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 Introduction	Chapter	1:
1.1. Overview 
 
 Silicon neurons are biologically inspired VLSI (very-large-scale integrated) circuits that 
replicate the electrophysiological behavior of nerve tissue. This research looks at an analog 
silicon neuron based on qualitative neuronal modeling. In the future, such circuits may be used 
as elements in massive networks of artificial neurons. However, many technical challenges must 
be addressed before such large networks are practical. This research looks at the critical issue of 
temperature sensitivity of subthreshold MOSFET circuits. 
 
1.2. Motivation 
 

Neurons, the fundamental cells of the nervous system, are incredible calculating 
machines. The human brain for example contains about 100 billion neurons, interconnected with 
1 quadrillion (1015) synapses. These cells regulate body functions, process sensory data, store 
memories, execute judgements, perform learning, and do a host of other complex tasks essential 
to animal life. 

Neurons and the neural networks they form operate in ways fundamentally different from 
the transistor logic used in digital computers. Neurons send and receive signals in a noisy 
environment, have a high error tolerance, calculate in massively parallel networks, and require 
little power. The entire human brain for example consumes only 20 watts. 

Neurons are excellent at performing basic tasks like memory recall, pattern recognition, 
learning, and selective attention, not to mention more complicated tasks like riding a bicycle 
through unfamiliar streets or memorizing a difficult piece of music. The motivation to develop 
neuromorphic technology stems from the desire to create computers that replicate all these 
wonderful features. 
 
1.3. Types of Silicon Neurons 
 

Many types of silicon neurons are being developed with divergent approaches based on 
intended applications and desired degree of detail. Silicon neurons can be divided into two broad 
categories, digital silicon neurons and analog silicon neurons. 
 
1.4. Digital Silicon Neurons 
 
 Digital silicon neurons operate in discrete time with simplified neuronal models. These 
circuits suffer from quantization noise and often require high power, however, due to their 
relative simplicity, have already been arranged into massive networks like IBM’s True North 
which contains 1 million programmable digital neurons with 256 million synapses [1]. 
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1.5. Analog silicon neurons 
 
 Analog silicon neurons operate in continuous time similar to biological neurons which 
are also analog in nature [2]. These circuits can be divided into three categories: 
 

 Conductance-based neurons 1.5.1.
 

Analog silicon neurons based on conductance models are designed to accurately replicate 
biological neuron behavior down to the cellular level. These circuits are biologically accurate, 
but often complex, difficult to design and tune, and require high power [2]. 
 

 Leaky Integrate and Fire 1.5.2.
 

Silicon neurons based on Leaky Integrate and Fire models are mathematically simple, 
relying on a reset of state variables for their spiking mechanism [2]. These silicon neurons have 
less complicated circuitry that is easier to implement, but suffer from uniform spike shape. 
Biological research suggests that the shapes of action potentials may be important in neuron 
communication, and these circuits do not have the facility for such variation [7]. 
 

 Qualitative neurons 1.5.3.
 

Qualitative neurons are based on approximations of conductance models and can 
replicate similar dynamics with less complexity. These models can create a variety of spike 
shapes and dynamics with circuitry that is easier to implement and requires less power. 
Qualitative silicon neuron circuits aren’t as biologically accurate as conductance-based circuits, 
but are likely more feasible than Leaky Integrate and Fire models. 
 The circuit used in this research is a qualitative silicon neuron introduced by Kohno and 
Aihara in 2014 [3]. Figure 1.1 shows an enlarged photograph of the VLSI architecture, and 
Figure 1.2 shows the silicon neuron in its bed in the laboratory. 
 
1.6. Applications 
 
 Silicon neuron technology has many potential applications in the future. Artificial 
neurons may be the main elements in future CPU’s for autonomous machines or computers with 
artificial intelligence. Silicon neurons can also be used in medical applications, such as designing 
artificial brains to run medical experiments, or developing prostheses and brain-machine-
interfaces that connect living tissue to computers or mechanical components. Research into 
hybrid networks connecting silicon neurons to living neurons is already being carried out [4][5]. 
Beyond biology, medicine, and robotics, the low-power characteristics of silicon neurons may be 
exploited for low power computing of all kinds of complex problems.  
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Figure 1.1: Photograph of the silicon neuron circuit taken with a microscope 

 

 
Figure 1.2: Full circuit board with the silicon neuron resting in the center 

 
1.7. Structure of this work 
 

First, Chapter 2 explains some of the basic features of a qualitative neuron model. 
Chapter 3 lays out the issue of temperature sensitivity for subthreshold MOSFET circuits. 
Chapter 4 details the features of the silicon neuron used in this research. Chapters 5 through 8 
look at strategies for tuning the parameters of the circuit to compensate for temperature-induced 
changes in behavior. Chapters 5 and 6 explain trial and error based strategies and Chapters 7 and 
8 augment these strategies with automation. Chapter 8 proposes the use of a Differential 
Evolution algorithm to tune the circuit. Finally, Chapter 9 concludes this work with a discussion 
of the results. 
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 Qualitative	Modeling	Chapter	2:
 
2.1. Conductance models 
 
 The Hodgkin-Huxley model of the nerve cell membrane is 
a Nobel Prize winning model originally published in 1952 and 
serves as the basis of much research regarding neural modeling 
and neuromorphic engineering. 

Hodgkin and Huxley measured the flow of ions across the 
membrane of a squid nerve axon to make a comprehensive set of 
differential equations that accounts for the individual species of 
ions [6]. Figure 2.1 shows the equivalent circuit of this model with 
membrane capacitance CM, a leak channel L of constant resistance, 
and ion channels for Na+ and K+ ions with variable resistances. ENa, EK, and EL represent the 
reversal potentials of these ions. 

The Hodgkin-Huxley model accounts for a wide variety of experimentally observed 
nerve cell behaviors. Two significant classes of neurons that the model can replicate are Class I 
and Class II neurons. Class I neurons can oscillate at an arbitrarily low frequency and Class II 
neurons begin oscillation at a set minimum frequency. 
 The Hodgkin-Huxley model is biologically accurate and can be extended to further levels 
of detail by adding more ion channels. However, the model is complicated, highly nonlinear, and 
has many variables and parameters, making it difficult to implement on a circuit. 
 
2.2. Qualitative modeling 
 
 Qualitative modeling seeks to recreate similar dynamical behavior of the Hodgkin-
Huxley model by using judicious approximation to create a system with simpler equations and 
fewer variables [3][7][8][9][10]. With proper dynamical structure, such a system can 
theoretically reproduce Class I and Class II periodic firing, in addition to other neuron behaviors. 
Qualitative models should ideally be less demanding to analyze and also easier to implement on 
a circuit. 
 
2.3. The nullclines and phase plane of a nonlinear system 
 

A simplified mathematical model of the circuit based on qualitative neuron modeling to 
be described in Chapter 4 can be written as: 

 
 𝐶!

!"
!"
= 𝑓! 𝑣,𝑛 + 𝐼!"#$  (2.1) 

 

Figure 2.1: Equivalent Circuit for the 
Hodgkin-Huxley Model 
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 !"
!"
= 𝑓!(𝑣,𝑛)  (2.2) 

 
 This system replicates a wide variety of spiking behavior with only 2 variables. Variable 
v represents the membrane potential, variable n represents abstracted ionic activity, Istim is an 
applied stimulus current, and Cv is the membrane capacitance. A full description of the equations 
in this system can be found in Chapter 4. 
 In the field of nonlinear dynamics, an important feature of a nonlinear system is its phase 
plane, a graph of one variable versus another [11][12]. The phase plane also contains the 
nullclines: curves on which the derivatives of each variable equal zero. In the system above, 
functions f1 and f2 indicate the shape of the v and n-nullclines. For Istim = 0, the equations of the 
nullclines are: 
 
 !"

!"
= 𝑓! 𝑣,𝑛 = 0  (2.3) 

 !"
!"
= 𝑓! 𝑣,𝑛 = 0  (2.4) 

 
 
Figure 2.2 (a) shows a plot of the phase plane with the v and n-nullclines highlighted in red and 
orange. The blue streamlines indicate the possible trajectories an action potential could take 
through the phase plane. 

