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Abstract

In this thesis, multiband correlated electron systems driven into nonequilibrium by strong
ac-electric fields are studied numerically and analytically. Our fundamental interest is to
understand how multiband electron systems, which exhibit various properties originating
from orbital degrees of freedom already in equilibrium, should exhibit even richer physics
when driven out of equilibrium under the influence of external fields.

We have performed this in two steps. First, we have formulated the multiband Floquet-
DMFT (dynamical mean field theory) as a basis for simulating multiband correlated systems.
This is done by extending the previously developed Floquet-DMFT for single-band electron
systems to multiband electron systems in ac-electric fields. We also clarify the connection
between our formalism and the photo-induced Berry curvature, which is extensively studied
in the context of Floquet topological insulators. This is the first study to establish a multiband
extension of Floquet-DMFT formalism.

Using the multiband Floquet-DMFT, we then study two interesting multiband systems,
the dp-model and the honeycomb-Hubbard model (the Hubbard model on honeycomb lattice)
in ac-electric fields. In particular, we choose circularly polarized lights that are known to
drive novel physics such as photo-induced topological phase transitions.

Our interest in nonequilibrium steady states of the dp-model in strong ac-fields is moti-
vated from recent pump-probe measurements in high-Tc cuprates. We investigate electronic
structures in the dp-model in strong circularly polarized ac-fields and obtain novel photon-
dressed band structures and nonequilibrium distribution functions which indicate a popula-
tion inversion. Specifically, we have calculated optical conductivities and found characteristic
features (negative optical conductivities) in the nonequilibrium situation. We have also dis-
cussed how the Zhang-Rice singlet band behaves under the influence of external fields.

We then study nonequilibrium steady states of the honeycomb-Hubbard model in circu-
larly polarized electric fields, as a paradigm for the interplay between photo-induced topolog-
ical properties and electron correlation. We have revealed, by numerical calculation of elec-
tronic structures and optical conductivities, that the system exhibits a novel phase diagram
where we have both photo-induced Mott transitions and topological-to-topological phase tran-
sitions. To give a physical insight into the numerical result, we develop an analytic pertur-
bation theory for Floquet states, which provides a picture that the correlated electron system
on honeycomb lattice in an intense circularly polarized field has an effective Hamiltonian for
an anomalous quantum Hall system (Haldane model) where the topological number changes
sign many times as the field strength is increased.
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Chapter 1

Introduction

1.1 Physics of multi-orbital many-body electron systems

Electrons in solids exhibit amazingly huge variety of physics. In fact, materials surrounding
us show various properties such as electric conductivity, optical or magnetic properties, and
so on. The complexity and diversity of phenomena in electronic systems may be surprising
since, in a microscopic point of view, electrons in a solid are simply described in terms of the
Hamiltonian,

H =H0 +H1, (1.1a)

H0 =
∑

σ

∫
dr3ψ†

σ

[
− !2

2m
∇2 +V (r)

]
ψσ(r), (1.1b)

H1 =
1
2

∑

σσ′

%
drdr′ψ†

σ(r)ψ†
σ′(r′)

e2

|r− r′|ψσ′(r′)ψσ(r), (1.1c)

with electron field operator ψσ(r) for spin σ, Planck’s constant != 1.05×10−34J ·s, the mass
of an electron m = 9.11×10−31kg, and the elementary charge e = 1.60×10−19C. H0 and H1

are the kinetic energy and the potential energy from Coulomb repulsion among electrons, re-
spectively. The scalar potential V (r) represents the Coulomb attraction between an electron
and nuclei that are periodically arranged, forming a lattice structure of the material. In the
Hamiltonian Eq. (1.1), material dependence only appears in the periodic potential V (r).

It is important to treat the noninteracting Hamiltonian H0, which contains the material
dependence, properly so that one can capture the electronic states subject to the periodically
arranged nuclei. The standard way to do that begins with reinterpreting the Hamiltonian in
terms of noninteracting atomic orbitals, which is the so-called tight-binding approximation.
In this approximation, one first picks up a nucleus in the solid. The isolated atom forms
atomic orbitals as depicted in Fig. 1-1. Atoms in a unit cell are arranged periodically and
thus one can make electronic states with a wave vector k as

φkασ(r)= 1
√

Nc

∑

j
eik·R jφασ(r−R j), (1.2)

using atomic orbitals φασ(r−R j) with an orbital index α and the position R j of a unit cell
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10 1. Introduction

(Nc is the number of unit cells). Using the atomic orbitals as a basis, we expand the electron
field operator as

ψσ(r)=
∑

kα
φkασ(r)∗ckασ =

∑

jα
φασ(r−R j)∗c jασ (1.3)

with ckασ and c jασ the fermionic annihilation operators for the electronic states labeled by
(k,α,σ) and ( j,α,σ), respectively. This representation leads to the tight-binding Hamilto-
nian,

H =
∑

jl,αβ,σ
tαβjl c†

jασclβσ+
1
2

∑

iα jβσ

∑

i′α′ j′β′σ′
U(iασ, jβσ′|i′α′σ, j′β′σ′)c†

i′α′σc†
j′β′σ′ c jβσ′ ciασ (1.4)

with the hopping amplitude tαβjl of an electron between two orbitals ( j,α,σ) and (l,β,σ), and
the Coulomb matrix element U(iασ, jβσ′|i′α′σ, j′β′σ′) for a two-body process of scattering of
a pair of electrons (i,α,σ) and ( j,β,σ′) into another pair (i′,α′,σ) and ( j′,β′,σ′). This two-
body amplitude between different positions and orbitals are small compared to that for the
same orbital and the site, and thus one can neglect the inter-orbital or inter-site Coulomb
scattering amplitudes in a first approximation. This assumption leads to a more simplified
Hamiltonian,

H =
∑

jl,αβ,σ
tαβjl c†

jασclβσ+
∑

iα
Uαc†

iα↑c†
iα↓ciα↓ciα↑, (1.5a)

tαβjl =
∫

drφασ(r−R j)∗
[
− !2

2m
∇2 +V (r)

]
φβσ(r−Rl), (1.5b)

Uα =
%

φα(r)∗φα(r′)∗
e2

|r− r′|φα(r′)φα(r). (1.5c)

with the intra-orbital Coulomb repulsion Uα for the orbital α.

We should note that, in some cases, the inter-orbital Coulomb scattering amplitudes that
we have dropped, may play crucial roles in multi-band electron systems. In fact, if there are
nearly degenerate orbitals on each site, the inter-orbital Coulomb matrix elements U ′

αβ and
Jαβ (α (=β) given by

U ′
αβ =

%
φα(r)∗φβ(r′)∗

e2

|r− r′|φβ(r′)φα(r), (1.6a)

Jαβ =
%

φα(r)∗φβ(r′)∗
e2

|r− r′|φα(r′)φβ(r), (1.6b)

may become comparable to the intra-orbital Coulomb repulsion Uα. U ′
αβ and Jαβ are respec-

tively called inter-site Coulomb repulsion and Hund’s coupling between α- and β-orbitals.
In fact, the ferromagnetism of itinerant d-electron systems have moderate values of Hund’s
coupling, and the origin of the itinerant ferromagnetism is considered to be Hund’s coupling
[1, 2, 3, 4]. In this study, however, we are not going to study the physics of inter-band Coulomb
interactions. As we will discuss later, intra-orbital Coulomb repulsions itself give rise to rich
physics and we are going to study that aspects of Coulomb interaction for the first approxi-
mation.
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Figure 1-1: Real number representation of atomic orbitals in the three-dimensional space.
Sign of the wave function is depicted as red and blue regions.

The fermionic lattice model Eq. (1.5), namely the multi-orbital Hubbard model, is the
minimal model to study the interacting electrons in a multi-orbital system. There, the in-
dividuality of the solid enters in the hopping matrix tαβjl and the strength Uα of electron-
electron repulsion for each orbital. The hopping process drives electrons delocalized so that
the kinetic energy may be minimized, while the interaction prevents electrons from moving
freely and renders the system insulating. Thus there exists a competition between metallic
and insulating nature in the model. In general, the strength of electron-electron repulsion
becomes larger with the angular momentum of the orbital as in Fig. 1-1, and therefore the
electron repulsion plays an important role when the material contains heavy atoms with d
or f orbitals.

The Hamiltonian Eq. (1.5), although a minimal model for interacting fermionic systems,
contains rich physics due to the multi-orbital degrees of freedom and the presence of many-
body interactions.

One important physics is the metal-insulator phase transition driven by the electron cor-
relation [5]. Consider an electronic system described by the single-band Hubbard model,

H =
∑

i j
ti j c†

iσc jσ+
∑

i
Uni↑ni↓. (1.7)

If one puts an electron on a site where another electron is already occupied, the electron feels
the Coulomb repulsion energy U . Therefore, when every site is occupied by one electron,
there exists a finite excitation energy U for an electron added to an occupied site. If the re-
pulsion U is so large that the kinetic energy cannot compensate the penalty, electrons prefer
to stay at their sites and the system shows insulating feature. Such correlation-induced insu-
lators are called Mott insulators, which was first theoretically investigated by Mott [6]. Mott
insulators show significant differences from conventional band insulators when additional
carriers are doped in the system. In fact, doping carriers into Mott insulators gives rise to
amazingly rich physics, such as antiferromagnetism and superconductivity [7].

Especially in copper-oxide based materials, there exists an unconventional superconduct-
ing phase close to the antiferromagnetic insulating phase. As we shall go into detail in Chap-
ter 4, cuprates are composed of CuO2 layers and its minimal lattice model are the so-called
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dp-model [8], a three-band Hubbard model which contains d- and p-orbitals on copper and
oxygen atoms, respectively. In undoped cuprates, dx2−y2 -orbitals on copper sites are half-
filled, while p-orbitals on oxygen sites are fully occupied. Due to the strong electron-electron
repulsion U on copper sites, undoped cuprates are Mott insulators. At sufficiently low tem-
peratures, electron spins on copper sites exhibit antiferromagnetic order, due to the super-
exchange interaction.

There are long debates on the theoretical treatments for the dp-model. Immediately after
the proposal of the dp-model by Emery [8], Zhang and Rice [9] showed that the dp-model can
be mapped to the so-called t-J model [10], equivalent to the large-U limit of the single-band
Hubbard model Eq. (1.7). The important observation by Zhang and Rice is that a doped hole
situated on an oxygen atom forms a spin-singlet with another hole on the neighboring copper
site (Zhang-Rice singlet, ZRS). ZRS is energetically very stable and thus doped holes on a
CuO2 plane is effectively expressed as ZRSs moving in the antiferromagnetic background, as
the t-J model describes.

However, it is also pointed out that the single-band Hubbard model lacks some important
physics. For example, in magnetic fields, the ZRS is no longer robust, and thus the single-
band Hubbard model and the dp-model do not give consistent results even in the large-U
limit [11]. The multi-band nature of cuprates become even more important when we discuss
the difference between electron and hole doping [12]. It is experimentally known [13, 14, 15]
that doped holes are situated in oxygen atoms and form ZRS [9], while doped electrons go to
copper sites and form doublons. This is because the difference of energy level between d- and
p-orbitals are small compared to the Coulomb interaction U and cuprates are categorized
as the so-called charge-transifer insulators, as pointed out by Zaanen, Sawatzly and Allen
[16]. Therefore cuprates should be basically treated by the dp-model in order to treat the
hole- and electron-doping on a equal footing. In fact, the multi-band nature of cuprates are
recently investigated in the context of d-wave superconductivity [17], and are expected to be
even more important for photo-carrier doping which induces electrons and holes at the same
time, as we will discuss later.

Another important physics of multi-band systems appears even in the absence of the elec-
tron correlation. Suppose that the electrons are weakly correlated and set Uα = 0 for every
orbital involved. In that case the system is described by the noninteracting Hamiltonian in
Eq. (1.5) and its eigenstates are obtained as |ukα〉 which are labeled by the Bloch wave num-
ber k and the band index α. Regarding the eigenstates as a mapping from the momentum
k in the Brillouin zone onto |ukα〉 in the Hilbert space, one can construct a gauge-invariant
quantity, Bkα = −i∇k ×〈ukα|∇k|ukα〉, for each band α. This represents a curvature in the
k-space, and its k-integral over the whole Brillouin zone gives an integer that signifies a
topological number of the band α, which was clearly pointed out by Thouless, et al. [18].
Namely, band structures with nontrivial topological numbers are first investigated in integer
quantum Hall states in strong magnetic fields by Thouless et al. After that, Haldane con-
structed an artificial toy model that exhibits topological phases even in the absence of the
magnetic fields [19]. Recently, Fu, Kane and Mele pointed out that Haldane’s model can be
realized in spin-orbit coupled systems [20, 21, 22] and found a new class of materials called
topological insulators [23]. All the topologically nontrivial systems have orbital degrees of
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Figure 1-2: Schematic description of pump-probe experiments.

freedom (Landau levels in integer quantum Hall states, and band indices in topological insu-
lators) and thus it is necessary to consider multi-orbital models to study topological aspects
of solids. We will present the detailed explanation of the topological phases in noninteracting
systems in Chapter 5.

1.2 Electrons in multi-band systems driven out of equilibrium

1.2.1 Experiments

In the previous section we have introduced the physics of multi-band electron systems where
orbital degrees of freedom play crucial roles. There, the system shows rich phase diagrams
containing metal-insulator phase transitions or topological phase transitions by varying some
parameters such as the density of electrons, disorders, electron hopping and interaction. Re-
cently experimental techniques have been developed for generating lasers with various pho-
ton energies and measuring systems in an ultrafast time-scale. Such developments have
enabled us to realize optical manipulations of electronic states of systems and to study the
possibility of phase transitions by means of external fields.

One of the most powerful experimental techniques is the pump-probe measurements. In
Fig. 1-2, we depict a schematic picture of the pump-probe measurements. In these experi-
ments, a pump-light with mid-infrared to visible light (corresponding to the photon energy
10 meV ∼ 10 eV, with typical pulse width ∼100 fs) is applied to the sample. After the pump
light, a subsequent probe light is applied to the sample to observe the reflectance spectrum
that contains information of the pumped states. The time interval between the pump-light
and pulse-light are arbitrarily chosen, so that the transient spectra of the system are traced
as a function of time after the pumping.
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Figure 1-3: Time-resolved ARPES for surface Dirac electrons in a topological insulator Bi2Se3
[28], reprinted with kind permission from AAAS. A probe light with photon energy 180 meV
and pulse width 250 fs is applied to the sample, together with some probe lights after the
time delay ∆t. ∆t < 0 [∆t > 0] indicates the probe light is ahead of [behind] the pump light.

There are a number of interesting reports with the pump-probe measurements in real ma-
terials. Okamoto, et al. [24] studied photo-excited states of undoped cuprates and observed
photo-induced carriers in Mott-insulating state. Fausti, et al. [25] reported a photo-induced
superconductivity in stripe-ordered cuprates (A detailed explanation is presented in Chapter
4).

Another important observable in pump-probe measurements is the momentum and en-
ergy of electrons themselves in the sample. By combining the angle-resolved photoemission
spectroscopy (ARPES) with pump-probe measurement techniques, one can directly detect
the photo-excited electrons in a time-resolved fashion [26, 27, 28]. In Fig. 1-3 we show an
example in transient momentum-resolved spectra on the surface of a topological insulator
Bi2Se3 by Wang, et al. [28]. ∆t is the time of the arrival of the probe light at the sample,
where the arrival of the pump light is set to be ∆t = 0. Bi2Se3 is gapped (∼ 300 meV) in the
bulk, while there is a surface mode that has a massless Dirac dispersion, protected by the
topological aspect of the material. Wang, et al. applied the pump light with pulse width 250
fs (full width at the half-maximum) and photon energy Ω =180 meV, smaller than the bulk
gap, so that the pump field interacts only with surface electrons. In the center panel (∆t = 0)
of Fig. 1-3, one can see some copies of the original Dirac dispersions, with the energy interval
Ω. The appearance of side-bands under the influence of ac-fields are theoretically predicted,
and such side-band states are called Floquet states, the steady states of ac-driven electronic
systems, oscillating periodically in time. The features of the spectral functions in Fig. 1-3
indeed coincides with the analysis with the Floquet theory [29, 30], and thus Wang, et al.
concluded that the Floquet states do exist in their surface Dirac electron system driven by
ac-fields.
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1.2.2 Theoretical approach: steady states in ac-fields

These interesting experimental attempts at optical manipulation of electronic states have
motivated theorists to study the dynamics of electrons in solids under the influence of exter-
nal fields [31, 32]. In particular, we would like to address a question of what is happening
to electrons in a solid during the application of the pump light. As we have stated, the pulse
width applied to the system is typically ∼100 fs. In that time-interval, the pulse with pho-
ton energy !Ω is equivalent to an ac-electric fields with frequency Ω continuously applied to
the system. The 100 fs time-interval is greater than typical time scale of electron-electron
scattering ∼10 fs [33]. This indicates that electrons approach to some nonequilibrium steady
states during the period of the pump-fields.

As we have stated above and shall discuss in Chapter 3, it is known that periodically
driven quantum systems have Floquet states, time-dependent steady state solutions of the
Schrödinger equation. Although the ac-driven systems no longer have time-independent
eigenstates in general, instead, one can take these Floquet states as basis states for the time-
dependent Schrödinger equation and can interpret any steady states in terms of the Floquet
states, as we usually describe electronic states in spatially periodic systems (solids) in terms
of Bloch states. Moreover, using Floquet states as basis states, one can greatly reduce the
computational costs in the study of steady states in ac-fields.

There are several works on Floquet study for periodical driven systems. Oka and Aoki
[29] studied an electronic system on honeycomb lattice in circularly polarized ac-fields. They
showed that the circularly polarized light induces a topological gap in the honeycomb lattice
and gives rise to a photo-induced Hall effect. Subsequently, Kigatawa, et al. [34] showed,
using perturbation theory combined with the Floquet theorem, that the photo-induced Hall
state is equivalent to a topological state realized in the Haldane model [19] known as a
prototypical model for topological insulators. Tsuji, et al. [35] developed a Green’s function
method combined with Floquet theory which is applicable to interacting system under the
influence of ac-electric fields.

These developments in both experiments and theories in nonequilibrium states in ac-
electric fields have motivated us to study ac-driven correlated electron systems with orbital
degrees of freedom. As we have explained with a case of cuprates, in real materials orbital
degrees of freedom cannot be neglected in general, and they become even more important un-
der the influence of external fields, where high energy excitations are induced. Furthermore,
multi-orbital systems in ac-electric fields can obtain topological properties, as proposed for
noninteracting case by Oka and Aoki [36], and it is interesting to investigate whether the
topological properties are affected, or even enhanced in the presence of electron correlation.

Electron correlation and orbital degrees of freedom in ac-electric fields have not been
studied so far and our study consists of twofold steps. Firstly, we establish such numerical
methods that can simulate multi-orbital correlate electron systems in ac-fields on a equal
footing. Then we apply our numerical methods to some multi-orbital systems where experi-
mental and theoretical interesting physics are expected. The results obtained in this thesis
are listed as follows.

• Extension of Floquet-DMFT method to multi-band correlated electron sys-
tems (Chapter 3) — In order to study periodically driven many-body systems, we
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should take into account the electron correlation and external fields in a non-perturbative
manner. Tsuji, et al. [35] have proposed a novel Green’s function technique that in-
corporates the electron correlation with the dynamical mean-field theory (DMFT) and
external fields by the Floquet Green’s functions. We have here extended the Floquet-
DMFT technique to multi-band systems for the first time. One of the essential differ-
ences between the single-band and multi-band systems is the appearance of a photo-
induced Berry phase under the influence of external fields, as Oka, et al. [29] have
shown in the noninteracting case. To extend their argument to many-body systems,
we shall clarify the connection between the photo-induced Berry phase and the dc-Hall
conductivity in terms of Floquet Green’s functions in the chapter.

• Application I: the dp-model in circularly polarized ac-fields (Chapter 4) — In
order to investigate the properties of photo-induced cuprates [24, 25], we study the
dp-model, a three-band Hubbard model for CuO2 plane in cuprates [8], under the in-
fluence of ac-electric fields. Based on Floquet-DMFT, we study the steady states in
the dp-model in circularly polarized ac-fields. Investigating the nonequilibrium elec-
tronic states and their transport properties, we shall find that a population inversion
[35] takes place for large photon energy, which is accompanied by a negative optical
conductivity.

• Application II: the Hubbard model on honeycomb lattice in circularly polar-
ized ac-fields (Chapter 5) — As a paradigm of the interplay of photo-induced topology
and electron correlation, we study the Hubbard model on honeycomb lattice in circu-
larly polarized ac-fields. The honeycomb lattice in circularly polarized fields is one of
the minimal model that exhibits photo-induced topological phase transitions, and stud-
ied in noninteracting and weak-field regime [29]. In this study, we investigate strongly
correlated regime and intense-field regime. We shall find a novel photo-induced metal-
to-insulator phase transition and topological-to-topological phase transitions for the
first time in the overlooked regime. Further, we develop an analytic construction tech-
nique for obtaining an effective Hamiltonian, in order to provide insights into our find-
ings by constructing an effective Hamiltonian.

1.3 Organization of the thesis

With the above background, we shall present the fundamentals of nonequilibrium many-body
physics, developments of new theoretical tools, and its application to the multi-band systems.
The organization of this thesis is the following (Fig. 1-4).

In Chapter 2, we review the basics of Green’s function theory for nonequilibrium many-
body systems. Especially we shall take account of dissipation, by attaching an exactly solv-
able heat-bath to the system. We also introduce DMFT, which is a powerful framework to
investigate strongly correlated systems even out of equilibrium.

In Chapter 3, we introduce the Floquet-DMFT method in multi-band electron systems.
We also formulate the nonequilibrium Kubo formula for optical conductivity and discuss the
connection between the photo-induced Berry curvature and the Hall conductivity in ac-driven
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Figure 1-4: A flow diagram of the thesis.

systems.
Having fully formulated the Floquet-DMFT technique, we apply our method to the dp-

model in Chapter 4, and the honeycomb-Hubbard model in Chapter 5. In both chapters, the
motivation and the formalism specific for each system are stated in detail.





Chapter 2

Methods for non-equilibrium
many-body problems

In this chapter, we review the nonequilibrium Green’ function theory, and set a foundation of
the theoretical method to study quantum many-body nonequilibrium steady states. For that
purpose we focus on the Keldysh-Green’s function formalism for the steady states of quantum
systems attached to dissipative environments. We also introduce the dynamical mean-field
theory (DMFT) so that the strong electron correlation can be incorporated.

2.1 Green’s functions in Keldysh formalism

Methods of Green’s functions have been developed as a powerful tool for treating interactions
in a perturbative way. A point of these methods is that many-body interactions, which can-
not be treated exactly in general, can be systematically treated as an expansion in terms of
noninteracting Green’s functions that is explicitly obtained from the knowledge of noninter-
acting Hamiltonian. The fact that any observables in interacting systems can be expanded
in terms of noninteracting Green’s functions is based on Wick’s theorem [37]. Wick’s theorem
turns out to hold in ground states, at finite temperatures [38, 39], and even in nonequilib-
rium [40, 41]. The series expansion can be expressed as Feynman diagrams [42, 40], which
enables us to treat the perturbation in a handy manner.

The methods of the Green’s functions for nonequilibrium are introduced by Keldysh [43]
and by Kadanoff and Baym [44]. One important difference from that for equilibrium lies in
the treatment of interactions in the initial state. In equilibrium formalism, the interaction
is assumed to be absent in the infinite past (Gell-Mann and Low theorem [45]), so that the
statistical averages in interacting situations can be replaced by a noninteracting one in a
mathematical manner. In nonequilibrium, however, the assumption of adiabatic switching
explicitly breaks down and we need a Green’s function formalism free from the assumption
of adiabatic switching-on.

Now we start with formulating the Green’s function method for general nonequilibrium
situations, based on Refs. [46, 47, 48]. Throughout this section, we consider the time evolu-

19
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tion of a quantum system with the general Hamiltonian,

H (t)=H0(t)+H1(t), (2.1)

where H0(t) is an unperturbed one-body term and H1(t) is a perturbation term. We assume
that the initial state is given by a density matrix ρ(t0).

Once the Hamiltonian H (t) is given, the time evolution of the quantum system is given
by the Schrödinger equation for the density matrix ρ(t),

i
∂

∂t
ρ(t)= [ρ(t),H (t)], (2.2)

where [A,B]= AB−BA is the commutator of two operators A and B. Therefore, the expecta-
tion value of any observable Ô at time t is, in principle, obtained by trρ(t)Ô with the solution
ρ(t) of the deterministic equation Eq. (2.2). Of course the Schrödinger equation cannot be
solved in general and we need a suitable technique according to each problem we face.

2.1.1 Interaction picture on L-shaped contour

In order to develop the perturbation theory with respect to H1(t), we introduce the interac-
tion picture. The time-evolution of the system is described by the unitary operator U (t, t0)
defined by U (t, t0)|Ψ(t0)〉= |Ψ(t)〉. Combining it with the Schrödinger equation, we obtain the
equation of motion,

i
∂

∂t
U (t, t0)=H (t)U (t, t0). (2.3)

The solution of Eq. (2.3) is formally given by

U (t, t0)=






Texp
(
−i

∫t

t0

H (t̄)dt̄
)

t > t0,

T̃exp
(
−i

∫t

t0

H (t̄)dt̄
)

t < t0,
(2.4)

where T [T̃] is the time [anti-time] ordering operator.
Let us consider the time evolution of the expectation value of any observable Ô. In the

Schrödinger picture, the expectation value of Ô at time t is given by trρ(t)Ô where the density
matrix itself evolves as

ρ(t)=U (t, t0)ρ(t0)U (t0, t).

In the Heisenberg picture, on the other hand, operator Ô evolves with time. The Heisenberg
representation ÔH(t) is defined by

ÔH(t)=U (t0, t)ÔU (t, t0),

with the initial time t0 as the reference point1. The expectation value is now written as
trρ(t0)ÔH(t). In the Heisenberg picture, the state remains unchanged, while the observable
ÔH(t) evolves with the full Hamiltonian H (t). In order to treat H1(t) as a perturbation term,

1Heisenberg picture and interaction picture coincide with each other at t = t0.



2. Methods for non-equilibrium many-body problems 21

we move on to another picture, the interaction picture, where the time-evolution unitary
operator U is replaced with U0, given by

U0(t, t0)=






Texp
(
−i

∫t

t0

H0(t̄)dt̄
)

for t > t0,

T̃exp
(
−i

∫t

t0

H0(t̄)dt̄
)

for t < t0.
(2.5)

We consider the time evolution of Ô with the unperturbed unitary operator,

ÔI(t)=U0(t0, t)ÔU0(t, t0). (2.6)

Then we obtain an equivalent expression for the expectation value,

trρ(t0)U (t, t0)U0(t, t0)ÔI(t)U0(t0, t)U (t, t0)= trρ(t0)S (t0, t)ÔI(t)S (t, t0).

