation

algorithms.

Hossain et al. [60] propose a VM relocation algorithm that considers extra energy con-

sumption of live migration. They reduce a data center’s overall energy consumption by

12% compared to existing algorithms.

Goiri et al. [26] figure out cost of live migration must be considered as a penalty when

conducting VM relocation. The novelty of their algorithm is that it considers the time

required to create a new VM and to migrate an existing VM when calculating energy-

efficient VM placement.

Borgetto et al. [61] figure out during a live migration the VM stays both on the source

and the destination PM. They modify existing VM relocation algorithms to more energy-

aware ones by incorporating this idea.
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CHAPTER 3

MIYAKODORI

3.1 INTRODUCTION

As described in Chapter 1 (Introduction), efficiency of live migration largely impacts the

overall energy saving of a data center under aggressive VM relocation. In this chapter,

MiyakoDori, a memory reusing technique to significantly shorten total migration time

and reduce amount of transferred memory in a migration is proposed.

The core idea of MiyakoDori is that VMs migrate among a certain set of PMs (for ex-

ample, PMs belonging to the same rack) again and again under aggressive VM relocation

at runtime. In this situation, the method accelerates live migration of a VM when it mi-

grates back to the PM on which it was executed before by keeping old memory image on

the PM and reuse non-updated memory region. This idea significantly reduces amount

of transferred memory for migrating back, and in turn reduces total energy consumption

of data centers by being combined with dynamic VM consolidation.

This rest of this chapter is structured as follows. Section 3.2 describes the core

ideas of MiyakoDori, namely migration back and memory reusing. Section 3.3 proposes

MiyakoDori, a live migration acceleration mechanism that leverages the core ideas.

Section 3.4 explains evaluation methodology and the results. Section 3.5 discusses

various overhead of the system, the limitations of its applicability, and future directions.

Section 3.6 refers related work and Section 3.7 summarizes this chapter.

A part of this chapter has been published in refereed papers. The copyright of each pa-

per is hold by Information Processing Society of Japan (IPSJ) and IEEE Computer Society,

respectively.

1. Soramichi Akiyama et al. MIYAKODORI: Optimization for Sequence of Live Mi-
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FIG. 3.1. Migration Back

grations by Reusing VM Memory. IPSJ Transactions on Advanced Computing Systems,

5(2):74-85, March 2012 (in Japanese, awarded IPSJ Computer Science Research

Award for Young Scientists).

2. Soramichi Akiyama et al. MiyakoDori: A Memory Reusing Mechanism for Dy-

namic VM Consolidation. In Proceedings of The 2012 IEEE 5th International Confer-

ence on Cloud Computing, pages 606 - 613, 2012.

3.2 CORE IDEAS

3.2.1 MIGRATION BACK

Migration back or migrating back refers a live migration whose destination host is one of the

PMs where the migrated VM has ever executed before. Figure 3.1 illustrates migration

back of a VM. There are six VMs in the system and one of them is colored differently

(red) to distinguish it from other ones. At t = t0, the VMs are load balanced across PMs

because they are busy. At t = t1, the VMs get consolidated into one of the PMs because

they become idle. At t = t2, the red VM becomes busy again and migrates “back” to the

PM on which it used be executed at t = t0.

Exploiting heterogeneity to reduce energy consumption is a promising idea. A sim-

ilar technique has been proposed and proved to be efficient in a single machine level.

In [62] and [63], they propose to equip two types of cores, high power/performance and

low power/performance, and migrate processes between them in response to the states

of processes. Even more aggressive approach is proposed in [18], where process mi-
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FIG. 3.2. Memory Reusing The upper row illustrates the first migration from PM0 to PM1, in
which memory reusing cannot be applied. The lower row illustrates a migration back
from PM1 to PM0, in which the memory image of the VM is kept on PM0 and unchanged
memory pages are not transferred.

gration between x86 architecture (high power/performance) and ARM architecture (low

power/performance) is achieved in simulations. The author believes that this kind of

heterogeneousness researches should be extended and applied to cloud data centers as

well, and migrating back will become one of the fundamental techniques that support

the heterogeneousness.

3.2.2 MEMORY REUSING

Memory reusing is an idea that a large portion of VM memory does not need to be

transferred when the VM migrates “back”, to shorten total migration time. In memory

reusing, the memory image of a VM that is about to migrate keeps stored on the source

PM in order to reuse it when the VM migrates back from another PM at a later stage.

Figure 3.2 illustrates memory reusing:

1. At t = t0, a VM is migrating from PM0 to PM1. The memory image of the VM

keeps stored on PM0 for future reuse. Note that this migration (migration out)

is not accelerated by memory reusing thus all the memory pages of the VM are

transferred.

2. At t = t1, the VM is migrating back from PM1 to PM0. Many memory pages in the

VM memory are not updated during t0 and t1, although some are updated due

to the VM execution. In this migration, only the updated memory pages (red part
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FIG. 3.3. A Metaphorical View of MiyakoDori: VMs Migrate as Birds Do

in the figure) needs to be transferred and other memory pages are reused from the

memory image stored in PM0.

3.3 PROPOSED SYSTEM: MIYAKODORI

This section proposes and describes live migration mechanism that enables VMs to

migrate back with the memory reusing technique. The developed system is called

MiyakoDori. In this section, the design policy and the implementation of MiyakoDori

are described.

The name MiyakoDori is based on an old Japanese name of a migrating bird (black-

headed gull in modern English). The bird appears in an old Japanese poetry as follows:

名にし負はば　いざ言問はむ　都鳥　わが思ふ人は　ありやなしやと（伊勢物語）

Translating an ancient poetry into modern English might break the atmosphere of it, but

the author dare to do it for the readers’ convenience:

Let me ask, how is the dearest doing, as you are a MiyakoDori (The Tails of Ise)

Note that miyako and dori mean the capital and a bird in Japanese respectively, and the

author of the poetry found the migrating bird on the way from the capital to the east.

The idea of naming the system is that a VM in our system migrates out and back across

PMs, just as a migrating bird flies forth and back across places (Figure 3.3).
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3.3.1 DESIGN CRITERIA

There are two important design issues on implementing MiyakoDori.

MEMORY UPDATE DETECTION/EXPRESSION

The question here is how to detect and express that the current and saved versions of a

memory pages are different. Two choices are possible for memory detection:

1. Detecting memory update immediately when the update occurs using dirty page

tracking functionality. This method has a performance overhead on target VM;

i.e. detecting memory updates every time one occurs can slow down memory-

intensive workload inside the VM.

2. Calculating has values of each memory page just before a migration and com-

pare them between the current memory and a memory image to be reused. This

method has a time overhead on total migration time; i.e. calculating hashes of

large memory can take time of the order of seconds.

MiyakoDori adopts the former approach to detect memory update. An experiment

showed that the performance overhead to the target VM is negligibly small in real work-

load. The details of the experiment are shown in Section 3.5 (Discussion). Also the details

of the dirty page tracking functionality is described in the next subsection (Section 3.3.2).

IMAGE DIFFERENCE MANAGEMENT

The question here is how to manage differences of memory pages between two memory

images. There are two possible software architectures to manage:

1. A client-server architecture (Figure 3.4) where a central server manages all infor-

mation about memory updates and PMs ask which memory pages can be reused to

the server. The advantage of this architecture is that existing dynamic VM consol-

idation algorithms can be easily modified to use MiyakoDori, because the central

server knows every information that MiyakoDori newly introduces.

2. A peer-to-peer architecture (Figure 3.5) where each PM manages the memory up-

dates information and the source and destination PMs exchange the information

in a peer-to-peer manner. The advantage of this architecture is that a single point

of failure does not exist thus a better scalability is achieved.
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FIG. 3.4. Client-Server Architecture for MiyakoDori: A central server manages all update infor-
mation about all memory images, and source PMs of live migrations ask which memory
pages can be reused to the central server.

FIG. 3.5. Peer-to-peer Architecture for MiyakoDori: Source PMs of live migrations ask which
memory pages can be reused to the destination PMs.

MiyakoDori adopts the client-server architecture. The central server holds a single in-

teger named generation for each memory page of every memory images in the system.

Therefore the central server is called a generation server. As mentioned above, this archi-

tecture allows to easily develop advanced dynamic VM placement algorithms integrated

with MiyakoDori. For example, the generation server can easily find the PM that has the

latest memory image of the target VM, because the generation server has all memory
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reusing information. The single point of failure problem can be avoided by simply repli-

cating a generation server because the system does not require simultaneous writes to a

generation by two PMs. The detailed algorithm is explained in Section 3.3.3.

3.3.2 DIRTY PAGE TRACKING

Dirty page tracking is a functionality provided by the original QEMU/KVM. A user-level

function of QEMU detects via dirty page tracking which memory pages are updated. In

x86 and x64 architectures, when a memory page is updated, the CPU sets the dirty bit

of the corresponding page table entry (to 1). Dirty page tracking acquires this bit and

makes it available to user-level functions.

Since the page table entry is touched only once when the first update to the page oc-

curs, there is practically negligible overhead in using dirty page tracking permanently,

as describe in Section 3.5.

3.3.3 LIVE MIGRATION ALGORITHM WITH MIYAKODORI

This section explains the algorithm to migrate a VM with MiyakoDori. As described in

Section 3.3.1, a migration involves a generation server. Note that a generation server

should not necessarily be an designated PM because can be co-located with VMs, but a

generation server is illustrated using a PM in the figures below for simplicity of explana-

tion.

Figure 3.6 illustrates the behavior of MiyakoDori when a VM, named A, is migrated

from PM0 to PM1 for the first time. In this migration, memory reusing does no occur but

operations required for future memory reusing do occur. {PM0, A} in the figure repre-

sents the generation table of VM A associated with PM0, that is, the set of all generations

of A’s memory pages stored in PM0.

1. Page frame numbers (PFNs) of updated memory pages of the target VM are trans-

ferred from PM0 to the generation server. The updated memory pages are detected

during runtime of the VM using dirty page tracking as already described.

2. {PM0, A} is updated: Generations for the memory pages with the PFNs received

in the previous step become 1 from 0.

3. Detection of memory pages to be transferred: {PM0, A} and {PM1, A} are com-

pared and memory pages that have different generations in the two generation ta-

bles are transferred. In this case, all memory pages are regarded to have different



3.3 PROPOSED SYSTEM: MIYAKODORI 27

FIG. 3.6. First migration of a VM: The memory image is cached on the source PM. The generation
table is updated and MiyakoDori knows later which pages can be reused.

generations because {PM1, A} does not exist yet (which means that this migration

is the first time to PM1).

4. PFNs of reusable memory pages are transferred to PM0. In this case, all memory

pages are not reusable thus nothing is transferred.

5. Live migration is kicked-off. The procedure is almost the same as well-known pre-

copy live migration, but the only difference is that the memory image of VM A is

not deleted after the migration.

6. After the migration is finished, {PM1, A} is created by copying {PM0, A}.

During steps 1–4, VM A is suspended to maintain consistency between memory pages

and generations. However, this procedure takes only a short period and does not incur

large performance penalty to the VM.

Figure 3.7 illustrates the behavior of MiyakoDori when VM A migrates back from PM1

to PM0. In this migration, the memory image in PM0 is reused to accelerate live migra-

tion.

1. PFNs of updated memory pages of the target VM are transferred from PM1 to the

generation server. The updated memory pages are detected during runtime of the

VM using dirty page tracking as already described.
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FIG. 3.7. Migration back to a PM on which the VM has once been executed: All the memory pages
that have different generations in the source and the destination are copied. Other pages
are reused and do not need to be copied.

2. {PM1, A} is updated: Generations for the memory pages with the PFNs received

in the previous step become either to 2 (from 1) or to 1 (from 0).

3. Detection of memory pages to be transferred: {PM1, A} and {PM0, A} are com-

pared and memory pages that have different generations in the two generation

tables are transferred. In this case, the 4th memory page (whose generation be-

came 2 from 1) and the 5th memory page (whose generation became 1 from 0) are

to be transferred.

4. PFNs of reusable memory pages are transferred to PM1. In this case, PFNs other

than the 0x4 and 0x5 are transferred.

5. Live migration is kicked-off. In the 1st phase of the pre-copy live migration, mem-

ory pages that are detected to be reusable are not transferred. The procedure is

exactly the same as the pre-copy one after the 2nd phase.

6. After the migration is finished, {PM0, A} is updated to be the same as {PM1, A}.
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3.4 EXPERIMENTS

3.4.1 METHODOLOGY

MiyakoDori is evaluated with application benchmarks. Total migration time and amount

of transferred memory with/without the use of MiyakoDori are compared.

TABLE. 3.1. Hardware and Software used for Evaluating MiyakoDori

CPU Intel Xeon X5460 (4 cores)
Memory 8 GB

Disk 250GB HDD
Network GigaBit Ethernet NIC

OS Debian GNU/Linux 6.0
kernel Linux 2.6.32
KVM kvm-kmod-2.6.38.6

QEMU 0.13.0

The specifications of used hardware and software are shown in Table 3.1. We set up a

VM with 1GB of RAM and one virtual CPU. We used Ubuntu 10.10 server as a guest OS.

Disk images are located on the generation server, accessible from the VM on any PM via

Network File System (NFS).

TABLE. 3.2. Workloads used for Evaluating MiyakoDori

Name Intensity Detailed description
Busy Loop CPU Infinite busy loop
WebServer Network, Disk IO Read 1,024 static HTMLs

(256 KB each) with 100 Mbps
Video Memory, Disk IO Transcode MPEG2 video into ogg

theora format using vlc media player
TPC-C CPU, Memory, Disk IO DB access benchmark that simulates

transactions of an online shop

Table 3.2 shows workload used for evaluating MiyakoDori. Detailed description of

each workload is as follows:

BUSY LOOP This workload emulates pure CPU workloads. The vCPU of the VM is

fully loaded by an infinite loop. It is expected to be the ideal case for MiyakoDori,

where almost no memory pages are updated by the workload.

WEBSERVER This workload emulates web servers under high load. An Apache web

server hosts 1,024 HTML with 256 KB each, and a load generator reads the files
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FIG. 3.8. Evaluation Methodology of MiyakoDori

with the speed of 100 Mbps. This workload is network and disk IO intensive.

VIDEO This workload emulates a media server which provides on demand video

streaming in response to user requests. An MPEG2 video (extracted from a video

DVD) is transcoded into Ogg Theora [64] format using VLC Media Player [65].

This workload is memory and disk IO intensive.

TPC-C This workload emulates a database server for web applications. TPC-C gener-

ates a typical read/write pattern for shopping web sites. This workload is CPU,

memory and disk IO intensive. TPC-C refers a specification of a workload, thus as

an implementation the one from Percona*1 [66].

In order to compare total migration time and memory transfer in migration “back”,

the evaluations is done as follows (Figure 3.8):

0. Launch a VM on PM0

1. Run a workload on the VM for N minutes

2. The VM migrates out from PM0 to PM1

3. Run the workload on the VM for another N minutes

*1 http://www.percona.com/
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4. The VM migrates back from PM1 to PM0. Total migration time and the amount

of transferred memory in this migration are recorded and compared between

MiyakoDori and non-modified QEMU/KVM.

3.4.2 TOTAL MIGRATION TIME

Total migration time achieved by MiyakoDori and taken by pre-copy live migration im-

plemented un-modified QEMU/KVM are compared. The difference is that only the up-

dated memory pages in the latter N minutes (Step 3 in Figure 3.8) are transferred with

MiyakoDori, but all memory pages are transferred with the original pre-copy live migra-

tion. N was chosen from 5, 10, or 15 minutes.

Figures 3.9, 3.10, 3.11, and 3.12 show total migration time under Busy Loop, Web-

Server, Video, and TPC-C workload, respectively. The x-axis shows the interval between

two migrations (= N minutes) and the y-axis shows total migration time in each setting.

