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Abstract

Recent development of head-mounted cameras allows us to easily record first-person
videos. First-person videos convey attentions, intentions, and interactions of camera
wearers. Analyzing multiple first-person videos recorded by a group of people helps
us to understand social group activities such as group discussions.

In this thesis, we introduce a novel technique for discovering objects of common
interests from multiple first-person videos recorded in a social event. Objects of
common interests are defined as the objects being looked at by a group of people
jointly for a period of time. While such objects are salient cues to understand group
activities, it is still a challenge to detect them from multiple first-person videos.
The difficulties arise from the necessity to locate unknown objects with unrestricted
appearances, categories and sizes in an unsupervised manner. The problem is even
more challenging when many objects are presented in a scene.

Our method makes use of a glass-type eyes tracking device to incorporate points
of gaze into an object co-segmentation framework. Video co-segmentation tech-
niques provide an important cue for objects of common interest since they can unsu-
pervisedly segments common objects from background by using mutual information
of the common objects (e.g., color/shape similarities) across videos. However, video
object co-segmentation cannot pinpoint an object of common interests in a cluttered
scene, where there are many common objects exist together. By utilizing eye track-
ing data, we can limit the location of the objects of common interests. Thus, our
proposed method can identify precisely one object of common interests per video
frame.

First, our method segments video frames into over-segmented supervoxels. Then,
candidates of objects are generated by combining supervoxel segments according to
gaze events, i.e., fixation events. A hierarchy of fixations is used for identifying a
set of segments that corresponds to each object candidate. Finally, the candidates
are clustered by a graph-based object co-segmentation framework, and the objects
of common interests are detected. The proposed method can work under several
challenging situations, such as absence of common objects and existence of multiple
of objects in a cluttered scene.
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Chapter 1

Introduction

1.1 Background

Due to the emergence of head-mounted cameras, it has become possible to unobtru-
sively record videos of human activities from first-person perspective. First-person
videos not only show camera wearers’ actions, but also convey their attentions and
interactions with other people or objects. More importantly, wearable cameras can
be used to record first-person videos of each participant who joins a social event.
Those videos provide important cues to recognize social interactions between partic-
ipants. Recently, many researches in a field of egocentric vision focus on analyzing
such recordings in order to achieve a better understanding of group behaviors, for
example, social relationships [4], social interactions [14], and social attention [?][27].

In this work, we deal with a novel problem of detecting and localizing group
attentions. We record first-person videos and eye tracking data of many people who
participate in a group activity by using a glass-type eye tracker (Figure 1.1). Our
objective is to detect and localize objects that are looked at jointly by many people
for some period of time, i.e., the objects of common interests (Figure 1.2). We
believe that discovering such objects is beneficial for social behavioral studies. It
can also assist in detecting important objects in an application like multiple videos
summarization [5] [20].

1.2 Challenges and Contributions

There are several challenges in detecting the objects of common interests. The main
difficulty is the need to locate unknown objects with unrestricted appearances, types,
sizes, and viewpoints in an unsupervised manner. Also, the objects can move-in/-out
of the field of views of the participants due to unconstrained head movements.

Figure 1.1: Pupil eye tracker [1].
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Figure 1.2: The goal of our work. The objective is to detect objects of common
interests from multiple first-person videos and their accompanying eye tracking data.

To overcome the aforementioned difficulties, we propose a method to discover the
objects of common interests based on an object co-segmentation framework. Recent
video object co-segmentation techniques segment common objects from multiple
videos in unsupervised [11][40] or weakly-supervised [36] manner. They use mutual
information of the target object (e.g., color/shape similarity) that appears in many
videos to make up for the lack of supervision. However, it is still difficult to pinpoint
the location of the objects of common interests, especially when many objects exist
in the scene.

Our key insight is that the points of gaze recorded together with first-person
videos can be utilized to limit the locations of object candidates. With gaze infor-
mation, we can discover exactly one object of interest per video frame, even if there
are multiple objects present in a cluttered scene. We also extend the state-of-the-
art clustering approach [40] to identify if objects of common interests are present or
absent from the participants’ field of views.

Another contribution is a new first-person videos dataset that we record. The
dataset is used for evaluating our proposed method.

In summary, our contributions are as follows:

1. We introduce a novel problem of detecting objects of common interests, given
first-person videos and eye tracking data of multiple participants.

2. We proposed an efficient method to solve the problem. The proposed method
utilizes eye tracking data to assist finding objects which are similar appear-
ances across multiple videos and are looked at by multiple people.

3. We record a new dataset for evaluating our method. The dataset contains 18
video sets recorded in three different scenes. Each set consists of 2 first-person
videos showing joint attentions on five objects (~1 min. each).
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1.3 Thesis Outline

This thesis is organized as follows. The first part of Chapter 2 includes recent
researches on gaze event detection, specifically saccade and fixation detection al-
gorithms. The second part of Chapter 2 introduces many works on video object
co-segmentation methods, including the state-of-the-art approach [40]. The third
part of Chapter 2 is a brief introduction to supervoxel segmentation methods. Then,
Chapter 3 describes our proposed method. And, Chapter 4 presents the performance
evaluation on our dataset and a detailed analysis of our proposed method. Finally,
Chapter 5 outlines ideas for future research direction and concludes the thesis.



Chapter 2
Related Works

In this chapter, we introduce many topics that are related to our proposed method.
The objective is to detect objects of common interests from first-person videos. Our
problem is slightly different from the current group attention localization problem
[?][27]. First, we also use points of gaze as a cue for attentions. Second, we want to
detect the objects of common interests, and not just predicting the points of joint
attentions. This provides a new challenge, that is, the need to locate the boundary
of the objects of common interests. To solve this challenge, we incorporate three
related works introduced in this chapter, that is, gaze event detection, supervozel
segmentation, and video object co-segmentation.

In the first step, the proposed method generates the proposals of the objects
of common interests. A boundary of each object candidate is determined by a
combination of supervoxels guided by gaze events. We present a brief description
on gaze event detection and supervoxel segmentation in the first and the second
parts of this chapter, respectively. In the second step, the proposed method groups
the proposals to find the objects of common interests by using a video object co-
segmentation framework. The third part of this chapter provides a detail on the
video object co-segmentation approaches.

2.1 Gaze event detection

Eye tracking data can be noisy or loss because of blinking, rapid head motion, or
tracking error. Moreover, some points of gaze might not convey camera wearer’s
intention, for example, a point of gaze that was collected when camera wearer un-
intentionally glanced at some location in a quick motion. In both cases, we need to
process the raw gaze data in order to remove the noisy data, and identify the gaze
portion that express camera wearer’s attention. The process is called gaze event
detection.

The objective of gaze event detection is to segment the eye tracking data into
periods of fixation, saccade, smooth pursuit, and blink. In our work, we detect two
types of gaze event: saccade and fixation. Saccade is a rapid movement of eyes in a
short period of time. Fixation occurs when camera wearer fixates at something for
a while (Figure 2.1). Since fixations normally express camera wearer’s interest, we
want to detect all fixation periods within our videos.

In the egocentric scheme, head motions obstruct the gaze event detection pro-
cess, specifically, a vestibulo-ocular reflex (Figure 2.2). The vestibulo-ocular reflex
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Figure 2.1: An illustration of gaze event detection. Several video frames are con-
catenated into a panoramic image. Red marks show a sequence of gaze points, Blue
circles denotes the clusters of gaze that represent fixation events.
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Figure 2.2: Eye movement compensates for head rotation.

is a reflex eye movement that is produced when a human fixates at one location
and then rotates his/her head. This reflex will produce an eye movement in an
opposite direction in order to compensate for the head motion, thus preserving the
original location on the visual field. As a result, points of gaze in this period will be
incorrectly classified as saccade instead of fixation because of the eyes’” motion.

To solve this problem, recent literature [24] proposed a method to compensate
for the head motion in order to obtain the correct event detection results. To negate
the head motion, the relative motions of two consecutive frames are first estimated
to transform the points of gaze into the same coordinate. Specifically, a video frame
is used as a template to match with the next frame. Then, the relative motion can
be computed from the maximum of the cross correlation using phase correlation.
Finally, a normal gaze event detection method is used on the transformed points of
gaze.

Normally, fixation detection algorithms classify the events based on dispersion,
velocity, acceleration, or the combination of them; see [33]. Dispersion-based algo-
rithms identify a portion of eye tracking data as a fixation period if the points of gaze
are located within a spatially limited region for more than a predefined duration.
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Figure 2.3: A comparison between three different processing paradigms for video
segmentation [38]. (a) Frame-by-frame processing which process each frame indi-
vidually. The result is bad due to low temporal coherency. (b) Stream processing
[38]. And, (c) 3D volume processing which process a whole video. The result is the
best, but not suitable for long video due to high complexity.

