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Abstract 
 

Identifying a set of loci affecting a trait that shows a continuous distribution of values is 

attracting great interest. Such loci are called quantitative trait loci (QTLs) and a series of 

analyses including prediction of QTL locations along chromosomes is called QTL analysis. 

During the primary analysis, each candidate QTL location is individually investigated. The 

framework called interval mapping (IM), which is most frequently used in QTL analysis, 

follows this single scan strategy. However, since the distribution of quantitative trait values is 

considered to be affected by an aggregation of multiple QTLs, the single scan strategy 

introduces approximation by neglecting the correlated relationships among multiple loci, 

reducing detecting power of the method. 

To cope with this problem, we develop a new framework called two-dimensional interval 

mapping (2DIM). This framework can evaluate simultaneous effects of the loci by improving 

the single scan framework so that it can carry out estimation in a multi-dimensional manner. 

After introducing the statistical background of two-dimensional interval mapping, usefulness 

of this method is also demonstrated by using mainly the real datasets of mice, from a practical 

point of view. 

On the other hand, two-dimensional interval mapping can reveal another aspect of QTL 

analysis. The two-dimensional method can extract pairs of marker intervals that are 

significant to the quantitative trait of interest instead of significant intervals that are obtained 

by using the usual interval mapping in a one-dimensional manner. This means that the whole 

set of the significant interval pairs constitutes a network among marker intervals. We call the 

network a marker interval network to emphasize that it can represent the synergetic 

architecture behind the trait. Applying the method to schizophrenia model mice, we 

constructed an interaction map among marker intervals in relation to this disease. Using the 

interaction map, correlated behavior among genetic factors is discussed. 

We also applied two-dimensional interval mapping to more than twenty datasets of mice 

quantitative traits that are publicly available. The results are stored in a database named 

marker interval network database (MINTDB). This database provides analytical facilities 

focusing on characteristics of the network architecture in the datasets. Using them, we can 

compare and integrate marker interval networks each of which is significant to a specific 

quantitative trait.  
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Chapter 1 

Introduction 
 

A quantitative trait is a phenotype that is shown by a continuous amount. Body height and 

body weight are examples. Since the distribution of values of a quantitative trait is considered 

to be regulated by multiple genetic factors, effects of combination of genetic factors to the 

quantitative trait are attracting interest. Although such correlated behavior among genetic 

factors is essential to a quantitative trait, analytical techniques that can cope with interactions 

among those factors are not necessarily sufficient. 

 

1.1 Motivation 
A gene locus that is concerned with a quantitative trait is called a quantitative trait locus 

(QTL). Series of analyses including prediction of locations of such QTLs on chromosomes is 

called QTL analysis. The history of QTL analysis can go back to, for example, Sax (1923) 

who showed that two traits of haricot color (qualitative) and weight (quantitative) were 

mutually interacting, and the former can be used as a kind of a marker of the latter. Based on 

this observation, Thoday (1961) showed that locations of quantitative loci can be identified by 

using qualitative traits. However, since the number of the qualitative traits available was 

limited, sufficient results were not obtained. Currently, densely located DNA markers such as 

micro-satellite markers are available, without suffering from such the problems as in the past, 

we can carry out QTL analysis precisely to our heart’s content.  

 

1.2 Two-dimensional interval mapping (2DIM) 
Effects of combinations of multiple genetic factors are often concerned with a quantitative 

trait. Interval mapping method that estimates significance of at possibility of existence a QTL 

at each single location on chromosomes is insufficient. Some extension of the framework of 

interval mapping is required. In this research, we developed a new framework called 

two-dimensional interval mapping that can extract significant pairs of chromosome segments 

in relation to the behavior of correlated characteristics behind a quantitative trait. 

Two-dimensional interval mapping can evaluate interactions among genetic factors (i.e., 

epistatic effects). It can take into account additive and dominant effects of each candidate 

QTL. We discuss the efficiency of two-dimensional interval mapping by using the dataset of 

schizophrenia model mice. 
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1.3 Marker interval network 
Two-dimensional interval mapping can reveal another aspect of QTL analysis. The 

two-dimensional method can extract pairs of marker intervals that are significant to the 

quantitative trait of interest instead of significant intervals that are obtained by using the usual 

interval mapping in a one-dimensional manner. This means that the whole set of the 

significant interval pairs constitutes a network among marker intervals. We call the network a 

marker interval network to emphasize that it can represent the synergetic architecture behind 

the trait. Applying the method to schizophrenia model mice, we constructed an interaction 

map among marker intervals in relation to this disease. Using the interaction map, correlated 

behavior among genetic factors is discussed. 

On the other hand, in two-dimensional interval mapping, as well as the traditional 

one-dimensional interval mapping, estimated QTL locations between markers are indicated in 

genetic map distance (recombination fraction) along chromosomes. Thus, except the locations 

just on the marker loci, results of two-dimensional interval mapping cannot be compared 

directly with data using physical map distance (base pairs). By comparing marker interval 

networks and gene networks, for example, protein-protein interaction (PPI), we tried to find 

candidate genes within the significant interval pairs. The results of preliminary analysis are 

presented using the marker interval network in relation to size of sexual organs of fly.  

 

1.4 Marker interval network database (MINTDB) 
We also applied two-dimensional interval mapping to more than twenty datasets of mice 

quantitative traits that are publicly available. The results are stored in a database named 

marker interval network database (MINTDB). This database provides analytical facilities 

focusing on characteristics of the network architecture in the datasets. Using them, we can 

compare and integrate marker interval networks each of which is significant to a specific 

quantitative trait. 

 

1.5 Outline of this Thesis 
Chapter 2 introduces two-dimensional interval mapping. In Chapter 3, using 

two-dimensional interval mapping, marker interval networks are constructed in relation to 

mice datasets. In Chapter 4, fly marker interval networks are compared to and integrated with 

gene networks. In Chapter 5, discussion and future work are described.  
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Chapter 2 

Two-dimensional interval mapping (2DIM) 
 

We develop a new framework called two-dimensional interval mapping (2DIM). This 

framework can evaluate simultaneous effects of the loci by improving the single scan 

framework so that it can carry out estimation in a multi-dimensional manner. After 

introducing the statistical background of two-dimensional interval mapping, usefulness of this 

method is also demonstrated by using mainly the real datasets of mice, from a practical point 

of view. 

 

2.1 Data for QTL Analysis 
 The data needed in QTL analysis is a set of values of the target trait and genotypes of marker 

loci. There are three genotypes at marker loci in the datasets we use in this study: a 

homozygote of the maternal line, a homozygote of the paternal line, and a heterozygote of 

both lines. Since the marker loci are discretely located along chromosomes, genotypes at 

locations (sometimes called pseudomarkers) between flanking markers are estimated by using 

a map function, for example, Haldane’s mapping function in a probabilistic manner. 

 

2.2 Interval mapping 
2.2.1 Outline of the Method 

As the foundation of the two-dimensional interval mapping, we first formalize the 

traditional one-dimensional interval mapping. If we assume that quantitative trait values are 

affected by genetic factors and environmental effects, the genetic model between trait values 

and genotypes is shown as follows: 

 

P = G + E. 

 

Here, P represents phenotype values of the quantitative trait, G represents the genotype 

values, and E is the environmental effects. This model can be rewritten if we want to take 

additive effects (effects when the genotype is the homozygote) and dominant effects (effects 

when the genotype is the heterozygote) into account as follows: 

 

P = u + a + d +σ2. 
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Here, u is a constant, a represents additive effects, d represents dominant effects, and σ2 is a 

residue term that is assumed to be normally distributed. As for additive and dominant effects, 

it becomes u + a in case of the homozygote of the maternal line, u – a in case of the 

homozygote of the paternal origin and u + d in case of the heterozygote. σ2 is assumed to be 

normally distributed. 

Genotype frequency at a pseudomarker is missing. Using an EM algorithm, therefore, the 

values of the four parameters above are estimated so that the likelihood is maximized and the 

genetic model can explain the data as much as possible. The EM algorithm is carried out in 

two steps (the E step and the M step). The expected value of genotype frequency is obtained 

in the E step and the parameter values are maximized in the M step. 

