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Abstract

Identifying a set of loci affecting a trait that shows a continuous distribution of values is
attracting great interest. Such loci are called quantitative trait loci (QTLs) and a series of
analyses including prediction of QTL locations along chromosomes is called QTL analysis.
During the primary analysis, each candidate QTL location is individually investigated. The
framework called interval mapping (IM), which is most frequently used in QTL analysis,
follows this single scan strategy. However, since the distribution of quantitative trait values is
considered to be affected by an aggregation of multiple QTLs, the single scan strategy
introduces approximation by neglecting the correlated relationships among multiple loci,
reducing detecting power of the method.

To cope with this problem, we develop a new framework called two-dimensional interval
mapping (2DIM). This framework can evaluate simultaneous effects of the loci by improving
the single scan framework so that it can carry out estimation in a multi-dimensional manner.
After introducing the statistical background of two-dimensional interval mapping, usefulness
of this method is also demonstrated by using mainly the real datasets of mice, from a practical
point of view.

On the other hand, two-dimensional interval mapping can reveal another aspect of QTL
analysis. The two-dimensional method can extract pairs of marker intervals that are
significant to the quantitative trait of interest instead of significant intervals that are obtained
by using the usual interval mapping in a one-dimensional manner. This means that the whole
set of the significant interval pairs constitutes a network among marker intervals. We call the
network a marker interval network to emphasize that it can represent the synergetic
architecture behind the trait. Applying the method to schizophrenia model mice, we
constructed an interaction map among marker intervals in relation to this disease. Using the
interaction map, correlated behavior among genetic factors is discussed.

We also applied two-dimensional interval mapping to more than twenty datasets of mice
quantitative traits that are publicly available. The results are stored in a database named
marker interval network database (MINTDB). This database provides analytical facilities
focusing on characteristics of the network architecture in the datasets. Using them, we can
compare and integrate marker interval networks each of which is significant to a specific

quantitative trait.
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Chapter 1

Introduction

A quantitative trait is a phenotype that is shown by a continuous amount. Body height and
body weight are examples. Since the distribution of values of a quantitative trait is considered
to be regulated by multiple genetic factors, effects of combination of genetic factors to the
quantitative trait are attracting interest. Although such correlated behavior among genetic
factors is essential to a quantitative trait, analytical techniques that can cope with interactions

among those factors are not necessarily sufficient.

1.1 Motivation

A gene locus that is concerned with a quantitative trait is called a quantitative trait locus
(QTL). Series of analyses including prediction of locations of such QTLs on chromosomes is
called QTL analysis. The history of QTL analysis can go back to, for example, Sax (1923)
who showed that two traits of haricot color (qualitative) and weight (quantitative) were
mutually interacting, and the former can be used as a kind of a marker of the latter. Based on
this observation, Thoday (1961) showed that locations of quantitative loci can be identified by
using qualitative traits. However, since the number of the qualitative traits available was
limited, sufficient results were not obtained. Currently, densely located DNA markers such as
micro-satellite markers are available, without suffering from such the problems as in the past,

we can carry out QTL analysis precisely to our heart’s content.

1.2 Two-dimensional interval mapping (2DIM)

Effects of combinations of multiple genetic factors are often concerned with a quantitative
trait. Interval mapping method that estimates significance of at possibility of existence a QTL
at each single location on chromosomes is insufficient. Some extension of the framework of
interval mapping is required. In this research, we developed a new framework called
two-dimensional interval mapping that can extract significant pairs of chromosome segments
in relation to the behavior of correlated characteristics behind a quantitative trait.
Two-dimensional interval mapping can evaluate interactions among genetic factors (i.e.,
epistatic effects). It can take into account additive and dominant effects of each candidate
QTL. We discuss the efficiency of two-dimensional interval mapping by using the dataset of

schizophrenia model mice.



1.3 Marker interval network

Two-dimensional interval mapping can reveal another aspect of QTL analysis. The
two-dimensional method can extract pairs of marker intervals that are significant to the
quantitative trait of interest instead of significant intervals that are obtained by using the usual
interval mapping in a one-dimensional manner. This means that the whole set of the
significant interval pairs constitutes a network among marker intervals. We call the network a
marker interval network to emphasize that it can represent the synergetic architecture behind
the trait. Applying the method to schizophrenia model mice, we constructed an interaction
map among marker intervals in relation to this disease. Using the interaction map, correlated
behavior among genetic factors is discussed.

On the other hand, in two-dimensional interval mapping, as well as the traditional
one-dimensional interval mapping, estimated QTL locations between markers are indicated in
genetic map distance (recombination fraction) along chromosomes. Thus, except the locations
just on the marker loci, results of two-dimensional interval mapping cannot be compared
directly with data using physical map distance (base pairs). By comparing marker interval
networks and gene networks, for example, protein-protein interaction (PPI), we tried to find
candidate genes within the significant interval pairs. The results of preliminary analysis are

presented using the marker interval network in relation to size of sexual organs of fly.

