東京大学大学院新領域創成科学研究科 基盤科学研究系 先端エネルギー工学専攻 2006年3月修了 修士論文要旨

Study on Propagation and Heating of Microwaves of Electron Cyclotron Range

of Frequency on the Internal Coil Device Mini-RT

内部導体装置Mini-RTでの電子サイクロトロン領域高周波の伝播・加熱特性

46213 谷塚 英一

(指導教員 小川 雄一 教授)

Key Words : Internal Coil Device, Electron Bernstein Wave, Mode Conversion, Cyclotron Resonance, Local Heating

1. 背景

Mahajan-Yoshidaによって、流れを駆動することに よる高ベータプラズマの閉じ込めが理論的に示され [1]、内部導体装置RT-1が2006年1月に建設された。本 研究で用いたMini-RTでは、RT-1での実験で必要とさ れる技術のR&D行われてきた。一例として、コイル の支持脚によるプラズマのエネルギー損失を低減す るために、高温超伝導線材で作られたコイルを磁気 浮上させる技術があり、その状態でプラズマを生成 したとき(~3kW,2.45GHzの電子サイクロトロン加熱)、 遮断密度よりも高密度なプラズマ(オーバデンスプラ ズマ)が生成された。電磁波が遮断密度のない電子バ ーンスタイン波にモード変換され、サイクロトロン 高調波共鳴によってエネルギーがプラズマに吸収さ れるという加熱のメカニズムが考えられた。

オーバーデンスプラズマの生成・加熱は、弱磁場 またはオーミック加熱なしの方式の装置では重要な 課題である。高周波でのプラズマ加熱では、磁場強 度により遮断密度が決まる。プラズマの高ベータ化 を目的として、電子バーンスタイン波(EBW)による加 熱・電流駆動の実験が、様々な装置で行われている。 例えば球状トカマクCDX-Uでは、ローカルリミター (プラズマの閉じ込め領域を制限する壁)を用いて、プ ラズマの密度勾配をコントロールすることにより、 ほぼ100%のモード変換効率が得られた[2]。

内部導体装置は磁場勾配が急峻(B∝r⁻³)であるから、 高次のサイクロトロン共鳴層が現れる。EBWは種々 の次数のサイクロトロン共鳴により吸収されるので、 将来的には局所加熱などへの応用が期待される。

2. 本研究の目的、手段

内部導体装置での、EBWによる加熱を、実験及び 解析によって考察すること、さらに、それに伴うプ ラズマの高密度化を目的とする。

プラズマの閉じ込め領域を、磁場配位を変化させ ることによって制限し、静電プローブにより、電子 密度・電子温度の局所計測を行う。この方法によっ て、密度勾配および密度の絶対値の変化が、プラズ マの加熱にどのような影響を与えるかを調べた。

3. 内部導体装置Mini-RT

内部導体はヘリウムガスにより冷却(~20K)、永久 電流スイッチを用いた直接通電方式による励磁 (~50kAturns)を行った後に、支持脚で真空容器中央ま でリフトアップし、引き上げコイルに通電すること によって磁気浮上させることができる。引き上げコ イルの電流値を磁気浮上に必要な値より低くし、内 部導体を支持した状態で磁場配位を変え、プラズマ の閉じ込め領域を制御することもできる。

4. 電子バーンスタイン波

EBWは熱いプラズマにおける、磁力線に垂直に伝 播する静電波である[3]。ここで、「熱い」は波長と 比較してラーマー半径が無視できないことを意味す る。この波は静電波であるので、プラズマの外で励 起できない。電磁波からのモード変換により、プラ ズマ中でEBWを励起する必要がある。異常波モード の電磁波(X波)が、アッパーハイブリッド共鳴(UHR) 層でEBWへとモード変換される。電磁波からEBWに モード変換するために、次の3つの有効な方法がある ことが知られている。