As the initial values, zero is used for a and d, and the average and the variance of the trait 

values are respectively used for u and σ2. The E step and the M step are carried out using 

theses initial values, and both steps are alternately repeated until the values of the four 

parameters converge. If the estimations of the parameters are obtained, the ratio of the 

likelihood of the model that assumes a and d are not zero against the likelihood of the null 

hypothesis that does not assume genetic effects in the trait values. The logarithm of the ratio is 

the LOD score. This procedure is carried out to calculate the LOD score at each location 

between the flanking markers. 

 

2.2.2 Details of the Method 
To carry out interval mapping, an EM algorithm is designed for each of inbred line. Here, 

using an F2 intercross line, details of the EM algorithm are explained. Note that the 

calculation of the other lines, for example, P1 backcross, and P2 backcross and so on can be 

carried out in the same manner. The details of the E step and the M steps are as follows. Note 

that those calculations are carried out at each location among flanking markers. 

 

2.2.3 The E Step 
At the location where we calculate its LOD score (i.e., at pseudomarker), the genotype is 

estimated in a probabilistic manner. The genotype at the pseudomarker is estimated using the 

following nine cases of the flanking marker genotypes. 

 

1: A1A1B1B1 2: A1A1B1B2 3: A1A1B2B2 4: A1A2B1B1 5: A1A2B1B2 

6: A1A2B2B2 7: A2A2B1B1 8: A2A2B1B2 9: A2A2B2B2 
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Here, A and B represent the flanking markers and the suffixes one and two represent from 

whether maternal or paternal the marker inherits. On the other hand, the pseudomarker 

genotype is represented one of Q1Q1, Q1Q2, and Q2Q2. Here, Q represents the pseudomarker 

between marker A and B. Assume that the probability that a recombination happens between 

A and Q is r1, the probability that a recombination happens between Q and B is r2, the 

probability that a recombination happens only by one degree between A and B is assumed to 

be r1+2, and the probability that a recombination happens both between A and Q and between 

Q and B is r12. When the genotypes of the flanking markers are case i as above, we denote the 

probability that the genotype of the pseudomarker is Q1Q1, Q1Q2, and Q2Q2 by pi1, pi2, and pi3, 

respectively. Here, i ranges from one to nine, and each is corresponds to one of the nine 

marker genotypes above. The probabilities of pi1, pi2, and pi3 are represented as follows. 

  

  Q1Q1 (pi1) Q1Q2 (pi2) Q2Q2 (pi3) 

1: A1A1B1B1 q1
2 2q1q2 q2

2 

2: A1A1B1B2 q1q3 q1q4+q2q3 q2q4 

3: A1A1B2B2 q3
2 2q3q4 q4

2 

4: A1A2B1B1 q14 q1q3+q2q4 q2q3 

5: A1A2B1B2 z1q1q2+z2q3q4 z1(q1
2+q2

2)+z2(q3
2+q4

2) z1q1q2+z2q3q4 

6: A1A2B2B2 q2q3 q1q3+q2q4 q1q4 

7: A2A2B1B1 q4
2 2q3q4 q3

2 

8: A2A2B1B2 q2q4 q1q4+q2q3 q1q3 

9: A2A2B2B2 q2
2 2q1q2 q1

2 
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Using the assumption that the residue terms of Q1Q1, Q1Q2, and Q2Q2 cases are normally 

distributed, the probability densities Φ1, Φ2, and Φ3 represented as follows. 
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Therefore, frequencies of the three genotypes at the pseudomarker described as follows. 

 

Q1Q1: z1 = Φ1 pi1 / (Φ1 pi1 + Φ2 pi2 + Φ3 pi3) 

Q1Q2: z2 = Φ2 pi2 / (Φ1 pi1 + Φ2 pi2 + Φ3 pi3) 

Q2Q2: z3 = Φ3 pi3 / (Φ1 pi1 + Φ2 pi2 + Φ3 pi3) 
 

2.2.4 The M Step 
The M step is carried out by using the result of the E step. The likelihood is represented as 

follows. 
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Here, i indicates the genotype of the marker (one of the nine types), and j indicates each 

individual (1 ~ ni) that has the marker genotype. 

Logarithm of the likelihood calculated as follows: 
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Here, const is a constant, and N is the number of individuals. By differentiating the 

log-likelihood with respect to u, a, d, and σ2, and setting the derivatives to zero, we have  
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These equations are sufficient to carry out the M step, but if one wants to have the estimators 

of each parameter, they are represented as follows: 
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The details of the derivations are given in Appendix A.1. Now we have updated values of the 

four parameters. By using these values, the next E step is carried out. Until the values of 

parameters converge, the rounds of the E step and the M steps are iterated.  

 

2.2.5 LOD Score 
A LOD score is calculated using the values of the log-likelihood ln(L) and ln(L0). ln(L0) is 

calculated by the parameters that are obtained under the null hypothesis. 

( ) ( ) ( ){ }001010 lnln
10ln
1loglog LLLLLOD −=−=  

 

The constant value (const) disappears. P1 backcross and P2 backcross can be explained 

similarly, and refer to appendix A.2 for details. 

When the LOD score is obtained, the pseudmarker is moved to the next of 1cM, and the 

calculation is repeated on all chromosomes. And, the graph where the position on the 

chromosome (cM) is taken in the horizontal and the LOD score was taken in the ordinate is 

written. Figure 2 shows the example of applying interval mapping to the dataset of 

schizophrenia model mice's forced swim test (Yoshikawa et al, 2002, chromosome 3). 

 

2.2.6 An Example 
When interval mapping is applied to the datasets of schizophrenia model mice's forced 

swim test (Yoshikawa et al, 2002), how the LOD score changes by the repetition of the E 

steps and the M steps in the EM algorithm is shown in Figure 2 (part of chromosome 8). The 

LOD score rises whenever repeating. 
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Figure 1 Example of interval mapping 

Interval mapping was applied to dataset of schizophrenia model mice's forced swim test (Yoshikawa et al, 

2002, chromosome 3). 

 

 

Figure 2 Repetition frequency and LOD score of the E step and the M step in the EM algorithm 

Transition of LOD score by repetition frequency of the E step and the M step in EM algorithm when 

interval mapping is applied to dataset of schizophrenia model mice's forced swim test (Yoshikawa et al, 

2002, part of chromosome 8) 

 

2.3 Existing Two-Dimensional QTL Analysis 
The QTL analysis method that considers gene loci and their interactions has been 

D8Mit291 D8Mit45 D8Mit242 
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developed before. Insufficient points are of two-dimensional QTL analysis method though 

TWOSCAN and multiple interval mapping (MIM) are enumerated as an example. 

 

2.3.1 Multiple interval mapping 
Multiple interval mapping is QTL analysis method that considered two gene loci (Kao et al, 

1999). MIM uses the EM algorithm by advancing interval mapping. The place of QTL is 

presumed beforehand by the Composite interval mapping (CIM), and it calculates based on 

the place. The genetic model is shown as follows. 
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ijk

t
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ijksijkrirs
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r
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1
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Here, the first term indicates the phenotype value, the second term is the effect of QTL of m 

piece presumed beforehand, the third term is the effect of the interaction of the pair of QTL 

(The pair of the same place is excluded) to which is presumed beforehand, and the fourth term 

is the rest errors. 

In MIM, the interaction is considered, but the calculation result is shown in the graph of 

one dimension of each QTL presumption place, and only the place presumed beforehand is 

calculated. That is, the place where the LOD score is low is not calculated by the calculation 

done beforehand, and the place where the LOD score rises for the first time when pairing off 

cannot be presumed. 

 

2.3.2 TWOSCAN 
TWOSCAN is two-dimensional QTL analysis method (Sen et al, 2001). The Monte Carlo 

algorithm is used instead of the EM algorithm for easing and the flexibility of the calculation. 

Genetic model's calculation type is shown by the next expression. 
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Here, y is the phenotype value, m is the marker genotype, u is a present QTL presumption 

place (1 ~ q piece), ri is the genotype calculated there, and s is the number of QTL 

presumption places of p class. 

The calculation result of TWOSCAN is shown as two dimensions. The place where the 

LOD score rises for the first time when pairing off can be presumed, differing from MIM. 

However, it is an approximation method that uses the Monte Carlo algorithm, and the term of 

an interaction is only one term. 
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2.4 Two-dimensional interval mapping (2DIM) 
2.4.1 Outline of the method 

In this research, it was thought that an existing two-dimensional QTL analysis method was 

insufficient, and two-dimensional interval mapping that advanced existing interval mapping to 

two dimensions was developed. Here, it explains two-dimensional interval mapping. 