1.4 Marker interval network database (MINTDB)

We also applied two-dimensional interval mapping to more than twenty datasets of mice
quantitative traits that are publicly available. The results are stored in a database named
marker interval network database (MINTDB). This database provides analytical facilities
focusing on characteristics of the network architecture in the datasets. Using them, we can
compare and integrate marker interval networks each of which is significant to a specific

quantitative trait.

1.5 Outline of this Thesis

Chapter 2 introduces two-dimensional interval mapping. In Chapter 3, using
two-dimensional interval mapping, marker interval networks are constructed in relation to
mice datasets. In Chapter 4, fly marker interval networks are compared to and integrated with

gene networks. In Chapter 5, discussion and future work are described.



Chapter 2

Two-dimensional interval mapping (2DIM)

We develop a new framework called two-dimensional interval mapping (2DIM). This
framework can evaluate simultaneous effects of the loci by improving the single scan
framework so that it can carry out estimation in a multi-dimensional manner. After
introducing the statistical background of two-dimensional interval mapping, usefulness of this
method is also demonstrated by using mainly the real datasets of mice, from a practical point

of view.

2.1 Data for QTL Analysis

The data needed in QTL analysis is a set of values of the target trait and genotypes of marker
loci. There are three genotypes at marker loci in the datasets we use in this study: a
homozygote of the maternal line, a homozygote of the paternal line, and a heterozygote of
both lines. Since the marker loci are discretely located along chromosomes, genotypes at
locations (sometimes called pseudomarkers) between flanking markers are estimated by using

a map function, for example, Haldane’s mapping function in a probabilistic manner.

2.2 Interval mapping
2.2.1 Outline of the Method

As the foundation of the two-dimensional interval mapping, we first formalize the
traditional one-dimensional interval mapping. If we assume that quantitative trait values are
affected by genetic factors and environmental effects, the genetic model between trait values

and genotypes is shown as follows:
P=G+E.

Here, P represents phenotype values of the quantitative trait, G represents the genotype
values, and E is the environmental effects. This model can be rewritten if we want to take
additive effects (effects when the genotype is the homozygote) and dominant effects (effects

when the genotype is the heterozygote) into account as follows:

P=u+a+d+o’.



Here, u is a constant, a represents additive effects, d represents dominant effects, and o is a
residue term that is assumed to be normally distributed. As for additive and dominant effects,
it becomes u# + a in case of the homozygote of the maternal line, u — a in case of the
homozygote of the paternal origin and u + d in case of the heterozygote. o” is assumed to be
normally distributed.

Genotype frequency at a pseudomarker is missing. Using an EM algorithm, therefore, the
values of the four parameters above are estimated so that the likelihood is maximized and the
genetic model can explain the data as much as possible. The EM algorithm is carried out in
two steps (the E step and the M step). The expected value of genotype frequency is obtained
in the E step and the parameter values are maximized in the M step.

As the initial values, zero is used for a and d, and the average and the variance of the trait
values are respectively used for # and ¢°. The E step and the M step are carried out using
theses initial values, and both steps are alternately repeated until the values of the four
parameters converge. If the estimations of the parameters are obtained, the ratio of the
likelihood of the model that assumes a and d are not zero against the likelihood of the null
hypothesis that does not assume genetic effects in the trait values. The logarithm of the ratio is
the LOD score. This procedure is carried out to calculate the LOD score at each location

between the flanking markers.

2.2.2 Details of the Method

To carry out interval mapping, an EM algorithm is designed for each of inbred line. Here,
using an F, intercross line, details of the EM algorithm are explained. Note that the
calculation of the other lines, for example, P; backcross, and P, backcross and so on can be
carried out in the same manner. The details of the E step and the M steps are as follows. Note

that those calculations are carried out at each location among flanking markers.

2.2.3 The E Step
At the location where we calculate its LOD score (i.e., at pseudomarker), the genotype is
estimated in a probabilistic manner. The genotype at the pseudomarker is estimated using the

following nine cases of the flanking marker genotypes.

1: A1A1B1B1 2: A1A1B1B2 3: A1A1B2B2 4. A1A2B1B1 5: A1A2B1B2
6: A1A2B2B2 7: A2A2B1B1 8: AzAzBle 9: A2A2B2B2



Here, A and B represent the flanking markers and the suffixes one and two represent from
whether maternal or paternal the marker inherits. On the other hand, the pseudomarker
genotype is represented one of Q;Q;, Q;Q», and Q,Q,. Here, Q represents the pseudomarker
between marker A and B. Assume that the probability that a recombination happens between
A and Q is rj, the probability that a recombination happens between Q and B is rp, the
probability that a recombination happens only by one degree between A and B is assumed to
be 1142, and the probability that a recombination happens both between A and Q and between
Q and B is rj;. When the genotypes of the flanking markers are case i as above, we denote the
probability that the genotype of the pseudomarker is Q;Q;, QQz, and Q,Q: by pi1, piz, and pis,
respectively. Here, i ranges from one to nine, and each is corresponds to one of the nine

marker genotypes above. The probabilities of pii, pi2, and pj; are represented as follows.