Such method has been used in a commercial eye tracker like Tobii Technology.

Velocity-based algorithms simply compute the velocity of gaze movements, and
threshold them into saccade and fixation periods. In other words, if gaze velocity ex-
ceeds a threshold, the gaze data will be identified as a saccade event. Fixation period
is defined as a period between saccade. The velocity threshold can be predefined by
user, or automatically computed based on the input gaze data. Recent research [26]
iteratively estimates the velocity threshold based on mean and standard deviation
of the velocity that are under the threshold.

Similarly, acceleration-based algorithms specify an acceleration threshold to cat-
egorize eye tracking data into saccades and fixations. Acceleration criteria ordinarily
acts as a complimentary of the velocity-based methods.

2.2 Supervoxel segmentation

Supervoxel segmentation is a method to segment video into several small volumes.
Each supervoxel (volume) should have consistent characteristics, both spatially and
temporally. Recent works in this domain include [17][38] and [39].

The work of [17] segments a video into several layers of supervoxels. The lower
levels are more finely segmented volume, while the higher levels are more coarsely
segmented regions. Specifically, they oversegments a video into a small space-time
regions grouped by appearance. Then, they construct an initial 3-D graph, where
each node is a space-time region and edge represents similarity between regions.
The segmentation method is apply on the graph again to obtain a new graph, which
consists of super-regions, i.e., regions composed from smaller regions. The super-
regions in-turn forms a graph that can be segmented again. By iteratively repeat
this process, they represent a hierarchy of regions in tree structure.

The state-of-the-art method of [38] implements a graph-based hierarchical seg-
mentation method [17] into a streaming framework. The concept is motivated by
data stream algorithms (Figure 2.3), where each video frame is processed only once
and does not change the segmentation of previous frames. An example result is
shown in Figure 2.4.



CHAPTER 2. RELATED WORKS 7

Figure 2.4: Example output from a streaming hierarchical supervoxel segmentation
method [38]. (a) the video with frame number on top-left, (b) the 5th layer, (c) the
10th layer, (d) the 14th layer segmentations.

Frame 3

Frame 2

Frame 1

Input

Propagated
“seed” segments

Propagated
“seed” segments

Level 1

Level 2

Level 3

Figure 2.5: An illustration of the processing flow of [39].

The most recent method proposed by [39] introduces an online hierarchical super-
voxel segmentation method for time-critical applications (Figure 2.5). It segments
a video stream up to the latest frame as soon as it arrives without the need of
streaming buffer. The approach is similar to [38], except that the segment labels
are propagated from one frame to the next frame based on both motion (dense op-
tical flow) and appearance cues. Then, a new graph is built for the next frame,
and new segments (if any) are generated using the graph-based merging scheme.
Finally, higher-level segmentation are generated using a self-supervision merging
scheme based on the higher-level segmentation of the previous frame.

2.3 Video object co-segmentation

Object co-segmentation task was first introduced by [28], which worked on a col-
lection of images. The idea is to use mutual information of the target object (e.g.
color/shape similarity) that appears in many images to make up for the absence of
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supervision. Later, the object co-segmentation task is extended to handle multi-
ple object categories [22], as well as the absence of common objects, especially in
internet images collections [10][30][37].

Recently, a few researchers extend the idea of object co-segmentation into video
domain. Unfortunately, many challenges still have not be (or partially be) addressed.
First problem is the existence of common object. Some of the works assume that
all video frames must contain common object [16]. Several works [23][36] treat the
frames that lack common object as outlier, and try to learn a classifier to identify
whether a frame contains an object or not.

By contrast, our work assumes that there is not always an object of common
interest since a group of people do not necessarily look at the same object for a
whole time. Also, we cannot use a classifier to identify whether a frame contains a
common object or not, because even if the frame contains a common object, that
object might not be an object of common interests. For example, a person looks at
a book on the table and another person looks at a laptop on the same table. In this
case, first-person videos from these two people will display both the book and the
laptop. Thus, both objects will be identified as the common objects. However, they
are not the objects of common interests.

Another challenge in video co-segmentation is the variability of object appear-
ances across viewpoints. Many works assume that the object appearance and shape
must be consistence both within a video and across videos. In our case, object
appearance across videos might be varied greatly due to the change of viewpoint.

The next challenge is the number of categories of objects. Many prior researches
[18][23] co-segment videos into foreground, i.e., a common object, and background.
In other words, they assume the videos consist of only one object category. However,
we aim to find all objects of common interests, which can be more than one.

One recent work in video object co-segmentation is proposed by [31]. They
proposed a method to extract objects of a single class that move in a similar manner
across multiple videos. Given input videos, pixels are grouped at two levels: the
higher level groups pixels into space-time tubes, and the lower level groups pixels into
regions within each frame. An initial estimation of the foreground and background
labeling is calculated from an objectness and saliency measure, and it is used to
construct a probabilistic distribution of the feature vectors of tubes and regions.
Then, a probabilistic framework is modeled to obtain the co-segmentation results.

The method of [11] co-segments multiple objects from videos by formulating
a non-parametric Bayesian model, which is based on a video segmentation prior.
It can be used with multiple classes of objects and can deals with the absence of
common object.

One interesting work of [40] proposed am improved method of [11]. The method
consists of two main steps: object tracklets generation, and tracklets grouping. In
the first step, video frames are segmented into superpixels. The superpixels are
selected based on their objectness score, shape similarity and color similarity to
form object proposal tracklets that are spatially salient and temporally consistent.
In second step, a graph is constructed, where the nodes are object proposal tracklets,
and the weights are calculated by tracklets similarity measure (Figure 2.6). Then,
graph-based clustering is used to group objects with similar shape and appearance
together. Fach group corresponds to each common object. Finally, the detected
tracklets in each group is used to initialize per-pixel segmentation to get the final
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Figure 2.6: Graph-based tracklets grouping step [40].

co-segmentation results (Figure 2.7).

Another approach from [36] presents a spatio-temporal energy minimization for-
mulation to simultaneously discover and co-segment common video objects across
multiple videos containing irrelevant frames. This method is weakly-supervised
method that requires 1 to 3 frame-level labels in order to identify the irrelevant
frames.

The task that is closely related to object co-segmentation is object co-localization.
Instead of obtaining per-pixel segmentation of common objects, object co-localization
aims to locate the bounding boxes that cover the common objects. Several works in
this area are [18][19] and [23].
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Figure 2.7: An example of video co-segmentation results [40]. Column 1 is the
original video frames; Column 2 ('GT’) is the ground truth for co-segmentation;
Column 3 (’Ours’) is the results of [40]; Column 4 ("VCS’) is the results of [11];
Column 5 ('ICS’) is the results of [22].
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Chapter 3
Proposed Method

3.1 Overview

In this chapter, we present a detailed description of our proposed method. The input
of our method is multiple first-person videos recorded by the participants, and their
accompanying eye tracking data. The videos are a sequence of frames, each frame
has one (or zero if missing) 2d point of gaze. Currently, we record first-person videos
from two participants. The output is a frame-by-frame segmentation of the objects
of common interests.

The proposed method consists of three main steps. In the first step, we segment
video frames into over-segmented supervoxels, and segment eye tracking data into a
hierarchy of fixations. Then, we use a fixation event to determine a set of supervoxel
segments. They are further combined to generate a candidate for objects of common
interest. This process is repeated for all fixations in a hierarchy, and we obtain many
object candidates. In the second step, the object candidates are clustered, and the
objects of common interests are detected. The clustering is done by an adaptation
of the video object co-segmentation approach [40]. Finally, the objects of common
interests’ regions are re-segmented using [29] in the post-processing step.

3.2 Generating object candidates based on gaze
events

The first step of the proposed method is to generate candidates for objects of com-
mon interest across multiple videos. The simplest approach is to use object detectors
[3][13][25], which generate object proposals based on geometric and visual saliency
cues. Unfortunately, current object detectors sometimes fail to detect small or in-
conspicuous objects even if they are fixated by the camera wearers. They also
provide many proposals that are unrelated to the objects of common interests, such
as objects in the background.

To solve the problems, we propose an approach to construct object proposals
according to gaze events. We segment fixation events from the eye tracking data,
and construct the candidates by combining a set of supervoxels based on the detected
events. We also measure the quality of the candidates and screen out the low-quality
ones. With this gaze-guided approach, we can obtain the proposals of all (and only)
objects that are looked at by the camera wearer, regardless of their sizes, colors, or
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Figure 3.1: Relative motion calculated from consecutive video frames when gaze
data is missing.
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3.2.1 Detecting fixation events in a hierarchy

Eye tracking data normally contains data loss and spatial error due to blinking,
rapid head motion, and tracking error. Moreover, there are points of gaze that
do not reflect the attention of the camera wearer, such as rapid, unintentional eye
movements. The missing points of gaze can be predicted by interpolation such as
linear interpolation and median filtering. Then, the periods of gaze that convey
camera wearer’s attentions can be identified by fixation events detection method.