We have defined a time evolution operator in the interaction picture, S (t, t0), with the fol-
lowing properties:

S (t, t0)=U0(t0, t)U (t, t0), (2.7)

i
∂

∂t
S (t, t0)=H1I(t)S (t, t0), (2.8)

S (t, t0)=






Texp
(
−i

∫t

t0

H1I(t̄)dt̄
)

for t > t0,

T̃exp
(
−i

∫t

t0

H1I(t̄)dt̄
)

for t < t0,
(2.9)

where H1I(t) is the perturbative Hamiltonian H1(t) in the interaction picture, defined in
the same way as in Eq. (2.6). S (t, t0) explicitly depends only on the perturbation Hamilto-
nian H1I, and is therefore suitable for the perturbation expansion with respect to H1I. The
expectation value of an operator Ô is now expressed as

〈ÔH(t)〉0 =
tr e−βH (t0)S (t0, t)ÔI(t)S (t, t0)

tr e−βH (t0)S (t0, t)S (t, t0)
. (2.10)

Here we examine the order of the time variables in Eq. (2.10). From the definition of S in
Eq. (2.9), operators in S (t, t0) [S (t0, t)] are arranged in the time [anti-time] order from right
to left. Further, the initial density matrix, e−βH (t0), can be rewritten as

e−βH (t0) = exp
(
−i

∫

C3

dτH1I(τ)
)
,

where we have extended the domain of the time variable to the complex plane and C3 is a
straight contour directed from t0 to −iβ+ t0. We set H1I(τ) ≡ H1I(t0) for τ ∈ C3. The time
variables in Eq. (2.10) are now ordered along the contour with three-branches in Fig. 2-1(a).
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Figure 2-1: (a) L-shape contour C = C1∪C2∪C3. tmax should be taken large enough to contain
the time interval in which one would like to simulate. (b) Keldysh contour C = C1 ∪C2.

Therefore the expression Eq. (2.10) is formally rewritten as

〈ÔH(t)〉0 =

〈
TC exp

(
−i

∫

C
H1I(t̄)dt̄

)
ÔI (t)

〉

0〈
TC exp

(
−i

∫

C
H1I(t̄)dt̄

)〉

0

,

where we have introduced the L-shaped contour C defined in the Fig. 2-1(a), and TC is the
time-ordering operator along the contour C. The average 〈· · ·〉0 is defined as tr[· · ·ρ0(t0)]
where ρ0(t) = e−βH0(t) is the noninteracting density matrix in equilibrium. In the same way,
a two-body operator (such as correlation operators) is expressed as

〈TC ÂH(t)B̂H(t′)〉0 =

〈
TC exp

(
−i

∫

C
H1I(t̄)dt̄

)
ÂI (t)B̂I (t′)

〉

0〈
TC exp

(
−i

∫

C
H1I(t̄)dt̄

)〉

0

.

2.1.2 Keldysh contour

So far, we have developed the general formalism for time dependent quantum systems with
a general Hamiltonian Eq. (2.1). Here, let us additionally assume that the interaction is
adiabatically switched on at the infinite past. Due to this assumption, we can let the initial
time be infinite past t0 →−∞, and the interaction vertex between C3 branch and Ci (i = 1,2)
vanishes. As a result, the L-shaped contour is reduced to a two-branch contour (Keldish
contour) depicted in Fig. 2-1(b). The Green’s function method on this reduced two-branch
contour, usually called the Keldysh formalism, is first formulated by Keldysh [43].

Let us discuss the relation between the assumption and the situations where the Keldysh
formalism is applicable. The assumption of the adiabatic interaction switching-on is usually
justified when the dissipation time scale τdiss is much shorter than the time interval between
the initial time t0 and the time tobs at which we observe the system. This is because the
information on the initial state should be wiped out in the time scale of our interest when
τdiss 1 tobs − t0 holds.
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Since we should assume the adiabatic switching condition, the Keldysh formalism is lim-
ited to some classes of nonequilirium many-body problems. The Keldysh formalism has been
widely applied to dissipative systems, such as open systems attached to leads or thermal
heat-baths [49, 35].

As we stressed in the introduction, in this thesis we study steady states of many-body
systems in external electric fields. For that purpose, we always introduce heat-baths (Sec.
2.1.5), which mimics the dissipation mechanism such as phonons, effects of substrates, and
so on. Therefore, the Keldysh formalism should be satisfactory for the purpose of our study.

2.1.3 Green’s functions and self-energy

Hereafter, we formulate the Keldysh-Green’s function formalism on the Keldysh contour in
Fig. 2-1. In diagrammatic perturbation expansions, Green’s functions play an important role.
The Green’s function on the Keldysh contour is defined as

iGαβ(t, t′)= 〈TC ĉαH(t)ĉ†
βH(t′)〉0 =

〈
TC exp

(
−i

∫

C
H1I(t̄)dt̄

)
ĉαI(t)ĉ†

βI(t
′)
〉

0〈
TC exp

(
−i

∫

C
H1I(t̄)dt̄

)〉

0

, (2.11)

where ĉα(t) is the fermionic operator, α and β label internal degrees of freedom (e.g. mo-
mentum, spin and band indices) and t and t′ belong to the Keldysh contour C. The above
expression can be expanded in powers of H1I(t), and each term corresponds to Feynman
diagrams, as discussed in equilibrium cases [39] and nonequilibrium cases [40, 46, 48]:

iGαβ(t, t′)=
〈

TC exp
(
−i

∫

C
H1I(t̄)dt̄

)
ĉαI(t)ĉ†

βI(t
′)
〉

0,conn
, (2.12)

where 〈A(t)B(t′)〉0,conn represents all the topologically distinct Feynman diagrams connected
to the vertices of A(t) and B(t′). The self-energy is introduced in the same way as in the
equilibrium Green’s function theory, and the self-energy satisfies the Dyson’s equation,

Gαβ(t, t′)=G(0)
αβ

(t, t′)+
∑

γδ

%

C
dt̄dt̄′ G(0)

αγ(t, t̄)Σγδ(t̄, t̄′)Gδβ(t̄′, t′). (2.13)

2.1.4 Properties of time-dependent Green’s functions

We have defined Green’s functions on the Keldysh contour in Eq. (2.11). The contour C
is divided into two branches C1 and C2 as in Fig. 2-1. Then the Green’s function on C is
decomposed into 2×2 elements,

Gi j
αβ

(t, t′)=Gαβ(t, t′) for t ∈ Ci, t′ ∈ C j. (2.14)
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It is easily confirmed that each component of Green’s functions satisfies2

G11(t, t′)=G12(t, t′), t ≤ t′, (2.15a)

G11(t, t′)=G21(t, t′), t > t′, (2.15b)

G22(t, t′)=G21(t, t′), t < t′, (2.15c)

G22(t, t′)=G12(t, t′), t ≥ t′. (2.15d)

Due to Eqs.(2.15), the 2×2 Green’s function has a redundancy,

G11(t, t′)+G22(t, t′)=G12(t, t′)+G21(t, t′), t (= t′. (2.16)

We can then reduce the 2×2 Green’s function, using Eq. (2.16), into a tridiagonal form,
(
GR(t, t′) GK (t, t′)

0 GA(t, t′)

)

= Lτ3

(
G11(t, t′) G12(t, t′)
G21(t, t′) G22(t, t′)

)

L†, (2.17)

where we have introduced a rotating matrix L and a Pauli matrix τ3,

L = 1
4

2

(
1 −1
1 1

)

, τ3 =
(
1

−1

)

. (2.18)

This procedure is called the Keldysh rotation after the pioneering work done by Keldysh [43].
The matrix elements of the tridiagonal matrix are called retarded Green’s function GR(t, t′),
advanced Green’s function GA(t, t′) and the Keldysh Green’s function GK (t, t′). Their explicit
forms are

GR(t, t′)=−iθ(t− t′)
〈

{c(t), c†(t′)}
〉

, (2.19a)

GA(t, t′)= iθ(t′ − t)
〈

{c(t), c†(t′)}
〉

, (2.19b)

GK (t, t′)=−i
〈

[c(t), c†(t′)]
〉

, (2.19c)

where {A,B}= AB+BA is the anticommutator. It is also useful to define the lesser [greater]
Green’s functions G<(t, t′)[G<(t, t′)],

G<(t, t′)=−i
〈

c†(t′)c(t)
〉
= 1

2
[GK (t, t′)−GR(t, t′)+GA(t, t′)], (2.20a)

G>(t, t′)=−i
〈

c(t)c†(t′)
〉
= 1

2
[GK (t, t′)+GR(t, t′)−GA(t, t′)]. (2.20b)

2If the system has a particle-hole symmetry, Green’s functions satisfy more strict constraints, which may
reduce computation (see Appendix A).
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One can apply the Keldysh rotation to Dyson’s equation Eq. (2.13) to obtain a reduced form,
(
GR GK

0 GA

)

(t, t′)=
(
GR

0 GK
0

0 GA
0

)

(t, t′)

+
%∞

−∞
dt̄ dt̄′

(
GR

0 GK
0

0 GA
0

)

(t, t̄) ·
(
ΣR ΣK

0 ΣA

)

(t̄, t̄′) ·
(
GR GK

0 GA

)

(t̄′, t′). (2.21)

Here, we have introduced the retarded and advanced component of the self-energy,
(
ΣR(t, t′) ΣK (t, t′)

0 ΣA(t, t′)

)

= Lτ3

(
Σ11(t, t′) Σ12(t, t′)
Σ21(t, t′) G22(t, t′)

)

L†. (2.22)

For convenience, we can also define the lesser and greater components,

Σ<(t, t′)= 1
2

[ΣK (t, t′)−ΣR(t, t′)+ΣA(t, t′)], (2.23a)

Σ>(t, t′)= 1
2

[ΣK (t, t′)+ΣR(t, t′)−ΣA(t, t′)]. (2.23b)

The important point in the Keldysh rotation is that the elements GR(t, t′), GA(t, t′), and
GK (t, t′) are directly connected to the electronic structure of the system. In equilibrium, we
can define the spectral function A(ω), and the density of occupied states N(ω) at energy ω as

A(ω)=−1
π

ImGR(ω), N(ω)= 1
2π

ImG<(ω). (2.24)

Also, due to the Kubo-Martin-Schwinger condition [50, 51] for the lesser and greater Green’s
function,

G>(ω)=−eω/TG<(ω), (2.25)

we have the fluctuation-dissipation relation,

GK (t, t′)=
∫∞

−∞

[
GR(t, t̄)F(t̄, t′)−F(t, t̄)GA(t̄, t′)

]
dt, (2.26)

with the distribution kernel F(t, t′),

F(t, t′)=
∫∞

−∞

dω
2π

eiω(t−t′) tanh
( ω

2T

)
(in equilibrium). (2.27)

In equilibrium, the Fourier transform of the kernel F(ω) is related to the distribution function
f (ω) as

f (ω)= 1
2

[1−F(ω)]=
1

eω/T +1
. (2.28)

In nonequilibrium, the distribution kernel F(t, t′) is rather defined by Eq. (2.26) and is re-
garded as a nonequilibrium analog of the distribution function[48].

In nonequilibrium, the Green’s function G(t, t′) depends not only on the time interval
between observations trel = t− t′, but also on the starting time t or the average of the mea-
surement time tav = (t+t′)/2. Thus there is a slight ambiguity on the definition of the spectral
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i
system

heat-bath

Figure 2-2: Schematic picture of the heat-bath model. Open circles represent sites in the
system, whereas the shaded rectangles represent the fermionic heat-bath. The hybridization
between the system and the heat-bath is expressed as Vpc†

i bip, whereas the heat-bath itself
is represented as εb

pb†
ipbip in the figure. Details are explained in the text.

functions in nonequilibrium. In this thesis we employ tav for the time-evolution of the spec-
tral functions. Namely, the time-dependent spectral function A(tav,ω) and occupation density
N(tav,ω) are defined as

A(tav,ω)=−1
π

ImGR(tav,ω), N(tav,ω)= 1
2π

ImG<(tav,ω), (2.29)

where GR(tav,ω) and G<(tav,ω) are the Fourier transformations of GR(t, t′) and G<(t, t′) for
trel = t− t′, respectively.

2.1.5 Fermionic heat-bath model for dissipative systems

Electrons in real materials are always subject to dissipative environments, such as phonons,
substrates, and so on. When the system is excited by applied external fields, the system fi-
nally reaches some steady state after some interaction to the dissipative environments. One
way to treat such dissipations is to introduce a microscopic model for the dissipative environ-
ments, and relate the parameters of the microscopic model to some macroscopic parameters,
such as a damping rate or a life-time of particles in the system.

As an example of such strategy, here we recall a pioneering work by Caldeira and Leggett
[52, 53], who studied a quantum system subject to dissipative environments. They introduced
an exactly solvable model for the dissipative environment, and derived a damping rate for
the system as a phenomenological parameter. Following the strategy, we also introduce some
exactly solvable model for dissipative environments, and derive some simple expression that
serves as dissipative processes for the system.

For that purpose, it is useful to introduce a fermionic heat-bath model, described by a
Hamiltonian,

Htot(t)=H (t)+Hmix +Hbath, (2.30a)

where the Hamiltonian Hbath of the heat-bath and the hybridization Hmix between the sys-
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tem and the bath are given respectively by

Hbath =
∑

ip
εb

pb†
ipbip, (2.30b)

Hmix =
∑

ip

(
Vipc†

i bip +h.c.
)
, (2.30c)

where ci is the fermionic operator at site i in the system, bip is the fermionic operator for the
mode p of the bath coupled to the site i. εb

p is the energy of the mode p of the heat-bath, and
Vip is the strength of the hybridization between the system and the heat-bath. The heat-bath
model is schematically shown in Fig. 2-2, which is first introduced by Büttiker [54] and later
applied to determine the steady states of the strongly correlated systems [35]. Following the
discussion in Ref. [35], we show below that the heat-bath sector is exactly solved and merged
into the self-energy for the system.

Since the heat-bath term is quadratic, we can explicitly perform integration of the heat-
bath degrees of freedom. To see this, let us write the system in terms of its action,

Stot[b,b†, c, c†]= Ssys[c, c†]

+
∫

C
dt

∑

ip

[
b†

ip(t)(−i∂t +εb
p)bip(t)+Vipc†

i (t)bip(t)+V∗
ipb†

ip(t)ci(t)
]
,

(2.31)

where Ssys is the action from the Hamiltonian of the system3 and b,b†, c and c† are Grass-
mannian variables corresponding to the fermionic field operators for the bath and the system
in the Hamiltonian Eqs.(2.30). The above action is related to the total partition function as

Ztot =
∫

D[b†,b, c†, c]e−iStot . (2.32)

where
∫

D[b†,b, c†, c] represents the path integral for the variables b†,b, c† and c. We intro-
duce the noninteracting bath Green’s function,

Gb
p(t, t′)=−i〈TCbip(t)b†

ip〉0, (2.33)

which satisfies an equation of motion,

(i∂t −εb
p)Gb

p(t, t′)= δC(t, t′). (2.34)

With this, the integration over b and b† in Eq. (2.32) is explicitly performed. As a result, we
obtain the effective action for the system,

Seff[c, c†]= Ssys[c, c†]+
%

C
dt dt′

∑

i
c†

i (t)Σdiss(t, t′)ci(t′), (2.35)

3In this thesis, an action S of a field ψ(x) of a fermionic particle is written as S[ψ†,ψ] in order to emphasize
that S is a functional of ψ(x) and ψ†(x). Here, x contains time t, site indices i, and internal degrees of freedom
such as spins and orbitals.
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where Σdiss(t, t′) is the self-energy correction from the bath,

Σdiss(t, t′)=
∑

p
|Vp|2Gb

p(t, t′). (2.36)

Now, we assume the heat-bath is large enough and stays in thermal equilibrium with a
temperature T. In other words, we assume that the bath Green’s function is a function of
t− t′ and satisfies the fluctuation-dissipation theorem Eqs.(2.26), (2.27),

[Gb
p]R(ω)− [Gb

p]A(ω)= [Gb
p]K (ω)F(ω). (2.37)

The explicit form of the Green’s function is written as

Gb
p(ω)= 1

ω−εp + i0+ . (2.38)

Substituting above into Eq. (2.36) with the relation
1

ω+ i0+ =P
1
ω
− iπδ(ω), we obtain

ΣR
diss(ω)=−iΓ, (2.39a)

Γ=
∑

p
π|Vp|2δ(ω−εb

p). (2.39b)

We have dropped the ω-dependence, assuming that the density of states of the heat-bath is
constant. Now we obtain the explicit form of the dissipation self-energy as

(
ΣR

diss(ω) ΣK
diss(ω)

0 ΣA
diss(ω)

)

=
(
−iΓ −2iΓF(ω)

0 iΓ

)

. (2.40)

Hence we have shown that the fermionic heat-bath of the form Eq. (2.30) is incorporated in
the self-energy of the system.

2.2 Dynamical mean-field theory

In this section, we briefly introduce the dynamical mean-field theory (DMFT), a powerful tool
for studying strongly correlated systems with short-range interactions. As we stated in the
introduction, we consider the Hubbard model on multi-orbital systems, namely,

H (t)=
∑

iα

∑

jβ

∑

σ
Jiα, jβ(t)c†

iασc jβσ+
∑

i

∑

α
Uα(t)n̂iα↑n̂iα↓, (2.41)

where i and j label the unit cell, and α and β the atomic sites in each unit cell. Jiα, jβ(t)
is the hopping matrix between two sites specified by (i,α) and ( j,β). Uα(t) is the Hubbard
interaction on the atom α. We can also express Eq. (2.41) using a Fourier transform for i and
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j as

H (t)=
∑

k,αβ,σ
Hk,αβ(t)c†

kασckβσ+
∑

i

∑

α
Uα(t)n̂iα↑n̂iα↓, (2.42a)

Hk(t),αβ =
∑

Ri−R j

Jiα, jβ(t)e−ik·(Ri−R j). (2.42b)

DMFT was first derived by Metzner and Vollhardt [55] for the single-band Hubbard model
in equilibrium. Their key observation is that, if we make the spatial dimension d infinitely
large, the hopping parameters should scale as

ti j =
t∗i j4

d
(d →∞), t∗i j: constant (2.43)

so that the band width may not diverge nor vanish in the d →∞ limit. Here t∗i j is a constant
representing the band width in the limit. As a result of this scaling, it can be shown that the
self-energy Σi j,σ(t, t′), which contains local (i = j) and non-local (i (= j) correlations, should
satisfy

Σi j,σ(ω)=Σii,σ(ω)δi j, (2.44)

in the limit of infinite spatial dimension. In this subsection we briefly formulate the DMFT in
d →∞ limit, based on Ref. [56], and show that the approximation of neglecting the nonlocal
correlation Eq. (2.44) leads to the self-consistency equations for the Green’s functions.

Here we briefly mention how DMFT works in realistic models. As we have stated, DMFT
mathematically gives an exact result in the limit of infinite dimensions d →∞ with the scal-
ing Eq. (2.43), and can be used as an approximation for systems in finite dimensions. As we
discuss below, DMFT can surprisingly describe metal-insulator transitions, one of the most
important phenomena in strongly correlated systems, without any bias. The Hamiltonian
Eq. (2.41) consists of two competing terms, the kinetic term that makes electrons delocal-
ized, and the interaction term that localizes electrons by imposing the Coulomb repulsion
with each other. Due to these opposite tendencies, correlated electron systems are roughly
divided into weakly correlated metals and strongly correlated insulators [5]. Whether the
two phases are described by the same Hamiltonian is therefore one important milestone for
numerical methods of strongly correlated electron systems. DMFT indeed describes metal-
insulator transitions even for the finite-dimensional systems [57].

The formalism for equilibrium Green’s functions can also be extended to the non-equilibrium
Green’s function method by considering the extended L-shaped or Keldysh contour [58, 35].
For a review on nonequilirium DMFT and its application, see Ref. [32].

2.2.1 Self-consistency equations

Here we briefly sketch the derivation of DMFT formalism. For a detailed review on DMFT,
see e.g. Ref. [56]. Let us consider the system with the Hamiltonian Eq. (2.41) in terms of its
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Figure 2-3: Schematics of DMFT self-consistency loop, here depicted for multi-band cases.
We take multi-band systems with Nb atoms per unit cell. We have therefore Nb impurity
problems to be solved.

action S given by

S[c†, c]=
∫

C
dt

[
∑

iσ
c†

iσ(t)(−i∂t −µ)c jσ(t)+
∑

i jσ
Ji j(t)c†

iσ(t)c jσ(t)+
∑

i
Ui(t)n̂i↑(t)n̂i↓(t)

]

. (2.45)

The action is related to the partition function Z as

Z =
∫

D[c†, c]e−iS[c†,c]. (2.46)

The underlying idea of DMFT is to apply the mean-field picture to correlated lattice problems.
In a mean-field picture, one focuses on a certain site and regards the other surrounding sites
as an effective medium. As a result, the lattice problem is reduced to a single site problem in
an effective medium.

Based on the mean-field picture, we focus on a site io in our system. In order to obtain
the effective theory on the site io, we integrate out the variables c†

iσ and ciσ except for the
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site io. Performing this integration one obtains the effective action for the single site io:

Simp[c†
io

, cio ]=
∫

C
dt

[∑

σ
c†

ioσ
(t)(−i∂t −µ)cioσ(t)+Uio (t)n̂io↑(t)n̂io↓(t)

]

+
%

C
dt dt′

∑

σ
c†

ioσ
(t)∆σ(t, t′)cioσ(t). (2.47)

Here, ∆σ(t, t′) is a certain scalar function specified by the one-body terms that hybridize the
io-site and surrounding sites. ∆σ(t, t′) is therefore called “the hybridization function”. In
addition to the hybridization term, there are additional four-point (c†c†cc) terms or even
higher-order terms in the effective action for the io-site. The key finding by Metzner and
Volhardt [55] is that these higher-order contributions vanish due to the scaling Eq. (2.43) of
the hopping parameters.

The effective action is nothing but the action of the single-impurity problem,

Simp[c†
io

, cio ]=
%

C
dt dt′

∑

σ
c†

ioσ
(t)[−G−1

σ (t, t′)]cioσ(t)+
∫

C
dtUio (t)n̂io↑(t)n̂io↓(t), (2.48)

with an effective single-particle Green’s function Gσ(t, t′)= i∂t+µ−∆σ(t, t′). After solving the
single-impurity problem, we obtain the impurity Green’s function Gimp(t, t′) and self-energy
Σimp(t, t′) with a relation,

G−1
imp,σ(t, t′)=G−1

σ (t, t′)−Σimp,σ(t, t′). (2.49)

In addition, we should impose the self-consistency between the original lattice problem Eq.
(2.45) and the impurity problem Eq. (2.47). Since the two actions should be equivalent for
the io-th site, local quantities such as Gio,io,σ should also coincide. Therefore we have the
self-consistency condition,

Gio,io,σ(t, t′)=Gimp,σ(t, t′), Σio,io,σ(t, t′)=Σimp,σ(t, t′). (2.50)

In DMFT, we solve Eq. (2.47), Eq. (2.49) and Eq. (2.50) self-consistently. The schematic
picture of DMFT is depicted in Fig. 2-3.

Here, we formulate the explicit DMFT self-consistency loop for multi-orbital Hubbard
model with the Hamiltonian Eq. (2.42) as

G−1
k (t, t′)=G−1

0k(t, t′)−Σdiss(t, t′)−Σ(t, t′), (2.51a)

Gloc(t, t′)=
∑

k
Gk(t, t′), (2.51b)

G−1(t, t′)=G−1
loc(t, t′)+Σ(t, t′), (2.51c)

Σ(t, t′)=ΣDMFT[G ](t, t′). (2.51d)

In the last equation, one solves a single-impurity problem Eq. (2.48) and obtain the self-
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energy of the system. Here we have introduced a notation for triangular matrices of the
Keldysh Green’s function,

G(t, t′)≡
(
GR(t, t′) GK (t, t′)

0 GA(t, t′)

)

.

The noninteracting Green’s function G0k(t, t′) is written in an explicit form as

G−1
0k(t, t′)=

(
(G−1

0k)R (G−1
0k)K

0 (G−1
0k)A

)

(t, t′)

=
(
δ(t− t′ −0+)[i1∂t −Hk(t)] 0

0 δ(t− t′+0+)[i1∂t −Hk(t)]

)

(t, t′) (2.52)

with an Nb ×Nb matrix [Hk(t)]αβ = Hk,αβ(t) and the identity matrix 1. We have introduced
retarded, advanced and Keldysh components for an inverse G−1 of the triangular matrix G
as

G =
(
GR GK

0 GA

)

, G−1 =
(
(G−1)R (G−1)K

0 (G−1)A

)

.

One can easily verify

(G−1)R = (GR)−1, (G−1)A = (GA)−1, (G−1)K =−(GR)−1 · (GK ) · (GA)−1,

from the relation G ·G−1 = diag{1,1}.

2.2.2 Iterative perturbation theory (IPT) as an impurity solver

We have shown that lattice problems of correlated electrons are mapped to a single impurity
problem in equilibrium and nonequilibrium situations, by neglecting the nonlocal electron
correlations. There are a lot of techniques for solving the single impurity problem in ther-
mal equilibrium (or ground state), such as exact diagonalization, numerical renormalization
group, quantum Monte Carlo, etc. [56]. On the other hand, in time-dependent systems, the
computational time for solving the impurity problems can become quite large, since the size
of the Green’s function becomes much larger due to the real-time branch. The difficulty in
the computational time becomes even harder when we consider multi-band systems or long
time behavior of the system. Therefore, in this thesis, we apply some perturbation methods
for the single impurity problems which only require reasonable computational time.

Here, we use one of the most straightforward techniques, that is, weak coupling pertur-
bation. The single impurity problem is explicitly written as

S =
∑

σ

∫

C
dt dt′ c†

σ(t)[−G−1
σ (t, t′)]cσ(t′)+

∫

C
dtUn↑(t)n↓(t). (2.53)
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(a) (b) (c)

Figure 2-4: Feynman diagrams up to the second order. Solid lines and dashed lines represent
modified noninteracting Green’s function G̃ and interaction U , respectively.

Note that one can always introduce c-numbers α↑,↓ and rewrite the impurity problem as

S = S0 +S1,

S0 =
∑

σ

∫

C
dt dt′ c†

σ(t)[G−1
σ (t, t′)+ (µ−Uασ)δC(t, t′)]cσ(t′), (2.54)

S1 =
∫

C
dtU

[
n↑(t)−α↓

][
n↓(t)−α↑

]
. (2.55)

That is, one can shift the chemical potential in the noninteracting Green’s function as

G̃−1
σ (t, t′) :=G−1

σ (t, t′)+UασδC(t, t′), (2.56)

and expand S1 in terms of the modified Green’s function G̃ . The free parameters ασ can
be arbitrarily chosen and do not give any difference provided the perturbative expansion is
exactly performed. In a finite-order perturbation, however, the results may depend on the
choice of α. The idea of the modification of α-parameter is recently studied [59] for the study
of nonequilibrium dynamics of the Hubbard model away from half-filling.