To replicate Class I neuron behavior, the nullclines must be made to cross three times 
[12]. To accomplish this, f1 is assigned a pronounced cubic “s” shape which intersects with the n-
nullcline in three places when Istim = 0. The leftmost intersection of the nullclines (Figure 2.2 (b)) 
is a stable attracting node which corresponds to the resting state of the system. All trajectories in 
its vicinity are attracted to this point, and trajectories farther away eventually will be pulled back 
to it. 
 The middle intersection slightly to the right of the stable point is a saddle node which 
attracts trajectories vertically and repels them horizontally. This point corresponds to the 
threshold current to generate an action potential, referred to as Ith. A trajectory from the left must 
have a sufficiently strong stimulus to overcome the repelling strength of the saddle point and 
attraction of the stable node before beginning a cycle around the phase plane. Figure 2.2 (b) 
zooms in on these two points. The uppermost intersection (Figure 2.2 (a)) is an unstable node 
which repels all trajectories. Action potentials will cycle around this point. 
 The stability of each of the nullcline intersections can be characterized algebraically with 
techniques from nonlinear dynamics described briefly in Endnote 1. 
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Figure 2.2: (a) Phase plane of Class I behavior and (b) zoom-in showing the stable node (s), 
saddle node (t), and unstable node (u) 
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2.4. Single action potential mechanism 
 

The system begins in its rest state at the stable node. Applying pulse stimulus Istim to the 
system will raise the membrane potential momentarily, meaning the state will shift rightward in 
the phase plane. If the stimulus is weak, the trajectory will be repelled by the saddle node and 
attracted back to the stable node, quickly returning to the rest state [12]. A stimulus of sufficient 
strength will push the trajectory beyond the saddle node to a larger trajectory that travels around 
the unstable node and eventually back to the stable node, forming a single action potential. With 
no other stimulus, the system will remain at rest on the stable node. Figure 2.3 (a) shows this 
path in the phase plane, and Figure 2.3 (b) shows the time-series plot. 
 It is interesting to note that the membrane potential reaches its maximum value when the 
trajectory crosses the v-nullcline. The nullcline represents when the derivative of a variable 
equals zero, so the derivative always switches sign (+ ↔ −) when a trajectory crosses the curve. 
In the case of an action potential, the derivative of v is positive as the membrane potential rises, 
is momentarily zero at the maximum of the spike, and then becomes negative as the membrane 
potential falls. 
 
2.5. Class I Oscillation Mechanism 
 
 Istim vertically translates the values of f1 in Equation 2.1, so a sustained stimulus applied 
to the system will shift the v-nullcline upwards. When this happens, the stable node and saddle 
node will approach, merge, and suddenly annihilate each other, a process known as bifurcation 
[11]. The already circular path around the unstable node becomes a closed orbit, known as a limit 
cycle. With no stable rest state, the trajectory will tend towards this circular path and begin to 
oscillate. The black trajectory in Figure 2.4 (a) merges with the limit cycle. The loss of the stable 
and saddle nodes is clear in the figure by the position of the nullclines. Figure 2.4 (b) shows the 
time-series plot of periodic spiking. 
 When the sustained stimulus current is removed, the v-nullcline will return to its original 
position, reintroducing the stable node and saddle node which existed before. The stable node 
will attract the trajectory and the system will then return to its rest state. 
 A significant feature of Class I behavior is that the oscillation frequency can be arbitrarily 
low [12]. If the applied stimulus is just strong enough to move the v-nullcline slightly beyond the 
n-nullcline, a narrow channel will form. Trajectories traveling through the channel will slow 
depending on how close the nullclines are. This can lead to near-zero firing frequency. 
Conversely, a strong stimulus current will increase the size of the channel, leading to higher 
firing frequency. 
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Figure 2.3: (a) Phase plane with trajectory and (b) time-series of a single action potential 

0.30 0.35 0.40 0.45 0.50 0.55

0.30

0.35

0.40

0.45

0.50

0.0 0.1 0.2 0.3 0.4 0.5

0.30

0.35

0.40

0.45

0.50

0.55

v 

n 
 

v-nullcline 
n-nullcline 
trajectory 

v 
 

t 
 

(a) 
 

(b) 
 



11 
 

 
 
 

 
Figure 2.4: (a) Phase plane with trajectory and (b) time-series of periodic spiking behavior 
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2.6. Endnotes 
 

1) Nodes in the phase plane are characterized by forming a Jacobian Matrix, the matrix of 
partial derivatives of each combination of variables in the system, and solving the 
associated linear system[11]. 
 

 
!"
!"
!"
!"

=
!!!
!"

!!!
!"

!!!
!"

!!!
!"

𝑥
𝑦     (2.5) 

 

 
!!!
!"

!!!
!"

!!!
!"

!!!
!"

≜ 𝑎 𝑏
𝑐 𝑑     (2.6) 

 

 𝜆! − 𝑎 + 𝑑 𝜆 + 𝑎 𝑏
𝑐 𝑑 = 0    (2.7) 

 
The numerical values of the partial derivatives at each node are input into the matrix, and 
the system is solved. The behavior of the linear system at each node corresponds to the 
local behavior at the points in the full nonlinear system. The eigenvalues determined by 
Equation 2.7 describe the behavior at the node. Two negative eigenvalues denote a stable 
node, two positive eigenvalues denote an unstable node, and a negative and positive 
eigenvalue denote a saddle node. 
 

2) The Class I bifurcation discussed in this chapter in which two nodes annihilate each other 
and oscillatory behavior emerges is an example of a Hopf Bifurcation [11][12]. 
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 Temperature	Dependency	of	Subthreshold	MOSFETs	Chapter	3:
 
3.1. Overview 
 

The majority of MOSFET circuits are operated above-threshold, a regime more suitable 
for the high speed operation of digital circuits. Until recently, subthreshold operation of 
MOSFETs was considered novel, but with the advent of many low power applications for 
electronics, this regime may take on increased importance. For the silicon neuron in this research, 
operating transistors in the subthreshold region allows for low power consumption and desirable 
exponential characteristics that yield the sigmoidal current-voltage curves described in Chapter 4. 
However, a significant drawback of subthreshold-operated transistors is pronounced temperature 
sensitivity.  
 Figure 3.1 (a) shows simulations of the silicon neuron’s frequency response to a sustained 
4 pA stimulus at different temperatures. 0.5°C changes in temperature dramatically alter the 
firing frequency, with periodic firing ceasing at 26.5°C. The influence of temperature on a single 
action potential due to a 200 pA pulse stimulus (500 µs duration) can be seen in Figure 3.2 (b). 
Higher temperatures reduce the size of the action potential. A change in the resting potential is 
also apparent. 
 As these two figures show, slight changes in temperature can dramatically affect the 
operation of the circuit. Addressing this problem is a key step in developing this qualitative 
silicon neuron into a functional electronic component. 
 
3.2. Source of temperature sensitivity 
 
 The equation for the saturation drain current in the subthreshold regime is:  
 

 𝐼! = 𝐼!exp (!!!!!!
!!

)  (3.1) 

 
The equation for linear drain current is: 
 

 𝐼! = 𝐼!exp (!!!!!!
!!

) 1− exp !!!"
!!

  (3.2) 

 
Vs is the source voltage, Vg is the gate voltage, and Vds is the drain-to-source voltage of the 
MOSFET. I0 is the off-current that passes through the transistor when Vg = Vs, κ is the capacitive 
coupling ratio, and UT is the thermal voltage [13].  
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Figure 3.1: Illustration of temperature sensitivity with (a) frequency response of the silicon 
neuron to a 4 pA sustained stimulus starting at 0.2 seconds and (b) response to a 200 pA 500 µs 
pulse stimulus 

 
Both UT and I0 are temperature dependent factors. UT is directly proportional to the 

absolute temperature in Kelvins (T): 
 𝑈! =

!"
!

   (3.3) 

 
q is the charge of an electron and k is the Boltzmann Constant. I0 has a more complex 
relationship with temperature depending on temperature dependent factors UT , the threshold 
voltage of the transistor VT0, and the electron mobility constant µ. 
 
 𝐼! = 2𝜇 !!"

!
!
!
𝑈!!exp (!!!!!

!!
)  (3.4) 

 
W and L are the width and length of the transistor and Cox is the gate oxide capacitance. I0 

has a pronounced influence on the transistor current with higher temperatures corresponding to 
stronger currents. Figure 3.2 shows a curve of I0 versus temperature for a typical PMOS 
transistor (W = 500 nm, L = 16 µm) used in the silicon neuron circuit. 

 
3.3. Past Approaches 
 
 Environmental control has been the main means of dealing with the problem of 
temperature sensitivity of the silicon neuron. In the laboratory, the circuit is operated in an air-
conditioned chamber displayed in Figure 3.3 (a). The air-conditioner circulates air of constant 
temperature over the circuit, thus drawing off excess heat and maintaining a constant 
environment. This solution suits the purposes of the laboratory, but is bulky, immobile, and 
expensive. 
  

(a)
  

(b)
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Figure 3.2: Plot of I0 versus temperature for a typical PMOS transistor used in the silicon neuron 
 

 
      (a)       (b)      (c) 
Figure 3.3: (a) Air-conditioned chamber, (b) apparatus with cooling fan, and (c) Peltier chip 

 
A low cost mobile apparatus was constructed by Miyake [14] (Figure 3.3 (b)) which uses 

a cooling fan to draw off heat and a Peltier chip (Figure 3.3 (c)) to act as a heat sink or heat 
source. With feedback from a temperature sensor, this system can maintain a constant 
temperature. The apparatus is mobile and has been used to run experiments with a similar 
subthreshold silicon neuron in other laboratories. 

Both of these solutions suffer from the flaw that they consume high power, thus defeating 
the low power attributes of a subthreshold-operated silicon neuron. 
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Figure 3.4: Interpolation concept 

 
3.4. Proposed Method: Parameter Control Approach 
 
 This research seeks to develop a new approach to dealing with the temperature sensitivity 
of the circuit by adjusting the silicon neuron’s circuit parameters in response to changes in 
temperature. An understanding of how to control circuit parameters at different temperatures can 
be used to engineer a feedback mechanism to be incorporated into a future generation of the chip. 