In first-person videos, detecting fixation events is not an easy task due to a large
amount of head motions. To overcome the difficulty, recent work [24] proposed a
method to compensate for the head motions. Following [24], we compensate for head
motions in fixation detection. More specifically, relative motions of two consecutive
frames are first estimated to transform the points of gaze into the same coordinate
to negate the head motion. Each frame is used as a reference coordinate for the
next frame. Then, the velocity of eye motions is calculated from the transformed
points of gaze. A sequence of fixation periods is finally obtained by segmenting
points-of-gaze stream temporally based on the velocity.

To compute relative motion between two consecutive frames F; and Fj; i, we
extract local features such as SURF [6] and match the features between F; and Fj.
Then we estimate the geometric transformation 7; that maps F;.; to F;. The point
of gaze in Fj,; is then transformed to F; using T;. If the point of gaze in Fj,; is
missing, we accumulate the transformation 7; to be used the next frame (Figure 3.1).

We compute angular velocity from the transformed points of gaze (x;,y;) and

(Tig1, Yig1):

2 .2
v; = \/(xz—i-l xz) + (yH—l yz) : (31)
liv1 — t;

where t; and t;.; are the timestamp of frame ¢ and frame ¢ + 1 correspondingly.
Since videos have a constant frame rate, t;,1 — t; will also be a constant and can be
omitted from the equation:

0; = \/(%‘H —23)% + (Yiy1 — ¥i)? (3.2)

The angular velocity is then used for detecting fixation periods. Eye tracking
data is segmented into a hierarchy of fixations. The segmentation method is an
adaptation of saliency primitives segmentation based on the scale-space analysis
[32]. A sequence of angular velocity, @ = {6,0,...,0x}, is used as input. The
sequence is convolved with a series of Gaussian functions with varying smoothing

scales {&,...,&}:
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Figure 3.2: Hierarchical fixation segmentation based on scale-space analysis [32];
(a) angular velocities computed from a sequence of transformed points of gaze, (b)
hierarchical structure of fixations, and (c¢) an example output on real eye-tracking
data. Eye tracking data (1st graph) is convolved with Gaussian functions in various
smoothing scales (2nd graph). Then, Local maximum points are tracked through

smoothing scale levels (3rd graph). Finally, we obtain a hierarchy of fixations (4th
graph).
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0% = 0 x Gauss®, (3.3)

where & is a smoothing scale of level [, Gauss'®) denotes a Gaussian function with
smoothing scale &, and * is a a convolution operation.

The local maximum points in a set of outputs {0(51), ey 0(&)} are tracked through
the varying smoothing scales from &, to &;. Specifically, each local maximum point
at a curtain smoothing scale & is matched with its corresponding point at scale &;
by tracking the point from & to &. Then, the point is used as a segmentation point.
By doing this for all local maximum points at every scale level, we can obtain a
hierarchical structure of the points because new points can appear when smoothing
scales decrease (Figure 3.2).

For each smoothing level, eye tracking data is segmented based on segmentation
points of that level. A set of intervals generated at smoothing level [ (i.e., a set of
intervals generated with scale ;) is denoted as a set of fixation events of the level
in a hierarchy of fixations:

H' = {h b, .. hh Y, (3.4)

where h;'. denotes fixation event j at smoothing level i.
Finally, we obtain a hierarchy of fixations, H = {H', H?, ..., HL}, where L is the
number of levels in a hierarchy:

3.2.2 Generating object candidates

The objective of this step is to generate the candidates of objects being looked at
by wearers. The naive way is to segment each video frame into several regions,
then use eye tracking data to identify the region that is looked at by the wearers.
The important problem is that video frame segmentation is not perfect. Thus, the
selected region might contain only a part of the object or contains both object and
background.

To solve the aforementioned difficulty, we use a hierarchy of fixation periods to
generate the candidates of objects being looked at by wearers. The key idea is that
people tends to look at every parts of object if they are interested in that object.
Even if the camera wearer looks at only a segment of object in each video frame, we
can discover a whole object region by combining many segments from several video
frames together.

The next question is which segments from which frames should be combined to-
gether. As mentioned, we assume that people will fixate at the object that interested
them, and will look at every segments of the object. In other words, the people will
look at a whole object during a fixation event. According to this assumption, we
select a set of supervoxel segments that are looked at by the camera wearer within
each fixation period. Then, the selected segments are combined together to form one
object candidate. We repeat this step for all fixation events in a hierarchy. Thus,
we will obtain a set of object candidates.

Given an input video V', we segment each video frames into several over-segmented
supervoxels using [38]. Each supervoxel segment should represent a part of the ob-
ject, a whole object or background, but not a combination of object and background
region.
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Figure 3.3: We generate object candidates from a hierarchy of fixations.

Given an accompanying eye tracking data, we discover a hierarchy of fixations,
H = {H' H? ..., HY}, where L is the number of levels in a hierarchy. We define H'
as a set of fixation events at level [:

H' = {&], &L, XY, (3.5)

where N'! is the number of fixation events in H'.

We construct one object candidate for each fixation event. Suppose videos are
decomposed into a set of supervoxels {sy,..., Sk}, where s; defines a certain (con-
nected) spatio-temporal region. Eye tracking data is described by a set of spatio-
temporal point X = {(z1,y1,t1),..., (zn,yn,tn)}. The j-th fixation at scale [, Xj,
is defined by a subset of X, say, X} C X. Then, the object candidate of the j-th
fixation at scale [, namely Oé-, can be defined as:

Oé- ={sglzr Csp and z¢€ X}}, (3.6)

where x C s, means the point of gaze x is located inside the supervoxel sy.

We discover all object candidates from all fixation events { X}, XJ, ..., XL, }. Then,
we repeat this step to all levels in fixation hierarchy {H*, H?, ..., H*}.

In summary, an object candidate is constructed by grouping over-segmented
segments together to form a complete object. To determine which segments should
be in the same group, we segment eye-tracking data into a hierarchy of fixations. The
segments from the same fixation will be in the same group. Thus, each fixation will
form one object candidate constructed by merging together several over-segmented
supervoxel segments that are looked at by the participant (Figure 3.3).
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Figure 3.4: Examples of good and bad object candidates: (a) Original video frame,
(b) Over-segmented candidate, (c) Good candidate, and (d) Under-segmented can-
didate.

3.2.3 Scoring object candidates

In this section, we introduce a method to compute a score that measures the quality
of an object candidate. Good object candidates should represent a whole object
segment. Bad object candidates can consist of only a part of the object (over-
segmented), both object and background region (under-segmented), or a whole
background regions. Figure 3.4 illustrates good and bad object candidates.

To determine a score of an object candidate, we train a regressor on four indi-
cators: location, size, saliency and compactness.

Location indicator We believe that an object of interest is likely to be at a specific
location within a video frame. For example, an object of interest tends to exist
near the center of the frame than other locations. The reason is because people
usually rotate their heads to focus on the object and make the object locates
at the center of their field of view.

In our work, location feature LF is defined as the center of the tight bounding
box that covers the object candidate:

LF = {z,y}, (3.7)

where x and vy is the x- and y-position of the center of the tight bounding box
that covers the object candidate.

Size indicator Size feature is defined as a size of the tight bounding box that covers
the object candidate. We believe that object sizes tend to be within a specific
range. If a size of an object candidate is too small, the object candidate is
likely to represent only a part of the object (over-segmented candidate). If a
size of an object candidate is too large, the object candidate is likely to contain
a background region (under-segmented candidate or background candidate).

The size feature SF' is define as:

SF = {w, h}, (3.8)

where w and h is the width and height of the tight bounding box that covers
the object candidate correspondingly.

Saliency indicator We compute object saliency score from [21]. The saliency score
measures how much a region distinct from its surrounding regions. We believe
that the object region should be distinct from background, resulting in a high
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Figure 3.6: Examples of object candidate shapes: (a) A normal object shape (hat),
(b) A long curved region that is unlikely to be an object, (c) A weird scattered blobs
that is very unlikely to be an object. Red square represents the largest possible
square that a region can contain. The size of the red square is the scale of region.
Violet square represents the smallest possible square that cover a region R. The size
of the violet square is denoted as outer(R).

saliency score when the object candidate contains only a small background
region. Therefore, we use the saliency scores to discourage the selection of
object candidates that contain large background regions. Figure 3.5 shows an
example of a saliency map of a video frame.