Following the Feynman rule, the self-energy up to the second order (Fig. 2-4) is obtained
as

Σσ(t, t′)≶ =U(nσ̄(t)−ασ− iχ≶σ̄ (t))δ(t− t′)

+U2G̃σ(t, t′)≶G̃σ̄(t, t′)≶G̃σ̄(t′, t)≷, (2.57)

where the lesser [greater] components G< [G>] of the self-energy is defined in Eq. (2.20) and
χ
≶
σ (t) is defined as

χσ(t)=





χ<
σ(t) t ∈ C1,

χ>
σ(t) t ∈ C2,

(2.58)



34 2. Methods for non-equilibrium many-body problems

Figure 2-5: Equilibrium density of states of the two-dimensional Hubbard model at half-
filling for U increased from 0 to 12. T = 0.1J.

where χσ(t) is the contribution from the integral for the internal particle lines in Fig. 2-4(b),

χσ(t)=
∫

C
dt̄U[nσ(t̄)−ασ̄]G̃σ̄(t, t̄)G̃σ̄(t̄, t), t ∈ C. (2.59)

σ̄ denotes the inversion of the spin index: σ̄=−σ. Derivation of this equation is summarized
in Appendix B. Note that the tadpole term (Hartree term) contains the α-parameter, which
comes from the modified interaction term S1. Since the chemical potential is subtracted by
Uασ, the relation between the lattice Green’s functions and self-energy is then given by

G−1
kσ(t, t′)= δ(t, t′)

[
i∂t −H(0)

k − (µ−Uασ)1
]
−Σσ(t, t′). (2.60)

We still have the freedom of choosing α so that the perturbation theory may give reason-
able results. One suitable way is to choose α in such a way that some series of diagrams are
automatically taken into the lowest perturbation term, the Hartree term. Therefore, in this
thesis we choose α so that it may coincide with the occupation number,

ασ̄ = nσ. (2.61)

Due to this choice, the tadpole contribution vanishes and the self-energy up to the second-
order is given by

Σσ(t, t′)≶ =U2G̃σ(t, t′)≶G̃σ̄(t, t′)≶G̃σ̄(t′, t)≷. (2.62)

At half-filling, it is known that the self-energy in the formula Eq. (2.62) gives reasonable re-
sults, not only in weakly correlated region but, surprisingly, also in the Mott insulator region
with strong correlation. The reason for this is that the expression Eq. (2.62) accidentally
gives the exact result in the U →∞ limit of the impurity problem [60, 61].
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Figure 2-6: (a) Equilibrium density of states of the two-dimensional Hubbard model away
from half-filling, for U = 12J and T = 0.5J. Here the chemical potential µ is increased from
6.0 (half-filling) to 12. The filling n is shown for each µ. (b) Electron filling n against chemical
potential µ for U = 12J and T = 0.1J.

In order to check the validity of the approximation, we have solved the two-dimensional
Hubbard model in equilibrium both at half-filling and away from half-filling. In Fig. 2-5 we
show the density of states of the Hubbard model for several values of U . As U is increased,
the Hubbard bands develop at ω = ±U /2, while the quasiparticle contribution around the
Fermi level ω = 0 decreases. At U 5 10 the quasiparticle disappears and a metal-insulator
transition occurs.

In Fig. 2-6(a) we show how the metal-insulator transition takes place when the chemical
potential is changed from µ=U /2 (half-filling) at U = 12. Around µ= 12 we observe the band-
filling-controlled metal-insulator transition. Electron filling against the chemical potential
is shown in Fig. 2-6(b). For U = 12, the filling is pinned at 0.5 for 0 < µ−U /2 < 4 and
increases outside the region, indicating a filling controlled Mott transition near µ−U /2 5 4.
This behavior qualitatively agrees with previous studies on filling controlled Mott transitions
studied by several authors [60, 62, 63]. Kajueter and Kotliar [60, 62] studied µ-dependences
of the spectral function and occupation number for the Hubbard model, with DMFT and a
modified version of IPT. Although critical values of µ for the phase transition differ for each
paper since they use different impurity solvers, our calculation qualitatively agrees with
their results. In Chapter 4, we apply IPT with the condition Eq. (2.61) as the simplest
approximation for the dp-model, where the steady states in strongly correlated multi-band
systems are studied for the first time.
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2.3 Nonequilibrium Kubo formula

In this section, we develop the Kubo formula for optical conductivities in nonequilibrium. We
restrict our Hamiltonian to the class given by Eq. (2.42), for which we further specify the
time-dependence as

H =
∑

k,αβ
H(0)

αβ
(k+ A(t))c†

αkcβk +H int, (2.63)

where α and β are band indices and A(t) is the vector potential that describes a spatially
uniform external electric field E(t) = −∂t A(t). Here we have incorporated the external field
via Peierls substitution [64], substituting k → k+ A(t) into the static Hamiltonian H(0)(k).
The electron charge −e is set to −1 hereafter.

Current operator and correlation functions

The current operator is defined as the derivative of H with respect to A(t),

j(t)=− 1
Ωvol

δH

δA(t)

=− 1
Ωvol

∑

k,αβ

∂H(0)
αβ

(k+ A(t))

∂k
c†
αkcβk

=− 1
Ωvol

∑

k,αβ
vαβ,k(t)c†

αkcβk. (2.64)

Here, Ωvol is the volume of the system and vαβ,k(t) is the current matrix defined by

vαβ,k(t)=
∂H(0)

αβ
(k+ A(t))

∂k
. (2.65)

Taking the statistical average at time t, we obtain an expression,

〈 j(t)〉= i
Ωvol

∑

k,αβ
vαβ,k(t)G<

βαk(t, t).

Hereafter, we abbreviate the Nb ×Nb matrix (Gαβ) as G. The current is then written as the
trace of the matrix product of G< and vk,

〈 j(t)〉= i
Ωvol

tr
∑

k
vk(t)G<

k(t, t). (2.66)

Now we regard that the field A(t) is divided in two parts,

A(t)= Apump(t)+ Aprobe(t), (2.67)

where Apump(t) is the (strong) field that is steadily applied to the system, while Aprobe(t) is a
weak field that probes the nonequilibrium states. The optical conductivity is then defined by
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the derivative with respect to the probe field,

σi j(t, t′)≡ δ〈 ji(t)〉
δE j

probe(t′)
, (2.68)

where Eprobe(t)=−∂t Aprobe(t). We also define the current-current correlation function,

χi j(t, t′)≡ δ〈 ji(t)〉
δA j

probe(t′)
. (2.69)

In the linear response we can choose the probe field as sinusoidally oscillating, Aprobe(t) ∝
e−iωt. Then, due to the relation Eprobe(t) = iωAprobe(t), the conductivity σi j(t, t′) and the
correlation function χi j(t, t′) are related as

σi j(t, t′)= 1
iω

χi j(t, t′). (2.70)

Substituting the current Eq. (2.66) into the expression for the correlation function Eq.
(2.69) we have

χi j(t, t′)= i
Ωvol

tr
∑

k

[

δ(t− t′)µi j(t)G<
k(t, t)+vi

k(t)
δG<

k(t, t)
δA j(t′)

]

, (2.71)

µi j(t)= ∂2H(0)(k+ A(t))
∂ki∂k j . (2.72)

The first term in Eq. (2.71) is called the diamagnetic part (χdia), while the second term is
the paramagnetic part (χpm). The paramagnetic part contains “vertex corrections” in terms
of Green’s function expansion as shown below.

Vertex correction

To obtain the detailed expression for χpm, we need to calculate δG<
k(t, t)/δA j(t′). We note the

Dyson equation,

[
(G−1

0k −Σ)&Gk
]
(t, t′)= δC(t, t′), (2.73a)

G−1
0k(t, t′)= δC(t, t′)[i1∂C

t −H(0)(k+ A(t))], (2.73b)

where & denotes the convolution, (F &G)(t, t′) ≡
∫

C dt̄F(t, t̄)G(t̄, t′) and δC(t, t′) is the Kro-
necker delta on the contour C. From Eqs.(2.73) we have

δGk(t, t)
δA j(t′)

=−
∫

C
dt̄dt̄′Gk(t, t̄)

[
δG−1

0k(t̄, t̄′)
δA j(t′)

− δΣ(t̄, t̄′)
δA j(t′)

]

Gk(t̄′, t)

=
∫

C
dt̄dt̄′Gk(t, t̄)

[
v j

k(t′)δC(t̄, t̄′)δC(t̄, t′)+ δΣ(t̄, t̄′)
δA j(t′)

]
Gk(t̄′, t). (2.74)

The first term in the angle brackets gives a bubble diagram for the susceptibility, while the
second term gives the vertex correction.
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In equilibrium, the vertex correction does not contribute to the susceptibility within
DMFT [65, 66, 67]. Let us assume that our system is in equilibrium and has a spatial in-
version symmetry against k → −k. Due to this assumption, the Green’s function Gk(t, t′)
and the current matrix vk(t) are even and odd functions of k, respectively. Thus the bubble
and the vertex correction terms in Eq. (2.74) are odd and even in total, respectively. If one
substitutes Eq. (2.74) into the susceptibility Eq. (2.71) and takes the summation over k, the
vertex correction therefore vanishes while the bubble term remains.

This argument breaks down in nonequilibrium, since the inversion symmetry explicitly
breaks down due to external fields. In fact, it is known that the vertex gives non-vanishing
contribution to the conductivity [35]. Although the vertex correction is present in general, we
ignore the vertex correction as a first approximation throughout this thesis. Since the vertex
correction comes from the higher-order contributions of the self-energy, this approximation
becomes exact in noninteracting cases, and should work at least in the weak coupling region,
as we shall see in study the honeycomb-Hubbard model in Chapter 5.

Nonequilibrium Kubo formula for optical conductivities

Within the approximation we have a simple expression,

δG<
k(t, t)

δA j(t′)
=GT

k (t, t′)v j
k(t′)G<

k(t′, t)−G<
k(t, t′)v j

k(t′)GT̃
k (t′, t). (2.75)

Substituting the above expression to Eq. (2.71), we have

χi j(t, t′)= i
Ωvol

δ(t− t′)tr
∑

k
µ

i j
k (t)G<

k(t, t)

+ i
Ωvol

tr
∑

k

[
vi

k(t)GR
k (t, t′)v j

k(t′)G<
k(t′, t)+vi

k(t)G<
k(t, t′)v j

k(t′)GA
k (t′, t)

]
.

(2.76)

Plugging Eq. (2.76) into Eq. (2.70), we finally obtain the expression for the optical conductiv-
ity as

σi j(t, t′)= 1
ω
δ(t− t′)

1
Ωvol

tr
∑

k
µ

i j
k (t)G<

k(t, t′)

+ 1
ω

1
Ωvol

tr
∑

k

[
vi

k(t)GR
k (t, t′)v j

k(t′)G<
k(t′, t)+vi

k(t)G<
k(t, t′)v j

k(t′)GA
k (t′, t)

]
.

(2.77)

This is the formula for the optical conductivities in nonequilibrium for multi-band sys-
tems. We shall further obtain the formula, based on Eq. (2.77), for ac-driven systems in
terms of Floquet-Green’s functions in the next chapter.

In some cases, it is better to rewrite the volume as Ωvol = NcΩcell with the number of unit
cells Nc and the volume of the unit cell Ωcell. Nc coincides with the number of k-points. Ωcell

is a2 for a two-dimensional square lattice or the dp-model with the length a of the unit cell,
and

4
3a2/2 for the honeycomb lattice with distance a between the nearest neighbor sites.



Chapter 3

Floquet theory and its applications
to multi-band systems

In this chapter, we review the Floquet theory, a theoretical framework for periodically driven
quantum systems. As we show in Sec.3.1, the time-dependent systems with a periodic Hamil-
tonian, H (t+T)=H (t), has stationary solutions called “Floquet states”, the temporal analog
of Bloch states in spatially periodic systems. Choosing the set of Floquet states as a basis,
one can reduce the procedure of solving the time-dependent Schrödinger equation to an eigen-
value problem of Hermitian matrices with finite dimensions.

As we have discussed in the previous chapter, we are interested in steady states of cor-
related systems. We shall show, after Ref. [35], that the method of Floquet theory can be
applied to the Keldysh-Green’s function theory for dissipative systems. We shall apply the
Floquet theory and obtain the DMFT formula and Kubo formula, which have been derived
in the previous chapter, in terms of Floquet Green’s functions. This is the first application of
Floquet-DMFT method to multi-band systems.

In noninteracting systems in ac-fields, it is also known that the Floquet states can carry
non-trivial Chern density (Berry curvature) in the k-space. We shall also, for the first time,
clarify the relation between the photo-induced Berry curvature and the nonequilibrium Kubo
formula for the Hall conductivity.

3.1 Floquet theorem

We start with deriving the Floquet theorem in time-periodic systems, the temporal analog
of the Bloch theorem in lattice systems in equilibrium. Suppose that our Hamiltonian is
T-periodic in time. The time-dependent Shrödinger equation is written as

[H (t)− i∂t] |ψ(t)〉= 0, (3.1)

where H (t) is the time-dependent Hamiltonian with a period T,

H (t+T)=H (t). (3.2)

39
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Next, we extend the Hilbert space by adding an extra time axis. In order to avoid confusion
with notation, let us regard a time-dependent state |ψ(t)〉 as an image of a function ψ : R 7
t 8→ |ψ(t)〉 ∈ VH, where VH is the Hilbert space, and introduce the "extended" Hilbert space
ṼH =VH ⊗F to which ψ belongs. Then the operator H (t)− i∂t is a linear operator acting on
ṼH. Now, let us introduce the time-translation operator T̃ : ṼH → ṼH defined by

|T̃ ψ(t)〉= |ψ(t+T)〉. (3.3)

T̃ forms an Abelian group G := {1,T̃ ,T̃ 2, · · · }. From the periodicity Eq. (3.2), T̃ commutes
with H (t)− i∂t. Therefore, the solutions ψα of Eq. (3.1) can be chosen so that each of them is
one-dimensional representation of the Abelian group G,

T̃ ψα = Cαψα =: e−iεαTψα, (3.4)

where we have defined the quasienergy εα, that characterizes the one-dimensional represen-
tation. Equation (3.4) assures that |uα(t)〉 := eiεα t|ψα(t)〉 is T-periodic in time. Substituting
into Eq. (3.1), we obtain a set of equations,

ψα(t)= e−iεα tuα(t), (3.5a)

uα(t)= uα(t+T), (3.5b)

εαuα(t)= [H (t)− i∂t]uα(t), (3.5c)

or, taking the discrete Fourier transform for t, we obtain an eigenvalue problem,

∑

n
(Ĥmn −nΩδmn)uα,n = εαuα,m, (3.6)

where we have defined the Floquet representation of the Hamiltonian Ĥ and uα as

Ĥmn =Hm−n =
∫T

0

dt
T

H (t)ei(m−n)Ωt, (3.7)

uα,n =
∫T

0

dt
T

uα(t)einΩt. (3.8)

Now we obtained the Floquet theorem: all the solutions of the time-dependent Hamiltonian
have the form ψα(t) in Eq. (3.5), and are obtained by solving the matrix eigenvalue problem
Eq. (3.6).

The quasienergy, the eigenvalue of Eq. (3.6), has a redundancy: if ε0
α and {u0

α,n} are a
solution for Eq. (3.6), then ε0

α+mΩ and {u0
α,n+m} (m ∈ Z) are trivial solutions for Eq. (3.6).

Although they are apparently different, they are all physically equivalent in a sense that
they give the same Floquet state ψα(t) in Eq. (3.5). In order to avoid these trivial solutions,
we impose a condition εα ∈ [−Ω/2,Ω/2) for quasienergies.
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3.2 Floquet-Green’s functions and its relation to Floquet states

It is important to note the relation between the Floquet states and the retarded and advanced
Green’s functions in periodically driven systems. Recall the differential equation for GR(t, t′)
and GA(t, t′) in an explicit form:

[i∂t −H(t)]GR,A(t, t′)= δ(t− t′ ∓0+), (3.9)

from which GR,A(t, t′) are uniquely determined. Since the kernel i∂t −H (t) and the source
term δ(t− t′ ∓0+) remain unchanged for a time translation (t, t′)→ (t+T, t′+T), the retarded
and advanced Green’s functions should satisfy

GR,A(t+T, t′+T)=GR,A(t, t′). (3.10)

Note that the Keldysh component does not have the symmetry in general. Due to the trans-
lation symmetry in time axis, we can take the discrete Fourier transformation with respect
to tav = (t+ t′)/2 for the Green’s functions. In order to transform the time variables to tav and
trel = t− t′, we introduce a Wigner representation,

Ḡn(ω)=
∫∞

−∞
dtrel

∫T

0

dtav

T
G

(
tav +

trel

2
, tav −

trel

2

)
einΩtav eiωtrel . (3.11)

The Wigner representation has a physical meaning: Ḡ(tav,ω) is the amplitude of the ω-
oscillating mode at time tav, which is T-periodic in tav. In particular, Ḡn=0(ω) is the amplitude
of ω-oscillating mode averaged over the period tav ∈ [0,T].

For convenience, we also introduce a Floquet representation, defined by

Ĝmn(ω)= Ḡm−n

(
ω+ m+n

2
Ω

)
. (3.12)

The advantage of the Floquet representation is that the convolution of the form A(t, t′) =∫
B(t, t̄)C(t̄, t′)dt̄ is transformed as Amn(ω) =

∑

l
BmlCln. Using this property, we can trans-

form the differential equation Eq. (3.9) as

∑

l
[(ω+mΩ)δml − Ĥml]Ĝ

R,A
ln = δmn. (3.13)

Recalling the eigenvalue problem for the Floquet states Eq. (3.5), we notice that mΩδml−Ĥml

is diagonalized by the Floquet states uα = {uα,n}. Therefore we can explicitly diagonalize the
retarded and advanced Green’s functions as

Λ̂−1ĜR,AΛ̂= diag
{

1
ω−εα± i0+

}

α∈N
, (3.14)

where Λ̂= (· · · ,uα1 ,uα2 , · · · ) is a unitary matrix.
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3.3 Structure of spectral functions for Floquet states

Having related the retarded Green’s function and Floquet states, we present a typical struc-
ture of the Green’s function for periodically driven systems. Due to the redundancy of quasiener-
gies, the Green’s functions ḠR,A

0 (ω) turn out to have characteristic structures in ω-axis, with
spacing Ω.

In fact, the Floquet-Green’s functions in Eq. (3.13) are explicitly written down for one-
band systems [68] as

ĜR,A
mn (ω)=

∑

l

ΛmlΛln

ω+ lΩ− Ĥ00 ± i0+ , (3.15)

and thus the time-averaged Green’s function ḠR
0 (ω), connected to the Floquet-Green’s func-

tion by Eq. (3.12), turns out to have poles ω = Ĥ00 − nΩ (n = 0,±1,±2, · · · ). The pres-
ence of poles of the retarded Green’s function implies some absorptions and emission pro-
cesses exist. In fact, the residues at ω = Ĥ00 ± nΩ (n = 1,2, · · · ) correspond to a n-photon
absorption or emission process, and give rise to a ladder structure for the spectral function
A(ω) =−(1/π)ImḠR

0 (ω), known as the Wannier-Stark ladder [69, 70]. In particular, in lattice
systems, electrons form a band structure and the the original band splits to sidebands with
energy spacing Ω, the so called Floquet sidebands [68]. Optical properties of electronic sys-
tems are described by the spectral function and thus the Floquet sidebands can be observed
in various electronic systems subject to external ac-fields.

3.4 DMFT formalism in terms of Floquet-Green’s functions

We have introduced the Floquet representation of time-dependent Green’s functions. We have
also clarified its relation to the Floquet states and eigenvalues in Eq. (3.14). Next we would
like to deal with the DMFT self-consistency equations with the Floquet-Green’s functions.

As we have shown, GR and GA have the time-translational symmetry (t, t′)→ (t+T, t′+T)
but GK does not in general. However, for steady states in periodically driven systems, we can
show that GK indeed has the time-translational symmetry. In order to show that, let us recall
the DMFT self-consistency equations that we have established in Chapter 2,

G−1
k (t, t′)=G−1

0k(t, t′)−Σdiss(t, t′)−Σ(t, t′), (3.16a)

Gloc(t, t′)=
∑

k
Gk(t, t′), (3.16b)

G−1(t, t′)=G−1
loc(t, t′)+Σ(t, t′), (3.16c)

Σ(t, t′)=ΣDMFT[G ](t, t′). (3.16d)

We can regard Eqs.(3.16) as deterministic equations for Σ(t, t′), with a kernel G−1
0k(t, t′) and

a source term Σdiss(t, t′). We have discarded the Keldysh component GK
0k(t, t′) of the non-

interacting Green’s function, assuming that the distribution function in the initial state is
irrelevant to the steady state. Due to this assumption, the noninteracting Green’s func-
tion G0k(t, t′) consists of the retarded and advanced components only, and therefore has the
time-translational symmetry. As we have discussed in Sec.2.1.5, the heat-bath is assumed
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to be in equilibrium and thus the source term of the equation, Σdiss(t, t′), also has the time-
translational symmetry. This observation suggests that, if there exists a unique solution
Σ(t, t′) of Eqs.(3.16), we have another solution Σ(t+T, t′+T) and the two should coincide
with each other due to the assumption. Therefore the solution of Eq. (3.16) should have
the time-translational symmetry. We have just assumed that the solution of Eqs.(3.16) is
unique. However, within our experience, the numerical calculations show that the solution is
uniquely determined without any numerical instability in almost every case, supporting the
uniqueness of the solution.

Having proved that the unique solution of Eqs.(3.16) has the time-translational symme-
try, we can take the Floquet representation of Eqs.(3.16) by taking the Fourier transformation
with respect to tav = (t+ t′)/2 and trel = t− t′. We finally obtain the Floquet representation of
the DMFT self-consistency equations,

Ĝ−1
k (ω)mn = Ĝ−1

0k(ω)mn − Σ̂diss(ω)mn − Σ̂(ω)mn, (3.17a)

Ĝloc(ω)mn =
∑

k
Ĝk(ω)mn, (3.17b)

Ĝ
−1(ω)mn = Ĝ−1

loc(ω)mn + Σ̂(ω)mn, (3.17c)

Σ̂(ω)mn = Σ̂DMFT[G ](ω)mn. (3.17d)

3.5 Optical conductivity in multiband electron systems

In this section, we give the formula for the optical conductivity in ac-driven steady states in
terms of Floquet-Green’s functions. In the preceding studies [68, 35], the formula for optical
conductivities for ac-driven single-band fermion systems is presented. Here we extend the
formula for multi-band system, and present the formula in terms of Floquet-Green’ functions.
Based on the Floquet-Green’s function formula, we further clarify the relation between the
Hall conductivity and photo-induced Berry curvature that characterizes the topology of the
ac-driven mult-band systems [29].

3.5.1 Formula for optical conductivity in periodically driven systems

Let us recall the formula for the optical conductivity Eq. (2.77) in nonequilibrium. For con-
venience, we divide the optical conductivity into two parts as

σi j(t, t′)=σ
i j
dia(t, t′)+σ

i j
pm(t, t′), (3.18)
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with the so-called diamagnetic conductivity σ
i j
dia(t, t′) and the paramagnetic conductivity σ

i j
pm(t, t′)

[67],

σ
i j
dia(t, t′)= 1

ω
δ(t− t′)

1
Ωvol

tr
∑

k
µ

i j
k (t)G<

k(t, t′), , (3.19a)

σ
i j
pm(t, t′)= 1

ω

1
Ωvol

tr
∑

k

[
vi

k(t)GR
k (t, t′)v j

k(t′)G<
k(t′, t)+vi

k(t)G<
k(t, t′)v j

k(t′)GA
k (t′, t)

]
. (3.19b)

Note that matrix elements µ
i j
k (t) and vi

k(t) are T-periodic and their Floquet representations
are given as

(µ̂i j
k )mn =µ

i j
k m−n =

∫T

0

dt
T

µ
i j
k (t)ei(m−n)Ωt, (3.20a)

(v̂i
k)mn = vi

km−n =
∫T

0

dt
T

vi
k(t)ei(m−n)Ωt. (3.20b)

In the following, we derive the formula for the time-averaged optical conductivity,

σ̄(ω)=Re
∫∞

−∞
dtrel

∫T

0

dtav

T
σ

(
tav +

trel

2
, tav −

trel

2

)
eiωtrel , (3.21)

which is an important observable of steady states of the ac-driven systems.

We note that the time-averaged value of the product C(t, t′)= A(t, t′)B(t′, t) are expressed
as

C(ω)=
∫Ω/2

−Ω/2

dν
2π

tr Â(ν)B̂(ν−ω). (3.22)

Using this formula, we can rewrite the conductivities in Eq. (3.19a) and Eq. (3.19b) in terms
of Floquet-Green’s functions.

Diamagnetic conductivity. — σ
i j
dia(t, t′) can be regarded as the product of δ(t− t′), whose

Floquet representation is δmn, and µ
i j
k (t)G<

k(t, t′). In general, the product f (t)G(t, t′) with

f (t+T)= f (t), G(t+T, t′+T)=G(t, t′)

can be transformed as

( f G)n(ω)=
∫∞

−∞
dtrel

∫T

0

dtav

T
f
(
tav +

trel

2

)
G(tav, trel) · eiωtrel einΩtav

=
∞∑

l=−∞

∫∞

−∞
dtrel

∫T

0

dtav

T
f−lG(tav, trel) · ei(ω+lΩ/2)trel ei(n+l)Ωtav .

Substituting n → n−m,ω→ω+ (m+n)Ω/2 and l → l−m, we obtain

( f̂ G)mn(ω)=
∑

l
f̂mlĜln(ω)= ( f̂ Ĝ(ω))mn. (3.23)

Using Eq. (3.22) and Eq. (3.23), we obtain the Floquet representation for the time-averaged
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optical conductivity σ̄
i j
dia(ω) as

σ̄
i j
dia(ω)= 1

ω

1
Ωvol

tr
∑

k

∫Ω/2

−Ω/2

dν
2π

µ̂
i j
k Ĝ<

k(ν). (3.24)

Actually, σi j
dia always gives a pure imaginary value (that is why we have divided the conduc-

tivity into two parts). In fact, the matrix µ̂
i j
k is Hermitian with

(µ̂i j
k )† =

∂2Ĥ†
0k

∂ki∂k j
= ∂2Ĥ0k

∂ki∂k j
= µ̂

i j
k ,

and Ĝ<
k(ω) is anti-Hermitian, since G<(t, t′)∗ =−G<(t′, t) holds from the definition Eq. (2.20a).

Thus Eq. (3.24) always gives a pure imaginary value, and we may neglect the diamagnetic
conductivity if we are interested in the real part of optical conductivity.