The method explored is based on interpolation. The circuit is simulated over a wide 
range of temperatures in regular intervals. Circuit parameters at each interval are sought that 
yield similar circuit behavior. These parameter sets are then used to interpolate functions of 
parameters versus temperature which can be used to output proper circuit parameter sets for any 
intermediary temperature. Figure 3.4 illustrates this concept. 

The temperatures measured were 22, 27, 32, and 37°C, hereafter referred to as the pillar 
temperatures. A variety of tuning strategies to find pillar parameter sets are discussed in 
Chapters 5 through 8. 
 The proceeding methods were accomplished with the Spectre simulator in the Cadence 
environment. An effective strategy developed in a simulated environment can theoretically be 
applied to an actual VLSI circuit. Furthermore, a tuning strategy incorporating automated 
optimization like the processes proposed in Chapters 7 and 8 could potentially overcome the 
problems of transistor mismatch, noise, and variation in a real-world environment.  
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 Circuit	Description	Chapter	4:
 
4.1. System Equations 
 
 The circuit used in this research is an ultra-low power VLSI silicon neuron designed by 
Kohno and Aihara in 2014 [3] using the qualitative modeling principles discussed in Chapter 2. 
The schematic was created with Cadence and simulations were run with Spectre. The circuit was 
fabricated by Taiwan Semiconductor with a 0.25 µm CMOS process. Vdd, the highest voltage 
used by the components of the silicon neuron, is set to 1.0 V. All the transistors in the circuit are 
operated in the subthreshold regime, which in combination with the low Vdd value contribute to 
low power consumption around 3 nW.  
 Figure 4.1 shows a block diagram of the silicon neuron. The circuit is divided into a v-
block and an n-block. Variable v represents the membrane potential of the silicon neuron, and 
variable n represents abstracted ionic activity. Each block contains a group of transconductance 
circuits whose output currents charge and discharge a capacitor. As a convention, the values of v 
and n are not defined in reference to Vss (0 V, also referred to as ground), but instead by the 
voltages over their respective capacitors subtracted from Vdd. 
 The system equations of the silicon neuron are as follows: 
 
 𝐶!

!"
!"
= 𝑓! 𝑣 − 𝑔! 𝑣 + 𝐼!" − 𝑟 𝑛 + 𝐼!"#$ (4.1) 

 
 𝐶!

!"
!"
= 𝑓! 𝑣 − 𝑔! 𝑣 + 𝐼!" − 𝑟 𝑛  (4.2) 

 
Cv and Cn are the capacitances of the capacitors, fx(v), gx(v), and r(n) (x = v, n) are 

functions that represent sigmoidal current-voltage characteristics of the transconductance circuits, 
Iav and Ian are constant current sources, and Istim is an externally applied stimulus current. 
 
4.2. Description of the Transconductance Circuits 
 

 fx(v) 4.2.1.
 

Figure 4.2 (a) shows the fx(v) circuit which consists of a differential pair amplifier 
coupled with a cascoded current mirror. PMOS transistors M1, M2, and M4 compose the 
fundamental units of the differential pair: M1 supplies current that is shared by M2 and M4 [13]. 
If the gate voltages on these two transistors, Vin and Vdlt, are equal, the tail current will be 
divided evenly. If Vin is farther from Vdd than Vdlt, more current will flow on the M4 side of the 
differential pair. This current is in turn copied by the current mirror composed of NMOS 
transistors M6 and M7. If all transistors are operated in the saturation region, Vcasc will have less 
influence on the current in the current mirror and can thus be determined approximately.  



18 
 

 
Figure 4.1: Block diagram of the silicon neuron 

 
 The current-voltage equation for fx(v) can be algebraically derived from the equation for 
subthreshold saturation current (Equation 3.1) and is as follows: 
 
     𝑓! 𝑣 = !!

!!!"# (! !
!!

!!!! )
 (4.3) 

 
The curve of this equation is sigmoidal. Mx corresponds to the current in M1 which is controlled 
by Vb and shared by the differential pair. The variable v corresponds to Vin. δx corresponds to Vdlt 
and can be used as an offset to shift the characteristic curve along the v-axis. κ is the capacitive 
coupling ratio of the PMOS transistors used in the circuit and UT is the thermal voltage. 

Mx in turn can be defined by the equation for subthreshold current:  
 

    𝑀! = 𝐼!exp (! !!!!!!
!!

) (4.4) 

 
Endnote 1 of this chapter discusses further low-power functionality of fx(v). 
 

 gx(v) 4.2.2.
 

Figure 4.2 (b) shows the gx(v) circuit which is based on a PMOS cascode circuit with 
source degeneration. M3 is the cascode stage transistor and M1 provides source degeneration to 
M2. Source degeneration essentially flattens out the current-voltage characteristics of the 
transistor by placing a buffer stage which raises the source voltage [13]. 
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Figure 4.2: Circuit diagrams for (a) fx(v) and (b) gx(v) 

 
A unique aspect of this circuit is that the bulk voltage of the transistors in the cascode are 

detached from Vdd and instead tied to the drain of M1. Using the equation for saturation region 
current (Equation 3.1) for M1 and M3, linear region current (Equation 3.2) for M2, and  
accounting for the detached bulk voltage of the cascoded transistors, the equation for this circuit 
can algebraically be derived to be: 
 

 𝑔! 𝑣 = 𝐼!
!"# ( !!!

!!)

!!!"# (! !
!!
(!!!!))

 (4.5)  

 
The square root makes the sigmoidal characteristics of the current-voltage curve more gradual. θx 
corresponds to Vm, the voltage bias on the cascode stage, and I0 is the transistor off-current. 
 A major attribute of this circuit is its simplicity. With only three transistors, the circuit 
requires minimal current and thus contributes to the overall low-power characteristics of the 
silicon neuron. 
 For the purposes of this research, gv(v) and gn(v) are considered equivalent circuits. 
Endnote 2 of this chapter discusses further functionality of gn(v). 
 

 r(n) 4.2.3.
 

Figure 4.3 shows the r(n) circuit which operates according to the same principles of gx(v). 
However, this circuit is comprised of two parts that output equivalent currents to the v-block and 
n-block of the silicon neuron. The two r(n) boxes in the silicon neuron diagram (Figure 4.1) 
represent these two equivalent currents governed by the following equation: 
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Figure 4.3: Circuit diagram for r(n) showing equivalent current outputs for both circuit blocks, 
Iout-v and Iout-n 

 

 𝑟 𝑛 = 𝐼!
!"# ( !!!

!!)

!!!"# (! !
!!
(!!!!))

 (4.6) 

 
θr corresponds to the bias voltage Vm. r(n) functions as an intersection between the v and n-
blocks since its output current is the same in both. 
 

 Iax 4.2.4.
 
 Ian and Iav are transconductance amplifiers that provide constant currents to each block. 
Their output currents are scaled by Vin. Since supplying constant current is their only function, 
their mathematical properties are not significant in the operation of the silicon neuron and their 
bias voltages can be determined approximately. 
 
4.3. Referencing Variables to Vdd 
 

As mentioned above, the variables v and n are coded by subtracting the voltage over the 
capacitors in the v and n-blocks from Vdd. This convention is adopted because Vin for each of the 
transconductance circuits is tied to a PMOS transistor. PMOS transistors pass more current when 
their gate voltages are farther from Vdd, so defining v as Vdd – Vin is convenient; a higher value 
for v corresponds to more current. 
 There are a few significant reasons why the circuit components in the silicon neuron are 
mainly comprised of PMOS transistors: 
 

1) PMOS transistors draw less current than NMOS transistors due to a low I0 value. This 
contributes to the silicon neuron’s low-power characteristics. 
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2) In the CMOS process used, only PMOS transistors are fabricated with an independent 
bulk voltage which is utilized in the cascode circuits in gx(v) and r(n). 

3) The independent bulk voltage also makes PMOS transistors more resistant to noise. 
 

In this work, any discussion of membrane potential v and variable n imply the above 
convention. Vin and the phrase “input voltage” as used in Chapter 5 will refer to voltages 
referenced to Vss (0 V). 

 
4.4. Nullcline Mode 
 

The two transconductance amplifiers TAV and TAN at the top of the circuit diagram are 
used to draw the nullclines of the system which essentially represent the steady-state 
characteristics of the circuit. As mentioned in Chapter 2, the term “nullcline” comes from the 
discipline of nonlinear dynamics and refers to a curve on which the derivative of a variable is 
equal to zero. The nullcline curves of this system can be determined by setting the system 
equations equal to zero. From Equations 4.1 and 4.2: 

 
 !"

!"
= 0 (4.7) 

 
 !"