In existing interval mapping, it was a genetic model which consisted of one gene locus and 

the additive effect and the dominant effect. However, in two-dimensional interval mapping, if 

we want to superadd two gene loci and epistatic effects, the genetic model can be rewritten as 

follows: 

 

P = u + a1 + d1 + a2 + d2 + i12 + j12 + j21 + l12 +σ2. 
 

Here, u represents a genotype value, a1 represents additive effects in the first pseudmarker, d1 

represents dominant effects in the first pseudmarker, a2 represents additive effects in the 

second pseudmarker, d2 represents dominant effects in the second pseudmarker, i12 represents 

additive × additive epistatic effects, j12 represents additive × dominant epistatic effects, j21 

represents dominant × additive epistatic effects, l12 represents dominant × dominant epistatic 

effects, and σ2 is a residue term that is assumed to be normally distributed. 

The EM algorithm of this genetic model is calculated as well as interval mapping. Here, 

using an F2 intercross line, details of the EM algorithm are explained also in two-dimensional 

interval mapping. Note that the calculation of the other lines, for example, P1 backcross, and 

P2 backcross and so on can be carried out in the same manner. 

 

2.4.2 The E step 
At the location where we calculate its LOD score (i.e., at pseudomarker), the genotype is 

estimated in a probabilistic manner. The genotype at the pseudomarker is estimated using the 

81 cases (Multiplication of nine cases (A1A1B1B1 ~ A2A2B2B2) and nine cases (C1C1D2D2 ~ 

C2C2D2D2)) of the flanking marker genotypes. Here, A and B represent the flanking markers 

and the suffixes one and two represent from whether maternal or paternal the marker inherits. 

On the other hand, the pseudomarker genotype is represented one of the following nine cases. 

 

1: Q1Q1Q3Q3 2: Q1Q1Q3Q4 3: Q1Q1Q4Q4 4: Q1Q2Q3Q3 5: Q1Q2Q3Q4 

6: Q1Q2Q4Q4 7: Q2Q2Q3Q3 8: Q2Q2Q3Q4 9: Q2Q2Q4Q4 
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Here, Q1 and Q2 represent the pseudomarker between marker A and B, and Q3 and Q4 

represent the pseudomarker between marker C and D. The suffixes one and two represent 

from whether maternal or paternal the pseudmarker inherits, and the suffixes three and four 

represent from whether maternal or paternal the pseudmarker inherits. 

Assume that the probability that a recombination happens between A and Q is r1, the 

probability that a recombination happens between Q and B is r2, the probability that a 

recombination happens only by one degree between A and B is assumed to be r1+2, and the 

probability that a recombination happens both between A and Q and between Q and B is r12. 

Moreover, assume that the probability that a recombination happens between C and Q is r3, 

the probability that a recombination happens between Q and D is r4, the probability that a 

recombination happens only by one degree between C and D is assumed to be r3+4, and the 

probability that a recombination happens both between C and Q and between Q and D is r34. 

When the genotypes of the flanking markers are case i as above, we denote the probability 

that the genotype of the pseudomarker is Q1Q1Q1Q1 ~ Q2Q2Q2Q2 by pi1 ~ pi9, respectively. 

Here, i ranges from one to nine, and each is corresponds to one of the nine marker genotypes 

above. The probabilities of pi1 ~ pi9 are obtained from the product of the probability in the 

gene locus of the first pseudmarker and the second pseudmarker. 

The probabilities in the gene locus of the first pseudmarker are represented as follows. 

 

  Q1Q1 (pi1~3) Q1Q2 (pi4~6) Q2Q2 (pi7~9) 

1: A1A1B1B1 q1
2 2q1q2 q2

2 

2: A1A1B1B2 q1q3 q1q4+q2q3 q2q4 

3: A1A1B2B2 q3
2 2q3q4 q4

2 

4: A1A2B1B1 q1q4 q1q3+q2q4 q2q3 

5: A1A2B1B2 z1q1q2+z2q3q4 z1(q1
2+q2

2)+z2(q3
2+q4

2) z1q1q2+z2q3q4 

6: A1A2B2B2 q2q3 q1q3+q2q4 q1q4 

7: A2A2B1B1 q4
2 2q3q4 q3

2 

8: A2A2B1B2 q2q4 q1q4+q2q3 q1q3 

9: A2A2B2B2 q2
2 2q1q2 q1

2 
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The probabilities in the gene locus of the second pseudmarker are represented as follows. 

 

  Q3Q3 (pi1,4,7) Q3Q4 (pi2,5,8) Q4Q4 (pi3,6,9) 

1: C1C1D1D1 q5
2 2q5q6 q6

2 

2: C1C1D1D2 q5q7 q5q8+q6q7 q6q8 

3: C1C1D2D2 q7
2 2q7q8 q8

2 

4: C1C2D1D1 q5q8 q5q7+q6q8 q6q7 

5: C1C2D1D2 z3q5q6+z4q7q8 z3(q5
2+q6

2)+z4(q7
2+q8

2) z3q5q6+z4q7q8 

6: C1C2D2D2 q6q7 q5q7+q6q8 q5q8 

7: C2C2D1D1 q8
2 2q7q8 q7

2 

8: C2C2D1D2 q6q8 q5q8+q6q7 q5q7 

9: C2C2D2D2 q6
2 2q5q6 q5

2 
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Using the assumption that the residue terms of Q1Q1Q3Q3 ~ Q2Q2Q4Q4 cases are normally 

distributed, the probability densities Φ1 ~ Φ9 represented as follows. 
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Therefore, frequencies of the nine genotypes at the pseudomarker described as follows. 
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2.4.3 The M Step 
The M step is carried out by using the result of the E step. The likelihood is represented as 

follows. 
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Here, i indicates the genotype of the marker (one of the 81 types), and j indicates each 

individual (1 ~ ni) that has the marker genotype. 
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Logarithm of the likelihood calculated as follows: 
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Here, const is a constant, and N is the number of individuals. By differentiating the 

log-likelihood with respect to u, a1, d1, a2, d2, i12, j12, j21, l12, and σ2, and setting the derivatives 

to zero, we have as follows. 
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These equations are sufficient to carry out the M step, but if one wants to have the 

estimators of each parameter, they are represented as follows: 
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The details of the derivations are given in Appendix A.3. Now we have updated values of 

the four parameters. By using these values, the next E step is carried out. Until the values of 

parameters converge, the rounds of the E step and the M steps are iterated. 

 

2.4.4 LOD Score 
A LOD score is calculated using the values of the log-likelihood ln(L) and ln(L0). ln(L0) is 

calculated by the parameters that are obtained under the null hypothesis. 

( ) ( ) ( ){ }001010 lnln
10ln
1loglog LLLLLODscore −=−=  

 

The constant value (const) disappears. P1 backcross and P2 backcross can be explained 

similarly, and refer to appendix A.2 for details. 

 

 

Figure 3 Example of calculating two-dimensional interval mapping 

Calculation example of applying two-dimensional interval mapping to datasets of size of sexual organs of 

fly (Zeng et al,2000). Father is simulans, upper right, and father is maulitiana, under the left. It displayed 

it in blue in the place where the LOD score was low and in red in the place where the LOD score was 

high. 
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When the LOD score is obtained, the second pseudmarker is moved to the next of 1cM, and 

the calculation is repeated on all chromosomes. Next, the first pseudmarker is moved to the 

next of 1cM, and the calculation is repeated on all chromosomes. Thus, all chromosome pair 

is calculated. 

 

2.4.5 An Example 
Figure 3 is the example of applying two-dimensional interval mapping to datasets (Zeng et 

al, 2000) of the size of the sexual organs of fly. The point where the LOD score is low was 

displayed in blue, and high was displayed in red. 

 

2.5 Evaluation 
  The result by two-dimensional interval mapping is evaluated by a permutation test and 

explained variance. In permutation test, the threshold of a significant LOD score is obtained. 

Explained variance evaluates how much variance is exchanged by the parameters obtained by 

two-dimensional interval mapping. 