Paramagnetic conductivity. — σ
i j
pm(t, t′) can be regarded as the product of vi

k(t)GR(t, t′)
and v j

k(t)G<
k(t, t′), whose Floquet representations are, from Eq. (3.23), v̂i

kĜR
k(ω) and v̂ j

kĜ<
k(ω),

respectively. Applying Eq. (3.22), we obtain

σ̄
i j
pm(ω)= 1

ω

1
Ωvol

tr
∑

k

∫Ω/2

−Ω/2

dν
2π

[
v̂i

kĜR
k(ν)v̂ j

kĜ<
k(ν−ω)+ v̂i

kĜ<
k(ν)v̂ j

kĜA
k(ν−ω)

]
. (3.25)

Finally, we obtain the Floquet representation for the optical conductivity,

σ(ω)i j =Re
1
ω

1
Ωvol

tr
∑

k

∫Ω/2

−Ω/2

dν
2π

[
v̂i

kĜR
k(ν+ω)v̂ j

kĜ<
k(ν)+ v̂i

kĜ<
k(ν)v̂ j

kĜA
k(ν−ω)

]
. (3.26)

3.5.2 Hall conductivity and Berry curvature in nonequilibrium

The static Hall conductivity σxy(ω = 0) is a quantity of particular importance. The relation
between the Hall conductivity and the topological aspects of the system is first recognized in
the integer quantum Hall effect, where the Hall conductivity is quantized as

σxy(0)= e2

h
ν, ν ∈N, (3.27)

and the integer ν is a topological invariant, given by the integral of the Berry curvature Bmk
of the mth band over the whole Brillouin zone,

ν=
∑

m

∫

BZ

dk2

2π
Bmk fFD(εmk), (3.28)

Bmk =−i∇k ×
[
〈umk|∇k|umk〉

]
z (3.29)

with the mth Bloch wave function |umk〉, the energy εmk, and the Fermi-Dirac distribution
function f (ω). This is the well-known Thouless-Kohmoto-Nightingale-Nijs (TKNN) formula
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[18], which is applicable to general multi-band systems in equilibrium.

In a similar way, one can define a curvature and a topological invariant in ac-driven
systems in terms of Floquet states [29, 34]. Therefore, the Hall conductivity in ac-driven
systems can also be regarded as the indicator of photo-induced topological phase transitions.
In the following, restricting ourselves to noninteracting cases, we obtain a Floquet topological
invariant starting from the Kubo formula, and obtain the clear relation with the expression
in the extended TKNN formula in ac-diven systems, which was first discussed by Oka, et al.
[29].

dc-Hall conductivity in ac-driven systems

Here we recall Eq. (3.26) and rewrite it for (i, j)= (x, y) and in the limit ω→ 0+. The integrand
of Eq. (3.26) can be rewritten as

Retr
1
ω

[
v̂x

kĜR
k(ν+ω)v̂y

kĜ<
k(ν)+ v̂x

kĜ<
k(ν)v̂y

kĜA
k(ν−ω)

]

= tr
1

2ω

{[
v̂x

kĜR
k(ν+ω)v̂y

kĜ<
k(ν)+ v̂x

kĜ<
k(ν)v̂y

kĜA
k(ν−ω)

]
+h.c.

}

= tr
1

2ω

{[
v̂x

kĜR
k(ν+ω)v̂y

kĜ<
k(ν)+ v̂x

kĜ<
k(ν)v̂y

kĜA
k(ν−ω)

]

+
[
− v̂x

kĜ<
k(ν)v̂y

kĜA
k(ν+ω)− v̂y

kĜR
k(ν−ω)v̂y

kĜ<
k(ν)

]}
,

where in the last transformation we have used [Ĝ<(ω)]† =−Ĝ<(ω) and [ĜR(ω)]† = ĜA(ω). We
can further transform the above as

= tr
[
v̂x

k
ĜR

k(ν+ω)− ĜR
k(ν−ω)

2ω
v̂y

kĜ<
k(ν)− v̂x

kĜ<
k(ν)v̂y

k
ĜA

k(ν+ω)− ĜA
k(ν−ω)

2ω

]

ω→0−→ tr
[
v̂x

k
∂ĜR

k(ν)
∂ν

v̂y
kĜ<

k(ν)− v̂x
kĜ<

k(ν)v̂y
k
∂ĜA

k(ν)
∂ν

]
. (3.30)

Next, we would like to express the integrand Eq. (3.30) in terms of the Floquet states and
quasi-energies. As we have shown in Sec.3.2, the retarded and advanced Green’s functions
are diagonalized by taking the Floquet eigenstates Λ̂k = (u1k,u2k, · · · ) as a basis as

Λ̂−1
k ĜR,A

k (ω)Λ̂k = diag
{

1
ω−εαk ± i0+

}

α∈Z
, (3.31)

where εαk is the quasi-energy of the αth Floquet state.

Now, we introduce the distribution function fαk for the Floquet states in terms of the
lesser Green’s function. Recall the nonequilibrium distribution kernel F̂ is given by

ĜK
k (ω)= ĜR

k (ω)F̂k(ω)− F̂k(ω)ĜA
k (ω), (3.32)

and F̂(ω) is related to the nonequilibrium distribution function as f̂k(ω)= [1̂− F̂k(ω)]/2.

In equilibrium, Fk(t, t′) is independent of tav = (t+ t′)/2 and therefore F̂(ω) is a diagonal
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matrix. In that case, Ĝ<
k(ω) is also diagonalized by Λ̂k as

Λ̂−1
k Ĝ<

k(ω)Λ̂k = diag{2πiδ(ω−εαk) fFD(ω−εαk)}α∈Z , (3.33)

with the Fermi-Dirac distribution fFD(ω) = (1+ eω/T )−1. The diagonal elements can be re-
garded as the k-resolved density of states at ω, 2πδ(ω− εαk), multiplied by the distribution
function fFD(ω−εαk).

With the physical interpretation, we can naturally extend this to nonequilibrium steady
states as

Λ̂−1
k Ĝ<

k(ω)Λ̂k = diag{2πiδ(ω−εαk) fαk}α∈Z , (3.34)

with the distribution function fαk for the Floquet state ψαk. Here we implicitly assumed
that the diagonal elements of Λ̂−1

k Ĝ<
k(ω)Λ̂k are completely absorbed in fαk. With this as-

sumption, ĜR,A,<
k (ω) are diagonalized by the Floquet states as in Eq. (3.31) and Eq. (3.34),

and thus we can express the integrand Eq. (3.30) in terms of Floquet states with the unitary
transformation Λ̂k as

tr
[
v̂x

k
∂ĜR

k(ν)
∂ν

v̂y
kĜ<

k(ν)− v̂x
kĜ<

k(ν)v̂y
k
∂ĜA

k(ν)
∂ν

]

=
∑

α,β∈Z

[
ŵx

αβ,k
−1

(ν−εβk + i0+)2
ŵy

βα,k ·2πiδ(ν−εαk) fαk

− ŵx
βα,k ·2πiδ(ν−εαk) fαk · ŵy

αβk
−1

(ν−εβk − i0+)2
]

=−i
∑

α(=β

ŵx
αβ

ŵy
βα

− ŵy
αβ

ŵx
βα

(εαk −εβk)2 ·2πδ(ν−εαk) fαk, (3.35)

where we have defined the transformed current matrix ŵk,

ŵi
k = Λ̂−1

k v̂kΛ̂k, i = x, y. (3.36)

Plugging this into Eq. (3.26), we obtain the dc-Hall conductivity formula for noninteracting
systems in intense ac-fields as

σxy(0)= 1
Ωvol

∑

k

∑

α(=β
(−i)

ŵx
αβ

ŵy
βα

− ŵy
αβ

ŵx
βα

(εαk −εβk)2 fαk. (3.37)

In the following, we discuss the relation between Eq. (3.37) and the Berry curvature
defined for the Floquet bands. We introduce a quantity,

Bz
αk =

∑

β((=α)
(−i)

ŵx
αβ

ŵy
βα

− ŵy
αβ

ŵx
βα

(εαk −εβk)2 , (3.38)

which is determined solely from the structure of the Floquet Hamiltonian Ĥmn,k. This quan-



48 3. Floquet theory and its applications to multi-band systems

tity, in fact, coincides with the Berry curvature for the Floquet state |uαk〉,

Bz
αk =

[
− i∇×〈uαk|∇|uαk〉

]
z. (3.39)

For detailed calculations, see Appendix D. Thus we can conclude that the dc-Hall conductivity
calculated from the Kubo formula is the sum of the photo-induced Berry curvature Eq. (3.39)
of each Floquet band, muitlplied by the nonequilibrium distribution function fαk.

The Berry curvature is determined solely from the structure of the Floquet Hamiltonian
Ĥk, while the distribution fαk is not universal and need to be calculated for each problem.
As we shall show in the Chapter 5, not only the Berry curvature, but also the nonequilibrium
distribution function play important roles in the observables.



Chapter 4

Nonequilibrium steady states in
dp-model in ac-electric fields

In this chapter, we study nonequilibrium steady states of the dp-model in strong external
ac-fields, motivated by recent pump-probe measurements for high-Tc cuprates.

Oka and Aoki [36] studied the noninteracting dp-model in circularly polarized light. The
electron correlation in the ac-driven dp-model, however, is not studied so far. Our study is the
first application of Floquet-DMFT technique for the dp-model in strongly correlated regime.

We investigate electronic structures in the dp-model in strong circularly polarized ac-
fields and obtain novel photon-dressed band structures and nonequilibrium distribution func-
tions which indicates a population inversion, which are found to be significantly different
from those in equilibrium. Specifically, we have calculated optical conductivities and found
negative optical contuctivities in the spectra of optical conductivities in the nonequilibrium
situation. We have also discussed how the Zhang-Rice singlet band behave under the influ-
ence of external fields.

4.1 Introduction — Why dp-model?

4.1.1 Physics of doped cuprates

The high-Tc cuprates have been studied extensively since Bednorz and Müller discovered su-
perconductivity [71], whose critical temperature Tc = 35K. After their first discovery, dozens
of copper oxide superconductors are found. Mercury-based copper oxides [72] are among the
cuprate families that have the highest transition temperature Tc = 135 K, which is far above
the critical temperature of conventional superconductors. The series of copper-oxide-based
superconductors, cuprates, are therefore regarded as the most prospective candidate for room
temperature superconductors.

The lattice structure of cuprates are shown in Fig. 4-1(a). Cuprates consist of conduct-
ing CuO2 planes and insulating block layers. Since the atomic copper d-orbital is strongly
localized, the Coulomb repulsion on the copper site is quite large, and thus cuprates are
categorized as strongly correlated systems.

Undoped cuprates are themselves Mott insulators, and superconductivity manifests itself

49
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Figure 4-1: (a) Crystal structure of Nd2−xCexCuO4 after Ref. [73] (Copyright (2014) by the
American Physical Society). (b) CuO2 plane in cuprates. dx2−y2 -orbital in a copper atom and
p-orbitals in oxygen atoms are shown. (c) Energy scheme of atomic orbitals of copper and
oxygen atoms in CuO2 plane. U is the Coulomb repulsion energy at copper sites, and ∆ is
the energy required when an electron hops from a copper site to an adjacent oxygen site
(charge-transfer energy).

only when electrons or holes are doped in the system, by means of replacing elements, apply-
ing pressures and so on. In Fig. 4-1(c), we show the energy scheme of atomic orbitals in CuO2

plane. Due to the strong electron repulsion on d-orbitals, a doubly occupied d-orbital has a
large energy U . Thus electrons tend to avoid each other on each copper site, and copper sites
are half-filled in undoped case. On the other hand, the electron correlation on p-orbitals (Fig.
4-1)(b)) at oxygen sites is negligibly small compared to U . The Fermi level EF of undoped
cuprates resides between the energy levels of p-orbitals and doubly occupied d-orbitals (see
Fig. 4-1(c)). In this case, the lowest electronic excitation takes place between an electronic
state at oxygen sites and a hole state at cooper sites. We define the level offset of d- and p-
orbitals as ∆, which corresponds to the excitation energy required for electron transfer from
an oxygen site to a copper site. As we have stated, cuprates satisfy U >∆ and the lowest exci-
tation is inter-site (copper to oxygen) transitions. Thus cuprates are called a charge-transfer
insulator.

In Fig. 4-2(a), we show the global phase diagram of carrier doped cuprates. Near the
undoped regime, the system is insulating, with antiferromagnetic long range order, due to
the super-exchange interaction between the neighboring copper sites. Further doping into the
insulating phase gives rise to the superconductivity with the d-wave pairing order parameter.

Here, let us briefly mention how to treat cuprates theoretically. In order to understand
the physics of cuprates, it is important to construct an effective model that contains essential
physics of the system. Such an effective lattice model for cuprates can be constructed by
focusing on CuO2 layers and discard other insulating block layers. A CuO2 plane, shown in
Fig. 4-1(b), consists of three atoms per unit cell: one copper site and two oxygen sites. As
we have stated, the strong electron repulsion on copper sites is important to describe the
energy scheme of a CuO2 plane. Thus we introduce the Hubbard interaction U on copper
sites and neglect long-range Coulomb interactions as a minimal model. This three-band
model is called the dp-model, first proposed by Emery [8]. The Hamiltonian of the dp-model
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Figure 4-2: (a) Schematic phase diagram of high-Tc cuprates, after Ref. [73] (Copyright
(2014) by the American Physical Society). The horizontal and vertical axes represent hole
concentration x and temperature T, respectively. (b) A numerical phase diagram of the dp-
model with dynamical cluster approximation [74] (Copyright (2014) by the American Physical
Society). The horizontal and vertical axes are number of holes per unit cell and temperature,
respectively. SC and AFM represent superconducting and antiferromagnetic phase, respec-
tively.

is given in the next section, in Eq. (4.1). In Fig. 4-2(b) we show a phase diagram of the dp-
model obtained by dynamical cluster approximation by Macridin, et al. [74]. Similarly to the
experimental phase diagram (Fig. 4-2(a)), there are d-wave superconducting phases adjacent
to the metal-insulator transition boundary in the phase diagram of the dp-model. In Fig. 4-
2(b), there is also a "pseudo gap" phase where low-lying excitations have energy gap at higher
temperatures than Tc [75], which is also consistent with experiments [76]. Thus the dp-
model, although being a simple lattice model for a single CuO2 layer with minimal Hubbard
interactions, contains enough physical processes to understand the rich phase diagram of
cuprates.

4.1.2 Optical manipulations of cuprates

Due to the rich phases in the carrier-doped regime, cuprates are also regarded as a fasci-
nating playground for novel photo-induced phase transitions. Carrier injection by optical
pumping is one possibility of photo-induced phase transitions in cuprates. Okamoto, et al.
[24] demonstrated such a photo-carrier doping in cuprates. In Fig. 4-3(a) we show an optical
absorption spectra of undoped La2CuO4(LCO) by pump-probe measurements. The horizon-
tal axis represents the frequency ωprobe of the probe field, while the vertical axis, the optical
absorption ∆OD, is proportional to the optical conductivity. The symbols represent the tran-
sient absorption spectra for LCO at t = 0.3,2.0 and 50 ps after pumping. The spectrum for
doped LCO is also plotted as a solid curve. One can see the rise of the structure around
ωprobe = 0, the so-called Drude peak, after pumping, indicating that the system has finite dc-
longitudinal conductivity. Since the Drude peak survives for ∼ 2 ps after the pumping, they
concluded that a photo-induced insulator-to-metal transition occurs in their system.
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Figure 4-3: (a) Optical absorption spectra (∆OD) in La2CuO4(LCO) with 2.25 eV pump light
[24] (Copyright (2014) by the American Physical Society). The solid line is the ∆OD spec-
trum for 2% hole-doped LCO, while symbols are ∆OD spectra for pumped LCO at t = 0.3,2.0
and 50 ps after pumping. The rise of the transient spectrum near the zero probe frequency
ωprobe = 0 indicates a metallic response due to the photo-carriers. (b) Optical reflectance in
La1.675Eu0.2Sr0.125CuO4(LESCO1/8) at T = 10K, which is in stripe-ordered insulating phase
[25], reprinted with kind permission from AAAS. Transient spectra t = 5 ps after a mid-
infrared pumping are measured and we plot the result normalized by the static spectra. The
edge structure at the probe frequency ωprobe = 60cm−1 is the plasma edge which originates
from the Josephson coupling between two superconducting CuO2 layers.

The photo-induced superconductivity was also reported by Fausti, et al. [25] in the stripe-
ordered cuprates, La1.675Eu0.2Sr0.125CuO4(LESCO1/8). They applied a mid-infrared pump
light and observed the transient refractivity by pump-probe measurements. They found
a plasma-edge response at ωprobe 5 60cm−1, which coincides with the Josephson plasma-
edge response of the LESCO1/8 in superconducting phase. This suggests an insulator-to-
superconductor phase transition by irradiating light.

Since there are dozens of fascinating experiments on the photo-induced phase transitions
in cuprates, it is quite interesting to investigate the physical properties of photo-induced
cuprates in a theoretical manner. The difficulty in understanding the physics of photo-
induced phase transitions is that universal laws in optically driven systems have not been
established. The notion of band structures and distribution functions, which works well for
the physics in equilibrium, may not be applicable to non-equilibrium situations. Our mo-
tivation in this chapter is to clarify how the photo-induced carriers in cuprates differ from
chemically doped carriers. To be more specific, we would like to address the following ques-
tions.

• Is a “rigid band picture” valid for photo-doped cuprates?

In equilibrium, electron or hole doping are often treated by a “rigid band picture”. In
this picture, one first calculates electronic states for the undoped case, and simulate
electron or hole doping by shifting the chemical potential. This treatment is reason-
able when doped carriers do not alter the low-lying electronic structures. In fact, this
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simulation gives reasonable results for cuprates, as we have confirmed the comparison
between experiments and numerical phase diagram of cuprates in Fig. 4-2.

However, in optical carrier doping, many kinds of excitations, not only low-lying excita-
tions, but also high-energy excitations such as inter-band transitions, are continuously
activated while ac-fields are applied. In such a situation, there is no reason why the
rigid band picture is justified. We should therefore fully incorporate the external fields
and obtain the band structure which may drastically change in ac-driven situations.

• How do the photo-carriers distribute in the band? In the above we stressed that the
band structure may severely depend on external fields. In nonequilibrium we should
also examine how the electrons are distributed in the (deformed) band structure. In
equilibrium, the distribution function is universally given by the Fermi-Dirac distri-
bution. However, in nonequilibrium, there are no longer universal functions for dis-
tribution. In some cases, the nonequilibrium distribution gives rise to the so called
population inversion [35], where the population of electrons and holes are partially
inverted. There, characteristic features appear in some observables which clearly dis-
tinguishes the nonequilibrium states from equilibrium ones. Therefore, we would like
to investigate the nonequilibrium distribution and resulting effects for observables in
optical measurements, such as optical conductivities.

4.2 Model

In this section we review the basics of the dp-model and derive the noninteracting Floquet
Green’s functions in linearly and circularly polarized fields.

4.2.1 dp-model

The dp-model consists of the Cu(dx2−y2 ) orbitals and O(px,py) orbitals shown in Fig. 4-4. The
Hamiltonian for the dp-model reads

H =H0 +H1 +H2, (4.1a)

H0 =
∑

iσ
εdd†

iσdiσ+
∑

lσ
εp p†

lσplσ, (4.1b)

H1 =
∑

iσ

∑

l∈Λi

τ
dp
il tdpd†

iσplσ+
∑

〈ll′〉σ
τ

pp
ll′ tpp p†

l pl′ (4.1c)

H2 =
∑

i
Udd†

i↑di↑d†
i↓di↓+

∑

l
Up p†

i↑pi↑p†
i↓pi↓, (4.1d)

where H0 represents the d-p level offset, H1 is the electron-hopping term, and H2 is the
Hubbard interaction term. Due to the parity of the orbitals, the signs of the hopping param-
eters τ

dp
il =±1 and τ

pp
ll′ =±1 are determined as in Fig. 4-4, where tdp and tpp are respectively

the amplitudes of the corresponding hopping parameters. Taking the Fourier transformation
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Figure 4-4: Lattice structure of the dp-model in real space. The atomic orbitals are schemat-
ically shown, where sign of the wave functions are shown by open and shaded regions. Solid
and dotted lines represent the hopping paths between Cu-O and O-O hoppings, respectively.

for site indices in Eq. (4.1), we obtain the noninteracting Hamiltonian H0 in the k-space as

H0 =
∑

kσ
ψ†

kσH0kψkσ, (4.2a)

ψkσ = t
(
dkσ px,kσ py,kσ

)
, (4.2b)

H0k =





−µ −2itdp sin kx
2 −2itdp sin ky

2
2itdp sin kx

2 ∆−µ −4tpp sin kx
2 sin ky

2
2itdp sin ky

2 −4tpp sin kx
2 sin ky

2 ∆−µ



 . (4.2c)

We take the lattice constant (the distance between nearest Cu sites) to be unity.

4.2.2 dp-model in linearly and circularly polarized electric fields

We consider the linearly and circularly polarized electric field E(t) = −∂t A(t) given by the
vector potential

A(t)=






t(A cosΩt, A cosΩt), linearly polarized,
t(A cosΩt, A sinΩt), circularly polarized.

(4.3)

The external fields are included as the Peierls substitution: k → k+ A(t), and the Floquet
matrix elements introduced in Chapter 3 are calculated as

Ĥmn(k)= H0k,m−n =
∫T

0

dt
T

H0,k+A(t) ei(m−n)Ωt. (4.4)
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The Floquet matrices H0k,n are 3×3 ones of a form

H0k,n =




εdδn0 a∗

−n b∗
−n

an εpδn0 c∗−n
bn cn εdδn0



 . (4.5)

The parameters an,bn and cn are obtained by calculating Eq. (4.4) with the noninteracting
Hamiltonian Eq. (4.2c) and vector potentials Eq. (4.3) for linearly and circularly polarized
cases. The detailed calculations are given in Appendix F. The results are the following.

Linearly polarized light—

an = 2itdpJn

(
A
2

)
sin

(
kx +nπ

2

)
, (4.6a)

bn = 2itdpJn

(
A
2

)
sin

(ky +nπ
2

)
, (4.6b)

cn = 2tpp

[
Jn(A)cos

(kx +ky +nπ
2

)
−δn0 cos

(kx −ky

2

)]
. (4.6c)

Circularly polarized light—

an = 2itdpJn

(
A
2

)
sin

(
kx +nπ

2

)
, (4.7a)

bn = 2itdpJn

(
A
2

)
(−i)n sin

(ky +nπ
2

)
, (4.7b)

cn = 2tppJn

(
A
4

2

)[
e−inπ/4 cos

(kx +ky +nπ
2

)
− einπ/4 cos

(kx −ky +nπ
2

)]
. (4.7c)

With the noninteracting Floquet Hamiltonian, we can explicitly write down the Dyson equa-
tion as

(
ĜR

k ĜK
k

0 ĜA
k

)

(ω)=
(
ω1̂+ Ω̂− Ĥ(k) 0

0 ω1̂+ Ω̂− Ĥ(k)

)

−
(
Σ̂R Σ̂K

0 Σ̂A

)

(ω)−
(
Σ̂R

diss Σ̂K
diss

0 Σ̂A
diss

)

(ω), (4.8)

where

Ω̂αβ;mn = nΩδαβδmn, (4.9a)

Σ̂R,A
diss (ω)=∓iΓδαβδmn, (4.9b)

Σ̂K
diss(ω)=−2iΓtanh

ω+nΩ
2T

δαβδmn, α,β= d, px, py, m,n ∈Z. (4.9c)

Throughout this chapter we set, after the DMFT analysis of the dp-model by Macridin, et
al. [74], the model parameters as follows:

tdp = 1.6eV, tpp = 0.0eV, ∆= 4.5eV, U = 9.0eV. (4.10)

We also set a fermion heat bath at each site to study the steady states in the ac-fields. The
heat bath parameters are taken as Γ= 0.1 eV and T = 0.5 eV. Hereafter, we set eV as the unit
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of the energy.

4.3 Results

In this section we present the results on the steady states of the dp-model in circularly po-
larized ac-fields. The results essentially depend on the photon energy of the ac-electric field
Ω. Here, we choose Ω = 4,8, and 20 eV. As we shall discuss in the following subsections,
Ω= 4,8 eV correspond to charge excitation energies from Zhang-Rice band to the upper Hub-
bard band, and the p-band to the upper Hubbard band, respectively. Ω= 20 eV is larger than
the energy difference between the lower and the upper Hubbard bands and thus lies in an
off-resonant regime.

Experimentally, mid-infrared to near-infrared light (100 meV ∼ 2 eV) are chosen as a
pump light, in pump-probe measurements. The reason for the choice of relatively large pho-
ton energies Ω ≥ 4 compared to experiments in our study is related to the computational
cost of our calculation scheme. The bottleneck of our calculation is the process of solving the
Dyson equation Eq. (4.8). The matrix size of the Green’s functions is (NbNF )×(NbNF ), where
Nb = 3 is the number of orbitals and NF is the size of the Floquet Green’s functions, respec-
tively. The computational cost for solving the Dyson equation equals to that for inversion of
the matrices and thus O(N3

b N3
F ). NF should be chosen so that the total band width may be

covered by the energy window Ω×NF of the Floquet Green’s function. Thus, as Ω becomes
smaller, the required value of NF becomes larger and computational costs increase as the
cube of NF . For this reason, we have to take NF < 20 so that the calculation may finish in
realistic computational time. Our strategy is therefore to take Ω as small as possible (Ω# 4)
and examine the tendency of the resulting steady states.

4.3.1 Off-resonant regime: Ω = 20 eV

First, we show the results in the off-resonant regime, that is, the photon energy Ω is much
larger than the total band width. We set Ω= 20, which turns out to satisfy the off-resonant
condition. The bath temperature and the bath coupling strength are set T = 0.5 and Γ= 0.1,
respectively.

In Fig. 4-5(a), we show the time-averaged total density of states A(ω) and the occupation
density N(ω),

A(ω)=
∫T

0

dtav

T
A(tav,ω), N(ω)=

∫T

0

dtav

T
N(tav,ω), (4.11)

for various values of A. A(tav,ω) and N(tav,ω) are the density of states and the occupation
density at time tav, defined in Eq. (2.29). Our results in equilibrium qualitatively agree with
the preceding DMFT study of the dp-model reported by Macridin, et al. [77], except that the
bath coupling makes the structure broader. The character of the density of states is given by
partial density of states in Fig. 4-5(b). The structure around ω=−8 and ω= 2 are the lower
Hubbard band (LHB) and the upper Hubbard band (UHB), respectively. They are mainly
composed of the d-orbitals and separated by U = 9. A sharp structure at ω = −4 is the the
p-band.



4. Nonequilibrium steady states in dp-model in ac-electric fields 57

 0

 0.2

 0.4(a)     

A
(ω

),
 N

(ω
)

A=0.0

 0

 0.2

 0.4(b)     

A
d

(ω
),

 A
p

(ω
)

A=0.0Ad(ω)
Ap(ω)

 0

 0.2

 0.4
A=1.0

 0

 0.2

 0.4
A=1.0

 0

 0.2

 0.4
A=2.0

 0

 0.2

 0.4
A=2.0

 0

 0.2

 0.4
A=3.0

 0

 0.2

 0.4
A=3.0

 0

 0.2

 0.4

-20 -10  0  10  20

A=4.0

 0

 0.2

 0.4

-20 -10  0  10  20

A=4.0

ω ω

LHB

p-band
UHB

(Q)(P)

ZRB

Figure 4-5: (a) Total density of states A(ω) (red solid lines) and the density of occupied states
N(ω) (shaded region), and (b) partial density of states, Ad(ω) and Ap(ω), for each orbital,
in an off-resonant circularly polarized light Ω = 20. Parameters are T = 0.5 and Γ = 0.1.
The intensity of the field A is varied from 0 to 4. LHB (lower Hubbard band), UHB (upper
Hubbard band), ZRB (Zhang-Rice band) and the p-bands are assigned. Photo-induced bands
that appear in a large intensity regime (A = 4.0) are marked as (P) and (Q).

