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Introduction
In this thesis, we consider a free boundary problem that combines the nonlinear reaction-diffusion

equation with the Stefan boundary condition.

(0.1)


ut − uxx = f(u), t > 0, x ∈ (g(t), h(t)),

g′(t) = −µux(t, g(t)), u(t, g(t)) = 0, t > 0,

h′(t) = −µux(t, h(t)), u(t, h(t)) = 0 t > 0,

−g(0) = h(0) = h0, u(0, x) = u0(x), x ∈ (−h0, h0).

where g(t), h(t) are the free boundaries, supplemented together with some nonnegative initial datum

(0.2) u0 ∈X (h0) :=

{
W ∈ C2[−h0, h0] :

W (−h0) = W (h0) = 0, W ′(−h0) > 0,
W ′(h0) < 0,W (x) > 0 in (−h0, h0)

}
.

µ is a positive constant while f ∈ C1. The first equation in (0.1) is the reaction-diffusion equation,
which has many applications in physics, chemistry and biology. The second and third lines in (0.1) are
the so-called Stefan condition, which is a well-known free boundary condition that appears typically in
the melting of ice. The combination of the reaction-diffusion equation and the Stefan condition makes
the problem highly unique and different from what has been known before. Indeed the presence of
the free boundary in the reaction-diffusion equation also gives rise to various interesting phenomena
which I will explain later.

In this thesis we deal with a large class of nonlinearities f . In the special case where f(u) =
u(a− bu), the equation in (0.1) reduces to the well-known Fisher-KPP equation, which is a classical
mathematical model in population genetics and ecology. For instance, in the celebrated work of
J. G. Skellam [35], he established a reaction-diffusion model in order to explain the spreading of
muskrats in central Europe. More precisely, he calculated the area of the muskrat territory from a
map obtained from earlier field data, took the square foot (which gives the spreading radius) and
plotted it against years, and found that the data points lie on a straight line. This means that the
spreading radius eventually exhibits a linear growth curve against time. Skellam then derived a KPP
type reaction-diffusion model to explain this linear growth. Since then, many researchers started to
use a reaction-diffusion model to describe biological invasion. See, for example, [36] and the references
therein.

A great deal of previous mathematical investigation on the spreading of population has been based
on the diffusive logistic equation over the entire space :

(0.3) ut − duxx = u(a− bu), t > 0, x ∈ R.

In the pioneering works of Fisher [20] and Kolmogorov, Petrovsky, and Piskunov [28], the traveling

wave solutions have been found for (0.3): for any |c| ≥ c0 := 2
√
ad, there exists a solution u(t, x) :=

W (x − ct) with the property that W ′(y) < 0 for y ∈ R1, W (−∞) = a/b, W (+∞) = 0; no such
solution exists if |c| < c0. The number c0 is called the minimal speed of the traveling waves. It
is known that c0 also coincides with what is called the spreading speed. Here, the spreading speed
means the speed of expanding fronts of a solution u(t, x) with compactly supported initial datum
u(0, x). In 1975, D. G. Aronson and H. F. Weinberger [2] proved that if the initial value u(0, x) is
confined to a compact set, then the following holds for any ε > 0

(0.4) lim
t→∞,|x|<(c0−ε)t

u(t, x) = a/b, lim
t→∞,|x|>(c0+ε)t

u(t, x) = 0,

These results have been extended to higher dimensions in [3].
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As to the asymptotic behavior of the Fisher-KPP equation, in 1937, Kolmogorov et al. [28] proved
that if the initial datum is given by u(0, x) = I(−∞,0), then we have:

(0.5) u(t,m(t) + x)→ Uc0(x),

where m(t) = sup{x : u(t, x) = 1/2} and U is the unique solution of

(0.6)

{
−U ′′(x)− c0U

′(x) = U(x)(a− bU(x)), x ∈ R,
U(−∞) = a/b, U(+∞) = 0.

K. Uchiyama [37] proved that the property (0.5) holds also for solutions of (0.3) with compactly
supported initial datum.

Recently, Yihong Du added the Stefan condition to the Fisher-KPP equation as follows:

(0.7)


ut − duxx = u(a− bu), t > 0, x ∈ (g(t), h(t)),

g′(t) = −µux(t, g(t)), u(t, g(t)) = 0, t > 0,

h′(t) = −µux(t, h(t)), u(t, h(t)) = 0 t > 0,

−g(0) = h(0) = h0, u(0, x) = u0(x), x ∈ (−h0, h0).

In 2010, Y. Du and Z. Lin [10] proved the existence, uniqueness and regularity of solutions to
the equation (0.7). Moreover, they proposed a spreading-vanishing dichotomy. If h∞ − g∞ =

limt→+∞(h(t)− g(t)) ≤ π
√
d/a, it happens vanishing, which means

h∞, g∞ are bounded and lim
t→+∞

‖u(t, ·)‖C([g(t),h(t)]) = 0;

otherwise it happens spreading, which means

h(t),−g(t)→ +∞ and u(t, x)→ a/b locally uniformly in R as t→ +∞.

However, according to the well-known hair-trigger effect, we know that u, which is the solution of
(0.3) with a compactly supported initial datum, must converge to a/b locally uniformly in R. This is
a striking difference between (0.3) and (0.7). The phenomenon exhibited by the spreading-vanishing
dichotomy seems closer the reality, and is supported by numerous empirical evidences; for example,
the introduction of several bird species from Europe to North America in the 1900’s was successful
only after many initial attempts.

If adding a advection term to (0.3) and (0.7), the difference between them becomes more apparent.
For the equation

(0.8) vt − βvx − dvxx = v(a− bv), t > 0, x ∈ R

is just a translation of (0.3), it is easy to see that ‖v(t, ·)‖L∞(R) converges to a/b as t → +∞,
where v is a solution of (0.8) with a compactly supported initial datum. In a recent paper [24], the
corresponding free boundary problem

(0.9)


vt − βvx − dvxx = v(a− bv), t > 0, x ∈ (g(t), h(t)),

g′(t) = −µvx(t, g(t)), v(t, g(t)) = 0, t > 0,

h′(t) = −µvx(t, h(t)), v(t, h(t)) = 0 t > 0,

−g(0) = h(0) = h0, v(0, x) = v0(x), x ∈ (−h0, h0).

is considered. [24] shows us that if β is sufficiently large, it must be that h∞, g∞ are bounded and

lim
t→+∞

‖v(t, ·)‖C([g(t),h(t)]) = 0,

where (v, g, h) is the solution of (0.9) with any compactly supported initial datum. Here, βvx can
be considered as something like wind which can affect the propagation. We can naturally consider
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that it is hard for the species to exist if the wind is too strong. As a consequence, the free boundary
problem is closer to the reality in some sense.

For more general types of homogeneous f , [16] gives out a sharp estimate about the asymptotic
behavior of (u, g, h) when spreading happens. First, let us introduce three classical types of nonlin-
earities. We say that f is called monostable, if f ∈ C1, and it satisfies

(0.10) f(0) = f(1) = 0, f(u)

{
> 0 in (0, 1),
< 0 in (1,∞)

and f ′(0) > 0, f ′(1) < 0. We say f is of bistable type, if f ∈ C1 and it satisfies

(0.11) f(0) = f(θ) = f(1) = 0, f(u)

 < 0 in (0, θ),
> 0 in (θ, 1),
< 0 in (1,∞)

for some θ ∈ (0, 1), f ′(0) < 0, f ′(1) < 0 and

(0.12)

∫ 1

0
f(s)ds > 0.

We say f is of combustion type, if f ∈ C1 and it satisfies

(0.13) f(u) = 0 in [0, θ], f(u) > 0 in (θ, 1), f ′(1) < 0, f(u) < 0 in (1,∞)

for some θ ∈ (0, 1), and there exists a small δ > 0 such that f(u) is nondecreasing in (θ, θ + δ).

Theorem 1. Suppose that f(u) is of monostable, bistable or combustion type. Then the problem

(0.14)

{
qzz − cqz + f(q) = 0 for z ∈ (0,∞),
q(0) = 0, µqz(0) = c, q(∞) = 1, q(z) > 0 for z > 0.

has a unique solution pair (c, q) = (c∗, qc∗), and c∗ > 0, q′c∗(z) > 0. (u, g, h) is a solution of (0.1),
which is obtained in [10]. Moreover, if spreading happens, then we have

|h(t)− c∗t− c1| → 0, |g(t) + c∗t+ c2| → 0, h′(t)→ c∗, g′(t)→ −c∗

and
max

0≤x≤h(t)
|u(t, x)− qc∗(h(t)− x)| → 0, max

g(t)≤x≤0
|u(t, x)− qc∗(x− g(t))| → 0

as t→ +∞.
This thesis has two purposes: 1. to show Theorem 1 ([16]) still holds for heterogeneous f ; 2. to

consider the propagation of the free boundary in higher dimensional spaces.
In the first half, we will consider the equation

(0.15)


ut − uxx = f(x, u), t > 0, x ∈ (g(t), h(t)),

g′(t) = −µ(t, g(t)), u(t, g(t)) = 0, t > 0,

h′(t) = −µux(t, h(t)), u(t, h(t)) = 0 t > 0,

u(0, x) = u0(x), x ∈ (g(0), h(0)),

where f ∈ C1(R2,R) satisfies the periodicity condition f(x+L, u) ≡ f(x, u) and f(x, 0) ≡ 0 for some
L > 0. We assume that there exists a positive and L-periodic stationary solution p(x) of

(0.16)

{
p′′(x) + f(x, p(x)) = 0, x ∈ R,
p(x) > 0, p(x+ L) ≡ p(x).

The function p is also a stationary solution of the following auxiliary equation

(Eper)

{
∂tu(t, x)− ∂xxu(t, x) = f(x, u(t, x)), t > 0, x ∈ R,
u(t, ·) L-periodic for any t ∈ R.
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We now state two main assumptions:
Asumption 1. There exists a solution (u, g, h) of (0.15) with compactly supported initial datum

0 ≤ u0(x) < p(x) such that u converges locally uniformly to p, h(t)→ +∞ and g(t)→ −∞ as t→∞.
Assumption 2. There exists no stationary solution q with 0 < q(x) < p(x) that is both isolated

from below and stable from below with respect to (Eper).
Here we say a stationary solution q of (Eper) is isolated from below (reps. above) if there exists

no sequence of other stationary solutions converging to q from below (reps. above). A stationary
solution q is said to be stable from below (reps. above) with respect to (Eper) if it is stable in the
L∞ topology under nonpositive (reps. nonnegative) perturbations. Otherwise, q is called unstable
from below (reps. above).

We note that Assumption 2 holds for a large class of nonlinearities including the following:
Case 1. (Monostable nonlinearity) There exists no L-periodic stationary solution q satisfying

0 < q(x) < p(x) for all x ∈ R. Futhermore, 0 is unstable from above.
Case 2. (Bistable nonlinearity) The stationary solution 0 is stable from above with respect to

(Eper), and p is stable from below with respect to (Eper). Furthermore, all other stationary solutions
between 0 and p are unstable.

Case 3. (Combustion nonlinearity) There exists a family of L-periodic stationary solutions
(qλ)λ∈[0,1], that forms a continuum in L∞(R) and satisfies 0 = q0 < q1 < p. Furthermore, there exists
no stationary solution q satisfying q1(x) < q(x) < p(x) for all x ∈ R.

Then by following the idea of [18], we can show the existence of the pulsating traveling wave for
the right side (U,H), which is a solution of

(Fh)


∂tu(t, x)− ∂xxu(t, x) = f(x, u(t, x)), t > 0, −∞ < x < h(t),

u(t, h(t)) = 0, t ≥ 0,

h′(t) = −µ∂xu(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x) > 0, −∞ < x < h0.

and satisfies {
U(t, x− L) = U(t+ T, x), t ∈ R, x ∈ (−∞, H(t+ T )),

H(t) + L = H(t+ T ), t ∈ R,

for some T > 0. Correspondingly, there also exists the pulsating traveling wave for the left side
(U∗, H∗).

To give out a sharp estimate on the asymptotic behavior of solutions of (0.15), we still need one
more assumption to estimate the middle part of solutions, on which u converges to stable stationary
solution p uniformly.

Assumption 3.The principle eigenvalue of L0 is negative, where L0 is defined by L0ψ = ψ′′ +
∂uf(x, p)ψ and ψ is L-periodic. In other words, there exist a function ψ and a constant λ > 0, such
that {

ψ′′(x) + ∂uf(x, p(x))ψ(x) = −λψ(x),

ψ(x) ≡ ψ(x+ L), ψ(x) > 0,

hold for all x ∈ R.
Under Assumption 3, we can show that the pulsating traveling for the right side is unique up to

time shift. Moreover, we have the following theorem (see Corollary 1.1.12 and Theorem 1.1.15 in
Section 1 for details):

Theorem 2.Let Assumptions 1-3 hold. Then we have the pulsating semi-wave for the right side
(U,H) and that for the left side (U∗, H∗). Let (u, g, h) be a solution of (0.15) with initial datum
u0(x) < p(x) for which u converges to p locally uniformly in R as t → +∞. Then there exists
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constants Tr and Tl such that as t→ +∞, we have

(0.17) ‖u(t, ·)− U(t+ Tr, ·)‖L∞([0,min{h(t),H(t+Tr)}]) → 0,

(0.18) |h(t)−H(t+ Tr)| → 0 and |h′(t)−H ′(t+ Tr)| → 0,

(0.19) ‖u(t, ·)− U∗(t+ Tl, ·)‖L∞([max{g(t),H∗(t+Tl)},0]) → 0,

(0.20) |g(t)−H∗(t+ Tl)| → 0 and |g′(t)−H ′∗(t+ Tl)| → 0.

In the second half, we are interested in the spreading speed in higher dimensions for homogeneous
f . Therefore we will consider the equation

(0.21)


ut − urr − N−1

r ur = f(u), 0 < r < h(t), t > 0,
ur(t, 0) = 0, u(t, h(t)) = 0, t > 0,
h′(t) = −µur(t, h(t)), t > 0,
h(0) = h0, u(0, r) = u0(r), 0 ≤ r ≤ h0

with initial datum u0 chosen from

(0.22) K (h0) :=
{
ψ ∈ C2([0, h0]) : ψ′(0) = ψ(h0) = 0, ψ(r) > 0 in [0, h0)

}
.

We assume that spreading happens, namely limt→∞ h(t) = ∞, limt→∞ u(t, |x|) = 1. For the case of
one space dimension (N = 1), it has been solved by Theorem 1 ([16]). In the latter half, we consider
the case N ≥ 2 and give out a sharp estimate as follows (see Theorem 2.4.1 in Section 2 for details):

Theorem 3.Suppose that f(u) is of monostable, bistable or combustion type. Let (u, h) be the

solution of (0.21) for which spreading happens. There exists a constant ĥ ∈ R1 such that

lim
t→∞

{
h(t)−

[
c∗t− cN log t

]}
= ĥ, lim

t→∞
h′(t) = c∗

and
lim
t→∞
‖u(t, ·)− qc∗(h(t)− ·)‖L∞([0,h(t)]) = 0,

where cN = N−1
ζ c∗ and ζ = 1 + c∗

µ2
∫∞
0 q′

c∗ (z)2e−c∗zdz
.

At the same time, we also obtain a rather clear description of the spreading profile of u(t, r).
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1. Front propagation in periodic media with free boundaries

1.1. Introduciton.

In this section, we consider a free boundary problem that combines the reaction-diffusion equation
with the Stefan boundary condition. Equation

(F )



∂tu(t, x)− ∂xxu(t, x) = f(x, u), g(t) < x < h(t), t > 0,

u(t, h(t)) = u(t, g(t)) = 0, t > 0,

h′(t) = −µ∂xu(t, h(t)), t > 0,

g′(t) = −µ∂xu(t, g(t)), t > 0,

h(0) = −g(0) = h0 > 0, u(0, x) = u0(x), −h0 < x < h0,

where x = g(t) and x = h(t) are the moving boundaries to be determined together with u(t, x),
supplemented together with some nonnegative initial datum

(1.1) u0 ∈X (h0) :=

{
W ∈ C2[−h0, h0] :

W (−h0) = W (h0) = 0, W ′(−h0) > 0,
W ′(h0) < 0,W (x) > 0 in (−h0, h0)

}
.

µ is a given positive constant, and the function f(x, u) ∈ C1(R2;R) satisfies the periodicity condition

(1.2) f(x+ L, u) ≡ f(x, u) and f(x, 0) ≡ 0

for some L > 0.
Problem (F ) with f(u) = au − bu2 was introduced by [10] to describe the spreading of a new or

invasive species. The free boundary boundaries x = g(t) and x = h(t) represent the spreading fronts
of the population whose density is represented by u(t, x). The results in [10] were extended by [7, 8]
to higher dimensions, while the regularity of the free boundary in higher dimensions was recently
solved in [15].

Problem (F ) with a rather general homogeneous f(u) (of monostable, or bistable, or combustion
type) was recently studied by [11]. It shows that problem (F ) has a unique solution which is defined
for all t > 0, and as t → ∞, the interval (g(t), h(t)) converges either to a finite interval (g∞, h∞),
or to (−∞,+∞). Moreover, in the former case, u(t, x) → 0 uniformly in x, while in the latter case,
u(t, x)→ 1 locally uniformly in x ∈ (−∞,+∞) (except for a non-generic transition case when f is of
bistable or combustion type). The situation that

u→ 0 and (g, h)→ (g∞, h∞)

is called the vanishing case, and

u→ 1 and (g, h)→ (−∞,+∞)

is called the spreading case.
Moreover, in the setting of [11], when spreading happens, it is shown in [16] that there exists c∗ > 0,

such that

lim
t→∞

(h(t)− c∗t−H) = 0, lim
t→∞

h′(t) = c∗,

lim
t→∞

(g(t) + c∗t−G) = 0, lim
t→∞

g′(t) = −c∗,

where H,G ∈ R, and

lim
t→∞

supx∈[0,h(t)]|u(t, x)− qc∗(h(t)− x)| = 0,

lim
t→∞

supx∈[g(t),0]|u(t, x)− qc∗(x− g(t))| = 0,

where (c∗, qc∗) is uniquely determined by (see [16])
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{
c∗q′c∗(x)− q′′c∗(x) = f(qc∗(x)), x ∈ (0,+∞),

qc∗(0) = 0, qc∗(+∞) = 1, c∗ = µq′c∗(0).

Because qc∗ is only defined on the right axis, we call it a semi-wave, which is very similar to the
traveling wave arising from the corresponding Cauchy problem.

For the special heterogenous case f(x, u) = a(x)u− b(x)u2, with a(x) and b(x) positive L-periodic
functions, Du and Liang [9] proved the existence and uniqueness of the pulsating semi-wave which
governs the spreading speed of (F ) when spreading happens.

Recently in [18], Ducrot, Giletti and Matano introduced the definition of propagating terrace for
the corresponding Cauchy problem of (F ), namely

(E)

{
∂tu− ∂xxu = f(x, u), t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R.

They use the propagating terrace to describe the long-time dynamical behavior for very general
nonlinearities which may give rise to many different steady states. Such a propagating terrace consists
of several different stationary solutions and the pulsating traveling waves connecting them.

The current section has two goals:

(1) We want to extend the results of the propagating terrace to the free boundary problem (F ),
and compare the differences between the Cauchy problem and (F ). In the first half, we
will give out the existence of the propagating terrace with a free boundary by borrowing
some important ideas from [18], and then show how the Stefan coefficient µ will affect the
propagating terrace.

(2) Using the pulsating semi-wave obtained in (1), which covers rather general nonlinearities f ,
we will give a sharp estimate on the asymptotic behavior of solutions of problem (F ) when
spreading happens. We will show in particular that, in a certain moving frame, the solution of
(F ) converges to the pulsating semi-wave as t→ +∞, and in contrast to the Cauchy problem
treated in [18], here the convergence does not involve any phase shift.

1.1.1. Description on f .

In this subsection, we will introduce some assumptions on f , which will be widely used in the
following.

In this section, we always assume that there exists some positive L-periodic stationary solution
p(x) of (E):

(1.3)

{
p′′(x) + f(x, p(x)) = 0, ∀x ∈ R,
p(x) > 0, p(x+ L) ≡ p(x).

The function p is also a stationary solution of the following auxiliary equation, the L-periodic coun-
terpart of (E):

(Eper)

{
∂tu(t, x)− ∂xxu(t, x) = f(x, u(t, x)), t > 0, x ∈ R,
u(t, ·) L-periodic for any t ∈ R.

It is obvious that any solution of (Eper) is also a solution of (E).
We now state our main assumptions. The following two are concerned with the attractiveness of p

from below.

Assumption 1.1.1. There exists an initial datum φ0 ∈ X (l0), which satisfies φ0(x) < p(x) for all
x ∈ (−l0, l0). If u0 = φ0, then we have u(t, x) converges to p(x) locally uniformly in R while h(t) and
−g(t) converge to +∞ as t→ +∞, where (u, g, h) is the solution of (F ).
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From the view of ecology, p means the stable state for some species in a natural enviroment. It is
reasonable for us to assume that in some cases such a stable state is unique.

Assumption 1.1.2. There exists no L-periodic stationary solution q with 0 < q(x) < p(x) that is
both isolated from below and stable from below with respect to (Eper).

Let us clarify the notions introduced in this assumption. A stationary solution q of (Eper) is said
to be isolated from below (resp. bf above) if there exists no sequence of other stationary solutions
converging to q from below (resp. above). A stationary solution q is said to be stable from below
(resp. bf above) with respect to (Eper) if it is stable in the L∞ topology under nonpositive (resp.
nonnegative) perturbations( see Theorem 8 in [30]).

To give a sharp estimate on the asymptotic behavior of solutions of (F ), we still need one more
assumption to estimate the middle part of solutions, on which u converges to stable stationary solution
p uniformly.

Assumption 1.1.3. The principle eigenvalue of L0 is negative, where L0 is defined by L0ψ = ψ′′ +
∂uf(x, p)ψ and ψ is L-periodic. In other words, there exist a function ψ and a constant λ > 0, such
that {

ψ′′(x) + ∂uf(x, p(x))ψ(x) = −λψ(x),

ψ(x) ≡ ψ(x+ L), ψ(x) > 0,

hold for all x ∈ R.

Note that the above assumptions cover a wide variety of nonlinearities, including such standard
cases as monostable,bistable or combustion nonlinearities, but also to much more general and complex
cases.

A classical example of the bistable nonlinearity is the Allen-Cahn nonlinearity u(1− u)(u− a(x)),
where 0 < a(x) < 1, a(x + L) ≡ a(x). An important subclass of the monostable nonlinearity is the
KPP type nonlinearity, in which 0 is assumed to be linearly unstable and f is sublinear with respect
to u; a typical example being a(x)u− b(x)u2, with a(x+ L) ≡ a(x) > 0 and b(x+ L) ≡ b(x) > 0.

1.1.2. Main results.

Before stating the main results, let us first introduce some notions which will play a fundamental
role in this section. To make the thesis not lengthy, we refer the definitions of pulsating traveling
waves and propagating terraces of Cauchy problem (E) to [18]. Next, we will define the corresponding
ones in the free boundary problem (F ).

Definition 1.1.4. (Pulsating semi-wave) Given a positive periodic stationary state p, by a pul-
sating semi-wave solution of (Fh) connecting 0 to p, we mean any entire solution (u, h) satisfying,
for some T > 0, {

u(t, x− L) = u(t+ T, x), t ∈ R, x ∈ (−∞, h(t+ T )),

h(t) + L = h(t+ T ), t ∈ R,

along with the asymptotics

u(+∞, ·) = p(·),

when the convergence is understood to hold locally uniformly in the space variable. Then ratio c : LT > 0
is called the average speed of this pulsating traveling wave with a right free boundary.
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(Fh) is a free boundary problem defined in the below, which has only a free boundary on the right
side.

(Fh)


∂tu(t, x)− ∂xxu(t, x) = f(x, u(t, x)), t > 0, −∞ < x < h(t),

u(t, h(t)) = 0, t ≥ 0,

h′(t) = −µ∂xu(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x) > 0, −∞ < x < h0.

The following definition on steepness plays a key role in the construction of the propagating
terrace of (Fh).

Definition 1.1.5. We will describe the steepness between different types of equations in the following:

(i) Let v1, v2 be two entire solutions of (E). we say that u1 is steeper than u2 if for any t1, t2
and x1 in R such that u1(t1, x1) = u2(t2, x1), we have either

u1(·+ t1, ·) ≡ u2(·+ t2, ·) or ∂xu1(t1, x1) < ∂xu2(t2, x1).

(ii) Let (u1, h1), (u2, h2) be two entire solutions of (Fh). We say that (u1, h1) is steeper than
(u2, h2) if for any t1, t2 in R such that when h1(t1) ≥ h2(t2) we have

u1(t1, x) ≥ u2(t2, x) for x ∈ (−∞, h2(t2)),

and when h1(t1) < h2(t2), we have

∂xu1(t1, x1) < ∂xu2(t2, x1)

for any x1 ∈ (−∞, h1(t1)) satisfying u1(t1, x1) = u2(t2, x1).
(iii) Let (u1, h1) be an entire solution of (Fh) and v1 be that of (E). We say that (u1, h1) is steeper

than v1 if for any t1, t2 ∈ R and x1 ∈ (−∞, h1(t1)) such that u1(t1, x1) = v2(t2, x1), we have

∂xu1(t1, x1) < ∂xu2(t2, x1).

Next, let us define the propagating terrace for the free boundary problem.

Definition 1.1.6. A propagating terrace of (Fh) connecting 0 to p is a pair of finite sequence
(pk)0≤k≤N , (Uk)1≤k≤N and a free boundary Hsuch that:

• Each pk is an L-periodic stationary solution of (Eper) satisfying

p = p0 > p1 > · · · > pN = 0.

• For each 1 ≤ k ≤ N − 1, Uk is a pulsating traveling wave solution of (E) connecting pk to
pk−1.
• (UN , H) is a pulsating semi-wave solution 0 to pN−1.
• The speed ck of each Uk satisfies 0 < c1 ≤ c2 ≤ · · · ≤ cN .

Furthermore, a propagating terrace of (Fh) T = ((pk)0≤k≤N , (Uk)1≤k≤N , H) connecting 0 to p is said
to be minimal if it also satisfies the following:

• For any propagating terrace T ′ = ((qk)0≤k≤N , (Ũk)1≤k≤N ′ , H̃) connecting 0 to p, one has that

{pk : 0 ≤ k ≤ N} ⊂ {qk : 0 ≤ k ≤ N ′}.

• For each 1 ≤ k ≤ N − 1, the pulsating traveling wave Uk is steeper than any other pulsating
traveling wave connecting pk to pk−1.
• The pulsating semi-wave(UN , H) is steeper than any other pulsating semi-wave connecting 0

to pN−1.

Next, let us introduce show the existence of a minimal propagating terrace of (Fh).
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Theorem 1.1.7. Let Assumption 1.1.1 hold. Then there exists a propagating terrace of (Fh) ((pk)0≤k≤N ,
(Uk)1≤k≤N , H) that is minimal in the sense of Definition 1.1.6. Such a minimal propagating terrace
of (Fh) is unique, in the sense that any minimal propagating terrace of (Fh) shares the same (pk)k
and that (Uk)1≤k≤N and H are unique up to time-shift. Moreover, it satisfies:

(i) For any 0 ≤ k < N , the L-periodic stationary solution pk is isolated and stable from below
with respect to (Eper).

(ii) (pk)0≤k≤N) and (Uk)1≤k≤N−1 is steeper than any other entire solution of (E) between 0 and
p. Moreover, (UN , H) is steeper than any other entire solution of (E) or (Fh) between 0 and
p.

Remark 1.1.8. According to the above theorem, we can get the existence of pulsating semi-wave
connecting 0 to some steady state, which may be not p.

From Theorem 1.10 in [18], we know that there is a unique minimal propagating terrace of (E)
consisting of ((qk)0≤k≤N ′ , (Vk)1≤k≤N ′) if Assumption 1.1.1 hold.