 

2.5.1 Permutation test 
The threshold of the significant LOD score for the existence of QTL is obtained. The data 

of the marker genotype and the data of the phenotype value are permuted at random, and a 

similar calculation is repeated enough frequency in the data. The highest LOD score is 

obtained each time. The lowest LOD score of high rank (100-N) % is assumed to be a 

threshold for the significance level of N%. 

 

2.5.2 Explained variance 
Explained variance evaluates how much variance is exchanged by the parameters obtained 

by two-dimensional interval mapping. Explained variance is calculated as follows: 

( ) 1002
0

22
0 ×
−

=
σ
σσev . 

 

Here, σ0
2 is σ2 when each parameter is the initial value (that is, variance between individuals 

of the phenotype value), and σ2 is σ2 when each parameter has been the calculated value in 

each pseudmarker. 
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Chapter 3 

Maker interval network 
 

In two-dimensional interval mapping, QTL of each 1cM is presumed as well as existing 

interval mapping. Therefore, the result is given as LOD score in which significant of the 

existence of QTL in each 1cM is shown. In a word, the result of two-dimensional interval 

mapping, which is the data by a genetic map distance in which cM is assumed to be a unit, 

cannot be compared directly with data by a physical map distance in which the base pair is 

assumed to be a unit. 

 

Figure 4 Example of making marker interval network 

The left under is a part of the result of applying two-dimensional interval mapping to the dataset of 

schizophrenia model mice's forced swim test (Yoshikawa et al, 2002, chromosome 4 and 5). When this 

part is assumed to be a marker interval network, it is shown in the part enclosed by a red square in upper 

right. 

 

There, the result of two-dimensional interval mapping is treated as the data of which unit 

was a marker interval. Whereat, the data enabled the comparison with the data of a physical 

map distance, because a position of a marker by a physical map distance is clear. This data of 

which the unit was a marker interval can be assumed a network where marker intervals are 

assumed to be nodes and marker interval pairs are assumed to be edges. This network is 

named a marker interval network. Here, the making method of marker interval network is 
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explained, and the result of two-dimensional interval mapping is evaluated by using the 

marker interval network. 

 

3.1 Making method of marker interval network 
The result by two-dimensional interval mapping is assumed data of which the unit is the 

marker interval so that it can be compared with data by a physical map distance. In interval 

mapping, QTL is presumed according to whether LOD scores in a marker interval exceed the 

threshold calculated by a permutation test. That is, the maximum value among LOD scores of 

a marker interval only has to be referred. Therefore, the maximum value among LOD scores 

of a marker interval is treated as the LOD score in each marker interval. 

Figure 4 is an example of making marker interval network from the result of two- 

dimensional interval mapping. The left under is a part of the result of applying 

two-dimensional interval mapping to the dataset of schizophrenia model mice's forced swim 

test (Yoshikawa et al, 2002, chromosome 4 and 5). When this part is assumed to be a marker 

interval network, it is shown in the part enclosed by a red square in upper right. 

 

(1)                               (2) 

   
Figure 5 Result of two-dimensional interval mapping of schizophrenia model mice 

The unit of each mass is a marker interval. Chromosome 1, 2, .., X queue up from the left sequentially. 

In the chromosome, it queues up from the left sequentially in order in which cM of the marker is low. 

((1): FST, (2): TST) 

 

 

 

 

chromosome 1,2,..,X chromosome 1,2,..,X 

chrom
osom

e 1,2,..,X 

（maker interval） （maker interval） 
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(1) 
ch1 M1 M2 ch2 m1 m2 LOD u a1 a2 d1 d2 i12 j12 j21 l12 σ2 

3 49.7 83.5 3 49.7 83.5 66.87 145.26 5.04 4.95 48.22 20.84 3.69 -47.99  12.36  -75.63  994.2 

5 1 18 5 18 54 44.75 185.93 -3.94 -5.49 20.58 -17.45 -35.15 42.71  -5.83  -43.10  1222.8

5 18 54 5 18 54 53.23 164.79 -32.01 21.48 3.65 30.25 -15.41 13.83  17.16  -57.99  1128.7

5 18 54 6 2.5 26.5 42.04 168.94 -8.60 -7.65 -29.15 -35.67 23.46 2.02  9.97  83.43  1149.7

8 15.5 40 5 18 54 41.30 193.42 -20.12 -13.59 -52.96 -56.06 -6.84 22.85  9.69  77.46  1218.3

8 15.5 40 8 15.5 40 59.81 164.79 -2.26 -6.91 -28.13 42.57 -12.64 -13.21  11.57  -38.36  1068.5

10 17 36 8 15.5 40 42.78 145.49 -8.05 -9.38 43.51 24.19 -2.32 11.95  -5.81  -80.41  1241.6

10 17 36 10 17 36 39.52 151.11 0.43 -2.77 -22.32 58.21 8.94 14.25  -4.35  -41.23  1266.4

10 40 44 5 18 54 47.38 153.08 -20.66 -25.44 13.66 15.49 19.18 44.88  33.67  -43.67  1165.2

16 16.9 43 16 16.9 43 40.51 156.25 -10.01 15.06 23.04 10.70 -6.36 -32.54  23.98  -38.13  1258.8

(2) 
ch1 M1 M2 ch2 m1 m2 LOD u a1 a2 d1 d2 i12 j12 j21 l12 σ2 

3 33.7 49.7 3 49.7 83.5 60.64 133.47 -5.00 7.31 100.17 162.43 3.07 17.44  -37.40  -251.30 6103.1

3 49.7 83.5 3 33.7 49.7 58.32 127.30 6.89 -4.46 179.44 100.99 9.11  -33.20  9.72  -260.64 6090.3

3 49.7 83.5 3 49.7 83.5 46.16 144.17 5.01 -2.09 134.94 86.99 6.04 -70.61  37.09  -212.97 6820.4

5 1 18 5 18 54 51.94 206.48 -59.30 10.93 4.62 -7.74 -33.63 150.21 44.89  -39.58  6475.4

5 18 54 5 18 54 49.03 152.44 5.71 -19.17 158.64 32.10 1.90 47.82  19.38  -186.40 6603.7

5 18 54 8 15.5 40 47.63 196.37 -86.19 40.18 -19.34 19.42 -26.60 152.06 -75.41  -35.73  6516.6

8 15.5 40 8 15.5 40 48.89 208.63 68.12 -73.46 -42.98 87.77 -42.94 -55.48  26.23  -99.04  6655.8

11 31 47.64 5 18 54 50.69 273.32 17.80 32.71 -132.82 -142.20 -41.65 -7.20  -41.18  213.07 6737.7

11 31 47.64 11 31 47.64 51.38 168.91 -24.67 13.76 22.24 60.04 -1.28 -78.90  74.04  -76.35  6668.7

11 47.64 55.6 11 31 47.64 45.36 126.01 -7.43 15.79 170.33 122.42 12.25 52.75  -31.86  -255.08 6926.6

 

Table 1 Value of each parameter calculated by two-dimensional interval mapping 

Ch1, M1, and M2 are one of chromosomes in the marker interval and the starting and the terminal points 

of markers. Ch2, m1, and m2 are one of chromosomes in the marker interval and the starting and the 

terminal points of markers. ((1):  forced swim test, (2):  tail suspension test) 

 

3.2 Maker interval network 
The dataset of the schizophrenia model mice (Yoshikawa et al, 2002) was used. The mice 

are soaked compulsorily in water, and time until the mice don't struggle is measured in forced 
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swim test (FST). And, the mice are caught by the tail, and time until the mice don't move is 

measured in tail suspension test (TST). Two-dimensional interval mapping was applied to 

these datasets, and the marker interval network was made (Figure 5). Moreover, ten intervals 

that are evaluated as obviously significant in marker interval pairs of marker interval 

networks in FST and TST, were listed (Table 1). A marker interval network is evaluated from 

the LOD score, each parameter, and explained variance by using these datasets. 

 

3.2.1 LOD score 
The interval pairs with high LOD scores obtained two-dimensional interval mapping are 

classified into two types. One is a pair of marker intervals each of which belongs to the same 

chromosome segment. The other is a pair of marker intervals each of which belongs to the 

different chromosome segment respectively. 