The feature we use from the saliency indicator is a mean and a standard
deviation of the saliency scores of pixels inside candidate’s region. Let s; be
a saliency score of pixel ¢ in an object candidate, a saliency feature SLF' is

defined as:

1 N

oo = | (si—5)° (3.10)

SLF = {5,0,} (3.11)

Compactness indicator A compactness indicator measures how much a shape of
object candidate looks like an object. The first key idea is that an object
inclines to have a normal square-like shape than a long curved region. The
second key idea is that an object tends to have a compact shape than weird
scattered blobs. Following the idea of [35], we compute a compactness feature
from a modified scale of region measurement.

The scale of region is defined as the size of the largest possible square that a
region can contain. Given a region R, the scale of region is computed as:
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Figure 3.7: Before we compute compactness feature, small holes are filled and small
blobs are removed. (Left) Original object candidate region. The scale(R) is very
low due to a hole, while the outer(R) is very high because of a small blob. As a
result, a compactness feature score is low even if the object has almost a square-like
shape (Right) Object candidate region after removing small holes and blobs. The
compactness feature score is higher and becomes more reasonable.

scale(R) = arg max{ Ryx¢|Rixt C R}, (3.12)
t

where Ry, is a t X t square region, and R’ C R means there exists at least one
location to put R’ completely inside R.

The scale of region measures how likely an object candidate shape satisfies the
first key idea. To satisfy the second key idea, we measure the ratio between
the scale of region and the smallest square that covers the candidate region,
denoted as outer(R):

outer(R) = argmin{ Ry«;| R C Ryxt}, (3.13)
t
where R;y; is a t X t square region. Finally, the compactness feature C'F is
defined as:
scale(R)
CF=—"F"-+-% 3.14
outer(R) (3:14)

Figure 3.6 illustrates three types of object candidate shapes: (a) A normal
object shape (hat), (b) A long curved region that is unlikely to be an object,
and (c) A scattered blobs that is certainly not an object. The ratio between
the sizes of red square and violet square in each image is the compactness
feature. The shape of hat results in highest compactness feature score, while
other shapes have much lower scores.

Please note that we fill small holes and remove small blobs from the region
R before we compute a compactness feature (Figure 3.7). Small holes and
blobs make compactness feature unstable because small holes greatly affect
the scale(R) and small blobs greatly affect the outer(R).

Given the training features {LF, SF, SLF,CF'}, we feed the features into a ran-
dom forest classifier [8] with 1000 trees. We use cross-validation scheme with training
and testing sets at the ratio of 70-30. In testing phase, we compute a score of each
candidate region in each video frames. Since an object candidate is a set of regions
in a consecutive video frames (a time-space volume), the total object candidate score
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Figure 3.8: Grouping object candidates using graph-based clustering.

is obtained by averaging the scores over all of their regions. The candidates that
have lower score than a predefined threshold are removed, leaving only high-scored
candidates for the next step.

3.3 Grouping object candidates with video object
co-segmentation

Candidates of objects obtained from previous step are clustered into several groups.
This clustering allows us to detect objects appearing across the videos, i.e., the
objects of common interests. We modified the recent video object co-segmentation
method [40] to handle fixation hierarchies. The method uses graph-based clustering
to group similar candidates together. Each group should represents each object
(Figure 3.8).

Specifically, we first construct a graph structure that describes relationships be-
tween object candidates. The nodes (candidates) are weighted by candidate scores
in order to discourage the selection of candidates that are likely to correspond to
background regions. There will be an edge connecting two nodes, where the edge
weight is color and shape similarity between the nodes. The shape similarity follows
definition in [40]. However, we use a different definition of color similarity. We
extract a color feature as a 16-bins color histogram in HSV color space. We define
the color similarity as a dot product of H channels in HSV color space:

E(X,Y) = [] (hist(HSVi(X)) - (hist(HSV;(Y'))"), (3.15)
i={L}
where X and Y are two object proposals.
The main difference between our method and [40] is that we do not put an
edge between nodes that are temporally overlapped (Figure 3.9). Namely, a set of
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Figure 3.9: A fixation hierarchy and its corresponding graph. (a) An example of a
fixation hierarchy derived from a video. (b) A corresponding graph structure (nodes
and intra-video edges). There aren’t any edges connecting a node to its parent and
children, i.e., temporally overlapping nodes.

candidates (nodes) representing the same object in different scales are not connected
with each other. This allows us to select one candidate at the most appropriate scale
for each object.

After the graph is constructed, we remove edges that have a score lower than a
predefined threshold. We denote the threshold as edge removal threshold.

We want to cluster nodes in the graph into several groups. Each group should
have high consistency in term of color and shape. We use regulated maximum weight
clique approach [40] to extract groups of nodes. Let G denotes a graph structure,
the definition from [40] is as follows:

Clique is a complete subgraph of G.

Maximal clique is the clique of largest possible number of vertices that cannot
be extended by including one more adjacent vertex. In other words, maximal
clique is not a subset of any larger clique.

Maximum weight clique is a maximal clique that has maximum weight. The
maximum weight clique problem is an NP-hard problem of finding a maximum
weight clique, and can be solve by Bron-Kerbosch Algorithm [9] with time
complexity of O(3("/3)).

Following [40], we iteratively extract maximum weight clique one at a time. The
object candidates in these sub-graphs all have high candidate scores and are similar
to each other. In other words, they are highly likely to be the objects of common
interests.

Among the results of multiple iterations, it is possible to obtain temporally
overlapping sub-graphs. Specifically, one or more candidates in those sub-graphs
are temporally overlapped. Since those candidates belong to the same object, we
merge those sub-graphs by grouping their candidates together. Among a set of
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overlapped candidates, we keep the highest-scored candidate, i.e., the candidate
from the sub-graph obtained at the earliest iteration (thus having the maximum
weight). Finally, we detect the objects of common interests by selecting the groups
that contain nodes from many videos.

3.4 Post-processing

The results we obtain from grouping step are segments that correspond to each
object of common interests in each video frame. Since the object segments are
constructed by grouping several over-segmented supervoxel segments together based
on fixation, the result segments might be incomplete. In order to obtain better
accuracy, we refine the segments using GrabCut [29].

GrabCut receive two parameters as input: original frame image, and trimap.
Trimap are H-by-W array of labels, where 0 is background, 1 is foreground, 2 is
probably background and 3 means probably foreground region. GrabCut uses trimap
to built separate foreground and background color models. Then GrabCut use the
two models to generate a new better trimap by changing the label of the probably
foreground and probably background regions according to the learned color models.
The accuracy of the output trimap depends on the precision of foreground color
model and background color model obtained from the input trimap. Therefore,
we need to precisely label the object region as the foreground pixels and the other
regions as the background pixels.

Ideally, the object segment obtained from the grouping step should correspond
to foreground pixels. However, the object segment can also contain background
region due to errors from candidates construction process. If we label the whole
object segment as foreground pixels, the foreground color model can be incorrect
due to the background pixels inside the object segment. To solve this problem, we
speculate that the pixels that are near to the point of gaze are more likely to belong
to the object region, and the pixels that are too far from the point of gaze might
belong to the background region. Therefore, we build the foreground color model
using only a few pixels around the point of gaze. Those pixels are labeled as 3
(probably foreground).

We compute a tight bounding box that covers the object segment. The pixels
outside the bounding box are labeled as 0 (background). The pixels inside the
bounding box are labeled as 2 (probable background), except for a few pixels labeled
as 3 (probably foreground) mentioned in the previous paragraph. We input this
trimap to GrabCut and get the output trimap. The refined object segment is the
area that is labeled as 1 (foreground) or 3 (probably foreground) in the output
trimap. Figure 3.10 illustrates input and output trimap labeled according to our
instruction.
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(a) Original frame image

(c) Point of gaze (red) and confident area
)

(b) Result object segment

(d) Input trimap (e) Output trimap (f) Refined result object segment
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Figure 3.10: An overview of post-processing step. (a) An example input video frame.
(b) A detected object of common interests segment. It contains both object and
background regions. (c) Point of gaze (red) and region around point of gaze that
is likely to contain object region (confident area). We label pixels inside confident
area as 3 (probably foreground). (d) Input trimap. Black area is labeled as 0
(background). Dark gray area is labeled as 2 (probable background), and light gray
area is labeled as 3 (probably foreground). (e) Output trimap from GrabCut trimap.
The light gray area (probably foreground) is used as a new refined object segment.
(f) Refined result object segment after post-processing.
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Chapter 4

Experiments

One of our main contributions is to build a first-person videos dataset. To evaluate
our method, we need a dataset that shows joint attentions of the participants in a
group activity. There are no prior datasets comprising multiple first-person videos
with eye tracking data that suit our need. Therefore, we decide to collect the data
and build a novel dataset— Multi-View Multiple Objects (MVMO) dataset. In the
first section of this chapter, we explain how we collect the data for our dataset. In
the second section, we explain a specific implementation of our proposed method,
such as the parameter settings and computing environment. In the third section, we
describe three baselines. And, we explain how we evaluate our proposed method in
the fourth section. Then we show our results and evaluation measurements in the
fifth section. Finally, we describe limitations and analysis of current challenges in
the final section.