!"
= 0 (4.8) 

 
Thus, 

 
 𝑓! 𝑣 − 𝑔! 𝑣 + 𝐼!" − 𝑟 𝑛 = 0 (4.9) 

 
and 
 

 𝑓! 𝑣 − 𝑔! 𝑣 + 𝐼!" − 𝑟 𝑛 = 0 (4.10) 
 
At the points on the nullcline of each circuit block, the output currents of the 

transconductance circuits balance each other, hence no current passes over the capacitor and the 
voltage remains constant. The nullclines of the system are significant because they can be used to 
construct a phase plane which indicates the behavior of the circuit, namely if it is operating in 
Class I or Class II mode according to Hodgkin and Huxley’s classification (Chapter 2).

  The nullcline drawing procedure is as follows: 
 

1) Vm of r(n) is set to Vdd, thus switching this circuit off and bypassing it. 
2) The non-inverting input of TAN (+), the transconductance amplifier for the n-block, is set 

to a constant voltage, ideally the median voltage of this block during normal transient 
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operation. The inverting input (–) of TAN is connected to the n-block and this negative 
feedback arrangement maintains a constant voltage.  

3) The non-inverting input of TAV (+), is stepped from 0 V to 1.0 V (or any other desired 
range). The inverting input (–) is connected to the v-block so the negative feedback will 
force the system to the voltage of each step. 

4) The steady-state output currents of TAV and TAN at each voltage step are recorded and 
used to represent the v and n-nullclines. 

 
Since the r(n) circuit is bypassed in nullcline mode, the output currents of TAV and TAN 

represent the equivalent current necessary from r(n) to achieve a steady-state. In this sense, the 
nullclines are monotonically related to the variable n through r-1(n) (Endnote 4). The method of 
using negative feedback to hold each circuit block at a constant voltage is inspired the technique 
of voltage clamping used by Hodgkin and Huxley when they took measurements of the ionic 
currents of across a squid axon membrane. 
 
4.5. Endnotes 
 

1) The current mirror attached to the differential pair in fx(v) is tied to a series of current 
mirrors which can be used to further boost the output current (Figure 4.4). These current 
mirrors are switched on and off by bias voltages Ven0 and Ven1. Transistors M8 and M9 in 
the middle current mirror can be used to double the output current, and transistors M10 
and M11, each comprised of two parallel transistors (specified as m=2 in the diagram) 
can be used to triple the output current. Turning on both supplementary current mirrors 
will quadruple the output current. 
 
These output current boosters can be used to reduce the current required by the 
differential pair, thus lowering the overall power consumption of this component. 
 

2) gn(v) includes a series of switches (Figure 4.5) that can be used to move its current-
voltage curve rightward along the Vin axis. The equation for this circuit then becomes: 

 

 𝑔! 𝑣 = 𝐼!
!!!"# ( !!!

!!)

!!!!!"# (! !
!!
(!!!!))

 (4.11) 

 
Rx = 2 (x = 0, 1) when its corresponding switch is turned on by setting Vswxp to Vdd_sw and 
Vswxn to Vss. Rx = 1 when Vswxp is set to Vss and Vswxn is set to Vdd_sw. 
 

3) Both r(n) and Iax contain an additional stage which outputs another equivalent current for 
off-chip monitoring purposes. 

 



23 
 

 
Figure 4.4: Complete fx(v) circuit with current multipliers 

 

 
Figure 4.5: Complete gn(v) circuit with switches that shift the current-voltage 
characteristics 
 

4) The vertical axis of the phase plane of the mathematical model is n (Chapter 2). The 
vertical axis of the phase plane drawn by the circuit in nullcline mode is r(n). Because n 
and r(n) are monotonically related, the relative positions of the intersections of the 
nullclines can still be determined by the silicon neuron’s nullcline mode. 
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5) Cadence library references: 
 
full silicon neuron NAHAR_g3v1aT Rev. 1.0, 2/1/2014 
fx(v) fxv_DfP_sinkQx Rev. 1.0, 29/12/2013 
gv(v) gxv_CsP_s Rev. 1.0, 1/1/2014 
gn(v) gxv_CsP Rev. 1.0, 27/12/2013 
r(n) rnn_CsP_mon Rev. 1.0, 2/1/2014 
Iax trcamp_Ivp_horS_o2 Rev. 2.0, 2/1/2014 
TAX trcamp_Ivp_hor_o2 Rev. 1.0, 2/1/2014 
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 Full	Parameter	Approach	Chapter	5:
 
5.1. Overview 
 
 The first step in dealing with the temperature dependent characteristics of the silicon 
neuron involved investigating the temperature dependency of each individual transconductance 
circuit. Using parameters that induce Class I bursting at room temperature (27°C) as a 
benchmark, each component was simulated at 17, 22, 27, 32, and 37°C with the Spectre circuit 
simulator. The current-voltage characteristics from 0 to 1 V (Vdd) were plotted using DC steady-
state analysis. Figures 5.1 (a), 5.2 (a), 5.3 (a), 5.4 (a), and 5.5 (a) and Figures 5.6 (a) and (b) 
show clear temperature dependency for each of the circuits: fv(v),  fn(v), gv(v), gn(v), r(n), Iav, and 
Ian. Higher temperatures increase the range of output current and lower temperatures decrease the 
range of output current. 
 Next, to compensate for the temperature-induced change in current, circuit parameters 
were adjusted to achieve similar current-voltage characteristics at each of the pillar temperatures. 
The parameters were tuned in 0.5 mV increments, corresponding to the realistic precision of 
voltage biases for VLSI circuits.  
 
5.2. Circuit Components 
 

 fx(v) 5.2.1.
 

In the fx(v) circuit, transistor M1 (Figure 4.2), which controls the tail current of the 
differential pair, has the greatest overall influence on the output current. Vb, the bias voltage on 
the gate of this PMOS transistor, can thus be used to scale the output current, with a voltage 
farther from Vdd increasing current and closer to Vdd decreasing current. By adequately adjusting 
the voltage bias of M1, the current-voltage characteristics can be made to match the benchmark 
curve at various temperatures. Figures 5.1 (b) and 5.2 (b) show the current-voltage characteristics 
of the fv(v) and fn(v) circuits with Vb adjusted to compensate for changes in temperature. These 
curves illustrate that with the right parameters, the current-voltage curves for fx(v) at the 
simulated temperatures can be made to nearly overlap. 

Since transistor M7, the cascode stage of the current mirror, should ideally be saturated, 
Vcasc has less influence on the output current and can thus be held constant. 

Vdlt, the offset voltage of the differential pair, was kept constant at all temperatures for 
both fn(v) and fv(v); the curves overlapped well enough that no horizontal offset was deemed 
necessary. 
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Figure 5.1: Current-voltage characteristics of fv(v) at various temperatures (a) before and (b) after 
parameter compensation 
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Figure 5.2: Current-voltage characteristics of fn(v) at various temperatures (a) before and (b) after 
parameter compensation 
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 gx(v) and r(n) 5.2.2.

 
 The same method was also applied to the gx(v) and r(n) components which are all based 
on the same fundamental circuit. The only tunable parameter for these circuits is Vm, the bias 
voltage on the gate transistor in the cascode stage. Adequately raising the voltage bias on this 
transistor closer to Vdd at higher temperatures compensates for the stronger current. Figures 5.3 
(b), 5.4 (b) and 5.5 (b) show current-voltage curves for the gv(v), gn(v), and r(n) circuits with Vm 
adjusted for temperature changes. For all circuits, the range of the output current was matched, 
but higher temperatures shifted the curves rightward. Since these circuits offer only one degree 
of adjustment, no immediate way to compensate for this offset exists. 
 

 Iax 5.2.3.
 
 The Iax circuit supplies a constant current, so its current-voltage characteristics are not 
directly utilized by the silicon neuron. For different temperatures, simply adjusting Vin to yield 
the same output current was deemed adequate and a fine-tuning scheme dealing with Vb and Vdlt 

unnecessary. Figures 5.6 (a) and 5.6 (b) show the current-voltage characteristics of the Iav and Ian 
circuits. The horizontal lines represent the output currents of Iav and Ian for the 27°C benchmark 
settings. The intersections of these lines with the current-voltage curves indicate which voltages 
to use as Vin at the pillar temperatures to output the same current. 
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Figure 5.3: Current-voltage characteristics of gv(v) at various temperatures (a) before and (b) 
after parameter compensation 
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Figure 5.4: Current-voltage characteristics of gn(v) at various temperatures (a) before and (b) 
after parameter compensation 
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Figure 5.55: Current-voltage characteristics of r(n) at various temperatures (a) before and (b) 
after parameter compensation 
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Figure 5.6: (a)  Iav and (b) Ian current-voltage characteristics at various temperatures. The dotted 
lines “Iav” and “Ian” represent the constant currents output by each component when the silicon 
neuron is operated at 27°C in the benchmark Class I mode. 
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5.3. Tuning the nullclines and conducting transient simulations 
 