 

(1) 

 

 

 

 

 

 

 

(2) 

 

 

 

 

 

 

 

 
   Figure 6 Example of a pair of marker intervals each of which belongs to the same chromosome 

segment 

One is the interval pair with a high LOD score calculated by interval mapping in the example of 

chromosome 3 of FST (1). One is the interval pair with a low LOD score calculated by interval 

mapping in the example of chromosome 5 of TST (2). 
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Figure 7 Example of the marker interval where the pair is different 

The first case is the interval pair with both high LOD scores calculated by interval mapping in the 

example of chromosome 8 and 5 of FST (1). The second case is the interval pair with only one high LOD 

score calculated by interval mapping in the example of chromosome 6 and 5 of FST (2). The third case is 

the interval pair with both low LOD scores calculated by interval mapping in the example of 

chromosome 5 of TST (3). 
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In addition, the significant pairs of the former case are classified into two types (Figure 6). 

One is the interval pair with a high LOD score calculated by interval mapping. The other is 

the interval pair with a low LOD score calculated by interval mapping. On the other hand, the 

significant pair of the latter case are classified into three types (Figure 7). The first case is the 

interval pair with both high LOD scores calculated by interval mapping. The second case is 

the interval pair with only one high LOD score calculated by interval mapping. The third case 

is the interval pair with both low LOD scores calculated by interval mapping. It’s notable that 

the gene in the marker interval affects mutually and is related to the phenotype in the third 

case. 

 (1)                                      (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2 Explained variance for two-dimensional interval mapping 

Explained variance was calculated from each σ2 calculated by two-dimensional interval mapping. ev is 

the value of explained variance. ((1): FST, (2): TST) 

 

3.2.2 Prameters 
Next, the term of epistatic effects is paid to attention among the results of each parameter. 

In chromosome 5 (1.0-18.0cM and 18.0-54.0cM) in FST, the values of additive effects (a1, 

a2) are low, but the value of additive × additive epistatic effects (i12) is high. In chromosome 3 

(49.7-83.5cM) in FST, the value of the first of additive effects (a1) and the value of the second 

of dominant effects (d2) are low, but the value of additive × dominant epistatic effects (j12) is 

high. In chromosome 11 (31.0-47.64cM) in TST, the value of the first of dominant effects (d1) 

and the value of the second of additive effects (a2) are low, but the value of dominant × 

ch1 M1 M2 ch2 m1 m2 ev（%）

3 33.7 49.7 3 49.7 83.5 60.64 

3 49.7 83.5 3 33.7 49.7 58.32 

3 49.7 83.5 3 49.7 83.5 46.16 

5 1 18 5 18 54 51.94 

5 18 54 5 18 54 49.03 

5 18 54 8 15.5 40 47.63 

8 15.5 40 8 15.5 40 48.89 

11 31 47.64 5 18 54 50.69 

11 31 47.64 11 31 47.64 51.38 

11 47.64 55.6 11 31 47.64 45.36 

ch1 M1 M2 ch2 m1 m2 ev（%）

3 49.7 83.5 3 49.7 83.5 66.87 

5 1 18 5 18 54 44.75 

5 18 54 5 18 54 53.23 

5 18 54 6 2.5 26.5 42.04 

8 15.5 40 5 18 54 41.30 

8 15.5 40 8 15.5 40 59.81 

10 17 36 8 15.5 40 42.78 

10 17 36 10 17 36 39.52 

10 40 44 5 18 54 47.38 

16 16.9 43 16 16.9 43 40.51 
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additive epistatic effects (j21) is high. Each epistatic effect affects the phenotype more 

effectively in these places. 

 

3.2.3 Explained variance 
Explained variance was calculated from each σ2 calculated by two-dimensional interval 

mapping. (Table 2). Values are 40 ~ 60 %, and a lot of parts are shown by another parameter 

by two-dimensional interval mapping. 

 
A: chromosome 3 (33.7-49.7) 

B: chromosome 3 (49.7-83.5cM) 

C: chromosome 5 (1.0-18.0cM) 

D: chromosome 3 (18.0-54.0cM) 

E: chromosome 6 (2.5-26.5cM) 

F: chromosome 8 (15.5-40.0cM) 

G: chromosome 10 (17.0-36.0cM) 

H: chromosome 10 (40.0-44.0cM) 

I: chromosome 11 (31.0-47.64cM) 

J: chromosome 11 (47.64-55.6cM) 

K: chromosome 16 (16.9-43.0cM) 

Figure 8 The prediction of marker interval network 

A marker interval network was predicted from the ten high-ranking marker interval pairs. It enclosed full 

shows the marker interval where the high score was calculated in interval mapping. It enclosed with the 

square shows the marker interval where the low score was calculated in interval mapping. The line where 

each marker interval is connected shows the interaction. The arrow shows the epistatic effects that their 

starting point is high rank. The line connected with oneself shows that it has the pair in the marker interval. 

 

3.2.4 Prediction of maker interval network 
Finally, the network is predictable from the ten high-ranking marker interval pairs of the 

marker interval network, is described. When both FST and TST results are synthesized, the 

network is like Figure 8 being composed is predictable in these ten marker intervals. It 

enclosed full shows the marker interval where the high score was calculated in interval 

mapping. It enclosed with the square shows the marker interval where the low score was 

calculated in interval mapping. The line where each marker interval is connected shows the 

interaction. The arrow shows the epistatic effects that their starting point is high rank. The line 

connected with oneself shows that it has the pair in the marker interval. 
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In Figure 8, a big network is composed centering on the marker interval of chromosome 5 

(18.0-54.0cM). Although it was considered the ten high-ranking marker interval pairs in this 

research, a bigger marker interval network can be predicted by paying attention to more 

marker interval pairs. 
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Chapter 4 

Data of physical map distance 
 

According to the result of two-dimensional interval mapping treated as the data of which unit 

was a marker interval, the data enabled the comparison with the data by a physical map 

distance, because a position of a marker by a physical map distance is clear. Here, as one 

example of the comparison between the data by marker interval network and a physical map 

distance, it compares with the PPI (protein-protein interaction) database, and the candidate 

gene of QTL is extracted. 

        (1)                             (2) 

      
Figure 9 Result of two-dimensional interval mapping of size of sexual organs of fly (Zeng et al, 2000) 

The unit of each mass is a marker interval. Chromosome 1, 2, .., X queue up from the left sequentially. 

In the chromosome, it queues up from the left sequentially in order in which cM of the marker is low. 

((1): father is maulitiana, (2): father is simulans) 

 

4.1 Marker interval network and PPI database 
Two-dimensional interval mapping was applied to the data of the size of the sexual organs 

of fly (Zeng et al, 2000), and Marker interval network was made (Figure 9). The gene list in 

each marker interval can be made by listing the gene placed between the franking markers 

(Figure 10). Thus, the allocated LOD score of each marker interval pair means how strongly 

at least one pair among the genes in the marker interval pair is related to the phenotype. 

Whether it is interactive immediately or acts indirectly is not asked, the possibility where at 

least one or more gene pairs with high possibility of being related mutually to the expression 

of the phenotype exist, is high in the marker interval pair with high LOD score (For example, 
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it may be a part of the metabolic pathway for the expression of the phenotype, or be the one 

like the edge and the edge in the pathway, etc.). 

 

 
Figure 10 The making of the gene list from the marker interval network 

Two data with different father was arranged to be comparable. The unit of each mass is a marker 

interval. Chromosome 1, 2, X queue up from the left sequentially. In the chromosome, it queues up 

from the left sequentially in order in which cM of the marker is low. The gene list can be made 

respectively by listing the gene placed between the franking markers from each marker interval pair. 

 

     
Figure 11 The comparison between marker interval network and PPI database 

The comparison between a marker interval network (left) by two-dimensional interval mapping and 

PPI database (right). 

 

The gene being related to the phenotype is included in one or more gene pair included in 
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the marker interval pair with high LOD score, whether immediately or indirectly is not asked. 

On the other hand, the protein that has been interactive immediately is included in PPI 

database, which phenotype is related is not asked. Here, the gene to which each protein of the 

pair of the protein in PPI database that has been interactive immediately is coded is retrieved, 

and the list of the gene pair is made, and each gene pair is allocated in each marker interval 

pair. Then, it is related to the phenotype, and the gene pair with high possibility of interactive 

immediately is included in the retrieved gene pair in PPI database included in the marker 

interval where the LOD score is high (Figure 11). 