Note that the maximum values of the y-axis are not the same in all the figures. Bars in

right-hand side in the result pairs (labeled as “Original”) describe the results with origi-

nal pre-copy migration and ones in the left-hand side (labeled as Proposed) describe the

results with MiyakoDori. In the following, the results and reasons that the results are

yielded are discussed:

BUSY LOOP In this workload only a small number of memory pages were updated as

expected. Thus the reduction ratio of total migration time is large. The results

show that MiyakoDori is highly effective for pure CPU intensive workloads.

WEBSERVER This workload consumes more memory than Busy Loop but the reduc-

tion ratio of total migration time is larger than in Busy Loop. The reason is that

reading files updates almost no memory pages, even if the total size of read files

is large. The guest operating system kept all static HTML files in the page cache

(file cache) during the experiments, and memory pages used for this file cache

were not updated. The results show that MiyakoDori is again highly effective for

a workload that has read-only large data.

VIDEO In this test workload, the largest amount of memory is consumed compared

with the other three workloads, therefore total migration with the original pre-

copy migration is longest among the all workloads. The difference between Video

and WebServer workloads is that under Video workload large amount of data (e.g.
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FIG. 3.9. Total Migration time under Busy
Loop Workload
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FIG. 3.10. Total Migration time under Web-
Server Workload
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FIG. 3.11. Total Migration time under
Video Workload
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FIG. 3.12. Total Migration time under TPC-
C Workload

converted video) is written as well as read. The operating system caches the writ-

ten data in the memory for accelerating future access and buffering for the slow

storage, resulting in many memory pages updated in this workload. The results

show that MiyakoDori is not much effective for workloads that produce large out-

put data in the memory. A small portion of memory reused in this workload is
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used for purposes other than video data, such as text segment of loaded program

or kernel data maintained by the guest OS.

TPC-C This workload is a compound workload of CPU, memory and disk IO and

the memory access patter in also complex. Although the reduction ratio of total

migration time slightly degrades, it is still high even when N is 15 minutes. The

results indicate that MiyakoDori is beneficial for real compound workloads.

3.4.3 AMOUNT OF TRANSFERRED MEMORY

Figures 3.13, 3.14, 3.15, and 3.16 show the amount of transferred data under Busy Loop,

WebServer, Video, and TPC-C workload, respectively. The x-axis shows the interval be-

tween two migrations (= N minutes) and the y-axis shows the amount of transferred

data in each setting. Note that the maximum values of the y-axis are not the same in all

the figures.

An important point is that the figures look almost the same with the figures for to-

tal migration time. This is because in general total migration time of live migration is

dominated by the time cost for transferring the memory data.

3.4.4 SUMMARY OF THE EVALUATION

This section summarizes the evaluation and draws important conclusions from it. The

evaluations show that:

1. MiyakoDori can reduce the amount of transferred memory in a live migration with

all of the four workloads.

2. Total migration time is reduced in proportion to the amount of transferred data in

MiyakoDori.

3. Workloads that have small working set (e.g. Busy Loop) or large read-only data

(e.g. Apache) are especially suitable for MiyakoDori.

4. Workloads that produce large data (e.g. Video) is not so much effective with

MiyakoDori, although it can still reduce a small portion of total migration time

and the amount of transferred data.
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FIG. 3.13. Amount of Transferred Data un-
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FIG. 3.14. Amount of Transferred Data un-
der WebServer Workload
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FIG. 3.15. Amount of Transferred Data un-
der Video Workload
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FIG. 3.16. Amount of Transferred Data un-
der TPC-C Workload

3.5 DISCUSSION AND FUTURE WORK

3.5.1 OVERHEAD INCURRED BY MIYAKODORI

Even though MiyakoDori introduces two types of overhead into existing systems, we

claim that in the real world this overhead is negligible for the following reasons:
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MEMORY ACCESS SLOWDOWN

Setting the dirty bit of a memory page requires the page table to be checked in each mem-

ory access even if the virtual address of the page is cached on the Translation Look-aside

Buffer. Therefore, dirty page tracking slows down memory accesses. In our experiments,

dirty page tracking slows down only the first access to a page for approximately 20%, but

no slowdown was observed in the completion time of the CG benchmark from NAS Par-

allel Benchmarks [67].

NETWORK OVERHEAD

MiyakoDori requires extra data to send updated page numbers to the generation server

and to send reusable page numbers to the PMs. This overhead is very small because we

only need 1 bit to represent whether a page is updated or not. Suppose that a VM has

4GB of memory, then we need to send only 4 GB÷ 4 KB/page× 1 bit/page = 1 Mbits for

updated page numbers (the same calculation is also applied for reusable page numbers).

CPU DOWNTIME

The virtual CPU of a VM needs extra suspension by MiyakoDori, as described in Sec-

tion 3.3. This suspension occurs during which the generation server receives PFNs of up-

dated memory pages, comparing two generation tables, and sending PFNs of reusable

memory pages. However, this suspension short enough because the data transferred

during the suspension is enough small, and comparing two generation tables involves

merely a single scan of two small arrays.

3.5.2 LIMITATION: SCALABILITY

MiyakoDori has two bottlenecks on its scalability:

GENERATION SERVER As described in Section 3.3.1, a client-server architecture where

the generation server manages all information is chosen. This architecture is su-

perior to a peer-to-peer architecture in the sense that it is easy to develop a new

dynamic VM consolidation algorithm that aggressively exploits migrations back.

However, it can be a scalable bottleneck when thousands of servers access the gen-

eration server in a short period.

LARGE MEMORY CACHES Memory caches stored in PMs can be large when there are

bunch of VMs in the system or long term migration back (e.g. migrating back a
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FIG. 3.17. Real usage of MiyakoDori. MiyakoDori is deployed for one rack or a group of several
nearby racks. This usage does not weaken the applicability of MiyakoDori, because
migrating VMs between faraway racks requires communications through core switches
thus should be avoided.

week after migrating out) is required. Even with possible memory cache manage-

ment mechanism (which is discussed in Section 3.5.3), this problem cannot be com-

pletely mitigated in a very large scale environment with thousands of PMs/VMs.

Due to these scalability bottlenecks, a practical use of MiyakoDori is to deploy it

within one or several nearby racks in a data center. Figure 3.17 shows the use case.

A MiyakoDori system is deployed across two neighboring racks in the leftside of the

figure, and another MiyakoDori system is deployed for the right-most rack.

This usage limits the applicability of MiyakoDori, but the the limitation is not so se-

vere because migrating VMs between faraway racks does not frequently occur in real

environments. Communications between faraway racks go thorough core switches and

can affect a large part of the whole data center. Therefore, placing highly related VMs

in nearby racks/PMs is a well-known way to reduce network overhead in the data cen-

ter [68]. This means that migrating a VM between faraway racks is a high-cost operation

even compared to normal migration and is not desired.
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3.5.3 FUTURE WORK

This section discusses future extending directions of MiyakoDori, namely memory image

management and proactive memory reusing.

MEMORY IMAGE MANAGEMENT

Memory image management is an important factor of extending MiyakoDori. In the cur-

rent implementation, all memory pages of all memory images are kept in the memory

of the PMs. This may cause memory starvation if many memory intensive VMs are exe-

cuted and the operating system of the PMs can swap the images out to external storages.

The easiest way to mitigate this issue is to use modern storage devices that provide fast

read throughput. SSDs that are attached to an PIC-Express interface or IO-fusion provide

several or even 10 times faster read throughput compared to traditional HDDs. However,

this way cannot completely solve the issue, because under CPU-intensive workloads the

number of reused memory pages is much larger than the number of non-reused memory

pages. For example, suppose all memory images are swapped out to an external SSD,

then in Figure 3.14 case nearly 400 MB must be swapped in from the SSD while 30 MB is

transferred vie Ethernet.

A more effective but non-off-the-shelf way is to develop a memory image management

algorithm/mechanism. For example, a page that is updated on a PM is no longer needed

to be stored on any other PMs because that page is no longer reusable. Other types of

unnecessary pages can be detected by further analysis of memory access pattern of the

workload. A memory page that has strong possibility of update in a near future does

not need to be cached. For example, analysis of memory access patterns of a workload

indicates an assumed size of the working set of the workload [69]. Memory pages in

the working set are highly possible to be updated in the near future, thus an aggressive

decision can be not to store them in memory images at all.

PROACTIVE MEMORY REUSING

Proactive memory reusing means to predict destination PMs of future migration and to

transfer memory image before an actual migration occurs. In proactive memory reusing,

memory images can be reused even in the first migration of the VM to the destination

PM. A similar technique has been proposed in the context of cluster computing and re-

mote process migration.
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3.6 RELATED WORK

Takahashi et al. [70, 71] propose a similar idea to accelerate storage migration, which

is a technique to transfer the disk image of the migrated VM on a live migration. This

thesis focuses on live migration used within a data center, thus storage migration is not

required because disk images are located in shared filesystem such as NFS in practice. A

technical difference is that they calculate hash values of disk blocks to detect which disk

blocks are updated, while MiyakoDori uses dirty page tracking. This difference stems

from a difference of performance requirements of two technologies. storage migration

takes much more time than memory migration thus the time cost of calculating hash

values is hidden behind the long transfer time. On the other hand, MiyakoDori can

leverage dirty page tracking because it targets memory pages, whose updates are already

detected by VMMs.

An important note is that even post-copy live migration and trace-and-replay based

methods optimize the 2nd phase. Post-copy live migration requires no repeated transfer

of memory pages, thus it can be regarded as the extreme of optimizations on the 2nd

phase. However, post-copy live migration still needs to transfer all memory pages at

least once as the 1st phase of pre-copy live migration does.

3.7 SUMMARY OF THIS CHAPTER

In this chapter, MiyakoDori, an efficient live migration technique that is effective under

aggressive VM relocation is proposed. MiyakoDori reduces the the amount of trans-

ferred memory by reusing non-updated memory pages when a VM migrates “back” to

a PM where it has been executed before. The idea of migrating “back” is based on an

assumption that live migration is aggressively used in a cloud data center, which is the

goal of this thesis. Evaluations showed that the proposal reduces the amount of trans-

ferred memory and total migration time of live migration. Integrated evaluations of

MiyakoDori and aggressive VM relocation are given in Chapter 5.
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CHAPTER 4

PAGE CACHE TELEPORTATION

4.1 INTRODUCTION

Page cache is a widely-adapted mechanism to improve performance of disk IO opera-

tions. It is equipped in many modern operating systems such as Linux, Windows and

BSDs. A VM running a workload that treats large data has large amount of page cache.

Transferring large amount of page cache prolongs live migration and results in longer

PM active time under aggressive VM relocation than desired. However, existing meth-

ods that skip the transfer of page cache to shorten total migration time [72, 73] greatly de-

grade IO performance of target VMs and can violate service level agreements of clouds.

Therefore, a novel technique that accelerate live migration of VMs with large page cache

without large IO-performance degradation is required.

In this chapter, an advanced memory transfer mechanism for live migration of IO-

intensive VMs is proposed. The method skips transferring the page cache to shorten

total migration time while restoring it transparently from the guest OS via the SAN to

prevent IO performance penalty. To start a migration, our mechanism collects the map-

ping information between page cache and disk blocks. During a migration, the source

host skips transferring the page cache but transfers other memory content, while the

destination host transfers the same data as the page cache from the disk blocks via the

SAN. The technique shortens total migration time by simultaneously utilizing the SAN

along with the general purpose network and achieves smaller IO performance penalty

by transparently transferring the page cache rather than deleting it.

Experiments using WebServer, Postmark, and TPC-C workloads showed that our

method greatly reduced total migration for various IO-intensive workloads. We also

show that our system achieves the shortest migration time without manually tuning
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Memory

Storage

Restorable page cache

Non-restorable (dirty cache)

FIG. 4.1. Restorable Page Cache. Memory and storage have exactly the same data due to the page
cache mechanism. Note that dirty cache (write cache that has not yet been flushed) is not
restorable even though it is included in page cache.

parameters even when the amount of page cache or the location of the bottleneck

are different in each workload. We also give mathematical analysis of our method to

understand how our system works in various situations.

This chapter is structured as follows. Section 4.2 explains the page cache problem

in more detail. Section 4.3 describes the core ideas in this chapter. Section 4.4 shows

how the system works to reduce total migration time. Section 4.5 illustrates technical

contributions. Section 4.6 explains the implementation details. Section 4.7 shows the

evaluation results. Section 4.8 gives further discussions. Section 4.9 refers related work

and Section 4.10 summarizes this chapter.

A part of this chapter has been published in refereed papers. The copyrights of the

papers are hold by IEEE Computer Society.

1. Soramichi Akiyama et al. Fast Wide Area Live Migration with a Low Overhead

Through Page Cache Teleportation, In Proceedings of The 13th IEEE/ACM Interna-

tional Symposium on Cluster, Cloud and Grid Computing, pages 76 - 82, 2013.

2. Soramichi Akiyama et al. Fast Live Migration with Small IO Performance Penalty

by Exploiting SAN in Parallel, In Proceedings of The 2014 IEEE 7th International Con-

ference on Cloud Computing, pages 40 - 47, 2014.

4.2 RESTORABLE PAGE CACHE

A VM running a workload with large data can have many memory pages identical to

disk blocks due to restorable page cache because the operating system uses as many free
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FIG. 4.2. Normalized Amount of Restorable Page Cache in the Memory under WebServer, Post-
mark, and TPC-C, Workloads. The values are normalized by being divided by total
memory usage of the VM. More than 70% of the memory is occupied by restorable page
cache for most of the time.

memory pages as possible for page cache. *1 Page cache is an on-memory cache mecha-

nism to hide the gap between the accessing speed of memory and storage and is imple-

mented in many modern operating systems such as Linux, Windows and BSDs. When

an IO operation is requested for a disk block, the read/written data is stored in the page

cache to accelerate future requests for the same disk block. Restorable page cache refers

memory pages whose data can be restored from the identical disk blocks even if it is

deleted. Figure 4.1 illustrates restorable page cache. The same contents exist both in the

memory and the storage (rectangles with the same color). Note that memory pages con-

taining write-cache which has not yet been flushed are not restorable although they are

included in page cache.

Figure 4.2 shows the amount of restorable page cache contained in the memory of a

VM running workloads with large amount of data. The x-axis shows the elapsed time

from the beginning of the workload, and the y-axis shows the normalized amount of

restorable page cache. The values are normalized by being divided by the total mem-

ory usage of the VM. WebServer is a workload that simulates a web server under high

load. A load generator outside of the VM accesses the web contents with high access

rate. Postmark is a workload to measure IO performance of small files to estimate server

performance for web and mail services. TPC-C is a workload that simulates the typical

database access pattern for an online shopping web site. The detailed descriptions of

*1 Page cache and restorable page cache themselves are not unique phenomena of virtual machines, but this thesis
focuses on page cache inside VM memory.
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FIG. 4.3. Network Architecture of Cloud Data Center. Storage nodes are connected with a desig-
nated storage area network (SAN).

WebServer, Postmark, and TPC-C workloads are given in Section 4.7. The figure shows

that in all three workloads many memory pages (more than 70% of all pages) are identi-

cal to disk blocks due to the restorable page cache most of the time during the workload

execution. The values are small in the beginning but this does not weaken our claim

because the periods are warming-up phases of the workloads.

Existing live migration mechanisms lack an efficient way to transfer the large page

cache described in the previous two paragraphs. Large page cache increases the amount

of memory to be transferred in the 1st phase of a migration. Thus, live migration re-

searches focusing on the 2nd phase (how to mitigate iterative copies) can do nothing on

this issue. Some studies [72, 73, 74] focus on reducing amount of transferred page cache.

Differences of our work and the existing studies are discussed in Section 5.9 (Related

Work) in detail.