 Figure 5.7 shows a plot of the v and n nullclines of the silicon neuron operated with the 
27°C benchmark parameters in Class I mode (Endnote 1). Using the parameters determined by 
the methods in section 5.2 as a starting point, the circuit was simulated in nullcline mode at the 
pillar temperatures. Vin of Iav and Ian, Vb of  fv(v) and fn(v), Vm of  gv(v) and gn(v), as well as the 
Vdlt offsets of fn(v) and fv(v) were all tuned with trial and error in an effort to make the nullclines 
at all temperatures match the 27°C benchmark nullclines as closely as possible. Since r(n) is 
bypassed in nullcline mode, Vm of this circuit was temporarily ignored. 
 The circuit parameters affect the nullclines of their respective circuit blocks in the 
following ways: Vin of Iav and Ian govern the vertical position, Vb of fv(v) and fn(v) influence the 
overall curvature, the Vdlt’s of fv(v) and fn(v) induce horizontal offset, and Vm of gv(v) and gn(v) 
influence the subtle curvature of the lower cusp, which can be seen in the cubic (“s” like) shape 
of the v-nullcline. This curvature is essential for the Class I bifurcation discussed in section 2.5. 
 For each temperature, once the circuit parameters had been tuned to generate nullclines 
similar to the benchmark curves, the silicon neuron was then subjected to a transient analysis. 
The silicon neuron’s frequency response to 5 pA and 10 pA sustained stimuli as well as the 
threshold current to generate an action potential with a 500 µs pulse stimulus were all recorded. 
The circuit parameters were then tuned to best replicate the behavior of the silicon neuron at 
27°C with the benchmark parameters, plotted in row 3 of Figure 5.8. r(n), which mainly affects 
the shape of the action potential, was reintroduced and tuned as well. 
 The frequency responses were determined with Spectre’s frequency calculator. The 
threshold currents were calculated by simulating successively stronger 500 µs pulse stimuli in 
0.5 pA steps. When an action potential formed, the current from the previous step was recorded 
as the threshold current. 
 Table 5.1 shows the circuit parameters for each temperature which best replicated the 
benchmark behavior. The circuit behaviors for each of these parameter sets are recorded in the 
bottom three rows of the table. Figure 5.8 shows the time-series plots of the silicon neuron 
simulated with the parameter sets for the pillar temperatures. Similar periodic behavior is 
apparent in each transient simulation. The 5 pA stimulus is applied from 0.2 to 1 second, and the 
10 pA stimulus is applied from 1.2 to 2 seconds. The recorded frequencies are the average firing 
frequency in 0.25 to 0.75 seconds for the 5 pA stimulus and the average firing frequency in 1.25 
to 1.75 seconds for the 10 pA stimulus. Figure 9 shows plots of the v and n-nullclines for each 
parameter set at its respective temperature overlaid on the 27°C benchmark nullclines for 
comparison. Figure 5.10 shows a plot of the circuit parameters versus temperature. Irregularity in 
the progression of some of the parameters is apparent. 
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Figure 5.7: Nullclines of the silicon neuron circuit in Class I mode with benchmark parameters at 
27°C 
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Figure 5.8: Time-series response of the silicon neuron to 5 pA and 10 pA sustained stimuli (0.2–
1 and 1.2–2 seconds respectively) at pillar temperatures with parameters tuned with the full 
parameter approach 
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Figure 5.9: v and n-nullclines of the tuned parameter sets at pillar temperatures 

 
 

Table 5.1: Circuit Parameters from the full parameter approach 
  Temperature (°C) 17 22 27 32 37 

fv_Vb (mV) 256.5 248.5 238 230 219 

fv_Vdlt (mV) 567 571 580 588 596 

gv_Vm (mV) 464 451 432 420 398 

fn_Vb (mV) 255 246 237 228.5 219 

fn_Vdlt (mV) 517 520 520 521 524 
Iav_Vin (mV) 437 452 461 469 472 

gn_Vm (mV) 220 178.5 156 132.5 113 

Ian_Vin (mV) 395 445.5 461 473 479 
rn_Vm (mV) 480.5 463.5 445 427 413 

Ith (pA) 250 191 186 169 145 

5 pA response (Hz) 13.3 17.1 13.2 13.2 13.2 

10 pA response (Hz) 32.7 36.5 35.7 36 38.6 



37 
 

 
Figure 5.10: Pillar parameters versus temperature for the full parameter approach 

 
Table 5.2: Analysis of interpolation results for the full parameter approach (0.5 mV precision) 
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10 pA stim average | % change | 7.8% 

10 pA stim frequency range 26.8-40.4 Hz 

Average threshold current Ith 185.4 pA 
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5.4. Interpolation 
 

These parameter sets were then input into a Mathmatica script which interpolates curves 
of the circuit parameters versus temperature and returns parameter sets for any intermediary 
temperature. Unlike in Figure 5.10, 2nd order smoothing was used in the interpolation. These 
interpolated parameter sets for temperatures from 17 to 37°C in 0.5°C steps were then input into 
Spectre and simulated with the same transient analysis to check the silicon neuron’s threshold 
behavior and response to sustained stimuli. Two interpolation methods were used, one which 
outputs parameters to the nearest 0.5 mV, and another which outputs parameters to the nearest 
0.1 mV. The 0.5 mV method matches the precision of the original tuning strategy, and the 0.1 
mV method was used to see if higher interpolation precision would lead to better circuit 
performance. 

Figure 5.11 shows the frequency response of the silicon neuron operated over the entire 
range of temperatures with interpolated parameters rounded to the nearest 0.5 mV. Figure 5.12 
shows the same for parameters rounded to the nearest 0.1 mV. As in Figure 5.8, the 5 pA 
sustained stimuli was applied from 0.2 to 1 second, and the 10 pA stimulus was applied from 1.2 
to 2 seconds. The simulations for pillar temperatures (the same as Figure 5.8) are highlighted in 
orange. 

As can be seen in the figures, the 5 pA sustained stimulus failed to induce periodic firing 
for many intermediary temperatures. When the 5 pA stimulus did induce firing, the frequency 
varied greatly at different temperatures. The frequency response to the 10 pA stimulus was more 
consistent. Table 5.2 shows data of how the circuit behaviors from the 0.5 mV interpolation 
method compare to the benchmark behavior. “Average % change” refers to the average percent 
change from the benchmark behavior and “average | % change |” refers to the same operation 
using absolute values of the percent change. 



39 
 

 
Figure 5.11: Transient simulations of the silicon neuron at temperatures from 17 to 37°C in 
0.5°C steps with interpolated parameters rounded to the nearest 0.5 mV. A 5 pA sustained 
stimulus is applied from 0.2 to 1 second and a 10 pA sustained stimulus is applied from 1.2 to 2 
seconds. 
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Figure 5.12: Transient simulations of the silicon neuron at temperatures from 17 to 37°C in 
0.5°C steps with interpolated parameters rounded to the nearest 0.1 mV. A 5 pA sustained 
stimulus is applied from 0.2 to 1 second and a 10 pA sustained stimulus is applied from 1.2 to 2 
seconds. 
  



41 
 

5.5. Endnotes 
 

1) Table 5.3 lists the terms of the system equations and their associated parameters in the 
Spectre simulator. 

 
Table 5.3: Spectre Circuit Parameters 

Function Related 
Term 

Spectre 
Parameter 

Benchmark 
Voltage 

Istim  Istim_Vb 300m 

  Istim_Vdlt 500m 

  Istim_Vin 500m 

fv(v) Mv fv_Vb 238m 

 Mv fv_Vcasc 300m 

 Mv fv_Enx1 0 

 Mv fv_Enx2 0 

 δv fv_Vdlt 580m 

gv(v) θv gv_Vm 432m 

Iav  Iav_Vin 461m 

  Iav_Vdlt 500m 

  Iav_Vb 413m 

fn(v) Mn fn_Vb 237m 

 Mn fn_Vcasc 300m 

 Mn fn_Enx1 0 

 Mn fn_Enx2 0 

 δn fn_Vdlt 520m 

gn(v) θn gn_Vm 156m 

 R2 gn_R20n 0 

 R2 gn_R20p 2.5 

 R2 gn_R21n 0 

 R2 gn_R21p 2.5 

Ian  Ian_Vin 461m 

  Ian_Vdlt 500m 

  Ian_Vb 390m 

r(n) θr rn_Vm 445m 

 
 

 
 	



42 
 

 Limited	Parameter	Approach	Chapter	6:
 
 The parameters versus temperature plot for the full parameter approach (Figure 5.10) 
sometimes shows irregular progressions because some parameters were tuned more aggressively 
than others to achieve similar circuit behavior. The degree of available control was unwieldy and 
difficult to use, which suggests that a more efficient tuning strategy could make use of fewer 
parameters. 
  For the limited parameter approach, 5 influential circuit parameters were selected: the 
bias voltage Vb which governs the tail current of fn(v), the bias voltages Vm of the cascoded 
stages of gv(v) and r(n), and Vin of the constant current sources Iav and Ian. All other circuit 
parameters were held constant. Since the gn(v) circuit is unnecessary for creating a properly 
shaped n-nullcline for Class I behavior, this circuit was turned off by setting its Vm bias voltage 
to Vdd. 
 Without the influence of gn(v), new Class I benchmark circuit parameters and behaviors 
at 27°C had to be determined. Column 4 of Table 6.1 shows these benchmark parameters and the 
corresponding circuit behaviors at 27°C. Figure 6.1 shows a plot of the benchmark nullclines and 
row 3 of Figure 6.2 shows the frequency response of the silicon neuron at 27°C with the new 
benchmark parameters. 