QiQ: (pin) Qi1Q: (p2) Q2Q:> (pis)
1:A\ABB, |q/’ 2qiq> q’
2:AABB; | qiqs q19412q3 Q244
3:AJAB,B; | g 2434 44’
4: A1AB1Br | qus q193+q2qs Q293
5:A1ABIBy | Z1qiqetZaq3qs 21(q1 40 )+ 22(q5°+q47) 2191921229304
6: A1A;B.By | s q1q31Tq2q4 q194
7: A,A,B B Qs 29394 q5°
8: ALA,B B, q294 q1941q29;3 qQ193
9: A,AB,B, | g’ 241> qr’
Here,
Q1:(l_8_rz+rn) Q2:rl—2 q3:M Q4:M
~1u) (1-7.,) o o
z, = (1=r,,)" z,=1-z.

{(1 AT )2 + ”1+22 }

Using the assumption that the residue terms of Q;Q;, Q;Q, and Q,Q, cases are normally

distributed, the probability densities @;, @,, and @; represented as follows.

(y-u-a)’ (y-u—dYy (y-u+a)
el b i
1 e 20 ¢2 — 1 e 20 ¢3 — e 20




Therefore, frequencies of the three genotypes at the pseudomarker described as follows.

O101:21= Dipi / (Dipa + @opin + P3piz)
0102:20= Doypipn / (Dipin + Dopin + D3 pi3)
0200 z3= Dsp/ (Dipin + Dopn + D3pi3)

2.2.4 The M Step

The M step is carried out by using the result of the E step. The likelihood is represented as
follows.

9 n
Lee HH<p“¢’71)ZU1 (pi2¢ij2 )Z(iz (pi3¢ij3 )ZU3
i

Here, i indicates the genotype of the marker (one of the nine types), and ;j indicates each
individual (1 ~ »;) that has the marker genotype.

Logarithm of the likelihood calculated as follows:
9
ln(L) = const + ZZ(Zlﬂ Inp,+z,Inp,+z,;Inp,;, )— O.5N1n<27r0'2)
i

9 n

_ZZ{ZQI(J’@/_“_“)Z +Z:‘j2(yy‘_”_d)2+Zi/3(y@/_”+a)2}
— = 20 '

5 20 20

Here, const is a constant, and N is the number of individuals. By differentiating the

log-likelihood with respect to u, a, d, and 02, and setting the derivatives to zero, we have
9 9 9.
Zzzzﬁyv Zzzijsyij Zzziﬂya’
i i A i J

SV E— S R S E—
9 9 9

2.2 PP 2.2

i i i

=u+a,

b

l &
A2

¢ :NZZ{Z”I();” ~u-af +Z,-,~2(y,-j ~u—df "‘ijs(%/ _““‘a)z}'

i

These equations are sufficient to carry out the M step, but if one wants to have the estimators

of each parameter, they are represented as follows:



9 n 9 n 9 9
(Zzzzﬂyzj] (ZzziﬁyﬁJ (Zzziﬂyﬁj (ZzziﬁyﬁJ
l9jn, + l9jn, l9jn, N l9jn,
227 2.2 % 2. 2% 2.2 %
i i i i

u= , 4= ,

2 2

9 N 9
335 (352
9 lgjn. + lgjn.
[ZZZ"JZ)}"J] 2.2 % 227
i _ i g i

9 n 2
PIPIL
i

A

The details of the derivations are given in Appendix A.1. Now we have updated values of the
four parameters. By using these values, the next E step is carried out. Until the values of

parameters converge, the rounds of the E step and the M steps are iterated.

2.2.5L0OD Score
A LOD score is calculated using the values of the log-likelihood In(L) and In(Ly). In(Lo) is

calculated by the parameters that are obtained under the null hypothesis.

1
LOD =log,, L—log,, L, = 00) {In(L)-1n(L, )}

In(10

The constant value (const) disappears. P; backcross and P, backcross can be explained
similarly, and refer to appendix A.2 for details.

When the LOD score is obtained, the pseudmarker is moved to the next of 1cM, and the
calculation is repeated on all chromosomes. And, the graph where the position on the
chromosome (cM) is taken in the horizontal and the LOD score was taken in the ordinate is
written. Figure 2 shows the example of applying interval mapping to the dataset of

schizophrenia model mice's forced swim test (Yoshikawa et al, 2002, chromosome 3).