4.1 Dataset

4.1.1 Multi-View Multiple Objects (MVMO) Dataset

To evaluate our proposed method, we construct a new dataset of multiple first-
person videos. The dataset consists of 18 video sets, where each video set contains
two first-person-view videos taken at 30 fps with a Pupil Eye Tracker. The videos
are recorded at 1280x720 resolution with the length approximately between 40 sec.
- 1.20 mins. Each video set has different conditions as follows:

e Scene: We record the data in three different environments.
— Laboratory: Two people stand side-by-side and discuss about items on
the nearby table.

— Secretary room: Two people sit on the opposite side of a table and discuss
about objects on the table.

— Outdoor cafeteria: Two people sit on the opposite side of a wooden table.
The recordings are done in open air restaurant, with natural light from
the sun.

e Interaction: Three types of human interactions are tested.

— Pick-up: One participate pick up an object while other look at it.
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— Joint attention: T'wo participants look at each object one-by-one.

— Free-viewing: Two participant look at any object they want to.

e Object: We use two new sets of objects in each scene. Totally, we use six
different sets of objects in the whole dataset. Each set of objects contains
five different objects. The objects have various colors, shapes, and textures,
ranging from the most simplest one-colored object to object with complex
color and texture.

The recordings are done by three participants. We ask participants to look at an
object one at a time. We also ask them to carefully look at every part of the objects
since we want to demonstrate an advantage of using eye tracking data in detecting
a whole object region.

We manually label the ground truths as tight bounding boxes that cover the ob-
jects of common interests. Then, GrabCut [29] is used to segment the object region.
The final segmentation are manually correct by hand to obtain better accuracy.

Figure 4.1 shows a summary of our dataset, including multi-view videos in each
video set, and their corresponding ground truth.

Please note that only 17 out of 18 video sets are used to evaluate our method.
The reason is because one of them contains too many eye tracking error that it
becomes almost impossible to determine locations of objects of common interests.

4.1.2 MVMO Dataset with Synthetic Eye Tracking Data
(MVMO-SYN)

We propose another dataset which is a modification of our MVMO dataset. The
objective of this dataset is to test our method when eye tracking data does not
contain any spatial error. We replace the eye tracking data from MVMO dataset
with our synthetic eye tracking data. We artificially generate eye tracking data by
hand. The point of gaze in each video frame are manually labeled using mouse
pointer. In addition, we try to move the mouse to every parts of the target object
to simulate real eye movement pattern.

The artificial eye tracking data are recorded for six video sets, specifically, two
video sets per scene representing first two types of interaction: two participants look
at each object one-by-one, and one participate pick up an object while other look
at it. We also label the ground truth according to the artificial eye tracking data.

4.2 Implementations

We implement our method in Matlab code. We work in Windows 8 64-bits platform.
Our videos have a constant frame rate of 30 fps. To reduce running time, we separate
videos in a video set into several small subshots, where each one contains 300 frames.
The objects of common interests are detected for each subshot, and we evaluate the
results of the video set by combining all detected objects of common interests from
all subshots together.

In the first step, we detect gaze events from eye tracking data. To resolve the loss
eye tracking data, we use linear interpolation technique to interpolate the missing
points of gaze when the data is missing for less than 2 consecutive frames (~66.67
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Figure 4.1: A summary of our MVMO dataset. The videos are recorded in 3 different
scenes: Scene 1 is laboratory. Scene 2 is secretary room, and Scene 3 is outdoor
cafeteria. Interaction 1 is picking-up each object one-by-one. Interaction 2 and 3
are looking at each object, and free-viewing. GT indicates the ground truth data.
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ms). We also compensate from head motions in first-person videos. The feature
we use to match the video frames is SURF [6]. Then, we segment the video frames
and generate the candidates of objects of common interests. We use ovesegmented
supervoxel extracted by [38]. Specifically, we use supervoxel at level 5. After we
obtain all object candidates, we remove candidates that have score lower than 0.4.

In grouping step, we compute color similarities and shape similarities between
candidates, and use them as edge weight. We set edge removal threshold at 0.3.

In post-processing step, we define a confident area as the area around point of
gaze that locate within 25-pixel radius.

4.3 Baselines

We compare the proposed method, the approach based on a hierarchy of fixations
(HF), with 2 baselines:

A recent Generative Multi-Video Model (GMM) method [11]

We test our MVMO dataset with the state-of-the-art video object co-segmentation
method of [11]. We define objects of common interests as the regions that have the
same class label across multiple videos.

Naive objects of common interests detection based on a hierarchy of
supervoxels (HS)

Our naive approach detects objects of common interests using eye tracking data on
video object co-segmentation framework [40]. This approach is almost the same as
our proposed method. The difference is that the way we generate object candidates
is lightly relies on eye tracking data. We discover object candidates from a hierarchy
of supervoxels [38]. Lower segmentation levels correspond to more finely segmented
regions, while higher levels correspond to more coarsely segmented regions. This
naive approach assumes that good object candidates are present at least in one level
in the hierarchy of supervoxels. Good candidates should represent whole object
segments, while bad ones are fragments of objects or background.

First, a sequence of fixation periods is obtained by segmenting points-of-gaze
stream temporally based on the angular velocity. Second, We use a series of fixation
periods to generate the candidates of objects being looked at by wearers. We divide
the video into several short sequences of frames based on fixation periods. For each
level of supervoxels in each fixation sequence, we select the supervoxel segment that
are looked at by the camera wearer for the maximum number of frames as the final
object candidate. Then, the object candidates are scored and the low-scored ones
are removed (Section 3.2.3). Finally, we cluster all object candidates in the same
way as our proposed method (Section 3.3) and do the post-processing (Section 3.4).
Figure 4.2 illustrates our naive method.

Please note that, while our method is based on [40], running [40] with supervoxel
hierarchies was infeasible as their code required too heavy computational resource.
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Figure 4.2: A naive objects of common interests detection based on a hierarchy of
supervoxels (HS)

4.4 Evaluation methods

We design two evaluation methods:

Per-pixel segmentation performance evaluation

In this scheme, we evaluate the performance of our method pixel-by-pixel. In other
words, this measurement evaluate our method in regard to per-pixel segmentation
performance. Pixels in each video frame are labeled as 0 (not object of common
interests) or 1 (object of common interest). After all video frames are labeled, all
labels are concatenated together into a single vector. Then, we compare it to the
ground truth vector constructed in the same way. Finally, we compute precision,
recall, and F-score:

F_o. precision - recall

precision + recall

Localization performance evaluation

Per-pixel segmentation performance measurement is not the best way to evaluate
our method. It cannot cope with different interpretations of objects of common
interests. For illustration, Figure 4.3 shows example video frames and three pairs
of regions that can be used as ground truth (the object of common interests). The
video frames (fig. 4.3(a)) are recorded from two viewpoints, showing two participants
looking at a bottle of tea. The red crosses are the points of gaze of the participants.
Figure 4.3(b) is one possible ground truth, specifying that two people are looking at
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Figure 4.3: Example video frames and three possible interpretations of ground truth
(object of common interests): (a) Original video frames from two viewpoints and

points of gaze (red cross), (b) Interpretation 1, (c¢) Interpretation 2, and (d) Inter-
pretation 3.

(d)

the logo on the bottle. Another plausible ground truth is Figure 4.3(c), which shows
a whole bottle. The third probable interpretation is Figure 4.3(d), which assumes
that all connecting areas represent one whole object. Therefore, the participant and
the bottle is labeled together as the object of common interests.

Because there are many plausible ground truths, per-pixel evaluation method
tends to be biased. To solve this problem, we propose a novel evaluation method.
Our evaluation method measures how effective the proposed method can locate
objects of common interests, while ignores the per-pixel segmentation performance.

In each video frame, there are seven situations that possibly occur when we eval-
uate our method. Figure 4.4 illustrates the seven situations. R is the result (object
of common interests) detected in the frame. GT is the ground truth, which is the
whole object region (e.g., the whole bottle of tea). In Figure 4.4(a), the detected
region is a part of the object, which corresponds to Interpretation 1 in Figure 4.3(b).
In Figure 4.4(b), the detected region is deviated from the correct result. It includes
both a part of the object and a small background region. Figure 4.4(c) is simi-
lar to Figure 4.4(b), except that the background region is large. In Figure 4.4(d),
the detected region covers the ground truth region. Figure 4.4(e) is similar to Fig-
ure 4.4(d), but the detected region includes a large background region. Figure 4.4(f)
is true negative case, where our method fails to detect the object of common interest.
Finally, Figure 4.4(g) illustrates false positive case, where our method incorrectly
labels background region as the object of common interests.