As in the previous method, the silicon neuron was simulated at 17, 22, 32, and 37°C and 
the selected circuit parameters were tuned to match the benchmark nullclines. Then the 
parameters were retuned to most accurately replicate the 27°C benchmark Class I behavior. 
Parameters were tuned in 0.5 mV increments. Table 1 shows the pillar parameters sets for each 
temperature along with their recorded behaviors, Figure 6.3 shows the nullclines for each 
parameter set overlaid on the benchmark nullclines for comparison, and Figure 6.4 shows a plot 
of the parameters versus temperature. The progression of parameters in this plot is noticeably 
smoother than in the plot for the full parameter approach as recorded in Figure 5.10. 

Again, these pillar parameter sets were input into a Mathematica script which interpolates 
functions of the parameters versus temperature and returns parameter sets for all the intermediary 
temperatures in the range from 17 to 37°C in 0.5°C steps. Again, two interpolation methods were 
used, one with output parameters rounded to the nearest 0.5 mV, and one with parameters 
rounded to the nearest 0.1 mV. The transient simulation results for these parameter sets are 
recorded in Figures 6.5 and 6.6. For the parameters with 0.5 mV precision, only the 5 pA 
sustained stimulus at 29°C failed to induce firing. For the parameters with 0.1 mV precision, all 
stimuli induced firing. The frequency responses to the 5 pA stimuli varied, but the responses to 
the 10 pA stimuli were more consistent. The threshold current was also recorded with the same 
method as described in section 5.3. 
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Figure 6.1: Benchmark nullclines for the limited parameter approach 

 
 

Table 6.1: Circuit parameters from the limited parameter approach 
Temperature (°C) 17 22 27 32 37 

gv_Vm (mV) 388 417 432 443 449.5 

fn_Vb (mV) 257 248 237 231 219 

Iav_Vin (mV) 434 450 461 468.5 473.5 

Ian_Vin (mV) 420 449.5 464.5 475 481.5 
rn_Vm (mV) 480.5 462.5 445 430 415 

Ith (pA) 201 185 178.5 164 147 

5 pA response (Hz) 16.3 15.8 15.1 15.7 18.5 
10 pA response (Hz) 39 38.8 36.2 38.7 39.4 

 
Table 6.2 includes quantitative analysis of how the data from both interpolation methods 

compare to the benchmark behavior data. The time-series plots and the data in the table indicate 
that the limited parameter approach was more effective at achieving consistent circuit behavior 
than the full parameter approach. Increasing the precision of the interpolation also further 
improved the results. 
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Figure 6.2: Time-series response of the silicon neuron to a 5 pA and 10 pA sustained stimulus 
(0.2-1 and 1.2-2 seconds respectively) at pillar temperatures with parameters tuned with the 
limited parameter approach 
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Figure 6.3: v and n-nullclines of the tuned parameter sets at pillar temperatures 
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Figure 6.4: Pillar parameters versus temperature for the limited parameter approach 

 
Table 6.2: Analysis of interpolation results for limited parameter approach with 0.5 mV and 0.1 
mV interpolation precision 

Interpolation precision 0.5 mV 0.1 mV 

5 pA stim average frequency 15.8 Hz 15.2 Hz 

5 pA stim average % change 5.2% 0.9% 
5 pA stim average | % change | 34.7% 18.2% 

5 pA stim frequency range 3.7-27.1 Hz 6.4-20 Hz 

10 pA stim average frequency 38.7 Hz 38.2 Hz 
10 pA stim average % change 6.8% 5.6% 

10 pA stim average | % change | 7.1% 5.6% 

10 pA stim frequency range 34.6-43.2 Hz 36.1-40.4 Hz 

Average threshold current Ith 172 pA 176pA 
Average Ith % change -3.6% -1.4% 

Ith average | % change | 12.2% 8.7% 

Ith range 115.5-216 pA 147-213 pA 
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Figure 6.5: Transient simulations of the silicon neuron at temperatures from 17 to 37°C in 0.5°C 
steps with interpolated parameters rounded to the nearest 0.5 mV. A 5 pA sustained stimulus is 
applied from 0.2 to 1 second and a 10 pA sustained stimulus is applied from 1.2 to 2 seconds. 
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Figure 6.6: Transient simulations of the silicon neuron at temperatures from 17 to 37°C in 0.5°C 
steps with interpolated parameters rounded to the nearest 0.1 mV. A 5 pA sustained stimulus is 
applied from 0.2 to 1 second and a 10 pA sustained stimulus is applied from 1.2 to 2 seconds. 
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 Brute	Force	Optimization	Chapter	7:
 
7.1. Automated Optimization 
 
 Tuning the silicon neuron with trial and error was straightforward and effective but also 
time-consuming and imprecise. Adequate parameter sets were found, but without checking all of 
the possibilities, one can never know if better parameter sets exist, even in the nearby vicinity. 
Furthermore, adding additional temperature steps greatly increases the total time necessary to 
tune the silicon neuron. Clearly, a more efficient approach would entail an automated 
optimization strategy that analyzes numerous parameter combinations. 
 To accomplish this, a script was written in Python that can call the Spectre simulator 
directly from the terminal and analyze the simulation data without activating the GUI. This script 
was then integrated with various optimization functions available in the SciPy library. 
 
7.2. Brute Force 
 

The first SciPy function used was scipy.optimize.brute() [15], a brute force  algorithm 
which checks all possible parameter combinations in a set range to search for the minimum of a 
function, here referred to as the cost function. The algorithm also employs a second step which 
uses the values of the cost function in the neighborhood of the minimum to predict a point 
between parameter combinations where the true solution may fall.  
 The cost function was written to account for the three significant circuit behaviors: the 
threshold current to generate an action potential, the frequency response to a 5 pA sustained 
stimulus, and the frequency response to a 10 pA sustained stimulus. The input vector x for the 
cost function is comprised of the circuit parameters. 
 The Spectre simulator was set to conduct a 4 second transient simulation which first fired 
successively stronger pulse stimuli to determine the threshold, and then applied two 0.8 second 
sustained stimuli, one at 5 pA and the other at 10 pA. The frequency responses to the sustained 
stimuli were calculated with a counter that noted the times when the membrane potential rose 
above 440 mV. 
 To approximate the threshold current, the current of the pulse stimuli (500 µs) were 
stepped in 8.9 pA intervals, corresponding to 5% of the benchmark threshold current, 178.5 pA. 
The time that a full action potential forms was used as an index value that represents a rough 
approximation of the percent difference from the benchmark threshold, to a range within 5%. 
This was calculated by a counter that noted the first time the membrane potential rose above 450 
mV. 

These three behaviors were then made into a vector n and subtracted from b, a vector of 
the corresponding 27°C benchmark behaviors. Vector n is a function of parameter input vector x 
since its values must be determined by a Spectre simulation. The magnitude of this difference 
vector was then used as the value for the cost function f(x). 
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 𝐧(𝐱) =
threshold index

5 pA stimulus response
10 pA stimulus response

, 𝐛 =
1.21
15.87
37.18

 (7.1) 

 
 𝑓 𝐱 ≜ 𝐧(𝐱)− 𝐛 ! (7.2) 
  
 The vectors n and b are somewhat crude, but the relative weights of each element to the 
10 pA frequency response can be defined as follows:  
 

 𝐰 =
0.0325
0.427
1

 (7.3) 

 
This cost function puts the most weight on the frequency response to a 10 pA sustained stimulus 
and the least weight on the threshold current. 
 With the cost function tied to the Python code, this brute force algorithm was used to 
fine-tune the results from the limited parameter approach. A 2 mV range around each parameter 
from the limited parameter approach was used to create the parameter matrices for the brute 
force algorithm shown in Table 7.1. Each of the 5 parameters include 5 steps, meaning 55 
=  3125 possible combinations of parameters to input to the Spectre simulator. One run of the 
Spectre simulator and cost function took approximately 4 seconds, meaning an entire run of the 
brute force algorithm for one pillar temperature took approximately 3.5 hours. 
 Table 7.2 shows the results of the brute force optimization algorithm rounded to the 
nearest 0.1 mV for the each temperature. Figure 7.3 shows a plot of these parameters versus 
temperature and Figure 7.1 shows the nullclines. The progressions of parameters versus 
temperature are similar to those of the limited parameter approach and relatively smooth. 
 These results were then input into the interpolation script and sets of parameters for 17 to 
37°C in 0.5°C steps were generated and subjected to transient simulations. Figure 7.4 shows all 
the transient results for the interpolation with 0.1 mV precision. Table 7.3 shows analysis of how 
the parameter sets found by this method compare to the benchmark. Again, “average % change” 
refers to the average percent change from the benchmark behavior and “average | % change |” 
refers to the same operation using absolute values of the percent change. The average absolute 
values of the percent change showed improvement for the threshold current Ith and the frequency 
response to a 10 pA sustained stimulus. For the 5 pA sustained stimulus, this index was slightly 
poorer but comparable. These data show quantitatively that tuning with brute force optimization 
improved the results of the interpolated parameter sets. A complete discussion of these results 
can be found in section 9.1. 
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Table 7.1: Brute Force Matrices 
gv_Vm 387 387.5 388 388.5 389 