4.3 CORE IDEAS

4.3.1 NETWORK ARCHITECTURE OF CLOUD DATA CENTER

An important characteristic of a data center networking that we exploit is explained here.

Figure 4.3 illustrates a simplified view of the network architecture of a typical data center.

The main point is that storage nodes are connected with a designated SAN along with a

general purpose network. For example, CISCO suggests a data center networking archi-
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tecture that includes Storage Networking and Business Continuance Networking [75].

Nodes might have another link for management purposes. Descriptions of each network

are as follows:

Storage Area Network (SAN): It is used to communicate with the storage nodes in the

data center. A shared filesystem is built on top of this link and IO requests and data

from/to the storage nodes go through this link. An important notice is that we do not

assume IP-capability of this link. The shared filesystem can be built with any networking

such as Ethernet or Infiniband without IP.

General Purpose Network (GPN): It is used to deal with any network packets other than

storage-related ones. For example, HTTP requests sent from the Internet or sent between

services running in the data center go through this link.

4.3.2 TRANSFERRING PAGE CACHE FROM STORAGE

The core idea of our work is that restorable page cache can be transferred from the disk

image using the SAN, rather than the general purpose network. This is technically pos-

sible because disk blocks identical to restorable page exist in the disk image. Live migra-

tion of a VM with large restorable page cache is accelerated by conducting two transfers

in parallel:

1. Transferring restorable page cache via the SAN.

2. Transferring other normal data via the general purpose network.

Figure 4.4 shows how live migration is accelerated by our proposal. The source and

the destination hosts are connected by the GPN, and the storage node is connected with

them by the SAN. The rectangles in the VM memory and the disk image indicate memory

pages and disk blocks. The black that is included only in the memory is the normal data

page. The grey ones that are included both in the memory and the disk image contain

restorable page cache. On a migration, the normal data page is transferred via the general

purpose network, at the same time as restorable page cache is transferred via the SAN.

4.3.3 DIVIDING PAGE CACHE

Transferring all the restorable page cache via the SAN is not enough to mitigate the prob-

lem we tackle. Suppose the memory usage of a VM to be migrated is 1 GB and 90% of

it is filled with restorable page cache (as the case in WebServer workload). In this case,
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FIG. 4.4. Simple View of How Live Migration is Accelerated by Our Proposal. Rectangles in the
VM memory and the disk image indicates memory pages and disk blocks. The black
one is a normal data page, and the gray ones that appear both in the memory and the
disk image contain restorable page cache. Restorable page cache is transferred from the
storage node via the SAN to use two networks in parallel.

the amount of memory to be transferred via the SAN is 900 MB while the one to be

transferred via the GPN is 100 MB, resulting in a new bottleneck at the SAN.

In order to mitigate this issue, we propose adaptive page cache transfer. This method

transfers a portion of restorable page cache via the GPN but not via the SAN, to balance

the load of the two network links. “Adaptive” means that the method does not require

to manually specify how much portion of restorable page should be transferred via the

GPN. This adaptiveness is highly important in a cloud data center, where network usage

by other VMs are unpredictable/uncontrollable. For example in the case in the previous

paragraph, dividing the restorable page cache into 500 MB and 400 MB results in 500 MB

transfers both via the GPN and the SAN. However, the SAN might be more congested

than the GPN because other VMs sharing the same storage PM is executing heavy IO,

or the other way around because web servers in other VMs are under high volume of

requests. Our adaptive page cache transfer mitigates this issue and the details are further

described in Section 4.5.4.
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4.4 PROPOSED SYSTEM

4.4.1 DESIGN OVERVIEW

We propose an advanced memory transfer mechanism that exploits the core ideas ex-

plained in the previous section. The design criteria of the system is as follows:

1. The system must have as little performance interference as possible to the target

VM because dynamic VM placement is a background operation which users of the

VMs do not want to have affected from.

2. IP-capability is not assumed to the SAN because in real data centers it can be non

IP networking such as Infiniband without IP.

3. Implementation must be easy in terms of guest OS dependency because types of

guest OS in a cloud has much variety.

4.4.2 MIGRATION PROCEDURE WITH OUR MECHANISM

The procedure of a live migration with our mechanism is illustrated in Figure 4.5. A

VM is being migrated from the source (top-right) to the destination (bottom-left). The

VM on the destination is not running yet thus it is grayed out. The dotted arrows show

commands, the dashed ones show metadata to realize our method, and the solid ones

show transfers of memory data. Detailed descriptions are as follows:

1. The source VMM receives a request to execute a migration. The requests is passed

to our user-space program inside the VM. Then the user-space program requests

our kernel module to fetch the page frame numbers (PFNs) of the restorable page

cache and the block numbers of the identical disk blocks.

2. The kernel module detects the PFNs of restorable page cache and the identical disk

blocks. They are sent to the source and the destination VMMs with the help of the

user-space program.

3. The memory transfers are kicked-off. The SAN is exploited to accelerate live mi-

gration.

（a）Restoring Thread in the destination VMM transfers restorable page cache from

the disk image via the SAN.
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FIG. 4.5. Procedure of Live Migration with Our Mechanism. Each arrow shows a data flow to
achieve the proposal. (1) The source VMM receives a migration request and it passes
the request to kernel module inside the guest OS with a help of the user-space program.
(2) The user-space program sends retrieved PFNs and disk block numbers of restorable
page cache to the source and the destination VMMs. (3) Normal data is transferred via
the GPN, and restorable page cache is transferred both via the SAN and the GPN.

（b）Receiving Thread in the destination VMM receives normal data pages from

the source VMM via the GPN. Once the number of normal data pages to be

transferred becomes sufficiently small, the thread starts receiving restorable

page cache via the GPN (adaptive page cache transfer).

4. Memory pages updated during above steps are transferred again via the general

purpose network.

5. Once the amount of remaining memory becomes sufficiently small and all the

restorable page cache is copied, the execution host of the VM is switched.
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4.5 TECHNICAL DETAILS

4.5.1 OVERVIEW

The technical contributions of this paper is described in this section. The challenges are

how to achieve the parallel transfers of normal data and restorable page cache, and how

to achieve adaptive page cache transfer.

Memory Consistency: Transfers of normal memory and restorable page cache are done

while the VM keeps running. This causes updates to restorable page during a migra-

tion. Updated restorable page cache must be detected and transferred as normal memory

pages because there is not guarantee that the pages are flushed into the disk image.

Writing Algorithm: It is possible that one memory page is written by the two threads.

The writing algorithm must be carefully designed to deal with this case.

Adaptive Page Cache Transfer: Receiving Thread and Restoring Thread must cooperate

in adaptive page cache transfer to select appropriate network to transfer each memory

page.

4.5.2 MEMORY CONSISTENCY

The memory consistency of the VM during a migration must be carefully dealt with. The

issue is that a memory page containing restorable page cache can be updated and can

turn into non-restorable. Suppose a memory page is updated during a migration after

it has been detected as restorable page cache. In this case, the updated and latest data

must be transferred via the general purpose network because there is no guarantee that

the updated data has been flushed into the disk. There are two cases in which a memory

page used for the restorable page cache is updated: the cached data contained in the

page is updated or the guest OS frees the page and use it for another purpose than page

cache because of memory pressure.

We solve this issue with the dirty page tracking functionality of the VMM. The x86

architecture has a dirty bit for each memory page that is set when the page is updated.

The VMM provides a functionality to read the dirty bits from the software level. Dirty

page tracking is enabled at the source host when a migration starts and all the memory

writes after that are tracked. A memory page updated during the tracking is transferred

via the general purpose network, even if the memory page was restorable when the
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Algorithm 1 Receiving Thread
repeat

ReceiveMemoryPages(Buffer)
i← AddressOfFirstPage(Buffer)
repeat

TryLock(i)
if Lock is acquired then

ReceivedFlag[i]← 1
MemoryOfVM[i]← GetMemoryData(Buffer, i)
ReleaseLock(i)

end if
i← AddressOfNextPage(Buffer, i)

until Buffer is all flushed
until Number of received pages becomes sufficiently small

Algorithm 2 Restoring Thread
for i ∈ AddressesOfResorablePageCache do

TryLock(i)
if Lock is acquired then

if ReceivedFlag[i] == 0 then
b← IdenticalDiskBlockNumber(i)
MemoryOfVM[i]← DiskImage[b]

end if
ReleaseLock(i)

end if
/* Skip the page if the lock cannot be acquired */

end for

kernel module detected restorable page cache.

4.5.3 WRITING ALGORITHM

The simultaneous transfers are implemented by two threads and a buffer in the desti-

nation VMM. Receiving Thread receives and buffers normal memory pages transferred

via the general purpose network. The buffer is flushed into the VM memory once it is

filled. Restoring Thread fetches the restorable page cache from the storage node via the

SAN and copies the data into the VM memory without buffering.

A lock mechanism is used to deal with two simultaneously transfers because the two

threads can write to the same memory page. This happens when a memory page on the

source host is updated after it has been detected to be restorable page cache as described

in Section 4.5.2. The destination VMM has a received flag and a mutex for each memory

page. The memory footprint during a migration by the flags and mutex is enough small

because a flag is 1 byte and a mutex is 40 bytes (in Linux pthread implementation) and
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FIG. 4.6. Adaptive Page Cache Transfer. Example with 1 memory page for normal data and 3
memory pages for restorable page cache. (a) First, the normal data page (black rect-
angle) is transferred via the general purpose network and a restorable page cache page
is transferred via the SAN. (b) Second, one of the remaining two restorable page cache
pages is transferred via the general purpose network while the another one is transferred
via the SAN.

the sum is 4 % of the size of a memory page. The flags and mutex are no longer required

after a migration thus there is no extra memory required during non-migration time. The

working algorithms of Receiving thread and Restoring thread are as follows:

Receiving Thread: It tries to acquire the lock for a memory page before writing to the

page. If the lock cannot be acquired it processes the next memory page in the buffer

(or the first memory page if it reaches to the end of the buffer). If the lock is acquired,

it enables the received flag for the page and copies the transferred data into the VM

memory, and then releases the lock. The buffer prevents the receiving thread from being

blocked upon a lock conflict.

Restoring Thread: It also tries to acquire the lock for the page before writing to a mem-

ory page. If the lock cannot be acquired, it skips processing the page because a lock

conflict means that the updated and latest data is being written to the memory page by

the receiving thread. If the lock is acquired and the received flag is disabled, it copies the

identical disk block to the memory page, and then releases the lock.

4.5.4 ADAPTIVE PAGE CACHE TRANSFER

We propose adaptive page cache transfer to balance the load of the two networks. This

imbalance happens when transferring normal data pages finish earlier than transferring

restorable page cache, because restorable page cache dominates the memory usage in
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our target cases. As described in Section 4.3.3, manually mitigating this imbalance is

infeasible thus our adaptive page cache transfer is essential.

The adaptive page cache transfer has three steps:

1. Our system tries to transfer all restorable page cache via the SAN, and all other

normal memory pages via the GPN.

2. Transferring of normal data pages ends first before transferring restorable page

cache.

3. The remaining of restorable page cache is transferred using the two networks in

parallel. The transfer via the normal network is done from memory to memory,

and the one via the SAN is done from storage to memory.

Figure 4.6 illustrates the adaptive page cache transfer. The figure shows a simple ex-

ample where only 1 memory page contains normal data (black rectangle) and 3 memory

pages (grey rectangles) contain restorable page cache. In Figure 4.6(a), the normal data

page is transferred via the GPN and a restorable page cache page is transferred via the

SAN. Once transferring the normal data is finished, in Figure 4.6(b), a restorable page

cache page is transferred vie the GPN along with another one being transferred via the

SAN.

In the step (3), the source host and the destination host must tell each other which

memory pages are already transferred. This is because pages transferred via the GPN

are “pushed” from the source host while ones transferred via the SAN are “pulled” from

the destination host in order not to make any change to the storage hosts.

This mechanism is implemented without any extra data structures by utilizing the

received flag (described in Section 4.5.2) and a characteristic of underlying storage. Fig-

ure 4.7 describes the algorithm and it works as follows:

3.1) The pairs of PFNs and disk block numbers containing restorable page cache are

sorted in the order of the block numbers.

3.2) At t = t0, the restoring thread is transferring restorable page cache in the ascending

order of the disk block numbers, and the receiving thread is transferring it in the

descending order of the disk block numbers.

3.3) At t = t1, both threads reach to the same memory page and all memory pages that

contain restorable page cache are transferred to the destination host.

3.4) Between t = t1 and t = t2, the restoring thread skips transferring all memory pages
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0
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{25, 15} {30, 12} {31, 13} {32, 14} {41, 10} {42, 11} {60, 3} {61, 4}

t = t
1

{25, 15} {30, 12} {31, 13} {32, 14} {41, 10} {42, 11} {60, 3} {61, 4}

t = t
2

Transferred via the SAN

Block Number PFN

Restoring thread can skip these pages thanks to the received flags

FIG. 4.7. Adaptive Page Cache Transfer Algorithm. Pairs of PFNs and disk block numbers to be
transferred are sorted in the order of disk block numbers. t=t0: Restoring thread receives
restorable page cache via the SAN in the ascending order, while Receiving thread re-
ceives it via the GPN in the descending order. t=t1: The two transfers reach up to the
same memory page. t=t2: Restoring thread can skip already transferred pages thanks to
the received flag (Section 4.5.3), and the destination VMM finds that all memory pages
have been transferred.

whose corresponding disk block numbers are more than 32, because the received

flags for them are on.

3.5) At t = t2, the restoring thread reaches to the end of the list, and the destination

VMM notifies the source VMM of it. While the restoring thread is skipping al-

ready transferred pages, some memory pages ({14, 32} in Figure 4.7) are trans-

ferred again by the receiving thread. However, the number of memory pages that

are transferred twice is negligible because skipping already transferred pages take

small amount of time (it only requires to acquire open locks and check if the flags

are on).
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4.6 IMPLEMENTATION

4.6.1 COMPONENTS

Our system is implemented with three components. The details of each component are

described in the following subsections.

Kernel module: It detects the PFNs of the memory pages containing restorable page

cache and the block numbers of the identical disk blocks to the memory pages.

User-space program: It sends the PFNs and the disk block numbers to the modified

VMMs.

Modified VMM: It transfers the restorable page cache via the SAN, and at the same

time transfers the other memory pages via the general purpose network.

4.6.2 DETECTING RESTORABLE PAGE CACHE WITH KERNEL MODULE

Our kernel module detects the PFNs of the memory pages containing restorable page

cache and the block numbers of the identical disk blocks to the restorable page cache.

It utilizes OS dependent kernel functions and data structures to easily detect them. Our

current implementation requires Linux guest, but we believe it is easy to implement it for

other guest OS (Windows provides similar kernel functions to the ones we use in Linux).

The size of the module is 155 KB only and it takes less than a second to detect restorable

page cache from 1 GB of memory and 20 GB of disk.

The use of kernel functions and data structures greatly reduces the implementation

cost to detect restorable page cache. In Linux, pfn_to_page kernel function takes an in-

teger as the parameter and returns struct page kernel data of a memory page whose

PFN is the integer. If the page contains page cache, the struct page includes a flag indi-

cating whether the page is flushed back to the disk, which means this page is restorable.

The disk block number that has the identical data to the page is retrieved by passing the

struct page to another function bmap.

4.6.3 USER-SPACE PROGRAM

Our user-space program works as a broker between the VMM and the kernel module.

When a migration is invoked, the VMM in the source host sends a request to get PFNs

of restorable page cache and the identical disk block numbers. The user-space program



4.6 IMPLEMENTATION 53

receives the request and invokes the ioctl operation of the kernel module. Once it gets

the PFNs and the identical disk block numbers from the module, it sends them to the

VMMs in the source and destination hosts.