2.2.6 An Example

When interval mapping is applied to the datasets of schizophrenia model mice's forced
swim test (Yoshikawa et al, 2002), how the LOD score changes by the repetition of the E
steps and the M steps in the EM algorithm is shown in Figure 2 (part of chromosome 8). The

LOD score rises whenever repeating.

-10 -
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Figure 1 Example of interval mapping

Interval mapping was applied to dataset of schizophrenia model mice's forced swim test (Yoshikawa et al,

2002, chromosome 3).
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Figure 2 Repetition frequency and LOD score of the E step and the M step in the EM algorithm
Transition of LOD score by repetition frequency of the E step and the M step in EM algorithm when

interval mapping is applied to dataset of schizophrenia model mice's forced swim test (Yoshikawa et al,

2002, part of chromosome 8)

2.3 Existing Two-Dimensional QTL Analysis
The QTL analysis method that considers gene loci and their interactions has been

-11 -



developed before. Insufficient points are of two-dimensional QTL analysis method though

TWOSCAN and multiple interval mapping (MIM) are enumerated as an example.

2.3.1 Multiple interval mapping

Multiple interval mapping is QTL analysis method that considered two gene loci (Kao et al,
1999). MIM uses the EM algorithm by advancing interval mapping. The place of QTL is
presumed beforehand by the Composite interval mapping (CIM), and it calculates based on
the place. The genetic model is shown as follows.

yl]k u + z aerz/k; + z ﬁzrs ( ijkr z/ks )

r=1 )¢scl .....

Here, the first term indicates the phenotype value, the second term is the effect of QTL of m
piece presumed beforehand, the third term is the effect of the interaction of the pair of QTL
(The pair of the same place is excluded) to which is presumed beforehand, and the fourth term
is the rest errors.

In MIM, the interaction is considered, but the calculation result is shown in the graph of
one dimension of each QTL presumption place, and only the place presumed beforehand is
calculated. That is, the place where the LOD score is low is not calculated by the calculation
done beforehand, and the place where the LOD score rises for the first time when pairing off

cannot be presumed.

2.3.2 TWOSCAN

TWOSCAN is two-dimensional QTL analysis method (Sen et al, 2001). The Monte Carlo
algorithm is used instead of the EM algorithm for easing and the flexibility of the calculation.
Genetic model's calculation type is shown by the next expression.

pu(y|m)= ZZW

slu

Here, y is the phenotype value, m is the marker genotype, u is a present QTL presumption
place (1 ~ q piece), r; is the genotype calculated there, and s is the number of QTL
presumption places of p class.

The calculation result of TWOSCAN is shown as two dimensions. The place where the
LOD score rises for the first time when pairing off can be presumed, differing from MIM.
However, it is an approximation method that uses the Monte Carlo algorithm, and the term of

an interaction is only one term.

-12-



2.4 Two-dimensional interval mapping (2DIM)
2.4.1 Outline of the method

In this research, it was thought that an existing two-dimensional QTL analysis method was
insufficient, and two-dimensional interval mapping that advanced existing interval mapping to
two dimensions was developed. Here, it explains two-dimensional interval mapping.

In existing interval mapping, it was a genetic model which consisted of one gene locus and
the additive effect and the dominant effect. However, in two-dimensional interval mapping, if
we want to superadd two gene loci and epistatic effects, the genetic model can be rewritten as

follows:
P=u+a1+d1+a2+d2+i12+j12+j21+112+02-

Here, u represents a genotype value, a; represents additive effects in the first pseudmarker, d,
represents dominant effects in the first pseudmarker, a, represents additive effects in the
second pseudmarker, d, represents dominant effects in the second pseudmarker, i}, represents
additive x additive epistatic effects, jj» represents additive X dominant epistatic effects, j»
represents dominant X additive epistatic effects, /;; represents dominant x dominant epistatic
effects, and o” is a residue term that is assumed to be normally distributed.

The EM algorithm of this genetic model is calculated as well as interval mapping. Here,
using an F, intercross line, details of the EM algorithm are explained also in two-dimensional
interval mapping. Note that the calculation of the other lines, for example, P; backcross, and

P, backcross and so on can be carried out in the same manner.

2.4.2 The E step

At the location where we calculate its LOD score (i.e., at pseudomarker), the genotype is
estimated in a probabilistic manner. The genotype at the pseudomarker is estimated using the
81 cases (Multiplication of nine cases (A;A;B1B; ~ A2A;B;B;) and nine cases (C;C,D,D; ~
C,C,D1Dy)) of the flanking marker genotypes. Here, A and B represent the flanking markers
and the suffixes one and two represent from whether maternal or paternal the marker inherits.

On the other hand, the pseudomarker genotype is represented one of the following nine cases.