Theorem 1.1.9. Let Assumption 1.1.1 hold and ((qk)0≤k≤N ′ , (Vk)1≤k≤N ′) be the unique minimal
propagating terrace of (E). Then we have:

(i) N ≤ N ′, (pk)0≤k≤N−1 = (qk)0≤k≤N−1 and (Uk)1≤k≤N−1 = (Vk)1≤k≤N−1.
(ii) If Assumption 1.1.1 holds for each µ ∈ (0,+∞), there exists a sequence (µi)0≤i≤N ′, which

satisfies
0 = µ0 < µ1 ≤ · · · ≤ µN ′−1 ≤ µN ′ = +∞

such that, for any µ ∈ (µi, µi+1) and 0 ≤ i ≤ N ′ − 1, the corresponding minimal propagating
terrace of (Fh) consists of (pk)0≤k≤i+1, (Uk)1≤k≤i+1 and H, where it holds that

pk = qk for 0 ≤ k ≤ i
and

Uk = Vk for 1 ≤ k ≤ i
and (Ui+1, H) is a pulsating semi-wave connecting 0 to qi.

Remark 1.1.10. Assume f(x, u) = a(x)u(1− u), where 1 < a(x) < 2 for each x ∈ R. By the results
in [10], we know that spreading must happen as long as 2h0, the length of initial datum u0, is bigger
than π. No matter how small u0 and µ are. Thus, it is possible that Assumption 1.1.1 holds for each
µ ∈ (0,+∞). For more general f , if φ0 is a compactly supported stationary solution of u′′+f(x, u) = 0
and Assumption 1.1.1 holds for some µ0 > 0, then we can easily check that Assumption 1.1.1 also
holds for each µ > 0.

Following Theorem 1.1.7 and 1.1.9, we can give out some sufficient conditions on the existence of
the pulsating semi-wave connecting 0 to p.

Corollary 1.1.11. Let Assumption 1.1.1 hold for each µ ∈ (0,+∞). There must exist a pulsating
semi-wave connecting 0 to p if µ is sufficiently small.

Corollary 1.1.12. Let Assumption 1.1.1 and 1.1.2 hold. There must exist a pulsating semi-wave
connecting 0 to p.

The next theorem will tell us how solutions of (F ) converge to the pulsating semi-wave without
phase drift as t→ +∞ if spreading happens, which means

u→ p

locally uniformly in R and
g → −∞ and h→ +∞

as t→ +∞.
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Proposition 1.1.13. Let Assumptions 1.1.1 and 1.1.3 hold and assume the existence of the pulsating
semi-wave (U,H) connecting 0 to p. Then the pulsating semi-wave is unique up to time shift.

Remark 1.1.14. Notice that most of the above definitions and theorems in this subsection focus on
the free boundary of the right side. However, we note that the corresponding results also hold for the
left side in the same argument.

Theorem 1.1.15. Let Assumptions 1.1.1 and 1.1.3 hold. We further ssume that the pulsating semi-
wave exists for the two sides. (U,H) is the pulsating semi-wave with a free boundary on the right side
in the sense of Definition 1.1.4, while (U∗, H∗) is the corresponding one for the left side. Let (u, g, h)
be a solution of (F ) for which spreading happens, and given initial datum u0(x) < p(x) + ε0ψ(x) for
x ∈ [−h0, h0], where ε0 is a sufficiently small positive constant (see Lemma 1.2.10). Then there exists
constants Tr and Tl such that as t→ +∞, we have

(1.4) ‖u(t, ·)− U(t+ Tr, ·)‖L∞([0,min{h(t),H(t+Tr)}]) → 0,

(1.5) |h(t)−H(t+ Tr)| → 0 and |h′(t)−H ′(t+ Tr)| → 0,

(1.6) ‖u(t, ·)− U∗(t+ Tl, ·)‖L∞([max{g(t),H∗(t+Tl)},0]) → 0,

(1.7) |g(t)−H∗(t+ Tl)| → 0 and |g′(t)−H ′∗(t+ Tl)| → 0.

Remark 1.1.16. Because the coefficient is periodic with respect to x, (U,H) and (U∗, H∗) may have
different periodicities on time. Thus they may move at different average speeds.

This section is organized as follows. In Subsection 1.2, we introduce some preliminary knowledges.
In Subsection 1.3, we show the existence of the propagating terrace of (Fh) and its comparison with
that of (E). The asymptotic behavior of problem (F ) is proved in Subsection 1.4.

1.2. Preliminaries.

1.2.1. Zero number.
As our proof relies strongly on a zero number argument, let us first begin, for the sake of clarity, with
some preliminary definitions and lemmas from [1].

Definition 1.2.1. For any u ∈ C0(I), where I is an open interval, we denote by:

• Z[u(·); I] is the number of sign changes of u, that is the supremum over all k ∈ N such that
there exist x1 < x2 < ... < xk real numbers with

u(xi) · u(xi+1) < 0 for all i = 1, 2, ..., k − 1.

• SGN [u(·); I] is the word consisting of + and -, describing the signs that appear alternately
when looking at u(·) from the left to the right. We denote SGN [0; I] = [ ] the empty word.

Let us recall some properties of Z and SGN :

Lemma 1.2.2. Let u(t, x) 6≡ 0 be a bounded solution of a parabolic equation of the form

∂tu = a(t, x)∂xxu+ b(t, x)∂xu+ c(t, x)u, x ∈ (s(t), r(t)), t1 < t < t2,

where a, b, c are bounded continuous functions, and s, r either always equal to ∞, or are bounded
continuous functions (we do not need s, r attain ∞ at the same time). We denote I(t) := (s(t), r(t)).
The boundary condition is one of the followings:

u > 0; u < 0; u = 0; ∂xu = 0 t ∈ (t1, t2).

Then, for each t ∈ (t1, t2), the zeros of u(t, ·) do not accumulate in I(t). Furthermore,
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(i) Z[u(t, ·); I(t)] and SGN [u(t, ·); I(t)] are nonincreasing in t, that is, for any t′ > t,

Z[u(t′, ·); I(t)] ≤ Z[u(t, ·); I(t)],

SGN [u(t′, ·); I(t)] / SGN [u(t, ·); I(t)] ( where / means being a subword);

(ii) if u(t′, x0) = ∂xu(t, x0) = 0 for some t′ ∈ (t1, t2) and x0 ∈ I(t), then

Z[u(t, ·); I(t)] > Z[u(s, ·); I(t)] for all t ∈ (t1, t
′) and s ∈ (t′, t2)

whenever Z[u(s, ·); I(t)] < +∞.

One can also check that Z is semi-continuous with respect to the pointwise convergence, that is:

Lemma 1.2.3. Let a sequence (un)n∈N and u in C0(I) such that for all x ∈ I, un(x)→ u(x). Then,
one has that

u ≡ 0 or

(1.8) Z[u; I] ≤ lim inf
n→∞

Z[un; I] and SGN [u; I] / lim inf
n→∞

SGN [un; I].

Those results follow from [1]: though the author only considered bounded intervals for the space
variable, most of the conclusions above can be shown similarly (see also [14] for more details).

1.2.2. Hopf’s lemma for parabolic equations.
Let QT be a bounded open set of RN+1, contained in (0, T ) × RN , where T > 0. We denote by Q∗T
the parabolic interior of QT , that is the set of all points (t̄, x̄) with the property: there exist a ε > 0
such that Bε(t̄, x̄) ∩ {t < t̄} ⊂ QT . Here Bε(t̄, x̄) denotes the (N + 1)-dimensional ball with radius ε
and center (t̄, x̄). Define also the parabolic boundary ∂pQT of QT , as ∂pQT = QT −Q∗T .

Definition 1.2.4. We say that a point (t̄, x̄) ∈ ∂pQT has the property of the spherical cap if there
exists an open ball Br(t0, x0) such that

(t̄, x̄) ∈ ∂Br(t0, x0), Br(t0, x0) ∩ {t < t̄} ⊂ QT ,

with x0 6= x̄.

In the following,we denote by Cr(t̄, x̄) a cap Br(t0, x0)∩ {t < t̄} as the one appearing in the above
definition. A version of Hopf’s Lemma for parabolic equations was proven in [22].

Lemma 1.2.5. Let ∂tu−∆u ≤ 0 in Q∗T . Let (t̄, x̄) ∈ ∂pQT have the property of the spherical cap. If

u(t, x) < u(t̄, x̄), for all (t, x) ∈ Cr(t̄, x̄),

then

(1.9)
∂u

∂e
(t̄, x̄) < 0,

where e ∈ RN+1 is any direction such that

(t̄, x̄) + se ∈ Cr(t̄, x̄), for 0 < s < Σ(e),

and we also assume that the derivative in (1.9) exists.
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1.2.3. Some basic results.
In this subsection we give some basic results about problem (F ). Because f(x, u) ∈ C1(R2;R), most
of the results can be obtained by a slight modification from [10, 11]. Thus we omit the proof if they
are not necessary.

Lemma 1.2.6. (Comparison principle)Suppoe T ∈ (0,∞), ḡ, h̄ ∈ C1([0, T ]),ū ∈ C(D̄T )∩C1,2(D̄T )
with DT = {(t, x)| 0 < t ≤ T, ḡ(t) < x < h̄(t)}, and

ūt ≥ ūxx + f(x, ū), 0 < t ≤ T, ḡ(t) < x < h̄(t),

ū(t, h̄(t)) = 0, h̄′ ≥ −µūx(t, h̄(t), 0 < t ≤ T,
ū(t, ḡ(t)) = 0, ḡ′ ≤ −µūx(t, ḡ(t), 0 < t ≤ T.

If
ḡ(0) ≤ −h0, h̄0 ≥ h0, ū(0, x) ≥ u0(x) in [ḡ(0), h̄(0)],

where (u, g, h) is a solution of (F ), then for any t ∈ (0, T ]

ḡ(t) ≤ g(t), h̄(t) ≥ h(t), ū(t, x) ≥ u(t, x) in [ḡ(t), h̄(t)].

The triple (ū, ḡ, h̄) in the above lemma is usually called an upper solution of (F ). We can define a
lower solution by reversing the inequalities in the obvious places.

Theorem 1.2.7. For any given u0 ∈ X (h0) and any α ∈ (0, 1), there a T > 0 such that problem
(F ) admits a unique solution

(u, g, h) ∈ C(1+α)/2,1+α(ḠT )× C1+α/2([0, T ])× C1+α/2([0, T ]);

moreover,
‖u‖C(1+α)/2,1+α(ḠT ) + ‖g‖C1+α/2([0,T ]) + ‖h‖C1+α/2([0,T ]) ≤ C,

where GT = ‖(t, x) ∈ R2 : x ∈ [g(t), h(t)], t ∈ [0, T ]}, C and T depend on h0, α, ‖a‖C1([0,L]),
‖b‖C1([0,L]), ‖u0‖C2([−h0,h0]) and ‖f‖C1([0,L]×[0,‖u0‖C([−h0,h0])+1]).

Lemma 1.2.8. (u, g, h) is a solution to (F ) defined for t ∈ [0, T0) for some T0 ∈ (0,∞), and there
exists C1 > 0 such that

u(t, x) < C1 for t ∈ [0, T0) and x ∈ (g(t), h(t)).

Then, there exists C2 depending on C1 but independent of T0 such that

−g′(t), h′(t) ∈ (0, C2] for t ∈ (0, T0).

Moreover, the solution can be extended to some interval (0, T ) with T > T0.

Theorem 1.2.9. Problem (F ) has a unique solution defined on some maximal interval (0, T ∗) with
T ∗ ∈ (0,∞]. Moreover, when T ∗ <∞, we have

lim
t→T ∗

‖u(t, ·)‖C([g(t),h(t)]) =∞.

If we further assume that u0(x) < p(x) for x ∈ (−h0, h0), then

T ∗ =∞.

The next two lemmas is about the uniform boundedness and exponential convergences of u.

Lemma 1.2.10. Suppose that Assumption 1.1.3 holds. There exists positive constants ε0,δ0 and T0

such that if (u, g, h) is a solution of (F ) with initial datum u0(x) ≤ p(x) + ε0ψ(x) for x ∈ (−h0, h0),
then we have

(1.10) u(t, x) < p(x) + e−δ0t for t ∈ (T0,+∞) and x ∈ (g(t), h(t)),

where ψ is the eigenfunction defined in Assumption 1.1.3.
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Proof. Let us make a transformation first

ṽ(t, x) :=
ũ(t, x)− p(x)

ψ(x)
,

where ũ is the solution of (E). By calculation, we get

∂tṽ =
∂tũ

ψ
,

∂xṽ =
(∂xũ− p′)ψ − (ũ− p)ψ′

ψ2

and

∂xxṽ =
[(∂xxũ− p′′)ψ − (ũ− p)ψ′′]ψ2 − 2ψψ′[(∂xũ− p′)ψ − (ũ− p)ψ′]

ψ4
.

Replacing the above equalities into equation (E), then we get the equation for ṽ:

(1.11)

{
∂tṽ − ∂xxṽ − 2ψ

′

ψ ∂xṽ = F (x, ṽ), t > 0, x ∈ R,
ṽ(0, x) = ũ0(x)−p(x)

ψ(x) , x ∈ R,

where F (x, v) = f(x,vψ(x)+p(x))−f(x,p(x))
ψ(x) − [λ+ ∂uf(x, p(x))]v. It is easy to check that

∂vF (x, 0) = −λ.
Then there exists a constant ε0 > 0 such that

∂vF (x, v) < −λ
2

holds for x ∈ R and 0 ≤ v ≤ ε0. Next, we construct a new V (t) as the supersplution of ṽ:

(1.12)

{
V ′(t) = −λ

2V (t), t > 0,

V (0) = ε0.

Through comparison principle, it is easy to infer that V (t) is a supersplution of ṽ(t, x) if given initial
datum 0 ≤ ṽ0(x) < ε0 for x ∈ R. Because V strictly decreases with respect to t, it follows that

ṽ(t, x) < ε0 for t > 0, x ∈ R.
We note that ũ is a supersolution of (u, g, h), the solution of equation (F ). Then by Theorem 1.2.9,
(u, g, h) exists for all the time t > 0. (1.10) easily follows from the fact that V exponentially converges
to 0 as t→ +∞.

�

Lemma 1.2.11. Let Assumptions 1.1.1 hold and (u, g, h) be a solution of (F ) for which spreading
happens. There exists a c > 0 such that

(1.13) lim
t→+∞

inf{u(t, x)− p(x) : |x| ≤ ct} ≥ 0.

Proof. Let φ0 ∈ X (l0) be the compactly supported initial datum given in Assumption 1.1.1. This
means that the solution (u, g, h) of (F ) with initial datum φ0 converges locally uniformly to p as
t→ +∞. According to it, there exists a time T > 0 such that

u(T, x) ≥ max{φ0(x), φ0(x− L), φ0(x+ L)} for any x ∈ R.
For convenience, we mean u ≡ 0 outside its free boundaries g and h, so is for u. By the comparison
principle, it follows that

u(2T, x) ≥ max{u(T, x), u(T, x− L), u(T, x+ L)}
≥ max{φ0(x), φ0(x− L), φ0(x− 2L), φ0(x+ L), φ0(x+ 2L)}.
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By induction, we obtain that for all j ∈ N,

u(jT, x) ≥ max{φ0(x− iL) : i ∈ Z, |i| ≤ j}.
Because (u, g, h) is a solution with initial datum u0 for which spreading happens, we can assume that
u0 ≥ φ0 without loss of generality. Applying the comparison principle one gets that

u(jT, x) ≥ max{φ0(x− iL) : i ∈ Z, |i| ≤ j}
for any j ∈ N. Therefore, from Assumption (1.1.1), we have that for any j ∈ N,

u(τ + jT, x) ≥ max{u(τ, x− iL) : i ∈ Z, |i| ≤ j},
→ p(x),

where the convergence holds as τ → +∞, uniformly with respect to j ∈ N and x ∈ [−jL, jL].
Let us now define

(1.14) c∗ : L/T > 0

and choose any c with 0 < c < c∗. Denote by dye the ceiling function of y, that is, the least integer
not smaller than y. Then for any t ≥ 0, let

τ(t) := t− dct
L
eT.

As c < c∗, one can easily check that τ → +∞ as t→ +∞. Thus,

lim
t→+∞

inf{u(τ(t) + dct
L
eT, x)− p(x) : |x| ≤ dct

L
eL} ≥ 0,

and, since ct ≤ d ctL eL and t = τ(t) + d ctL eT for all t ≥ 0, we have (1.13).
�

1.3. Propagating terrace with a free boundary.

In this section, we will prove the existence and uniqueness of the propagating terrace of (Fh) and
its relationship with that of (E). We call ω-limit set of a solution (u, h) of (Fh) the set of functions
to which u may converge for large positive time. More rigorously, we define:

Definition 1.3.1. Let (u(t, x), h(t)) be any solution of (Fh). We call (v(t, x), l(t)) an ω-limit orbit
of (u, h) if there exist two sequences tj → +∞ and kj ∈ Z such that

h(t+ tj)− kjL→ l(t), as j → +∞
locally uniformly on R and

u(t+ tj , x+ kjL)→ v(t, x), as j → +∞
locally uniformly on R× (−∞, l(t)).

Remark 1.3.2. One can easily check that (v, l), an ω-limit orbit of (u, h), satisfies the Stefan bound-
ary condition. Thus (v, l) is an entire solution of (Fh). Moreover, (v(t+ τ, x+ kL), j(t+ τ)− kL) is
also an ω-limit orbit of (u, h) for any τ ∈ R and k ∈ Z.

Definition 1.3.3. We denote (û(t, x; a), ĥ(t; a)) is the solution of (Fh) whose initial datum is given
in the form

u0(x) = p(x)H(a− x) and h0 = a,

where a is a constant, H is the Heaviside function, which is defined by{
H(x) = 0, x < 0,

H(x) = 1, x ≥ 0.
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It is obvious that the initial datum of equation (Fh) should be at least continuous. However,
p(x)H(a − x) has a jump point at x = 0. We solve this problem in the following way: first, we
choose a sequence of continuous functions Hn(x) satisfying

(1.15)


Hn(x) = 0, x ≤ 1

n and x ≥ n,
Hn(x) > 0, 1

n < x < n,

Hn(x) increases with respect to n for any x ∈ R,
Hn(x)→ 1 locally uniformly in R+ as n→ +∞.

Moreover, we assume that Hn(x) belongs to C2([ 1
n , n]). We say that (un, gn, hn) is the solution of

(F ) initialized by p(x)Hn(a−x). By comparison principle, it is easy to see that {un}n and {hn}n are
increasing sequences. We define that{

û(t, x; a) = limn→∞ un(t, x),

ĥ(t; a) = limn→∞ hn(t).

It is not difficult to check that for any t > 0, (û(t, x; a), ĥ(t; a)) is a pair of solution of equation (Fh)

satisfying the Stefan condition ĥ′(t; a)) = −µûx(t, h(t); a).

The following three lemmas are about some basic properties of (û, ĥ).

Lemma 1.3.4. Let (un, gn, hn) be the sequence converging to (û(t, x; a), ĥ(t; a)) in the sense of Defi-
nition 1.3.3. For any T > δ > 0, we have

(û(· , · ; a), ĥ(t; a)) ∈ C(1+α)/2,1+α(Ω̄(δ, T ))× C1+α/2([δ, T ]),

where Ω̄(δ, T ) = {(t, x) ∈ R2 : x ∈ (−∞, ĥ(t; a)), t ∈ [δ, T )} and 0 < α < 1. Moreover, ĥ′(t; a) is
uniformly bounded for any t > δ and a ∈ R.

Proof. Without loss of generality, we may assume a = 0. Next, let us define a family of auxiliary
functions (Yb)b∈R, which is defined as follows:

(1.16)

{
∂xxYb(x) + f(x, Yb(x)) = 0, x ∈ (b− 1, b),

Yb(b− 1) = p(b− 1) + 1 and Yb(b) = 0.

Because un(0, x) converges to p(x) locally uniformly in R−, there must exist a n0 ∈ N such that
un0(0, ·) is bigger than φ0(·+mL) for some integer m. By Assumption 1.1.1, we know that (un, gn, hn)
will spread successfully for n ≥ n0. Then it follows that limt→+∞ hn0(t; 0) = +∞. For the mono-
tonicity of hn0 , there is a unique time t0 such that hn0(t0; 0) = 1. For any n ≥ n0 and t > t0, by
the boundary condition of Yb we can easily check that Yhn(t)(·) does not have any tangent point or
intersection point with un(s, ·) for 0 < s < t. Then it is not difficult to infer that Yhn(t)(x) ≥ un(t, x)
for n ≥ n0,t > t0 and x ∈ (hn(t)−1, hn(t)]. It follows that ∂xun(t, hn(t)) ≥ ∂xYhn(t)(hn(t)) for n ≥ n0

and t > t0. For the periodicity of Yb with respect to b, we know that ∂xun(t, hn(t)) is uniformly
bounded for n ≥ n0 and t > t0.. Furthermore, we can infer that h′n(t) is uniformly bounded for

n ≥ n0 and t > t0.. Because hn(t) converges to ĥ(t; 0) as n → +∞, we know that ĥ is uniformly
Lipschitz-continuous for t > t0.

Because û is the convergence of un, û satisfies the equation away from the free boundary ĥ. It is
also easy to check that (û, ĥ) satisfies the Stefan boundary condition almost every time.

Then by a similar argument of Theorem 2.1 in [10], we can make a transformation for changing
the free boundary problem to the Dirichlet problem. Following the same argument of Theorem 2.1
in [10], we obtain the regularity of (û, ĥ) the same as that of problem (F ) if t > t0. We note that t0
is only dependent on the length of the definition domain of Yb. Thus if we shorten the domain of Yb,
t0 can be chosen as small as we want.
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�

Remark 1.3.5. By standard Lp estimate, the sobolev embedding theorem and the H”older estimates
for parabolic equations, we can further infer that û(t, ·; a) ∈ C2((−∞, ĥ(t; a)]) for any t > 0.

Lemma 1.3.6. Let Assumption 1.1.1 be satisfied. For each c ∈ (0, c∗), where c∗ is defined in 1.14,
one has

(1.17) lim
t→+∞

sup
x≤ct
|û(t, x; a)− p(x)| = 0.

Proof. Following the method in Lemma 1.2.11, we can infer that

û(jT, x; a) ≥ max{φ0(x− iL : i ∈ Z, i ≤ j}

for all j ∈ N. Then by the same argument, the lemma follows. �

Lemma 1.3.7. Let (v, l) be any entire solution of (Fh). For any t > 0,

(i) If l(t) ≤ ĥ(t; a), then v(t, x) < û(t, x; a) for x ∈ (−∞, l(t)).
(ii) If l(t) > ĥ(t; a), then SGN [û(t, · ; a)− v(t, ·); (−∞, ĥ(t; a)]] = [+−].

Proof. Without loss of generality, we may assume that a = 0. By our definition on (û, ĥ), it is easy
for us to observe that if both of (un(0, x))n∈N and (ũn(0, x))n∈N satisfies (1.15), then (un(t, x), hn(t))

and (ũn(t, x), h̃n(t)) converge to the same (û(t, x; 0), ĥ(t; 0) as n→ +∞. That means (û, ĥ) does not
depend on the choice of (un(0, x))n∈N.

Next, let us consider the case l(0) ≥ 0 = a. Because of hn(0) = − 1
n ≤ l(0) and gn(0) = −n, we can

choose initial datums (un(0, x))n∈N such that for each n ∈ N, un(0, x) and v(0, x) have exactly two
intersection points in (−n,− 1

n). By Lemma 1.2.2, the number of intersection points between un(t, x)
and v(t, x) does not increase before the time hn and l meet. We denote the left and right intersection
points of un(t, x) and v(t, x) as yn(t) and zn(t) for each n and t > 0 if they exist. It is easy to see
that both of yn(t) and zn(t) are continuous functions.

For any n ∈ R, we denote tn := inf{t : t > 0 and hn(t) = l(t)}. If tn = +∞, by Lemma 1.2.2, we
know that it holds either that yn and zn meet at some time t = s0 and disappear together for t > s0,
or that both of yn and zn exist for all the time t > 0.

If tn is finite, we claim that either yn(tn) < zn(tn) = hn(tn) or yn(tn) = zn(tn) = hn(tn) happens.
If yn and zn meets some time s0 < tn, by Lemma 1.2.2 it follows that (un, gn, hn) is a subsolution
of (v, l) for any t > s0. Then it is impossible that hn and l meet at t = tn. Therefore, if tn
is finite, both of yn and zn exist differently for t < tn. If yn and zn meet at t = tn, there are
two possibilities: yn(tn) = zn(tn) < hn(tn) or yn(tn) = zn(tn) = hn(tn). Because the second one
belongs to our claim, we only need to treat the first case. By the virtue of equation (1.16), we
know that h′n(t) is uniformly bounded for any t > ε > 0. For the case yn(tn) = zn(tn) < hn(tn),
we denote Qtn by {(x, t) : t ∈ (0, tn) and x ∈ (zn(t), hn(t))}. For the uniform boundedness of h′n(t)
for t > ε, we can easily check that (tn, hn(tn)) ∈ ∂pQtn has the property of the spherical cap.
Thus by Hopf’s Lemma, we can infer that l′(tn) > h′n(tn), which means hn and l can not meet at
t = tn. By this contradiction, it follows that if tn is finite and yn(tn) = zn(tn), we deduce that
yn(tn) = zn(tn) = hn(tn) = l(tn). By the same argument, we also have that if tn is finite and
yn(tn) < zn(tn), then yn(tn) < zn(tn) = hn(tn) = l(tn). Thus, our claim has been claimed.

If tn is finite and yn(tn) < zn(tn) = hn(tn), it is easy to see that zn disappears since t = tn. In
other words, there exists a small δ > 0 such that hn(t) > l(t) for t ∈ (tn, tn + δ). Moreover, yn is the
unique intersection point between un and v for t ∈ (tn, tn + δ). Then We denote t̃n := inf{t : t >
tn and hn(t) = l(t)}. If t̃n = +∞, by Lemma 1.2.2 we know that yn, the unique intersection point,
always exists for t > tn. If t̃n is finite, by Hopf’s lemma, we can infer that yn(t̃n) = hn(t̃n) = l(t̃n).
In this case, we have hn(t) < l(t) and un(t, x) < l(t, x) for t > t̃n and x ∈ (gn(t), hn(t)).
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For some n0 ∈ N, by Lemma 1.2.2, there is a time t0 such that hn0(t0) < l(t0) and both of yn0(t0)
and zn0(t0) exist differently. Because of (1.15) and comparison principle, we know that yn(t0) exists
for any n ≥ n0 and decrease with respect to n. Moreover, we have

(1.18) lim
n→+∞

yn(t0) = −∞

for un(0, x) converges to p(x) locally uniformly in (−∞, 0) as n→ +∞. If ĥ(t0; 0) > l(t0), it follows
that hn(t0) > l(t0) for large n. By the existence of yn(t0), we know that un(t0, x) > v(t0, x) for
x ∈ (yn(t0), l(t0)). Because of (1.18) and the monotonicity of un(t, x) with respect to n, we get

that û(t0, x; 0) > v(t0, x) for x ∈ (−∞, l(t0)). By comparison principle, we have ĥ(t; 0) > l(t) and
û(t, x; 0) > v(t, x) for t > t0 and x ∈ (−∞, l(t)).

If ĥ(t0; 0) = l(t0), we have hn(t0) → l(t0) as n → +∞. By the above argument, we know that

ĥ(t; 0) > l(t) for any t > s > 0, where s satisfies ĥ(s; 0) = l(s). Then we can infer that ĥ(t; 0) < l(t)
for any 0 < t < t0. By the existence of yn(t0), we know that zn(t0) exists for any n ≥ n0 and increases
with respect to n. Then we claim that

(1.19) lim
n→+∞

zn(t0) = l(t0).

Otherwise, we can get a contradiction on that ĥ and l meet at t = t0, by repeating the argument
on how zn disappears at t = tn. Then (1.19) follows. And we know that un(t0, x) > v(t0, x) for
x ∈ (yn(t0), zn(t0)). For (1.18),(1.19) and the monotonicity of un(t, x) with respect to n, we infer
that û(t0, x; 0) > v(t0, x) for x ∈ (−∞, l(t0)).