The mapping information sent from the user-space program to the VMMs is an array

of disk block numbers indexed by memory page numbers, that is, the nth disk block

number in the array describes information about the nth memory page of the VM. A

non-zero number represents the disk block number containing the identical data to the

memory page. A zero in an array means that the memory page is not restorable. For

example, an array {1234, 0, 10, 0, ...} means that the 1234th disk block has the identical

data to the 1st memory page and the the 10th disk block has the identical data to the

3rd memory page, while the 2nd and 4th memory pages are not restorable, and so forth.

The size of an array is given by 8×NumberOfMemoryPages because a disk block number

is represented with an 8-byte unsigned integer in modern Linux. If a VM has 4 GB of

memory, the size of the mapping information of this VM is: 8 × (4 GB ÷ 4 KB/page) =

8 MB.

4.6.4 MODIFIED VMM

We modify QEMU/KVM to add three functionalities. First, it has a new migration com-

mand whose arguments are the IP address of the VM, the IP address of the destination

host, and the IP address of the target VM to be migrated. Second, it communicates with

the user-space program inside the target VM to fetch the PFNs of restorable page cache

and the identical disk block numbers before it start transferring the VM memory. Third

it invokes two threads to simultaneously receives the restorable page cache and the other

memory pages at the destination.

Retrieving the PFNs of restorable page cache and the identical disk block numbers

uses our kernel module and our user-space program installed inside the VM. This re-

quires users of VMs to install them, but we believe this requirement is lightweight be-

cause of two reasons. First, the kernel module and the user-space program are simple

enough (both have approximately 200 lines of code in C) so that the admins can verify

our modules are innocent. Second, our method helps not only cloud providers but also

data center users. Fast live migration achieves lower energy consumption (resulting in

lower pricing) and faster load balancing.

Receiving thread and Restoring Thread are invoked to achieve simultaneous trans-
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TABLE. 4.1. Evaluation Environments

Host Guest

CPU Intel Xeon X5460 1 core vCPU

Memory 8 GB 3 GB

Storage 256 GB HDD 20 GB

(read: 90 MB/s) (raw disk image)

Network 1 Gbps NIC × 3 1 Gbps vNIC (bridged)

OS Debian GNU/Linux 6.0.5 (Linux 2.6.32)

VMM QEMU 0.13.0, KVM 2.6.32

fers. Receiving thread receives normal memory pages via the general purpose network,

and Restoring thread transfers restorable page cache via the SAN. Restoring Thread uses

normal read/write system calls to fetch the restorable page cache, therefore our imple-

mentation does not require any change to the underlying network settings. Normal

read/write are automatically rerouted by the underlying filesystem because disk images

are on a shared filesystem (such as NFS, ATAoE, and iSCSI) as normally done in cloud

data centers. This means that our mechanism can be applied even if the target data center

uses Infiniband for the SAN while using IP for the general purpose. On the other hand,

merely bonding the SAN and the general purpose network for faster migration requires

IP-capability of the SAN and changes to existing data center network settings.

4.7 EVALUATION

4.7.1 METHODOLOGY

Our evaluation consists of three parts and the metric each part measures is as follows:

1. Total migration time under various workloads, with all our proposals enabled.

2. Total migration time under various workloads, without the adaptive page cache

transfer but with a pre-defined parameter R that specifies how much portion of

restorable page cache is transferred via the SAN.

3. IO performance penalty to the VM after a migration.

The 1st part shows that our proposal successfully shortens total migration time. The 2nd

part shows that the adaptive page cache transfer automatically yields the optimal results

by comparing with manually tuned cases. The 3rd part shows that our proposal causes
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negligible IO performance penalty to the target VM after a migration because page cache

of the VM is fully warmed up by our method.

The evaluations environments are shown in Table 4.1. The physical hosts have three

1 Gbps network interface cards (NICs), two of which are used for the SAN and the gen-

eral purpose network. The read throughput of the storages are measured using bonnie++

in the host OSes. The VMM is composed of QEMU 0.13.0 and KVM 2.6.32. The KVM is

the default version of the host OS. Each measurement uses three servers: two comput-

ing nodes and a storage node shared across the cluster via Network File System (NFS).

A VM running a workload is migrated from a computing node to another computing

node. The disk image of the VM is stored in the storage node. The read/write block size

of NFS is tuned to 8 KB because it achieved the best throughput in our environment. *2

The evaluation is conducted with three workloads: WebServer, TPC-C and Postmark.

WebServer simulates a web server under high load. Apache web server has static files.

The number of files is 10,000 and the size of each file is 300 KB. A load generator, httperf,

fetches the files with the speed of 50 files/s. The load generator runs on a designated host

(not the same neither as source nor destination) and accesses the files via the third NIC to

avoid interference to the migration process. The migration is executed 250 seconds after

the workload started, where all the files has been cached in the page cache.

Postmark [77] is a benchmark that measures IO performance of small and short-lived

files to simulate load of mail, net news, or web servers. A survey on file system bench-

marking tools [78] reports that Postmark is the 3rd most popular in research during 2009–

2010. We set up the parameters of Postmark as follows: repeat 80,000 transactions in the

speed of at most 500 per second with 1MB–5MB files and 4KB of read/write buffers.

TPC-C [79] is a benchmark that measures the performance of a database system. It

generates database access patterns that simulates an online shopping web site. The total

size of content of the database is 1.9 GB. The migration is executed 270 seconds after the

the workload started, where the warming up phase of TPC-C has been finished.

4.7.2 TOTAL MIGRATION TIME

Figure 4.8(a), 4.8(b) and 4.8(c) show total migration time under WebServer, Postmark,

and TPC-C workloads, respectively. The light-colored bars indicated “original” are the

results with un-modified live migration implemented in QEMU 0.13.0, and the dark-

*2 In our previous paper [76], the block size was 4KB.
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colored bars indicated “proposed” are the results with our proposal. Each value is calcu-

lated by averaging over 10 runs.
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FIG. 4.8. Total Migration Time with and without our proposal under (a) WebServer (b) Postmark
(c) TPC-C workloads.

TABLE. 4.2. Reduction Ratio of Total Migration Time with Our Proposal.

Workload Reduction Ratio

WebServer 20.3 %

Postmark 33.9 %

TPC-C 13.3 %

Table 4.2 shows the reduction ratios of total migration time achieved by our proposal,

against total migration time achieved by non-modified QEMU. The reduction ratios of

the total migration time are 33.9% under Postmark workload, 20.3% under WebServer

workload, and 13.3% under TPC-C workload. These results show that our proposal effi-

ciently reduces the total migration time under various IO-intensive workloads.

There are large difference between the reduction ratios depending on each workload.

The difference stems from characteristics of IO-operations in each workload. The details

are discussed in Section 4.8.4.

4.7.3 EXPERIMENTS WITHOUT ADAPTIVE PAGE CACHE TRANSFER

To confirm that our adaptive page cache transfer mechanism achieves the optimal re-

sult, the total migration time in Section 4.7.2 are compared with manually tuned results

without using the adaptive page cache transfer. The adaptive page cache mechanism is

turned off and a pre-defined parameter R is given. R represents the ratio of restorable
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FIG. 4.9. Evaluation Results with WebServer Workload. Left: Total Migration Time, Middle:
Elapsed Time Consumed by Receiving Thread and Restoring Thread, Right:Amount of
Data Transferred by Each Thread.
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FIG. 4.10. Evaluation Results with Postmark Workload. Left: Total Migration Time, Middle:
Elapsed Time Consumed by Receiving Thread and Restoring Thread, Right:Amount
of Data Transferred by Each Thread.
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FIG. 4.11. Evaluation Results with TPC-C Workload. Left: Total Migration Time, Middle:
Elapsed Time Consumed by Receiving Thread and Restoring Thread, Right:Amount
of Data Transferred by Each Thread.

page cache transferred via the SAN to all the restorable page cache. That is, R = 0.6

means that 60% of the restorable page cache is transferred via the SAN and 40% is trans-

ferred via the general purpose network. Detailed analysis focusing on each thread (Re-

ceiving and Restoring) is also given in this section.

The left figures of Figure 4.9, Figure 4.10, and Figure 4.11 show the total migration

time without the adaptive page cache transfer under WebServer, Postmark, and TPC-C

workloads, respectively. The x-axis of each figure shows a value of R and the y-axis

shows the total migration time for the R. Note that total migration time with R = 0 are

not the same as the values shown in Section 4.7.2, because the values with R = 0 include

overhead of retrieving the locations of restorable page cache. This overhead is discussed

later in Section 4.8.2. For all workloads, the shortest total migration time achieved in this
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experiment matches the one in Section 4.7.2. This means our adaptive page cache transfer

mechanism achieves the optimal result without manually tuning any parameters.

The middle figures of Figure 4.9, Figure 4.10, and Figure 4.11 show the elapsed time

consumed by Receiving Thread and Restoring Thread. The x-axis shows a value of R

and the y-axis shows the elapsed time of each thread for the R. The dark-colored bars

are for Receiving Thread and the light-colored bars are for Restoring Thread. For all

workloads, the shortest total migration time is achieved when two bars have almost

the same lengths. It means that when the total migration time becomes the shortest

the SAN and the general purpose network are utilized throughout the migration, and

neither thread waits for the other one to finish.

The right figures of Figure 4.9, Figure 4.10, and Figure 4.11 show the amount of data

transferred by each thread. The dark-colored bars are for Receiving Thread and the light-

colored bars are for Restoring Thread. An interesting point is that the trend is not neces-

sarily the same as the trend in the elapsed time of each thread. For example in Figure 4.11,

the elapsed time by the two threads are almost the same at R = 0.4 (where the shortest

total migration time is achieved), but the amount of data transferred by the two threads

are largely different at R = 0.4. This is because the bottleneck is the throughput of the

HDD in the storage node, but not the networks. The reason why the HDD can become

the bottleneck is discussed in Section 4.8.4. In WebServer and Postmark benchmarks the

trends of the elapsed time and the amount of transferred data are the same because the

network throughput the bottleneck in these cases.

Summary: The adaptive page cache transfer achieves the shortest total migration time

which is nearly the same as the one manual parameter tuning achieves. The shortest total

migration time is achieved when the two networks are utilized for the same duration of

time.

4.7.4 SMALL IO PERFORMANCE PENALTY TO THE VM

Our mechanism has small IO performance penalty to the VM after a migration because

it keeps the page cache warmed up transparently from the VM. Figure 4.12 shows the

file read throughput of a VM on the HDD cluster. The x-axis shows the elapsed time in

second from the beginning and the y-axis shows the throughput in blocks/second. The

VM with 3GB of memory is migrated using our method with R = 0.5 during 50 < x < 62

to measure the IO performance penalty by our method. The file is 2 GB large and cached
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FIG. 4.12. File Read Throughput of a VM Reading a Large File. Blue line shows the result of
the whole measurement and red line shows enlarged result for 62 ≤ x ≤ 70. The
VM is migrated during 50 < x < 62 by our method. The throughput recovers to the
maximum 2 seconds after the migration completes (x = 64). The degradation during
the migration is out of our scope.

in the page cache before the measurement. Once the end of the file is reached, the file is

read from the head again. The blue line is the result of the whole measurement and the

red line is the result during 9 seconds after the migration completes (62 ≤ x ≤ 70).

The read throughput fully recovers 2 seconds after the migration completes, because

there is no loss of page cache after the migration in our method. We did not conduct

the same measurement with existing methods because the implementations are not pro-

vided, but deleting page cache causes much larger IO performance penalty because read-

ing a 2 GB file not on page cache takes 14 seconds in our HDD cluster. The degradation

during the migration (50 < x < 62) is a general phenomenon of migration [80] and out

of our scope.

Summary: Our mechanism has negligible IO performance penalty to a migrated VM.

File read throughput of a migrated VM fully recovers 2 seconds after a migration com-

pletes.



60 CHAPTER 4 PAGE CACHE TELEPORTATION

4.8 DISCUSSION

4.8.1 MATHEMATICAL ANALYSIS OF THE METHOD

We give mathematical analysis on how dividing page cache impacts on the total migra-

tion time, using the case that restorable page cache is manually divided with the param-

eter R as done in Section 4.7.3. We assume that there is no update to the VM memory

during a migration to make the analysis simple and easy to understand. The optimal

value of R that achieves the shortest migration time is denoted as R∗ hereafter.

R∗ depends on four factors: the amount of restorable page cache Mp, the amount of

normal memory Mn, the throughput of transferring restorable page cache Sp, and the

throughput of transferring normal memory Sn. R∗ and the four factors satisfy:

R∗Mp

Sp
=

Mn + (1−R∗)Mp

Sn
(4.1)

because both transfers must end at the same time to utilize the SAN and the general

purpose network equally. Therefore, R∗ is given by:

R∗ =
Mp +Mn

Mp
× Sp

Sp + Sn
(4.2)

Substituting (4.2) into (4.1) gives the time T consumed to finish both transfers:

T =
R∗Mp

Sp
=

Mp +Mn

Sp + Sn
(4.3)

This means that the two network links can be regarded as an integrated network link

with Sp + Sn bandwidth.

We discuss how the balance of Mn and Mp affects R∗ and how it results in total migra-

tion time. Suppose the two networks have the same available bandwidth (Sn = Sp = S)

during migration, then we get:

R∗ =
Mp +Mn

Mp
× S

S + S
(4.4)

=
Mp +Mn

2Mp
(4.5)

=
1 + Mn

Mp

2
(4.6)
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R∗ must holds 0 ≤ R∗ ≤ 1 by the definition. This means that for our system to work

efficiently, Mp and Mn must holds:

0 ≤ Mn

Mp
≤ 1 (4.7)

because

0 ≤
1 + Mn

Mp

2
≤ 1 (4.8)

When the equation (4.7) holds, the reduction ratio of total migration time is given by

dividing T by the time consumed to transfer all memory pages with one link, which is:

T
Mn+Mp

S

=
Mn+Mp

2S
Mn+Mp

S

(4.9)

=
1

2
(4.10)

This means that, if Sp = Sn and Mn ≤ Mp, total migration time is shortened to the half

of the original in theory.

However, Table 4.2 shows that actual reduction ratio is smaller than 50% in all work-

loads although restorable page cache dominates more than 70% of the memory usage

(Figure 4.2). The reason is that Sp and Sn are not equal, more concretely, Sp is non-

negligibly smaller than Sn. Even if the available network bandwidth for the SAN and

the GPN are the same, Sp can be smaller than Sn. Further discussion is given in Sec-

tion 4.8.4 with real data from the three workloads.

4.8.2 SENDING PFNS AND DISK BLOCK NUMBERS WITH TCP/IP

Transferring PFNs of restorable page cache and disk block numbers with TCP/IP is the

easiest method and applicable to any practical guest OS, but has overhead on total mi-

gration time. In the WebServer benchmark, the transfer takes 3 seconds even though

the size of data to transfer is just 6 MB. This is calculated by multiplying the number of

memory pages with 8 (in Linux a disk block number is 8-bytes long). This is because the

web sever inside the VM arises many hardware interruptions to the network interface

and our user-space program cannot use the network functionalities efficiently. Without

the web server, it takes less than 1 second to send the PFNs and disk block numbers even

if the vCPU usage is 100%. The overhead was 1.6 seconds for Postmark workload and
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TABLE. 4.3. Comparison of Methods to Detect Restorable Page Cache

Kernel VM Intro- IO Moni-

Module spection toring

Implementation Easy Hard Middle

Runtime Overhead None None Small

Guest OS Module Specific None

Limitation Installed Version

Page Cache History R/W None Write

1.2 seconds for TPC-C workload.

Mechanisms that do not use network to for communications between a host and a VM

can be alternatives. Examples are Symbiotic Virtualization [55] and the shared memory

space used in [72], although they require much implementation cost.