- ① 強磁場側からのX波(磁力線に)垂直入射
- ② 弱磁場側からのX波垂直入射
- ③ 弱磁場側からのO波(正常波モード)斜め入射

②の方法は急峻な密度勾配、弱磁場のときにモー ド変換の効率が高いことが分かっており、Mini-RTへ の適用には最も実用的である。本研究では弱磁場側 からX波を入射した。

EBWはさらに以下のような特徴を持つ。

- ① サイクロトロン高調波共鳴が起こる
- ② バンド構造の分散関係を持ち、局所的に伝播する EBWの分散関係式は次のように書ける。

$$1 + \frac{\omega_{pe}^{2}}{\Omega_{e}^{2}} \frac{1}{\lambda_{e}} \left\{ 1 - \sum_{n=-\infty}^{\infty} \frac{\omega}{\omega - n\Omega_{e}} e^{-\lambda_{e}} I_{n} \right\} = 0, \lambda_{e} \equiv \left(\frac{k_{\perp} v_{ih}}{\Omega_{e}} \right)^{2} \equiv \left(k_{\perp} \rho_{ih} \right)^{2}$$

5. 電子密度、温度プロファイル計測

5-1 計測器配置、較正

計測器の配置を図1に示す。1ショットごとに静 電プローブの位置を変えてプロファイルを測定して いる。計測は赤道面上で行った。電子密度・電子温 度が磁気面上で一定であると仮定し、プローブで得 られた電子密度を、マイクロ波干渉計の光路に沿っ て線積分した結果、±20%以内の精度でプローブと干 渉計の測定値は一致した。

図1 計測器の配置(トロイダル断面)5-2 測定結果

閉じ込め領域、マイクロ波入射パワーなどを変化 させて、電子密度・電子温度を測定した。磁場配位 を図2に、代表的なプロファイル測定結果を図3に 示す。密度勾配を急峻にし、かつ密度が十分高いと き(プローブ計測の範囲内にUHRが存在するとき)に、 電子温度が局所的にピークを持つ。UHRで励起され たEBWがプラズマ中の限られた領域だけで伝播し、 サイクロトロン高調波共鳴によってEBWのエネルギ ーがプラズマに吸収された可能性を示唆している。

図2 磁場配位による閉じ込め領域の変化 (浮上コイル電流は共に32kA、引き上げコイル電流は 左が0A、右が13.6kA)

6. 分散関係の数値計算

入射したX波の経路に沿って、X波とEBWの分散関 係式を計算した。図4にX波の経路を示す。ここでも 電子密度・電子温度は磁気面上で一定と仮定した。 磁場強度は経路上での値を用いた。

図4 X波入射経路

計算に用いた電子密度・電子温度プロファイルと、 得られたUHRおよびサイクロトロン高調波共鳴の位 置を図5に、X波とEBWの屈折率のプロファイルを 図6に示す。赤道面上での電子温度のピークはX波入 射経路上では3倍高調波のサイクロトロン共鳴層と ほぼ一致する。しかし、UHRの位置から考えるとEBW は2倍高調波の位置で吸収されるはずであり、計算 と実験は一致しない。この理由として、電子密度計 測の精度が十分でないことが考えられる。密度測定 の誤差10%に対して、UHRの位置が赤道面上で10mm 程度ずれる。

7. 結論

磁場配位により閉じ込め領域を制御して、電子密 度・電子温度プロファイルを測定し、EBWによる加 熱の可能性が定性的に示唆された。分散関係の計算 と実験の結果は、EBWが吸収される位置が一致しな い場合がある。これは、電子密度測定の誤差などに よって、計算で得られるUHRの位置がずれること、 および内部導体装置では磁場勾配が急峻なので、各 次数のサイクロトロン共鳴層が近接し合うことに起 因する。高精度な密度・磁場の局所計測が、EBWに よる加熱の理解と制御に必要であり、今後の課題で ある。

8. 参考文献

- [1] S.M. Mahajan, et al., Phys. Rev. Lett. 81 4863 (1998)
- [2] B. Jones, et al., Phys. Rev. Lett. 90, 165001 (2003)
- [3] I.B. Bernstein, Phys. Rev. 109, 10 (1958)