1: Q1Q1Q3Q3 2: Q1Q1Q3Q4 3: Q1Q1Q4Q4 4: Q1Q2Q3Q5 5: Q1Q2Q3Q4
6: Q1Q2Q4Q4 7: Q2Q2Q3Q3 8: Q2Q2Q3Q4 9: Q20Q2Q4Q4

-13 -



Here, Q; and Q; represent the pseudomarker between marker A and B, and Q; and Qq
represent the pseudomarker between marker C and D. The suffixes one and two represent
from whether maternal or paternal the pseudmarker inherits, and the suffixes three and four
represent from whether maternal or paternal the pseudmarker inherits.

Assume that the probability that a recombination happens between A and Q is ry, the
probability that a recombination happens between Q and B is r;, the probability that a
recombination happens only by one degree between A and B is assumed to be r;:2, and the
probability that a recombination happens both between A and Q and between Q and B is 1».
Moreover, assume that the probability that a recombination happens between C and Q is 13,
the probability that a recombination happens between Q and D is rs, the probability that a
recombination happens only by one degree between C and D is assumed to be r3.4, and the
probability that a recombination happens both between C and Q and between Q and D is 134.
When the genotypes of the flanking markers are case i as above, we denote the probability
that the genotype of the pseudomarker is Q;Q;Q;Q; ~ Q2Q2Q.Q: by pii ~ pis, respectively.
Here, i ranges from one to nine, and each is corresponds to one of the nine marker genotypes
above. The probabilities of pi; ~ pig are obtained from the product of the probability in the
gene locus of the first pseudmarker and the second pseudmarker.

The probabilities in the gene locus of the first pseudmarker are represented as follows.

QiQ (pi1~3) Q:1Q; (pi4~6) Q:Q; (pi7~9)
1: AlAlBlBl q12 2q1q2 q22
2: A1A BB, q193 q1941Tq2q3 204
3: A1A1B2B2 q32 2q3q4 q42
4: AjA;B B, 14 Q1931204 9293
5:AABIBy | 21qiqetZ2q3q4 2:(q1°+q0°)+22(q5"+q4”) Z1q1q2 220394
6: A1A;B,B, q2q3 Q193204 q194
7: AABB; | g2 24544 s’
8: A ALBiBy | g4 Q19479293 Q193
9: A2A2B2B2 q22 2q1q2 qlz
Here,
_(l_rl_”z"'rlz) _ _(7”2_’”12) _(7”1_7”12)
q, = q, = q; = q, =
(1 N ) (1 ) ) Fii2 N2

-14 -



(1 — rl+2 )2

le

The probabilities in the gene locus of the second pseudmarker are represented as follows.

{(I_rnz )2 +r1+22}

z,=1-z

Q3Qs (pira7) Q3Q4 (Pizs,s) Q4Q4 (Pize9)
1: C1C1D1D1 q52 2(15C16 q62
2: C,C,DiD; | gs5q7 qs9sTqeq7 J6ds
3: C,C,D,D, Q72 29793 %2
4: C,C,D D qs5qs g5q71tq6qs q6q7
5: C,C,DiD, 739567249798 Z3(Q52+Q62)+Z4(Q72+Q82) 739567249798
6: C,C,D,D, q6q7 q5q71tq6qs qs9s
7:C,C.DD; | g8 2q79s 9’
8: C,C,DD, q6qs q59stq6q7 qsq7
9: DD, | g6 2459 qs”
Here,

_(1—r3—r4+r34) Iy _(’”4 r34) _(”3"”34)

qs = q¢ = 1 ) 9, = qs =

(1 T34 ) ( T3y F344 3.4
-7, )
z, = ( 3+4) Z4:1—Z3

{(l_”3+4)2 +”3+42}

Using the assumption that the residue terms of Q;Q;Q3Q3 ~ Q2Q2Q4Q4 cases are normally
distributed, the probability densities @, ~ @, represented as follows.

(y-u-ay-ay-ip, )’
1 - 2

_(y—”—al +a, +ip )2

27
4 = 1 . 22
’ N2

1

1 _(y—”—al—dz—jlz )2
¢ — e 202
2

(v-u-d,~a,~jy )’
2

—_ [\®)
Ny

— e 20

(y-u-dy+ay+jy )
2
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_(y—”+al—az +ipy )’ 1 _()’—”Jral—dz +jin)

1 >
— e 20 —
¢, NS & oy
1

2
e 20

(y—u+a,+a,—i;, )
207

Therefore, frequencies of the nine genotypes at the pseudomarker described as follows.