 

4.2 Extraction of the candidate genes of QTL 
The extracting the candidate genes of QTL become possible by the comparison with data 

by physical map distance having become possible. Here, as continuation of 4.1 the one 

example, the candidate genes of QTL of the size of the sexual organs of fly is extracted. 

 

courtship behavior qtc, Est-6, per, ple, pros, spin, tko, y 

male courtship behavior qtc, fru, tko 

mating behavior dsf, per 

mating behavior,  

sex discrimination 
dsf, fru 

sex discrimination 
dsf, br, BtbVII, CG3056, CG6118, fru, lolal, mod(mdg4), 

sc, Sox100B, Sox14, Stat92E, ttk, vir 

somatic sex discrimination dsf 

copulation dsf, fru, ken 

 
Table 3 Biological process and gene thought to be related to the size of sexual organs 

List of kind of Biological process thought to be related in the size of sexual organs used by this 

research and the gene that belongs to it. 

 

One of the gene pair at least is related to the size of sexual organs by using the data of 

Biological process of Gene ontology extracted from among the retrieved gene pair in PPI 

database included in the marker interval pair with high LOD score. Biological process and the 

gene belonged to it that had been used at this time were summarized in Table 3. The gene pair 

for one of the pair to contain these genes at least is sorted in order with high LOD scores 

(Table 4). 



 - 32 - 

interval1 gene1 interval2 gene2 LOD score 

2-28.5-34.7 CG6415 2-147.7-157.7 mod(mdg4) 28.59117255 

2-22.0-28.5 CG14534 2-43.2-50.0 Est-6 26.54336379 

2-0.0-7.0 CG15631 2-134.6-147.7 fru 26.36016013 

2-28.5-34.7 Nup170 2-14.3-21.3 ple 25.21665039 

2-34.7-55.2 BG:DS06874.2 2-147.7-157.7 Stat92E 24.94588041 

2-34.7-55.2 CG4959 2-147.7-157.7 CG31160 24.94588041 

2-34.7-55.2 CG4959 2-134.6-147.7 fru 24.94588041 

2-14.3-21.3 Src64B 2-147.7-157.7 mod(mdg4) 23.00990654 

2-14.3-21.3 CG12607 2-147.7-157.7 mod(mdg4) 23.00990654 

2-14.3-21.3 ple 2-147.7-157.7 RpS30 23.00990654 

interval1 gene1 interval2 gene2 LOD score 

2-14.3-21.3 Src64B 2-147.7-157.7 mod(mdg4) 27.48448759 

2-14.3-21.3 CG12607 2-147.7-157.7 mod(mdg4) 27.48448759 

2-14.3-21.3 ple 2-101.3-114.2 hb 27.48448759 

2-14.3-21.3 ple 2-147.7-157.7 RpS30 27.48448759 

2-28.5-34.7 CG6415 2-147.7-157.7 mod(mdg4) 27.11054392 

2-21.3-28.7 Nmt 2-147.7-157.7 CG31160 27.02120768 

2-28.7-43.2 SH3PX1 2-123.3-126.6 pros 25.99129802 

2-14.3-21.3 ple 2-114.2-123.3 CG14684 24.81583541 

2-0.0-7.0 CG15631 2-134.6-147.7 fru 24.28721228 

2-22.0-28.5 CG14534 2-43.2-50.0 Est-6 24.03511424 

 
Table 4 List of the gene pair for one of the pair thought to be concerned in the size of sexual organs 

at least. 

Ten high-ranking gene pair of each dataset was listed. interval1 and interval2 show the chromosome 

number and the starting point and the terminal of the marker of the gene pair. gene1 and gene2 show 

the gene pair. LOD score indicates the LOD score of the marker interval pair that includes the gene 

pair. (top10: father is maulitiana, under10: father is simulans) 

 

As for the threshold, when assuming the significance level of 95% by the permutation test 

of 400 times, the threshold in the dataset that father is mauritiana was 8.17, and the threshold 

in the dataset that father is simulans was 8.87(Figure 12). When the LOD score pays attention 

to the gene pair more than the threshold, the gene pair with high possibility of being related to 
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the expression of the size of sexual organs can be extracted. 
 

 
Figure 12 The result of the permutation test of 400 times 

When assuming the significance level of 95%, the threshold in the dataset that father is mauritiana is 

8.17, and the threshold in the dataset that father is simulans is 8.87. 

 

The gene in no examination beforehand by Gene ontology of the gene pair extracted thus 

was referred to the thesis. As a result, the genes that seem that it is related to the size of sexual 

organs as follows: 

 

CG6415, SrC64B, Nmt, Nup170, hb, CG4959, CG4328, krz, AP-50, CG31973, CG7291, 

CG17666, HLHm7, CG33070, tun, Mst84a, Mst84b, Gld. 

 

The genes related to the size of sexual organs are included in the list of these genes though it 

has not been included in Gene ontology yet. There are the genes that are related to the size of 

sexual organs though it has not been known yet in the extracted genes other than these. 
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Chapter 5 

Discussion and future work 
 

In this research, two-dimensional interval mapping that is considered multiple gene loci 

and their interactions is developed and a marker interval network was made from the result of 

the two-dimensional interval mapping. Further discussions of these and the views in the future 

are described. 

 

5.1 Two-dimensional interval mapping (2DIM) 
There are two advantages of advancing interval mapping to two dimensions. One is to have 

come to calculate the terms of the interactions that are not considered in the interval mapping. 

The other one is to have come to be able to treat as a network. 

The terms of interactions make four parameters calculably, not only the additive ×additive 

epistatic effects but also the additive × dominant epistatic effects, the dominant × additive 

epistatic effects, and the dominant × dominant epistatic effects is included. Therefore, it is 

clear which becomes significant by high-ranking time among pairs of the pseudmarker. 

Moreover, which the interaction affects a lot is calculated for the pair of each QTL 

presumption place. 

The network by two-dimensional interval mapping specializes in whether is related to the 

phenotype, and it doesn't ask whether the pair has physically interactive or relation by a 

distance like the edge and the edge in the metabolic pathway. This is a new network with the 

side in the existing one without. 

 

5.2 Marker interval network 
It came to be able to make the network in pseudmarkers by two-dimensional interval 

mapping. The network by the marker interval was made in this research, though a network by 

a genetic map distance where cM was assumed to be a unit can be made. As a result, it comes 

to be able to list the genes that exist in the marker interval assumed to be significant by 

two-dimensional interval mapping. 

In this research, the new candidate genes of QTL that are related to the phenotype are 

extracted by using the marker interval network, PPI database, and Gene ontology. Thus, it 

proposes what the new candidate genes of QTL that are related to the phenotype are 

predictable by the comparison between a marker interval network and a database by a 
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physical map distance. If the already-known genes increase in PPI database and Gene 

ontology, a higher prediction of reliability becomes possible. 

 

5.3 Marker interval network database (MINTDB) 
A marker interval network is made from the result of two-dimensional interval mapping for 

a variety of phenotypes, and the database that integrates them is being constructed. This is 

named marker interval network database (MINTDB). Now, the database is composed by the 

result of each two-dimensional interval mapping and the marker interval network for 24 

phenotypes (the dataset of intercross about the blood pressure (Sugiyama et al, 2002, and 

DiPetrillo et al, 2004), the dataset of intercross about the bone density (Beamer et al, 1999), 

the dataset of backcross about the cholesterol (Wittenberg et al, 2002), and the dataset of 

backcross about the blood pressure of salt-induced hypertension mice (Sugiyama et al, 2001)). 

These datasets can be compared with data with a different marker as long as it is the QTL 

dataset of mice. Moreover, it is possible to compare it with the dataset that integrates the 

datasets of 24 phenotypes (Figure 13). 

     (1)                                 (2) 

 
Figure 13 The comparison of marker interval networks. 

In the comparison of the marker interval networks (1), the comparison between the dataset of the blood 

pressure of salt-induced hypertension mice (upper right, Sugiyama et al, 2002) and the dataset of the 

blood pressure (left under, Sugiyama et al, 2002) was enumerated as an example. 

In the comparison with the database of marker interval networks (2), the comparison between the dataset 

of FST (left under, Yoshikawa et al, 2002) and the dataset of the number of marker interval pairs of the 

high rank of ten in 24 phenotypes (upper right) was enumerated as an example. 