More importantly, the structure at ω = −1 is the so called Zhang-Rice band (ZRB), a
hybridized band composed of the p-band and the d-band. Doped holes in equilibrium are
doped into ZRB and thus an effective single-band picture proposed by Zhang, et al. [9] is
justified in equilibrium.

The width of each peak is reduced as the intensity A is increased for the following reason.
As shown in the Floquet Hamiltonian Eq. (4.7), an external field gives the factor J0(A/2) to
the hopping matrix element tdp and causes effective shrinking of the band width. Therefore
the system becomes completely dispersionless as A/2 reaches the zeros of the Bessel function
J0(x), i.e. A 5 4.8. The physical reason for this shrinkage is understood by time average over
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Figure 4-6: k-resolved density of states in an off-resonant linearly polarized light. k-points
are sampled along Γ(0,0)-X(π,0)-M(π,π)-Γ(0,0). Parameters are T = 0.5 and Γ = 0.1. The
intensity of the fields A is varied from 0 to 4.
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the Bloch oscillation, known as the dynamical localization of electrons in ac-fields [78].
For large intensity of the field, Floquet sidebands grow. In fact, there exist photo-induced

bands far above the Fermi level, marked as (P) and (Q) in Fig. 4-5(a).
To investigate the detailed electronic structure, in Fig. 4-6 we plot the k-resolved spectral

function for various values of A. We clearly see that electrons become dispersionless as the
intensity A is increased. Subsequently, due to the reduction of the d-p hybridization tdp, the
ZRB, a hybridized band with a d-orbital and a p-orbital, is suppressed. In other words, ZRB
is not rigid against photo-irradiation and therefore the single-band picture can be degraded
in the photo-doping case.
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Figure 4-7: Optical conductivities σxx(ω) and σxy(ω) in an off-resonant circularly polarized
light, Ω= 20. Parameters are T = 0.5 and Γ= 0.1. The intensity of the field A is varied from
0 to 4. For the explanation of the structures marked as (P) , (Q), (R) and (S), see the text.

Optical conductivities are also shown in Fig. 4-7. The longitudinal conductivity σxx(ω)
(Fig. 4-7(a)) for A = 0 is consistent with the previous study by Wang, et al. [77]. The structure
(P) around ω = 0 is due to the thermal excitations near the Fermi level. The structure (Q)
corresponds to the photo-excitation process ZRB→UHB, while (R) to the p-band→UHB. The
deformation of the spectra with increasing A is understood as follows. The peak (P) is due to
the electronic states near the Fermi levels and therefore suppressed as the system becomes
dispersionless and the density of states decreases near the Fermi level. The peak (Q) is also
suppressed since ZRB itself vanishes.

Interestingly, a negative conductivity grows near ω= 14, labeled as (S) in Fig. 4-7. In gen-
eral, a negative conductivity at ω indicates the population inversion between the electronic
states with the distance ω in energy.
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The population inversion can be visualized by considering the distribution function fk(ω)≡
Ak(ω)/Nk(ω). In Fig. 4-8 we show the distribution function for several values of A. We see
that the Fermi-Dirac distribution function at A = 0 is deformed and has a characteristic
structure around ω 5 ±15. This suggests that the photo-induced band marked as (P) and
(Q) in Fig. 4-5(a) are filled with holes and electrons, respectively. Therefore, the population
inversion, a necessary condition for the negative optical conductivity, is indeed realized in
this case.

The optical Hall conductivity σxy(ω) is also calculated and shown in Fig. 4-7(b). σxy(ω) is
related to the Kerr and Faraday rotations [79], and thus we expect our calculation gives some
insights into the experiments of Kerr and Faraday rotations for cuprates under the influence
of circularly polarized fields. The analysis of σxy(σ) is a future consideration.
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Figure 4-8: k-resolved distribution function in an off-resonant circularly polarized light with
Ω= 20. k-points are sampled along Γ(0,0)-X(π,0)-M(π,π)-Γ(0,0). Parameters are T = 0.5 and
Γ= 0.1. The intensity of the field A is varied from 0 (a) to 4 (d).
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4.3.2 Resonant regime: Ω = 4.0 eV and 8.0 eV

Next we turn to the resonant regime. We choose two photon energies, Ω = 4.0 (5 excitation
energy from ZRB to UHB), and Ω= 8.0 (5 excitation energy from the p-band to UHB).

The total density of states and partial density of states are shown in Fig. 4-9(a)(b). A
substantial difference from the off-resonant case appears in the photo-carriers for the rela-
tively weak intensity A. By observing the occupation density N(ω) in Fig. 4-9(a), we can see
that holes and electrons are doped to the p-band and UHB, respectively, as the intensity A
increases. On the other hand, the position of each band is almost unchanged, in contrast to
the off-resonant case (Ω= 20), in which the band structure highly deviates from equilibrium.
For example, ZRB marked as red arrows in Fig. 4-9(a), survives in the large intensity regime,
while in an off-resonant case (Fig. 4-5(a)) ZRS vanishes. This indicates that the rigid-band
picture may hold for weak intensity fields in a resonant regime.

The momentum-resolved distribution function is plotted in Fig. 4-10. For Ω = 4.0 (Fig.
4-10(a)), the distribution function is almost monotonic, which resembles the Fermi-Dirac dis-
tribution function at high temperatures. For Ω = 8.0 (Fig. 4-10(b)), on the other hand, the
distribution function is highly non-monotonic. In particular, there is a structure around
ω5 5, suggesting population inversion at UHB.

In Fig. 4-11(a), we plot optical conductivities. For Ω= 4.0 (left top panel), we observe the
reduction of the longitudinal conductivity. This behavior is understood as the effective high-
temperature effect. When the temperature becomes higher, electrons below [holes above] the
Fermi level are decreased due to the thermal excitations, and thus the optical transition is
suppressed. This results in the reduction of optical conductivities. For Ω = 8.0 (right top
panel), we have a negative optical conductivity near ω = 3 for higher values of A. This is
again due to the population inversion, as we stated above.

4.4 Concluding remarks

4.4.1 Summary of our calculation

In this chapter, we have investigated steady states in the dp-model in circularly polarized ac
electric fields for various values of photon energy Ω and intensity A, and observed significant
qualitative differences in the steady states between off-resonant and resonant cases. We
numerically calculated the momentum-resolved density of states, distribution functions and
optical conductivities and we obtained the following results.

• For off-resonant photon energy Ω= 20 eV, the distribution function stays almost mono-
tonic near the Fermi level (Fig. 4-8) for large A ≥ 2, while the band structure highly
deviates from the original one. The population inverted photo-induced bands appear
far away from the Fermi level, and thus we observe negative optical conductivities.

• For a smaller photon energy Ω= 8.0 eV, corresponding to the resonance energy between
the p-band and UHB, we observe deformation of the distribution function for small A,
and the band structure is almost unchanged in that intensity of A. The distribution
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Figure 4-9: (a) Total density of states A(ω) (red solid lines) and the density of occupied states
N(ω) (shaded region), and (b) partial density of states, Ad(ω) and Ap(ω), for each orbital, in
a resonant circularly polarized light Ω = 4.0,8.0. Parameters are T = 0.5 and Γ = 0.1. The
intensity of the field A is varied from 0 to 2. Population-inverted bands are marked as (A)
and (B).

function suggests the population inversion (Fig. 4-10(b)) and the system exhibits nega-
tive optical conductivities.

• For a small photon energy Ω= 4.0 eV, corresponding to the resonance energy between
ZRB and UHB, the distribution function deviates from the original distribution func-
tion for small A < 2 (Fig. 4-10(a)), and resembles the Fermi-Dirac distribution function
at higher temperatures. Therefore, the effect of the external fields may be understood
as the effective rise of the temperature of the system.
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4.4.2 Required electric field intensities

Finally, let us remark on the intensity of the field experimentally required for the phenomena
predicted here. From the definition of A, the amplitude of the electric field is E = AΩ, and
thus we have

E =
(

eaA
!

)(!Ω
e

)
1
a

, (4.12)

where a is the lattice constant. (eaA/!) is dimensionless, while !Ω/e and a have the dimen-
sion of voltage and length, respectively. Thus we can express the amplitude in units of kV/cm,
which is commonly used in optical experiments as

E = 2.5
(

eaA
!

)( !Ω
1eV

)
×104 [kV/cm], (4.13)

where we have set a = 4Å, a typical lattice constant in the cuprates. The intensity of the field
is calculated as

I ≡ 1
2
ε0E2c

= 8.3
(

eaA
!

)2 ( !Ω
1eV

)2
×1011 [W/cm2], (4.14)

where ε0 = 8.854×10−12 F/m is the vacuum permittivity and c = 3.0×108 m/s is the velocity
of light.

Let us compare the value of Eq. (4.14) with the intensity of pump light in pump-probe
measurements. The typical photon energy Ω is in the range of 1 eV to 10 eV, while the
absorption energy is estimated as 10-100 mJ/cm2 [25, 80, 81]. Assuming that the typical
pulse-width is ∼100 fs, we estimate that the intensity in pump-probe measurements is about
1012 ∼ 1013 W/cm2. In our calculation we have used (eaA/!)∼ 1 and !Ω∼ 10 eV. Substituting
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Figure 4-11: Optical conductivities σxx(ω) and σxy(ω) in an off-resonant circularly polarized
light. Parameters are T = 0.5 and Γ = 0.1. The photon energy is set to Ω = 4.0,8.0 and the
intensity of field A is varied from 0 to 3.5.

this into Eq. (4.14), we estimate the intensity of the field I at 1013 ∼ 1014, which is comparable
to the situations of real experiments. This rough estimation of the injected amount of energy
indicates that the intensity of the fields required in our study may be realized in the pump-
probe measurements.

4.4.3 Discussions and future works

We have obtained the results based on Floquet-DMFT with an impurity solver based on a
weak-coupling perturbation theory. The validity of our approximation should be checked by
comparing with other numerical impurity solvers. One candidate is the non-crossing approx-
imation (NCA) [82, 83], which is based on a strong-coupling perturbation theory. NCA is
analytically formulated in terms of Green’s functions and can be extended to time-dependent
problems [84]. Steady state formalism for NCA can also be established by extending the
Green’s function to Floquet-Green’s functions.

To investigate ordered phases is also important works that we have left in this study.
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As we stated in the introduction, doped cuprates exhibit antiferromagnetic order or d-wave
superconductivity. Oka, et al. [85] studied the dc-biased Hubbard model and obtained the
nonequilibrium phase diagram for antiferromagnetic and superconducting phases. It is im-
portant to investigate the phase diagram for the ac-driven dp-model and to present a guide-
line for pump-probe experiments for cuprates.





Chapter 5

Photo-induced phase transitions in
Hubbard model on honeycomb
lattice

In this chapter, we study the nonequilibrium steady state of the honeycomb-Hubbard model
in circularly polarized electric fields, as a paradigm of the interplay between photo induced
topological properties and electron correlations.

We study intense-field and strongly correlated regimes with multi-band Floquet-DMFT
for the first time, and investigate how the photo-induced phase transition manifests itself
under the influence of circularly polarized fields.

We show that the system exhibits a novel photo-induced Mott transition and topological-
topological phase transitions. We shall discuss the properties of the phases by numerical
calculation of electronic structures and transport coefficients. Besides the numerical simu-
lation, we develop an analytic perturbation theory for Floquet states. We shall show that
the honeycomb lattice in the circularly polarized light can be mapped to an effective model,
whose properties are consistent with our numerical results.

5.1 Introduction

5.1.1 Discovery of topological phenomena: the integer quantum Hall ef-
fects

Topological properties in condensed matter are one of the most important topics in multi-
band systems and have been studied intensively to uncover beautiful connections between
topological aspects in quantum physics and quantum phenomena in real materials. The
study of topology in condensed matter originates from the discovery of the integer quan-
tum Hall effect (IQHE) in a two-dimensional electron system by Klitzing, et al. [86]. They
measured the Hall conductivity σxy of the inversion layer in the MOSFETs (metal-oxide
semiconductor field-effect transistors) in an intense magnetic field, and discovered that σxy

67
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is quantized as

σxy = n
e2

h
, n ∈N. (5.1)

IQHE can be explained by the formation of Landau levels in magnetic fields. According to
the quantum mechanics of free electrons in magnetic fields, the energy levels of electrons in
a magnetic field B are quantized as

En = !ωc

(
n+ 1

2

)
, n ∈N, (5.2a)

ωc =
eB
mc

, (5.2b)

where ωc is the cyclotron frequency. In the presence of the Landau levels, the Hall conductiv-
ity is given by Eq. (5.1) when n Landau levels are fully occupied while other Landau levels
are empty. After the discovery of IQHE, Thouless et al. pointed out [18] that the quantiza-
tion of σxy can be understood in terms of topological invariants for each Landau level. They
showed the so-called TKNN formula

σxy =
∑

α:occupied

e2

h
να, (5.3a)

να =
∫ dk

2π
Bαk, (5.3b)

Bαk =
[
− i∇k ×〈uαk|∇k|uαk〉

]
z, (5.3c)

for noninteracting multi-band systems, where α is a band index and |uαk〉 is a Bloch wave
function. Bαk, defined by k-derivatives of the Bloch wave function for the αth band, serves
as a curvature of the Brillouin zone, and thus called the Berry curvature [87]. Accoring to
differential geometry, να, the integral of Bαk over the Brillouin zone, is always an integer.
να, the so-called Chern number [88], is a topological invariant that is pinned to an integer
as long as the system is continuously deformed without crossing any phase boundaries. The
fact that σxy is proportional to the sum of topological invariants of occupied bands implies
that σxy is pinned to a quantized value which topologically classifies the electronic state.
Applying this argument to two-dimensional electron systems in magnetic fields, Thouless,
et al. clearly explained the relation between the topological aspects of multi-band electron
systems and IQHE.

Thouless, et al. showed that the existence of topologically nontrivial bands with nonzero
Chern numbers να (= 0 is a requirement for IQHE and thus nontrivial topological bands are
indeed realized in integer quantum Hall systems. Then it is natural to pose a question,
"in which systems the nontrivial topological bands show up, besides electron systems with
intense magnetic fields?."

5.1.2 Novel topological phases in honeycomb lattice: topological insulator

The pioneering work was done by Haldane [19], who found novel topological states of fermions
on a honeycomb lattice even in the absence of net magnetic fields. In Fig. 5-1(a) we depict the
lattice structure of Haldane’s toy model, where black dots represent atoms of the same kind,
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Figure 5-1: (a) The Haldane model [19]. Black solid and dashed lines represent NN and
NNN hopping paths, respectively. These lines divide the unit cell into three regions, P, Q
and R as labeled in the figure. Magnetic fluxes ±ϕ are passing through P and Q regions,
respectively, while no magnetic field is applied to R regions. J and K eiϕ are NN and NNN
hopping matrices, respectively. (b) A phase diagram of the Haldane model [19]. The flux ϕ is
varied with a fixed ratio K /J (= 0. For ϕ≡ 0 mod π, the system is trivial with ν= 0, otherwise
topologically nontrivial states with finite Chern numbers (ν=±1 for pink and blue regions in
the fugure, respectively) appear.

and solid and dashed lines are nearest-neighbor (NN) and next-nearest-neighbor (NNN) hop-
ping paths, respectively. The parameters J and K are amplitudes of NN and NNN hopping.
This lattice structure is indeed realized in real materials, such as graphene [89] and silicene
[90]. He assumed spatially alternating magnetic fields applied perpendicular to the lattice
plane, and he set magnetic fluxes ±ϕ passing through P and Q regions in Fig. 5-1, respec-
tively. As a result of the alternating flux, the NNN hopping acquires a phase factor as K eiϕ.
In Fig. 5-1(b) we show the phase diagram of the Haldane model for a fixed ratio K /J. By cal-
culating the Chern number of the occupied band ν, he found a topological phase for ϕ (= 0. His
finding is quite interesting in two points: (1) nontrivial topological state (ν (= 0) appears even
in the absence of Landau levels as in integer quantum Hall states, and (2) electronic system
in a honeycomb lattice is at a marginal point between trivial (ν = 0) and nontrivial (ν (= 0)
topological states and thus topological phase transitions take place for an infinitely small
perturbation, the alternating flux ϕ, which explicitly breaks the time-reversal symmetry.

Recently, Kane and Mele [20, 21] extended Haldane’s argument to a more realistic model
having the time-reversal symmetry. If we write the Hamiltonian for the Haldane model with
the alternating flux ϕ as HHaldane(ϕ), the Kane-Mele model is simply written as

HKane−Mele =
(
H ↑

Haldane(ϕ) R†

R H ↓
Haldane(−ϕ)

)

, (5.4)

where the symbols ↑,↓ are spin indices and R is a spin-spin scattering process that does not
violate the time-reversal symmetry. The point is that the Kane-Mele model has the time-
reversal symmetry, that is, the Hamiltonian Eq. (5.4) is unchanged by the time-reversal
operation: ϕ→−ϕ and ↑ [↓]→↓ [↑]. The Kane-Mele model can be realized when some intrinsic
spin-mixing processes, such as spin-orbit interactions, are present, and fictitious alternating
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magnetic fields, assumed in the Haldane model, are no longer necessary. They constructed
a topological number, called Z2 topological invariant, as a natural extension of the Chern
number, and showed the Kane-Mele model indeed has nontrivial topological states that is
classified by the Z2 topological invariant. The topologically nontrivial state in the Kane-Mele
model carries a spin current (the quantum spin-Hall effect) and has characteristic edge states
(chiral edge states). Based on the theoretical predictions, band insulators with nontrivial
topological bands, topological insulators [23], are recently found in various materials with
a strong spin-orbit interaction, such as two-dimensional HgTe quantum wells [91], or even
three-dimensional materials, Bi2Se3 [92] and Bi2Te3 [93].

5.1.3 Topological states in an ac-driven honeycomb lattice

Besides Kane and Mele’s idea, Oka and Aoki [29] showed that topologically nontrivial state
can also be realized by applying external electric fields. They showed, as we have shown in
Chapter 3, that the Hall conductivity in ac-electric fields can be written in terms of Floquet
states as

σxy =
∑

m

e2

h

∫ dk
2π

Bmk fmk, (5.5a)

Bmk =
[
− i∇k ×〈umk|∇k|umk〉

]
z, (5.5b)

where m labels Floquet bands, |umk〉 and fmk are a Floquet wave function and its occupation
number, respectively. The photo-induced Berry curvature Bmk also serves as a curvature and
its k-integral over the Brillouin zone gives a topological invariant, analogous to the TKNN
formula. Oka and Aoki observed the low-lying electron dispersion in circularly polarized
fields and analytically showed that a metal-to-topological-insulator phase transition indeed
takes place. They also numerically demonstrated that the Hall effect does appear under the
influence of circularly polarized fields, as a result of the photo-induced Berry curvature. The
quantization of the photo-induced Hall conductivity is confirmed by a numerical study of the
transport properties of graphene ribbons in circularly polarized fields [94].

Photo-induced topological states are further investigated by Kitagawa, et al. [34], who
uncovered a connection between topological states in an ac-driven honeycomb lattice and
the original Haldane model. They start from the honeycomb lattice with NN hopping J
in circularly polarized ac-fields. In the ac-electric fields with frequency Ω, electrons can
absorb or emit photon energy !Ω, and transfer to another Floquet states. In the limit of
weak intensity of the field, the transition amplitude is proportional to the intensity. They
developed the perturbation technique with respect to the external field and concluded that
the second-order perturbation of the field gives rise to an effective NNN hopping, K ∝ iJ2,
which is analogous to the Haldane model in the case of the alternating flux ϕ = π/2. The
NNN hopping appears due to the two photo-assisted hopping processes, as depicted in Fig.
5-2. Thus the photo-induced phase transition in a honeycomb lattice is understood by the
analogy of the Haldane model, at least in the weak-field regime.

There are still unanswered questions for the photo-induced topological states. One is the
effect of nonequilibrium distribution function fmk which appeared in Eq. (5.5). As is already



5. Photo-induced phase transitions in Hubbard model on honeycomb lattice 71
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Figure 5-2: Effective NNN hopping processes on a honeycomb lattice in circularly polarized
ac-fields, discussed by Kitagawa, et al. [34]. J is the NN hopping amplitude and Ω is the
frequency of the ac-field. In (a) we show a second-order perturbation process, with NN hop-
ing with single photon absorption and subsequent NN hoping with single photon emission,
resulting in an effective NNN hopping matrices J2eiπ/3. In (b) we show another second-order
perturbation process, with single photon absorption process after single photon emission pro-
cess. The two matrices add up to an effective NNN hopping matrix i

4
3J2, which is equiva-

lent to Haldane’s NNN hopping for the flux ϕ=π/2.

demonstrated in a Floquet-DMFT study in the single-band Hubbard model [35], nonequilib-
rium distribution functions can highly deviate from the Fermi-Dirac distribution function.
Since the external ac-fields induce not only the Berry curvature but also the deformation of
the distribution function, it is important to clarify how the nonequilirium distributions affect
the topological nature under the influence of ac-fields. Another question is about the topo-
logical states in circularly polarized ac-fields with strong intensity. When the field intensity
becomes large, the mapping to the Haldane model, studied previously in the weak intensity
regime, may not hold. Thus it is interesting to investigate whether or not the new topological
states appear in the strong field regime.

5.1.4 Electron correlation in a honeycomb lattice

So far, we have assumed that electrons on a honeycomb lattice are noninteracting. However,
electron correlation is also an important physics that drives the system into qualitatively
different states.

At half-filling, the honeycomb-lattice model is semimetallic in the one-body picture. The
low-lying dispersion is gapless, while the density of states is exactly zero at the Fermi level,
at which the low-lying dispersions touch at special points in the k-space. The semimet-
alic nature makes the Mott transition qualitatively different from that of correlated massive
electrons as we mention below. This characteristic Mott transition in the semimetal is called
"semimetal-insulator transition (SMIT)". Physics of SMIT in the honeycomb-Hubbard model
has been studied by various authors. Santoro et al. [95] developed DMFT on the infinite
diamond lattice, an extension of the honeycomb lattice to the infinite coordination number,
and revealed that the model possesses a rich phase diagram that includes semimetallic, Mott
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velocity ṽF against vF normalized by the free Fermi velocity vF for the honeycomb-Hubbard
model [97], reprinted with kind permission from Springer Science + Business Media. The im-
purity solver of DMFT is the second-order iterated perturbation theory. The nearest-neighbor
hopping is taken as the unit of energy.

insulating, and antiferromagnetic phases.
Ebrahimkhas and Jafari [96, 97] studied SIMT in the two-dimensional honeycomb-Hubbard

model with DMFT and revealed that SIMT is accompanied by a renomalization of the Fermi
velocity. In Fig. 5-3 we show the spectral function and the renormalized Fermi velocity for
various values of U , after Ref. [97]. The density of states in Fig. 5-3(a) have the V-shaped
structure at the Fermi level ω= 0 for each U , showing that there exist Dirac points at ω= 0
up to a large value of U and thus the Dirac dispersion is robust against the Hubbard in-
teraction. As U becomes larger, the structure around ω shrinks due to the reduction of the
quasiparticle weight Z, as we discuss in this chapter. Instead, another structure develops
around ω5U /2 which corresponds to the upper Hubbard band. Since the bare Fermi veloc-
ity vF is also renormalized by the quasiparticle weight Z as ṽF = ZvF , one can estimate the
value of Z by taking the ratio ṽF /vF , which is plotted in Fig. 5-3(b) against U . In this case,
the critical value U , over which the quasi particle weight Z vanishes, is around Uc 5 13.3.

It is important to mention actual values of U in real materials. Wehling, et al. [98]
estimated the Coulomb interactions in graphene within the constrained random phase ap-
proximation (cRPA) [99], and they calculated the on-site repulsion U = 3.3J and the nearest-
neighbor repulsion V = 2.0J, where J = 2.8 eV is the NN hopping amplitude for graphene.
By carrying out the renormalization of the nearest-neighbor interaction V based on a vari-
ational principle, Schüler, et al. [100] evaluated the effective Hubbard interaction U = 1.6J
for graphene. The estimated value is much smaller than the critical value Uc for SMIT.

However, the value of U /J can vary from system to system. In fact, Schüler, et al. also
calculated for silicene, a two-dimensional material with honeycomb lattice composed of sil-
icon atoms, and they reported U /J = 2.0 [100]. Moreover, the honeycomb lattice is recently
simulated in bosonic [101, 102] and fermionic cold atoms [103]. In the cold atoms, the Hub-
bard interaction can become even stronger due to the strong localization of the atoms, and
thus the strongly correlated regime in a honeycomb lattice may be realized.
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Even if the system is weakly correlated with small U /J, effects of electron correlation on
topological properties are not at all trivial. The electron correlation does not explicitly break
the time-reversal symmetry and therefore one may expect that the topological characters are
not disturbed by electron correlation. However, the topological invariants that we have dis-
cussed in the previous section are constructed by noninteracting Bloch wave functions. When
the interaction is switched on, the electronic state may significantly differ from noninter-
acting states and thus one needs to extend the notion of topological invariant to interacting
systems, which has not been fully understood [104, 105].

5.1.5 Motivation and key results of this study

Having overviewed the recent developments in electronic systems in the honeycomb lattice,
we are now in the position to pose an interesting question that have not been answered yet:
"how the photo-induced phase transition manifests itself in the intense-field regime, or in the
correlated regime?" To investigate the correlated and intense-field regimes on a equal footing,
we apply the multi-band Floquet-DMFT formalism, which we established in Chapter 3, to the
Hubbard model on the honeycomb lattice. We investigated the honeycomb-lattice systems
from the weakly correlated regime to the highly correlated regime, under the influence of
circularly polarized field with frequency Ω. The key results are summarized as follows.

• For the high-frequency regime Ω > W (W is the band width), the system exhibits a
novel photo-induced Mott transition, even for small value of U /J. Further, for strong
field regime, the system exhibits topological-topological phase transition which is char-
acterized by quantized values of the Hall conductivity.

• We shall extend the perturbation technique that Kitagawa, et al. [106]) developed to
the regime of large photon energy (Ω/W ; 1 ). Using the formalism we shall show that
the honeycomb lattice in the circularly polarized light can be mapped to an effective
Haldane model in the limit of small W/Ω, and demonstrate that the novel phase tran-
sitions in the high-frequency regime can be understood by the static properties of the
effective Hamiltonian.

• For the small-frequency regime Ω ≤ W , the Hall conductivity has sign-change depen-
dence on the frequency Ω. We shall clarify the origin of this sign change as an effect of
the nonequilibrium distribution function.