A pi
000,0;:z = :
e QDy DDyt PsPis + Py + PsDis + G Dis + 8, D17 + B Pis + Do Dio

D
000,0,:z, = l
T QD+ PP+ ODis + DDy FOsDis + P Dis + DD + BiDis + Py Dio

Y2
000,0,:z;= l
QD+ PPy + Dy +DuDiy + G5 Dis + P Dio + B D + B Dis + Py Dio

PyDis
00,0,0;:z, = :
reEmE QP+ DDy T D Y Dy D5 Dis ¥ O Dig + P17 + K Dis + Do Dso

PsD;s
00,0,0,:z, = l
e QDy+ DDy T DD+ DyDiy + PsDis T PsDis + P17 + KDig + Do Dio

PeDio
00,0,0,:z4= l
PGPy + DDy +BDis T By Dig + s Pis + P Dig + B Dir + B Pis + oD

(g
0,0,0,0;:z, = :
= QP+ DPn T O D+ By HDsDis P Dis + 9, D17 + BeDis + o Dso

PPy
0,0,0,0, 1 z4 = :
e QPi+ DD O D3 T ByDig F sDis + P Dis + 9017 + BiPis + P Do

PoD;o
0,0,0,0,:2= l
PGPy + DDy + PP+ PyDis D5 Dis + P Pio + 1Dy + KD + Do Dio

2.4.3 The M Step
The M step is carried out by using the result of the E step. The likelihood is represented as

follows.

81

Lo TTTTpathi " (ot f (0t (0o (pish s = (it o (ot F (e (it

Here, i indicates the genotype of the marker (one of the 81 types), and j indicates each

individual (1 ~ »;) that has the marker genotype.
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Logarithm of the likelihood calculated as follows:

In(L)= const + Z z

3 & [ Z Inp, + Zija Inp, +Zy; In p,, +Zy Inp, +Zys In p,
i

—0.5N11’1(27T62)
+tzelnpg+zInp, +zInpg+z,Inp,

Y} Y Y}
Zi/l(yi/_u_al_az_llz) +Zg/2(yg,'_u_a1_d2_]12) +Zij3(yij_u_al+a2+llz)
207 207 207
Y 2 Y
& & Zg'/'4(y(/' —u—d, —a, _121) Zijs(yg/ —u—d, —d, _112) nge(yzj/_u_d1+a2 +J21)
_Zz + 2 + 2 + 2
T 20 20 20
Y Y Y}
z(/.7(y(/—u+al—az+llz) zﬁg(y,.j—u+a1—d2+.]12) z,.jg(y,.j—u+a1+az—112)
+ 2 + 2 + 2
20 20 20

Here, const is a constant, and N is the number of individuals. By differentiating the
log-likelihood with respect to u, ai, di, az, da, i12, j12, j21, L12, and 02, and setting the derivatives

to zero, we have as follows.

81 m;
ZZ Zijalij
i

n;

81
2.2 %
i

=h+d, +a,+ Jj, 1

n;

81
Zzzysyy
N
81

22 %

i

81 n;

DIPIEAE
P

81 n
2.2
iJ

i

81
zzzysyi[
i

J

81 m;
zzzys
i

-17 -



81 n;
ZZ Zip i
i
81 m
2.2
T,

=0+4,+a,+i, 6

81 m;
PIPIIN
P
81 n;
227
P

—i+a -a, i, 7
81
Zzzw%j
i

81

2.2 %
i

zu—a1+a2—112 8

81 n;
Zzzygyy-
i
81 m;
2. 2
T,

=u—a,—a, ti, 9

2 2
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These equations are sufficient to carry out the M step, but if one wants to have the

estimators of each parameter, they are represented as follows:

00+ ®)+0) , _6)+(1)-6)-0) , _6)-)+E)-0)

u= 1 , a, = 2 , J ,
j - 0+Q)_©)+)+@)+0) ;5 _B)+@)_(6)+7)+@)+()
2 4 2 4
;2 0-0)-6)+0) . _1)-02) 6)-0)+E)-0)
12 4 > Jai > 4 ,
_0-6)_©+(1)-6)-0)
21 2 4 H
P~ (5)- (1)+(2);(3)+(4)+ (6)+(7)Z(8)+(9)
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The details of the derivations are given in Appendix A.3. Now we have updated values of
the four parameters. By using these values, the next E step is carried out. Until the values of

parameters converge, the rounds of the E step and the M steps are iterated.

2.4.4LOD Score
A LOD score is calculated using the values of the log-likelihood In(L) and In(Ly). In(Ly) is

calculated by the parameters that are obtained under the null hypothesis.

LODscore =log,, L—log,, L, = ﬁ {ln(L)— In(L, )}

The constant value (const) disappears. P; backcross and P, backcross can be explained

similarly, and refer to appendix A.2 for details.

chromosome X chromosome 2 chromosome 3

X WOSOWoIYD
| |
-

Z 9WOSOoWOoIYd

€ awosowoayd

low

¥
i
T

Figure 3 Example of calculating two-dimensional interval mapping

Calculation example of applying two-dimensional interval mapping to datasets of size of sexual organs of
fly (Zeng et al,2000). Father is simulans, upper right, and father is maulitiana, under the left. It displayed
it in blue in the place where the LOD score was low and in red in the place where the LOD score was

high.
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When the LOD score is obtained, the second pseudmarker is moved to the next of 1¢M, and
the calculation is repeated on all chromosomes. Next, the first pseudmarker is moved to the
next of 1cM, and the calculation is repeated on all chromosomes. Thus, all chromosome pair

is calculated.