 

In this research, the comparison of the marker interval networks of a different phenotype 
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was enabled by the database constructed with the datasets of marker interval networks of 24 

phenotypes. There are the datasets that assumes that are related mutually though they are the 

different phenotypes (for example, blood sugar and weight, etc.). Even if they are the same 

phenotypes, there is the difference by the lineage. Therefore, it is important to enable these 

comparisons. Hereafter, two-dimensional interval mapping is applied to more phenotypes, and 

it aims at the construction of a larger database. 
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Appendix 
 

A.1 Detail of the derivation in interval mapping 
Here, the detail of the derivation interval mapping that is abbreviated in 2.2.4 is explained. 
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A.2 P1 backcross and P2 backcross of interval mapping 
Here, in P1 backcross, and P2 backcross lines, details of the EM algorithm are explained. 

 

A.2.1 The E step of P1 backcross 

At the location where we calculate its LOD score (i.e., at pseudomarker), the genotype is 

estimated in a probabilistic manner. The genotype at the pseudomarker is estimated using the 

following nine cases of the flanking marker genotypes. 

 

1: A1A1B1B1 2: A1A1B1B2 4: A1A2B1B1 5: A1A2B1B2 

 

Here, A and B represent the flanking markers and the suffixes one and two represent from 

whether maternal or paternal the marker inherits. On the other hand, the pseudomarker 

genotype is represented one of Q1Q1 and Q1Q2. Here, Q represents the pseudomarker between 

marker A and B. Assume that the probability that a recombination happens between A and Q 

is r1, the probability that a recombination happens between Q and B is r2, the probability that a 

recombination happens only by one degree between A and B is assumed to be r1+2, and the 

probability that a recombination happens both between A and Q and between Q and B is r12. 

When the genotypes of the flanking markers are case i as above, we denote the probability 

that the genotype of the pseudomarker is Q1Q1 and Q1Q2 by pi1 and pi2, respectively. Here, i 

ranges from one to four, and each is corresponds to one of the fore marker genotypes above. 

The probabilities of pi1 and pi2 are represented as follows. 

 

  Q1Q1（pi1） Q1Q2（pi2） 

1：A1A1B1B1 q1 q2 

2：A1A1B1B2 q3 q4 

4：A1A2B1B1 q4 q3 

5：A1A2B1B2 q2 q1 

 

Here, 
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Using the assumption that the residue terms of Q1Q1 and Q1Q2 cases are normally distributed, 

the probability densities Φ1 and Φ2 represented as follows. 
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Therefore, frequencies of the three genotypes at the pseudomarker described as follows. 

 

Q1Q1：z1＝φ1pi1 / (φ1pi1 + φ2pi2) 

Q1Q2：z2＝φ2pi2 / (φ1pi1 + φ2pi2) 
 

A.2.2 The M Step of P1 backcross 
The M step is carried out by using the result of the E step. The likelihood is represented as 

follows. 

( ) ( )∏∏∝
i

n

j

z
iji

z
iji

i
ijij ppL 21

2211 φφ  

 

Here, i indicates the genotype of the marker (one of the four types), and j indicates each 

individual (1 ~ ni) that has the marker genotype. 

Logarithm of the likelihood calculated as follows: 
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Here, const is a constant, and N is the number of individuals. By differentiating the 

log-likelihood with respect to u, a, d, and σ2, and setting the derivatives to zero, we have  
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These equations are sufficient to carry out the M step. We don’t have the estimators of each 

parameter. Now we have updated values of the four parameters. By using these values, the 

next E step is carried out. Until the values of parameters converge, the rounds of the E step 

and the M steps are iterated. The way to obtain the LOD score are the same as intercross. 

 

A.2.3 The E step of P2 backcross 

At the location where we calculate its LOD score (i.e., at pseudomarker), the genotype is 

estimated in a probabilistic manner. The genotype at the pseudomarker is estimated using the 

following nine cases of the flanking marker genotypes. 

 

5: A1A2B1B2 6: A1A2B2B2 8: A2A2B1B2 9: A2A2B2B2 

 

Here, A and B represent the flanking markers and the suffixes one and two represent from 

whether maternal or paternal the marker inherits. On the other hand, the pseudomarker 

genotype is represented one of Q1Q2 and Q2Q2. Here, Q represents the pseudomarker between 

marker A and B. Assume that the probability that a recombination happens between A and Q 

is r1, the probability that a recombination happens between Q and B is r2, the probability that a 

recombination happens only by one degree between A and B is assumed to be r1+2, and the 

probability that a recombination happens both between A and Q and between Q and B is r12. 

When the genotypes of the flanking markers are case i as above, we denote the probability 

that the genotype of the pseudomarker is Q1Q2 and Q2Q2 by pi2 and pi3, respectively. Here, i 

ranges from one to four, and each is corresponds to one of the fore marker genotypes above. 

The probabilities of pi2 and pi3 are represented as follows. 

 

  Q1Q2（pi2） Q2Q2（pi3） 

5：A1A2B1B2 q1 q2 

6：A1A2B1B2 q3 q4 

8：A2A2B1B2 q4 q3 

9：A2A2B2B2 q2 q1 
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Using the assumption that the residue terms of Q1Q2 and Q2Q2 cases are normally distributed, 

the probability densities Φ2 and Φ3 represented as follows. 
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Therefore, frequencies of the three genotypes at the pseudomarker described as follows. 

 

Q1Q2：z2＝φ2pi2 / (φ2pi2 + φ3pi3) 

Q2Q2：z3＝φ3pi3 / (φ2pi2 + φ3pi3) 
 

A.2.2 The M Step of P2 backcross 
The M step is carried out by using the result of the E step. The likelihood is represented as 

follows. 
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Here, i indicates the genotype of the marker (one of the four types), and j indicates each 

individual (1 ~ ni) that has the marker genotype. 

Logarithm of the likelihood calculated as follows: 
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Here, const is a constant, and N is the number of individuals. By differentiating the 

log-likelihood with respect to u, a, d, and σ2, and setting the derivatives to zero, we have 
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These equations are sufficient to carry out the M step. We don’t have the estimators of each 

parameter. Now we have updated values of the four parameters. By using these values, the 

next E step is carried out. Until the values of parameters converge, the rounds of the E step 

and the M steps are iterated. The way to obtain the LOD score are the same as intercross. 

 

A.3 Derivation of two-dimensional interval mapping 
Here, the detail of the derivation interval mapping that is abbreviated in 2.4.3 is explained. 
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As a result, 

( ) ( ) ( )∑∑∑∑∑∑∑∑ ++−−−−++−=
81

6541

81

9873211

8181
ˆˆ1ˆ

i

n

j
ijijij

i

n

j
ijijijijijij

i

n

j
ij

i

n

j

iiii

zzzdzzzzzzayu  

( ) ( )∑∑∑∑ ++−−+−+−−
81

8522

81

9764312
ˆˆ

i

n

j
ijijij

i

n

j
ijijijijijij

ii

zzzdzzzzzza  

( ) ( ) ( ) ( )∑∑∑∑∑∑ ∑∑ −−−−−+−−−
81

512

81

6421

81 81

8212973112
ˆˆˆˆ

i

n

j
ij

i

n

j
ijij

i

n

j i

n

j
ijijijijijij

iii i

zlzzjzzjzzzzi  

・・・（1） 

Moreover, 

( ) ( ) ( ) ( )
( ) ( ) ( )∑∑













−++−−+−+−−+−+−−

++−−+−−−−+−−−−
=

∂
∂ 81

122191221812217

122131221212211

2
1

1ln
i

n

j ijijijijijij

ijijijijijiji

iaauyzjdauyziaauyz
iaauyzjdauyziaauyz

a
L

σ
 

( ) ( )
( ) ( ) ( )
( ) ( )

01 81

1282129731

282297311987321

987321987321

2
=

















+−−+−−

−−+−−−+++++−

−−−++−−−−++

= ∑∑
i

n

j
ijijijijijij

ijijijijijijijijijijijij

ijijijijijijijijijijijijij
i

jzzizzzz
dzzazzzzazzzzzz

uzzzzzzyzzzzzz

σ
 



 - 44 - 

As a result, 
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Moreover, 
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From (3) – (9), 
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From (8) – (10), 
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From (18) – (6), 
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From (2) – (7), 
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From (21), 
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A.4 P1 backcross and P2 backcross of two-dimensional interval mapping 
Here, in P1 backcross, and P2 backcross lines, details of the EM algorithm in 

two-dimensional interval mapping are explained. 