4.8.3 DETECTING RESTORABLE PAGE CACHE IN OTHER METHODS

Installing a kernel module into the guest OS is the most feasible method to detect

restorable page cache, although it is not the only one. Other possibilities to detect

restorable page cache includes using VM introspection technique and monitoring IO

operations to/from the storage.

VM introspection (e.g. [81]) is a technique that enables the host OS to understand the

memory content of a VM running on it. The host OS requires no help of the guest OS,

but the guest OS kernel must be a specific version that the host OS expects.

IO monitoring in [74] captures all IO operations between the guest OS and external

storages. The method is implemented in the layer of VMM and emulated hardware thus

it required no modification to the guest OS. However, it incurs small overhead while the

VM is executed because of the IO capturing.

Table 4.3 shows comparison between our method (kernel module), VM introspection,

and IO monitoring. The best characteristics among each row are showed italic. Kernel

module is the easiest to implement among three methods. As shown in Section 4.6.4,

it has 200 lines of code in C (error handling excluded). Runtime overhead means the

overhead incurred by each method to the VM performance during non-migration time.

The kernel module incurs literary no runtime overhead because the module is invoked

just before a migration and it even does not need to be loaded into the kernel during

non-migration time. This characteristic is highly important as described in the design
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FIG. 4.13. Disk Block Sequentiality v.s. Read Throughput

criteria (Section 4.4.1).

An unique and promising characteristic of kernel module approach is that it can not

only retrieve information from the guest OS but can also inject new behaviors to it. For

example, a possible direction to extend our method is to exploit access history to page

cache by the guest OS and to post-copy page cache that will not be used in the near

future. Accepting small modification to the guest kernel allows to increment a counter

each time page cache is hit, and to exploit that information for more efficient migration.

VM introspection does not allow this extension because it can only get the information

that is already embedded on an existing kernel. IO monitoring neither allows the ex-

tension because it cannot capture page cache hits, which are memory to memory data

copy. The “Page Cache History” column shows this characteristics: kernel module can

exploit read/write histories from/to page cache, while IO monitoring can only get write

histories and VM introspection cannot get any history information.

4.8.4 BLOCK SEQUENTIALITY

This section analyses a reason of the difference on the efficiencies of our method among

workloads. The total migration time in our method is largely affected by the sequential-

ity of disk blocks that contain restorable page cache. Random accessing to an HDD is

slower than sequential accessing, because of slow seek operations and fruitless buffering

(Figure 4.13). Therefore, when disk blocks to transfer are scattered across wide address

range of the HDD, read throughput of the storage node can be the bottleneck of our

method, instead of the networks.

Table 4.4 shows sequentiality of disk blocks to transfer in the workloads used in the

evaluation. For each workload, we calculated average cluster size of restorable page

cache for the workload. A cluster means a set of sequential disk blocks within the disk
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TABLE. 4.4. Average Cluster Size of Restorable Page Cache.

Workload Average Cluster Size

WebServer 57.1

Postmark 124.3

TPC-C 18.9

blocks to transfer. For example, if the disk blocks to transfer are {1, 2, 55, 56, 100,101,102},

the average cluster size is 2+2+3
3 ≈ 3.3. Larger cluster size results in better read through-

put of the blocks.

The results show that the average cluster size is the smallest in TPC-C workload and

relatively the large in WebServer and Postmark workloads. These values obviously show

why the reduction ratio of total migration time is not large under TPC-C workload. It can

be expected that database-related workloads have small average cluster size in general

and our proposal does not work efficiently under those workloads.

For another verification of the fact that disk block sequentiality largely affects total

migration time for the proposed system, it is observed that accessing order to the disk

blocks to transfer also affects total migration time. Three accessing orders, ascending,

descending, and PFN are compared. Ascending order means that the disk blocks are read

out in the ascending order of disk block numbers, which is the default of the proposed

system. Descending order means that the disk blocks are read out in the descending

order of disk block numbers. PFN order means that the disk blocks are read out in the

ascending order of memory page frame numbers that have the same data with the disk

blocks. Note that this is not the same as the ascending order as memory pages used for

page cache are not necessarily straight-mapped to disk blocks. The total migration time

was the shortest for the ascending order, which explains our hypothesis that reading disk

blocks are largely affected by the accessing order. Therefore the system uses ascending

order by default.

4.8.5 APPLICABILITY TO WIDE AREA LIVE MIGRATION

Wide area live migration is a technique to live migrate a VM from one data center to an-

other far away data center and it has many use cases. Al-Kiswany et al. [82] achieve cross

data center load balancing by using wide area live migration. This work is unique in the

sense that it distributes the load of a data center to other distant data centers. Moghad-
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FIG. 4.14. Application of Page Cache Teleportation to Wide Area Live Migration

dam et al. [21] minimize the carbon footprint of a virtual private cloud through a live

migration of VMs to a data center that uses clean energy sources as much as possible.

Tsugawa et al. [83] propose to use wide area live migration for disaster recovery of indis-

pensable IT systems. VMs can survive a disaster by using live migration of them to safe

data centers when a disaster occurs. The work shows that when the great earthquake hit

Japan in 2011, the network connectivity and the uninterruptible power supply were kept

alive for dozens of minutes at Tohoku University (150 km from the epicenter).

The proposed system in this chapter is also applicable to wide area live migration. Fig-

ure 4.14 shows how it can be used for wide area live migration. The figure shows when

a VM is about to migrate from the source data center to the destination data center. In

each data center, computing nodes are connected with a GPN that is also connected to

the Internet. Storage nodes are connected with a SAN that is not connected to the outside

of each data center. We assume that disk images stored in the two data centers are peri-

odically synchronized to achieve fast live migration within the two data centers, because

the two data centers are hosted by the same organization, or they are a contract to do

so for disaster recover. Undet this assumption, a wide area live migration is accelerated

with our system as follows:

1. Normal data pages are transferred via the internet from the source data center to

the destination data center.

2. Meanwhile, restorable page cache is transferred via the SAN within the destina-

tion data center, because the disk image is periodically synchronized during non-
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migration time.

Synchronization of large files among geographically distant data centers has been ap-

proached by some studies. DRBD [84] is a block-device level synchronization mechanism

that is already included in the Linux mainstream. It has a synchronous mode where a

write to the local host cannot finish until the remote replica finishes writing the same

data, and an asynchronous mode where a write can finish without waiting for an ack

from the remote replica. To use DRBD with page cache teleportation, either using the

synchronous mode during the whole data center operation, or by switching to the syn-

chronous mode from the asynchronous mode before a migration is required. dsynch [85]

provides periodic synchronization of VM disk images between two data centers with

less CPU overhead and less cache pollution than merely calculating block-wise hash val-

ues on every synchronization time to find updated blocks. To use dsynch with our page

cache teleportation, a mechanism to track which disk blocks are not yet synchronized is

required to prevent transferring old data from storage on the destination data center.

4.8.6 LIMITATION

This section explains the limitation of applicability of Page Cache Teleportation. Page

Cache Teleportation has two important assumptions:

1. The target data center has a SAN as a separated link from the GPN, and

2. The congestion of the SAN is similar to the one of the GPN.

The 1st assumption holds for many modern, big data centers (as mentioned in Sec-

tion 4.3, CISCO suggests to do so [75]). However, it does not necessarily holds small

private clouds that cannot have much budget. They might have a virtual SAN that is

created by software (VLAN is commonly used in data centers), but Page Cache Telepor-

tation does not work for a virtual software SAN.

The 2nd assumption does or does not hold depending on workload characteristics of

the target data center. For example, if the target data center is designated for processing

huge amount of data such as DNA analysis, SAN is most probable more congested than

the GPN thus there is no room to transfer page cache via the SAN.
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4.9 RELATED WORK

It has been pointed out that the large amount of page cache slows down total migration

time thus it must be approached. Koto et al. discuss computational and time costs of

live migration (referred as migration noise) in [72]. The work reduces the migration noise

by skipping the transfer of restorable pages including page cache, free pages, and kernel

objects that can be regenerated from other data. This method degrades IO performance

of the VM due to the loss of page cache after a migration. Hines et al. also skips the

transfer of the page cache by using the balloon driver of Xen [73]. In a paravirtualiza-

tion environment with Xen, a guest OS returns unused memory pages to the Xen using

the balloon driver. Hence, Xen can skip the transfer of the deleted page cache in a live

migration. This method also degrades the IO performance of the VM after a migration

because the VM must reload the deleted page cache from the disk.

Transferring page cache from storage to achieve fast live migration without deleting

the cache has been proposed [74, 86]. The main advantage of our work is that we pro-

posed the adaptive page cache transfer. Existing studies do transfer restorable page cache

via the SAN in parallel with normal data transfer via the GPN, but they use the GPN ex-

clusively for normal data. To mitigate the load imbalance between the SAN and the GPN,

[86] introduces lazy fetch mechanism, whose core idea is similar to well-known post-copy

live migration. The lazy fetch mechanism switches the execution host of the VM as soon

as transferring normal data is finished. After the execution host of the VM is switched,

the remaining restorable page cache is fetched on demand in response to the memory

accesses at the destination host. This mechanism has the same problem as post-copy live

migration has: accesses to the page cache which is not transferred yet takes long time

and degrades the overall performance of the workload running in the VM. Our adaptive

page cache transfer mechanism mitigate the load imbalance problem without introduc-

ing new overhead and is more suitable for IO-intensive VMs than existing works.

There is a body of knowledge on accelerating live migration, but our technique is com-

plementary with most of them because Page cache teleportation accelerates the 1st phase

of live migration. Detailed explanation of this matter is in Section 3.6 in Chapter 3.



68 CHAPTER 4 PAGE CACHE TELEPORTATION

4.10 SUMMARY OF THIS CHAPTER

IO-intensive VMs have large amount of page cache in the memory, and this results in in-

efficient live migration by long total migration time. Recent studies tackled this problem

by merely skipping the transfer of page cache in live migration, but this method penalizes

the performance of the IO-intensive workloads running on the target VM. In this chapter,

page cache teleportation, an advanced memory transfer mechanism for live migration of

IO-intensive is proposed. The idea is that modern data centers have a dedicated storage

area network (SAN), which has never been utilized for live migration before. Page cache

teleportation shortens total migration time of an IO-intensive VM by transferring a por-

tion of page cache via the SAN from a storage PM to the destination PM of the migration,

not via normal network from the source PM. The method mitigates the problem with sig-

nificantly smaller IO performance penalty to the VM than the existing method, because

the the VM has no need to re-fetch the page cache from a storage PM. The experiments

showed that the method shortened total migration time with by 13-33% for various IO-

intensive workloads with negligible IO performance penalty. Integrated evaluations of

Page cache teleportation and aggressive VM relocation are given in Chapter 5.
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CHAPTER 5

EVALUATING ENERGY IMPACT OF

LIVE MIGRATION

5.1 INTRODUCTION

As discussed in Chapter 1 (Introduction), the amount of energy consumed by data cen-

ters is becoming enormous in response to today’s trend of using cloud computing. 1.5%

of the overall electricity consumption in the US was due to data centers in 2006 [14],

Google pays $1.4 million per month for its five data centers in the US [15], and en-

ergy consumption of data centers grew by 16.7% per year during 2000–2005 over the

world [13].

Many studies have been done to reduce energy consumption of data centers both from

dynamic VM consolidation side and from live migration side. However, actual amount

of energy reduced by these researches in real data centers is still not revealed. This is be-

cause they lack integrated evaluation of dynamic VM consolidation and live migration,

thus they cannot evaluate how much extra energy consumption and short sleep time are

incurred by live migration in real data centers with real workloads. Dynamic VM consol-

idation researches calculate energy reduction with cost of live migration ignored, on the

other hand live migration researches evaluate just a single migration and never discuss

impact on a whole data center.

Given this situation of existing researches, this chapter conducts integrated evaluation

of live migration methods proposed in this thesis and dynamic VM consolidation algo-

rithms. First, MiyakoDori and Page cache teleportation are implemented onto a cloud

simulator, SimGrid, by modeling their performance and energy characteristics. Second,
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integrated evaluation of the two methods and a state of the art dynamic VM consolida-

tion algorithm, FFD, is conducted with realistic PM energy and workload settings.

This chapter is structured as follows. Section 5.2 clarifies the problem tackled in this

chapter. Section 5.3 explains how the problem is approached and by integrated simu-

lations. Section 5.5 gives experimental setups and results. Section 5.9 describes related

work and future directions. and Section 5.10 concludes the chapter.

A part of this chapter has been published in a refereed paper. The copyright of the

paper is hold by IEEE Computer Society.

1. Soramichi Akiyama et al. Evaluating Impact of Live Migration on Data Center En-

ergy Saving. In Proceedings of 6th IEEE International Conference on Cloud Computing

Technology and Science, pages 759 - 762, 2014.

5.2 THE PROBLEM AND APPROACH

5.2.1 EXTRA ENERGY CONSUMPTION OF LIVE MIGRATION

Extra energy consumption of live migration is incurred by the load increase due to a

live migration process. The whole memory of the migrated VM must be transferred

from the source PM to the destination PM during live migration. All the memory pages

of the VM are accessed and pushed into the network on the source PM, and they are

received from the network and written into the memory on the destination PM. These

procedures increase load of CPU, memory, network and buses and result in increased

energy consumption.

Figure 5.1 shows power of PMs when a VM is migrated between them. The PMs are

rack-mounted servers, each of which has a 4-core Intel Xeon X5460, 8 GB of memory,

three 1 Gbps NICs, and an HDD. The VM has 1 GB of memory and is updating 128 MB

of its working set with the speed of 100 MB/s. The lines show the power consumption

of the source PM, the destination PM, and the storage PM that hosts NFS to save the disk

image of the VM. The x-axis shows elapsed time in second from the beginning of the

measurement and the y-axis shows power consumption in Watt at each time point. The

first value increase before x = 30 is because the VM is being booted during that time.

The second value increase during 120 < x < 140 is because of the migration. Both the

source PM and the destination PM has non-negligible extra energy consumption during
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FIG. 5.2. Short Sleep Time of PMs due to Live Migration

the migration. It is a well known fact that booting a PM/VM consumes much energy,

and this figure gives us an intuition that live migration consumes comparable amount of

energy to booting.
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5.2.2 SHORT SLEEP TIME DUE TO LIVE MIGRATION

The length of time that a PM can be in a sleep mode in dynamic VM consolidation system

largely depends on how quick a migration finishes, as well as on workload characteristics

running in the data center. This is because even when the only one VM hosted in a PM is

migrated to another PM, the source PM cannot be switched into into sleep mode until the

migration finishes. Figure 5.2 shows a typical example of this situation. The horizontal

axis shows the time, and lines denoted PM0 and PM1 show if the PMs are active or in

sleep at each time. A solid line means that the PM is active during the period, and a

dashed line means that the PM is in sleep. In this figure, a VM is running on PM0 at first

and then it starts a migration to PM1 at t0. In an ideal situation where live migration can

be finished with zero time cost, PM0 can be switched into sleep mode at t0, as soon as the

VM starts a migration. However, live migration does take some time thus PM0 cannot

be in sleep until t1, where the migration finishes after transferring all the memory of the

VM. This means that longer and longer the migration takes, larger and larger amount of

energy is consumed to keep PM0 active until the migration finishes.

5.2.3 THE PROBLEM: ENERGY OVERHEAD V.S. ENERGY REDUCTION

Evaluating energy saving given by a dynamic VM consolidation algorithm in a real data

center requires not only analyzing or simulating the algorithm itself (energy reduction),

but also considering extra energy consumption by live migration to execute it (energy

overhead). Existing studies of dynamic VM consolidation discuss the former and ones

of live migration mechanisms discuss the latter, but integrated evaluations of them are

missing. Studies of dynamic VM consolidation either consider the time and energy cost

of live migration negligible [23, 24, 25], or take only the time cost of live migration into

account [26, 27]. However, the energy overhead is not negligible but worth being evalu-

ated as shown in this chapter.