If ĥ(t0; 0) < l(t0), it easily follows SGN [û(t0, · ; 0)− v(t0, ·); (−∞, ĥ(t0; 0)]] = [+−] from (1.18) and
Lemma 1.2.3. And by Lemma 1.2.2, such a relationship will be kept for any time t > t0 satisfying
ĥ(t; 0) < l(t).

Because t0 can chosen arbitrarily small, this lemma has finished for the case l(0) ≥ 0. As to the
case l(0) < 0, it is much easier and can follow from the same argument, so we omit the proof.

�

Remark 1.3.8. Assume (u, h) and (v, l) are two solutions of (Fh). By the argument of Lemma 1.3.7,
it is easy to notice that the number of the intersection points between u and v will decrease at least
1 when h and l meets. It means that h and l can meet at most finite times. The fact also holds for
solutions of (F ).

According to Lemma 1.3.7, we find that (û, ĥ) is ’steeper than’ any entire solution of (Fh) for t > 0
in the sense of Definition 1.1.5. By this property, we have the following lemma.

Lemma 1.3.9. Let a ∈ R and let (v1, l1) be any ω− limit orbit of (û(t, x; a), ĥ(t; a)). Then we have:

(i) If l1(0) = +∞, v1 is steeper than any other entire solution of (E) between 0 and p.
(ii) If l1(0) < +∞, (v1, l1) is steeper than any other entire solution of (E) or (Fh) between 0 and

p.

Proof. (i) Fix a ∈ R. And let the sequences tj → +∞ and kj ∈ Z be such that ĥ(0 + tj ; a)− kjL→
l1(0) = +∞ and u(t+ tj , x+kjL)→ v1(t, x) locally uniformly in R as j → +∞. According to Lemma

1.3.4, we know that ĥ′(t; a) is uniformly bounded for any t > 1. Thus, for any t ∈ R, l1(t) = +∞. By
standard parabolic estimates, the convergence of u in fact holds in C1

loc(R2).
Then by the same argument of Lemma 2.8 in [18], v1 is steeper than any other entire solution of

(E) between 0 and p.

(ii) Fix a ∈ R. And let the sequences tj → +∞ and kj ∈ Z be such that ĥ(0 + tj ; a) − kjL →
l1(0) = +∞ and u(tj , x+ kjL)→ v1(0, x) locally uniformly in (−∞, l(0)) as j → +∞. For ĥ′(t; a) is
uniformly bounded for any t > 1, we can infer that l1(t) is bounded and Lipschitz continuous for any
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t ∈ R. Through the argument of Lemma 1.3.4, we can transform it into a Dirichlet problem around

the free boundary and obtain the same regularity that (v1, l1) ∈ C(1+α)/2,1+α
loc ×C1+α/2

loc for 0 < α < 1.
Let (v, l) be an entire solution of (Fh). Fix T0 ∈ R. If l(T0) < l1(T0), then we can find a j0 such

that l(T0) < ĥ(T0 + tj ; a) − kjL for any j > j0. Through Lemma 1.3.7, we know that v(T0, x) <
û(T0 + tj , x+ kjL; a) holds for x ∈ (−∞, l(T0)) and j > j0. Then it follows that v(T0, x) ≤ v1(T0, x)
for x ∈ (−∞, l(T0)).

By Hopf’s Lemma, we have that l′1(t) > 0 for any t ∈ R. If l(T0) = l1(T0), it holds that l(T0) <
l1(T0 + ε) for any ε > 0. By the above argument, we know that v(T0, x) ≤ v1(T0 + ε, x) for x ∈
(−∞, l(T0)). Because v1 is continuous, it follows v(T0, x) ≤ v1(T0, x) for x ∈ (−∞, l(T0)).

If l(T0) > l1(T0), we can find a j1 such that l(T0) > ĥ(T0 + tj ; a) − kjL for any j > j1. Following
the virtue of equation (1.16), for any ε1 > 0, we can find a sufficiently small δ0 > 0, such that

û(t, x; a) < ε1 for t > 1 and x ∈ [ĥ(t; a)−δ0, ĥ(t; a)]. Then we can find a δ1 such that l(T0)−δ1 < l1(T0)

and l(T0) − δ1 < ĥ(T0 + tj ; a) − kjL and û(T0 + tj , x + kjL; a) < 1
2v(T0, x) hold for j > j1 and

x ∈ [l(T0)− δ1, ĥ(T0 + tj ; a)− kjL]. It follows that

(1.20) v1(T0, x) ≤ 1

2
v(T0, x) < v(T0, x) for x ∈ [l(T0)− δ1, l1(T0)].

By Lemma 1.3.7, we know SGN [û(T0 + tj , · + kjL; a) − v(T0, ·); (−∞, l(T0) − δ1]] = [+−]. Then
following (1.20) and Lemma 1.2.3, we have

(1.21) SGN [v1(T0, ·)− v(T0, ·); (−∞, l1(T0)]] / [+−].

Because of l(T0) > l1(T0) and the uniform boundedness of l′, l′1, there exists a small ε2 > 0 such that

(1.22) l(s) > l1(s) for s ∈ [T0 − ε2, T0].

By the same argument, (1.21) also holds at t = T0 − ε2. That means

SGN [v1(T0 − ε2, ·)− v(T0 − ε2, ·); (−∞, l1(T0 − ε2)]] / [+−].

Then it follows that either of

SGN [v1(T0 − ε2, ·)− v(T0 − ε2, ·); (−∞, l1(T0 − ε2)]] = [+−]

or
v1(T0 − ε2, x) ≤ v(T0 − ε2, x) for x ∈ (−∞, l1(T0 − ε2))

holds. By (1.22) and Lemma 1.2.2, for the time t = T0, we have either of

SGN [v1(T0, ·)− v(T0, ·); (−∞, l1(T0)]] = [+−]

or
v1(T0, x) < v(T0, x) for x ∈ (−∞, l1(T0)).

Combining the above arguments together, (v1, l1) is steeper than (v, l) at t = T0. Because T0 is
arbitrary, we know that (v1, l1) is steeper than any other entire solution of (Fh).

In a similar but easier argument, we also can infer (v1, l1) is steeper than any other entire solution
of (E). �

Next, let us show how the propagating terrace of (Fh) is constructed.

Definition 1.3.10. Let x0 ∈ R be given. For any 0 < β < p(x0) and a < x0, let us define

(1.23) τ(x0, β; a) := min{t > 0 : û(t, x0; a) = β}.
In the same sense, we also define

(1.24) τ(x0, 0; a) := {t > 0 : ĥ(t; a) = x0}.

Thanks to Lemma 1.3.6, τ(x0, β; a) always exists and is finite for β ∈ [0, p(x0)).
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Lemma 1.3.11. For any constants a1, a2, x0 ∈ R satisfying a1 < a2 < x0, we have

(1.25) ĥ′(τ(x0, 0; a1); a1) ≤ ĥ′(τ(x0, 0; a2); a2)

and

(1.26) û(τ(x0, 0; a1), x; a1) < û(τ(x0, 0; a2), x; a2)

for x ∈ (−∞, x0).

Proof. For a1 < a2, it is obvious that τ(x0, 0; a1) > τ(x0, 0; a2). Then we claim that

(1.27) ĥ(τ(x0, 0; a1)− τ(x0, 0; a2); a1) > a2.

Otherwise, if ĥ(τ(x0, 0; a1)− τ(x0, 0; a2); a1) ≤ a2, we know that û(τ(x0, 0; a1)− τ(x0, 0; a2), x; a1) <

p(x) = û(0, x; a2) for x ∈ (−∞, ĥ(τ(x0, 0; a1) − τ(x0, 0; a2); a1)) ⊆ (−∞, a2). By the comparison

principle, (û(· , · ; a2), ĥ(· ; a2)) is a supersolution of (û(· + τ(x0, 0; a1) − τ(x0, 0; a2), · ; a1), ĥ(· +
τ(x0, 0; a1) − τ(x0, 0; a2); a1)). Thus, it follows ĥ(t + τ(x0, 0; a1) − τ(x0, 0; a2); a1) ≤ ĥ(t; a2) for any
t > 0. We know that at the time t = τ(x0, 0; a2) the two free boundaries will meet in x = x0. Then

we can infer that ĥ′(t + τ(x0, 0; a1) − τ(x0, 0; a2); a1) ≥ ĥ′(t; a2) when t = τ(x0, 0; a2). However,
following Hopf’s lemma, we have ∂xû(τ(x0, 0; a2), x0; a2) < ∂xû(τ(x0, 0; a1), x0; a1) at the boundary,
which contradicts with the former inducement. Thus, our claim (1.27) has been proved.

According to (1.27), we can find a small ε > 0 such that

ĥ(ε+ τ(x0, 0; a1)− τ(x0, 0; a2); a1) > ĥ(ε; a2)

and

SGN [û(ε, · ; a2)− û(ε+ τ(x0, 0; a1)− τ(x0, 0; a2), · ; a1); (−∞, ĥ(ε; a2)]] = [+−]

in a similar argument of Lemma 1.3.7. We claim ĥ(t+ τ(x0, 0; a1)− τ(x0, 0; a2); a1) > ĥ(t; a2) holds

for any t ∈ (ε, τ(x0, 0; a2)). Otherwise, we can define t0 := inf{t : t ∈ (ε, τ(x0, 0; a2)) and ĥ(t0 +

τ(x0, 0; a1)− τ(x0, 0; a2); a1) = ĥ(t0; a2)}. By following the argument for zn in Lemma 1.3.7, we can

infer that ĥ(t + τ(x0, 0; a1) − τ(x0, 0; a2); a1) < ĥ(t; a2) for any t > t0, which is a contradiction with
the case t = τ(x0, 0; a2). Then repeating the argument for zn at t = τ(x0, 0; a2), we obtain (1.25) and
(1.26).

�

In a similar argument, we can extend Lemma 1.3.11 to τ(x0, β; a) with β > 0.

Lemma 1.3.12. For any constants a1, a2, x0 ∈ R satisfying a1 < a2 < x0 and β ∈ (0, p(x0)), we have

(1.28) ĥ(τ(x0, β; a1); a1) > ĥ(τ(x0, β; a2); a2)

and

(1.29) SGN [û(τ(x0, β; a2), · ; a2)− û(τ(x0, β; a1), · ; a1); (−∞, ĥ(τ(x0, β; a2); a2)]] = [+−],

where the unique intersection point is x = x0.

Lemma 1.3.13. Let Assumption 1.1.1 be satisfied. Let x0 ∈ R be given. For any 0 < β < p(x0) and
a < x0, let us define

τ(x0, β; a) := min{t > 0 : û(t, x0; a) = β}.
Then the following limits exist:

h∞(t;β) = lim
a→−∞

ĥ(t+ τ(x0, β; a); a)

and

w∞(t, x;β) = lim
a→−∞

û(t+ τ(x0, β; a), x; a).
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If h∞(·;β) ≡ +∞, then w∞(t, x;β) is an entire solution of (E) that is steeper than any other entire
solution of (E). Otherwise, (w∞, h∞) is an entire solution of (Fh) that is steeper than any other
entire solution of (E) or (Fh). Furthermore, the following alternative holds true: either w∞(·, ·;β) is
a stationary solution of (E), or ∂tw∞(t, x;β) > 0 for all t ∈ R and x ∈ (−∞, h∞(t;β)). The former
assettion is impossible for each β close enough to px0. And h∞(t;β) is a finite function for each β
close enough to 0.

Proof. Fix some x0 ∈ R and β ∈ (0, p(x0)), we aim to prove the following limits exists for

h∞(t;β) = lim
a→−∞

ĥ(t+ τ(x0, β; a); a)

and

w∞(t, x;β) = lim
a→−∞

û(t+ τ(x0, β; a), x; a)

for t ∈ R and x ∈ (−∞, h∞(t;β)). It is easy to check that lima→−∞ τ(x0, β; a) = +∞. By Lemma

1.3.12, h∞(0;β) is well defined for ĥ(τ(x0, β; a); a) strictly decreases with respect to a ∈ (−∞, x0). If

h∞(0;β) = +∞, we can further infer that h∞(t;β) = +∞ for any t ∈ R, because ĥ′(t; a) is uniformly
bounded for a ∈ R and t > δ > 0. Thus, by the argument of Section 3 in [18], it follows that the
existence of

w∞(t, x;β) = lim
a→−∞

û(t+ τ(x0, β; a), x; a),

together with the convergence for the topology of C1
loc(R2) and the monotonicity in time of w∞, that

is either ∂tw∞ > 0 or ∂tw∞ ≡ 0 for (t, x) ∈ R2.

If f h∞(0;β) < +∞, we know that h∞(t;β) is finite for any t ∈ R, because ĥ′(t; a) is uniformly
bounded for a ∈ R and t > δ > 0. Let (ak)k∈N be a given sequence such that ak → −∞ as k → +∞,
and such that the following limits hold true:

ĥ(t+ τ(x0, β; ak); ak)→ h∞(t;β)

and

û(t+ τ(x0, β; ak), x; ak)→ w∞(t, x;β)

as k → +∞, where the second convergence holds in C1
loc({(t, x) : t ∈ R, x ∈ (−∞, h∞(t;β))}). Because

of the boundedness of ĥ′ for large time, h∞ is Lipschitz continuous. Then by the argument of Lemma

1.3.4, (w∞, h∞) has the standard regularity for free boundary problem, C
(1+α)/2,1+α
loc × C1+α/2

loc with
0 < α < 1. Up to a subsequence, one may assume that ak − dakL eL → a∞ in [−L, 0]. By observing
that

(1.30)

h∞(t;β) = lim
k→+∞

ĥ(t+ τ(x0, β; ak); ak)

= lim
k→+∞

ĥ(t+ τ(x0, β; ak); ak − d
ak
L
eL) + dak

L
eL

= lim
k→+∞

ĥ(t+ τ(x0, β; a∞ + dak
L
eL); a∞) + dak

L
eL

and

(1.31)

w∞(t, x;β) = lim
k→+∞

û(t+ τ(x0, β; ak), x; ak)

= lim
k→+∞

û(t+ τ(x0, β; ak), x− d
ak
L
eL; ak − d

ak
L
eL)

= lim
k→+∞

û(t+ τ(x0, β; a∞ + dak
L
eL), x− dak

L
eL; a∞).
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According to Definition 1.3.1,(w∞, h∞) is an ω-limit orbit of (û(t, x; a∞), ĥ(t; a∞)). By (ii) of
Lemma 1.3.9, (w∞, h∞) is steeper than any other entire solution of (Fh) in the sense of Definition
1.1.5.

Recalling Definition 1.1.5, there is a unique entire solution (w∞, h∞) of (Fh) that is steeper than
any other entire solution of (Fh) and such that w∞(0, x0) = β. It follows that (w∞, h∞) does not
depend on the choice of the sequence {ak}.

Next, we want to show that the existence of (w∞, h∞) with a finite h∞. Fix a ∈ R and we claim

that lim supt→+∞ û(t, ĥ(t; a)−M−1; a) > 0, where M is a positive constant such that

f(x, u) ≤M2u for x ∈ [0, L], u ∈ [0, ‖p(·)‖L∞ ].

Otherwise, we can infer that limt→+∞ û(t, ĥ(t; a)−M−1; a) = 0. For some ε > 0, there exists a time

T > 0 such that û(t, ĥ(t; a)−M−1; a) < ε
2 for t > T . Then we constructs a supersolution as follows:

(1.32)

{
ū = ε[2M(h̄(t)− x)−M2(h̄(t)− x)2], t > 0, x ∈ (h̄(t)−M−1, h̄(t)),

h̄(t) = 2µεMt, t > 0.

It is easy to check that for t > 0 and x ∈ (h̄(t)−M−1, h̄(t))

∂tū− ∂xxū ≥ 2εM2 ≥M2ū ≥ f(x, ū)

and

h̄′(t) = 2εµM = −µ∂xū(t, h̄(t)).

Since û(t, ĥ(t; a) −M−1; a) < ε
2 for t > T , it is easy to check that (ū(· , · − ĥ(T ; a) −M−1), h̄(·) +

ĥ(T ; a) + M−1) is a supersolution of (û(· + T, ·; a), ĥ(· + T ; a)) for t > 0. It follows ĥ(t + T ; a) ≤
2µεMt + ĥ(T ; a) + M−1 for t > 0. Then we can infer that lim supt→+∞

ĥ(t)
t ≤ 2µεM . Because ε is

arbitrarily small, we can further induce that limt→+∞
ĥ(t)
t = 0, which is an apparent contradiction with

Lemma 1.3.6. Therefore, our claim has been proved that is lim supt→+∞ û(t, ĥ(t; a)−M−1; a) > 0.

We denote lim supt→+∞ û(t, ĥ(t; a)−M−1; a) = β0 > 0. Then we can find a sequence (tj)j∈N such

that limj→+∞ û(tj , ĥ(tj ; a)−M−1; a) = β0 and tj → +∞ as j → +∞. Up to a subsequence, we can

assume that ĥ(tj ; a)−M−1 → x∗ in R/LZ, where x∗ ∈ [0, L]. Without loss of generality, we can assume
x∗ is the same as x0 in the above. By the argument for (1.30) and (1.31), we also can find an entire
solution (w0, h0) of (Fh), which is an ω-limit orbit and satisfies w∞(0, x0) = β0 and h∞(0) = x0+M−1.

By the virtue of Lemma 1.3.7, we can infer that ĥ(τ(x0, β0; a); a) < x0 +M−1 for any a < x0. Then
by repeating the argument for (1.30) and (1.31), the existence of (w∞(·, ·;β0), h∞(·;β0)) with a finite
h∞(·;β0) is obtained.

Moreover, by noticing that ĥ(τ(x0, β; a); a) < ĥ(τ(x0, β0; a); a) < x0 + M−1 holds for β < β0 and
a < x0, we can prove the existence of (w∞(·, ·;β), h∞(·;β)) with a finite h∞(·;β) for any β ∈ (0, β0).

Because (w∞, h∞) is steeper than any other entire solution of (Fh) (including the translation of
itself on time), we infer that w∞(t, x;β) increase with respect to t in the domain {(t, x) : t ∈ R, x ∈
(−∞, h∞(t;β)}. It follows that ∂tw∞ ≥ 0 in the same domain. By the strong maximum principle, we
infer that either ∂tw∞ > 0 or ∂tw∞ ≡ 0. However, the latter one contradicts with the fact h′∞ > 0.
Then we obtain the monotonicity in time of w∞.

To conclude the proof of Lemma 1.3.13, let us show that when β is chosen close enough to p(x0)
then w∞ cannot be a stationary solution of (E). To show it let us notice that due to Assumption
1.1.1, the stationary solution p is isolated from below with respect to other stationary solutions of
(E). Therefore, one can choose β close enough to p(x0) so that there is no stationary solution q of
(E) with q(x0) = β. Then due to Assumption 1.1.1, w∞ is not a stationary solution of (E) and it
converges to p as t→ +∞. This completes the proof of this lemma. �
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Lemma 1.3.14. Fix β ∈ (0, p(x0)) and let (w∞, h∞) be the entire solution provided by Lemma 1.3.13.
We have

(i) If h∞(·;β) ≡ +∞, then w∞ is either a positive periodic stationary solution or a pulsating
traveling wave of (E).

(ii) If h∞(t;β) is finite for any t ∈ R, then (w∞, h∞) is a pulsating semi-wave of (Fh).

Proof. (i) This part easily follows the same argument of Lemma 4.1 in [18], because it does not matter
with the free boundary.

(ii) We define the sequence the same as [18]

τk := τ(x0, β; a− kL)− τ(x0, β; a− (k − 1)L)

for k ∈ N+, so that for all k ∈ N+,

τ(x0, β; a− kL) = Σk
i=0τi.

We claim that there exists some subsequence (τkj )j∈N converging to some T > 0. Otherwise there
is no subsequence of (τk)k converges to some positive constant. Following the argument on this case
in Lemma 4.1 in [18], we get that w∞ is L-periodic with respect to the space variable for all time,
which is an apparent contradiction with the existence of the free boundary h∞. Thus we can find a
subsequence (τkj )j∈N converging to some T > 0. Following the argument on it in Lemma 4.1 in [18],
we can show that (w∞, h∞) is a pulsating semi-wave of (Fh). �

Proof of Theorem 1.1.7:
We can conclude the proof of Theorem 1.1.7 by following the argument in Subsection 4.2 in [18],.

Because most of the arguments there also hold for our free boundary problem without any modifica-
tion, we only need to clarify three places, which relates with the free boundary.

The first one is Claim 4.6 in [18]. Generally speaking, solutions of (Fh) are natural subsolutions of
positive solutions of (E) for the existence of the free boundary where u has to be 0. Thus, v, which
is the supersolution of (E) defined in Claim 4.6 in [18], is also a supersolution of (Fh). As long as
the chosen speed c is smaller than c∗ given in Lemma 1.3.6, the result of Claim 4.6 still holds for our
problem.

The second one is the statement after Step 3 in [18], which proves the sequence (pk)k is finite.
Because each pk is isolated from below, we can infer that {pk}k is monotonically decreasing. If (pk)k
is not finite, it converges uniformly to some p∞ ≥ 0. By Lemma 1.3.13, we know h∞(t;β) is finite
for small β > 0. Thus there exists a pulsating semi-wave connecting 0 to p∗, where p∗ is a positive
stationary solution of (Eper). For any k ∈ N, it is apparently impossible that 0 < pk < p∗. Therefore
it has to be 0 < p∗ ≤ p∞. Then by the same argument in [18], it follows (pk)k is finite.

The third one is the statement after Remark 4.7 in [18], which shows that the propagating terrace
T ∗ of (E) is minimal. By Lemma 1.3.13 and 1.3.14, for small β > 0, we know that (w∞, h∞) is a
pulsating semi-waveof (Fh), which is steeper than any other entire solution of (Fh). Combing it with
the argument in [18], we can show the propagating terrace of (Fh), which is obtained from Lemma
1.3.14, is minimal in the sense of Definition 1.1.6. Moreover, up to some time shift, it is identically
equal to any other minimal propagating terrace of (Fh).

Because other arguments of Subsection 4.2 in [18] do not relate with the free boundary, they can
also be applied to our problem. Then it follows Theorem 1.1.7.

�
Proof of Theorem 1.1.9:
(i) If N = 1, it is trivial.
Next, let us assume N > 1. Because each of (pk)0≤k≤N−1 or (qk)0≤k≤N ′−1 is a positive stationary

solution of (E) and steeper than any other entire solution of (E), one of the following three possibilities
must hold

pi > qj , pi < qj or pi = qj
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for any 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ N ′ − 1. If N ′ = 1, p1 must intersect with V1 which connects 0
to p. However, it contradicts with the fact that p1 is steeper than any other entire solution of (E).
Thus we have N ′ > 1. Next, if p1 < q1, q1 must intersect with U1 which connects p1 to p. This
contradicts with the fact that q1 is steeper than any other entire solution of (E). By the same reason,
it is impossible that p1 > q1. Therefore, it follows p1 = q1. Because U1 and V1 are steeper than each
other, we get U1 = V1 up to a time shift. Then this part follows from iterating the same argument.

(ii) If Assumption 1.1.1 holds for each µ > 0, then there exists a propagating terrace of (Fh)
(pk)0≤k≤Nµ , (Uk)1≤k≤Nµ , H) for any positive µ. We claim that Nµ∗ ≥ Nµ∗ if µ∗ > µ∗. Other-
wise, we have Nµ∗ < Nµ∗ for some µ∗ > µ∗. To make the explanation clearly, we denote the
two propagating terraces by different symbols: ((pk)0≤k≤Nµ∗ , (Uk)1≤k≤Nµ∗ , H) for µ = µ∗ while

((yk)0≤k≤Nµ∗ , (Wk)1≤k≤Nµ∗ , G) for µ = µ∗. Because of Nµ∗ < Nµ∗ and (i) of Theorem 1.1.9, we
know that pNµ∗−1 > yNµ∗−1. We note that UNµ∗ connects with 0 to pNµ∗−1 while WNµ∗ connects with

0 to yNµ∗−1. Then there exists a M > 0, such that H(0) > G(−M) and UNµ∗ (0, x) > WNµ∗ (−M,x)

for x ∈ (−∞, G(−M)). We define a time t0 := sup{t : for any s ∈ (−M, t), it holds H(0) >
G(s) and UNµ∗ (0, x) > WNµ∗ (s, x) for x ∈ (−∞, G(s))}. It easily follows that H(0) ≥ G(t0) and

UNµ∗ (0, x) > WNµ∗ (t0, x) for x ∈ (−∞, G(t0)). Moreover at t = t0, it follows either

H(0) = G(t0) or

UNµ∗ (0, b0) = WNµ∗ (t0, b0) and ∂xUNµ∗ (0, b0) = ∂xWNµ∗ (t0, b0) for some b0 ∈ (−∞, G(t0)).

Because of µ∗ > µ∗, it is easy to check (UNµ∗ (t, x), H(t)) is a supersplution of (WNµ∗ (t+t0, x), G(t+t0))
for t > 0. Moreover, neither

H(t) = G(t+ t0) nor

UNµ∗ (t, b1) = WNµ∗ (t+ t0, b1) and ∂xUNµ∗ (t, b1) = ∂xWNµ∗ (t+ t0, b1) for some b1 ∈ (−∞, G(t+ t0))

can happen for any t > 0. Thus (UNµ∗ , H) and (WNµ∗ , G) have different periodicities on time. Then

we can infer that the average speed of (UNµ∗ , H) is strictly faster than that of (WNµ∗ , G). We denote

v̂(t, x;H(0)) is the solution of (E) with initial datum p(x)X(H(0) − x). Because v̂(t, x;H(0)) is a
supersolution of (UNµ∗ (t, x), H(t)) for t > 0. Then by (i) of Theorem 1.1.9, we know that the average

speed of VNµ∗ is not less than that of (UNµ∗ , H). By a similar argument, we also infer the average

speed of (UNµ∗ , H) is not less than that of WNµ∗ . However, by (i) of Theorem 1.1.9, we know that

VNµ∗ equals to WNµ∗ up to a time shift. Thus, the average speed of (UNµ∗ , H) equals that of WNµ∗ .

By Theorem 1.1.7, we know that the average speed of WNµ∗ is less than (WNµ∗ , G). Until here, we

get a contradiction on the speeds of (UNµ∗ , H) and (WNµ∗ , G). Thus, we have proved Nµ∗ ≥ Nµ∗ if
µ∗ > µ∗.

We can define µk := sup{µ : Nµ = k}. Then what left is to show µ1 > 0. By the virtue of equation

(1.16), we know that for any µ > 0 it holds 0 > ∂xû(t, ĥ(t; 0); 0) > −m if ĥ(t; 0) ≥ 1, where m is a
positive constant and independent on µ. By the Stefan condition, we know that the average speed of
the free boundary ĥ(t; 0) uniformly converges to 0 as µ→ 0. If the average speed of ĥ(t; 0) is smaller
than that of V1, it has to be Nµ = 1. Then it follows µ1 > 0.

�
As to Corollary 1.1.11 and 1.1.12, they are direct consequences of Theorem 1.1.7 and 1.1.9.

1.4. Asymptotic Behavior.

Proof of Proposition 1.1.13:
Through Theorem 1.1.7, we know that there exists ((pk)0≤k≤N , (Uk)1≤k≤N , H), which is a minimal

propagating terrace of (Fh). If N > 1, then (UN , H) is a pulsating semi-wave connecting 0 to pN−1.
From (ii) of Theorem 1.1.7, we know that (UN , H) is steeper than any other entire solution of (Fh)
including (W,G). However, if N > 1, we can get a contradiction on the steepness by the fact that
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pN−1 < p, similar to the argument in Theorem 1.1.9. Then we claim that N = 1 and (U1, H) is a
pulsating semi-wave connecting 0 to p. In the following, we call (U,H) instead of (U1, H).

Assume that (U,H) and (W,G) are not the same up to any time shift. We claim that

(1.33) lim
t→+∞

H(t)

t
> lim

t→+∞

G(t)

t
.