 

A.4.1 The E step of P1 backcross 

At the location where we calculate its LOD score (i.e., at pseudomarker), the genotype is 

estimated in a probabilistic manner. The genotype at the pseudomarker is estimated using the 
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16 cases (Multiplication of four cases (A1A1B1B1 ~ A1A2B1B2) and four cases (C1C1D1D1 ~ 

C1C2D1D2)) of the flanking marker genotypes. Here, A and B represent the flanking markers 

and the suffixes one and two represent from whether maternal or paternal the marker inherits. 

On the other hand, the pseudomarker genotype is represented one of the following four cases. 

 

1: Q1Q1Q3Q3 2: Q1Q1Q3Q4 4: Q1Q2Q3Q3 5: Q1Q2Q3Q4 

 

Here, Q1 and Q2 represent the pseudomarker between marker A and B, and Q3 and Q4 

represent the pseudomarker between marker C and D. The suffixes one and two represent 

from whether maternal or paternal the pseudmarker inherits, and the suffixes three and four 

represent from whether maternal or paternal the pseudmarker inherits. 

Assume that the probability that a recombination happens between A and Q is r1, the 

probability that a recombination happens between Q and B is r2, the probability that a 

recombination happens only by one degree between A and B is assumed to be r1+2, and the 

probability that a recombination happens both between A and Q and between Q and B is r12. 

Moreover, assume that the probability that a recombination happens between C and Q is r3, 

the probability that a recombination happens between Q and D is r4, the probability that a 

recombination happens only by one degree between C and D is assumed to be r3+4, and the 

probability that a recombination happens both between C and Q and between Q and D is r34. 

When the genotypes of the flanking markers are case i as above, we denote the probability 

that the genotype of the pseudomarker is Q1Q1Q1Q1 ~ Q1Q2Q1Q2 by pi1, pi2, pi4, and pi5, 

respectively. Here, i ranges from one to nine, and each is corresponds to one of the nine 

marker genotypes above. The probabilities of pi1, pi2, pi4, and pi5 are obtained from the product 

of the probability in the gene locus of the first pseudmarker and the second pseudmarker. 

The probabilities in the gene locus of the first pseudmarker are represented as follows. 
 

  Q1Q1（pi1,2） Q1Q2（pi4,5） 

1：A1A1B1B1 q1 q2 

2：A1A1B1B2 q3 q4 

4：A1A2B1B1 q4 q3 

5：A1A2B1B2 q2 q1 

 

Here, 
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The probabilities in the gene locus of the second pseudmarker are represented as follows. 
 

  Q3Q3（pi1,4） Q3Q4（pi2,5） 

1：C1C1D1D1 q1 q2 

2：C1C1D1D2 q3 q4 

4：C1C2D1D1 q4 q3 

5：C1C2D1D2 q2 q1 

 

Here, 
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Using the assumption that the residue terms of Q1Q1Q3Q3 ~ Q1Q2Q3Q4 cases are normally 

distributed, the probability densities Φ1, Φ2, Φ4, and Φ5 represented as follows. 
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Therefore, frequencies of the nine genotypes at the pseudomarker described as follows. 
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A.4.2 The M Step of P1 backcross 
The M step is carried out by using the result of the E step. The likelihood is represented as 

follows. 
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Here, i indicates the genotype of the marker (one of the 16 types), and j indicates each 

individual (1 ~ ni) that has the marker genotype. 

Logarithm of the likelihood calculated as follows: 
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Here, const is a constant, and N is the number of individuals. By differentiating the 

log-likelihood with respect to u, a1, d1, a2, d2, i12, j12, j21, l12, and σ2, and setting the derivatives 

to zero, we have as follows. 
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These equations are sufficient to carry out the M step. We don’t have the estimators of each 

parameter. Now we have updated values of the ten parameters. By using these values, the next 

E step is carried out. Until the values of parameters converge, the rounds of the E step and the 

M steps are iterated. The way to obtain the LOD score are the same as intercross. 
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A.4.3 The E step of P2 backcross 

At the location where we calculate its LOD score (i.e., at pseudomarker), the genotype is 

estimated in a probabilistic manner. The genotype at the pseudomarker is estimated using the 

16 cases (Multiplication of four cases (A1A2B1B2 ~ A2A2B2B2) and four cases (C1C2D1D2 ~ 

C2C2D2D2)) of the flanking marker genotypes. Here, A and B represent the flanking markers 

and the suffixes one and two represent from whether maternal or paternal the marker inherits. 

On the other hand, the pseudomarker genotype is represented one of the following four cases. 

 

5: Q1Q2Q3Q4 6: Q1Q2Q4Q4 8: Q2Q2Q3Q4 9: Q2Q2Q4Q4 

 

Here, Q1 and Q2 represent the pseudomarker between marker A and B, and Q3 and Q4 

represent the pseudomarker between marker C and D. The suffixes one and two represent 

from whether maternal or paternal the pseudmarker inherits, and the suffixes three and four 

represent from whether maternal or paternal the pseudmarker inherits. 

Assume that the probability that a recombination happens between A and Q is r1, the 

probability that a recombination happens between Q and B is r2, the probability that a 

recombination happens only by one degree between A and B is assumed to be r1+2, and the 

probability that a recombination happens both between A and Q and between Q and B is r12. 

Moreover, assume that the probability that a recombination happens between C and Q is r3, 

the probability that a recombination happens between Q and D is r4, the probability that a 

recombination happens only by one degree between C and D is assumed to be r3+4, and the 

probability that a recombination happens both between C and Q and between Q and D is r34. 

When the genotypes of the flanking markers are case i as above, we denote the probability 

that the genotype of the pseudomarker is Q1Q2Q1Q2 ~ Q2Q2Q2Q2 by pi5, pi6, pi8, and pi9, 

respectively. Here, i ranges from one to nine, and each is corresponds to one of the nine 

marker genotypes above. The probabilities of pi5, pi6, pi8, and pi9 are obtained from the product 

of the probability in the gene locus of the first pseudmarker and the second pseudmarker. 

The probabilities in the gene locus of the first pseudmarker are represented as follows. 
 

  Q1Q2（pi5,6） Q2Q2（pi8,9） 

1：A1A2B1B2 q1 q2 

2：A1A2B2B2 q3 q4 

4：A2A2B1B2 q4 q3 

5：A2A2B2B2 q2 q1 
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Here, 
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The probabilities in the gene locus of the second pseudmarker are represented as follows. 
 

  Q3Q4（pi5,8） Q4Q4（pi6,9） 

1：C1C2D1D2 q1 q2 

2：C1C2D2D2 q3 q4 

4：C2C2D1D2 q4 q3 

5：C2C2D2D2 q2 q1 

 

Here, 

( )
( )43

3443
5 1

1

+−
+−−

=
r

rrrq  ( )43

34
6 1 +−
=

r
rq  

( )
43

344
7

+

−
=

r
rrq  

( )
43

343
8

+

−
=

r
rrq  

 

Using the assumption that the residue terms of Q1Q2Q3Q4 ~ Q2Q2Q4Q4 cases are normally 

distributed, the probability densities Φ5, Φ6, Φ8, and Φ9 represented as follows. 
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Therefore, frequencies of the nine genotypes at the pseudomarker described as follows. 
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A.4.4 The M Step of P2 backcross 
The M step is carried out by using the result of the E step. The likelihood is represented as 

follows. 
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Here, i indicates the genotype of the marker (one of the 16 types), and j indicates each 

individual (1 ~ ni) that has the marker genotype. 

Logarithm of the likelihood calculated as follows: 
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Here, const is a constant, and N is the number of individuals. By differentiating the 

log-likelihood with respect to u, a1, d1, a2, d2, i12, j12, j21, l12, and σ2, and setting the derivatives 

to zero, we have as follows. 
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These equations are sufficient to carry out the M step. We don’t have the estimators of each 

parameter. Now we have updated values of the ten parameters. By using these values, the next 

E step is carried out. Until the values of parameters converge, the rounds of the E step and the 

M steps are iterated. The way to obtain the LOD score are the same as intercross. 
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