We believe that Figure 4.4(a), Figure 4.4(b), and Figure 4.4(d) are acceptable
results. In these cases, the detected regions cover most of the ground truth area.
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Figure 4.4: Seven situations that can occur when we compare our detected region
R with ground truth G7T in each video frame. In this case, ground truth represents
a whole object region, e.g., a whole bottle of tea. (a) Detect region is a part of
the object, (b) Detect region overlaps a part of the object more than 50 percent,
(c) Detect region overlaps a part of the object less than 50 percent, (d) Detect
region covers the object, (e) Detect region covers the object, but it also include
background region for more than 50 percent, (f) Miss detection (true negative case)
and (g) Incorrect detection (false positive case).

More specifically, more than 50% of the detected regions are ground truth region. We
use this definition to create a new evaluation method. First, we define overlapping
score between detected region R and ground truth GT":

OVERLAP = Rm—]fT (4.1)

For ground truth, we label each video frame as 1 if an object of common interests
exists in the frame, and 0 if there aren’t any objects of common interests.

For the result of our method, we label each video frame as 1 or 0 according to
its overlapping score:

0, if OVERLAP < 0.5 or area(R) =0

4.2
1, f OVERLAP >= 0.5 or area(GT) =0 (42

LABEL = {

We define two exceptions for true negative and false positive cases. First,
area(R) = 0 is true negative case (Figure 4.4(f)), which results in divide by zero
when we compute overlapping score. The frame label will be 0 since the method
fails to detected the object of common interests. Second, area(GT) = 0 is false
positive case (Figure 4.4(g)). The frame label will be 1, while the ground truth will
be labeled as 0.

After we obtain all frame labels, we compare them with ground truth labels.
Then, we compute precision, recall, and F-score. With our evaluation method,
precision score will measure how many detected regions are objects of common
interests. And, recall score will represent how many objects of common interests are
detected.
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Per-pixel segmentation Localization
Precision | Recall | F-score | Precision | Recall | F-score
GMM 0.028 0.771 0.053 0.001 0.001 0.001
HS (Ours) 0.772 0.193 0.298 0.779 0.250 0.369
HF (Ours) 0.551 0.385 0.434 0.613 0.549 0.564

Table 4.1: Comparison between our method and baselines.

4.5 Results & Discussion

In this section, we provide evaluation metrics on our MVMO dataset and MVMO-
SYN dataset. We also provide a comparison between our method and baselines. In
addition, we analyze the performance of our proposed method in various conditions.

Table 4.1 shows the precision, recall, and F-score of our method and baselines.
GMM denotes Generative Multi-Video Model approach [11]. HS is our naive ap-
proach based on a hierarchy of supervoxels (Section 4.3). HF is our proposed
method, which relies on a hierarchy of fixations. Our method achieve the best
performance compare to other baselines.

GMM method cannot differentiate objects from background regions when back-
ground regions are similar across viewpoints. Most of the results contain both the
objects and background regions. As a result, GMM method usually has a high recall
and a very low precision. GMM has very low localization metrics due to the same
reason. In most GMM results, the detected region is overlap with ground truth for
less than 50% of its total area. Thus, they do not pass the localization performance
evaluation criteria. Another limitation of GMM method occurs when there are many
objects in the scene. GMM method cannot determine which one object is the object
of common interests since there are many possible choices. That is, any objects that
can be commonly seen from many videos are all detected as the objects of common
interests. Therefore, GMM method gives the very low precision. This emphasizes
the advantage of using eye tracking data, which can help locating a single target
object from each video frame.

HS method constructs object candidates using eye tracking data. By compar-
ing GMM with HS method, we can conclude that eye tracking data is remarkably
beneficial for detecting objects of common interests. It helps locating the important
regions that are likely to be the target objects. By combining eye tracking data with
video object co-segmentation framework, HS method gives much better performance
than GMM method.

Unfortunately, HS approach still has a limitation. HS method generates various
sizes of object candidates from a hierarchy of supervoxels. It assumes that there
is a good candidate in at least one level of supervoxel. However, this assumption
does not always hold true. Consequently, HS method provides low recall when the
assumption fails.

Our proposed method (HF) constructs object candidates by combining a lot of
regions together. It relies on a hierarchy of fixations. HF method performs better
than HS approach, thus signifies the importance of a fixation hierarchy. Still, the
performance of HF method heavily depends on an accuracy of eye tracking data.
It achieves the best performance when the eye tracking data does not contain any
spatial error. Also, the camera wearer needs to look at every parts of the target
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Per-pixel segmentation Localization
Precision | Recall | F-score | Precision | Recall | F-score
MVMO 0.551 0.385 0.434 0.613 0.549 0.564
MVMO-SYN 0.867 0.516 0.628 0.898 0.579 0.691

Table 4.2: Performance of our proposed method on MVMO and MVMO-SYN.

Per-pixel segmentation Localization
Precision | Recall | F-score | Precision | Recall | F-score
Laboratory 0.599 0.583 0.588 0.685 0.675 0.676
Secretary room 0.535 0.249 0.331 0.594 0.443 0.494
Outdoor cafeteria 0.526 0.356 0.409 0.571 0.550 0.542

Table 4.3: Performance of our proposed method on MVMO dataset grouped by
scene.

object.

Table 4.2 presents a comparison of our method on MVMO and MVMO-SYN
dataset. It is clear that MVMO-SYN gives better scores. It is because the eye
tracking data in MVMO-SYN dataset is very precise and the points of gaze are
scattered through all parts of the target objects.

Figure 4.5, Figure 4.6, and Figure 4.7 visualize the performance of the baselines
and the proposed method on our MVMO dataset. The fist column shows the input
video frames. Second column is the ground truth regions, which are overlaid on the
input frames. Red crosses denote the points of gaze recorded from the participants.
Third column is the results of Generative Multi-Video Model (GMM) approach [11].
Each color represents each object label. If two regions from different videos have
the same color, the two regions will be regarded as an object of common interests.
Fourth column is our naive approach based on a hierarchy of supervoxels (HS). And,
the last column shows the results of the proposed method. We highlight the detected
objects of common interests with a light color, and cover them with yellow bounding
boxes.

Table 4.3 depicts the average precision, recall, and F-score grouped by scene. We
can see that the video sets recorded in laboratory room get better score than the
ones recorded in the secretary room and the outdoor cafeteria. The cause of these
differences is the relative distances between the camera wearers and the objects.
The camera wearers are standing in the laboratory, while they are sitting in the
secretary room and the outdoor cafeteria. As a result, the cameras are relatively
further from the objects in the laboratory scene than in other scenes. When objects
are far from the cameras, they become smaller. Thus, the camera wearers can easily
look at every parts of the object within a few glances. In contrast, camera wearers
need to move their eyes and head a lot in order to look at every part of the larger
objects. As a result, it is more difficult to cover the larger objects in the secretary
room and the outdoor cafeteria scenes.

Our HF method constructs an object candidate by grouping together all parts
being looked at by the camera wearer. The method can construct a complete candi-
date, which represents the whole object, if the camera wearer looks at every part of
the target object. Therefore, the probability of getting complete object candidates
in the laboratory scene is higher than in other scenes. The evaluation metrics in
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Figure 4.5: Example results from laboratory scene. Column 1 is the input video
frames, Column 2 ("GT’) denotes the ground truths, Column 3 ("GMM’) is the
results from Generetive Multi-Video Model approach [11], Column 4 ("HS’) is our
naive hierachical supervoxels method, and Column 5 is our proposed method.
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Figure 4.6: Example results from secretary room scene. Column 1 is the input
video frames, Column 2 (GT’) denotes the ground truths, Column 3 ("GMM’) is
the results from Generetive Multi-video Model approach [11], Column 4 ("HS’) is
our naive hierachical supervoxels method, and Column 5 is our proposed method.
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Figure 4.7: Example results from outdoor cafeteria scene. Column 1 is the input
video frames, Column 2 (’GT’) denotes the ground truths, Column 3 ('GMM’) is
the results from Generetive Multi-video Model approach [11], Column 4 ("HS’) is
our naive hierachical supervoxels method, and Column 5 is our proposed method.
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Per-pixel segmentation Localization
Precision | Recall | F-score | Precision | Recall | F-score
Pick-up 0.659 0.408 0.481 0.710 0.549 0.601
Joint attention 0.546 0.408 0.451 0.610 0.554 0.577
Free-viewing 0.427 0.329 0.356 0.499 0.542 0.506

Table 4.4: Performance of our proposed method on MVMO dataset grouped by type
of interaction.

Table 4.3 support the aforementioned reason.