For (U,H) is steeper, if H(t1) = G(t2), we have that U(t1, ·) > W (t2, ·) holds for x ∈ (−∞, H(t1)).
By the comparison principle and Hopf’s lemma, we can infer that H(t+ t1) > G(t+ t2) for any t > 0.
Thus it follows that (U,H) and (W,G) have different periodicities on time. Then (1.33) is proved.

Next, we will make a contradiction on (1.33) through construction a subsolution of (W,G). To
make the readers understand the method more clearly, we will treat the case p ≡ 1 first and consider
the general case later. Here we assume that

(1.34) p(·) ≡ 1 and ∂uf(· , 1) ≡ −λ,

where λ > 0. Then there exists a small positive constant ε such that

(1.35) ∂uf(x, u) ≤ λ

2
for x ∈ R and u ∈ [1− ε, 1 + ε].

We define

(U,H) := (U(t− ξ(t), x)− q(t)k(x−H(t− ξ(t))), H(t− ξ(t))),
where k is defined as

k(x) = 1− ex for x ∈ (−∞, 0]

and ξ, q are to be decided later. It is easy to see that k satisfies

1 > k(x) ≥ 0 > k′(x) = k′′(x) ≥ −1 for x ∈ (−∞, 0].

Because (U,H) is a pulsating semi-wave connecting 0 to 1, we know that there exists a positive
constant M , such that for any t ∈ R

1 > U(t, x) > 1− ε

2
for x ∈ (−∞, H(t)−M).

For the part x ∈ (−∞, H(t− ξ(t))−M), we have

∂tU − ∂xxU − f(x, U) = ∂tU(1− ξ′)− q′k + qk′H ′(1− ξ′)− ∂xxU + qk′′ − f(x, U − qk)

= −∂tUξ′ − q′k + qk′H ′(1− ξ′) + qk′′ + f(x, U)− f(x, U − qk).

We note that ∂tU(t, x) > 0 and H ′(t) > 0 hold for any t ∈ R and x ∈ (−∞, H(t)]. If assume

(1.36) 1 > ξ′(t) > 0,
ε

2
> q(t) > 0

for t > 0, then we get

∂tU − ∂xxU − f(x, U) ≤ −q′k − λ

2
qk.

Define

(1.37) q(t) :=
ε

2
e−

λ
2
t

for t > 0, it follows that

∂tU − ∂xxU − f(x, U) ≤ 0

for t > 0 and x ∈ (−∞, H(t)−M).
According to Lemma 1.3.13, we note that there exists a positive constant δ such that

∂tU(t, x) > δ for t ∈ R, x ∈ [H(t)−M,H(t)].
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For the part x ∈ [H(t− ξ(t))−M,H(t− ξ(t))), we have

∂tU − ∂xxU − f(x, U) = −∂tUξ′ − q′k + qk′H ′(1− ξ′) + qk′′ + f(x, U)− f(x, U − qk)

≤ −δξ′ + λ

2
qk +mqk

where m := ‖∂uf‖C([0,L]×[0,1]). Then if

(1.38) δξ′(t) ≥ (
λ

2
+m)q(t)

for t > 0, it follows that

∂tU − ∂xxU − f(x, U) ≤ 0

for t > 0 and x ∈ [H(t)−M,H(t)].
Next, let us check the free boundary condition. There exists a positive constant θ, such that

H ′(t) > θ holds for any t ∈ R. Then if

(1.39) ξ′(t) >
µ

θ
q(t)

for t > 0, we have

H ′(t) = (1− ξ′)H ′ ≤ −µ∂xU − ξ′θ ≤ −µ∂xU − µq = −µ∂xU(t,H(t))

Then we can define

(1.40) ξ(t) := M0 −M0e
−λ

2
t,

where M0 := 2 max{ θεµλ ,
λ+2m

2δλ ε}. It is easy to check that (1.36),(1.38) and (1.39) are satisfied simul-

taneously for t > t0, where

(1.41) t0 :=
2

λ
ln
M0λ

2
.

Finally, we need to check the initial datum. Because it holds that

lim
x→−∞

U(t0, x)− q(t0)k(x−H(t0)) = 1− q(t0),

then we can find a sufficiently large time T0 such that

(1.42)

{
G(T0 + t0) > H(t0),

W (T0 + t0, x) > U(t0, x) x ∈ (−∞, H(t0)).

Given ξ(t) := M0 − M0e
−λ

2
t and q(t) = ε

2e
−λ

2
t, we know that (U(·, ·), H(·)) is a subsolution of

(W (T0 + ·, ·), G(T0 + ·)) for t > t0. Because ξ and q are exponential functions, we have

lim
t→+∞

H(t)

t
= lim

t→+∞

H(t)

t
≤ lim

t→+∞

G(T0 + t)

t
,

which contradicts with (1.33). Thus we conclude (U,H) (or (W,G)) is the unique pulsating semi-
waveup to time shift.

For general p, we rewrite the subsolution in the form

(U,H) := (U(t− ξ(t), x)− q(t)k(x−H(t− ξ(t)))ψ(x), H(t− ξ(t))).
Because of loss of ∂uf(· , p(·)) ≡ −λ, we can not treat the tail of the pulsating traveling wave like
above. Thus we need to make the following transformation like Lemma 1.2.10

W (t, x) :=
U(t, x)− p(x)

ψ(x)
,
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and W is defined in the same way. Under this transformation, p is converted to 0 and W satisfies
(1.11), with ∂wF (· , 0) ≡ −λ. At first, we only focus on the tail of the subsolution (−∞, H(t)−M2),
where M2 is sufficiently large. Then we have

∂tW − ∂xxW − 2
ψ′

ψ
∂xW − F (x,W )

= F (x,W )− F (x,W − qk)− ∂tUξ
′

ψ
− q′k + qk′H ′(1− ξ′) + qk′′ + 2

ψ′

ψ
qk′.

There exists a positive constant a such that

a > −2
ψ′(x)

ψ(x)
for any x ∈ [0, L].

Then we define k(x) := 1− eax and still assume (1.36), it follows that

∂tW − ∂xxW − 2
ψ′

ψ
∂xW − F (x,W )

≤ F (x,W )− F (x,W − qk)− q′k + qk′(a+ 2
ψ′

ψ
)

≤ F (x,W )− F (x,W − qk)− q′k

Because of ∂wF (· , 0) ≡ −λ, we can choose appropriate q like the above to make W satisfy the
subsolution condition in (−∞, H(t) − M2). As to the estimates on the front of the subsolution
[H(t)−M2, H(t)), the free boundary H(t) and the initial datum, we can calculate them in the same
way as the case for p ≡ 1 without using any transformation. Then we can choose appropriate ξ and
q to make that (U,H) is a subsolution of (W,G). Through the same argument on the average speed,
this proposition is finished.

�

Lemma 1.4.1. Let the assumptions of Theorem 1.1.15 hold and (u, g, h) be a solution of (F ) for
which spreading happens. Then there exist δ0 > 0 and t0 > 0 such that

u(t, 0) > p(0)− e−δ0t for t > t0.

Proof. Let (U,H) and (U∗, H∗) be the pulsating semi-waves for the right side and that for the left
side. By the same argument in Remark 1.3.5, we know that ∂xxU(t, ·) ∈ C((−∞, H(t)]) for any
t ∈ R. By differentiating U(t,H(t)) ≡ 0 on t, we obtain that ∂xxU(t,H(t)) = (H ′(t))2/µ. Thus
∂xxU is always bounded on the free boundary. Because of the periodicity of U , we can infer that
∂xxU(t, x) is uniformly bounded for t ∈ R and x ∈ (−∞, H(t)). So is for ∂xxU∗(t, x). By Hopf’s
lemma, we know that H ′(t) > 0 and H ′∗(t) < 0 for any t ∈ R. Then we can find a positive
constant γ < 1 such that it holds ∂xxU(t,H(t)) > 2γmax{|∂xxU(t, x)| : x ∈ (−∞, H(t))} and
∂xxU∗(t,H∗(t)) > 2γmax{|∂xxU∗(t, x)| : x ∈ (H∗(t),+∞)} for any t ∈ R.

We construct the subsolution (u, g, h) as below:

(1.43)

{
u(t, x) = U(γt− ξ(t), x) + U∗(γt− ξ(t), x)− q(t)ψ(x)− p(x), t > 0, x ∈ (g(t), h(t)),

u(t, g(t)) = u(t, h(t)) = 0, t > 0,

where ξ and q are some functions to be determined later. Assume that

(1.44) ξ(t), q(t) ∈ [0, 1]

for any t > 0. Note that if γt− ξ(t) and 1
q(t) is sufficiently large, g(t) and h(t) are the only two zero

points of u(t, ·).
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We divide the estimates into four domains:

Ω1 := {(t, x) : t > 0, x ∈ (−1, h(t)) and U(t, x) ∈ (0, p(x)− ε

3
ψ(x))},

Ω2 := {(t, x) : t > 0, x ∈ (−1, h(t)) and U(t, x) ∈ (p(x)− ε

3
ψ(x), p(x))},

Ω3 := {(t, x) : t > 0, x ∈ (g(t), 1) and U∗(t, x) ∈ (p(x)− ε

3
ψ(x), p(x))},

Ω4 := {(t, x) : t > 0, x ∈ (g(t), 1) and U∗(t, x) ∈ (0, p(x)− ε

3
ψ(x))},

where ε satisfies

−2λ < ∂uF (x, u) < −λ
2

for x ∈ R and u ∈ [−ε, ε].

Because (U,H) is the pulsating semi-wave moving at a positive average speed, it is easy to check
that there exist two positive contents α0 and t0 such that p(x)− U(t, x) ≤ e−α0tψ(x) for t > t0 and
x ∈ (−∞, 1). Without loss generality, we may assume that p(x)−U∗(t, x) ≤ e−α0tψ(x) also holds for

t > t0 and x ∈ (−1,+∞). We can also choose t0 so large that e−α0(γt0−1) < ε
3 .

For the domain Ω2, let us make the transformation first:

ũ(t, x) :=
u(t, x)− p(x)

ψ(x)
.

Assume that for any t > 0, it holds

(1.45) ξ′(t) ≥ 0 and
ε

3
≥ q(t) ≥ 0.

We note that ∂tU ,∂tU∗ are positive and 0 < γ < 1. Then for t > t0, we have

∂tũ− ∂xxũ− 2
ψ′

ψ
∂xũ− F (x, ũ)

<− q′ − ξ′∂tU + ∂tU∗
ψ

+ F (x,
U − p
ψ

) + F (x,
U∗ − p
ψ

)− F (x,
U − p
ψ

+
U∗ − p
ψ

− q)

<− q′ + 2λe−α0t + F (x,
U − p
ψ

)− F (x,
U − p
ψ

+
U∗ − p
ψ

− q)

<− q′ + 2λe−α0t − λ

2
q.

If we assume

(1.46) q(t) =
ε

3
e−βt for t > 0,

where β := min{γα0

2 , λ4}, then there exist a time t1 > t0 such that ∂tũ− ∂xxũ− 2ψ
′

ψ ∂xũ−F (x, ũ) < 0

in the domain Ω2. In the same way, we also can show u is a subsolution in the domain Ω3.
For the domain Ω1, we directly calculate

∂tu− ∂xxu− f(x, u)

<− ξ′(∂tU + ∂tU∗)− q′ψ + f(x, U) + f(x, U∗)− f(x, p) + qψ′′ − f(x, U + U∗ − p− qψ)

≤− ξ′∂tU +O(e−βt) +O(e−α0t) + f(x, U)− f(x, U + U∗ − p− qψ)

≤− ξ′∂tU +O(e−βt).

In the domain Ω1, there exists a δ > 0 such that ∂tU > δ for (t, x) ∈ Ω1.Then if given

(1.47) ξ(t) = 1− e−
β
2
t for t > 0,

there exists a time t2 > t1 such that u is a subsolution in Ω1 for t > t2. Ω4 can be treated similarly.
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We know that h is the unique zero point of u in R+ for large time t. Then let us check the
subsolution condition for the boundary. Because of U∗(γt − ξ(t), h(t)) − p(x) − q(t)ψ(x) = O(e−βt),
it is easy to find that h(t)−H(γt− ξ(t)) = O(e−βt). By noticing u(t, h(t)) ≡ 0 and ∂xxU is bounded,
we have

h′(t) =
q′(t)ψ(h(t))− (γ − ξ′(t))[∂tU(γt− ξ(t), h(t)) + ∂tU∗(γt− ξ(t), h(t))]

∂xU(γt− ξ(t), h(t)) + ∂xU∗(γt− ξ(t), h(t))− q(t)ψ′(h(t))− p′(h(t))

=
O(e−βt)− (γ − ξ′(t))∂xxU(γt− ξ(t), h(t))

O(e−βt) + ∂xU(γt− ξ(t), h(t))

=
O(e−βt)− (1

2 −
ξ′(t)
2γ )∂xxU(γt− ξ(t), H(γt− ξ(t)))

O(e−βt) + ∂xU(γt− ξ(t), H(γt− ξ(t)))
and

∂xu(t, h(t)) = ∂xU(γt− ξ(t), h(t)) + ∂xU∗(γt− ξ(t), h(t))− p′(h(t))− q(t)ψ′(h(t))

= O(e−βt) + ∂xU(γt− ξ(t), H(γt− ξ(t))).

Because of ∂xxU(t,H(t)) ≡ µ∂xU
2(t,H(t)), there exists a t3 > t2 such that for t > t3, h′(t) ≤

−µ∂xu(t, h(t)) and h is the unique zero point of u in R+. And g can be treated in the same way.
Then we get (u, g, h) is a subsolution of (F ) for t > t3. Because (u, g, h) spreads, there must exists

a time t̃ such that u(t̃, x) > u(t3, x) for x ∈ [g(t3), h(t3)]. We know that u(t, 0) converges to p(0)
exponentially as t→ +∞. Then this lemma follows.

�

Lemma 1.4.2. Let the assumptions of Theorem 1.1.15 hold and (u, g, h) be a solution of (F ) for
which spreading happens. Then there exist constants T0, T1, T2, q0 and β0 (the last two positive), such
that for t > T0 we have

(1.48) H(t+ T1) ≤ h(t) ≤ H(t+ T2)

and

(1.49) U(t+ T1, x)− q0e
−β0t ≤ u(t, x) for x ∈ [0, H(t+ T1))

and

(1.50) u(t, x) ≤ U(t+ T2, x) + q0e
−β0t for x ∈ [0, h(t)).

Proof. We want to construct the subsolution in the following form

(U,H) := (U(t− ξ(t), x)− q(t)k(x−H(t− ξ(t)))ψ(x), H(t− ξ(t))).

Here define λ1 := min{λ2 ,
δ0
2 } and q(t) := q∗e−λ1t, where q∗ > 0 and δ0 is defined in Lemma 1.4.1.

Then by the same method in the proof of Theorem 1.1.13, we still can find appropriate k,ξ and t0 so
that (U,H) is a subsolution of (Fh) for t > t0. Because ξ(+∞) is bounded, then there exists a time
t1(> t0) such that

(1.51) k(−H(t)) >
1

2

when t > t1. Because (u, g, h) is a solution of (F ) for which spreading happens, then we can find a
large time T0 such that

(1.52) H(t1 + 1) < h(T0)

and

(1.53) U(t1 + 1, x) < u(T0, x) for x ∈ [0, H(t1 + 1)]
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and

(1.54) 2M∗e−δ0T0e−δ0t < q(t1 + 1)ψ(0)e−λ1t for t > 0.

Through (1.51) and (1.54), it is not difficult for us to infer that

(1.55) U(t1 + 1 + t, 0) < u(T0 + t, 0) for t > 0.

Combining (1.52), (1.53), (1.55) and the fact (U,H) is a subsolution of (Fh) for t > t1 + 1, we know
that (U(t+ t1 + 1− T0, ·), H(t+ t1 + 1− T0)) is a subsolution of (u, g, h) on R+ when t > T0. Note
that k ≤ 1 and ξ(t),U(t, x),H(t) are increasing function with respect to t, then we have

H(t+ t1 + 1− T0 − ξ(+∞)) ≤ H(t+ t1 + 1− T0))

and

U(t+ t1 + 1− T0 − ξ(+∞), x)− q∗‖ψ‖L∞([0,L])e
−λ1(t1+1−T0)e−λ1t ≤ U(t+ t1 + 1− T0, x).

Define
T1 := t1 + 1− T0 − ξ(+∞),

q0 := q∗‖ψ‖L∞([0,L])e
−λ1(t1+1−T0)

and
β0 := λ1,

it follows that the left part of (1.48) and (1.49).
By noticing Lemma 1.2.10, we can construct a supersolution

(Ū , H̄) := (U(t+ ξ(t), x) + q(t)k(x−H(t+ ξ(t)))ψ(x), H(t+ ξ(t)))

in a similar way. Then it follows the right part of (1.48) and (1.50).
�

By (1.37),(1.40) and (1.42), we notice that |ξ(+∞) − ξ(t0)| = O(q(t0)) and T0 = O(qt0), where
M0,T0 and t0 here are the notations in (1.40),(1.41) and (1.42). Then by following the virtue of
Proposition 1.1.13 and Lemma 1.4.2, we have the following lemma.

Lemma 1.4.3. Let the assumptions of Theorem 1.1.15 hold and (u, g, h) be a solution of (F ) for
which spreading happens. Then there exist a large constant M > 0 and a function γ(ε) satisfying
limε→0 γ(ε) = 0, such that if M < h(t1)−ε < H(t2) < h(t1)+ε and ‖u(t1, ·)−U(t2, ·)‖L∞([0,min{h(t1),H(t2)}]) <
ε for some t1, t2 > 0, then we have for any t > 0

|h(t+ t1)−H(t+ t2)| < γ(ε)

and
‖u(t+ t1, ·)− U(t+ t2, ·)‖L∞([0,min{h(t+t1),H(t+t2)}]) < γ(ε).

Definition 1.4.4. (1) X is a metric space. {ϕt}t≥0 is a semi-flow on X, if it satisfies

• ϕt : X → X is continuous with respect to t ∈ R+ and x ∈ X,
• ϕ0(x) = x for all x ∈ X,
• ϕt ◦ ϕs = ϕt+s for all t, s ≥ 0.

(2) And the positive semi-orbit O+(x) is defined as

{ϕt(x)|t ≥ 0}.
(3) x ∈ X is called an equilibrium point, if it satisfies

ϕt(x) = x for all t ≥ 0.

(4) S ⊂ X is called an invariant set, if it satisfies

ϕt(S) = S for all t ≥ 0.
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(5) We call z ∈ X is a ω − limit point of x, if there exists an increasing sequence (tk)k∈N such that

tk → +∞ and ϕtk(x)→ z

as k → +∞. ω(x) is the set of ω − limit points of x.

The following lemma can be easily found (for example, see [34]).

Lemma 1.4.5. If O+(x) is relatively compact, then ω(x) is a nonempty compact invariant set.

Definition 1.4.6. For any continuous function u ∈ C(R), we define σ(u) := min{y : u(x) =
0 for x ≥ y} and ς(u) := max{y : u(x) = 0 for x ≤ y}. X is the union of two metric spaces of
continuous functions and defined in the below:

A := {u(x) : σ(u) < +∞, ς(u) > −∞ and u(x) > 0 for x ∈ (ς(u), σ(u))}
and

B := {u(x) : σ(u) < +∞, ς(u) = −∞ and u(x) > 0 for x ∈ (−∞, σ(u))},
where the metric of X := A ∪B is defined as follows:

d(u, v) := ‖ex(u− v)‖L∞ + |σ(u)− σ(v)|+ |eς(u) − eς(v)|.

Proof of Theorem 1.1.15:
By Lemma 1.4.2, there exist two sufficiently large positive constants Mε and Tε for any ε > 0 such

that |u(t, x)− p(x)| < ε
2 for any t > Tε and x ∈ [0, h(t)−Mε]. Moreover, for appropriate Mε, we also

have U(t, x) > p(x)− ε for t ∈ R and x ∈ (−∞, H(t)−Mε + 1].
We denote the semiflow ϕt[w0] := w(t, x + tLT ), where w0 ∈ X and T is the periodicity of the

pulsating semi-wave (U,H). If ς(w0) > −∞, w is the solution of (F ) with initial datum w0; if
ς(w0) = −∞, w is the solution of (Fh).

By Lemma 1.4.2, |h(t) − tLT | is uniformly bounded for any t > 0. Then we have σ(ϕt[u0]) is
uniformly bounded for t > 0 while ς(ϕt[u0])→ −∞ as t→ +∞. It follows that O+(u0) is relatively

compact. Then by Lemma 1.3.1, ω(u0) =
⋂
s≥0 {ϕt(u0)|t ≥ s} is a nonempty compact invariant set.

We can find a sequence of positive integers (nj)j∈N such that nj → +∞ and limj→+∞ ϕnjT [u0] =
ξ ∈ ω(u0) as j → +∞. It is easy to check that ϕt(ξ) is well defined and belongs to ω(u0) for all t ∈ R
because O+(u0) is relatively compact. Then we find a complete semi-orbit for ξ. For ς(ϕt[u0])→ −∞
as t → +∞, it is apparent that (v(t, x), l(t)) := (ϕt(ξ), σ(ϕt(ξ))) is an entire solution of (Fh). By
Lemma 1.4.2, we know that limx→−∞ |v(t, x)− p(x)| = 0 for any t ∈ R.

We note that for any t ∈ R, (U(t, ·), H(t)) is a fixed point of Q. By Lemma 1.3.9, we have
H ′(t) ≥ l′(s) if H(t) = l(s). Then σ(ϕnT [ξ]) always decreases with respect to n. By Lemma 1.4.2, It is
easy to see that σ(ϕnT [ξ]) converges toH(t0) for some t0. We denote ξ∗ := limj→ ϕkjT [ξ], where kj ∈ N
for every j ∈ N and limj→+∞ kj = +∞. It is easy to check that σ(ξ∗) = σ(ϕT (ξ∗) = H(t0). Then we
claim that ξ∗ = U(t0, ·). Otherwise, by Lemma 1.3.9, we have U(t0, x) > ξ∗(x) for x ∈ (−∞, H(t0)).
Then by comparison principle, it is easy to infer σ(ϕT (ξ∗)) < H(t0), which is a contradiction.

Because ξ∗ ∈ ω(u0), there exists a sequence of integers (mj)j∈N such that mj → +∞ and u(mjT, x+
mjL) converges to U(t0, x) locally uniformly in (H(t0)− 2Mε, H(t0)) as j → +∞. Then we can find
a mj0 such that mj0T > Tε and |h(mj0T )−H(t0 +mj0T )| < ε and |u(mj0T, x)−U(t0 +mj0T, x)| < ε
for x ∈ [h(mj0T )−Mε,min{h(mj0T ), H(t0 +mj0T )]. We note that |u(mj0T, x)−U(t0 +mj0T, x)| <
2ε for x ∈ [0, h(mj0T ) − Mε]. Then by Lemma 1.4.3, we have |h(t) − H(t + t0)| < γ(2ε) and
‖u(t, ·) − U(t + t0, ·)‖L∞([0,min{h(t),H(t+t0)}]) < γ(2ε) for any t > mj0T . Because ε can be arbitrarily
small, (2.4.3) and (1.5) follow from repeating Lemma 1.4.3.

We can obtain (1.6) and (1.7) in a similar argument.
�
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2. Spreading speed and profile for nonlinear Stefan problems in high space dimensions

2.1. Introduction.

We are interested in the long-time limit of the spreading speed and profile determined by the
following free boundary problem:

(2.1)


ut −∆u = f(u) for x ∈ Ω(t), t > 0,

u = 0 and ut = µ|∇xu|2 for x ∈ Γ(t), t > 0,

u(0, x) = u0(x) for x ∈ Ω0,

where Ω(t) ⊂ RN (N ≥ 2) is bounded by the free boundary Γ(t) (i.e., Γ(t) = ∂Ω(t)), with Ω(0) = Ω0,
which is a bounded domain with smooth boundary ∂Ω0, and u0 ∈ C(Ω0) ∩H1(Ω0) is positive in Ω0

and vanishes on ∂Ω0. µ is a given positive constant, and the nonlinearity f(u) is assumed to be of
monostable, bistable or combustion type, whose meanings will be made precise below.

When f(u) ≡ 0, (2.1) reduces to the classical one-phase Stefan problem, which arises in the study
of the melting of ice in contact with water. Our motivation to study the nonlinear Stefan problem
(2.1) mainly comes from the wish to better understand the spreading of a new species, where u is
viewed as the density of such a species, and the free boundary represents the spreading front, beyond
which the species cannot be observed (i.e., the species has density 0).

Starting from the pioneering works of Fisher [20] and Kolmogrov-Petrovski-Piskunov [28], such a
spreading process is usually modeled by the Cauchy problem:

(2.2)

{
Ut −∆U = f(U) for x ∈ RN , t > 0,

U(0, x) = U0(x) for x ∈ RN ,

where U0(x) is nonnegative and has nonempty compact support. In such a case, U(t, x) > 0 for all
x ∈ RN once t > 0, but one may specify a certain level set Γδ(t) := {x : U(t, x) = δ} as the spreading
front, where δ > 0 is small, and Ωδ(t) := {x : U(t, x) > δ} is regarded as the range where the
species can be observed. A striking feature of the long time behavior of the front Γδ(t) is revealed by
Aronson and Weinberger in their classical work [3], namely, when spreading happens (i.e., U(t, x)→ 1
as t → ∞), Γδ(t) goes to infinity at a constant asymptotic speed in all directions, i.e., for any small
ε > 0, there exists T > 0 so that

(2.3) Γδ(t) ⊂ Aε(t) := {x ∈ RN : (c0 − ε)t ≤ |x| ≤ (c0 + ε)t} for t ≥ T.
The number c0 is usually called the spreading speed of (2.2), and is determined by the well-known
traveling wave problem

(2.4) Q′′ − cQ′ + f(Q) = 0, Q > 0 in R1, Q(−∞) = 0, Q(+∞) = 1, Q(0) = 1/2.

More precisely, in the monostable case, c0 > 0 is the minimal value of c such that (2.4) has a solution
Qc (more accurately Qc exists if and only if c ≥ c0); in the bistable and combustion cases, c0 is the
unique value of c such that (2.4) has a solution Qc. Moreover, Qc is unique when it exists for a given
c.

When U0(x) is radially symmetric, then U(t, x) is radially symmetric in x for any t > 0, and
better estimates of the spreading speed and the profile of U near the front are available, which will
be recalled briefly below.

We now look at the nonlinear Stefan problem (2.1), which is understood in the weak sense as
described in [8], where it is shown that (2.1) has a unique weak solution defined for all t > 0. Further
properties of (2.1) are obtained in [15], which include the following result:

Theorem A. Ω(t) is expanding in the sense that Ω0 ⊂ Ω(t) ⊂ Ω(s) if 0 < t < s. Moreover,
Ω∞ := ∪t>0Ω(t) is either the entire space RN , or it is a bounded set. Furthermore, when Ω∞ = RN ,
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for all large t, Γ(t) is a smooth closed hypersurface in RN , and there exists a continuous function
M(t) such that

(2.5) Γ(t) ⊂ {x : M(t)− d0

2
π ≤ |x| ≤M(t)};

and when Ω∞ is bounded, limt→∞ ‖u(t, ·)‖L∞(Ω(t)) = 0. Here d0 is the diameter of Ω0.
It can be shown (see [12]) that when spreading happens (i.e., u(t, x) → 1 as t → ∞), there exists

c∗ > 0 such that

(2.6) lim
t→∞

M(t)

t
= c∗.

The number c∗ is therefore called the asymptotic spreading speed of (2.1), which is determined by
the following problem,

q′′ − cq′ + f(q) = 0, q > 0 in (0,∞), q(0) = 0, q(∞) = 1.(2.7)

The above discussion shows that when spreading happens, (2.2) and (2.1) exhibit similar asymp-
totic behavior: Their fronts can be approximated by spheres, which go to infinity at some constant
asymptotic speed. Moreover, by [8], if u and Ω(t) in (2.1) are denoted by uµ and Ωµ(t), respectively,
then as µ→∞,

Ωµ(t)→ RN (∀t > 0), uµ → U in C
(1+ν)/2,1+ν
loc ((0,∞)× RN ) (∀ν ∈ (0, 1)),

where U is the unique solution of (2.2) with U0 = u0. Thus the Cauchy problem (2.2) may be
regarded as the limiting problem of (2.1) as µ→∞.