2.4.5 An Example

Figure 3 is the example of applying two-dimensional interval mapping to datasets (Zeng et
al, 2000) of the size of the sexual organs of fly. The point where the LOD score is low was
displayed in blue, and high was displayed in red.

2.5 Evaluation

The result by two-dimensional interval mapping is evaluated by a permutation test and
explained variance. In permutation test, the threshold of a significant LOD score is obtained.
Explained variance evaluates how much variance is exchanged by the parameters obtained by

two-dimensional interval mapping.

2.5.1 Permutation test

The threshold of the significant LOD score for the existence of QTL is obtained. The data
of the marker genotype and the data of the phenotype value are permuted at random, and a
similar calculation is repeated enough frequency in the data. The highest LOD score is
obtained each time. The lowest LOD score of high rank (100-N) % is assumed to be a
threshold for the significance level of N%.

2.5.2 Explained variance
Explained variance evaluates how much variance is exchanged by the parameters obtained
by two-dimensional interval mapping. Explained variance is calculated as follows:

(O-g;zo-z)xIOO.
Oy

ey =

Here, oy’ is 6 when each parameter is the initial value (that is, variance between individuals
of the phenotype value), and o” is o> when each parameter has been the calculated value in

each pseudmarker.
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Chapter 3

Maker interval network

In two-dimensional interval mapping, QTL of each 1cM is presumed as well as existing
interval mapping. Therefore, the result is given as LOD score in which significant of the
existence of QTL in each 1cM is shown. In a word, the result of two-dimensional interval
mapping, which is the data by a genetic map distance in which cM is assumed to be a unit,
cannot be compared directly with data by a physical map distance in which the base pair is

assumed to be a unit.

Figure 4 Example of making marker interval network

The left under is a part of the result of applying two-dimensional interval mapping to the dataset of
schizophrenia model mice's forced swim test (Yoshikawa et al, 2002, chromosome 4 and 5). When this
part is assumed to be a marker interval network, it is shown in the part enclosed by a red square in upper

right.

There, the result of two-dimensional interval mapping is treated as the data of which unit
was a marker interval. Whereat, the data enabled the comparison with the data of a physical
map distance, because a position of a marker by a physical map distance is clear. This data of
which the unit was a marker interval can be assumed a network where marker intervals are
assumed to be nodes and marker interval pairs are assumed to be edges. This network is

named a marker interval network. Here, the making method of marker interval network is
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explained, and the result of two-dimensional interval mapping is evaluated by using the

marker interval network.

3.1 Making method of marker interval network

The result by two-dimensional interval mapping is assumed data of which the unit is the
marker interval so that it can be compared with data by a physical map distance. In interval
mapping, QTL is presumed according to whether LOD scores in a marker interval exceed the
threshold calculated by a permutation test. That is, the maximum value among LOD scores of
a marker interval only has to be referred. Therefore, the maximum value among LOD scores
of a marker interval is treated as the LOD score in each marker interval.

Figure 4 is an example of making marker interval network from the result of two-
dimensional interval mapping. The left under is a part of the result of applying
two-dimensional interval mapping to the dataset of schizophrenia model mice's forced swim
test (Yoshikawa et al, 2002, chromosome 4 and 5). When this part is assumed to be a marker

interval network, it is shown in the part enclosed by a red square in upper right.

(1) (2)
chromosome 1,2,..,X chromosome 1,2,..,X
—> maker interval — maker interval

S

o

3

o

(%2}

o

3

@

=

N

*

Figure5 Result of two-dimensional interval mapping of schizophrenia model mice
The unit of each mass is a marker interval. Chromosome 1, 2, .., X queue up from the left sequentially.
In the chromosome, it queues up from the left sequentially in order in which cM of the marker is low.

((1): FST, (2): TST)
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ch1 M1 M2 feh2  |m1 |m2  JLOD fu a, a, d, d, i1 12 a1 11, o