Table 4.4 displays the evaluation metrics of our proposed method on MVMO
dataset based on type of interactions. The best results are from the video sets that
show Pick-up interaction; one camera wearer picks up the target object, while others
look at it. When the camera wearers pick up an object, they usually position the
object in a way that they can see it clearly. For example, they tend to move the
object to the center of their field of view, and rotate it to get the best view. As a
result, our method can easily obtain good object candidates in this interaction. The
object candidates of the target object can obtain high scores from location, size and
saliency indicators.

The worst results are from the video sets that show Free-viewing interaction;
camera wearers move the eyes naturally as they pleased. In this interaction, there
are a lot of eye tracking error due to excessive head motions. In addition, the camera
wearers tend to look at an object and then switch to its surrounding (i.e., background
regions). Therefore, our proposed method is less likely to obtain complete object
candidates from this type of interaction.

The aforementioned analysis indicates several problems that limit our method
performance. However, it also indicates a potential for further improvements. In
Section 4.6, we provide further analysis on current problems. And, suggestions for
future development can be found in Section 5.2.

4.6 Performance Analysis & Limitation

We present a deep discussion on several issues that affect our method performance,
the limitation of our method, and various ideas for improvement.

4.6.1 Types of error

In this section, we describe types of error and their effects on our algorithm. There
are mainly six types of error that commonly appear in our method:

Error from supervoxel segmentation

We construct object candidates from over-segmented supervoxels. However, it is
difficult to decide how much ’over-segmented’ it should be. In our work, we segment
each video frame by hierarchical supervoxel segmentation approach [38]. Then, we
select one low level supervoxel, and use it to construct the candidates based on
fixation events. If the supervoxel level is too low, we will get many small supervoxel
segments. Consequently, it will be difficult to obtain a complete object candidate
(i.e., a candidate that contains a whole object region) because we will need to look
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Figure 4.8: Low-quality object candidates due to two types of error: (a) Spatial
error of points of gaze, and (b) Error from fixation segmentation.

at every supervoxel segments inside the object region. In contrast, if the level is too
high, some supervoxel segments will contain both object regions and background
regions, resulting in under-segmented object candidates.

Error from eye tracking data
There are two types of error from eye tracking data:

e Spatial error of points of gaze

Points of gaze contain spatial error. They sometimes are incorrectly located
near the border of the target object. In our work, object candidates are con-
structed by merging all supervoxels that are looked at within each fixation pe-
riod. The spatial error of points of gaze will result in an object candidate that
contains both object region and its surrounding background (Figure 4.8(a)).

In the worst case, the points of gaze are totally located outside the object
region for the whole duration. Normally, people tend to infer the target object
using logical reasoning and experiences to guess the location of the target
object. However, it is much more difficult for the computers, especially when
it needs to work in an unsupervised manner. This type of error is not in the
scope of our work. Please also note that the current proposed method is unable
to generate an object candidate when this type of error exists.

e Eye movement pattern

We assume that people tend to look at every parts of the object that they are
interested in. If a participant does not look at a whole object, our method
cannot generate a complete object candidate. Also, if the participant rapidly
swap his/her gaze between two or more objects continuously, we will obtain
many incomplete object candidates. Each candidate will consist of only a
small part of the object.

Error from fixation segmentation

We construct object candidates from a hierarchy of fixation. Thus, a correct hi-
erarchy fixation segmentation result is required. Fixations in higher levels of the
hierarchy tend to provide under-segmented objects candidates, i.e., object candi-
dates that consist of both object region and background region. Also, fixations



CHAPTER 4. EXPERIMENTS 37

in lower levels of the hierarchy incline to generate over-segmented candidates, i.e.,
candidates that contain only a part of the object.

In addition, the fixation segmentation approach can incorrectly segment two
fixation periods together into one long period. As a result, two objects are combined
together as one object candidate (Figure 4.8(b)). This error occurs because the speed
of eye motion between the two periods are too small. It usually occurs when two
objects are located near each other, or are overlapped from the viewpoint of the
camera wearer.

Error from candidate scoring

We propose a regressor to compute scores of object candidates, and remove low-
scored candidates since they are likely to contain background region. However, it is
still difficult to completely eliminate all bad object candidates. First, a threshold
that we use to remove the candidates can be different in each video set. If the
threshold are too low, we will get a lot of bad object candidate, resulting in low
precision and high recall. On the other hand, we will eliminate good candidates if
the threshold is too high, resulting in high precision but low recall. The threshold
also vary depending on which features are used as input to the regressor. The
discussion about problem of each feature are presented in the next section.

Error from candidate grouping

In grouping step, we use graph-based clustering approach to group object candidates
based on color similarity and candidate scores. Error in this step occurs when sim-
ilarity scores and candidate scores are incorrect due to over-segmented candidates.
Color feature derived from a background region in the over-segmented candidate does
not represent the real color of the object. Thus, the color similarity score becomes
less meaningful. The problem intensifies when there are a lot of over-segmented
candidates, resulting in a high probability of incorrect matches.

More importantly, two object candidates that represent two distinct objects can
be incorrectly grouped together when the background region inside each candidate
is larger than the object region.

Another important problem exists when two or more clusters (sub-graphs) are
merged together when they are temporally overlapping (as explained in Section
3.3). If any of them contains wrong matches. the merged cluster will also become
erroneous. It can be said that clusters merging step escalates this type of error.

Error from post-processing

We use GrabCut [29] to refine the result segments. However, GrabCut can sometimes
fail to segment the object from background. The precision depends on the input
trimap that is used to build foreground and background color models. If the trimap
includes a lot of background regions, GrabCut will fail to obtain correct color models,
thus result in incorrect segmentation. We have mentioned in Section 3.4 that we
only use a few pixels around gaze point to make trimap in order to avoid background
pixels. The challenge is how many pixels are needed, and how accurate the point of
gaze is.
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Figure 4.9: Input video frames and their corresponding saliency map: (a) Correct
saliency map, (b) Incorrect saliency map.

4.6.2 Features selection problem

In Section 3.2.3, we introduce a scoring function that measures the quality of object
candidates. The scoring function is a random forest regressor based on a set of
features, namely location, size, saliency and compactness indicators. Therefore, we
need to select the best subset of features that can precisely reflect the quality of
object candidates.

Furthermore, we introduce a color feature to measure candidates similarities in
grouping step (Section 3.3). As a result, we need to find the best way to represent
the color of object candidates as a feature vector.

In this section, we discuss the pros and cons of each selected features.

Location & Size indicators

Location & Size features prefer large object candidates that located near the center
of the video frame. This works well in most cases because people tend to rotate
their head so that the focused object is located at the center of their field of view.

However, the size indicator may work in a negative way when the target object
is very far from the camera wearer. For example, when camera wearer walks in the
street and looks at a faraway landmark (e.g., Tokyo Skytree). The target object
(Tokyo Skytree) might be very small and might not always be at the center of the
frame. In this case, the location & size indicators will give a low score.

Another problem rises when the target object is moving rapidly (e.g., running
car). In this case, the target object can be located at any places around the frame.
As a result, the location indicator will give a low score when the target object moves
near the frame border. Anyway, please note that locating moving object is not in
our scope of work. This will be left for future improvements.

Saliency indicator
Saliency indicator prefers object candidates that are spatially distinct from their
surrounding regions. This indicator fails when the target object has low visual
salience. For example, objects with dark colors are less distinguishable than light-
colored objects.

Figure 4.9 shows two video frames and their saliency maps. Light-colored regions
denote highly salient areas. Figure 4.9(a) illustrates a correct saliency map. All
objects have high saliency score. Figure 4.9(b) is a failure case, where only light-
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H (16 bins) H (24 bins) A,B (8 bins) A,B (16 bins)

Precision 0.484 0.456 0.454 0.470
Recall 0.397 0.366 0.360 0.343
F-score 0.424 0.393 0.391 0.385

Table 4.5: Average precision, recall and F-score from per-pixel segmentation per-
formance evaluation. The test is done for 4 cases: 16-bins H channel in HSV color
space, 24-bins H channel in HSV color space, 8-bins A,B channel in LAB color space,
and 16-bins A,B channel in LAB color space.

colored object, namely yellow notebook, has high saliency score. The remaining
objects have dark color, resulting in lower saliency scores.

Compactness indicator

Compactness indicator prefers square-like, non-scattered object candidates. It works
well in most cases because most background regions have uncommon shapes. How-
ever, it sometimes gives high ratings to square-like background regions.

Color feature

The parameters that should be considered when using color feature are color space
and the number of bins. We decide to use H channel from HSV color space. We do
not use S and V channels because the target object can have different saturation and
lightness based on viewpoints. The problem mainly arises when the object surface
is reflective. The target object reflects different amount of light according to the
relative directions between the camera wearers and the light-source. Consequently,
the target object in different viewpoints shows different colors. We can avoid this
problem by selecting the suitable channels and color space when we construct the
color feature vector.