Fundamentally different behavior exists between (2.1) and (2.2). When f(u) is of Fisher-KPP type
(a special monotable case first considered by Fisher [20] and Kolmogrov-Petrovski-Piskunov [28]),
it is known from [10] and [15] that the free boundary problem (2.1) exhibits a spreading-vanishing
dichotomy: Either Ω(t) stays bounded for all t and u→ 0 as t→∞ (vanishing), or Ω(t) expands to
RN as described in (2.5), and u → 1 as t → ∞. Criteria for each to happen are also known. This
is in sharp contrast to the “hair-trigger” phenomenon of the corresponding Cauchy problem (2.2)
revealed in [3]: U → 1 as t→∞ whenever U0 is nonnegative and not identically zero (in other words,
spreading always happens for (2.2) with such f(u)).

In this section, we consider the case that spreading happens to (2.1) with f(u) of monostable,
bistable or combustion type. By a simple comparison consideration, spreading also happens to the
corresponding Cauchy problem (2.2) (with U0 = u0). We will show that, in this situation, underneath
the similarities described before the last paragraph, there also exist fundamental differences between
(2.1) and (2.2), once their spreading profiles are more closely examined.

The results of Theorem A allow us to reduce the problem to a much simpler situation, namely to
the case with radial symmetry, without loss of much generality. More precisely, from (2.5) it can be
easily shown (see [12]) that when spreading happens, the long time asymptotic behavior of the free
boundary of (2.1) is largely determined by that of a radially symmetric problem, in the sense that,

|M(t)− h(t)| ≤ C for all large t and some constant C,

where M(t) is given in (2.5), and r = h(t) is the free boundary of a radially symmetric free boundary
problem of the following form:

(2.8)


ut − urr − N−1

r ur = f(u), 0 < r < h(t), t > 0,
ur(t, 0) = 0, u(t, h(t)) = 0, t > 0,
h′(t) = −µur(t, h(t)), t > 0,
h(0) = h0, u(0, r) = u0(r), 0 ≤ r ≤ h0,
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where f is the same as in (2.1), µ and h0 are given positive constants. The initial function u0 is
chosen from

(2.9) K (h0) :=
{
ψ ∈ C2([0, h0]) : ψ′(0) = ψ(h0) = 0, ψ(r) > 0 in [0, h0)

}
.

For any given h0 > 0 and u0 ∈ K (h0), (2.8) has a classical solution defined for all t > 0 ([12]).
If u0(x) in (2.1) is radially symmetric, then (2.1) reduces to (2.8). Similarly, if we take

(2.10) U0(x) =

{
u0(|x|), |x| < h0,

0, |x| ≥ h0,

with u0 given in (2.8), then the unique solution of (2.2) is radially symmetric: U = U(t, |x|). We will
closely examine the spreading behavior determined by (2.8) and compare it with that of (2.2) with
U0 given in (2.10).

While the Cauchy problem (2.2) has been extensively studied in the past several decades and
relatively well understood (some relevant results for (2.2) will be recalled below), the study of the
nonlinear free boundary problem (2.8) is rather recent. Problem (2.8) with the Fisher (also called
logistic) nonlinearity f(u) = au − bu2 was investigated in [7], continuing a study initiated in [10]
for the one space dimension case. A deduction of the free boundary condition based on ecological
assumptions can be found in [6], but generally speaking, the role of this free boundary condition in
the mechanism of spreading is still poorly understood.

In [11], problem (2.8) with a rather general f(u) but in one space dimension was considered. In
particular, if f(u) is of monostable, or bistable, or combustion type, it was shown in [11] that (2.8)
has a unique solution which is defined for all t > 0, and as t → ∞, h(t) either increases to a finite
number h∞, or it increases to +∞. Moreover, in the former case, u(t, r)→ 0 uniformly in r, while in
the latter case, u(t, r)→ 1 locally uniformly in r ∈ [0,+∞) (except for a transition case when f is of
bistable or combustion type). The situation that

u→ 0 and h→ h∞ < +∞
is called the vanishing case, and

u→ 1 and h→ +∞
is called the spreading case.

When spreading happens, it was shown in [11] that there exists c∗ > 0 such that

lim
t→∞

h(t)

t
= c∗.

The number c∗ is the same as in (2.6). These conclusions remain valid in higher space dimensions
([12]).

Next we will describe the results more accurately. Firstly, let us recall in detail the three types of
nonlinearities of f mentioned above:1

(fM) monostable case, (fB) bistable case, (fC) combustion case.

In the monostable case (fM), we assume that f is C1 and it satisfies

f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0, (1− u)f(u) > 0 for u > 0, u 6= 1.

A typical example is f(u) = u(1− u).
In the bistable case (fB), we assume that f is C1 and it satisfies{

f(0) = f(θ) = f(1) = 0,
f(u) < 0 in (0, θ), f(u) > 0 in (θ, 1), f(u) < 0 in (1,∞),

1While f being C1 is enough for the results in this section on the radially symmetric problem (2.8), for Theorem A
to hold, [15] requires additionally that f ∈ C1,α([0, δ]) for some α ∈ (0, 1) and small δ > 0.
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for some θ ∈ (0, 1), f ′(0) < 0, f ′(1) < 0 and∫ 1

0
f(s)ds > 0.

A typical example is f(u) = u(u− θ)(1− u) with θ ∈
(
0, 1

2

)
.

In the combustion case (fC), we assume that f is C1 and it satisfies

f(u) = 0 in [0, θ], f(u) > 0 in (θ, 1), f ′(1) < 0, f(u) < 0 in [1,∞)

for some θ ∈ (0, 1), and there exists a small δ0 > 0 such that

f(u) is nondecreasing in (θ, θ + δ0).

The asymptotic spreading speed c∗ is determined in the following way.

Proposition 2.1.1 (Proposition 1.8 and Theorem 6.2 of [11]). Suppose that f is of (fM), or (fB), or
(fC) type. Then for any µ > 0 there exists a unique c∗ = c∗(µ) > 0 and a unique solution qc∗ to (2.7)
with c = c∗ such that q′c∗(0) = c∗

µ .

We remark that this function qc∗ is shown in [11] to satisfy q′c∗(z) > 0 for z ≥ 0. We call qc∗ a
semi-wave with speed c∗, since the function v(t, x) := qc∗(c

∗t− x) satisfies{
vt = vxx + f(v) for t ∈ R1, x < c∗t,

v(t, c∗t) = 0, −µvx(t, c∗t) = c∗, v(t,−∞) = 1.

In [16], sharper estimate of the spreading speed in one space dimension was obtained. More
precisely it was shown in [16] that when spreading happens for (2.8) (with N = 1), there exists

Ĥ ∈ R such that

lim
t→∞

(h(t)− c∗t− Ĥ) = 0, lim
t→∞

h′(t) = c∗,(2.11)

lim
t→∞

sup
r∈[0, h(t)]

∣∣∣u(t, r)− qc∗(h(t)− r)
∣∣∣ = 0.(2.12)

In this section, we consider the case that the space dimension N ≥ 2, and spreading happens for
(2.8), namely

lim
t→∞

h(t) =∞ and lim
t→∞

u(t, r) = 1 locally uniformly for r ∈ [0,∞).

We will show that in such a case, we still have (2.12) and limt→∞ h
′(t) = c∗, but there exists c∗ > 0

independent of N such that

(2.13) lim
t→∞

[
h(t)− c∗t+ (N − 1)c∗ log t

]
= ĥ ∈ R1.

Moreover, the constant c∗ is given by

c∗ =
1

ζ c∗
, ζ = 1 +

c∗

µ2
∫∞

0 q′c∗(z)
2e−c∗zdz

.

The term (N−1)c∗ log t in (2.13) will be called a logarithmic shifting term. For simplicity of notation,
we will write cN = (N − 1)c∗. Thus from (2.13) and (2.12) we obtain

lim
t→∞

sup
r∈[0, h(t)]

∣∣∣u(t, r)− qc∗(c∗t− cN log t+ ĥ− r)
∣∣∣ = 0.

This indicates that as t → ∞, u converges to the moving semi-wave profile qc∗ traveling with speed
c∗ − cN t−1.

For convenience of comparison, we now recall some well-known relevant results for the correspond-
ing Cauchy problem (2.2). The classical paper of Aronson and Weinberger [3] contains a systematic
investigation of this problem (see [2] for the case of one space dimension). Various sufficient conditions
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for limt→∞ U(t, x) = 1 (“spreading” or “propagation”) and for limt→∞ U(t, x) = 0 (“vanishing” or
“extinction”) are given, and the way U(t, x) approaches 1 as t→∞ is used to describe the spreading
of a (biological or chemical) species. In particular, when spreading happens, it is shown in [3] that,
in any space dimension N ≥ 1, there exists c0 > 0 independent of N , such that, for any small ε > 0,

(2.14)

{
limt→∞max|x|≥(c0+ε)t U(t, x) = 0,

limt→∞max|x|≤(c0−ε)t |U(t, x)− 1| = 0.

Clearly (2.3) is a consequence of (2.14) (with the same c0). The relationship between the spreading
speed determined by (2.1) and that determined by (2.2) is given by (see Theorem 6.2 of [11])

c0 = lim
µ→∞

c∗(µ).

More details on the spreading behavior of the Cauchy problem can be found, for example, in [2, 3,
19, 20, 26, 27, 28, 37].

As we will explain below, fundamental differences arise between the free boundary problem and
the Cauchy problem when we compare their spreading profiles closely. While the spreading profiles
of all three basic cases (fM), (fB) and (fC) can be described in a unified fashion for the free boundary
model (2.8) (see (2.11), (2.12) and (2.13)), where no logarithmic shifting occurs in space dimension
N = 1, and a synchronized logarithmic shifting happens in dimensions N ≥ 2, this is not the case
for the Cauchy problem, where the monostable case may behave very differently from the other two
cases: The (pulled) monostable case gives rise to logarithmic shifting in all dimensions N ≥ 1, and
the shifting coefficient is different from the other two cases when N ≥ 2.

More precisely, in one space dimension, a classical result of Fife and McLeod [19] states that for f
of type (fB), if spreading happens, i.e., U(t, x) → 1 as t → ∞, where U is the solution to (2.2), the
spreading profile of U is described by

|U(t, x)−Qc0(c0t+ x+ C−)| < Ke−ωt for x < 0,

|U(t, x)−Qc0(c0t− x+ C+)| < Ke−ωt for x > 0.

Here (c0, Qc0) is the unique solution of (2.4), C± ∈ R, and K, ω are suitable positive constants. So
as t→∞, U converges to the traveling wave profile Qc0 moving at the exact speed c0, and hence no
logarithmic shifting occurs in this case.

The monostable case of (2.2) has very different behavior. Firstly we recall that (2.4) already
behaves differently in the monostable case. Secondly, a logarithmic shifting occurs: When (fM) holds
and furthermore f(u) ≤ f ′(0)u for u ∈ (0, 1) (so f falls to the so called “pulled” case), there exist
constants C± such that

lim
t→∞

max
x≥0

∣∣∣∣U(t, x)−Qc0
(
c0t−

3

c0
log t− x+ C+

)∣∣∣∣ = 0,

and

lim
t→∞

max
x≤0

∣∣∣∣U(t, x)−Qc0
(
c0t−

3

c0
log t+ x+ C−

)∣∣∣∣ = 0.

This implies that as t→∞, U converges to the traveling wave profile Qc0 moving with speed c0− 3
c0
t−1

instead of exactly c0. The associated logarithmic shifting term 3
c0

log t is known as the logarithmic

Bramson correction term; see [5, 25, 32, 37] for more details.
For space dimension N ≥ 2, if U0(x) is given by (2.10) and hence the unique solution U of (2.2) is

spherically symmetric (U = U(t, |x|)), results in [23, 38] indicate that the Bramson correction term
for the monostable case becomes

N + 2

c0
log t (for the pulled case of f), or

N − 1

c0
log t (for the pushed case of f),
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that is, there exists some constant C such that for the pulled case of f ,

lim
t→∞

sup
x∈RN

∣∣∣∣U(t, |x|)−Qc0
(
c0t−

N + 2

c0
log t+ C − |x|

)∣∣∣∣ = 0,

and for the pushed case of f ,

lim
t→∞

sup
x∈RN

∣∣∣∣U(t, |x|)−Qc0
(
c0t−

N − 1

c0
log t+ C − |x|

)∣∣∣∣ = 0.

In the bistable case (as well as the combustion case), the Fife-McLeod result should be changed to
(see [38])

lim
t→∞

sup
x∈RN

∣∣∣∣U(t, |x|)−Qc0
(
c0t−

N − 1

c0
log t+ L− |x|

)∣∣∣∣ = 0,

where L is some constant.
The above comparisons indicate that the singular behavior of the monostable case observed in the

Cauchy problem does not exist anymore in the free boundary model, where all three cases behave in
a rather synchronized manner.

The rest of the section is organized as follows. In Subsection 2.2, we describe how the constant
cN in the logarithmic shifting term is defined. In Subsection 2.3, we estimate h(t) in several steps
until the sharp term cN log t appears in the upper and lower bounds of h(t). The main convergence
results of this section are proved in Subsection 2.4, where our arguments are based on the estimates
obtained in Subsection 2.3, and on a new device very different from the energy methods used in [16]
and [19].

A key step in this research is to find the exact form of the logarithmic shifting term cN log t. This
relies on the discovery that sharp upper and lower solutions to (2.8) can be obtained by suitable
perturbations of

h(t) = c∗t− cN log t, u(t, r) = φ(µ(c∗ − cN t−1), r − h(t)),

with the functions φ(µ, z) and µ(ξ) defined in (2.15) and (2.20), respectively. This approach is
completely different from that used for treating the corresponding Cauchy problem, and from that
used to handle the one space dimension case in [16].

Our method to prove the convergence result in Subsection 2.4 also relies on innovative ideas. The
method is very powerful and should have applications elsewhere. The spirit of the method is close to
those in [39] and [18].

2.2. Formula for cN .
In this subsection, we describe how cN in the logarithmic shifting term is defined, and also give a key
identity (see (2.21) below) to be used in the next subsection.

Let qc∗ be given by Proposition 2.1.1 and we define φ(z) to be the unique solution of the following
initial value problem

(2.15) φ′′ + c∗φ′ + f(φ) = 0, φ(0) = 0, φ′(0) = −c∗/µ.

Clearly

φ(z) = qc∗(−z) for z ≤ 0.

To stress its dependence on µ, we write φ(z) = φ(µ, z). Similarly we write c∗ = c∗(µ). It is easily
seen that for each given µ0 > 0, we can find ε0 > 0 such that φ(µ, z) is defined for z ∈ (−∞, ε0] with

φz(µ, z) < 0, φ(µ, ε0) < −η0 < 0 for µ ∈ [µ0/2, 2µ0] and z ≤ ε0.

From [11] we see that µ→ c∗(µ) is strictly increasing. We will show below that it is a C2 function.
To this end, we need to recall some details contained in [11]. Under the assumptions of Proposition
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2.1.1, it was shown in [11] that there exists a unique c0 > 0 such that for each c ∈ [0, c0], the problem

(2.16) P ′ = c− f(q)

P
in [0, 1), P (1) = 0, P ′(1) < 0

has a unique solution Pc(q), which necessarily satisfies

P ′c(1) =
c−

√
c2 − 4f ′(1)

2
, Pc(q) > 0 in (0, 1).

Furthermore, the following monotonicity and continuity result holds.

Lemma 2.2.1 (Lemma 6.1 of [11]). For any 0 ≤ c1 < c2 ≤ c0 and c̄ ∈ [0, c0],

Pc1(q) > Pc2(q) in [0, 1), lim
c→c̄

Pc(q) = Pc̄(q) uniformly in [0, 1].

Moreover, Pc0(0) = 0 and Pc0(q) > 0 in (0, 1).

From the proof of Theorem 6.2 in [11], we see that, for µ > 0, c∗(µ) is the unique solution of

Pc(0)− c

µ
= 0, c ∈ [0, c0].

We show below that c→ Pc(0) is a C2 function for c ∈ (0, c0).
Fix c ∈ (0, c0) and let h 6= 0 be sufficiently small so that c+ h ∈ (0, c0). We then consider

P̂h(q) :=
Pc+h(q)− Pc(q)

h
, q ∈ [0, 1].

Clearly

(2.17) P̂ ′h(q) = 1 +
f(q)

Pc(q)Pc+h(q)
P̂h(q) in [0, 1), P̂h(1) = 0.

The unique solution of (2.17) is given by

P̂h(q) = −
∫ 1

q
e

∫ ξ
q

−f(s)
Pc(s)Pc+h(s)

ds
dξ, q ∈ [0, 1).

Let us note that for q close to 1, f(q) is close to f ′(1)(q−1) and Pc(q) is close to P ′c(1)(q−1). Hence,
for fixed q ∈ [0, 1),

e

∫ ξ
q

−f(s)
Pc(s)Pc+h(s)

ds → 0 as ξ → 1 uniformly in c, h.

It follows that the integrand function

e

∫ ξ
q

−f(s)
Pc(s)Pc+h(s)

ds

is uniformly bounded in the set {(q, ξ) : 0 ≤ q ≤ ξ ≤ 1}. Letting h → 0 in the expression for P̂h(q)
we obtain

lim
h→0

P̂h(q) = −
∫ 1

q
e
∫ ξ
q
−f(s)
Pc(s)2

ds
dξ, q ∈ [0, 1).

Therefore

(2.18)
d

dc
Pc(q) = −

∫ 1

q
e
∫ ξ
q
−f(s)
Pc(s)2

ds
dξ < 0 for q ∈ [0, 1).

By Lemma 2.2.1, we easily see from the above identity that d
dcPc(q) is continuous in c for c ∈ (0, c0).

Moreover, d
dcPc(1) = 0 and the continuity of d

dcPc(q) in c is uniform in q ∈ [0, 1].
From (2.18) we further obtain

(2.19)
d2

dc2
Pc(0) = −2

∫ 1

0

[
e
∫ ξ
0
−f(s)
Pc(s)2

ds
∫ ξ

0

f(s)

Pc(s)3

d

dc
Pc(s)ds

]
dξ,
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provided that we can show the integral above is convergent. By (2.18) we can find C1 > 0 such that

| d
dc
Pc(s)| ≤ C1 for s ∈ [0, 1].

For ε ∈ (0, 1) sufficiently small, there exist C2, C3 > 0 such that

−f(s)

Pc(s)2
≤ −C2(1− s)−1, | f(s)

Pc(s)3
| ≤ C3(1− s)−2 for s ∈ [1− ε, 1].

Hence, for ξ ∈ [1− ε, 1],∣∣∣∣e∫ ξ0 −f(s)Pc(s)2
ds
∫ ξ

0

f(s)

Pc(s)3

d

dc
Pc(s)ds

∣∣∣∣
≤ C1e

∫ ξ
0
−f(s)
Pc(s)2

ds
[∫ 1−ε

0
+

∫ ξ

1−ε

]
| f(s)

Pc(s)3
|ds

≤ C1Cεe
−C2

∫ ξ
1−ε(1−s)

−1ds

[
Cε + C3

∫ ξ

1−ε
(1− s)−2ds

]
≤ Cε[(1− ξ)C2 + (1− ξ)C2−1],

where we have used Cε to denote various positive constants that depend on ε. Clearly this implies

the convergence of the integral in the formula for d2

dc2
Pc(0) in (2.19). Moreover, by the continuous

dependence of Pc(q) and d
dcPc(q) on c, we find from (2.19) that d2

dc2
Pc(0) is continuous in c for

c ∈ (0, c0). We have thus proved the following result.

Lemma 2.2.2. The function c→ Pc(0) is C2 for c ∈ (0, c0).

Define ζ(c, µ) := Pc(0)− c
µ . Then

∂cζ(c, µ) =
d

dc
Pc(0)− 1

µ
< − 1

µ
< 0.

Hence by the implicit function theorem we find that the unique solution c = c∗(µ) of ζ(c, µ) = 0, as
a function of µ, is as smooth as ζ, and hence is C2. Moreover

c∗′(µ) = −∂µζ(c∗(µ), µ)

∂cζ(c∗(µ), µ)
= − µ−2c∗(µ)

∂cζ(c∗(µ), µ)
> 0,

and (
c∗(µ)

µ

)′
=
c∗′(µ)

µ
− c∗(µ)

µ2
= µ−2c∗(µ)

[
1

−µ∂cζ
− 1

]
< 0

since −∂cζ > µ−1.
From [11] we further have

lim
µ→∞

c∗(µ)

µ
= 0, lim

µ→0

c∗(µ)

µ
= P0(0) > 0.

We now fix µ0 > 0 and denote c∗0 = c∗(µ0). Therefore for each ξ ∈ (0, µ0P0(0)) there exists a unique
µ = µ(ξ) such that

(2.20)
c∗(µ(ξ))

µ(ξ)
=

ξ

µ0
, ξ → µ(ξ) is C2, µ′(ξ) < 0, µ(c∗0) = µ0.

Here we have used the implicit function theorem and µ → c∗(µ)
µ is C2 to conclude that ξ → µ(ξ) is

C2.
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Let g(ξ) := c∗(µ(ξ)). Then g is C2 and g′(ξ) = c∗′(µ(ξ))µ′(ξ) < 0. The following identity will play
a crucial role in the estimates of the next subsection.

g(c∗0 − cN t−1)− g(c∗0) = −g′(c∗0)(cN t
−1) +

1

2
g′′(θt)(c

2
N t
−2)(2.21)

with θt ∈ (c∗0 − cN t−1, c∗0), where cN is given by

(2.22) cN =
[
1− g′(c∗0)

]−1N − 1

c∗0
,

and g′(c∗0) can be calculated by the following formula:

Lemma 2.2.3.

(2.23) g′(c∗0) = − c∗0
µ2

0

∫∞
0 q′c∗0

(z)2e−c
∗
0zdz

.

Proof. By definition, g′(c∗0) = c∗′(µ0)µ′(c∗0). Using c∗(µ(ξ)) = µ−1
0 ξµ(ξ), we obtain

c∗′(µ(ξ))µ′(ξ) = µ−1
0 [µ(ξ) + ξµ′(ξ)], µ′(ξ) =

µ−1
0 µ(ξ)

c∗′(µ(ξ))− µ−1
0 ξ

.

Hence

µ′(c∗0) =
1

c∗′(µ0)− µ−1
0 c∗0

.

By our earlier calculation, we have

c∗′(µ0) = − µ−2
0 c∗0

d
dcPc(0)− µ−1

0

∣∣∣∣∣
c=c∗0

.

Hence

g′(c∗0) =
c∗′(µ0)

c∗′(µ0)− µ−1
0 c∗0

=
1

1− µ−1
0 c∗0c

∗′(µ0)−1
=

1

µ0
d
dcPc(0)

∣∣∣∣∣
c=c∗0

.

From (2.18) we obtain

d

dc
Pc(0) = −

∫ 1

0
e
∫ ξ
0
−f(s)
Pc(s)2

ds
dξ.

From [11] we know that

Pc(s) = Pc(qc(z)) = q′c(z) with s = qc(z), or equivalently z = q−1
c (s).

Therefore, making use of the change of variable s = qc(z), and the identity f(qc(z)) = −q′′c (z)+cq′c(z),
we obtain ∫ ξ

0

−f(s)

Pc(s)2
ds =

∫ q−1
c (ξ)

0

−f(qc(z))

q′c(z)
2

q′c(z)dz

=

∫ q−1
c (ξ)

0

q′′c (z)− cq′c(z)
q′c(z)

dz

= log

[
q′c(q

−1
c (ξ))

q′c(0)

]
− cq−1

c (ξ).
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It follows that

d

dc
Pc(0) = −

∫ 1

0
e
∫ ξ
0
−f(s)
Pc(s)2

ds
dξ

= −
∫ 1

0

q′c(q
−1
c (ξ))

q′c(0)
e−cq

−1
c (ξ)dξ

= −
∫ ∞

0

q′c(z)

q′c(0)
e−czq′c(z)dz

= −µ
c

∫ ∞
0

q′c(z)
2e−czdz.

Hence

g′(c∗0) =
−c∗0

µ2
0

∫∞
0 q′c∗0

(z)2e−c
∗
0zdz

.

�

2.3. Sharp bounds.
In this subsection we give some sharp estimates for h(t). We always assume that f satisfies the
conditions of Proposition 2.1.1. We fix µ0 > 0 and suppose that (u(t, r), h(t)) is the unique solution
of (2.8) with µ = µ0. Let c∗0 and cN be defined as in the previous subsection (see (2.22)), and suppose
that spreading happens:

(2.24) lim
t→∞

h(t) =∞, lim
t→∞

u(t, r) = 1 uniformly for r in compact subsets of [0,∞).

We make these assumptions throughout this section. Our aim is to show the following result.

Theorem 2.3.1. There exist positive constants C and T such that

(2.25) |h(t)− (c∗0t− cN log t)| ≤ C for t ≥ T.

Moreover, for any c ∈ (0, c∗0), there exist positive constants M and σ such that

(2.26) |u(t, r)− 1| ≤Me−σt for t > 0, r ∈ [0, ct].

These conclusions will be proved by a sequence of lemmas.

2.3.1. Rough bounds. We start with some rough bounds for u and h.

Lemma 2.3.2. The following conclusions hold:

(i) For any c ∈ (0, c∗0) and δ ∈ (0,−f ′(1)), there exist a positive constants T∗ > 0 and M > 0 such
that

u(t, r) ≤ 1 +Me−δt, h(t) ≥ ct for t ≥ T∗ and r ∈ [0, h(t)].

(ii) There exists c̃ ∈ (0, c∗0), δ̃ ∈ (0,−f ′(1)), and T̃∗ > 0, M̃ > 0 such that

u(t, r) ≥ 1− M̃e−δ̃t for r ∈ [0, c̃t] and t ≥ T̃∗.

Proof. (i) Consider the equation η′(t) = f(η) with initial value η(0) = ‖u0‖L∞+1. Then η is an upper
solution of (1.1). So u(t, x) ≤ η(t) for all t ≥ 0. Since f(u) < 0 for u > 1, η(t) is a decreasing function
converging to 1 as t→∞. Hence there exists T∗ > 0 such that η(t) < 1+ρ and η′(t) = f(η) ≤ δ(1−η)
for t ≥ T∗. It follows that

u(t, x) ≤ η(t) ≤ 1 + ρe−δ(t−T∗) for 0 ≤ |x| ≤ h(t), t ≥ T∗.
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Next we take any c ∈ (0, c∗0) and show that for all large t, h(t) ≥ ct. We construct a lower solution
similar to the proof of Lemma 6.5 in [11]. Let us recall that for each c ∈ (0, c∗0), there exists a function
qc(z) defined for z ∈ [0, zc] such that

q′′ − cq′ + f(q) = 0 in [0, zc]; q(0) = q′(zc) = 0; q′(z) > 0 in [0, zc).

Moreover, Qc := qc(zc) < 1 and as c↗ c∗0,

Qc ↗ 1, zc ↗ +∞, ‖qc − qc∗0‖L∞([0,zc]) → 0.

See page 38 of [11] for details.
We now choose c1, c2 ∈ (c, c∗0) satisfying c1 < c2, f(Qc2) > 0, and define

k(t) := zc2 + c2t−
N − 1

c1
log t.

We can find T1 > 0 such that

c1t ≤ c2t−
N − 1

c1
log t

for t ≥ T1. Set

w(t, r) :=

{
qc2(k(t)− r), c2t− N−1

c1
log t ≤ r ≤ k(t),

qc2(zc2), 0 ≤ r ≤ c2t− N−1
c1

log t.