Accelerated live migration mechanisms [87, 76, 31, 30, 74] are widely researched. How-

ever, both the energy overhead of them and the energy reduction given by a combination

of them and dynamic VM consolidation are not researched. Use of accelerated live mi-

gration mechanisms depending on workload characteristic and data center operation

policies is considered a promising method to improve data center efficiencies. Therefore,

it is important to approach energy overhead and energy reduction with accelerated live
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migration mechanisms as well.

In summary, estimating the amount of energy the dynamic VM consolidation

researches can reduce in a real data center is difficult because of two reasons:

1. They lack integrated evaluations of the energy reduction they give and the energy

overhead by live migration.

2. Many researches have proposed accelerated live migration mechanisms and they

affect both the energy reduction by dynamic VM consolidation and energy over-

head of live migration.

5.3 MODELING LIVE MIGRATION

5.3.1 PERFORMANCE MODEL AND ENERGY MODEL

Performance and energy models of live migration are built in this thesis to conduct inte-

grated evaluation of dynamic VM consolidation and live migration.

PERFORMANCE MODEL describes how long a live migration takes under a given en-

vironment (e.g. VM memory size, network bandwidth, workload characteristic

running on the VM). It is used to calculate how long each server can be turned

into low-power states during data center operations.

ENERGY MODEL describes how much extra energy a live migration consumes under a

given environment. It is used to calculate how much energy is lost by conducting

live migrations to execute dynamic VM consolidation algorithms.

5.3.2 SIMGRID

SimGrid “is a scientific instrument to study the behavior of large-scale distributed sys-

tems such as Grids, Clouds, HPC or P2P systems. It can be used to evaluate heuristics,

prototype applications or even assess legacy MPI applications” (cited from the official

website [88]). It was originally developed as a grid simulator to evaluate such as the

amount of transferred data in a given MPI workload, but recent versions also have cloud

supports such as creating a VM on a PM and migrating a VM from one PM to another.

SimGrid is an event-based simulator and the user of it writes events (e.g. VM creation,

workload execution on the VM, VM migration) to simulate and evaluate things the user
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wants. The simulator can be accessed through normal programming languages such

as C, Java, and Ruby, and the user can create events using function/method calls of

that language. For example, a function call to MSG_vm_migrate(v, dst) migrates the

VM named ‘v’ to the PM named ‘dst’. The simulations in this thesis are conducted by

modifying and using Simgrid as follows:

1. First, SimGrid implementation was modified to support MiyakoDori and Page

cache teleportation. Details of the implementation are explained in Section 5.3.4

and Section 5.3.5.

2. Next, required events to simulate aggressive VM relocation are written using the

simulator functions SimGrid provides.

All implementations in this thesis are based on the latest version of SimGrid (as of April

2014) retrieved from its git repository [89]

5.3.3 MODELING NAÏVE LIVE MIGRATION

This section explains how to model and implement the naı̈ve pre-copy live migration

into a simulator.

PERFORMANCE MODEL

Performance model of pre-copy live migration is discussed in [90] and is implemented

into a well-known simulator SimGrid. This model considers not only the allocated mem-

ory size of a migrated VM but also memory updates due to workloads running on the

VM and network resource contention from migrations of other VMs. The paper shows

pre-copy live migration is well simulated by its model, thus we use the model imple-

mented in SimGrid.

ENERGY MODEL

Extra energy consumption of pre-copy live migration has been discussed in litera-

tures [38, 60, 59, 91]. Characteristics of the extra energy consumption are:

1. Both the source PM and the destination PM undergo large increase of energy con-

sumption as shown above, Figure 4(b) in [38], and Figure 1(a) in [60].

2. Not only CPU load increase but also memory and network load increase con-

tributes to the extra energy consumption because memory and network occupy

non-negligible parts of energy consumption within a server [92, 93].
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3. The extra energy consumption is largely depends on the amount of transferred

memory during migration as shown in Figure 5 in [38] and Figure 5 in [91]. This is

because total migration time increases almost linearly as the amount of transferred

memory increases.

In [38], extra energy consumption of PMs conducting live migration is measured with

various VM memory size and network bandwidths. They show that it depends only on

the total amount of transferred memory and is formulated as:

Emig = αVmig + β, (5.1)

where Emig is the extra energy consumption in Joule, Vmig is the amount of transferred

memory in the migration in Megabytes, and α and β are coefficients that vary depending

on specific hardware (equation (15) in [38]). In their environment, the coefficients are

0.512 and 20.165 and equation (5.1) is instantiated as follows (equation (17) in [38]):

Emig = 0.512Vmig + 20.512. (5.2)

Building a model that matches to our own servers is not a concern of this paper. Our

severs use 185W when idle and 235W when all 4 cores are fully loaded, while their ones

use around 190W when hosting an idle VM and 250W when loaded with memtester

benchmark (Figure 4 in [38]). Thus, we assume our servers and their ones have similar

energy characteristics and equation (5.2) can be applied as is for the energy model of

pre-copy live migration in this paper.

A similar model is given in [91], although it claims that the model also slightly de-

pends on available network bandwidth for a migration. We believe this difference is not

a big issue, but it stems from the characteristics of their hardware. Broader bandwidth

available for a migration results in faster access to the memory, NICs and buses inside

the PMs. Extra energy consumption of a migration is constant regardless of available net-

work bandwidth if the power consumption of them increase near linearly to the increase

of the accessed speed, because the time taken for the migration decreases near linearly to

it. Discussing this type of differences is not our purpose, thus we adopt the easy model

described in [38] in this paper.
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FIG. 5.3. Migration History. The VM is migrated from PM0 to PM1 and then from PM1 to PM0.
hi has a timestamp ti, the VM’s execution host Pi, and the amount of updated memory
Di during ti−1 and ti. The amount of non-reusable memory in the second migration is
D2 + D1. The same mechanism can be applied when the number of PMs is more than
two.

5.3.4 MODELING MIYAKODORI

This section explains how to model and implement MiyakoDori into a simulator.

PERFORMANCE MODEL

We build a performance model of MiyakoDori to simulate how much energy it saves

when it is used with dynamic VM consolidation. To build the model requires:

1. Performance model of pre-copy live migration

2. Amount of memory that can be reused in MiyakoDori

MiyakoDori can be simulated subtracting amount of reusable memory from the total

memory size of the migrated VM and simulating pre-copy live migration. This is because

MiyakoDori works totally the same as pre-copy live migration after reusing non-updated

memory in the initial memory transfer.

Performance model of pre-copy live migration is already implemented in SimGrid,

thus we use it as the base of our model implementation. Amount of reusable mem-

ory is calculated by tracking updated memory pages during VM execution in the real

MiyakoDori implementation. SimGrid does not support page-wise operations such as

dirty page, thus emulating this mechanism in Simgrid is infeasible.
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To solve this issue, we introduce migration history hi (i ∈ {1, 2, ..., n}) of each VM into

SimGrid. The elements of hi are a timestamp ti, the VM’s execution host Pi at ti, and the

amount of VM’s updated memory Di during ti−1 and ti. A history is recorded every time

a migration is started/finished. Figure 5.3 shows how migration histories are recorded.

Migration histories are recorded at h0, h1, h2, and h3 in the figure. Each horizontal line

(PM0, PM1) shows a slot of the PM that can host a VM. The bent red line shows a VM

migrated from PM0 to PM1 during t0 and t1, and then from PM1 to PM0 during t2 and t3

(elements of h3 are not drawn due to the space limit). Calculating the amount of reusable

memory in the second migration requires the amount of updated memory since last time

the VM was hosted on PM0. This is equal to D2+D1 because Di is the amount of updated

memory during ti and ti−1.

We confirm that our performance model simulates actual total migration time well.

Live migrations are conducted using the real implementation and the simulator to com-

pare the total migration time. The procedure of the experiments is:

1. VM V is booted on PM0.

2. V is migrated to another PM1.

3. V executes a workload that dirties W MB of working set with D MB/s for T sec-

onds. W is chosen from {128, 256, 512, 1024}, D is chosen from {2, 4, 8} and T is

chosen from {10, 30, 60, 300} thus there are 4× 3× 4 = 48 combinations in total.

4. V is migrated back to PM0 after the workload execution. The total migration time

for this migration is compared.

Figure 5.4 shows comparison of total migration time across the simulation and the real

implementation. Each point in the figure represents one parameter combination of W , D

amd T . The x-value of each point is the total migration time given by the simulator and

the y-value is the total migration time the real implementation takes. The main concern

here is to confirm that our model simulates the real implementation well but not to check

the actual values, thus we do not explain which point represents which parameter combi-

nation. The best fitting line given by least square analysis is: y = 0.953x+3.6487. The fact

that the coefficient of x (0.953) is nearly 1 means the model properly simulates the total

migration time. The constant factor (+3.6487) cannot be 0 because the real implementa-

tion takes 2–3 seconds for the preparation phase before starting actual memory transfer.

Therefore we add 2.5 seconds of waiting before starting a migration in the simulation.
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FIG. 5.4. Validation of the Performance Model of MiyakoDori. Each point has simulated total
migration time as the x-value and real total migration time that MiyakoDori takes as the
y-value. The best fitting line (y = 0.953x + 3.6487) shows our model well simulates
the real values.

ENERGY MODEL

MiyakoDori has two different procedures from pre-copy live migration, thus they must

be considered to build an energy model. For the details please refer Section IV-A in [87].

1. Dirty page tracking is enabled even during non-migration time.

2. Generations of memory pages are exchanged and compared between the source

PM and the destination PM to detect which memory pages must be transferred.

Procedure (1) incurs negligible amount of CPU and memory load increase, and we

confirm that enabling dirty page tracking increases no energy consumption even when

the VM is running a memory intensive workload, which invokes dirty page tracking

more frequently than non memory intensive workloads. Procedure (2) requires to trans-

fer data from and to the source PM, but the amount of data is negligible compared to the

amount of memory transferred in a migration.

Therefore, we conclude equation (5.2) can be used as is for MiyakoDori because the

resource usage of it can be regarded the same as pre-copy live migration. Note that

the amount of transferred memory, Vmig, does decrease with MiyakoDori thus the total

energy consumption for a migration also decreases.
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5.3.5 MODELING PAGE CACHE TELEPORTATION

This section explains how to model and implement Page cache teleportation into a sim-

ulator.

PERFORMANCE MODEL

In this thesis, page cache teleportation is modeled as a method to reduce the amount of

transferred memory in the 1st phase of its process. A reduction ratio, P , is introduced

to specify how many percentage of memory is transferred via the SAN. For example,

when P = 0.25, 25% of memory pages of the migrating VM is transferred via the SAN

while the other 75% is transferred via the general purpose network. Note that P does not

necessarily match the ratio of the amount of restorable page cache within VM memory,

because page cache teleportation has the novel adaptive page cache transfer technique.

The limitation is that this modeling is applicable when (and only when) it is possible

to acutually migrate a VM running the target workload with page cache teleportation

in the target environment. P depends not only on the amount of restorable page cache

within VM memory (workload characteristics), but also on the storage performance and

available network bandwidths of the SAN and the general purpose network.

ENERGY MODEL

An important notice about evaluating page cache teleportation with regard to energy

consumption is that it does not reduce amount of transferred memory while it shortens

total migration time. This is because page cache teleportation is not a method to reduce

the amount of transferred memory for live migration, but it is a method to offload a part

of the transferring task into the SAN from the general purpose network.

Given the fact above, this thesis assumes that migrating a VM with page cache tele-

portation consumes the exactly same amount of extra energy consumption as the VM

migrates with normal pre-copy live migration. More concretely, the same energy model

as the normal pre-copy live migration shown in Section 5.3.3 is used. Note that in

MiyakoDori even the model equation is the same the extra energy consumption is re-

duced thanks to smaller amount of transferred memory, but in page cache teleportation

the amount of transferred memory is also the same as normal pre-copy live migration.
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5.4 DYNAMIC VM CONSOLIDATION ALGORITHMS

5.4.1 A SIMPLE ALGORITHM: WAREHOUSE-HIGHPOWER

The warehouse-highpower strategy is a simple dynamic VM consolidation algorithm.

PMs are divided into two categories in this strategy: warehouse server (WHS) and high-

power server (HPS). A WHS hosts idle VMs that are overcomitted; i.e. a 4-core WHS

hosts more than four 1-core VMs. A HPS hosts busy VMs that are not overcomitted; i.e.

a 4-core HPS cant hosts no more than four 1-core VMs, or two 2-core VMs, or so. A VM is

migrated from a WHS to a HPS when the load changes to heavy from light and the other

way around when the load changes to light from heavy. The simulated data center has

32 HPSs, each of which has 4 cores and can host four 1-core VMs, and one WHS. How

to select a HPS to migrate a busy VM depends on policies of data center operations, thus

we simulate three policies. Note that our intention is to cover various operation policies,

but not to show a specific one is better than others.

Most Dense: A HPS that is hosting the largest number of VMs (but not exceeding the

capacity) is chosen. It simulates a data center where reducing the total energy consump-

tion is the primary concern.

Least Dense: A HPS that is hosting the smallest number of VMs is chosen. It simulates

a data center where reducing performance interference from other VMs is the primary

concern.

Random: A HPS that is hosting the largest number of VMs or one hosting the smallest

number of VMs are chosen equally (50% probability). It simulates a data center where

some VMs can be co-located without any concern of interferences, while other VMs must

be scattered as much as possible.

5.4.2 A STATE OF THE ART ALGORITHM: FFD

Finding the best VM placement in a dynamic VM consolidation system can be inter-

preted as a bin packing problem. In this model, a PM is represented as a bin with a

capacity of resource and a VM is represented as a volume of resource usage. Some stud-

ies try to build more accurate models that map dynamic VM consolidation problems into

vector packing problems [94, 95], but this thesis adopts the simple one-dimensional bin

packing model because how to accurately model the dynamic VM consolidation problem
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FIG. 5.5. The FFD Algorithm.

is under ongoing discussions in the research field.

First fit decreasing (FFD) is a fast huristic algorithm for bin packing problems. Here

“fast heuristic” means that bin packing problems are NP-hard thus huristic algorithms

are used to solve them in a practical time- and computation-cost. The FFD algorithm is

described as follows:

1. Sort the bins in the descending order of their capacities.

2. Sort the volumes in the descending order of their sizes.

3. Starting from the largest bin and the largest volume, repeat the following until no

volume remains un-packed.

（a）If the current bin can include the current volume, put the current volume into

the current bin.

（b）Move to the next-largest volume and then try (a) again.

（c）If the sequence reaches to the smallest volume, the current bin is supposed to

be full. The sequence moves to the next largest bin and the largest un-packed

volume.

The FFD algorithm is proved to give 11/9 worst-case approximation when all bins have

the same size [24], which in turn means all PMs have the same capacity. In discussions

hereafter, this chapter assumes that all PMs (bins) have the same capacity.

5.5 EVALUATION METHODOLOGY

5.5.1 METRICS

The impact of extra energy consumption and short sleep time incurred by live migra-

tion on overall energy saving is evaluated by integrated simulations with aggressive VM

relocation. The metrics explained below are measured in the integrated simulations.
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Slept Time Ratio: The ratio of the time during which a PM was in the low-power

state against the time during which it was active. This metric shows how live migration

impacts short sleep time. The values are averaged across all the PMs.

Saved Energy Ratio: The ratio of the amount of energy saved by dynamic VM consol-

idation. This metric shows how much actual energy a combination of a dynamic VM

consolidation and a live migration mechanism save, with live migration overhead taken

into account. The values are calculated by subtracting actual energy consumption from

expected energy consumption in the naı̈ve case, where all PMs are always active and live

migration never occurs. Note that it is not the same as Slept Time Ratio because of energy

consumption by live migration and sleeping PMs.