The number of bins decide how strict we want to compare the similarity between
two object candidates. If the number is too large, two candidates that correspond
to the same object may have low color similarity. If the number is too small, two
irrelevant candidates may be grouped together due to high color similarity. We
believe that 16 bins is the appropriate number in our case.

Table 4.6.2 shows the average precision, recall, and F-score from per-pixel seg-
mentation performance evaluation. The test is done on 12 out of 18 video sets. Four
combinations of color spaces and numbers of bins is used: 16-bins H channel in HSV
color space, 24-bins H channel in HSV color space, 8-bins A,B channel in LAB color
space, and 16-bins A,B channel in LAB color space. 16-bins H channel in HSV color
space gives the best result.

4.6.3 Limitation of video co-segmentation in multi-view videos
scheme

Video object co-segmentation segments a target object from multiple videos by
assuming two assumptions: (1) the target object has similar appearance throughout
all videos, and (2) Background in each video are different from background in other
videos.
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In our case, we need to detect a target object across multiple viewpoints. The
target object may have varying appearance across viewpoints. Also, the backgrounds
can be similar to one another depending on the points of view because the videos
are recorded in the same scene. As a result, the two assumptions that make video
co-segmentation works well might not be completely true.

To solve the problem, we need a similarity measure that can cope with ap-
pearance differences due to the change of viewpoint. Moreover, we need a way to
eliminate background regions when video co-segmentation fails to detect background
regions. With our proposed method, we define a 16-bins color similarity as the sim-
ilarity measure. We also introduce a regressor to score object candidates (Section
3.2.3), and eliminate background candidates according to the scores.

While our method can partly solve the problem, we believe that there is a room
for improvement. Currently, there are several works [2][12][15][34][41] that try to
match an object in multi-view videos. One idea is to find a set of object features
that is viewpoint invariant. Another idea is incorporate geometric methods, e.g., by
calibrating camera sensors and compute the transformation matrices to match the
viewpoints. These two ideas, however, still need more research and will be left for
future directions.

4.6.4 Effect of edge removal threshold in candidate grouping
step

Edge removal threshold provides a trade-off between region completeness and detec-
tion rate. High threshold means that two object candidates must be highly similar
in order to be clustered into the same group. Low threshold relaxes the similarity
requirement, thus allows low-similarity candidates to be grouped together.

Figure 4.10 illustrates the detected results when the edge removal threshold
equals 0.1, 0.3, 0.6, and 0.9. The highlighted regions are the object candidates. If
an object of common interests is detected, the regions will be covered by yellow
bounding boxes. Figure 4.10(a) and Figure 4.10(e) shows the results when the
threshold is too low. Irrelevant regions are clustered together, and are detected as an
object of common interests. The threshold between 0.3 and 0.6 provides quite similar
results (Figure 4.10(b), Figure 4.10(c), Figure 4.10(f), and Figure 4.10(g)). However,
the detection rate falls rapidly when the threshold exceeds 0.9 (Figure 4.10(d)).

Figure 4.11 shows an effect of edge removal threshold on the precision, recall, and
F-score. Top left graph illustrates the precision when the edge removal threshold
changes from 0 to 1. The higher threshold results in the higher precision. At the
same time, the recall becomes lower as the threshold increases (Top right graph
of Figure 4.11). However, the recall rapidly falls when the threshold is too high
because almost all of the edges are removed from the graph. Bottom left graph
shows that F-score remains stable until the threshold becomes 0.8. This is because
the well-balanced trade-offs between the precision and recall. When the threshold
gets higher than 0.8, recall becomes so low that F-score subsequently falls. The
bottom right graph presents the precision-recall curve.
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(a) Threshold =0.1 (b) Threshold = 0.3 (c) Threshold =0.6 (d) Threshold =0.9
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Figure 4.10: Detection results with edge removal threshold = 0.1, 0.3, 0.6, and 0.9
respectively. The highlighted regions are the object candidates. Yellow bounding
boxes denote that the highlighted regions are detected as an object of common
interests.
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Figure 4.11: Effect of edge removal threshold on the precision, recall, and F-score.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we introduce a novel problem of detecting objects of common interests
and develop a method to solve the problem. The objects of common interests are
good cues to determine group attentions.

Our proposed method utilizes eye tracking data on a video object co-segmentation
framework. The main idea is to use eye tracking data to guide object candidates
construction process. First, several object candidates are generated based on gaze
events. We combine a set of supervoxel segments according to each fixation event
to form an object candidate. Second, the candidates are feed to the video object
co-segmentation framework. A graph-based clustering approach is used for detect-
ing the objects of common interests. Finally, we re-segment the detected objects of
common interests using GrabCut [29] to obtain the final results.

Another main contribution of our work is a newly recorded dataset, Multi-View
Multiple Objects (MVMO) Dataset, which is used for evaluating our proposed
method. The dataset consists of 18 sets of first-person videos and their accom-
panying eye tracking data. Each set shows joint attentions of two participants
on five objects. Moreover, we provide a modified version of the MVMO dataset,
MVMO-SYN dataset. The eye tracking data of the MVMO-SYN dataset is manu-
ally synthesis in order to avoid eye tracking error.

We provide two measurements for evaluating our method in two aspects, namely,
per-pixel segmentation and localization performance. We compare our method with
two baselines: a recent Generative Multi-Video Model (GMM) method [11] and
our naive objects of common interests detection approach based on a hierarchy of
supervoxels (HS). The proposed method outperforms both baselines, which shows
that eye tracking data plays an important role in detecting objects of common
interests. It provides a significant cue for generating candidates of the objects of
common interests, and helps limiting the locations of the candidates in a cluttered
scene.

In addition, we present an analysis on several factors that affect our method
performance, such as eye tracking error, types of interaction, and the distances
between the cameras and the objects. We conclude that eye tracking accuracy and
eye movement pattern has a large effect on our proposed method. We also find that
the position, size, and location of the objects affect our method performance. This
implies a room for future improvements. Moreover, we discuss about the impact of
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edge removal threshold, which provides a trade-off between the precision and the
recall.

5.2 Future directions

As we discuss major challenges and their causes in the previous chapter, we gain sev-
eral insights for further development. In this section, we list up our recommendation
for future works as follows:

Eye tracking data correction

In previous chapter, we conclude that eye tracking data accuracy has a large impact
on our method performance. To reduce the impact, we suggest a deep study on two
aspects: (1) Eye tracking error correction, and (2) Eye tracking data segmentation
method. The former refers to a method that can correct the spatial error of eye
tracking data due to calibration error and head motions. The latter indicates a
study on eye tracking data segmentation approaches. The aim is to find the best
method that can correctly segment points of gaze stream into a sequence of gaze
events.

Gaze event detection

Currently, we detect two gaze events, which are saccade and fixation events. We
suggest that another gaze event, namely smooth pursuit, should also be detected.
Smooth pursuit is a movement of eye that track the moving object. In many cases,
smooth pursuit is more suitable than fixation event, for example, when the camera
wearer picks up the target object. Smooth pursuit event is necessary for segmenting
portion of gaze that follows moving object.

Graph-based candidates clustering

Our proposed method clusters object candidates according to the graph structure.
Therefore, the user-defined edge removal threshold highly affects the clustering per-
formance. We believe that current clustering method is too strict. Specifically, it
gives too much emphasis on the edge removal threshold. We suggests the study
of alternative clustering methods (e.g., random walk), which rely on a probability
model instead.

Apart from clustering approaches, we also suggest to use more features in clus-
tering step. In addition to color histogram, we recommend texture features, such as
SIFT, PHOW [7], or Gabor feature. We also suggest a study on viewpoint-invariant
feature sets, which should be beneficial for our research on multi-view videos.

Group merging step

Group merging step helps recognizing clusters that correspond to the same objects.
However, it accumulates and amplifies the error when some of the original clusters
contains error. We believe that it is a good idea to introduce a more complicate
merging step. For illustration, we can merge two temporally overlapping clusters
based on their color models or other features.
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Extension to three or more people

Currently, our method detects joint attentions of a pair of people. We believe our
method can work with a group of people (3 or more people) as well. However, we
speculate that there are more cues we can use when there are many people joining
a group activity since we will be able to obtain more videos recorded in many
viewpoints. One idea is to incorporate 3D information from 3D reconstruction
of the multi-view videos, which is easier to obtain as the number of the videos
increases. Another benefits of multiple videos is to detect the objects that are
partly obstructed by other objects. For example, we can locate an object that are
partly behind another object if the object can be fully seen from other viewpoints.
One interesting idea is to construct a map that reflects the relative positions of all
objects in the scene by detecting all objects in all viewpoints and relating them
together. Then, we can use the map to locate the hiding objects even if they cannot
be fully seen in some viewpoints.
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