5.2 Model

In this section we review the basics of the honeycomb-Hubbard model and derive the nonin-
teracting Floquet Green’s functions in circularly polarized fields.
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5.2.1 Honeycomb-Hubbard model

The tight-binding Hamiltonian for the honeycomb-Hubbard model reads

H =H0 +H1, (5.6a)

H0 =
∑

〈i j〉,σ
Jc†

iσc jσ, (5.6b)

H1 =
∑

i
Uc†

i↑ci↑c†
i↓ci↓, (5.6c)

where H0 is the non-interacting tight-binding Hamiltonian and H1 is the Hubbard inter-
action term. The sum in H0 is over all the nearest-neighbor pairs (i, j) in the honeycomb
lattice, depicted in Fig. 5-4. The directions to the nearest neighbors are given by R0 = t(0,a),
R1 = t(−

4
3a/2,−a/2) and R2 = t(

4
3a/2,−a/2), where a is the distance of the nearest-neighbor

sites (hereafter we take a as the unit of length: a = 1). By the standard tight-binding model
calculation, we obtain the noninteracting Hamiltonian H0 in the k-space as

H0 =
∑

kσ
ψ†

kσH0kψkσ, (5.7a)

ψkσ = t
(
cAkσ cBkσ

)
, (5.7b)

H0k =
∑

j=0,1,2

(
0 e−ik·R j

eik·R j 0

)

(5.7c)

=



 0 e−iky +2cos
(4

3
2 kx

)
eiky/2

eiky +2cos
(4

3
2 kx

)
e−iky/2 0



 . (5.7d)

The eigenvalues of H0k, ω = ±εk, give the noninteracting band structure of the honeycomb
lattice, where

εk =

√√√√1+4cos2

(4
3kx

2

)

+4cos

(4
3kx

2

)

cos
(3ky

2

)
. (5.8)
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5.2.2 Honeycomb-Hubbard model in circulary polarized electric fields

We then consider the circularly polarized electric field E(t) = −∂t A(t), given by the vector
potential

A(t)= t(A cosΩt, A sinΩt), (5.9)

where Ω and A are the frequency and the amplitude of the vector potential. The intensity of
the electric field is E = |AΩ|. The external field can be included as the Peierls substitution:
k → k+ A(t). Due to this substitution, each component of the noninteracting Hamiltonian is
transformed as

e−ik·R j → e−ik·R j e−iA(t)·R j = e−ik·R j e−iA sin(Ωt−2π j/3), (5.10)

where we have used R j = t(cosφ j,sinφ j) with φ j = π/2+ 2π j/3( j = 0,1,2) representing the
angle between x-axis and R j. Therefore, the time-dependent Hamiltonian reads

H (t)=H0(t)+H1, (5.11)

H0(t)=
∑

k,σ
ψ†

kσH0,k+A(t)ψk,σ, (5.12)

H0,k+A(t) =
∑

j=0,1,2

(
0 e−ik·R j e−iA sin(Ωt−2π j/3)

eik·R j eiA sin(Ωt−2π j/3) 0

)

. (5.13)

In order to study steady states of this Hamiltonian, we need to solve the Dyson equation
for Floquet-Green’s functions, where the Floquet matrix element,

Ĥmn(k)=
∫T

0

dt
T

H0,k+A(t) ei(m−n)Ωt, (5.14)

plays an important role, with T the period of the field T = 2π/Ω. Each component of H0,k+A(t)

in Eq. (5.13) is transformed as

∫T

0

dt
T

e−ik·R j e±iA sin(Ωt−2π j/3) ei(m−n)Ωt

= ei(m−n)·2π j/3e−ik·R j

∫T

0

dt
T

e±iA sinΩt ei(m−n)Ωt

= ei(m−n)·2π j/3e−ik·R j J∓(m−n)(A),

where Jn(A) is the Bessel function. Then the Floquet matrix element of the noninteracting
Hamiltonian Ĥmn reads

Ĥmn(k)=
∑

j=0,1,2

(
0 J−(m−n)(A)e−ik·R j

Jm−n(A)eik·R j 0

)

e2πi(m−n) j/3. (5.15)

With the Floquet matrix element, the Dyson equation for Floquet-Green’s functions reads
(see Chap. 5)
(
ĜR

k ĜK
k

0 ĜA
k

)

(ω)=
(
ω1̂+ Ω̂− Ĥ(k) 0

0 ω1̂+ Ω̂− Ĥ(k)

)

−
(
Σ̂R Σ̂K

0 Σ̂A

)

(ω)−
(
Σ̂R

diss Σ̂K
diss

0 Σ̂A
diss

)

(ω), (5.16a)
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where

Ω̂αβ;mn = nΩδαβδmn, (5.16b)

Σ̂R,A
diss (ω)=∓iΓδαβδmn, (5.16c)

Σ̂K
diss(ω)=−2i tanh

(
ω+nΩ

2T

)
δαβδmn, α,β= A,B, m,n ∈Z. (5.16d)

5.3 Result and discussions

In this section, using the two-band Floquet-DMFT formalism for honeycomb-Hubbard model
in the previous section, we study the properties of steady states in the honeycomb-Hubbard
model in circularly polarized fields. We set the Fermi level at the Dirac point (half filling)
throughout this chapter. We show our results in three parts: equilibrium (no external fields),
nonequilibrium steady states in ac-fields with off-resonant, and those for resonant frequen-
cies.

5.3.1 Equilibrium case

First we show the results for the equilibrium case, where the field strength is set to zero (A =
0). Since we have attached heat baths as dissipative environments, non-analytic behaviors
at phase boundaries will be rounded and thus phase transitions appear as a crossover. At
sufficiently small bath strength Γ the observables show anomalous behavior in the vicinity
of the transition line.

In Fig. 5-5, we show the transition in the density of states A(ω) and the occupation
density N(ω) defined in Eq. (4.11) as U is changed. For 0 ≤ U ≤ 10 we observe a V-shaped
dip around the Fermi level, which is the manifestation of the quasiparticle with the Dirac
dispersion. Thus the system is semimetallic in this regime, having quasiparticles with Dirac
dispersion around the Fermi level. The quasiparticle weight Z and the renormalized Fermi
velocity ṽF are given respectively as

Z =
(
1− ∂ΣR

∂ω

)−1

ω=0
, (5.17)

ṽF = ZvF . (5.18)

For U ≥ 14, the quasiparticle weight almost vanishes and a broad structure with the lower
Hubbard band (LHB) and the upper Hubbard band (UHB) grows around ω = ±U /2. The
critical value Uc, at which the quasiparticle weight vanishes, is therefore situated around
U = 14.

To estimate the critical strength Uc more qualitatively, we plot the double occupancy,

Docc = 〈n↑n↓〉, (5.19)

the quasiparticle weight Z, and dc-conductivity σxx against U for various values of bath
coupling strength Γ. As we have shown in Fig. 5-3(b), the quasiparticle weight Z can be
a good indicator for SMIT from the standpoint of the Fermi-liquid picture [97]. From the
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Figure 5-5: Equilibrium density of states A(ω) for the honeycomb-Hubbard model in equilib-
rium, obtained by solving the Dyson equation (5.16a) with A = 0. The energy ω is measured
from the Fermi level. The electron occupation density N(ω) is depicted as the shaded regions.
Parameters are chosen as J = 1,T = 0.1 and Γ= 0.06 and U increased from 0 to 17.

standpoint of Mott physics, Docc can be a good indicator, since it shows the probability for
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Figure 5-6: (a) Quasiparticle weight Z, (b) double occupancy Docc, and (c) dc-conductivity
σxx(ω= 0) against U for the bath coupling strength Γ increased from 0.06 to 0.3. Parameters
are chosen as J = 1 and T = 0.1.

finding two electrons on the same site, which drops to zero in the Mott regime. Besides,
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optical conductivity σxx(ω) is an important quantity from the experimental point of view. A
finite dc-conductivity σxx(ω = 0) implies that there are electronic states around the Fermi
level and therefore it indicates a metallic nature of the system.

In Fig. 5-6 we show quasiparticle weight Z, double occupancy Docc, and the longitudinal
dc-conductivity σxx for various values of bath coupling Γ. Z and Docc approach to zero as U
becomes larger, but converge to some nonzero values. This is due to the heat-bath attached
to the system. In fact, when we decrease the coupling constant Γ as in Fig. 5-6(a)(b), then Z
and Docc converge closer to zero in the large U limit.

In Fig. 5-6(c) we also show σxx for some bath coupling strength Γ. As Γ becomes smaller,
the dc-conductivity σxx drops to zero more sharply at the critical point. By observing the
intersection point of the U −σxx curves for Γ= 0.06 and Γ= 0.1 we estimate the critical value
Uc 5 12.

Note that the quasiparticle weight Z has some structures in the insulating region. This
is because the Fermi-liquid picture breaks down in the Mott insulating regime U >Uc, where
the quasiparticle weight calculated by Eq. (5.17) becomes ill-defined.

Let us compare the obtained critical value with the previous studies. Jafari et al. obtained
Uc = 13.3 using DMFT with iterated perturbation theory as the impurity solver at T = 0 [97].
A slight difference from the present critical value can be understood as a finite-temperature
effect1. Technically, the critical value Uc depends on the impurity solver. In fact, Minh-
Tien et al. used DMFT with QMC impurity solver at T = 0.1, obtaining Uc = 8.2 [107]. It
is empirically known that the iterative perturbation theory overestimates the critical value
[107].

5.3.2 Nonequilibrium steady states in off-resonant fields

Next, we apply circularly polarized lights with off-resonant photon energies Ω ; W , where
W = 6J is the band width. In this regime, the distribution function stays monotonic over the
bandwidth (Fig. 5-7). Therefore it is expected that realized steady states are well described
by the time-averaged effective Hamiltonian.

It turns out that the system exhibits two types of photo-induced phase transitions: semimetal-
insulator and topological phase transitions. In the following, we study the electronic struc-
tures and transport properties to investigate the nature of the steady states and obtain the
phase diagram. Finally, we discuss the resulting phase diagram by mapping our system to
a time-independent effective model, so that the connection between the honeycomb lattice in
off-resonant fields and an effective model of topological insulators are clarified.

Semimetal-insulator transition

In Fig. 5-8 the density of states A(ω), the occupation density N(ω) and the effective distri-
bution function f (ω) = N(ω)/A(ω) are shown for various values of external field strength A.
We set U = 2 and therefore the system is semimetal in the absence of external fields. The

1One might expect that Uc increases as the temperature rises, but DMFT calculation show that Uc decreases
as the temperature increases in a square lattice [56], a honeycomb lattice [107].
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Figure 5-7: Schematic description of the system in off-resonant (a) and resonant (b) electric
fields, where Ω is the frequency of the external fields. Thick lines and gray shaded region
show the density of states and the distribution, respectively.

problem is how the semimetallic state is disturbed by circularly polarized fields, and what is
the character of the nonequilibrium steady states.

The distribution functions stay monotonic over the bandwidth in Fig. 5-8, as we have
expected in the off-resonant condition. Examining the density of states in Fig. 5-8, we find
that as the field strength increases, the system undergoes a phase transition which looks
rather similar to the semimetal-to-insulator transition for increasing U . The dip structure
around the Fermi level vanishes as A increases, and UHB and LHB grow around ω=U /2.

In order to show the physical properties of the steady states, we plot the double occupancy
and dc-conductivities σab(ω= 0)(a,b = x, y) against the field strength A in Fig. 5-9. It should
be noted that the tensor σab(ω) has a symmetry,

σxx(ω)=σyy(ω), σxy(ω)=−σyx(ω), (5.20)

due to the discrete rotational symmetry of the honeycomb-lattice in circularly polarized
fields.2

Longitudinal conductivities (σxx,σyy) show that the steady state is insulating in regions
2.1< A < 2.8 or 5.2< A < 6. The double occupancy Docc has minima in the insulating regions
which implies the Mott-insulating properties are strongly enhanced in the insulating region.
We clearly observe SMIT at these critical values Ac 5 2.1,2,8,5.2. This is quite similar to

2One can prove Eq. (5.20) as follows. Let R be the unitary operation of rotating the system by angle φ= 2π/3
around the z-axis. We also consider the translated coordinate system S′, which is rotated by R from the original
coordinate S. The system is equivalent in both coordinate. The external field is also equivalent, with only the
difference of time translation t → t+ (2π/3)/Ω. The time shift by a constant does nothing to the steady states.
Therefore, the realized steady states should have the rotational symmetry given by R. This means that the 2×2

tensor σ(ω) = {σab} should satisfy σ(ω) = R−1σ(ω)R = Rσ(ω)R−1 with R =
(
cosφ −sinφ

sinφ cosφ

)
. Simple algebra with

this relation leads to Eq. (5.20). This argument holds for any φ (= nπ(n ∈Z). Therefore Eq. (5.20) also holds for a
square lattices, and a triangle lattice, and so on.
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Figure 5-8: Density of states A(ω) with shading representing occupied states N(ω) (left
panel), and the effective distribution function f (ω) (right panel) for various field strength
A increased from 0.0 to 2.4 in the off-resonant regime Ω = 10. Parameters used here are
J = 1,U = 2,Γ= 0.1 and T = 0.1.

usual SMIT, with an essential difference that the transition is induced by the external field
A, not by the interaction U .

Thus the results show that the external fields induce the Mott insulator phase. This
may seem surprising, since external fields usually tend to excite carriers. However, this
phenomenon is clearly understood in terms of the effective Hamiltonian where external fields
effectively change the hopping parameters [29, 34].

Since the nonequilibrium distribution function is monotonic as shown in Fig. 5-8, the
phase transition should be caused purely by a property of the effective Hamiltonian. As
shown in the Floquet Hamiltonian (5.15), an external field gives the factor J0(A) to the ki-
netic energy part of the Floquet Hamiltonian and causes effective shrinking of the bandwidth
W. The reason for this shrinkage is understood by time average over the Bloch oscillation
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Figure 5-9: (a) The double occupancy Docc and (b) optical conductivities (σxx,σyx,σxy and
σyy) against the field strength A in an off-resonant regime Ω= 10. Parameters used here are
J = 1,U = 2,Γ= 0.1 and T = 0.1.

[68]. Therefore the electron correlation strength U /W is increased as U /(W |J0(A)|). Hence,
the Mott transition induced by off-resonant external fields may be interpreted as an analog
of the bandwidth-controlled Mott transition [5].

If the field induced SMIT is consistent with the bandwidth-controlled Mott transition, the
critical field strength Ac for a fixed U is given by the relation U /(W |J0(Ac)|)=Uc/W, i.e.,

|J0(Ac)| = U
Uc

. (5.21)
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For the parameters used in Fig. 5-9, Eq. (5.21) gives

Ac = J−1
0 (±U /Uc)5 J−1

0 (±1/6)5 2.10, 2.75, 5.05, 6.05, · · · .

These critical values are consistent with those obtained here from Docc and σxx in Fig. 5-9.

Topological-semimetal transition

We further investigate the properties of semimetallic regions. In this region, the circularly
polarized light opens a topological gap at K- and K’-points and gives nontrivial Berry curva-
tures and the Hall conductivity at least for noninteracting case as shown by Oka, et al. [29].
Therefore it is interesting to ask whether the topological property is preserved, or even other
topological properties emerge, when the interaction is switched on. As shown in Chapter
3, the Hall conductivity is a good indicator for nontrivial Berry curvatures in the Floquet
Hamiltonian.

Let us again examine Fig. 5-9(b), the dc-conductivity against field strength A for U =
2. Firstly, the Hall conductivity σxy is nonzero only in the region where the longitudinal
conductivity σxx is finite. Secondly, σxy and σxx drop to zero not simultaneously: there seem
to be two-stage phase transitions with three phases: (1) topological phase: σxy (= 0, (2) normal
metal phase: σxx (= 0,σxy = 0 and (3) Mott-insulating phase: σxx =σxy = 0.

To further investigate the three regions, we calculate the k-resolved Hall conductivity
g(k) over the BZ, given by

g(k)= 1
2

lim
ω→0

∫Ω/2

−Ω/2

dν
2π

tr
v̂y

kĜR
k(ν)v̂x

kĜ<
k(ν−ω)+ v̂y

kĜ<
k(ν)v̂x

kĜA
k(ν−ω)

ω
− (x ↔ y). (5.22)

The k-resolved Hall conductivity g(k) is connected to the Hall conductivity via a relation,

σyx =
Ns

ΩcellNk

∑

k
g(k)dk, (5.23)

with Ns = 2 the spin degeneracy, Ωcell = 3
4

3/2 the volume of the unit cell, and Nk the number
of k-points in the Brillouin zone. As we have shown in Chapter 3, in the noninteracting case
g(k) is expressed as

g(k)=
∑

m
Bmk fmk, (5.24)

where Bmk is the Berry curvature and fmk is the distribution function for the Floquet state
labeled by the Floquet index m and the Bloch momentum k. It is straightforward to show
that g(k) satisfies

g(k)= g(Rk), R =
(
cos 2π

3 −sin 2π
3

sin 2π
3 cos 2π

3

)

(5.25)

and therefore g(k) has the same C3 symmetry as the Berry curvature [29].
In Fig. 5-10, we plot the spectral function and the k-resolved Hall conductivity. From this

we can see that the main contribution to the Hall conductivity is the Berry curvature around
the K- and K’-points for 0 < A < 2.4. The contribution vanishes at A 5 2.4, a zero of J0(A),
where the diagonal elements of the current matrix v̂x,y vanish. In Fig. 5-10(a) the k-resolved
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Figure 5-10: (a) The k-resolved spectral function Ak(ω) and (b) the k-resolved Hall con-
ductivity g(k) for various values of the field strength A in the off-resonant regime Ω = 10.
Parameters used here are J = 1,U = 2,Γ= 0.1 and T = 0.1.

spectral function,

Ak(ω)=−1
π

Im
∫T

0

dtav

T

∫∞

−∞
dtrel eiωtrel trGk

(
tav, +

trel

2
, tav, −

trel

2

)
, (5.26)

shows that a band gap opens at the Dirac points for A = 1.5. It clearly shows that the system
becomes insulating due to the external field. For A = 2.0 the gap almost closes and the system
becomes semimetallic. For A = 2.4 the system is a Mott insulator, with quasiparticle absent
around the Fermi level while UHB and LHB develop. This shows that the system has a



5. Photo-induced phase transitions in Hubbard model on honeycomb lattice 85

 0

 1

 2

 0  2  4  6  8  10  12
0.00

0.05

0.10

0.15

0.20

0.25

σ
a
b
 [
e2

/h
]

D
o

c
c

U

σxx
σyx
Docc

Figure 5-11: The double occupancy Docc, the longitudinal dc-conductivity σxx and the Hall
conductivity σxy against U for A = 0.4 in the off-resonant regime Ω = 10. Parameters used
here are J = 1,Γ= 0.1 and T = 0.1.

two-stage phase transition.
In order to see the effect of U for the topological properties, we fix the field strength

A = 0.4 at which the topological gap opens at U = 0, and increase the interaction U until the
system enters the Mott-insulating region. In Fig. 5-11. we plot the dc-conductivities σxx, σxy

and the double occupancy Docc. An important observation is that there are two critical values
of U . At U =Uc1 5 7.0 the dc-Hall conductivity σxy vanishes, followed by U =Uc2 5 9.0, where
the longitudinal conductivity σxx goes to zero and the system enters an insulating phase.

Let us discuss how the Hall conductivity σxy is quantized. In Fig. 5-12 we plot σxx and σxy

against A for various values of U . In particular, in the noninteracting case we set a weakly
coupled low temperature heat-bath with T = Γ = 0.02 so that the effect of the dissipation is
reduced. For the noninteracting case, σxy reaches the quantized value ±2e2/h (where the
factor 2 is the spin degeneracy). For rather strongly coupled bath with T = Γ= 0.1, the Hall
conductivity decreases from the quantized value. This fact indicates that one should set the
temperature sufficiently low, compared to the topological gap at the K-point, for an exact
quantization of σxy. In fact, the topological gap for A = 1.5 is estimated as ∼ 0.1 (see the band
structure in Fig. 5-10) and thus T 1 0.1 may be required in this case. As U increases, the
Hall conductivity is also suppressed, as we have discussed in Fig. 5-11.

We finally investigate the metallic, insulating, and topological properties in the U-A
space. In Fig. 5-13 we plot σxx (a), Docc (b), and σxy (c,d) for fixed bath parameters T =Γ= 0.1,
against U and A. In Fig. 5-13(a-c) we also plot the contour U /Uc = |J0(A)| (see Eq. (5.21))
with Uc = 12, above which the system is effectively regarded as a (bandwidth-controlled) Mott
insulator. In fact, Docc and σxx have interesting robe structures and have vanishingly small
values above the contour, indicating that the system is indeed insulating above the contour.

The behavior of the Hall conductivity is more interesting. Below the metal-insulator
boundary, the Hall conductivity changes sign around special values of the field strength
A = 3.0,4.4,6.4,7.6, · · · along the U-axis in Fig. 5-13(c) (such sign-change behavior has been
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Figure 5-12: The longitudinal dc-conductivity σxx and the Hall conductivity σxy against A
in the off-resonant regime Ω = 10 for the interaction strength U increased from 1.0 to 4.0
with Γ= T = 0.1, and in the noninteracting case U = 0 with a weakly coupled heat bath with
Γ= T = 0.02.

already seen in Fig. 5-9 and Fig. 5-12). This sign change occurs even in the absence of U . We
will further investigate this novel phenomenon in the next section.
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Figure 5-13: Two-dimensional color plots for (a) the longitudinal conductivity σxx, (b) the
double occupancy Docc, and (c) the dc-Hall conductivity σxy as functions of U and A in the
off-resonant regime Ω= 10. An effective critical value of U =Uc J0(A) (see Eq. (5.21)) is also
plotted as dashed lines. (d) A three-dimensional plot for σxy is also shown so that one can
easily see that σxy reaches its quantized value ±2 inside the topological phases. Parameters
used here are J = 1,Γ= 0.1 and T = 0.1.
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Figure 5-14: Noninteracting (U = 0) band structure in the vicinity of the K-point, around a
critical value A = 4.4, at which the Hall conductivity changes sign (Fig. 5-13). Horizontal
axis is a line in the k-space given by (4π/3

4
3, t) with −2π/9≤ t ≤ 2π/9. Parameters used here

are U = 0, J = 1,Γ= 0.01 and T = 0.01.

Interpretation of the photo-induced topological phase transition in terms of effec-
tive Haldane model

In this section, we investigate the origin of the sign-dependence of the Hall conductivity σxy

in Fig. 5-13. First we show in Fig. 5-14 the k-resolved spectral functions in the vicinity of the
K-point, for U = 0 and several values of A around A 5 4.4. Two bands touch with each other
at the Fermi level and separates again as A passes a critical value A = 4.4 along the U = 0
axis. Since this phase transition is observed in the noninteracting case, this phenomenon
should be explained by the topological nature of the noninteracting Floquet Hamiltonian.

The connection between the Dirac electrons in circularly polarized fields and the topolog-
ical band-insulator is clarified by Kitagawa et al. As Kitagawa et al. pointed out [106], in the
weak-field limit (A 1 1 and J 1Ω), the tight-binding model on the honeycomb lattice in a
circularly polarized light can be mapped to the Haldane model which we introduced in the
introduction. Due to this mapping, the photo-induced topological phase transition turns out
to be equivalent to the topological phase transitions of the Haldane model, a tight-binding
model of a topological insulator.

Although their arguments are limited to the weak-field regime, their method for the con-
struction of the effective Hamiltonian is general enough to analyze the system in strong
electric fields. In the following, we reestablish the procedure for constructing the effective
Hamiltonian by perturbation theory, only assuming J/Ω1 1, and obtain the effective theory
for the honeycomb lattice in strong circularly polarized fields.
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First we write down the Schrödinger equation for a Floquet elgenstate |φα〉= {φm
α }∞m=−∞,

(Eα+nΩ)φn
α =

∑

m
Ĥnmφm

α , (5.27)

where α labels the Floquet eigenstate and φm
α is the m-th component of the Floquet eigen-

vector. Note that in the Ω→∞ limit we have φn (=0
α = 0 and φ0

α is an eigenstate of Ĥ00 = H0.
Thus φn (=0

α ∼O(J/Ω) is evaluated as

φn (=0
α =

∑

m

Ĥnm

Eα+nΩ
φm
α = Ĥn0

nΩ
φ0
α+ o

(
J
Ω

)
. (5.28)

Plugging this into the Schrödinger equation for the n = 0 component in Eq. (5.27), we have

Eαφ
0
α =

∑

m
Ĥ0mφm

α

5
(

Ĥ00 +
∑

m (=0

Ĥ0mĤm0

mΩ

)

φ0
α

=
(

H0 +
∑

n>0

[H−n,Hn]
nΩ

)

φ0
α.

Thus we obtain a general expression of the effective Hamiltonian up to the order of J/Ω,

Heff = H0 +
∑

n>0

[H−n,Hn]
nΩ

. (5.29)

Kitagawa, et al. [106] constructed the effective Hamiltonian Heff = H0 + [H−1,H1]/Ω as a
perturbation expansion for the field strength A. Our effective Hamiltonian Eq. (5.29) is a
natural extension of theirs, and works even for larger A as long as the photon energy satisfies
the off-resonant condition Ω/J ; 1.

Let us assume that our time-dependent Hamiltonian has the form

H (t)=
∑

i j
Ji j(t)c†

i c j, Ji j(t)∗ = Jji(t) (5.30)

with Ji j(t+T) = Ji j(t). This expression is general enough within our interest. In fact, the
tight-binding model in electric fields are given by substituting

Ji j(t)= Ji j exp
(
−i

∫Ri

R j

A(t) ·dr
)
. (5.31)

The n-th Floquet component of the Hamiltonian reads

Hn =
∑

i j
Jn

i j c
†
i c j, Jn

i j =
∫T

0

dt
T

Ji j(t)einΩt = (J−n
ji )∗. (5.32)

Using the Fermionic commutation relation {ci, c†
j} = δi j, we can calculate the commutator in



90 5. Photo-induced phase transitions in Hubbard model on honeycomb lattice

e
1

d
1

e
2

(a) (b)
d
2

Figure 5-15: Next-nearest-neighbor hopping between (a) A-sublattice sites (open circles), and
(b) B-sublattice sites (shaded circles) on the honeycomb lattice. d1,2 and e1,2 are the vectors
between nearest-neighbor sites. Red and blue arrows represent the hopping process with the
hopping direction d1 +d2 and e1 + e2, respectively.

Eq. (5.29) as

[H−n,Hn]=
∑

i jkl
J−n

i j Jn
kl[c

†
i c j, c†

kcl]

=
∑

i jkl
J−n

i j Jn
kl

(
[c†

i c j, c†
k]cl + c†

k[c†
i c j, cl]

)

=
∑

i jkl
J−n

i j Jn
kl

(
δ jk c†

i cl −δil c†
kc j

)

=
∑

il

∑

j
(J−n

i j Jn
jl − Jn

i j J
−n
jl )c†

i cl , (5.33)

Therefore, the effective Hamiltonian of the tight-binding model (Eq. (5.30)) reads

Heff =
∑

i j

(

J0
i j +

∑

n>0

Kn
i j

nΩ

)

c†
i c j, (5.34)

Kn
i j =

∑

k
(J−n

ik Jn
k j − Jn

ik J−n
k j ) (5.35)

Let us now apply the general formula Eq. (5.34) to the honeycomb lattice in circular fields.
In the honeycomb lattice, the bare hopping Ji j is only present between nearest-neighbor
sites. However, the effective hopping Kn

i j in Eq. (5.34) has nonzero elements between next-
nearest-neighbor sites, as we show below. First, the bare hopping JR j (t), the matrix element
of electron hopping with direction R j (see Fig. 5-4(a)) in our model reads

JR j (t)= Je−iR j ·A(t)

= Je−iA sin(Ωt−2π j/3)

= J
∑

n
Jn(A)e2πin j/3e−nΩt.