Since spreading happens we can find T2 > T1 such that

k(T1) ≤ h(T2)

w(T1, r) ≤ u(T2, r) for r ∈ [0, k(T1)]

We note that

wr(t, r) = 0 when 0 ≤ r ≤ c2t−
N − 1

c1
log t.

Moreover, by (6.7) in [11],

k′(t) = c2 −
N − 1

c1t
≤ c2 < µ(qc2)′(0) = −µwr(t, k(t))

and

wt −∆w

= k′(t)(qc2)′(k(t)− r)− (qc2)′′(k(t)− r) +
N − 1

r
(qc2)′(k(t)− r)

= f(qc2(k(t)− r)) +

(
N − 1

r
− N − 1

c1t

)
(qc2)′(k(t)− r)

≤ f(w)

for r ∈
[
c2t− N−1

c1
log t, k(t)

]
⊂ [c1t, k(t)] and

wt −∆w = 0 < f(Qc2) = f(w)

for r ∈
[
0, c2t− N−1

c1
log t

]
.
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Since w is C1 in r, the above discussions show that (w(t − T2 + T1, r), k(t − T2 + T1)) is a lower
solution of (1.1) for t ≥ T2. Hence there exists some T3 ≥ T2 such that for t ≥ T3,

h(t) ≥ k(t− T2 + T1) = zc2 + c2(t− T2 + T1)− N − 1

c1
log(t− T2 + T1)

≥ zc2 + c1(t− T2 + T1) ≥ ct

and

u(t, r) ≥ w(t− T2 + T1, r) for r ∈ [0, k(t− T1 + T2)] ⊃ [0, ct].

(ii) Since w(t− T2 + T1, r) ≡ qc2(zc2) = Qc2 > Qc for r ≤ ct for all t ≥ T3, we find from the above
estimates for u and h that

h(t) ≥ ct, u(t, r) ≥ Qc for 0 ≤ r ≤ ct, t ≥ T3(2.27)

Since f ′(1) < 0, for any δ ∈ (0,−f ′(1)) we can find ρ = ρ(δ) ∈ (0, 1) such that

f(u) ≥ δ(1− u) (u ∈ [1− ρ, 1]), f(u) ≤ δ(1− u) (u ∈ [1, 1 + ρ]).

Since Qc → 1 as c↗ c∗0, we may assume that Qc > 1− ρ.
Now for a given domain D we consider a solution ψ = ψD to the following auxiliary problem: ψt −∆ψ = −δ(ψ − 1), t > 0, x ∈ D,

ψ ≡ Qc, t > 0, x ∈ ∂D,
ψ ≡ Qc, t = 0, x ∈ D.

(2.28)

The function Ψ = ΨD = eδt(ψD −Qc) satisfies Ψt −∆Ψ = δeδt(1−Qc), t > 0, x ∈ D,
Ψ ≡ 0, t > 0, x ∈ ∂D,
Ψ ≡ 0, t = 0, x ∈ D.

(2.29)

Take

D = Qc̃T := {x ∈ RN | − c̃T ≤ xi ≤ c̃T, i = 1, 2, · · · , N}

with c̃ = c/
√
N . Let G(x, t; ξ, τ) be the Green function for the problem (2.29). From page 84 of [21]

one sees that this Green function can be expressed as follows:

G(x, t; ξ, τ) =
N∏
i=1

G̃(xi, t; ξi, τ)

where G̃ is the Green function of the one space dimension problem: Ψt −Ψxx = g(t, x), t > 0,−c̃T ≤ x ≤ c̃T,
Ψ ≡ 0, t > 0, x = ±c̃T,
Ψ ≡ 0, t = 0,−c̃T ≤ x ≤ c̃T.

Thus

ΨQc̃T (t, x) =

∫ t

0
δeδτ (1−Qc)

∫
Qc̃T

G(x, t; ξ, τ)dξdτ

For ε ∈ (0, 1), consider (t, x) ∈ RN+1 satisfying

|xi| ≤ (1− ε)c̃T, i = 1, 2, · · · , N, 0 ≤ t ≤ ε2c̃2T

4
.
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From the proof of Lemma 6.5 in [11] we find that for such (t, x), there exists T4 ≥ T3 such that for
T ≥ T4, ∫ c̃T

−c̃T
G̃(xi, t; ξi, τ)dξi ≥ 1− 4√

π
e−T/2 ≥ 0.

Hence, for sufficiently large T > 0 there exists M0 > 0 such that∫
Qc̃T

G(x, t; ξ, τ)dξ ≥ 1−M0e
−T/2.

From the above estimate we obtain

ΨQc̃T (t, x) ≥ δ(1−Qc)
∫ t

0
eδτ (1−M0e

−T/2)dτ

= (1−Qc)(1−M0e
−T/2)(eδt − 1)

for T ≥ T4, |xi| ≤ (1− ε)c̃T , i = 1, 2, · · · , N , 0 ≤ t ≤ ε2c̃2

4 T .
Since Bc̃T ⊂ Qc̃T ⊂ B√Nc̃T ⊂ BcT , using (2.27) and a simple comparison argument we obtain

ψQc̃T (t, x) ≤ ψBcT (t, x) ≤ u(t+ T, |x|) for t ≥ 0, x ∈ Qc̃T .
Hence

u(t+ T, |x|) ≥ ψQc̃T (t, x) for t > 0, x ∈ Qc̃T .(2.30)

Fix T ≥ T4. We have

ψQc̃T (t, x) = ΨQc̃T (t, x)e−δt +Qc ≥ 1−M0e
−T/2 − e−δt

for |xi| ≤ c̃T (1− ε), i = 1, 2, · · · , N , 0 ≤ t ≤ ε2c̃2

4 T . Taking t = ε2c̃2

4 T we obtain

ψQc̃T

(
ε2c̃2

4
T, x

)
≥ 1−M0e

−T/2 − e−ε2c̃2δT/4.

We only focus on small ε > 0 such that ε2c̃2δ < 2 so

ψQc̃T

(
ε2c̃2

4
T, x

)
≥ 1−M0e

−ε2c̃2δT/4 − e−ε2c̃2δT/4

= 1− (M0 + 1)e−ε
2c̃2δT/4.

This holds for |xi| ≤ (1− ε)c̃T , i = 1, 2, · · · , N , T ≥ T4. Thus, by (2.30), for such T and x, we have

u

(
ε2c̃2

4
T + T, |x|

)
≥ 1− (M0 + 1)e−ε

2c̃2δT/4.

Finally, if we rewrite

t =
ε2c̃2

4
T + T

then

T =

(
1 +

ε2c̃2

4

)−1

t,

and

u(t, |x|) ≥ 1− (M0 + 1)e−δ̃t

for |xi| ≤ (1 − ε)
(

1 + ε2c̃2

4

)−1
c̃t, i = 1, 2, · · · , N and t ≥ T5 where δ̃ := ε2c̃2

4

(
1 + ε2c̃2

4

)−1
δ and

T5 = ε2c̃2

4 T4 + T4. This is also true for |x| ≤ (1 − ε)
(

1 + ε2c̃2

4

)−1
c̃t. Since this is true for any
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c̃ ∈ (0, c∗0/
√
N) and for any small ε > 0, the above estimate implies the conclusion in (ii). This

completes the proof. �

Lemma 2.3.3. For any c ∈ (0, c∗0) there exist M ′ > 0, T ′ > 0 and δ′ ∈ (0,−f ′(1)) such that

u(t, r) ≥ 1−M ′e−δ′t, h(t) ≥ c∗0t−M ′ log t for r ∈ [0, ct] and t ≥ T ′.

Proof. We first construct a lower solution. Define

u(t, r) = (1− M̃e−δ̃t)qc∗0(h(t)− r),

h(t) = c∗0(t− T∗∗) + c̃T∗∗ −
N − 1

c̃
log

t

T∗∗
− σM̃(e−δ̃T∗∗ − e−δ̃t),

g(t) = c̃t,

where M̃, δ̃ and c̃ are given in Lemma 2.3.2, σ > 0 and T∗∗ > T∗ (T∗ as in Lemma 2.3.2) will be
chosen later. We will check that (u, g, h) is a lower solution, that is,

ut −
(
urr +

N − 1

r
ur

)
≤ f(u) for t > T∗∗, g(t) < r < h(t),(2.31)

u ≤ u for t ≥ T∗∗, r = g(t),(2.32)

u = 0, h′(t) ≤ −µur for t ≥ T∗∗, r = h(t),(2.33)

h(T∗∗) ≤ h(T∗∗), u(T∗∗, r) ≤ u(T∗∗, r) for r ∈ [g(T∗∗), h(T∗∗)].(2.34)

We first see that h(T∗∗) = c̃T∗∗ ≤ h(T∗∗) from Lemma 2.3.2. Thus we have

u(T∗∗, r) ≤ 1− M̃e−δ̃T∗∗ ≤ u(T∗∗, r) for r ∈ [g(T∗∗), h(T∗∗)]

from Lemma 2.3.2. Similarly we have

u(t, g(t)) = u(t, c̃t) ≤ 1− M̃eδ̃t ≤ u(t, c̃t) = u(t, g(t))

for t ≥ T∗∗ by Lemma 2.3.2.
Clearly u(t, h(t)) = 0. Next we calculate

h′(t) = c∗0 −
N − 1

c̃t
− σM̃δ̃e−δ̃t ≤ c∗0 − σδ̃M̃e−δ̃t,

ur(t, h(t)) = −(1− M̃e−δ̃t)q′c∗0(0) = −c
∗
0 − c∗0M̃e−δ̃t

µ
,

− µur(t, h(t)) = c∗0 − c∗0M̃e−δ̃t.

Hence if we take σ > 0 so that c∗0 ≤ σδ̃, then

h′(t) ≤ −µur(t, h(t)) for t ≥ T∗∗.

It remains to prove ut −
(
urr + N−1

r ur
)
− f(u) ≤ 0. Put ζ = h(t)− r. Since

ut = δ̃M̃e−δ̃tqc∗0(ζ) + (1− M̃e−δ̃t)h′(t)q′c∗0(ζ),

ur = −(1− M̃e−δ̃t)q′c∗0(ζ),

urr = (1− M̃ ′e−δ̃t)q′′c∗0(ζ),
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we have for t ≥ T∗∗ and r ∈ (c̃t, h(t)),

ut −
(
urr +

N − 1

r
ur

)
− f(u)

= δ̃M̃e−δ̃tqc∗0(ζ) + (1− M̃e−δ̃t)h′(t)q′c∗0(ζ)

− (1− M̃e−δ̃t)q′′c∗0(ζ) +
N − 1

r
(1− M̃e−δ̃t)q′c∗0(ζ)− f((1− M̃e−δ̃t)qc∗0(ζ))

= δ̃M̃e−δ̃tqc∗0(ζ) + (1− M̃e−δ̃t)

(
c∗0 −

N − 1

c̃t
− σM̃δ̃e−δ̃t

)
q′c∗0(ζ)

− (1− M̃e−δ̃t)q′′c∗0(ζ) +
N − 1

r
(1− M̃e−δ̃t)q′c∗0(ζ)− f((1− M̃e−δ̃t)qc∗0(ζ))

= δ̃M̃e−δ̃tqc∗0(ζ) + (1− M̃e−δ̃t)(c∗0q
′
c∗0

(ζ)− q′′c∗0(ζ))

− σM̃δ̃e−δ̃t(1− M̃e−δ̃t)q′c∗0(ζ) + (1− M̃e−δ̃t)

(
N − 1

r
− N − 1

c̃t

)
q′c∗0(ζ)

− f((1− M̃e−δ̃t)qc∗0(ζ))

≤ δ̃M̃e−δ̃tqc∗0(ζ)− σM̃δ̃e−δ̃t(1− M̃e−δ̃t)q′c∗0(ζ)

+ (1− M̃e−δ̃t)f(qc∗0(ζ))− f((1− M̃e−δ̃t)qc∗0(ζ)).

Let us consider the term (1− M̃e−δ̃t)f(qc∗0(ζ))− f((1− M̃e−δ̃t)qc∗0(ζ)), which is of the form

(1 + ξ)f(u)− f((1 + ξ)u).

The mean value theorem implies that

ξf(u) + f(u)− f((1 + ξ)u) = ξf(u)− ξf ′(u+ θξ,uξu)u

for some θξ,u ∈ (0, 1). Since 0 < δ̃ < −f ′(1), we can find an η > 0 such that{
δ̃ ≤ −f ′(u) for 1− η ≤ u ≤ 1 + η,
f(u) ≥ 0 for 1− η ≤ u ≤ 1.

(2.35)

Since qc∗0(ζ)→ 1 as ζ →∞, there exists ζη > 0 such that qc∗0(ζ) ≥ 1−η/2 for ζ ≥ ζη. We may assume

that M̃e−δ̃t ≤ η/2 for t ≥ T∗∗.
For ζ ≥ ζη, we have

ut −
(
urr +

N − 1

r
ur

)
− f(u)

≤ δ̃M̃e−δ̃tqc∗0(ζ)− σM̃δ̃e−δ̃t(1− M̃e−δ̃t)q′c∗0(ζ)

− M̃e−δ̃t
{
f(qc∗0(ζ))− f ′

(
qc∗0(ζ)− θ′ζ,tM̃e−δ̃tqc∗0(ζ)

)
qc∗0(ζ)

}
= − M̃e−δ̃tf(qc∗0(ζ))− σM̃δ̃e−δ̃t(1− M̃e−δ̃t)q′c∗0(ζ)

+ M̃e−δ̃t
{
f ′
(
qc∗0(ζ)− θ′ζ,tM̃e−δ̃tqc∗0(ζ)

)
+ δ̃
}
qc∗0(ζ) ≤ 0,

for some θ′ζ,t ∈ (0, 1). Here we have use the fact that

qc∗0(ζ)− θ′ζ,tM̃e−δ̃tqc∗0(ζ) ≥ qc∗0(ζ)− M̃e−δ̃tqc∗0(ζ) ≥ 1− η

and hence f ′
(
qc∗0(ζ)− θ′ζ,tM̃e−δ̃tqc∗0(ζ)

)
+ δ̃ ≤ 0.
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For 0 ≤ ζ ≤ ζη, we have

ut −
(
urr +

N − 1

r
ur

)
− f(u)

≤δ̃M̃e−δ̃tqc∗0(ζ)− σM̃δ̃e−δ̃t(1− M̃e−δ̃t)q′c∗0(ζ)

− M̃e−δ̃t
{
f(qc∗0(ζ))− f ′

(
qc∗0(ζ)− θ′ζ,tM̃e−δ̃tqc∗0(ζ)

)
qc∗0(ζ)

}
= − M̃e−δ̃tf(qc∗0(ζ))− σM̃δ̃e−δ̃t(1− M̃e−δ̃t)q′c∗0(ζ)

+ M̃e−δ̃t
{
f ′
(
qc∗0(ζ)− θ′ζ,tM̃e−δ̃tqc∗0(ζ)

)
+ δ̃
}
qc∗0(ζ)

≤ − M̃e−δ̃t min
0≤s≤1

f(s)− σM̃δ̃e−δ̃t(1− M̃e−δ̃t)q′c∗0(ζ)

+ M̃e−δ̃t
{

max
0≤s≤1

f ′(s) + δ̃
}

= M̃e−δ̃t
{
− min

0≤s≤1
f(s) + max

0≤s≤1
f ′(s) + δ̃ − σδ̃(1− M̃e−δ̃t)q′c∗0(ζ)

}
≤ 0,

for sufficiently large σ > 0 and all large t. Finally we note that we can take T∗∗ > T∗ so large that
the above holds and c̃t ≤ h(t) for t ≥ T∗∗.

Thus we have shown that (2.31)-(2.34) hold and (u, g, h) is a lower solution of (2.8). It follows that

u(t, r) ≥ u(t, r), h(t) ≥ h(t) for t ≥ T∗∗ and r ∈ [g(t), h(t)].

Hence

u(t, r) ≥ (1− M̃e−δ̃t)qc∗0(h(t)− r)

≥ qc∗0(h(t)− r)− M̃e−δ̃t

for t ≥ T∗∗ and c̃t ≤ r ≤ h(t).
For any c ∈ (0, c∗0) and any κ ∈ (0, c∗0−c), there exists T∗∗∗ > 0 such that for t ≥ T∗∗∗ and r ∈ [0, ct],

we have

h(t)− r ≥ (c∗0 − c)t−
N − 1

c̃
log

t

T∗∗
+ c̃T∗∗ − σM̃ ≥ κt.

Since there exist C > 0 and β > 0 such that qc∗0 satisfies qc∗0(z) ≥ 1−Ce−βz for z ≥ 0, we thus obtain

u(t, r) ≥ 1− Ce−βκt − M̃e−δ̃t = 1− M̃ ′e−δ′t(2.36)

for t ≥ T∗∗∗ and r ∈ [c̃t, ct], where δ′ = min{βκ, δ̃}.
Moreover, if M0 > (N − 1)/c̃, then

h(t) ≥ h(t) = c∗0t−
N − 1

c̃
log t− C̃ ≥ c∗0t−M0 log t for all large t.

Thus combined with (2.37) and Lemma 2.3.2, we find that

u(t, r) ≥ 1−M ′e−δ′t, h(t) ≥ c∗0t−M ′ log t

for t ≥ T ′ and r ∈ [0, ct] provided that M ′ and T ′ are chosen large enough. This completes the proof
of Lemma 2.3.3. �

Clearly (2.26) follows directly from Lemmas 2.3.2 and 2.3.3. Let us note that from the proof of
Lemma 2.3.3, we have, for t ≥ T ′ and r ∈ [c̃t, c∗0t−M ′ log t],

u(t, r) ≥ (1− M̃e−δ̃t)qc∗0(c∗0t−M ′ log t− r).
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Since

qc∗0(z) ≥ 1−M1e
−δ1z for z ∈ [0,∞) and some M1, δ1 > 0,

we immediately obtain

(2.37) u(t, r) ≥ (1− M̃e−δ̃t)(1−M1e
−δ1(c∗0t−M ′ log t−r))

for t ≥ T ′ and r ∈ [c̃t, c∗0t−M ′ log t].

2.3.2. Sharp bounds. We now make use of the rough bounds for u and h to obtain sharp bounds for
h. We first improve the estimate for h(t) in Lemma 2.3.3.

Lemma 2.3.4. There exist C > 0 and T > 0 such that

h(t) ≥ c∗0t− cN log t− C for t ≥ T,

where cN is given by (2.22).

Proof. With B > 0 a constant to be determined, and φ(z) = φ(µ, z) given in (2.15), we set

k̃(t) = c∗0t− cN log t+Bt−1 log t,

v(t, r) = φ
(
µ(c∗0 − cN t−1), r − k̃(t)

)
− t−2 log t.

We have v(t, k̃(t)) = −t−2 log t < 0 for t > 1, and

v(t, k̃(t)− t−1) = φ
(
µ(c∗0 − cN t−1),−t−1

)
− t−2 log t = −φr(µ0, 0)t−1 + o(t−1) > 0

for all large t. Moreover,

vr(t, r) = φr

(
µ(c∗0 − cN t−1), r − k̃(t)

)
< 0 for all t > 0 and r ∈ (0, k̃(t)].

Therefore, there exists a unique k(t) ∈ (k̃(t)− t−1, k̃(t)) such that

v(t, k(t)) = 0 for all large t.

By the implicit function theorem we know that t→ k(t) is smooth, and by the mean value theorem
we obtain [

φr(µ0, 0) + o(1)
][
k(t)− k̃(t)

]
= t−2 log t.

Since φr(µ0, 0) = −c∗0/µ0, we thus obtain

(2.38) k(t)− k̃(t) =

[
−µ0

c∗0
+ o(1)

]
t−2 log t for all large t.

Using vt(t, k(t)) + vr(t, k(t))k′(t) = 0 we obtain

φµ · µ′ · cN t−2 + φr ·
[
k′(t)− k̃′(t)

]
+
[
1 + o(1)

]
2t−3 log t = 0.

It follows that

k′(t) = k̃′(t) +O(t−2) = c∗0 − cN t−1 −Bt−2 log t+O(t−2)

for all large t.
We want to show that there exist positive constants M and T such that (v(t, r), k(t)) satisfies, for

t ≥ T and k(t)−M log t ≤ r ≤ k(t),

(2.39) v(t, k(t)) = 0, k′(t) ≤ −µ0vr(t, k(t)),

(2.40) v(t, k(t)−M log t) ≤ u(t+ s, k(t+ s)−M log(t+ s)), ∀s > 0,

(2.41) vt − vrr −
N − 1

r
vr − f(v) ≤ 0.
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Moreover, we will show that the above inequalities imply

(2.42) k(t) ≤ h(t+ T1), v(t, r) ≤ u(t+ T1, r) for r ∈ (k(t)−M log t, k(t)) and t ≥ T .
Clearly the required estimate for h(t) follows directly from (2.42) and (2.38).

By the definition of k(t), we have v(t, k(t)) = 0. We now calculate

vr(t, k(t)) = φr(µ(c∗0 − cN t−1), k(t)− k̃(t))

= φr(µ(c∗0 − cN t−1), 0) +
[
φrr(µ0, 0) + o(1)

][
k(t)− k̃(t)

]
= − 1

µ0
(c∗0 − cN t−1) +

[
φrr(µ0, 0) + o(1)

] [
−µ0

c∗0
+ o(1)

]
t−2 log t.

Using
φrr(µ0, r) + c∗0φr(µ0, r) + f(φ(µ0, r)) = 0

and f(φ(µ0, 0)) = f(0) = 0, we obtain

φrr(µ0, 0) = −c∗0φr(µ0, 0) =
c∗0

2

µ0
.

It follows that

−µ0vr(t, k(t)) = c∗0 − cN t−1 + µ0c
∗
0t
−2 log t+ o(t−2 log t)

> c∗0 − cN t−1 −Bt−2 log t+O(t−2)

= k′(t) for all large t.

Hence (2.39) holds.
Since

c∗0t−M ′ log t−
[
k(t)−M log t

]
= (cN +M −M ′) log t+ o(1) > (M/2) log t

for all large t, provided that M > 2M ′, we obtain from (2.37) that

u(t, k(t)−M log t) ≥ (1− M̃e−δ̃t)
(

1−M1t
−δ1M/2

)
> 1− t−2

for all large t, provided that M > 4/δ1. We now fix M such that M > max{2M ′, 4/δ1}. Thus

u(t+ s, k(t+ s)−M log(t+ s)) > 1− (t+ s)−2 > 1− t−2 log t > v(t, k(t)−M log t)

for all large t and every s > 0. This proves (2.40).
Next we show (2.41). We have, with ξ = c∗0 − cN t−1,

vt =φµ(µ(ξ), r − k̃(t))µ′(ξ)cN t
−2 − φr(µ(ξ), r − k̃(t))k̃′(t) + 2t−3 log t− t−3

=O(t−2) + φr ·
(
− c∗0 + cN t

−1 +Bt−2 log t−Bt−2
)
,

and
vr(t, r) = φr(µ(ξ), r − k̃(t)), vrr(t, r) = φrr(µ(ξ), r − k̃(t)).

Hence,

vt − vrr −
N − 1

r
vr − f(v)

= O(t−2) + φr

[
−c∗0 + cN t

−1 +Bt−2 log t−Bt−2 − N − 1

r

]
− φrr − f

(
φ− t−2 log t

)
= O(t−2) + φr

[
g(ξ)− g(c∗0) + cN t

−1 +Bt−2 log t−Bt−2 − N − 1

r

]
− g(ξ)φr − φrr − f

(
φ− t−2 log t

)
= O(t−2) + φrJ + f(φ)− f

(
φ− t−2 log t

)
,
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where

J := g(ξ)− g(c∗0) + cN t
−1 +Bt−2 log t−Bt−2 − N − 1

r
.

For r ∈ [k(t)−M log t, k(t)], we have

r ≥ k(t)−M log t

= k̃(t)−M log t+O(t−2 log t)

= c∗0t− (cN +M) log t+Bt−1 log t+O(t−2 log t)

≥ c∗0t−M2 log t for all large t,

where M2 = cN +M . It follows that, for such r,

N − 1

r
≤ N − 1

c∗0t−M2 log t

=
N − 1

c∗0t
+

(N − 1)M2 log t

c∗0
2t2

[
1 + o(1)

]
.

Therefore

J ≥ −g′(c∗0)cN t
−1 + cN t

−1 − N − 1

c∗0
t−1 +

[
B − (N − 1)M2

c∗0
2

]
t−2 log t+ o(t−2 log t)

=

[
B − (N − 1)M2

c∗0
2 + o(1)

]
t−2 log t > 0

for all large t, provided that B is large enough.
We now fix ε0 > 0 small so that f ′(u) ≤ −σ0 < 0 for u ∈ [1− 2ε0, 1 + 2ε0]. Then when φ(µ(ξ), r −

k̃(t)) ∈ [1− ε0, 1] we have

f(φ)− f(φ− t−2 log t) ≤ −σ0t
−2 log t

for all large t. Hence in such a case,

O(t−2) + φrJ + f(φ)− f(φ− t−2 log t) ≤ O(t−2)− σ0t
−2 log t < 0

for all large t.
If φ(µ(ξ), r − k̃(t)) ∈ [0, 1− ε0], then we can find σ1 > 0 such that φr ≤ −σ1, and hence

φrJ ≤ −σ1

[
B − (N − 1)M2

c∗0
2 + o(1)

]
t−2 log t.

On the other hand, there exists σ2 > 0 such that

f(φ)− f(φ− t−2 log t) ≤ σ2t
−2 log t.

Thus in this case we have

O(t−2) + φrJ + f(φ)− f(φ− t−2 log t)

≤ −σ1

[
B − (N − 1)M2

c∗0
2 + o(1)

]
t−2 log t+ σ2t

−2 log t+O(t−2)

< 0

for all large t, provided that B is large enough. This proves (2.41).
We are now ready to show (2.42). Since as t→∞, h(t)→∞ and u(t, r)→ 1 locally uniformly in

r ∈ [0,∞), we can find T ′ > T such that

h(T ′) > k(T ), u(T ′, r) > v(T, r) for r ∈ [k(T )−M log T, k(T )],
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where T > 0 is a constant such that (2.39), (2.40) and (2.41) hold for t ≥ T . We may now use a
comparison argument to conclude that

h(T ′ + t) ≥ k(T + t), u(T ′ + t, r) ≥ v(T + t, r)

for t > 0, r ∈ [k(T + t)−M log(T + t), k(T + t)], which is equivalent to (2.42) with T1 = T ′ − T . �

Lemma 2.3.5. There exist C > 0 and T > 0 such that

h(t) ≤ c∗0t− cN log t+ C for t ≥ T,
where cN is given by (2.22).

Proof. With B > 0 and C > 0 constants to be determined, and φ(z) = φ(µ, z) given in (2.15), we set

k̂(t) = c∗0t− cN log t−Bt−1 log t+ C,

v(t, r) = φ
(
µ(c∗0 − cN t−1), r − k̂(t)

)
+ t−2 log t.

We have v(t, k̂(t)) = t−2 log t > 0 for t > 1, and

v(t, k̂(t) + t−1) = φ
(
µ(c∗0 − cN t−1), t−1

)
+ t−2 log t =

[
φr(µ0, 0) + o(1)

]
t−1 < 0

for all large t. Moreover,

vr(t, r) = φr

(
µ(c∗0 − cN t−1), r − k̂(t)

)
< 0 for all t > 0 and r ∈ (0, k̂(t)].

Therefore, there exists a unique k(t) ∈ (k̂(t), k̂(t) + t−1) such that

v(t, k(t)) = 0 for all large t.

By the implicit function theorem we know that t→ k(t) is smooth, and by the mean value theorem
we obtain [

φr(µ0, 0) + o(1)
][
k(t)− k̂(t)

]
= −t−2 log t.

Since φr(µ0, 0) = −c∗0/µ0, we thus obtain

(2.43) k(t)− k̂(t) =

[
µ0

c∗0
+ o(1)

]
t−2 log t for all large t.

Using vt(t, k(t)) + vr(t, k(t))k ′(t) = 0 we obtain

φµ · µ′ · cN t−2 + φr ·
[
k ′(t)− k̂ ′(t)

]
−
[
1 + o(1)

]
2t−3 log t = 0.