Energy Overhead: The ratio of extra energy consumption by live migration against the

total energy used by all the servers in the data center. This metric shows how much extra

energy consumption live migration incurs. This metric also means the amount of wasted

energy used for conducting live migration but not for fruitful computation.

5.5.2 EXPERIMENTAL SETUP

The metrics described in Section 5.5.1 are evaluated in simulations conducted using mod-

ified SimGrid. This section explains experimental setup that are common for MiyakoDori

and Page cache teleportation. Settings that are specific to each method are explained in

the sections for each evaluation.

CONSOLIDATION ALGORITHM

VMs are dynamically consolidated across PMs using the Warehouse-highpower or FFD

algorithms explained in Section 5.4. In the Warehouse-highpower algorithm, a VM mi-

grates every time its load changes from heavy to light or other way around. In the FFD

algorithm, consolidation is invoked every 300 seconds starting from 150 seconds after

the simulation begins. Migrating only one VM is not capable in the FFD algorithm due

to its nature.

WORKLOAD

Each VM on the simulated data center executes a given bursty workload. Three types of

workload are used to conduct the simulation and are summarized in Table 5.1. The first

one is named Full-Zero, where the load takes either 100% of vCPU or 0. The second and

last ones are named WebServer and TPC-C, which simulates the WebServer and TPC-C
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TABLE. 5.1. Details of the Simulation Workloads

Name Full-Zero WebServer TPC-C

Load Light: 0, Heavy: 100% Low: 10%-30%, High: 80%-100%

Working Set Size 128 MB 1024 MB

Busy/Idle Interval 10 mins - 20 mins

workloads used in Chapter 3 and Chapter 4. The workloads have heavy and light CPU

load phases that alternate in short time periods. Specifically, the load of each VM changes

as follows in our experiments:

1. Heavy load continues for a random period chosen from a range of 10 mins to 20

mins, with granularity of 100 seconds; i.e. 600 sec, 700 sec, ..., 1200 sec.

2. Then the load becomes light for a random period chosen from the same range.

When the load is heavy (light), a vCPU is loaded to 100% (0%) in Full-Zero workload,

and to a random number chosen from 80% to 100% (10% to 30%) in WebServer and TPC-

C workloads. The memory of a VM is 4 GB large, and the working set is updated with

the speed of 2MB/s when the load is heavy and has the size of 1024 MB, 128 MB, and

128 MB in TPC-C, WebServer, and Full-Zero workload, respectively.

ENERGY MODELS

The energy model of a PM is built upon power measured with a real server (a rack-

mounted server with a 4-core Intel Xeon X5460, 8GB of memory, three 1 Gbps NICs, and

an HDD). The server consumes 20 Watt, 185 Watt, and 235 Watt when it is in sleep mode,

when it is on but idle, and when its 4 cores are fully loaded, respectively. Therefore,

given the load and capacity of a simulated PM as l and c, the PM consumes P (Watt) of

power that is formulated as follows:

P =

 20 (l = 0)

185 + (235− 185)× l
c (otherwize)

(5.3)

where l is defined by adding the load of all VMs running on the PM (e.g. when the

PM hosts a VM with 30% load and another with 60% load, l for that PM is 90) and c

as 100 × 4, meaning that each of 4 cores can serve 100% capacity. In the Warehouse-

highpower algorithm, the WHS (warehouse server) is assumed to be moderately loaded

for the whole simulation and consumes 235+185
2 = 210 Watt of energy.
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TABLE. 5.2. Simulation Settings for MiyakoDori

Parameter Value

Number of PMs 32

Number of cores of a PM 4

Number of cores of a VM 1 or 2 or 4

Number of VMs 128 or 64 or 32

NW bandwidth between PMs 10 Gbps

Memory size of a VM 4 GB

5.6 EVALUATING MIYAKODORI

5.6.1 OVERVIEW

MiyakoDori is evaluated by integrated simulations with Warehouse-highpower and FFD

algorithms. The simulation settings are described in Table 5.2. There are 32 PMs con-

nected with 10 Gbps bandwidth, each of which have 4 cores. A VM occupies 4 GB of

memory. The simulations are composed by two parts:

1. A simulation in a simple, ideal environment with Warehouse-highpower algo-

rithm:. VMs run Full-Zero workload described in Section 5.5.2 where the load

is either 0% or 100% of the VM’s capacity. The number of VMs that can be hosted

in a PM is bound by the number of cores a VM, which is either 1, 2 or 4. Memory

images of the VMs used for memory reusing can be stored as many as possible in

a PM.

2. A simulation in more complex, realistic environment with FFD algorithm: VMs

run either WebServer or TPC-C workload described in Section 5.5.2, where the

load is randomly decided and working set size and its update speed is defined

based on real values. A PM can host VMs as many as the sum of their load becomes

400 (100% × 4 cores). Memory images of the VMs used for memory reusing can

be stored either up to 8 images (assuming that a PM has 32 GB of memory), or

infinitely.
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FIG. 5.6. Slept Time Ratio of Most Dense policy (Left), Random policy (Middle) and Least Dense
policy (Right).
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FIG. 5.8. Energy Overhead of Most Dense policy (Left), Random policy (Middle) and Least Dense
policy (Right).

5.6.2 SIMULATION RESULTS WITH WAREHOUSE-HIGHPOWER

Figure 5.6, Figure 5.7 and Figure 5.8 show Slept Time Ratio, Saved Energy Ratio and

Energy Overhead, respectively. Figures indicted (a) show the values for Most Dense

policy, ones indicated (b) show the values for Random policy and ones indicated (c)

show the values for Least Dense policy. Bars indicated 32, 64, 128 VM are the results
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when each HPS can host 1, 2, or 4 VMs respectively because each VM has 4, 2, or 1

vCPUs. This simulates various usage of VMs by users. Experiments with mixed number

of vCPUs are one of future work. All values are averaged across 30 simulations runs.

Slept Time Ratio is calculated only across 32 HPSs. Saved Energy Ratio and Energy

Overhead are calculated with energy consumption of the WHS taken into account. Note

that the number of PMs is 33 under dynamic VM consolidation, but it is 32 when dynamic

VM consolidation is not used.

SLEPT TIME RATIO

The values depend on number of VMs and each data center operation policy (Most

dense, Random, Least dense). In the 32VM cases, all policies show the same value be-

cause a PM can host only one VM thus the difference of the policy makes no change.

However in the 128VM cases, Most Dense policy yields more than 10 times better results

than Least Dense policy. This is because Least Dense policy tries to distribute VMs as

much as possible to prevent performance interference. In Least Dense policy all PMs be-

come active when 32 VMs are busy, while in Most Dense policy 8 PM is enough to host

32 VMs. Note again that our intention is not to state Most Dense policy is better than

Least Dense policy, but to evaluate the impact of live migration on various data center

operation policies. For Slept Time Ratio, MiyakoDori does not contribute much because

the network bandwidth between PMs is large (10 Gbps). However, it contributes much

to Saved Energy Ratio and Energy Overhead as shown below.

SAVED ENERGY RATIO

The trend of the values are the same with the one in Slept Time Ratio. The most important

point is that Saved Energy Ratio is greatly smaller than Slept Time Ratio all cases because

of two reasons. First, live migrations conducted to consolidate VMs lose extra amount of

energy as focused on this paper. Second, PMs consume non-negligible amount of energy

even in the low-power state (20 Watt in our settings). This energy consumption is also

unavoidable because totally shutting off a PM may requires even larger amount of energy

to boot the PM again. In some cases (128VM in Least Dense and Random), the ratios are

negative values even though PMs are in sleep mode for positive amount of time. It

means in these cases always keeping all PMs active consumes smaller amount of energy

than using dynamic VM consolidation. This is a good example of our idea that impact of

live migration on data center energy saving must be considered carefully. Considering

energy overhead of live migration reveals that the overall energy consumption can be
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increased by dynamic VM consolidation if the efficiency of it is not large due to the data

center operation policy.

ENERGY OVERHEAD

The values show the ratio of wasted energy for live migration to the energy used for

fruitful computation. Note that the values are not equal to the differences between Slept

Time Ratio and Saved Energy Ratio because the they include the amount of energy con-

sumed by PMs in sleep mode and by the WHS. In the 128VM cases, Energy Overhead is

5.79%, 4.14% and 4.07% in Most Dense, Random and Least Dense policies, respectively.

These values are not negligible at all because the overall amount energy consumption

of data centers is huge as shows in Section 5.1. Using MiyakoDori decreases the Energy

Overhead to less than 1.9% and saves 2.6% – 3.9 % of the energy consumption by the PMs

in a data center. According to Barroso et al., IT equipment consumes 50% of the overall

energy consumption in a traditional data center (Figure 5.2 in [92]). This fact and our En-

ergy Overhead measurements indicate that pre-copy live migration loses up to 2.9% of

the overall data center energy consumption, and use of MiyakoDori decreases the over-

head to less than 0.9%. These values can give important insights to power management

or cost analysis of data centers, and we claim that it is our integrated evaluations that

make it possible to draw the values.

5.6.3 SIMULATION RESULTS WITH FFD

Figure 5.9 shows Slept Time Ratio, Saved Energy Ratio, and Energy Overhead when FFD

is used for the dynamic VM consolidation algorithm and the VMs execute WebServer

workload. Figure 5.10 shows the same metrics when the VMs execute TPC-C workload.

The number of PMs is 16 and the number of VMs is 64. The parameter C (8 or∞) denotes

number of memory images that a PM can save. Note that C has nothing to do with the

results when normal pre-copy live migration is used, thus only one set of results is shown

for pre-copy live migration.

SLEPT TIME RATIO

In both workloads, normal pre-copy migration yields the same results because it have

to transfer all the memory of the target VM no matter how working set is smaller than

the total memory usage (128 MB v.s. 4 GB in WebServer workload). MiyakoDori yields

smaller Slept Time Ratio than normal pre-copy live migration, which betrays the intu-
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FIG. 5.10. Slept Time Ratio (Left), Saved Energy Ratio (Middle), and Energy Overhead (Left)
with FFD Algorithm and TPC-C Workload for 64 VMs and 16 PMs.

ition and the fact that MiyakoDori takes shorter time than normal pre-copy migration.

SAVED ENERGY RATIO

In both workloads, using MiyakoDori saved more than 25% of the data center energy

consumption while using normal pre-copy migration saved 21–22%. Using normal pre-

copy migration yields the same results with the two workload, because it have to transfer

all the memory of the target VM no matter how the working set is smaller than the to-

tal memory usage (128 MB working set against 4 GB total memory usage in WebServer

workload). When C = 8, i.e. a PM has 32 GB of memory, MiyakoDori saved around 3.9

points in both workloads compared to the normal pre-copy cases. As described for the

results in Section 5.6.2, these reduction ratios are really valuable as the energy consump-

tion of a data center is huge. When C =∞, i.e. a PM has an infinite amount of memory,

MiyakoDori saves more than when C = 8 because memory reusing is highly utilized

with full memory images of migrating VMs. An important point is that even when C = 8

with no sophisticated memory image management, MiyakoDori saves valuable amount
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TABLE. 5.3. Simulation Settings for Page cache teleportation

Parameter Value

Number of PMs 16
Number of cores of a PM 4

Number of cores of a VM 1

Number of VMs 64
NW bandwidth between PMs 1 Gbps or 10 Gbps

Memory size of a VM 4 GB

of data center energy consumption.

ENERGY OVERHEAD

Energy overhead shows the same trend as in the results with the Warehouse-highpower

algorithm: MiyakoDori reduces it a lot which in turns improves the Saved Energy Ra-

tio. When MiyakoDori is used, the values are largely different in WebServer and TPC-C

workload. This is because in TPC-C workload the working set size is larger than in Web-

Server workload, thus amount of reusable memory is less.

5.7 EVALUATING PAGE CACHE TELEPORTATION

5.7.1 OVERVIEW

Page cache teleportation is evaluated by integrated simulations with FFD algorithm. The

simulation settings are described in Table 5.3. Parameter values that different from Ta-

ble 5.2 is displayed in bold fonts. The PMs are connected with either 10 Gbps of 1 Gbps

bandwidth. The reason why 1 Gbps setting is introduced is that page cache teleportation

has positive impact on the total migration time but not on the energy overhead of live

migration. Therefore, in 10 Gbps it is predicted that page cache teleportation does not

help reducint the energy consumption of data centers because live migration is already

very quick with 10 Gbps bandwidth. Number of PMs and VMs are 16 and 64 respec-

tively (c.f. 32 and 128 in MiyakoDori case) because dealing with 128VMs with 1 Gbps

can slow down live migration so much that load change of a VM might happen during a

migration of that VM. *1

*1 Note that this thesis is NOT to propose VM relocation algorithm, thus merely avoiding exceptional cases is not a
defect of this work
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5.7.2 SIMULATION RESULTS WITH FFD

This section evaluates how page cache teleportation can reduce energy consumption of

data centers compared to normal pre-copy live migration. An important notice is that

page cache teleportation shortens total migration by utilizing two network links, but it

does not reduce the amount of transferred memory. Thus, page cache teleportation has

positive impact on the short sleep time, but it does not reduce energy overhead of live

migration (both of which are explained in Section 5.2.1).

Figure 5.11 shows simulation results with page cache teleportation and normal pre-

copy live migration. The number of VMs and PMs are 16 and 4 respectively, and the net-

work bandwidth is 1 Gbps. The number of VMs/PMs are smaller than in MiyakoDori

case because simulating a bigger data center in 1 Gbps may cause a situation that a mi-

gration takes longer time than a heavy load period when it coincides with migrations of
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many other VMs. The left figure shows the slept time ratio, the middle figure shows the

saved energy ratio, and the right figure shows the energy overhead. Here the network

bandwidth is set smaller than in the simulation for MiyakoDori because short sleep time

impacts the overall energy consumption when network within a data center is not very

fast. Page cache teleportation is configure to take 34% shorter time and transfer the same

amount of memory compared to normal pre-copy live migration. The ratio (34%) is de-

fined based on a previous experiments shown in Table 4.2.

SLEPT TIME RATIO

The slept time ratio is 30.7% with page cache teleportation while it is 27.9% with normal

pre-copy live migration. This is because PMs in the data center can become idle for

longer time thanks to accelerated live migration by page cache teleportation.

SAVED ENERGY RATIO

The saved energy ratio is 14.5% with page cache teleportation and 13.6% with normal

pre-copy live migration) This means that page cache teleportation saves 0.9% of total

energy consumption of the simulated data center. The reason why the saved energy ratio

is reduced only by 0.9% while slept time ratio is reduced by 3% is that PMs consume 20W

of energy even in sleep mode. However, 0.9% is still a great reduction because the total

energy consumption of a data center is huge and this reduction is from a sate of the art

algorithm (FFD).

ENERGY OVERHEAD

Energy overhead is larger with page cache teleportation than with normal pre-copy live

migration, but this phenomenon is as expected. This is because page cache teleportation

does not reduce the amount of transferred memory, thus it neither reduces extra energy

consumption of live migration. However, the total energy consumption is reduced as

in Figure 5.11(b), thus energy overhead (extra energy consumption of live migration di-

vided by total energy consumption of the data center) gets increased.

5.7.3 IO PENALTY OF PAGE CACHE DROPPING

A naı̈ve counterpart of page cache teleportation that shortens total migration time of

VMs with large page cache is to simply not transfer page cache at all and to make the

VM re-load the data from storage after a migration. However, this method obviously
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has significant IO performance penalty to the workload running on the VM. The fact a

migrating VM has large page cache means that the workload running on the VM is IO-

intensive, therefore this penalty must impact largely on the workload performance as

well.