 
416 416.5 417 417.5 418 

fn_Vb 256 256.5 257 257.5 258 
 

247 247.5 248 248.5 249 
Iav_Vin 433 433.5 434 434.5 435 

 
449 449.5 450 450.5 451 

Ian_Vin 419 419.5 420 420.5 421 
 

448.5 449 449.5 450 450.5 
rn_Vm 479.5 480 480.5 481 481.5 

 
461.5 462 462.5 463 463.5 

   
17°C 

     
22°C 

  
            gv_Vm 442 442.5 443 443.5 444 

 
448.5 449 449.5 450 450.5 

fn_Vb 230 230.5 231 231.5 232 
 

218 218.5 219 219.5 220 
Iav_Vin 467.5 468 468.5 469 469.5 

 
472.5 473 473.5 474 474.5 

Ian_Vin 474 474.5 475 475.5 476 
 

480.5 481 481.5 482 482.5 
rn_Vm 429 429.5 430 430.5 431 

 
414 414.5 415 415.5 416 

   
32°C 

     
37°C 

   

 
Figure 7.1: Nullclines from results of brute force optimization 
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Figure 7.2: Time-series response of the silicon neuron to 5 pA and 10 pA sustained stimuli (0.2-1 
and 1.2-2 seconds respectively) at pillar temperatures with parameters tuned with brute force 
optimization 
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Figure 7.3: Pillar parameters vs. temperature for brute force optimization 

 
 
 

Table 7.2: Circuit parameters for brute force optimization 
Temperature (°C) 17 22 27 32 37 

gv_Vm (mV) 387 416.1 432 442.2 448.6 

fn_Vb (mV) 257 247.4 237 230.1 218.7 

Iav_Vin (mV) 434.4 451.4 461 469.2 474.2 
Ian_Vin (mV) 420.4 451.2 464.5 475.7 482.3 

rn_Vm (mV) 478.2 460.3 445 428.6 413.9 

Ith (pA) 1.4 1.2 178.5 1 0.04 
5 pA response (Hz) 15.8 16.1 15.1 14.4 17.2 

10 pA response (Hz) 37.2 37.1 36.2 37.1 37.4 
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Figure 7.4: Transient simulations of the silicon neuron at temperatures from 17 to 37°C in 0.5°C 
steps with interpolated parameters rounded to the nearest 0.1 mV. Pillar temperatures were 
optimized with brute force. A 5 pA sustained stimulus is applied from 0.2 to 1 second and a 10 
pA sustained stimulus is applied from 1.2 to 2 seconds. 
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Table 7.3: Analysis of interpolation results for brute force tuning 
5 pA stim average frequency 14.8 Hz 

5 pA stim average % change -7.9% 
5 pA stim average | % change | 18.4% 

5 pA stim frequency range 3.4-20.1 Hz 

10 pA stim average frequency 37.0 Hz 
10 pA stim average % change -0.2% 

10 pA stim average | % change | 2.2% 

10 pA stim frequency range 34.3-38.5 Hz 

Average threshold current Ith 177.5 pA 
Average Ith % change -0.5% 

Ith average | % change | 8.3% 

Ith range 147-215.5 pA 
 
7.3. Endnotes 
 

1) Simulations and algorithms were run on a qemu virtual machine running on a 
physical machine with two X5570 processors (2.9 GHz, 8 threads) 
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 Optimization	with	Differential	Evolution	Chapter	8:
 
8.1. Background 
 
 Another optimization strategy involves Differential Evolution, an algorithm developed by 
Storn and Price, which can search for the global minimum of a function by evolving a population 
of solution vectors over multiple generations [16]. The algorithm has many attributes, including 
relatively fast searching time and the ability to deal with non-differentiable or non-linear 
functions, as well as functions with discrete parameters or noise. Grassia, et al. (2011), used this 
algorithm to successfully optimize the circuit parameters of a Hodgkin-Huxley conductance 
based VLSI silicon neuron [17][18]. The researchers used Differential Evolution to 
independently optimize the circuit parameters of each ionic channel. The fully tuned circuit was 
then able to replicate the behavior of various classifications of biological neurons. For their 
circuit, Differential Evolution also outperformed other common optimization algorithms like 
Simulated Annealing. The successful application of the algorithm to a conductance model 
suggests that a similar approach could work well with a silicon neuron based on qualitative 
modeling.	
 
8.2. Differential Evolution Algorithm 
	
 The function the Differential Evolution algorithm seeks to minimize is referred to as the 
cost function f(x). The input to the cost function may be a vector of any dimension, but the output 
must be a scalar value. For consistency with the discussion of the silicon neuron, the elements of 
the input vector will be referred to as parameters. The steps of the Differential Evolution 
algorithm used in this research are:	
 

1) Define the bounds of the parameter space. 
2) Create a population of solution vectors within the bounds of the parameter space either 

randomly or in evenly subdivided intervals. 
3) Each generation g consists of NP solution vectors 𝐩!,!. 

 
 𝐩!,!,𝐩!,!,𝐩!,! … ,𝐩!"!!,!,𝐩!"!!,!  (8.1) 
 

4) From this population, chose a base vector which yields the lowest value when input into 
the cost function. 
 

 𝐛! = 𝐩!"#$,!, 𝑓 𝐩!"#$,! = minimum value  (8.2) 
 

5) Select a target vector 𝐩!,!. 
6) Choose two distinct random vectors from the population that are also distinct from the 

base vector and target vector. 
 
 𝐱! = 𝐩!"#$!, 𝐱! = 𝐩!"#$!, rand1 ≠ rand2 ≠ best  (8.3) 
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7) Add the weighted difference of the two random vectors to the base vector to create a 
mutant vector 𝐯!. M is called the mutation constant. 
 
 𝐯! = 𝐛! +𝑀×(𝐱! − 𝐱!)  (8.4) 
 

8) Select elements from the mutant vector and target vector with a defined probability to 
create a trial vector 𝐮!. The probability of selection is referred to as the recombination 
constant. 
 

 𝐮! =

𝑢!
𝑢!
⋮

𝑢!!!

, 𝑢! =
𝑣!
𝑝!     𝑟𝑎𝑛𝑑(0, 1) ≤ 𝐶𝑟

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (8.5) 

 
9) If the trial vector 𝐮! performs better than the target vector 𝐩!,! when input into the cost 

function, it replaces the target vector and proceeds to the next generation. Otherwise, the 
trial vector is thrown out and the target vector maintains its place in the population. 

 

 𝐩!,!!! = 𝐮!
𝐩!,!     𝑖𝑓 𝑓(𝐮!) ≤ 𝑓(𝐩!,!)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (8.6) 

 
10) Using each member of the population as a target vector, create new mutant vectors and 

trial vectors with the same base vector 𝐛!, and evolve the target vectors to the next 
generation. 
 
With: 
 
 {𝐩!,!, 𝐯!,𝐮!}, {𝐩!,!, 𝐯!,𝐮!},… , {𝐩!"!!,!, 𝐯!,𝐮!}, {𝐩!"!!,!, 𝐯!,𝐮!}  (8.7) 
 
Evolve: 
 𝐩!,!!!,𝐩!,!!!,𝐩!,!!!,… ,𝐩!"!!,!!!,𝐩!"!!,!!!  (8.8) 
 

11) Repeat steps (3)-(10) for each successive generation until the cost function has achieved 
an adequate minimum or a set number of iterations is performed. 

 
 𝑓 𝐩! = global minimum  (8.9) 
 
 Numerous variations of the differential evolution algorithm exist, the majority of which 
are similar to the pattern above. One common variation is to change step 4 to select the base 
vector randomly [16]. 
 
  



58 
 

8.3. Application to the silicon neuron 
 

The Differential Evolution algorithm was 
used to optimize the nullclines. Figure 8.1 shows 
an abstract view of curve optimization with 
Differential Evolution. Generation after 
generation, the curve is brought progressively 
closer to the ideal solution, in this case one of the 
system nullclines. 

Differential Evolution was applied to the 
silicon neuron by running a Python script which 
calls the Spectre simulator in conjunction with the 
scipy.optimize.differential_evolution() function 
from the SciPy library [15]. The cost function 
constructed takes the circuit parameters as input 
vector x, simulates the silicon neuron in nullcline 
mode, and calculates the mean absolute errors of 
the v and n-nullclines to the benchmark nullclines. 
These two average error values for the v and n-
nullclines are then combined into a vector whose 
magnitude is used as the output of the cost 
function.	
	

	 𝑓(𝐱) ≜ (!
!

(𝑣!(𝐱)− 𝑏!)!
!!! )! + (!

!
(𝑛!(𝐱)− 𝑐!)!