Taking the Fourier transform with t we have

Jn
R j

= JJn(A)e2πin j/3. (5.36)
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Now we consider the next-nearest-neighbor hopping depicted in Fig. 5-15. As shown in Fig.
5-15(a), the next-nearest-neighbor hopping between A-sublattice sites are expressed by two
nearest-neighbor hopping vectors d1 = R0 and d2 = −R1. Using Eq. (5.34), we obtain the
effective hopping parameter as

Kn
d1+d2

= J−n
d2

Jn
d1

− Jn
d2

J−n
d1

= (Jn
R1

)∗Jn
R0

− (J−n
R1

)∗J−n
R0

= J2
n(A)(e−2πin/3 − e2πin/3)=−2iJ2

n(A)sin
3πn

2
. (5.37)

Similarly, the next-nearest neighbor hopping matrix in the B-sublattice, illustrated in Fig.
5-15(b), is calculated as

Kn
e1+e2

= J−n
e2

Jn
e1
− Jn

e2
J−n

e1
= 2iJ2

n(A)sin
3πn

2
. (5.38)

Substituting Eqs (5.36), (5.37) and (5.38) into Eq. (5.34), we finally obtain the effective Hamil-
tonian:

Heff =
∑

〈i j〉
Jeffc†

i c j + i
∑

〈〈i j〉〉
νi jKeffc†

i c j, (5.39)

Jeff = JJ0(A), (5.40)

Keff =
2J2

Ω

∞∑

n=1

J2
n(A)
n

sin
2πn

3

= 2J2

Ω

[
π

6
J2

0 (A)−
∫π/6

0
J0(2A cosθ)dθ

]
, (5.41)

where
∑

〈i j〉 and
∑

〈〈i j〉〉 are the summation over all the nearest-neighbor and next-nearest-
neighbor pairs, respectively.νi j = (2/

4
3)(d2 ×d1)z ∈ {±1} is the chirality of the hopping path,

where d1 and d2 are the nearest-neighbor vectors that connect the next-nearest-neighbor
sites. In the second line in Eq. (5.41) we have used some formula for the Bessel functions
(see Appendix E).

Importantly, Keff is a real number and thus the effective hopping matrix iKeff is pure
imaginary. Therefore an electron acquires a phase factor e±iπ/2 after the next-nearest-neighbor
hopping. The Hamiltonian Eq. (5.39) is indeed equivalent to the Haldane model [19] that we
have introduced in the introduction of this chapter. Our effective Hamiltonian corresponds
to the Haldane model with an alternating flux ϕ=π/2.

In order to investigate the sign dependence, we plot Keff along with J0(A) against field
strength A in Fig. 5-16. Keff oscillates and changes sign (infinitely many times) as A in-
creases. Inverting sign of Keff is equivalent to adding an additional flux: ϕ → ϕ+π and
leads to, according to the phase diagram of the Haldane model (Fig. 5-1), a topological phase
transition with a shift of the Chern number ν=±1→∓1.

In fact, the zeros of Keff do indeed coinside with the boundary between σxy > 0 and σxy < 0
along U = 0 axis in Fig. 5-13. Thus we can conclude that the topological phase transition
against field strength A can be understood in terms of the effective Haldane model (Eq.
(5.39)) in the off-resonant regime.
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Figure 5-16: The effective next-nearest-neighbor hopping parameter Keff (Eq.5.41) normal-
ized by J2/Ω, against the field strength A. Positive and negative regions of Keff are empha-
sized as the yellow and green shaded regions, respectively. J0(A)(∝ Jeff) is also plotted for
comparison.

5.3.3 Nonequilibrium steady states in resonant fields

We now turn to the resonant field regime: Ω < W . In this regime, photo-excited carriers
appear and give substantial differences from the off-resonant regime that is explained by the
properties of the effective Hamiltonian.

In Fig. 5-17 we show the density of states and effective distribution function for U = 2
and Ω = 4. Photo-induced SMIT is observed in Fig. 5-17(a) in a manner similar to the off-
resonant case (Fig. 5-8). An important difference, however, is the non-monotonic behavior of
the effective distribution function (Fig. 5-17(b)).

As we stressed in the previous subsection, in the off-resonant case the distribution func-
tion does not significantly deviate from the Fermi-Dirac distribution. Therefore the transport
properties are basically explained by the static properties of the effective Hamiltonian. In the
resonant case, however, the distribution function is no longer monotonic and gives substan-
tial differences in physical observables.

In Fig. 5-18 we show the dc-conductivities σxx and σxy for resonant and off-resonant
photon energies. σxx is suppressed with increasing A for all Ω = 1.0,4.0,10.0, indicating
that the system goes from semimetal to insulator. Surprisingly, σyx changes sign for the
photon energy Ω in a low field strength, which means that the direction of Hall current can
be inverted by the choice of photon energy.

In order to investigate further, in Fig. 5-19(a) we show the Hall conductivity σxy against
the field strength A for various values of photon energy Ω in the noninteracting case. Since
the topological gap is proportional to A2 in the weak-field limit, the Hall conductivity also has
an asymptotic form σxy ∝ A2(A → 0)[29]. In Fig. 5-19(b) we show the asymptotic coefficient
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Figure 5-17: (a) Density of states and (b) effective distribution functions for various field
strength A in a resonant regime Ω = 4. Parameters used here are J = 1,U = 2,Γ = 0.1 and
T = 0.1.

given by lim
A→0

σxy/A2.

An important finding here is that the sign of σxy can be changed by the photon energy
Ω. Oka, et al. [29] have numerically shown that, for Ω= 0.3 and A ∼ 0.1, the Hall current is
induced in the −y direction, that is, σyx < 0. Our result is consistent with their results, and
indicates that a sign change of the Hall current may occur in their model by increasing the
frequency Ω.

To clarify the origin of the sign change, we plot the k-resolved Hall conductivity g(k),
Eq. (5.22), in Fig. 5-20. We can see that g(k) exhibits different patterns as Ω is changed.
An important observation here is that these patterns and the energy surfaces εk =±Ω/2, as
illustrated in Fig. 5-21, coincide with each other.

The origin of the contribution from the energy surfaces is the Floquet band gap caused
by the mixing of Floquet side bands. In Fig. 5-22 we plot the k-resolved spectral function
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Figure 5-18: (a) σxx and (b) σxy for resonant field Ω= 1.0,4.0 and off-resonant field Ω= 10.0.
Parameters used here are J = 1,U = 2,Γ= 0.1 and T = 0.1.

Figure 5-19: (a) σyx against weak intensity A, for various values of Ω in the resonant regime.
(b) quadratic coefficient given by lim

A→0
σyx/A2 for each Ω in (a). Parameters used here are

J = 1,U = 0,Γ= 0.06 and T = 0.06.

for Ω = 1 in the noninteracting case. We observe the topological gap at ω = 0 and the gap
between the original band and a Floquet side band at ω = Ω/2. Since the Berry curvature
has large contributions around the gap, the patterns in Fig. 5-20 originate from the Berry
curvature at the Floquet band gap at ω=±Ω/2.

Figure 5-20 also indicates that the Berry curvature contributes not isotropically around
the Dirac points. Since the Berry curvature itself does not change sign around the Dirac
points [29], the sign inversion of g(k)=∑

m Bmk fmk should originate from the non-equilibrium
distribution function fmk which depend on the Bloch momentum k. To demonstrate the state-
ment, we replace the nonequilibrium distribution function by thermal distribution function,
fFD(εmk), where fFD(ω)= (1+ eω/T )−1 is the Fermi-Dirac distribution function. The resultant
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Figure 5-20: The k-resolved Hall conductivity g(k) for various values of Ω. Parameters used
here are A = 0.005, J = 1,U = 0,Γ= 0.06 and T = 0.06.
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Figure 5-21: Energy surfaces of the honeycomb lattice. (a) The lower part of the honeycomb
band structure ω = ±εk, where εk is given by Eq. (5.8). Equi-energy surfaces εk = Ω/2 =
0.5,1.0,2.0 are respectively shown in (b), (c) and (d).

k-resolved Hall conductivity g̃(k) only has the information of the Berry curvature Bmk and
therefore we can factor out the effect of the distribution function fmk by comparing g(k) and
g̃(k). Strictly speaking, we have defined g̃(k) as the same as g(k) in Eq. (5.22) with an
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Figure 5-22: The k-resolved spectral function Ak(ω) and the occupation density Nk(ω) for
Ω= 1.0. Parameters used here are A = 0.05, J = 1,U = 0,Γ= 0.005 and T = 0.05.
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Figure 5-23: The contribution of the fictitiously thermalized Berry curvature g̃(k) for various
values of Ω. Parameters used here are A = 0.005, J = 1,U = 0,Γ= 0.06 and T = 0.06.

artificial lesser Green’s functions that satisfy the fluctuation-dissipation theorem,

ĜK
k (ω)= ĜR

k (ω)F̂(ω)− F̂(ω)ĜA
k (ω), (5.42)

F̂(ω)= diag
{

tanh
ω+nΩ

2T

}∞

n=−∞
. (5.43)

Results are shown in Fig. 5-23. The patterns of the contributing k-points are similar to Fig.
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5-20. However, the negative contributions are completely wiped out in the force-thermalized
ones g̃(k). This clearly shows that the k-dependent non-equilibrium distribution function
indeed gives rise to the sign change of the Hall conductivity.

5.4 Summary

In this chapter, we have studied the honeycomb-Hubbard model in circularly polarized fields
as a paradigm of the interplay of photo-induced topological states and electron correlation.
We analyzed the electronic structures and transport properties of the steady states with
Floquet-DMFT formalism extended to multi-band systems.

• In the off-resonant case (Ω;W, with W the band width), we have obtained the phase
diagram of the steady state quantitatively by calculating dc-conductivities. The topo-
logical phase, characterized by the gap at the Dirac point and a finite Hall conductivity
σxy, is surprisingly robust against the electron interaction.

More interestingly, we found the topological phase transition characterized by the sign
inversion of the Hall-conductivity σxy as the strength of the field is varied. We have
shown that the topological phase transition is clearly understood by the topological
properties of the Haldane model, by mapping the time-dependent Hamiltonian into the
effective Haldane model in the Ω→∞ limit.

• In the resonant case, we have shown that the transport coefficient exhibits sign-change
dependence on the photon-energy Ω. We clarified the origin of Ω dependence: in the
off-resonant case the Berry curvature at the Dirac point contributes to σxy, while in
the resonant case, the Berry curvature at the higher Floquet band gap as multiplied by
k-dependent nonequilibrium distribution function give rise to a negative Hall conduc-
tivity.

There are many interesting questions that we could not tackle in this study. Most impor-
tantly, we have not studied the ordered states. Although we have implicitly assumed that
long-range magnetic orders do not appear, if long-range spin orders are taken into account,
the Hubbard model on the honeycomb lattice exhibits antiferromagnetic order in the corre-
lated regime. Further, there are interesting predictions, such as the presence [108] and the
absence [109] of the spin-liquid phase, the emergence of density wave and unconventional
superconductivity [110], all of which originate from electron-electron correlation on a honey-
comb lattice [111]. It is thus interesting to investigate the fate of these ordered phases under
the influence of ac-electric fields.





Chapter 6

Summary and outlook

6.1 Summary

In this thesis, we have studied correlated electron systems driven out of equilibrium by ac-
electric fields. As we have stressed in the introduction (Chapter 1), orbital degrees of freedom
give rise to more complex but rich physics that cannot be attributed to an effective single-
band picture. Due to the rich physics, multiband electron systems are an especially interest-
ing playground in the context of photo-induced phase transitions for theoretical and exper-
imental interests, and our fundamental interest lies in understanding how multiband elec-
tron systems, which themselves possess various properties originating from orbital degrees
of freedom, exhibit novel physics driven out of equilibrium under the influence of external
fields.

In order to simulate nonequilibrium multiband correlated electron systems on the same
footing, in Chapter 2 we have reviewed the time-dependent Green’s function formalism and
the dynamical mean-field theory (DMFT) to incorporate electron correlation in a non-perturbative
manner. In Chapter 3 we have developed the Floquet dynamical mean-field theory (Floquet-
DMFT), which was previously developed for single-band electron systems. The multiband
extension naturally leads us to the physics of so-called photo-induced topological insulators,
which is characterized by the photo-induced Berry curvature, and we have clarified the con-
nection between the photo-induced Berry curvature and Floquet-Green’s functions.

Having established the multiband Floquet-DMFT, we studied two interesting multiband
systems, the dp-model and the honeycomb-Hubbard model (the Hubbard model on the hon-
eycomb lattice) in ac-electric fields.

For the first application, in Chapter 4, we have studied nonequilibrium steady states in
the dp-model in strong external ac-fields, motivated by a recent pump-probe measurements
for high-Tc cuprates. In this study the photon energy Ω was varied from 4 eV to 20 eV and
we found the following.

• We have numerically obtained the momentum-resolved density of states and distri-
bution functions. For a small photon energy Ω = 4.0 eV and a small intensity of the
fields A < 2 (corresponding to the amplitude of the electric field E = 2×105 kV/cm), the
nonequilibrium distribution function deviates from the original distribution function

99
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and resembles the Fermi-Dirac distribution function at higher temperatures, indicat-
ing that the effect of the external fields is basically understood as the effective rise of
the temperature of the system.

• For a larger photon energy within the resonant regime Ω = 8.0 eV, we also observed
the deformation of the distribution function for a small field intensity A, while the
band structure does not significantly deviate from that in equilibrium. The distribution
function suggests population inversion and the system exhibits non-thermal effects,
such as negative optical conductivities.

• For an off-resonant photon energy Ω = 20 eV, the distribution function stays almost
monotonic near the Fermi level for large A ≥ 2 (E 5 1×106 kV/cm), where the band
structure highly deviates from original one. The population-inverted Floquet side bands
appear far away from the Fermi level, and thus we also observe negative conductivities.

Secondly, in Chapter 5, we have studied nonequilibrium steady state in the honeycomb-
Hubbard model in circularly polarized electric fields. The central motivation in this study
is to investigate the interplay between photo-induced topological phases and the Mott in-
sulating phase in the honeycomb-Hubard model under the influence of circularly polarized
ac-fields. The results are summarized as follows.

• In the off-resonant case with photon energy Ω= 10J >W = 6J, with W the band width
and J the nearest-neighbor hopping, we have obtained a phase diagram with respect
to the intensity A and the Hubbard repulsion U by calculating the double occupancy
and dc-conductivities. The topological phase, characterized by the gap at the Dirac
point and quantized Hall conductivity σxy, emerges in the strong-intensity regime. The
quantization of σxy is also confirmed numerically. Although σxy is suppressed in the
presence of Hubbard interaction U , the Hall conductivity σxy remains for large U 5 5J
and thus the photo-induced Hall effect is surprisingly robust against electron interac-
tion.

• We found a topological-topological phase transition characterized by the sign inversion
of the Hall conductivity σxy as the strength of the field is varied. We have shown
that the topological-topological phase transition is clearly understood by the topological
properties of the Haldane model, by mapping the time-dependent Hamiltonian into the
effective Haldane model in the large-frequency limit Ω/W ; 1.

• In the resonant case Ω≤W, we have shown that the transport coefficient exhibits sign-
change dependence on the photon-energy Ω. We clarified the origin of Ω dependence: in
the off-resonant case, the Berry curvature at the Dirac point contributes to σxy, while
in the resonant case, the Berry curvature at a higher Floquet band gap multiplied by
the k-dependent nonequilibrium distribution function gives rise to the negative σxy.

6.2 Future works

As we summarized above, we have studied steady states of multiband correlated electron
systems in ac-electric fields with Floquet-DMFT and predicted novel phenomena in multi-
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band systems driven by external fields for the first time. Here we pose short-term and long-
term prospects.

6.2.1 Short-term outlook

First we present some questions that stem from our settings for the numerical simulations.

• Impurity solver away-from-half filling.— Throughout this study we have used the second-
order iterative perturbation theory (IPT) as an impurity solver. It is empirically known
that the second-order IPT gives qualitatively good results for the Hubbard model at
half-filling. One reason for this is that, for half-filling, the second-order IPT acciden-
tally reproduces the self-energy in the atomic limit U →∞. However, such nice proper-
ties are no longer guaranteed if one naively apply the second-order IPT to the cases for
arbitrary filling.

In order to investigate the Hubbard model away from half-filling, we may have sev-
eral options. One option is to design some modified self-energy that reproduces the
atomic limit, based on the original IPT. For example, Kajuater, et al. [60] introduced an
asymptotic form of the self-energy using the original self-energy with the second-order
IPT, and designed their asymptotic form so that asymptotic properties in U →∞ and
ω→∞ may be both maintained. They succeeded in reproducing the filling-controlled
Mott transition in equilibrium. One may extend their approach to our nonequilibrium
case.

Another option is to use more elaborate impurity solvers, such as the non-crossing ap-
proximation (NCA) [112, 83, 113] and the quantum Monte Carlo (QMC) [114]. NCA is
based on strong-coupling expansion and thus applicable to strongly correlated regime.
QMC is in principle gives exact results, but the computational cost becomes severe
around metal-insulator transitions. One may have to choose impurity solvers depend-
ing on the correlation strength of the system.

• Choice of the heat-bath.— As we have formulated in Sec. 2.1.5, we have assumed that a
fermionic heat-bath is attached to the system. The virtue of this choice is that the bath
degrees of freedom can be exactly integrated out and incorporated as an effective self-
energy. On the other hand, the fermionic heat-bath model requires particle-exchange
between the system and the bath and therefore the particle number is not exactly con-
served. Besides, in real experiments, there are bosonic relaxation channels such as
spin-waves and phonons. Thus, to be more realistic, bosonic heat-bath models, as de-
veloped in Refs. [84, 115], should be incorporated in our formalism.

• Ordered phases.— In this thesis we have not studied the ordered states such as mag-
netic phases and superconducting phases. It is known that the dp-model [74] and the
honeycomb-Hubbard model [108, 109, 110] both have magnetic and superconducting
phases and thus it is interesting to investigate how these ordered phases are disturbed
or enhanced by external fields.
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Figure 6-1: A photo-assisted next-nearest-neighbor (NNN) hopping processes in various
types of lattices. Solid black lines represent nearest-neighbor (NN) hopping. Red dashed
arrows represent photo-assisted NNN hopping processes. J and iKeff represent NN and
NNN hopping amplitudes, respectively. (a) A part of a general lattice structure containing
NNN atoms, with NN vectors d1 and d2 with angle 2δ, in the circularly polarized light given
by the vector potential A(t) = A(cosΩt,sinΩt). (b) The honeycomb lattice, and (c) the Lieb
lattice in the circularly polarized ac-electric field.

6.2.2 Long-term outlook

In this thesis, we have especially studied the dp-model and the honeycomb-Hubbard model
as applications of multiband Floquet-DMFT. There, we observed a dynamical reduction of
bandwidths (known in the context of the dynamical localization of electrons in ac-fields [78])
and an emergence of photo-assisted anomalous hopping processes. In particular, in the case
of honeycomb-Hubbard model, these dynamical effects result in novel photo-induced phase
transitions, such as metal-to-insulator and topological-to-topological phase transitions.

Although we have studied some limited cases of multi-band lattice systems, we expect
that the novel phase transitions discussed in this thesis can emerge in more general classes
of multi-orbital systems. To see this, let us apply the perturbation theory, discussed in
Sec. 5.3.2, for general multi-orbital systems. In Fig. 6-1 (a) we show a portion of an ar-
bitrary lattice structure, containing next-nearest neighboring (NNN) atoms. We set J1 and
J2 the nearest-neighbor (NN) hopping amplitudes and 2δ the angle between the NN vec-
tors d1 and d2. Applying the formula Eq. (5.29) for the effective Hamiltonian in the off-
resonant regime, we obtain an effective NNN hopping iKeff in a circularly polarized field
A(t)= A(cosΩt,sinΩt), with

Keff =−2J1J2

Ω

∞∑

n=1

(−1)nJ2
n(A)

n
sin2nδ. (6.1)

In other words, the anomalous NNN hopping may ubiquitously appear in general lattices
having angled NN bonds, under the influence of circularly polarized lights. We stress that
anomalous NNN hopping cannot appear for single-orbital systems, where NNN paths with
opposite angles (±2δ) always cancel with each other.

This observation motivates us to study steady states in circularly polarized lights for
general multi-orbital lattices having angled NN bonds. The study of the honeycomb lattice
in Chap. 5 can be regarded as one case-study for the class of lattices. The honeycomb lattice
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Figure 6-2: (a) The band structure of the effective lattice model for the Lieb lattice in off-
resonant circularly polarized lights. Chern numbers for upper, middle (flat) and lower bands
are −signKeff, 0 and +signKeff, respectively. (b) The Hall conductivity and (c) the effective
next-nearest-neighbor hopping amplitude as functions of the amplitude of the vector poten-
tial A.

in circularly polarized light acquires the complex NNN hopping (Fig. 6-1(b)) and turns to
Haldane’s model, a prototypical model for Chern insulators. This idea can then be utilized to
design other Chern insulators, which may be more feasible in real materials or optical lattice
systems.

For example, in Appendix G we demonstrate designing the checkerboard lattice [116,
117], another typical Chern insulator, starting from the Lieb lattice in circularly polarized
lights. Figure 6-1(c) shows the Lieb lattice in a circularly polarized light. The Lieb lattice con-
sists of three atoms per unit cell with no level offset between the atoms. The geometry of the
Lieb lattice may be found in real materials, such as CuO2 plane in cuprates. There are even
a proposals for simulating Lieb model in optical lattice systems [118]. The photo-induced
NNN hopping resembles the anomalous NNN hopping in the checkerboard lattice [116, 117].
As a result, topologically nontrivial bands emerge and topological-to-topological phase tran-
sitions can be observed, as in the case of the honeycomb lattice. In Fig. 6-2(a) we show the
band structure of the effective Lieb model Eq. (G.7) for an off-resonant frequency. The Dirac
point at k = (π,π), which is gapless in equilibrium, becomes gapped in the circularly polarized
lights. As the amplitude of the vector potential A is increased, sign-inversions of the effective
NNN hopping given in Eq. (6.1) take place and we observe topological-to-topological phase
transitions, as shown in Fig. 6-2(b)(c). The bandwidth of the effective Hamiltonian is scaled
by the Bessel function J0(A/2) and the photo-induced Mott-transition will also take place for
certain values of A in the presence of the on-site Coulomb repulsion.

We have thus demonstrated the novel photo-induced phase transition in a variety of
multi-orbital systems and have shown a ubiquitousness of the photo-induced phase tran-
sitions discussed in this thesis. We expect that further investigations for other multi-orbital
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systems will give insights for the choice of materials and experimental settings such as the
intensity and the photon energy of the lasers, for the sake of the realizations of the interesting
photo-induced phenomena investigated in this thesis.



Appendix A

Particle-hole symmetry

In some cases, systems possess a particle-hole symmetry (PHS), an accidental symmetry that
strongly restricts the shape of Green’s functions. Let us consider a lattice model with the
following two properties.

(C1) The lattice can be decomposed into two sub-lattices and any particle hopping takes
place only between the two sub-lattices.

(C2) The total number of particles is equal to the number of atoms (half filling).

A lattice structure that satisfies the first condition (C1) is called a bipartite lattice. For
example, the square lattice and the honeycomb lattice with nearest-neighbor hopping are
bipartite lattices.

The Hamiltonian for the Hubbard model having the two conditions (C1) and (C2) reads

H (t)=
∑

i∈ΛA

∑

j∈ΛB

∑

σ

[
ti j(t)c†

iσc jσ+ ti j(t)∗c†
jσciσ

]
+

∑

iσ

Ui(t)
2

(
n̂iσ−

1
2

)(
n̂iσ̄−

1
2

)
. (A.1)

Here, we have assumed that the lattice is decomposed into A- and B-sublattices. ΛA and ΛB

are the set of labels for atoms in A- and B-sublattices, respectively.

Now the particle-hole transformation operator P̂ , with P̂ 2 = 1, is defined as

P̂ = P̂K̂ , (A.2a)

P̂ ciσ =





c†

iσ, i ∈ΛA

−c†
iσ, i ∈ΛB

. (A.2b)

and K̂ is the complex conjugation operator that acts on any c-number c ∈ C as K̂ c = c∗. The
particle-hole operator P̂ transforms an annihilation operator to the corresponding creation
operator with phase factor ±1 for A- and B-sublattices, respectively. Using the definition and
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fermionic commutation relations we have

P̂
[
ti j(t)c†

iσc jσ
]
P̂ = ti j(t)∗ciσ(−c†

jσ)= ti j(t)∗c†
jσciσ,

P̂

(
c†

iσciσ−
1
2

)
P̂ = ciσc†

iσ−
1
2
=−

(
c†

iσciσ−
1
2

)
.

Thus the Hamiltonian Eq. (A.1) satisfies P̂ Ĥ (t)P̂ = Ĥ , showing that the Hamiltonian has
PHS, [H (t),P̂ ] = 0. Due to this symmetry, the local Green’s functions possess the following
symmetry:

GR
ii,αβ(t, t′)=−iθ(t− t′)〈[ciα(t), c†

iβ(t′)]+〉 definition.

=−iθ(t− t′)〈[c†
i,α(t), ci,β(t′)]+〉 PHS

=−GA
ii,βα(t′, t), (A.3a)

GK
ii,αβ(t, t′)=−GK

ii,βα(t′, t). (A.3b)

Especially in equilibrium, Eq. (A.3a) implies GR
ii,αα(ω) = −GA

ii,αα(−ω) and thus the spectral
function Aα(ω)= (1/π)ImGR

ii,αα(ω) is an even function of ω.
We can also express Eqs.(A.3) in the Floquet representation and we have

GR
αβ;mn(ω)=−GA

βα;−n,−m(−ω)=−GR
αβ;−m,−n(−ω)∗, (A.4a)

GK
αβ;mn(ω)=−GK

βα;−n,−m(−ω). (A.4b)

We have imposed this condition in the study of honeycomb lattice in Chapter 5.



Appendix B

Solving impurity problems with
second-order perturbation theory

In this appendix, we solve the impurity problem, discribed by the action,

S = S0 +S1,

S0 =
∑

σ

∫

C
dt dt′ c†

σ(t)G̃−1
σ (t, t′)cσ(t′), (B.1)

S1 =
∫

C
dtU

(
n↑(t)−α↓

)(
n↓(t)−α↑

)
, (B.2)

in terms of Green’s functions on the Keldysh contour C = C1∪C2, C1 :−∞→∞ and C2 :∞→
−∞. As we have shown in Chapter 2, the Green’s function Gσ(t, t′) can be expressed as

iGσ(t, t′)=
〈

TC cσ(t)c†
σ(t′)e−iS1

〉
, (B.3)

and its perturbation expansion with respect to S1 is obtained as

Gσ(t, t′)=G(0)
σ (t, t′)+G(1)

σ (t, t′)+G(2)
σ (t, t′)+·· · .