TABLE. 5.4. IO Performance Penalty of Page Cache Dropping to Postmark

Normal Dropped

Execution Time 565 sec 688 sec

Penalty - 123 sec

Penalty / each drop - 12.3 sec

Table 5.4 shows IO performance penalty to Postmark workload when page cache is

dropped during the workload execution. Postmark benchmark is configured to execute

8000 transactions in the speed of at most 1024 per second with 1MB–5MB files and 4KB

of read/write buffers. The benchmark is executed on the same machine as Table 4.1.

“Normal” means that the benchmark is executed normally, and “Dropped” means that

page cache of the machine is deleted 10 times with 60 seconds interval during the work-

load. The 1st row shows execution time in each setting, the 2nd row shows how dropping

page cache prolonged the execution time, and the 3rd row shows penalty per each page

cache drop (note that page cache is dropped 10 times during the measurement to reduce

jitters). The values are averaged over 10 runs in each setting.

Using the naı̈ve method incurs large performance penalty to the workload running on

the VM, therefore this thesis claims that it cannot be used for cloud data centers.*2 For

a concrete example, performance penalty to Postmark workload when two migrations

occur within a workload execution is compared below:

NAÏVE CASE The workload execution is prolonged by 12.3× 2 = 24.6 seconds, thus the

total workload execution takes 589.6 seconds. This means 4% overhead compared

to the original execution time is incurred by the two migrations.

PAGE CACHE TELEPORTATION CASE From the results in Chapter 4, a migration of VM

running Postmark workload takes 17 seconds. Existing studies show that a mi-

gration degrades workload performance by 10%–30% [45, 96], therefore the two

migrations prolong total execution time of the workload by 2 × 17 × 0.3 = 10.2

*2 Note that in terms only of energy consumption, it could result in smaller energy consumption thanks to shortened
total migration time in some cases.
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seconds at most (30% case). This penalty is less than the half of and is significantly

smaller than in the naı̈ve case.

To quantitatively discuss how these values are large/small with regard to service

level agreements of clouds is preferable. However, it is unfortunately difficult as cloud

providers do not claim service level agreements in a fine granularity. For example, the

Amazon EC2 Service Level Agreement [97] promises “to make Amazon EC2 and Ama-

zon EBS each available with a Monthly Uptime Percentage ... of at least 99.95%”. It

only promises how many percentage of time the cloud should be up, but does not say

anything about performance degradation during the uptime due to sudden load change,

resource starvation, or migrations.

5.8 DISCUSSION

5.8.1 ENERGY CONSUMPTION OF NETWORK SWITCHES

Aggressive VM relocation increases the amount of network traffic in the data center be-

cause of frequent live migration, thus energy consumption of network infrastructures

might also negatively impact the energy saving. This section shows that it is not the case

using a small experiment.

In order to show that network traffic increase does not affect the overall energy con-

sumption of a data center, the relationship between energy consumption of an L2 net-

work switch and its traffic is measured. Here an L2 switch is selected as a representative

(not an L3 router or other network infractractures) because intra data center communica-

tions are mostly done within in the same segment built with many L2 switches. Note that

the results in this section cannot be applied to a data center that uses software defined

networks (SDN) such as OpenFlow.
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Figure 5.13 illustrates an L2 switch and network connections made to it under the

experiment. The switch is a Corega CO-BSW16GTX with 16 Gigabit ethernet ports. 8

servers are connected to Port 1, 2, 3, 4, 9, 10, 11, and 12 to generate heavy traffic, and

another server is connected to Port 16 to control the 8 servers. The other 7 ports are not

used in this experiment. The servers connected to Port 1, 2, 3, 4 are paired with the ones

connected to Port 9, 10, 11, 12, respectively in terms of generated traffic (illustrated as

connected lines in the figure). For example, the server connected to Port 1 sends data to

to the server connected to Port 9.

Figure 5.14 shows the measured power of the L2 switch. The x-axis shows the elapsed

time (seconds) from the beginning of the measurement, and the y-axis shows the power

(Watts) of the L2 switch at each x. The four pairs of servers started exchanging data with

60 seconds interval; i.e. data is transferred between Port 1 and Port 9 during 0 ≤ x ≤ 60,

between Port 1 and Port 9, and Port 2 and Port 10 during 60 ≤ x ≤ 120 etc. Each interval

of the graph is denoted with the network traffic that the L2 switch is transferring (1 Gbps,

2 Gbps, 3 Gbps, and 4 Gbps). The actual throughput of each transfer was almost 1 Gbps,

thus the denotation increases by just 1 Gbps for easy understanding.

The result strongly shows that the amount of traffic of an L2 switch does not affect the

energy consumption of the switch. This in turn means that frequent live migration in-

voked by aggressive VM relocation does not increase the energy consumed by network

infractractures in the data center without an SDN. Therefore, it can be concluded that en-

ergy consumption of network infrastructures can be ignored in the simulation conducted

in this chapter.
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5.8.2 ENERGY CONSUMPTION OF STORAGE SYSTEMS

Energy consumption of storage systems account for a non-negligible amount within a

server and within a whole data center. Barroso et al. [92] report that disks consume

14.3% of energy of a data center, which is nearly equal to the amount consumed by cool-

ing facilities (15.4%). Many researches have been done to reduce energy consumption

of storage systems in data centers; Gurumurthi et al. [98] propose to dynamically con-

trol the rotating speed of HDDs to reduce the power for spinning the disks. Their main

idea is “to dynamically modulate the speed at which the disk spins (RPM), thereby con-

trolling the power expended in the spindle motor driving the platters” (cited from [98]).

Zhu et al. [99] utilize this proposal to develop a power-aware cache management mech-

anism. They consider not only the number of misses but also the distribution pattern of

the misses to efficiently switch rotating speed of HDDs.

Among the two efficient live migration methods proposed in this thesis, Page cache

teleportation has relation to the load of storage nodes while MiyakoDori does not. In

Page cache teleportation, transfer of restorable page cache via SAN requires read opera-

tions to HDDs in the storage nodes. Accesses to HDDs can increase the load of storage

nodes and can also result in energy overhead. However, evaluating this energy overhead

in general is difficult because access patterns to HDDs occurred by page cache teleporta-

tion largely depend on the actual data center in two aspects:

CACHE SYSTEM OF THE STORAGE NODES Number of read operations to the HDDs are

not necessarily equal to the number of accesses to the restorable page cache. This

is because storage nodes themselves have DRAMs and cache frequently accessed

blocks. Therefore, evaluating energy overhead by storage nodes need to assume

concrete physical and algorithmic aspects of the cache mechanism.

IO PATTERNS OF THE WORKLOAD Even if number of read operations to the HDDs are

fixed, the next question is weather they require spinning up the HDDs or not

because spinning up an HDD consumes much energy. Answering this question

needs to assume/know the detailed IO patterns of the workloads running on a

whole rack that shared the same storage nodes. An intuitive explanation is that

under workloads with a great many of IO operations the HDDs are always spin-

ning and no extra energy is consumed to spin up, but under workloads with few

number of IO operations reading a block of restorable page cache always requires
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spinning up.

5.9 RELATED WORK

Several studies have been done to model energy consumption of pre-copy live migra-

tion. Liu et al. shows extra energy consumption caused by the pre-copy live migration

depends only on the amount of transferred [38]. Even though they figure out faster net-

work bandwidth consumes much energy per time unit, the accumulated sum during

the total migration time is shown to be the same. The paper gives detailed mathemati-

cal analysis but they never mention how the extra energy consumption impacts on the

overall data center energy consumption. Aikema et al. compares how extra energy con-

sumption of live migration changes depending on workload type and transport type of

memory data (encrypted and non-encrypted) [59]. The paper concludes that conducting

live migrations is “not always be advisable when looking to minimize power consump-

tion”, but they do not evaluate how much impact migrations have on the overall energy

consumption.

Hossain et al. [60] proposes a dynamic VM consolidation algorithm that considers ex-

tra energy consumption of live migration. They reduce a data center’s overall energy

consumption by 12% compared to existing algorithms. Our novelty against this paper

is that we show the energy overhead of both pre-copy and an accelerate live migration

mechanism in detail, but they only show the overall energy saving given by their new

algorithm. Goiri et al. [26] figures out cost of live migration must be considered as a

penalty when conducting dynamic VM consolidation. The novelty of their algorithm is

that it considers the time required to create a new VM and to migrate an existing VM

when calculating energy-efficient VM placement. However, they do not care extra en-

ergy consumption of live migration that is focused on this paper. Borgetto et al. [61]

figures out during a live migration the VM stays both on the source and the destination

PM. They modify existing dynamic VM consolidation algorithms to more energy-aware

ones by incorporating this idea, but they neither consider extra energy consumption of

live migration incurred by memory and network load increase. Yang et al. [100] evalu-

ates performance interference of co-located VMs, another overhead of VM consolidation

besides live migration energy consumption. We believe negative impacts of VM consol-

idation must be cared more as done by us and Yang et al.
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5.10 SUMMARY OF THIS CHAPTER

In this chapter, energy overhead of live migration within an aggressive VM relocation

system is discussed and quantitatively evaluated using simulations. The core problem is

these discussion and quantitative evaluation have never been done before although there

are many researches on live migration optimization and VM relocation/consolidation

algorithms. This chapter evaluates the two efficient live migration techniques given in

this thesis, MiyakoDori and Page cache teleportation, in terms of their energy overhead

within an aggressive VM relocation system. A cloud/grid simulator, SimGrid, is used

and performance and energy models of each efficient live migration technique are im-

plemented on SimGrid. The simulations showed that MiyakoDori and Page cache tele-

portation significantly reduce the energy overhead of live migration, and as a result they

save the total energy consumption of a data center by several percent.

Future work includes two directions: (1) further analysis using the same models but

different types of dynamic VM consolidation algorithms and real workload traces and (2)

generalization of our methodology to other accelerated live migration mechanisms. The

latter is more challenging because it requires modeling resource usage of them. Many of

them use different types resources than the pre-copy live migration such as more storage

IOs or multiple network interfaces.
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CHAPTER 6

CONCLUSION

6.1 SUMMARY OF THIS THESIS

Cloud computing has become a common computing paradigm for both individual and

enterprise uses, and energy consumption of cloud data centers has become huge in re-

sponse to this trend.

Given this situation, the goal of this thesis is to achieve greener data center by aggres-

sive VM relocation at runtime with efficient live migration. In order to make progress

toward this goal, this thesis has three contributions:

1. First, this thesis discusses the requirements and the technical challenge to achieve

the goal. The requirements include two factors; i.e. efficient live migration and

integrated evaluation of live migration and aggressive VM relocation in terms of

energy consumption. This thesis also figures out that the cost of live migration is

still not fully reduced although there are many researches on efficient live migra-

tion. Two phases of memory transfer of the target VM are equally important with

regard to the cost of live migration, but the 1st phase (where all memory pages are

transferred sequentially at first) is not yet well optimized.

2. Second, this thesis proposes two efficient live migration techniques, MiyakoDori

and Page cache teleportation, to reduce the cost of live migration on the 1st phase.

MiyakoDori is based on an idea that VMs can migrate “back” to hosts where

they have been executed before in a system that aggressively relocates VMs.

MiyakoDori leverages this situation to reduce amount of tranferred memory and

total migration time by reusing VMs’ memory images on migrations “bask” and

transferring only updated region of the VMs. Page cache teleportation mitigates a
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problem that IO-intensive VMs have large amount of page cache that prolong live

migration and has negative impact on the energy consumption of a data center.

Page cache teleportation utilizes the storage area network in a data center to

efficiently transfer this page cache in the background of normal memory transfer

via the general purpose network.

3. Third, this thesis gives methodologies and results of integrated simulations of live

migration and aggressilve VM relocation. Although there are many studies on dy-

namic VM consolidation (relocation) and live migration optimization, the former

ignore or take little of live migration overhead and the latter evaluate their tech-

niques only with a single migration. Therefore, this thesis is the first to conduct

integrated simulations of them with regard to energy consumption. The simula-

tion results show that the two mechanisms proposed in this thesis have positive

impact on extra energy overhead and short sleep time, and they can save several

percent of the overall energy of the simulated data center. Several percent is a sig-

inificant improvement because the overall energy consumption of a data center is

now extremely huge as mentioned in Chapter 1.

6.2 FUTURE PROSPECT

In this Section, future prospects of this thesis (Section 6.2.1) and the whole filed of live

migration research are discussed (Section 6.2.2 and Section 6.2.3). The discussion for the

research filed focuses on how live migration should evolve more to be used in real data

centers and real society, which are based on the best of author’s knowledge and belief

from the experience.

6.2.1 FUTURE DIRECTION OF THIS WORK

A big goal that is directly connected from this work is to give methodology to evalu-

ate energy aspect of live migration in a more general way than done in this thesis. This

thesis analyzes real implementation of each live migration mechanism to evaluate the

energy aspect. However, existing studies have proposed different types of migration

mechanisms that use different types of resources, and also new studies continue appear-

ing to make live migraiton more efficient. Data center operators cannot select the most

suitable migration mechanism on their environment and workloads without evaluating
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these mechanisms’ energy aspects.

One possible direction to this goal is to build a more abstract model of live migration

acceleration. Normal pre-copy live migration (without any acceleration) can be simply

modeled by corporating memory transfer throughput and memory update speed. Based

on this modeling, it might be possible to generally model acceleration methods of live

migration as a function between extra resource usage and speed up against the pre-copy

method. If this is possible, function between extra resource usage and extra energy con-

sumption is easily given by existing studies on computer architectures, thus a function

between speed up and extra energy consumption is given.

Another possible direction to this goal is to provide a simulation framework to achieve

easy implementation and evaluation of a new live migration acceleration method. Cur-

rent simulations in this thesis are implemented ad-hoc based on the deep knowledge

of actual implementation of each acceleration method. However, data center operators

do not have such knowledge nor time to do. It has never been done yet to emperically

discuss on what are essential aspects to model various migration mechanisms easily but

still detailed enough for evaluatin energy.

6.2.2 SECURE LIVE MIGRATION

Security is also a very imporant issue in cloud data centers as well as energy consump-

tion. An unique characteristic of cloud security is that even the underlying PMs cannot

be fully trusted because cloud providers can be malicious [101]. In contrast, for the tra-

ditional cluster or grids the owner and users of a cluster/grid are the same, or the ownes

is a trustable organization such as an university or a well-known big company.

Many studies have been done to protect users data/programs/privacy from ma-

licious cloud providers. Address space layout randomization (ASLR) [102] prevents

introspection-based data leaking, Szefer et al. [103] introduce a new microprocessor that

provents hypevisors from reading VM’s memory freely, and Li et al. [104] enable VMs to

run natively on the underlying PM with the ability to run multiple VMs on a single PM.

Live migration techniques must care more about this characteristic of cloud security.

Current live migration techniques assume that all memory pages of the migrated VM are

freely readable from the PM although this assumption does not hold for security-aware

clouds/VMs.
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6.2.3 HETEROGENEOUS LIVE MIGRATION

Heterogeneousity has been proven to play an important role for improve efficiency of

computer systems. It is also becoming common in cloud computing and many researches

have been done such as GPU-capable VMs [105, 106] to get better performance for HPC-

like tasks, or hybrid of public and private clouds (or cloud orchestration) to get better

security while maintaining scalability and low cost.

Live migration and dynamic VM consolidation are also catching this trend, but they

are still on the way of evolving. As introduced in Chapter 2 (Related Work) hetero-

geneous ISA process migration [18] and heterogeneous hypervisor migration [57] have

been approached, and also offloading tasks from high power x86 machines from low

power ARM machines is proved to be promising [20]. There is one more step toward

live migration a VM transparently from underlying ISA and hypervisor to achieve more

energy efficienty clouds.
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