!!! )!	 	 (8.10)	

	
Functions v(x) and n(x) represent the nullclines recorded by the Spectre simulator with 

input parameters x, b is the benchmark v-nullcline, and c is the benchmark n-nullcline. The i 
indices for vi, ni, bi, and ci correspond to the individual voltage steps in the DC steady state 
analysis. Summation maximum n should not be confused with n-nullcline variable ni. To limit 
simulation time and focus on the most significant regions of the phase plane, both the Spectre 
simulator and the cost function were set to only evaluate a set input voltage range.	

For the first application of this algorithm, the 5 circuit parameters used in the limited 
parameter approach were selected. Since r(n) is bypassed in nullcline mode, Vm for this circuit 
was chosen from the results of brute force optimization in section 7.2. (This led to poor results 
for 37°C, so r(n) for this temperature was tuned by hand). The DC steady-state range was set to 
550–700 mV in order to focus on the region where the nullclines cross three times. The 
population size was set to 40 vectors, 10 times the number of parameters in the cost function. 
The mutation constant was varied randomly between 0.5 and 1, a process known as dithering. 
The dithering process and using a population size ten times the size of the input vector are both 
linked to better simulation results [16][19][20]. The recombination constant was set to 0.7. The 
parameter bounds were each set to 100 mV ranges with the results of the limited parameter 
approach roughly in the center.	
  

Figure 8.1: Curve matching with an optimization 
algorithm 
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Table 8.1: Simulations for each run of the Differential Evolution algorithm 
Temperature (°C) Number of Simulations Time to Completion (hours) 

17 4795 2:37 

22 8105 4:25 

32 5870 3:00 
37 5275 3:57 

 
Table 8.2: Parameters optimized with Differential Evolution (rn_Vm comes from brute force for 
17-32°C and was tuned by hand for 37°C) 

Temperature (°C) 17 22 27 32 37 

gv_Vm (mV) 394.3 415.7 432 445.3 456.7 
fn_Vb (mV) 253.4 245.2 237 228.7 220.3 

Iav_Vin (mV) 433.5 450.4 461 468.3 473.6 

Ian_Vin (mV) 418.9 449.4 464.5 474.3 481.2 
rn_Vm (mV) 478.2 460.3 445 428.6  407.2 

Ith (pA) 201  181 178.5  179  189 

5 pA response (Hz)  17.3  16.9 15.1  9.2  0 

10 pA response (Hz)  38.5  34.5 36.2  38.1  35.1 
 

The algorithm was used 4 times, once for each of the pillar temperatures. Table 8.1 shows 
the number of simulations run along with the total time to run the algorithm for each 
temperature. A single complete DC steady state analysis in Spectre took an average of about 2.5 
seconds.	

Table 8.2 shows the parameters which were returned by the Differential Evolution 
algorithm. Figure 8.2 compares the nullclines optimized at the pillar temperatures to the 
benchmark nullclines. The overlapping curves in this figure show clearly that compared with the 
other methods (Figures 5.9, 6.3, and 7.1), the Differential Evolution algorithm replicated the 
nullclines more accurately in the measured range. 

Figure 8.3 is a plot of the optimized parameters versus temperature and Figure 8.4 shows 
the transient simulations of the optimized parameters at the pillar temperatures. The 5 pA 
sustained stimuli for 37°C failed to induce a periodic response. Because of these poor transient 
results, the interpolation step was not performed. However, the accurately replicated nullclines 
suggest that modifications to this method could lead to better results. 
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Figure 8.2: Nullclines optimized with Differential Evolution at pillar temperatures compared 
with benchmark nullclines 

 
Figure 8.3:  Parameters optimized with Differential Evolution versus temperature 
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Figure 8.4: Time-series response of the silicon neuron to 5 pA and 10 pA sustained stimuli (0.2-1 
and 1.2-2 seconds respectively) at pillar temperatures with nullclines tuned with Differential 
Evolution. Vm for r(n) was selected from the brute force results (section 7.2) for 17, 22, and 32°C, 
and was adjusted by trial and error for 37°C. 
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 Conclusion	Chapter	9:
9.1. Comparison of Methods 
 

Table 9.1 shows the interpolation results from the full parameter approach, the limited 
parameter approach at two different precisions, and brute force tuning of the limited parameter 
approach. The pillar parameter sets from the Differential Evolution method did not always 
induce firing when subject to a 5 pA sustained stimulus and thus were not used for interpolation. 

The “average | % change |,” defined in section 5.4 as the average of the absolute values of 
percent change from the benchmark behavior, serves as a good indicator of the relative strength 
of the method in question since it shows the overall variance of the behavior from the benchmark.  
 According to this index, the full parameter approach had the poorest interpolation results, 
likely due to the unwieldy number of parameters that were difficult to tune consistently with trial 
and error. Some parameters were tuned more aggressively than others, which lead to irregular 
progressions of parameters versus temperature. This unevenness may have lessened the 
effectiveness of the interpolation step which likely benefits from regularity and smoothness. The 
merit of this method is the high degree of control it provides, suggesting that a modification such 
as adding an automated optimization step could lead to better results. Differential Evolution or a 
similar algorithm could be used for such a step. 
 The limited parameter approach improved the results of the full parameter approach 
dramatically and was much more straightforward for the user. The progressions of parameters 
were noticeably smoother. Increasing the interpolation precision from 0.5 mV to 0.1 mV further 
improved the results of this method. 

Brute force optimization improved the results of the limited parameter approach, but was 
time consuming and suffered from a limited search range. This method worked as a good 
supplement to the trial and error step, but could not seek a solution outside the immediate 
vicinity of the parameter space. It is possible that a better parameter set exists beyond the limited 
range, or perhaps in a distant region of the parameter space. Extending the search radius 
exponentially increases calculation time, making broad searches difficult. Brute force 
optimization was better than the limited parameter approach’s 0.5 mV interpolation for all 
measured behaviors, and for 0.1 mV interpolation, it was better for the 10 pA sustained stimulus 
response and threshold current, and comparable for the 5 pA sustained stimulus response. 
 Differential Evolution most accurately replicated the nullclines, but showed poor 
transient results. While the nullclines are a useful tool for understanding the behavior of the 
silicon neuron, they only partially describe the system. Additionally, tuning the nullclines 
ignores the influence of r(n), necessitating a second tuning step. In this case, the parameters from 
the brute force approach were used with some adjustment. 

Even given the poor results, the Differential Evolution algorithm successfully 
accomplished its input task of matching the nullclines, suggesting that modification of the cost 
function could improve results. For example, determining the optimal nullclines for each pillar 
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temperature—which may differ from the benchmark nullclines—could be input into the cost 
function. In other words, the ideal nullclines may change shape at different temperatures. 
 The issue of precision kept coming up in many aspects of this research. Keeping to 0.5 
mV precision proved to be more and more difficult, especially since the the SciPy functions 
work with machine precision. Increasing the precision was always a tempting way to improve 
results, but one must recognize that precise bias voltages are difficult to implement on an actual 
VLSI circuit. Establishing the realistic precision of the optimization strategy is an important 
future task. 
 
9.2. Future work 
 

The relative merits of each of the approaches suggest that a hybrid strategy with elements 
of the different methods could lead to better results. One possible approach could be to tune the 
nullclines with Differential Evolution and then tune the transient behavior with a brute force 
sweep of the surrounding parameter space. 
 
9.3. Application to a VLSI circuit 
 

Once a good optimization strategy is determined with the Spectre simulator, it can be 
applied and tested on the actual VLSI silicon neuron in our laboratory. Future generations of the 
circuit may include programmable on-chip feedback mechanisms that sense temperature and 
adjust parameters accordingly. 
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Table 9.1 Analysis of interpolation results for all methods 

Circuit Behaviors 
Full Param 
(0.5 mV) 

Limited Parameter 
(0.5 mV) 

Limited Parameter 
(0.1 mV) 

Brute Force 
(0.1 mV) 

5 pA stim average frequency 11.9 Hz 15.8 Hz 15.2 Hz 14.8 Hz 

5 pA stim average % change -9.3% 5.2% 0.9% -7.9% 
5 pA stim average | % change | 58.1% 34.7% 18.2% 18.4% 

5 pA stim frequency range 2.4-26.1 Hz 3.7-27.1 Hz 6.4-20 Hz 3.4-20.1 Hz 

10 pA stim average frequency 35.5 Hz 38.7 Hz 38.2 Hz 37.0 Hz 
10 pA stim average % change -0.6% 6.8% 5.6% -0.2% 

10 pA stim average | % change | 7.8% 7.1% 5.6% 2.2% 

10 pA stim frequency range 26.8-40.4 Hz 34.6-43.2 Hz 36.1-40.4 Hz 34.3-38.5 Hz 

Average threshold current Ith 185.4 pA 172 pA 176pA 177.5 pA 
Average Ith % change -0.1% -3.6% -1.4% -0.5% 

Ith average | % change | 18.5% 12.2% 8.7% 8.3% 

Ith range 131-303.5pA 115.5-216 pA 147-213 pA 147-215.5 pA 
 

 

Figure 9.1: Close-up view of the circuit board with the silicon neuron in its bed	
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