The first-order term is given as the Feynman diagram in Fig.B-1(a) and calculated as

G(1)
σ (t, t′)=−U

〈
TC cσ(t)c†

σ(t′)
∫

C
dt̄

(
n↑(t̄)−α↓

)(
n↓(t̄)−α↑

)〉

conn.

=−U
〈

TC cσ(t)c†
σ(t′)

∫

C
dt̄ nσ(t̄)

(
nσ̄(t̄)−ασ

)〉

conn.

=−U
∫

C
dt̄ iG̃σ(t, t̄)

[
−iG̃σ̄(t̄, t̄+)−ασ

]
iG̃σ(t̄, t′)

=U
%

C
dt̄dt̄′ G̃σ(t, t̄)[n0

σ̄(t̄)−ασ]δC(t̄, t̄′)G̃σ(t̄′, t′). (B.4)
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(a) (b) (c)
t
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t

t’

t’

t
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σ
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σ

σ

σ

σ

σ

σ

σ

σ

Figure B-1: Feynman diagrams up to the second order. Solid lines and dashed lines represent
modified noninteracting Green’s function G̃ and interaction U , respectively. The variable
t̄, t̄′,σ and σ̄ are the variables for integration used in the text.

The second-order terms are given as the Feynman diagram in Fig.B-1(b)(c) and calculated as

G(2)
σ (t, t′)=−i

(−iU)2

2

〈
TC cσ(t)c†

σ(t′) (B.5)

×
%

C
dt̄dt̄′

(
n↑(t̄)−α↓

)(
n↓(t̄)−α↑

)(
n↑(t̄′)−α↓

)(
n↓(t̄′)−α↑

)〉

conn.

=U2
%

C
dt̄dt̄′ G̃σ(t, t̄)G̃σ(t̄, t̄′)G̃σ(t̄′, t′)G̃σ̄(t̄, t̄′)G̃σ̄(t̄′, t̄)

− iU2
%

C
dt̄dt̄′ G̃σ(t, t̄)G̃σ(t̄, t′)G̃σ̄(t̄, t̄′)G̃σ̄(t̄′, t̄)

[
iG̃σ(t̄′, t̄′+0+)−ασ̄

]
. (B.6)

Comparing the above results with

Gσ(t, t′)= G̃σ(t, t′)+
∫

C
dt̄dt̄′G̃σ(t, t̄)Σσ(t̄, t̄′)Gσ(t̄′, t′)

we obtain the self-energy on the Keldysh contour up to the second order as

Σσ(t, t′)=U[n0
σ̄(t)−ασ− iχσ̄(t)]δC(t, t′)+U2G̃σ(t, t′)G̃σ̄(t, t′)G̃σ̄(t, t′), (B.7)

where χσ(t) is the internal tadpole contribution given by

χσ(t)=
∫

C
dt̄U[nσ(t)−ασ̄]G̃σ̄(t, t̄)G̃σ̄(t̄, t). (B.8)



Appendix C

Formula for the double occupancy
in the multi-band Hubbard model

The purpose of this Appendix is the following.

• To obtain a general expression for the double occupancy in the multi-band Hubbard
model,

H (t)=
∑

αβ

H(0)
αβ

(t)c†
αcβ+

1
2

∑

α
Uαn̂αn̂ᾱ, (C.1)

where α = (i,a,σ) contains the site-index i, band-index a and spin-index σ =↑,↓. ᾱ

means spin-inversion: ᾱ= (i,a, σ̄).

• To check the validity of the formula for the double occupancy Eq. (C.4) by applying it to
the thermal equilibrium state in two different ways:

– Baym-Kadanoff formalism. The interaction is present on the imaginary-time axis.

– Keldysh formalism: We apply the adiabatic switching-on of the interaction and
therefore the interaction is absent on the imaginary-time axis. Instead, we take
the initial time tmin to be infinite past.

• To apply the formula to ac-driven systems and rewrite it in terms of Wigner functions.

We have assumed in Eq. (C.1) that there is no inter-band interactions, while the one-body
part contains inter-band hopping terms.

C.1 Derivation of the formula for the double occupancy

The equation of motion for a Heisenberg operator cα(t) reads

i∂t cα(t)= [cα(t),H (t)]

=
∑

β

H(0)
αβ

(t)cβ(t)+Uαn̂ᾱ(t)cα(t).
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Using this relation, we have the derivative of contour-ordered Green’s function,

Gαγ(t, t′)=−i〈TC cα(t)c†
β
(t′)〉,

with respect to t as

i∂tGαγ(t, t′)=
∑

β

H(0)
αβ

(t)Gβγ(t, t′)− iUα〈TC{n̂ᾱ(t)cα(t)}c†
γ(t′)〉+δC(t, t′). (C.2)

Setting Uα = 0, we obtain the differential equation for non-interacting Green’s function,

∑

β

[i∂tδαβ−H(0)
αβ

(t)]G(0)
βγ

(t, t′)= δC(t, t′). (C.3)

Therefore we obtain the inverse Green’s function if we regard the LHS of above as the convo-
lution

∑

β

∫

C
G(0)−1

αβ
(t, t̄)G(0)

βγ
(t̄, t′)dt̄.

Using Eq. (C.3) and Eq. (C.2) with γ=α and t′ = t+0, we obtain

∑

β

∫

C
dt̄G(0)−1

αβ
(t, t̄)Gβα(t̄, t+0)= iUα〈n̂α(t)n̂ᾱ(t)〉.

Plugging the relation G(0)−1 =Σ+G−1, we finally obtain the formula for the double-occupancy
as

〈n̂α(t)n̂ᾱ(t)〉= 1
iUα

∑

β

∫

C
dt̄Σαβ(t, t̄)Gβα(t̄, t). (C.4)

C.2 Checking the validity of Eq. (C.4)

Thermal equilibrium state with Baym-Kadanoff formalism In this subsection, we
apply the formula Eq. (C.4) to the thermal equilibrium situation and obtain the known for-
mula in the previous works with DMFT [56]. We choose tmin = tmax = 0 on the contour C and
assume the system is in thermal equilibrium at t = 0. The contour C therefore consists only
of the C3 branch. In this situation, Eq. (C.4) gives

〈n̂α(0)n̂ᾱ(0)〉=− 1
Uα

∑

β

∫1/T

0
dτ̄Σ33

αβ(0,−iτ̄)G33
βα(−iτ̄,0).

The Matsubara component G33 and thermal Green’s function Gthm are related with each
other as

G33(t, t′)=−i〈TC c(t)c†(t′)〉, t, t′ ∈ C3,

Gthm(τ,τ′)=−〈Tτ c(τ)c†(τ′)〉, τ,τ′ ∈ [0,1/T], (C.5)

G33(−iτ,−iτ′)= iGthm(τ,τ′).
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Therefore, we confirm the double-occupancy formula in the thermal Green’s function formal-
ism,

〈n̂α(0)n̂ᾱ(0)〉= 1
Uα

∑

β

∫1/T

0
dτ̄Σthm

αβ (0, τ̄)Gthm
βα (τ̄,0).

Thermal equilibrium state with Keldysh formalism In this subsection, let the inter-
action be absent at the infinite past tmin =−∞, and adiabatically be present at tmax = 0. Due
to the assumption, the self-energy Σ31 =Σ13 = 0 and Eq. (C.4) is reduced to

〈n̂α(0)n̂ᾱ(0)〉= 1
iUα

∑

β

∫0

−∞
dt̄ [Σ>

αβ(0, t̄)G<
βα(t̄,0)+Σ<

αβ(0, t̄)G>
βα(t̄,0)]

= 1
iUα

∑

β

∫∞

−∞
dt̄ [ΣR

αβ(0, t̄)G<
βα(t̄,0)+Σ<

αβ(0, t̄)GA
βα(t̄,0)]

= 1
iUα

∑

β

∫∞

−∞

dω
2π

[ΣR
αβ(ω)G<

βα(ω)+Σ<
αβ(ω)GA

βα(ω)].

Note that the fluctuation-dissipation theorem holds in thermal equilibrium:

GR −GA =G>−G< =−(1+ eω/T )G<,

ΣR −ΣA =Σ>−Σ< =−(1+ eω/T )Σ<.

Eliminating G< and Σ<, we obtain

〈n̂α(0)n̂ᾱ(0)〉= 1
iUα

∑

β

∫∞

−∞

dω
2π

ΣA
αβ(ω)GA

βα(ω)−ΣR
αβ(ω)GR

βα(ω)

1+ eω/T . (C.6)

Since ΣRGR[ΣAGA] is the analytic continuation of ΣtimGtim into the upper-half [lower-half]
plane, and the function (1+ eω/T )−1 has poles at ω= iωn = (2n+1)πiT with a residue −T, we
can deform the integration path for ΣR(ω)GR(ω) and ΣA(ω)GA(ω) in Eq. (C.6) as shown in
Fig. C-1. As a result, we can rewrite Eq. (C.6) as a sum of residues at iωn and thus obtain

〈n̂α(0)n̂ᾱ(0)〉= 1
Uα

T
∞∑

n=−∞

∑

β

Σthm(iωn)Gthm(iωn). (C.7)

C.3 Wigner Green’s function representation of the formula

We have shown that, in Keldysh formalism, the double occupancy is given by

Dα(t) := 〈n̂α(t)n̂ᾱ(t)〉= 1
iUα

∫∞

−∞
dt̄

[
ΣR
α(t, t̄)G<

α(t̄, t)+Σ<
α(t, t̄)GA

α(t̄, t)
]

. (C.8)

In ac-driven situations, the Green’s function G(t, t′) is periodic in the averaged-time domain:
G(t+T, t′+T)=G(t, t′) where T is the period of the drive. Therefore we can define the Wigner
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Re ω

Im ω

×

×

×

×

×

×

path for ΣRGR

path for ΣAGA

Figure C-1: Integration path for ΣRGR and ΣAGA on the complex ω-plane. Crosses on the
imaginary axis represent iωn = (2n+1)πiT (n ∈Z).

representation Gn(ω):

Gn(ω)=
∫T

0

dtav

T

∫∞

−∞
dtrel einΩtav eiωtrelG(t, t′),

where tav = (t+ t′)/2, trel = t− t′. With this expression, the nth oscillating mode of the double-
occupancy,

Dαn :=
∫T

0

dt
T

Dα(t)eiΩnt,

is given by the formula,

Dαn =
∑

m

∫∞

−∞

dω
2π

[
ΣR
α,n+m

(
ω+ n

2
Ω

)
G<

α,−m(ω)+Σ<
α,n+m

(
ω+ n

2
Ω

)
GA

α,−m(ω)
]

. (C.9)

Here we have utilized a formula,

C(t, t′)=
∫∞

−∞
A(t, t̄)B(t̄, t′)dt̄

=
∑

nn′

∫∞

−∞

dω
2π

e−i(ω+nΩ)t ei(ω+n′Ω)t′ An

(
ω+ n

2
Ω

)
B−n′

(
ω+ n′

2
Ω

)
,

Cn(trel = 0)=
∑

m

∫∞

−∞

dω
2π

An+m

(
ω+ n+m

2
Ω

)
B−m

(
ω+ m

2
Ω

)
.



Appendix D

Photo-induced Berry curvature in
terms of current matrices

In this appendix, we prove that the two expressions for the photo-induced Berry curvature,

Bz
αk =

∑

β((=α)
(−i)

ŵx
αβ

ŵy
βα

− ŵy
αβ

ŵx
βα

(εαk −εβk)2 , (D.1a)

Bz
αk =

[
− i∇×〈uαk|∇|uαk〉

]
z, (D.1b)

coincide with each other. Here, |uαk〉 is an eigenstate of the Schrödinger equation in the
Floquet matrix form, Eq.(D.3). Starting from Eq.(D.1b), we have

B i
αk =−iεi jk∂ j〈uαk|∂k|uαk〉

=−iεi jk〈∂ juαk|∂kuαk〉
=−iεi jk

∑

β((=α)
〈∂ juαk|uβk〉〈uβk|∂kuαk〉, (D.2)

where i, j,k run over x, y, z and summation over repeated indices is assumed. εi jk is Levi-
Civita’s anti-symmetric tensor. Now, recall the Schrödinger equation in terms of Floquet
matrices,

(Ĥk − Ω̂)|uαk〉= εαk|uαk〉. (D.3)

By taking the differential ∂k for both sides and multiplying 〈uβk| (β (=α) we obtain

〈uβk|v̂k
k|uαk〉+εβk〈uβk|∂kuαk〉= εαk〈uβk|∂kuαk〉,

with a current matrix v̂k
k = ∂kĤk. This equation leads to

〈uβk|∂kuαk〉=
〈uβk|v̂k

k|uαk〉
εαk −εβk

. (D.4)
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Plugging this into Eq.(D.2) we obtain

B i
αk =−iεi jk

∑

β((=α)

〈uαk|v̂ j
k|uβk〉〈uβk|v̂k

k|uαk〉
(εαk −εβk)2 . (D.5)

The matrix element 〈uαk|v̂ j
k|uβk〉 in the numerator of the Eq.(D.5) is nothing but the αβ

component of a Floquet matrix,
ŵ j

k = Λ̂−1
k v̂ j

kΛ̂k, (D.6)

with Λ̂k = (uαk)α∈Z and thus the above equation coincides with Eq.(D.1a).



Appendix E

Properties of the Bessel functions

In this Appendix, we summarize important properties of the Bessel functions of the first kind
Jn(z) we have used in the main text. Although there are several definitions of the Bessel
functions, we define Jn(z) by introducing its generating function and derive its properties
and formulae, starting from Eq.(E.1) below.

Definition.—The Bessel function is defined by the Fourier expansion of the generating
function Φ(θ)≡ eizsinθ, a 2π-periodic function of θ, as

eizsinθ =
∞∑

n=−∞
Jn(z)einθ, z,θ ∈ R. (E.1)

By substituting θ→ θ+π/2, we obtain an equivalent expression,

eizcosθ =
∞∑

n=−∞
in Jn(z)einθ, z,θ ∈ R. (E.2)

From the definition, we obtain an explicit form of Jn(z) as

Jn(z)=
∫2π

0

dθ
2π

eizsinθe−inθ

=
∫π

0

dθ
2π

(eizsinθe−inθ+ eizsin(2π−θ)e−in(2π−θ))

=
∫π

0

dθ
π

cos(zsinθ−nθ). (E.3)

We plot Jn(z) for several values of n in Fig.E-1. Each Jn(z) oscillates and has an infinite
number of zeros. Zeros of J0(z), which play an important role in the physics of ac-driven
systems, are shown in Fig.E-1. Note that the Bessel functions Jn(z) for negative indices n
and those for positive ones n are related by an equation,

J−n(z)= Jn(−z)= (−1)nJn(z). (E.4)

Neumann’s addition theorem.—Next, we obtain some useful formula that we used in the
main text. First we substitute (θ, z) = (α, p), (θ −α, q) into Eq.(E.1) and multiply the two
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-0.5

 0

 0.5

 1

 0  2  4  6  8  10

J
n
(z

)

z

n=0
  1
  2
  3
  4

 2.405  5.520  8.654

Figure E-1: The Bessel functions Jn(z) for n from 0 to 4. Zeros of J0(z) are also shown.

equations to obtain

ei(psinα+qsin(θ−α)) =
∑

m,n
Jm(p)Jn(q)ei((m−n)α+nθ). (E.5)

The exponent on the LHS is transformed as

i(psinα+ qsin(θ−α))= i
√

p2 + q2 −2pqcosθsin(α+α′),

α′ = arctan
qsinθ

p− qcosθ
.

Now we integrate Eq.(E.5) over α ∈ [0,2π]. Then the summation for m and n in RHS only
remains for m = n. LHS coincides with the definition of J0(z) if we shift the integration
variable as α→α−α′. Thus we obtain so-called Neumann’s addition theorem for the Bessel
functions:

J0(
√

p2 + q2 −2pqcosθ)=
∞∑

n=−∞
Jn(p)Jn(q)einθ. (E.6)

Other useful formula.—Especially, for p = q > 0 and 0≤ θ ≤ 2π, Eq(E.6) gives

J0

(
2psin

θ

2

)
=

∞∑

n=−∞
Jn(p)2einθ. (E.7)

We further integrate Eq.(E.7) over θ ∈ [0,2π]. Due to the redundancy: sin
(
θ

2

)
= sin

(
2π−θ

2

)
,
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the integral of LHS gives 4
∫π/2

0
J0(2psinθ)dθ. On RHS, n (= 0 terms vanish and the n = 0

term gives 2πJ0(p)2. Thus we obtain

∫π/2

0
J0(2zcosθ)dθ = π

2
J0(z)2. (E.8)

Using above, one can calculate the following summation that appeared in the main text as

∞∑

n=1

Jn(A)2

n
sin

2πn
3

=
∫2π/3

0

∞∑

n=1
Jn(A)2 cosnθdθ

=
∫2π/3

0

1
2

[
J0

(
2A sin

θ

2

)
− J0(A)2

]
dθ

=−π

3
J0(A)2 +

∫π/3

0
J0(2A sinθ)dθ

=−π

3
J0(A)2 +

(∫π/2

0
−

∫π/6

0

)
J0(2A cosθ)dθ

= π

6
J0(A)2 −

∫π/6

0
J0(2A cosθ)dθ, (E.9)

where we have used Eq.(E.7) on the second line and Eq.(E.8) in the last transformation.





Appendix F

Detailed calculation of the Floquet
matrices of the dp-model in ac-fields

In this Appendix, we show the detailed calculation of the Floquet matrix elements of the
Hamiltonian H0,k+A(t) in Eq.(4.2c). We consider the two types of external fields—linearly
polarize lights, and circularly polarize lights.

Linearly polarized lights—The vector potential is given by AL(t)= (A cosΩt, A cosΩt) and
we substitute k → k+ AL(t) in Eq.(4.2c). From the d-p hopping term we have the matrix
element as

tdp sin
(

k+ A cosΩt
2

)
=

[ tdp

2i
eik/2ei(A/2)cosΩt

]
+c.c.

=
[ tdp

2i
eik/2

∞∑

n=−∞
in Jn

(
A
2

)
einΩt

]
+c.c.

=
tdp

2i

∞∑

n=−∞

[
eik/2 in Jn

(
A
2

)
− e−ik/2 in J−n

(
A
2

)]
einΩt

= tdp
∞∑

n=−∞
sin

(
k+nπ

2

)
Jn

(
A
2

)
einΩt. (F.1)

From the p-p hopping term we have

2tpp sin
(

kx + A cosΩt
2

)
sin

(ky + A cosΩt
2

)

= tpp

[
−cos

(kx +ky

2
+ A cosΩt

)
+cos

(kx −ky

2

)]

= tpp

[
−sin

(kx +ky +π

2
+ A cosΩt

)
+cos

(kx −ky

2

)]

=−tdp
∞∑

n=−∞
cos

(kx +ky +nπ
2

)
Jn(A)einΩt + tpp cos

(kx −ky

2

)
, (F.2)

where we have used the definition of the Bessel function Eq.(E.2). In the last transformation
we used Eq.(F.1).

Circularly polarized lights—The vector potential is given by AC(t) = (A cosΩt, A sinΩt)
and we substitute k → k+ AC(t) in Eq.(4.2c). From the d-p hopping term, in addition to
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Eq.(F.1) in the case of linearly polarized lights, we have another matrix element,

tdp sin
(

k+ A sinΩt
2

)
= tdp sin

(
k+ A cos(Ωt−π/2)

2

)

= tdp
∞∑

n=−∞
(−i)n sin

(
k+nπ

2

)
Jn

(
A
2

)
einΩt. (F.3)

In the first line, we have just substituted Ωt →Ωt−π/2 in Eq.(F.1), since cosΩt is transformed
to sinΩt and Eq.(F.1) coincides with the matrix element that we wanted to calculate above.
From the p-p hopping term we have, with K± = (kx ±ky)/2,

2tpp sin
(

kx + A cosΩt
2

)
sin

(ky + A sinΩt
2

)

= tpp

{
−sin

[
K++ π

2
+ A
4

2
sin

(
Ωt+ π

4

)]
+sin

[
K−+ π

2
− A
4

2
sin

(
Ωt− π

4

)]}

= tpp
∞∑

n=−∞

[
− (−i)n cos

(
K++ nπ

2

)
Jn

(
A
4

2

)
ein(Ωt+pi/4)

+ (−i)n cos
(
K−+ nπ

2

)
Jn

(
− A
4

2

)
ein(Ωt−π/4)

]

= tpp
∞∑

n=−∞

{
einπ/4 cos

(kx −ky +nπ
2

)
− e−inπ/4 cos

(kx +ky +nπ
2

)}
Jn

(
A
4

2

)
einΩt, (F.4)

where we have substituteed k → K±±π/2 in Eq.(F.3).



Appendix G

Properties of the Lieb model in
circularly polarized ac-fields

G.1 Tight-binding model for Lieb model

The Lieb model consists of three orbitals, d, px and py as depicted in Fig.G-1. The tight-
binding Hamiltonian up to next nearest neighbor hoppings reads

H =H0 +H1 +H2, (G.1a)

H0 =
∑

i
εdd†

i di +
∑

l
εp p†

l pl , (G.1b)

H1 =
∑

i
Jd†

i (pi+x̂/2 + pi+ ŷ/2 + pi−x̂/2 + pi− ŷ/2)+h.c., (G.1c)

H2 =
∑

i
K eiφ(p†

i+x̂/2 pi+ ŷ/2 + p†
i+ ŷ/2 pi−x̂/2 + p†

i−x̂/2 pi− ŷ/2 + p†
i− ŷ/2 pi+x̂/2)+h.c., (G.1d)

where H0 is the on-site energy of each site, H1 represents nearest neighbor (NN) hopping
processes , and H2 is next-nearest neighbor (NNN) hopping. For later convenience we mul-
tiplied phase factor eiφ to the NNN hopping parameters. We shall show in Sec.G.2.1 that the
complex hopping parameter appears as a result of the circularly polarized field, even if the
original Hamiltonian does not contain NNN hopping process: K = 0.

By the standard tight-binding calculation, we obtain the noninteracting Hamiltonian H0
as

H0 =
∑

k
ψ†

kH0kψk, (G.2a)

ψk =
(
dk px,k py,k

)t
, (G.2b)

H0k =





εd 2J cos kx
2 2J cos ky

2
2J cos kx

2 εp 2K
[
cos

(
kx+ky

2

)
e−iφ+cos

(
kx−ky

2

)
eiφ

]

2J cos ky
2 2K

[
cos

(
kx+ky

2

)
eiφ+cos

(
kx−ky

2

)
e−iφ

]
εp



 .

(G.2c)

The band structure for the Lieb lattice for K = 0 is presented in Fig. G-2(a). There exists
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x

y

J

dp
x

yp

J

J

J Keiφ

KeiφKeiφ

Keiφ

Figure G-1: The Lieb lattice. J and K are nearest and next-nearest neighbor hopping am-
plitudes, respectively. For reference a phase factor φ is attached to next-nearest neighbor
hopping processes depicted as the dotted arrows in the figure.

a flat band and two dispersive bands, touching at a single Dirac point M(π,π).

G.2 The Lieb model in circularly polarized electric fields

We consider a circularly polarized electric field E(t)=−∂t A(t), given by the vector potential

A(t)= t(A cosΩt, A sinΩt). (G.3)

The external field is included as the Peierls substitution: k → k+A(t), and the Floquet matrix
elements are calculated as

Ĥmn(k)= H0k,m−n =
∫T

0

dt
T

H0,k+A(t) ei(m−n)Ωt. (G.4)

The Floquet matrices H0k,n are 3×3 matrices with the form

H0k,n =




εdδn0 a∗

−n b∗
−n

an εpδn0 c∗−n
bn cn εdδn0



 . (G.5)
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The parameters an,bn and cn are obtained from Eq.(G.4) with the noninteracting Hamilto-
nian Eq.(G.2c) and the vector potential Eq.(G.3), and we have

an = 2JJn

(
A
2

)
cos

(
kx +nπ

2

)
, (G.6a)

bn = 2JJn

(
A
2

)
(−i)n cos

(ky +nπ
2

)
, (G.6b)

cn = 2K Jn

(
A
4

2

)[
e−inπ/4eiφ cos

(kx +ky +nπ
2

)
+ einπ/4e−iφ cos

(kx −ky +nπ
2

)]
. (G.6c)

G.2.1 Effective model, band structure, and topological phases in off-resonant
case

From now on, we discard the bare NNN hopping: K = 0. Using the formula for an effective
Hamiltonian in off-resonant fields Eq. (5.29) in Chap. 5, we obtain the effective Hamilto-
nian for the Lieb lattice in circularly polarized field. Using the Fourier component of the
Hamiltonian H0k,n in Eq.(G.4), we have

Heffk = H0k,0 +
∑

n>0

[H0k,−n,H0k,n]
nΩ

=





εd 2Jeff cos kx
2 2Jeff cos ky

2
2Jeff cos kx

2 εp 2Keff

[
cos

(
kx+ky

2

)
e−iφ+cos

(
kx−ky

2

)
eiφ

]

2Jeff cos ky
2 2Keff

[
cos

(
kx+ky

2

)
eiφ+cos

(
kx−ky

2

)
e−iφ

]
εp



 ,

(G.7)

with a phase φ=−π/2 and effective hopping parameters,

Jeff = JJ0

(
A
2

)
, (G.8a)

Keff =
2J2

Ω

∞∑

n=1

1
n

J2
n

(
A
2

)
sin

(nπ
2

)
. (G.8b)

The band structure of the effective Lieb model Eq. (G.7) is plotted in Fig. G-2(b). Due
to the photo-assisted NNN hopping amplitude iKeff, a photo-induced gap opens at the Dirac
point M(π,π). The size of the gap is proportional to Keff, whose A-dependence is plotted in
Fig.G-3.

The Hall conductivity σxy is calculated from the nonequilibrium Kubo formula. In Fig.
G-4(a) we show σxy as a function of A at half-filling. The Fermi level is set to the energy of
the flat band. The values of intensity A at which the sign of σxy inverts correspond to the
zeros of Keff in Fig. G-3.

In Fig. G-4(b) we fix A and vary the Fermi level near the energy of the flat band. σxy does
not change drastically in the vicinity of the flat band. Thus we conclude that the flat band
has trivial Chern number ν= 0, and the lower and the upper bands carries nontrivial Chern
number: ν=±1, respectively.
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Figure G-2: The band structure of the Lieb lattice (a) in equilibrium, and (b) in a circularly
polarized light with the intensity A = 3.5 and the photon energy Ω= 10.

Figure G-3: Effective NNN hopping amplitude Keff as a function of the intensity A.

Figure G-4: dc-Hall conductivity in the Lieb lattice in a circularly polarized light with Ω= 10.
(a) The intensity A is varied from 0 to 12.5 with level offsets fixed as εd = εp = 0. (b) The level
offset εd(= εp) is varied from −0.5 to 0.5 with the intensity A = 3.5 is fixed.
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