It follows that
k ′(t) = k̂ ′(t) +O(t−2) = c∗0 − cN t−1 +Bt−2 log t+O(t−2)

for all large t.
We want to show that, by choosing B and C properly, there exists a positive constant T such that

(v(t, r), k(t)) satisfies, for t ≥ T and 1 ≤ r ≤ k(t),

(2.44) v(t, k(t)) = 0, k ′(t) ≥ −µ0vr(t, k(t)),

(2.45) v(t, 1) ≥ u(t, 1),

(2.46) vt − vrr −
N − 1

r
vr − f(v) ≥ 0,

and

(2.47) k(T ) ≥ h(T ), v(T, r) ≥ u(T, r) for r ∈ [1, h(T )].

If these inequalities are proved, then we can apply a comparison argument to conclude that

(2.48) k(t) ≥ h(t), v(t, r) ≥ u(t, r) for r ∈ [1, h(t)] and t ≥ T .
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Clearly the required estimate for h(t) follows directly from (2.48) and (2.43).
By the definition of k(t), we have v(t, k(t)) = 0. We now calculate

vr(t, k(t)) = φr(µ(c∗0 − cN t−1), k(t)− k̂(t))

= φr(µ(c∗0 − cN t−1), 0) +
[
φrr(µ0, 0) + o(1)

][
k(t)− k̂(t)

]
= − 1

µ0
(c∗0 − cN t−1) +

[
φrr(µ0, 0) + o(1)

] [µ0

c∗0
+ o(1)

]
t−2 log t

= − 1

µ0
(c∗0 − cN t−1) + c∗0t

−2 log t+ o(t−2 log t).

It follows that

−µ0vr(t, k(t)) = c∗0 − cN t−1 − µ0c
∗
0t
−2 log t+ o(t−2 log t)

< c∗0 − cN t−1 +Bt−2 log t+O(t−2)

= k ′(t) for all large t.

Hence (2.44) holds.
Since

v(t, 1) = φ
(
µ(c∗0 − cN t−1), 1− k̂(t)

)
+ t−2 log t ≥ 1−M1e

δ1[1−k̂(t)] + t−2 log t ≥ 1 + t−2

for all large t, and by Lemma 2.3.2, u(t, 1) ≤ 1 +Me−δt for all t > 0, we find that

u(t, 1) < v(t, 1) for all large t.

This proves (2.45).
Next we show (2.46). We have, with ξ = c∗0 − cN t−1,

vt =φµ(µ(ξ), r − k̂(t))µ′(ξ)cN t
−2 − φr(µ(ξ), r − k̂(t))k̂′(t)− 2t−3 log t+ t−3

=O(t−2) + φr ·
(
− c∗0 + cN t

−1 −Bt−2 log t+Bt−2
)
,

and
vr(t, r) = φr(µ(ξ), r − k̂(t)), vrr(t, r) = φrr(µ(ξ), r − k̂(t)).

Hence,

vt − vrr −
N − 1

r
vr − f(v)

= O(t−2) + φr

[
−c∗0 + cN t

−1 −Bt−2 log t+Bt−2 − N − 1

r

]
− φrr − f

(
φ+ t−2 log t

)
= O(t−2) + φr

[
g(ξ)− g(c∗0) + cN t

−1 −Bt−2 log t+Bt−2 − N − 1

r

]
− g(ξ)φr − φrr − f

(
φ+ t−2 log t

)
= O(t−2) + φrĴ + f(φ)− f

(
φ+ t−2 log t

)
,

where

Ĵ := g(ξ)− g(c∗0) + cN t
−1 −Bt−2 log t+Bt−2 − N − 1

r
.

For r ∈ [1, k(t)], we have

N − 1

r
≥ N − 1

k(t)
=

N − 1

k̂(t) + o(t−1)

=
N − 1

c∗0t
+

(N − 1)cN log t

c∗0
2t2

[
1 + o(1)

]
.
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Therefore, for such r,

Ĵ ≤ −g′(c∗0)cN t
−1 + cN t

−1 − N − 1

c∗0
t−1 −

[
B +

(N − 1)cN

c∗0
2

]
t−2 log t+ o(t−2 log t)

= −
[
B +

(N − 1)cN

c∗0
2 + o(1)

]
t−2 log t < 0

for all large t.
We now fix ε0 > 0 small so that f ′(u) ≤ −σ0 < 0 for u ∈ [1−2ε0, 1+2ε0]. Then for φ(µ(ξ), r−k̂(t)) ∈

[1− ε0, 1] we have

f(φ)− f(φ+ t−2 log t) ≥ σ0t
−2 log t

for all large t. Hence in such a case,

O(t−2) + φrĴ + f(φ)− f(φ+ t−2 log t) ≥ O(t−2) + σ0t
−2 log t > 0

for all large t.
If φ(µ(ξ), r − k̂(t)) ∈ [0, 1− ε0], then we can find σ1 > 0 such that φr ≤ −σ1, and hence

φrĴ ≥ σ1

[
B +

(N − 1)cN

c∗0
2 + o(1)

]
t−2 log t.

On the other hand, there exists σ2 > 0 such that

f(φ)− f(φ+ t−2 log t) ≥ −σ2t
−2 log t.

Thus in this case we have

O(t−2) + φrĴ + f(φ)− f(φ+ t−2 log t)

≥ σ1

[
B +

(N − 1)cN

c∗0
2 + o(1)

]
t−2 log t− σ2t

−2 log t+O(t−2)

> 0

for all large t, provided that B is large enough. This proves (2.46).
Finally we show that (2.47) holds if C is chosen suitably. Indeed, we set

C = h(T )− c∗0T + cN log T + 2T.

Then

k(T ) = k̂(T ) + o(T−1) = h(T )−BT−1 log T + 2T + o(T−1) > h(T ) + T

for T large enough.
By enlarging T if necessary we have, for r ∈ [1, h(T )],

v(T, r) ≥ v(T, h(T )) = φ(µ(c∗0 − cNT−1), h(T )− k̂(T )) + T−2 log T

≥ φ(µ(c∗0 − cNT−1),−T ) + T−2 log T

≥ 1−M1e
−δ1T + T−2 log T

> 1 + T−2,

while

u(T, r) ≤ 1 +Me−δT .

Therefore

v(T, r) ≥ u(T, r) for r ∈ [1, h(T )]

provided that T is large enough. This proves (2.47). The proof of the lemma is now complete. �
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2.4. Convergence.
Throughout this subsection we assume that (u, h) is the unique solution of (2.8) with µ = µ0 > 0,
and spreading happens: As t→∞, h(t)→∞ and u(t, r)→ 1 for r in compact subsets of [0,∞). We
will prove the following convergence result.

Theorem 2.4.1. There exists a constant ĥ ∈ R1 such that

lim
t→∞

{
h(t)−

[
c∗0t− cN log t

]}
= ĥ, lim

t→∞
h′(t) = c∗0

and
lim
t→∞
‖u(t, ·)− qc∗0(h(t)− ·)‖L∞([0,h(t)]) = 0.

Again we will prove this Theorem by a series of lemmas. By Lemmas 2.3.4 and 2.3.5 we know that
there exist C, T > 0 such that

−C ≤ h(t)− [c∗0t− cN log t] ≤ C for t ≥ T.
We now denote

k(t) = c∗0t− cN log t− 2C

and define

v(t, r) = u(t, r + k(t)), g(t) = h(t)− k(t), t ≥ T.
Clearly

C ≤ g(t) ≤ 3C for t ≥ T.
Moreover,

ur = vr, urr = vrr, ut = vt − (c∗0 − cN t−1)vr,

and (v, g) satisfies vt − vrr −
[
c∗0 − cN t−1 + N−1

r+k(t)

]
vr = f(v), −k(t) ≤ r < g(t), t > T,

v(t, g(t)) = 0, g′(t) = −µ0vr(t, g(t))− c∗0 + cN t
−1, t > T.

2.4.1. Limit along a subsequence of tn →∞. Let tn →∞ be an arbitrary sequence satisfying tn > T
for every n ≥ 1. Define

kn(t) = k(t+ tn), vn(t, r) = v(t+ tn, r), gn(t) = g(t+ tn).

Lemma 2.4.2. Subject to a subsequence,

gn → G in C
1+α

2
loc (R1) and ‖vn − V ‖

C
1+α
2 ,1+α

loc (Dn)
→ 0,

where α ∈ (0, 1), Dn = {(t, r) ∈ D : r ≤ gn(t)}, D = {(t, r) : −∞ < r ≤ G(t), t ∈ R1}, and
(V (t, r), G(t)) satisfies

(2.49)

{
Vt − Vrr − c∗0Vr = f(V ), (t, r) ∈ D,

V (t, G(t)) = 0, G′(t) = −µ0Vr(t, G(t))− c∗0, t ∈ R1.

Proof. By [12] there exists C0 > 0 such that 0 < h′(t) ≤ C0 for all t > 0. It follows that

−c∗0 < g′n(t) ≤ C0 for t+ tn large and every n ≥ 1.

Define
s =

r

gn(t)
, wn(t, s) = vn(t, r).

Then (wn(t, s), gn(t)) satisfies

(2.50) (wn)t −
(wn)ss
gn(t)2

−
[
sg′n(t) + c∗0 − cN (t+ tn)−1 +

N − 1

gn(t)s+ kn(t)

]
(wn)s
gn(t)

= f(wn)
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for −kn(t)
gn(t) ≤ s < 1, t > T − tn, and

(2.51) wn(t, 1) = 0 for t > T − tn,

(2.52) g′n(t) = −µ0
(wn)s(t, 1)

gn(t)
− c∗0 + cN (t+ tn)−1 for t > T − tn.

For any given R > 0 and T0 ∈ R1, using the partial interior-boundary Lp estimates (see Theorem
7.15 in [33]) to (2.50) and (2.51) over [T0 − 1, T0 + 1]× [−R− 1, 1], we obtain, for any p > 1,

‖wn‖W 1,2
p ([T0,T0+1]×[−R,1])

≤ CR for all large n,

where CR is a constant depending on R and p but independent of n and T0. Therefore, for any
α′ ∈ (0, 1), we can choose p > 1 large enough and use the Sobolev embedding theorem (see [31]) to
obtain

(2.53) ‖wn‖
C

1+α′
2 ,1+α′ ([T0,∞)×[−R,1])

≤ C̃R for all large n,

where C̃R is a constant depending on R and α′ but independent of n and T0.
From (2.52) and (2.53) we deduce

‖gn‖
C1+α

′
2 ([T0,∞))

≤ C1 for all large n,

with C1 a constant independent of T0 and n. Hence by passing to a subsequence we may assume
that, as n→∞,

wn →W in C
α+1
2
,1+α

loc (R1 × (−∞, 1]), gn → G in C
1+α

2
loc (R1),

where α ∈ (0, α′). Moreover, using (2.50),(2.51) and (2.52), we find that (W,G) satisfies in the W 1,2
p

sense (and hence classical sense by standard regularity theory), Wt − Wss
G(t)2

− (sG′(t) + c∗0) Ws
G(t) = f(W ), s ∈ (−∞, 1], t ∈ R1,

W (t, 1) = 0, G′(t) = −µ0
Ws(t,1)
G(t) − c

∗
0, t ∈ R1.

Define V (t, r) = W (t, r
G(t)). We easily see that (V,G) satisfies (2.49) and

lim
n→∞

‖vn − V ‖
C

1+α
2 ,1+α

loc (Dn)
= 0.

�

2.4.2. Determine the limit pair (V,G). We show by a sequence of lemmas that G(t) ≡ G0 is a
constant, and hence V (t, r) = φ(r −G0).

Since C ≤ g(t) ≤ 3C for t ≥ T , we have

C ≤ G(t) ≤ 3C for t ∈ R1.

By the proof of Lemma 2.3.5, we have, for r ∈ [1− k(t+ tn), g(t+ tn)] and t+ tn large,

vn(t, r) ≤ φ
(
µ(c∗0 − cN (t+ tn)−1), r − 3C

)
+ (t+ tn)−2 log(t+ tn).

Letting n→∞ we obtain

V (t, r) ≤ φ(µ0, r − 3C) for all t ∈ R1, r < G(t).

Define
R∗ = inf

{
R : V (t, r) ≤ φ(µ0, r −R) for all (t, r) ∈ D

}
.

Then
V (t, r) ≤ φ(µ0, r −R∗) for all (t, r) ∈ D



57

and

C ≤ inf
t∈R1

G(t) ≤ sup
t∈R1

G(t) ≤ R∗ ≤ 3C.

Lemma 2.4.3. R∗ = supt∈R1 G(t).

Proof. Otherwise we have R∗ > supt∈R1 G(t). We are going to derive a contradiction.
Choose δ > 0 such that

G(t) ≤ R∗ − δ for all t ∈ R1.

We derive a contradiction in three steps. To simplify notations we will write φ(r) instead of φ(µ0, r).
Step 1. V (t, r) < φ(r −R∗) for all t ∈ R1 and r ≤ G(t).
Otherwise there exists (t0, r0) ∈ D such that

V (t0, r0) = φ(r0 −R∗) ≥ φ(−δ) > 0.

Hence necessarily r0 < G(t0). Since V (t, r) ≤ φ(r − R∗) in D, and φ(r − R∗) satisfies the first
equation in (2.49), we can apply the strong maximum principle to conclude that V (t, r) ≡ φ(r−R∗)
in D0 := {(t, r) : r < G(t), t ≤ t0}, which clearly contradicts with the assumption that G(t) ≤ R∗− δ.

Step 2. Mr := inft∈R1

[
φ(r − R∗) − V (t, r)

]
> 0 for r ∈ (−∞, R∗ − δ]. Here we assume that

V (t, r) = 0 for r > G(t).
Otherwise there exists r0 ∈ (−∞, R∗ − δ] such that Mr0 = 0, since the definition of R∗ implies

Mr ≥ 0 for all r ≤ R∗ − δ. By Step 1 we know that Mr0 is not achieved at any finite t. Therefore
there exists sn ∈ R1 with |sn| → ∞ such that

φ(r0 −R∗) = lim
n→∞

V (sn, r0).

Define

(Vn(t, r), Gn(t)) = (V (t+ sn, r), G(t+ sn)).

Then the same argument used in the proof of Lemma 2.4.2 shows that, by passing to a subsequence,
(Vn, Gn)→ (Ṽ , G̃) with (Ṽ , G̃) satisfying

(2.54)

{
Ṽt − Ṽrr − c∗0Ṽr = f(Ṽ ), −∞ < r < G̃(t), t ∈ R1,

Ṽ (t, G̃(t)) = 0, t ∈ R1.

Moreover,

(2.55) Ṽ (t, r) ≤ φ(r −R∗), G̃(t) ≤ R∗ − δ, Ṽ (0, r0) = φ(r0 −R∗) > 0.

Since φ(r−R∗) satisfies (2.54) with G̃(t) replaced by R∗, we can apply the strong maximum principle

to conclude, from (2.55), that Ṽ (t, r) ≡ φ(r −R∗) for t ≤ 0, r ≤ G̃(t), which is clearly impossible.
Step 3. Reaching a contradiction.
Choose ε0 > 0 small and R0 < 0 large negative such that

φ(r −R∗) ≥ 1− ε0 for r ≤ R0, f
′(u) < 0 for u ∈ [1− 2ε0, 1 + 2ε0].

Then choose ε ∈ (0, ε0) such that

φ(R0 −R∗ + ε) ≥ φ(R0 −R∗)−MR0 , φ(r −R∗ + ε) ≥ 1− 2ε0 for r ≤ R0.

We consider the auxiliary problem

(2.56)


V t − V rr − c∗0V r = f(V ), t > 0, r < R0,
V (t, R0) = φ(R0 −R∗ + ε), t > 0,
V (0, r) = 1, r < R0.
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Since the initial function is an upper solution of the corresponding stationary problem of (2.56), its
unique solution V (t, r) is decreasing in t. Clearly V (t, r) := φ(r−R∗+ ε) is a lower solution of (2.56).
It follows from the comparison principle that

1 ≥ V (t, r) ≥ φ(r −R∗ + ε) for all t > 0, r < R0.

Hence
V ∗(r) := lim

t→∞
V (t, r) ≥ φ(r −R∗ + ε), ∀r < R0.

Moreover, V ∗ satisfies

(2.57) −V ∗rr − c∗0V ∗r = f(V ∗) in (−∞, R0), V ∗(−∞) = 1, V ∗(R0) = φ(R0 −R∗ + ε).

Write ψ(r) = φ(r −R∗ + ε). We notice that ψ(r) also satisfies (2.57). Moreover

1− 2ε0 ≤ ψ(r) ≤ V ∗(r) ≤ 1 for r ∈ (−∞, R0].

Hence W (r) := V ∗(r)− ψ(r) ≥ 0 and there exists c(r) < 0 such that

f(V ∗(r))− f(ψ(r)) = c(r)W (r) in (−∞, R0].

Therefore
−W ′′ − c∗0W ′ = c(r)W in (−∞, R0), W (R0) = 0,

and by the maximum principle we deduce, for any R < R0,

W (r) ≤W (R) for r ∈ [R,R0].

Letting R→ −∞ we deduce W (r) ≤ 0 in (−∞, R0]. It follows that W ≡ 0. Hence

V ∗(r) ≡ ψ(r) = φ(r −R∗ + ε).

We now look at V (t, r), which satisfies the first equation in (2.56), and for any t ∈ R1,

V (t, r) ≤ 1, V (t, R0) ≤ φ(R0 −R∗)−MR0 ≤ φ(R0 −R∗ + ε).

Therefore we can use the comparison principle to deduce that

V (s+ t, r) ≤ V (t, r) for all t > 0, r < R0, s ∈ R1.

Or equivalently
V (t, r) ≤ V (t− s, r) for all t > s, r < R0, s ∈ R1.

Letting s→ −∞ we obtain

(2.58) V (t, r) ≤ V ∗(r) = φ(r −R∗ + ε) for all r < R0, t ∈ R1.

By Step 2 and the continuity of Mr in r, we have

Mr ≥ σ > 0 for r ∈ [R0, R
∗ − δ].

If ε1 ∈ (0, ε] is small enough we have

φ(r −R∗ + ε1) ≥ φ(r −R∗)− σ for r ∈ [R0, R
∗ − δ],

and hence
V (t, r)− φ(r −R∗ + ε1) ≤ σ −Mr ≤ 0 for r ∈ [R0, R

∗ − δ], t ∈ R1.

Therefore we can combine with (2.58) to obtain

V (t, r)− φ(r −R∗ + ε1) ≤ 0 for r ∈ (−∞, R∗ − δ], t ∈ R1,

for all small ε1 ∈ (0, ε), which contradicts the definition of R∗. The proof is now complete. �

Lemma 2.4.4. There exists a sequence {sn} ⊂ R1 such that

G(t+ sn)→ R∗, V (t+ sn, r)→ φ(r −R∗) as n→∞
uniformly for (t, r) in compact subsets of R1 × (−∞, R∗].
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Proof. There are two possibilities:

(i) R∗ = supt∈R1 G(t) is achieved at some finite t = s0,
(ii) R∗ > G(t) for all t ∈ R1 and G(sn)→ R∗ along some unbounded sequence sn.

In case (i), necessarily G′(s0) = 0. Since V (t, r) ≤ φ(r − R∗) for r ≤ G(t) and t ∈ R1, with
V (s0, G(s0)) = φ(G(s0)−R∗) = φ(0) = 0, we can apply the strong maximum principle and the Hopf
boundary lemma to conclude that

Vr(s0, G(s0)) > φ′(0) unless V (t, r) ≡ φ(r −R∗) in D0 = {(t, r) : r ≤ G(t), t ≤ s0}.

On the other hand, we have

Vr(s0, G(s0)) = −µ−1
0 [G′(s0) + c∗0] = −µ−1

0 c∗0 = φ′(0).

Hence we must have V (t, r) ≡ φ(r − R∗) and G(t) ≡ R∗ in D0. Using the uniqueness of (2.49) with
a given initial value, we conclude that V (t, r) ≡ φ(r − R∗) for all r ≤ G(t) and t ∈ R1. Thus the
conclusion of the lemma holds by taking sn ≡ s0.

In case (ii), we consider the sequence

Vn(t, r) = V (t+ sn, r), Gn(t) = G(t+ sn).

By the same reasoning as in the proof of Lemma 2.4.2, we can show that, by passing to a subsequence,

Vn → Ṽ in C
1+α
2
,1+α

loc (D), Gn → G̃ in C1
loc(R1) and (Ṽ , G̃) satisfies (2.49),

where D := {(t, r) : −∞ < r ≤ G̃(t), t ∈ R1}. Moreover,

G̃(t) ≤ R∗, G̃(0) = R∗.

Hence we are back to case (i) and thus Ṽ (t, r) ≡ φ(r−R∗) in D, and G̃ ≡ R∗. The conclusion of the
lemma now follows easily. �

By the proof of Lemma 2.3.4, we have

vn(t, r) ≥ φ
(
µ(c∗0 − cN (t+ tn)−1), r − C

)
− (t+ tn)−2 log(t+ tn)

for r ∈ [k(t + tn)− k(t + tn)−M log(t + tn), k(t + tn)− k(t + tn)] and t + tn large. Letting n → ∞
we obtain

V (t, r) ≥ φ(µ0, r − C) for all t ∈ R1, r < G(t).

Define

R∗ = sup
{
R : V (t, r) ≥ φ(µ0, r −R) for all (t, r) ∈ D

}
.

Then

V (t, r) ≥ φ(µ0, r −R∗) for all (t, r) ∈ D
and

C ≤ R∗ ≤ inf
t∈R1

G(t) ≤ sup
t∈R1

G(t) ≤ R∗ ≤ 3C.

Lemma 2.4.5. R∗ = inft∈R1 G(t), and there exists a sequence {s̃n} ⊂ R1 such that

G(t+ s̃n)→ R∗, V (t+ s̃n, r)→ φ(r −R∗) as n→∞

uniformly for (t, r) in compact subsets of R1 × (−∞, R∗].

Proof. The proof uses similar arguments to those used to prove Lemmas 2.4.3 and 2.4.4, and we omit
the details. �

Lemma 2.4.6. R∗ = R∗ and hence G(t) ≡ G0 is a constant, which implies V (t, r) = φ(r −G0).
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Proof. Argue indirectly we assume that R∗ < R∗. Set ε = (R∗ − R∗)/4. We show next that there
exists Tε > 0 such that

(2.59) G(t)−R∗ ≤ ε and G(t)−R∗ ≥ −ε for t ≥ Tε,
which implies R∗ −R∗ ≤ 2ε. This contradiction would complete the proof.

To prove (2.59), we use Lemmas 2.4.4 and 2.4.5, and a modification of the argument in section
3.3 of [16]. Indeed, by using Lemma 2.4.4 and constructing a suitable lower solution we can show
that there exists n1 = n1(ε) large such that G(t) − R∗ ≥ −ε for all t ≥ sn1 . Similarly we can use
Lemma 2.4.5 and construct a suitable upper solution to show that G(t) − R∗ ≤ ε for all t ≥ s̃n2

with n2 = n2(ε) large enough. Hence (2.59) holds for t ≥ T := max{sn1 , s̃n2}. For completeness, the
detailed constructions of the above mentioned upper and lower solutions are given in the Appendix
at the end of the section. �

2.4.3. Convergence of h and u.

Lemma 2.4.7. There exist a constant C > 0 and a function ξ ∈ C1(R1
+) such that |ξ(t)| ≤ C for all

t > 0,
lim
t→∞

{
h(t)−

[
c∗0t− cN log t+ ξ(t)

]}
= 0, lim

t→∞
ξ′(t) = 0,

and
lim
t→∞
‖u(t, ·)− qc∗0(h(t)− ·)‖L∞([0,h(t)]) = 0.

Proof. By Lemmas 2.4.2 and 2.4.6, we find that for any sequence tn →∞, by passing to a subsequence,

h(t+ tn)− k(t+ tn)→ G0 in C
1+α

2
loc (R1). Hence h′(t+ tn)→ c∗0 in C

α/2
loc (R1).

We now define
U(t, r) = u(t, r + h(t)) for t > 0, r ∈ [−h(t), 0],

and
Un(t, r) = U(t+ tn, r), hn(t) = h(t+ tn).

It is easily checked that

(2.60)

 (Un)t −
[
h′n(t) + N−1

r+hn(t)

]
(Un)r − (Un)rr = f(Un), t > −tn, r ∈ (−hn(t), 0],

Un(t, 0) = 0, (Un)r(t, 0) = −h′n(t)/µ0, t > −tn.
By the same reasoning as in the proof of Lemma 2.4.2, we can use the parabolic regularity to (2.60)
plus Sobolev embedding to conclude that, by passing to a further subsequence, as n→∞,

Un → U in C
1+α
2
,1+α

loc (R1 × (−∞, 0]),

and U satisfies, in view of h′n(t)→ c∗0,{
Ut − c∗0Ur − Urr = f(U), t ∈ R1, r ∈ (−∞, 0],

U(t, 0) = 0, Ur(t, 0) = −c∗0/µ0, t ∈ R1.

This is equivalent to (2.49) with V = U and G = 0. Hence we may repeat the argument in Lemmas
2.4.2-2.4.5 to conclude that

U(t, r) ≡ φ(µ0, r) for (t, r) ∈ R1 × (−∞, 0].

Thus we have proved that, as n→∞,

u(t+ tn, r + h(t+ tn))− qc∗0(−r)→ 0 in C
1+α
2
,1+α

loc (R1 × (−∞, 0]).

Since {tn} is an arbitrary sequence converging to ∞, this implies that

lim
t→∞

[
u(t, r + h(t))− qc∗0(−r)

]
= 0 uniformly for r in compact subsets of (−∞, 0].
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Therefore, for every L > 0,

(2.61) lim
t→∞
‖u(t, ·)− qc∗0(h(t)− ·)‖L∞([h(t)−L,h(t)]) = 0.

Similarly, the arbitrariness of {tn} implies that h′(t)→ c∗0 as t→∞. Hence

ξ(t) := h(t)− [c∗0t− cN log t]

satisfies

ξ′(t)→ 0 as t→∞.
The boundedness of ξ(t) is a direct consequence of (2.25).

It remains to strengthen (2.61) to

lim
t→∞
‖u(t, ·)− qc∗0(h(t)− ·)‖L∞([0,h(t)]) = 0.

Let (v(t, r), k(t)) be as in the proof of Lemma 2.3.4, so that (2.39), (2.40) and (2.41) hold. Since
as t→∞, h(t)→∞ and u(t, r)→ 1 locally uniformly in r ∈ [0,∞), we can find T2 > 0 such that

h(T2) > k(T ), u(T2, r) > v(T, r) for r ∈ [0, k(T )].

We note that v(T, r) is a strictly decreasing function of r. We now choose a smooth function ũ0(r)
such that

ũ′0(0) = ũ0(h̃0) = 0, ũ′0(r) < 0, u(T2, r) > ũ0(r) in (0, h̃0], and ũ0(r) > v(T, r) in (0, k(T )),

where h̃0 ∈ (k(T ), h(T2)). We next consider the auxiliary problem

(2.62)


ut = urr + N−1

r ur + f(u), 0 < r < h(t), t > 0,
u(t, h(t)) = 0, h′(t) = −µ0ur(t, h(t)), t > 0,

h(0) = h̃0, u(0, r) = ũ0(r), 0 ≤ r ≤ h̃0.

Let (ũ, h̃) denote the unique solution of (2.62). By the comparison principle we have

h(t+ T2) ≥ h̃(t), u(t+ T2, r) ≥ ũ(t, r) for t > 0, r ∈ [0, h̃(t)].

Moreover, since ũ′0(r) < 0 we can use a reflection argument to show that ũr(t, r) < 0 for t > 0 and

r ∈ (0, h̃(t)]. This reflection argument is similar in spirit to the well known moving plane argument
used for elliptic problems. The idea is to treat (2.62) as an initial boundary value problem for

ũ = ũ(t, x) over the region Ω := {(t, x) : t > 0, |x| < h̃(t)} in R1 × RN . For each point x0 in the

ball {|x| < h̃(t)} but away from the origin, we consider a hyperplane H passing through x0, which
divides RN into two half spaces H− and H+, where H− denotes the half space that contains the
origin. Denote Ω+ = {(t, x) ∈ Ω : x ∈ H+}, and for each point x ∈ H+, we denote by x∗ ∈ H− its
reflection in H, and define ũ∗(t, x) = ũ(t, x∗) for (t, x) ∈ Ω+. Then on the parabolic boundary of Ω+,
ũ− ũ∗ ≤ 0 but is not identically 0. We thus obtain by the maximum principle that ũ− ũ∗ ≤ 0 in Ω+

and strict inequality holds in the interior of Ω+. Since ũ(t, x0)− ũ∗(t, x0) = 0, we can apply the Hopf
boundary lemma to conclude that

∂ν ũ(t, x0) =
1

2
∂ν [ũ(t, x0)− ũ∗(t, x0)] < 0,

where ν is a normal vector of H pointing away from the origin. The conclusion ũr(t, r) < 0 is a simple
consequence of this fact.

On the other hand, if T is large enough, our assumptions on ũ(0, r) and h̃(0) imply that spreading

happens for (ũ, h̃) (see [12]). Hence we can apply Lemma 2.3.4 to (ũ, h̃) to conclude that there exist

T̃ > 0, T̃1 > 0 such that (2.42) holds when (u, h, T, T1) there is replaced by (ũ, h̃, T̃ , T̃1). We thus
obtain

u(t+ T1 + T2, r) ≥ ũ(t+ T1, r) ≥ v(t, r) for r ∈ [k(t)−M log t, k(t)] and t ≥ T̃ .



62

It follows that

lim inf
t→∞

min
r∈[0,h(t)−L]

u(t, r) ≥ lim inf
t→∞

ũ(t, h(t)− L) ≥ lim inf
t→∞

v(t, h(t)− L) ≥ φ(µ0,−L+ C).

Therefore, for any ε > 0 there exists Lε > 0 large such that

u(t, r) ≥ qc∗0(Lε − C) ≥ 1− ε for all r ∈ [0, h(t)− Lε] and all large t.

Since qc∗0(r) < 1 is increasing in r, and by Lemma 2.3.2, u(t, r) ≤ 1 + ε for all large t, we deduce

|u(t, r)− qc∗0(h(t)− r)| ≤ 2ε for r ∈ [0, h(t)− Lε] and all large t.

We may now make use of (2.61) to obtain

lim sup
t→∞

‖u(t, ·)− qc∗0(h(t)− ·)‖L∞([0,h(t)]) ≤ lim sup
t→∞

‖u(t, ·)− qc∗0(h(t)− ·)‖L∞([0,h(t)−Lε]) ≤ 2ε.

Since ε > 0 can be arbitrarily small, we obtain

lim
t→∞
‖u(t, ·)− qc∗0(h(t)− ·)‖L∞([0,h(t)]) = 0,

as we wanted. The proof is complete. �

2.4.4. Improved convergence result for h.

Lemma 2.4.8. There exists ĥ ∈ R1 such that

lim
t→∞

[
h(t)− c∗0t+ cN log t

]
= ĥ.

Proof. By Lemma 2.4.7,

ξ(t) = h(t)− c∗0t+ cN log t ∈ [−C,C] for t > 0.

Set
ĥ = lim inf

t→∞
ξ(t).

We will show that for any given small ε > 0,

(2.63) lim sup
t→∞

ξ(t) ≤ ĥ+ ε.

The required conclusion clearly follows from (2.63).

We use a comparison argument to prove (2.63). Let tk → ∞ be chosen such that ξ(tk) → ĥ as
k →∞. For given small ε > 0, we define

h̃k(t) = c∗0(t+ tk)− cN log(t+ tk) +Bε(1− e−αt) + ĥ+ ε, t ≥ 0,

uk(t, r) = φ
(
µ(c∗0 − cN (t+ tk)

−1), r − h̃k(t)
)

+ εe−αt, r ∈ [0, h̃k(t) + ε0],

where α and B are positive constants to be determined later, and φ is given by (2.15), which is defined
over (−∞, ε0]. To simplify notations, we will write

h̃k(t) = h̃(t), uk(t, r) = u(t, r) unless their dependence on k need to be stressed.

We will choose α and B such that for all large k and small ε,

lim sup
t→∞

ξ(t+ tk) ≤ ĥ+ C0ε,

where C0 > 0 is a constant independent of ε and k. This clearly implies (2.63).
By definition, with the notation ζ = c∗0 − cN (t+ tk)

−1,

ur(t, r) = φr(µ(ζ), r − h̃(t)) < 0 for r ∈ [0, h̃(t) + ε0].

Moreover,

u(t, h̃(t)) = φ(µ(ζ), 0) + εe−αt > 0 (∀t > 0)
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and

u(t, h̃(t) + ε0) = φ(µ(ζ), ε0) + εe−αt < 0 (∀t > 0)

provided that ε > 0 is small enough. Hence for such ε, there exists a unique h(t) = hk(t) ∈ (h̃(t), h̃(t)+
ε0) such that

u(t, h(t)) = 0 (∀t > 0).

Moreover, we could replace ε0 by Cε with C > 0 sufficiently large to conclude that h(t) < h̃(t) +Cε,
and we can apply the implicit function theorem to conclude that t→ h(t) is a smooth function.

By the mean value theorem we have

u(t, h(t))− u(t, h̃(t)) =
[
φr(µ0, 0) + oε,k(1)

][
h(t)− h̃(t)

]
= −εe−αt (∀t > 0),

where oε,k(1)→ 0 as ε→ 0 and k →∞, uniformly in t > 0. It follows that

(2.64) h(t)− h̃(t) =

[
µ0

c∗0
+ oε,k(1)

]
εe−αt (∀t > 0).

Using d
dtu(t, h(t)) = 0 we deduce

φµ · µ′ · cN (t+ tk)
−2 + φr ·

[
h
′
(t)− h̃′(t)

]
− αεe−αt = 0.

Since φµ · µ′ > 0, it follows that

h
′
(t) > h̃′(t) + [φr]

−1αεe−αt

= c∗0 − cN (t+ tk)
−1 + αBεe−αt −

[
µ0

c∗0
+ oε,k(1)

]
αεe−αt

= c∗0 − cN (t+ tk)
−1 +

[
B − µ0

c∗0
+ oε,k(1)

]
αεe−αt (∀t > 0).

On the other hand, for all large k and small ε, we have

ur(t, h(t)) = φr(µ(ζ), h(t)− h̃(t))

= φr(µ(ζ), 0) +
[
φrr(µ0, 0) + oε,k(1)

][
h(t)− h̃(t)

]
> − 1

µ0

[
c∗0 − cN (t+ tk)

−1
]

(∀t > 0)

since φrr(µ0, 0) = −c∗0φr(µ0, 0) = (c∗0)2/µ0 > 0. Therefore if we choose B > µ0
c∗0

, then for all large k

and small ε,

(2.65) h
′
(t) > −µ0ur(t, h(t)) (∀t > 0).

Next we prove that by choosing α suitably small and enlarging B accordingly, we have

(2.66) ut − urr −
N − 1

r
ur − f(u) > 0 for t > 0, r ∈ (0, h(t)]

and all large k and small ε.
We calculate

ut = φµ · µ′ · cN (t+ tk)
−2 − φr · h̃′(t)− εαe−αt

> −φr
[
c∗0 − cN (t+ tk)

−1 +Bεαe−αt
]
− εαe−αt.
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Hence

ut − urr −
N − 1

r
ur − f(u)

> −φr
[
c∗0 − cN (t+ tk)

−1 +Bεαe−αt +
N − 1

r

]
− φrr − f(φ+ εe−αt)− εαe−αt

= −φrJ̃ + f(φ)− f(φ+ εe−αt)− εαe−αt,
where

J̃ := c∗0 − g(c∗0 − cN (t+ tk)
−1)− cN (t+ tk)

−1 +Bεαe−αt +
N − 1

r
.

For r ∈ (0, h(t)], we have

N − 1

r
≥ N − 1

h(t)
=

N − 1

h̃(t) + oε,k(1)

=
N − 1

c∗0(t+ tk)− cN log(t+ tk) + ĥ+ oε,k(1)

=
N − 1

c∗0(t+ tk)
+

(N − 1)cN log(t+ tk)

c∗0
2(t+ tk)2

[
1 + oε,k(1)

]
.

Moreover,
c∗0 − g(c∗0 − cN (t+ tk)

−1) = g′(c∗0)cN (t+ tk)
−1 +Ok

[
(t+ tk)

−2
]
.

Therefore,

J̃ ≥
{
cN [g′(c∗0)− 1] +

N − 1

c∗0

}
(t+ tk)

−1 +
(N − 1)cN log(t+ tk)

c∗0
2(t+ tk)2

[
1 + oε,k(1)

]
+Bεαe−αt

=
(N − 1)cN log(t+ tk)

c∗0
2(t+ tk)2

[
1 + oε,k(1)

]
+Bεαe−αt

> Bεαe−αt (∀t > 0)

for all large k and small ε.
Choose δ0 > 0 small so that f ′(u) ≤ −σ0 < 0 for u ∈ [1 − δ0, 1 + δ0]. Then for φ ∈ [1 − δ0, 1) we

have
f(φ)− f(φ+ εe−αt) ≥ σ0εe

−αt.

Thus for all large k and small ε and

(t, r) ∈ Ω1
ε,k :=

{
(t, r) : φ(µ(c∗0 − cN (t+ tk)

−1), r − h̃(t)) ∈ [1− δ0, 1)
}
,

we have
−φrJ̃ + f(φ)− f(φ+ εe−αt)− εαe−αt ≥ (σ0 − α)εe−αt > 0

provided that we take α = σ0/2.
For φ ∈ (0, 1− δ0), there exists σ1 > 0 such that φr ≤ −σ1; moreover, for all small ε,

f(φ)− f(φ+ εe−αt) ≥ −σ2εe
−αt,

where σ2 = maxu∈[0,1] |f ′(u)|. Therefore for all large k, small ε, and

(t, r) ∈ Ω2
ε,k :=

{
(t, r) : φ(µ(c∗0 − cN (t+ tk)

−1), r − h̃(t)) ∈ (0, 1− δ0)
}
,

we have

− φrJ̃ + f(φ)− f(φ+ εe−αt)− εαe−αt

≥ σ1Bεαe
−αt − (σ2 + α)εe−αt

= (σ1Bα− σ2 − α)εe−αt > 0
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provided that σ1Bα > σ2 + α. With α = σ0/2, this is achieved by taking B ≥ 4σ2+2σ0
σ1σ0

. This proves

that (2.66) holds for all large k and small ε.
We show below that for all large k and small ε,

(2.67) h(tk) < hk(0), u(tk, r) ≤ uk(0, r) for r ∈ [0, h(tk)].

Since

h(tk)− h̃k(0) = ξ(tk)− ĥ− ε→ −ε as k →∞,

we have, in view of (2.64),

h(tk) < h̃k(0) < hk(0)

for all large k, say k ≥ k1(ε), and all small ε.
By Lemma 2.4.7,

lim
k→∞

‖u(tk, ·)− φ(µ0, · − h(tk))‖L∞([0,h(tk)]) = 0.

Since

µ(c∗0 − cN t−1
k )→ µ0, h(tk)− h̃k(0) + ε→ 0 as k →∞,

we deduce

‖u(tk, ·)− φ(µ(c∗0 − cN t−1
k ), · − h̃k(0) + ε)‖L∞([0,h(tk)]) → 0 as k →∞.

Therefore there exists k2(ε) ≥ k1(ε) such that for k ≥ k2(ε),

u(tk, r) ≤ φ(µ(c∗0 − cN t−1
k ), r − h̃k(0) + ε) + ε

< φ(µ(c∗0 − cN t−1
k ), r − h̃k(0)) + ε = uk(0, r) (∀r ∈ [0, h(tk)]).

Thus (2.67) holds for all small ε and k ≥ k2(ε). By enlarging k2(ε) if necessary we may assume that
(2.65) and (2.66) both hold for k ≥ k2(ε) and all small ε > 0.

In view of (2.65), (2.66), (2.67) and the fact that ur(t, 0) < 0, ur(t, 0) = 0, we can use a standard
comparison argument to conclude that

h(t+ tk) ≤ h(t), u(tk + t, r) ≤ u(t, r) (∀t > 0, ∀r ∈ [0, h(tk + t)])

for all small ε > 0 and k ≥ k2(ε). It follows that

ξ(t+ tk) = h(t+ tk)− h̃(t) +Bε(1− e−αt) + ĥ+ ε

= h(t+ tk)− h(t)−
[
µ0

c∗0
+ oε,k(1)

]
εe−αt +Bε(1− e−αt) + ĥ+ ε

≤ −
[
µ0

c∗0
+ oε,k(1)

]
εe−αt +Bε(1− e−αt) + ĥ+ ε

→ ĥ+ (B + 1)ε as t→∞.

Therefore

lim sup
t→∞

ξ(t) ≤ ĥ+ (B + 1)ε,

as we wanted. This completes the proof. �
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2.5. Appendix: Further details for the proof of Lemma 2.4.6.
For completeness, we give the detailed proof of the facts that for any given ε > 0, there exists
n1 = n1(ε) and n2 = n2(ε) such that

G(t)−R∗ ≥ −ε (∀t ≥ sn1), G(t)−R∗ ≤ ε (∀t ≥ s̃n2).

From the inequalities

φ(r −R∗) ≤ V (t, r) ≤ φ(r −R∗)

we have

|1− V (t, r)| ≤ Ceβr

for some C > 0 and β >0. Therefore, for any ε > 0, there exists K > 0 and T > 0 such that

sup
r∈(−∞,−K]

|V (s̃n, r)− φ(r −R∗)| < ε.(2.68)

for s̃n > T . Let H(t) = G(t) + c∗0t, W (t, r) = V (t, r − c∗0t). (W,H) satisfies{
Wt −Wrr = f(W ), t ∈ R1, r ≤ H(t)
W (t,H(t)) = 0, H ′(t) = −µ0Wr(t,H(t))

(2.69)

By Lemma 2.4.5 and (2.68), there exists n1 = n1(ε) such that, for n ≥ n1,

G(s̃n) ≤ R∗ + ε(2.70)

V (s̃n, r) ≤ φ(r −R∗ − ε) + ε for r ≤ R∗.(2.71)

We note that we can find N > 1 independent of ε > 0 such that

φ(r −R∗ − ε) + ε ≤ (1 +Nε)φ(r −R∗ −Nε) for r ≤ R∗ + ε.(2.72)

Next we remark that for any δ ∈ (0,−f ′(1)) there exists η > 0 such that{
δ ≤ −f ′(u) for 1− η ≤ u ≤ 1 + η,
f(u) ≥ 0 for 1− η ≤ u ≤ 1.

Let us define an upper solution for problem (2.69) as follows:

H(t) := R∗ +Nε+ c∗0t+Nεσ(1− e−δ(t−s̃n))

W (t, r) := (1 +Nεe−δ(t−s̃n))φ(r −H(t))

Since limr→−∞W (t, r) > 1, there exists a smooth function K(t) of t ≥ s̃n such that K(t) → −∞ as
t→∞ and W (t,K(t)) > 1. We will check that the triple (W,H,K) is an upper solution for t ≥ s̃n,
that is,

W t −W rr ≥ f(W ) for t > s̃n, r ∈ [K(t), H(t)](2.73)

W (t,K(t)) ≥W (t,K(t)) for t ≥ s̃n,(2.74)

W (t,H(t)) = 0, H
′
(t) ≥ −µ0W r(t,H(t)) for t ≥ s̃n,(2.75)

H(s̃n) ≤ H(s̃n), W (s̃n, r) ≤W (s̃n, r) for r ∈ [K(s̃n), H(s̃n)].(2.76)

From (2.70) we have

H(s̃n) = G(s̃n) + c∗0s̃n ≤ R∗ +Nε+ c∗0s̃n = H(s̃n).
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We also have, in view of (2.71),

W (s̃n, r) = (1 +Nε)φ(r −H(s̃n))

= (1 +Nε)φ(r −R∗ −Nε− c∗0s̃n)

≥ φ(r −R∗ − ε− c∗0s̃n) + ε

≥ V (s̃n, r − c∗0s̃n) = W (s̃n, r)

for r ≤ H(s̃n). Thus (2.76) holds.
We next show (2.75). By definition W (t,H(t)) = 0 and direct calculation gives

H
′
(t) = c∗0 +Nεσδe−δ(t−s̃n),

− µ0W r(t,H(t)) = c∗0 +Nεc∗0e
−δ(t−s̃n).

Hence if we take σ > 0 so that c∗0 ≤ σδ then

H
′
(t) ≥ −µ0W r(t,H(t)).

This proves (2.75).
Since W ≤ 1, by the definition of K(t), (2.74) clearly holds. Finally we show (2.73). Put z =

r −H(t). Since

W t = −δNεe−δ(t−s̃n)φ(z)− (1 +Nεe−δ(t−s̃n))H
′
(t)φ′(z)

= −δNεe−δ(t−s̃n)φ(z)− (1 +Nεe−δ(t−s̃n))(c∗0 + σNεδe−δ(t−s̃n))φ′(z),

and

W rr = (1 +Nεe−δ(t−s̃n))φ′′(z),

we have

W t −W rr − f(W )

=− δNεe−δ(t−s̃n)φ(z)− (1 +Nεe−δ(t−s̃n))(c∗0 + σNεδe−δ(t−s̃n))φ′(z)

− (1 +Nεe−δ(t−s̃n))φ′′(z)− f((1 +Nεe−δ(t−s̃n))φ(z))

= − δNεe−δ(t−s̃n)φ(z) + (1 +Nεe−δ(t−s̃n)){−φ′′(z)− c∗0φ′(z)}

− σNεδ(1 +Nεe−δ(t−s̃n))e−δ(t−s̃n)φ′(z)

=− δNεe−δ(t−s̃n)φ(z)− σNεδe−δ(t−s̃n)(1 +Nεe−δ(t−s̃n))φ′(z)

+ (1 +Nεe−δ(t−s̃n))f(φ(z))− f((1 +Nεe−δ(t−s̃n))φ(z)).

Now we consider the term (1 +Nεe−δ(t−s̃n))f(φ(z))− f((1 +Nεe−δ(t−s̃n)φ(z)). Denote

F (ξ, u) := (1 + ξ)f(u)− f((1 + ξ)u).

The mean value theorem yields

F (ξ, u) = ξf(u) + f(u)− f((1 + ξ)u) = ξf(u)− ξf ′(u+ θξ,uξu)u

for some θξ,u ∈ (0, 1). Since φ(z) → 1 as z → −∞, there exists zη < 0 such that φ(z) ≥ 1 − η for
z ≤ zη.
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For r −H(t) ≤ zη, we have

W t −W rr − f(W )

= − δNεe−δ(t−s̃n)φ(z)− σNεδe−δ(t−s̃n)(1 +Nεe−δ(t−s̃n))φ′(z) + F (Nεe−δ(t−s̃n), φ(z))

= − σNεδe−δ(t−s̃n)(1 +Nεe−δ(t−s̃n))φ′(z) +Nεe−δ(t−s̃n)f(φ(z))

+Nεe−δ(t−s̃n)φ(z)
{
− f ′

(
φ(z) + θ′Nεe−δ(t−s̃n)φ(z)

)
− δ
}

≥ 0,

where θ′ = θ′(t, z) ∈ (0, 1). We note that by shrinking ε we can guarantee that Nε < η and so

1 +Nεe−δ(t−s̃n) ≤ 1 + η for t ≥ s̃n.
On the other hand for zη ≤ r −H(t) ≤ 0, we obtain

W t −W rr − f(W )

= Nεe−δ(t−s̃n)f(φ(z))− σNεδe−δ(t−s̃n)(1 +Nεe−δ(t−s̃n))φ′(z)

+Nεe−δ(t−s̃n)
{
−f ′

(
φ(z) + θ′Nεe−δ(t−s̃n)φ(z)

)
− δ
}
φ(z)

≥ Nεe−δ(t−s̃n) min
0≤s≤1

f(s) + σδNεe−δ(t−s̃n)Qη −Nεe−δ(t−s̃n)

(
max

0≤s≤1+η
f ′(s) + δ

)
= Nεe−δ(t−s̃n)

{
min

0≤s≤1
f(s)− max

0≤s≤1+η
f ′(s)− δ + σδQη

}
≥ 0,

where Qη := minzη≤z≤0 |φ′(z)| > 0 provided that σ is large positive. Thus W t −W rr − f(W ) ≥ 0 for
sufficiently large σ > 0.

We may now apply the comparison principle to conclude that

W (t, r) ≤W (t, r), H(t) ≤ H(t) for t ≥ s̃n and r ∈ (K(t), H(t)],

in particular

G(t) ≤ R∗ +Nε(σ + 1)

for t ≥ s̃n. By shrinking ε we obtain

G(t) ≤ R∗ + ε

for t ≥ s̃n and n ≥ n1.
Next we show G(t) ≥ R∗ − ε for all large t > 0. As in the construction of upper solution, for any

ε > 0, there exists n2 = n2(ε) such that, for n ≥ n2,

R∗ − ε ≤ G(sn),(2.77)

φ(r −R∗ + ε)− ε ≤ V (sn, r) for r ≤ R∗ − ε.(2.78)

We note that we can find N > 1 which does not depend on ε > 0 such that

(1−Nε)φ(r −R∗ +Nε) ≤ φ(r −R∗ + ε)− ε for r ≤ R∗ − ε.

Now we define a lower solution as follows:

H(t) := R∗ −Nε+ c∗0t−Nεσ(1− e−δ(t−sn)),

W (t, r) := (1−Nεe−δ(t−sn))φ(r −H(t)).
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Since V (t, r) ≥ φ(r − R∗), there exists C > 0 and β > 0 such that V satisfies V (t, r) ≥ 1− Ceβr for
all r ≤ 0, that is, W satisfies

W (t, r) ≥ 1− Ceβ(r−c∗0t).

We fix c > 0 so that δ ≤ β(c+c∗0). By enlarging n we may assume that C ≤ Nεeδsn . Let K(t) ≡ −ct.
We will check that the triple (W,H,K) is a lower solution for t ≥ sn, that is,

W t −W rr ≤ f(W ) for t > sn, r ∈ [K(t), H(t)](2.79)

W (t,K(t)) ≤W (t,K(t)) for t ≥ sn,(2.80)

W (t,H(t)) = 0, H ′(t) ≥ −µ0W r(t,H(t)) for t ≥ sn,(2.81)

H(sn) ≤ H(sn), W (sn, r) ≤W (sn, r) for r ∈ [K(sn), H(sn)].(2.82)

From (2.77) we have

H(sn) = R∗ −Nε+ c∗0sn ≤ R∗ − ε+ c∗0sn ≤ G(sn) + c∗0sn = H(sn)

We also have

W (sn, r) = (1−Nε)φ(r −H(sn))

= (1−Nε)φ(r −R∗ +Nε− c∗0sn)

≤ φ(r −R∗ + ε− c∗0s̃n)− ε
≤ V (sn, r − c∗0sn) = W (sn, r)

for r ≤ H(sn). Hence (2.82) holds.
We next show (2.81). By definition W (t,H(t)) = 0, and direct calculation gives

H ′(t) = c∗0 −Nεσδe−δ(t−sn),

− µ0W r(t,H(t)) = c∗0 −Nεc∗0e−δ(t−sn).

Hence if we take σ > 0 so that c∗0 ≤ σδ then

H ′(t) ≤ −µ0W r(t,H(t)).

This proves (2.81).
For t ≥ sn, we have

W (t,K(t)) = W (t,−ct) ≤ (1−Nεe−δ(t−sn))

= 1−Nεeδsne−δt ≤ 1− Ce−δt

≤ 1− Ce−β(c+c∗0)t ≤W (t,−ct) = W (t,K(t)).

Hence (2.80) holds.
Finally we show (2.79). Put ζ = r −H(t). Since

W t = δNεe−δ(t−sn)φ(z)− (1−Nεe−δ(t−sn))H ′(t)φ′(ζ)

= δNεe−δ(t−sn)φ(z)− (1−Nεe−δ(t−sn))(c∗0 − σNεδe−δ(t−sn))φ′(ζ),

and

W rr = (1−Nεe−δ(t−sn))φ′′(ζ),



70

we have

W t −W rr − f(W )

= δNεe−δ(t−sn)φ(ζ)− (1−Nεe−δ(t−sn))(c∗0 − σNεδe−δ(t−sn))φ′(ζ)

− (1−Nεe−δ(t−sn))φ′′(ζ)− f((1−Nεe−δ(t−sn)φ(ζ))

= δNεe−δ(t−sn)φ(ζ) + (1−Nεe−δ(t−sn)){−φ′′(z)− c∗0φ′(ζ)}

+ σNεδe−δ(t−sn)(1−Nεe−δ(t−sn))φ′(ζ)

= δNεe−δ(t−sn)φ(ζ) + σNεδe−δ(t−sn)(1−Nεe−δ(t−sn))φ′(ζ)

+ (1−Nεe−δ(t−sn))f(φ(ζ))− f((1−Nεe−δ(t−sn))φ(ζ))

= δNεe−δ(t−sn)φ(ζ) + σNεδe−δ(t−sn)(1−Nεe−δ(t−sn))φ′(z) + F (−Nεe−δ(t−sn), φ(ζ)).

Since φ(ζ)→ 1 as ζ → −∞, there exists ζη < 0 such that φ(ζ) ≥ 1−η/2 for ζ ≤ ζη. For r−H(t) ≤ ζη,
we have

W t −W rr − f(W )

= δNεe−δ(t−sn)φ(z) + σNεδe−δ(t−sn)(1−Nεe−δ(t−sn)))φ′(ζ)

−Nεe−δ(t−sn)
{
f(φ(ζ))− f ′(φ(ζ)− θ′′Nεe−δ(t−sn)φ(ζ))φ(ζ)

}
= −Nεe−δ(t−sn)f(φ(ζ)) + σNεδe−δ(t−sn)(1−Nεe−δ(t−sn))φ′(ζ)

+Nεe−δ(t−sn)
{
f ′(φ(ζ)− θ′′Nεe−δ(t−sn)φ(ζ)) + δ

}
φ(ζ)

≤0,

where θ′′ = θ′′(t, z) ∈ (0, 1). We note that by shrinking ε we can guarantee that Nε < η/2 and so

1 ≥ φ(ζ)− θ′′Nε−δ(t−sn)φ(ζ) ≥ φ(ζ)−Nεe−δ(t−sn)φ(ζ) ≥ 1− η.

On the other hand for zη ≤ r −H(t) ≤ 0 and t ≥ sn, we obtain

W t −W rr − f(W )

= −Nεe−δ(t−sn)f(φ(ζ)) + σNεδe−δ(t−s̃n)(1−Nεe−δ(t−s̃n))φ′(ζ)

+Nεe−δ(t−sn)
{
f ′
(
φ(ζ)− θ′′Nεe−δ(t−sn)φ(ζ)

)
+ δ
}
φ(ζ)

≤ −Nεe−δ(t−sn) min
0≤s≤1

f(s) + σδNεe−δ(t−sn)(1−Nεe−δ(t−sn))φ′(ζ)

+Nεe−δ(t−s̃n)

(
max

0≤s≤1+η
f ′(s) + δ

)
≤ Nεe−δ(t−sn)

{
− min

0≤s≤1
f(s) + max

0≤s≤1+η
f ′(s) + δ − σδ

(
1− η

2

)
Q′η

}
≤ 0,

by taking σ > 0 sufficiently large, where Q′η := minζη≤ζ≤0 |φ′(ζ)| > 0.
We may now apply the comparison principle to conclude that

W (t, r) ≤W (t, r), H(t) ≤ H(t) for t ≥ sn and r ∈ (−ct,H(t)],

and in particular,

R∗ −Nε(σ + 1) ≤ G(t)
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for t ≥ sn. By shrinking ε we obtain

R∗ − ε ≤ G(t)

for t ≥ sn and n ≥ n2. �
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