3 o7 [835 B 197 835 [66.87 [14526 [5.04 |95 P822 [20.84 [3.69 [47.99 [12.36 |75.63 [994.2
5 1 18 5 18 54 U475 (18593 13.94 |-5.49 [p0.58 |17.45 |35.15 271 |-5.83 |-43.10 [1222.8
5 18 54 5 18 54 5323 [164.79 |-32.01 [21.48 [3.65 [30.25 |-15.41 [13.83 [17.16 |57.99 [1128.7
5 18 54 6 D5 65 [42.04 [168.94 }8.60 |-7.65 [-29.15 |-35.67 [23.46 [2.02 [9.97 [83.43 [1149.7
8 155 po 5 18 54 4130 [193.42 }-20.12 |-13.59 |-52.96 |-56.06 |-6.84 [22.85 [9.69 [77.46 [1218.3
8 155 po s 155 po 59.81 [164.79 |2.26 |6.91 [28.13 [42.57 |-12.64 |-13.21 [11.57 |-38.36 {1068.5
10 17 36 3 155 po 4278 [145.49 |-8.05 [9.38 |3.51 419 [2.32 [11.95 |5.81 [-80.41 [1241.6
10 17 36 10 17 36 39.52 [151.11 J0.43 277 [22.32 [5821 [8.94 [14.25 |4.35 [41.23 [1266.4
10 140 44 5 18 54 4738 [153.08 |-20.66 [-25.44 [13.66 [15.49 |19.18 [44.88 [33.67 |43.67 [1165.2
16 169 p3 16 169 3 40.51 [156.25 |10.01 [15.06 [23.04 [10.70 }6.36 [32.54 [23.98 |38.13 [1258.8
(2)

ch1 M1 M2 fch2  mI m2  [LOD |u a, a, d, d, i) 12 i1 1), o

3 337 W97 B 497 835 [60.64 [133.47 |-5.00 [7.31 [100.17 [162.43 [3.07 [17.44 }37.40 -251.30|6103.1
3 o7 [835 3 337 9.7 5832 12730 [6.89 |4.46 [179.44 [100.99 [9.11  }33.20 [9.72 —260.64I6090.3
3 o7 [835 B 97 835 M6.16 [144.17 5.01 209 [134.94 [86.99 [6.04 [-70.61 [37.09 |212.97}6820.4
5 1 18 5 18 54 51.94 [206.48 |-59.30 [10.93 p.62 |7.74 |[-33.63 [150.21 [44.89 |-39.58 [6475.4
5 18 54 5 18 54 49.03 [152.44 [5.71  |-19.17 [158.64 [32.10 |1.90 [47.82 [19.38 |186.40}6603.7
5 18 54 3 155 po 47.63 (19637 |-86.19 J40.18 |-19.34 [19.42 |-26.60 [152.06 |-75.41 |-35.73 [6516.6
8 155 po 3 155 po 48.89 [208.63 [68.12 |-73.46 |-42.98 [87.77 |42.94 |-55.48 [26.23 [-99.04 [6655.8
11 31 U7.64 |5 18 54 50.69 [273.3217.80 [32.71 |-132.82f142.204-41.65 |-7.20 |-41.18 |213.07 [6737.7
11 31 47.64 |11 31 U7.64 [51.38 [168.91 |24.67 [13.76 [22.24 [60.04 |-1.28 [-78.90 [74.04 |-76.35 |6668.7
11 17.64 [55.6 |11 31 U7.64 4536 [126.01 1743 [15.79 [170.33 |122.42 [12.25 [52.75 |31.86 —255.08I6926.6

Table 1 Value of each parameter calculated by two-dimensional interval mapping

Chl, M1, and M2 are one of chromosomes in the marker interval and the starting and the terminal points

of markers. Ch2, ml, and m2 are one of chromosomes in the marker interval and the starting and the

terminal points of markers. ((1):

3.2 Maker interval network

forced swim test, (2):

tail suspension test)

The dataset of the schizophrenia model mice (Yoshikawa et al, 2002) was used. The mice

are soaked compulsorily in water, and time until the mice don't struggle is measured in forced
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swim test (FST). And, the mice are caught by the tail, and time until the mice don't move is
measured in tail suspension test (TST). Two-dimensional interval mapping was applied to
these datasets, and the marker interval network was made (Figure 5). Moreover, ten intervals
that are evaluated as obviously significant in marker interval pairs of marker interval
networks in FST and TST, were listed (Table 1). A marker interval network is evaluated from

the LOD score, each parameter, and explained variance by using these datasets.

3.2.1 LOD score

The interval pairs with high LOD scores obtained two-dimensional interval mapping are
classified into two types. One is a pair of marker intervals each of which belongs to the same
chromosome segment. The other is a pair of marker intervals each of which belongs to the

different chromosome segment respectively.

(1

2

Figure 6 Example of a pair of marker intervals each of which belongs to the same chromosome
segment

One is the interval pair with a high LOD score calculated by interval mapping in the example of
chromosome 3 of FST (1). One is the interval pair with a low LOD score calculated by interval

mapping in the example of chromosome 5 of TST (2).
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Figure 7 Example of the marker interval where the pair is different

The first case is the interval pair with both high LOD scores calculated by interval mapping in the
example of chromosome 8 and 5 of FST (1). The second case is the interval pair with only one high LOD
score calculated by interval mapping in the example of chromosome 6 and 5 of FST (2). The third case is
the interval pair with both low LOD scores calculated by interval mapping in the example of

chromosome 5 of TST (3).
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In addition, the significant pairs of the former case are classified into two types (Figure 6).
One is the interval pair with a high LOD score calculated by interval mapping. The other is
the interval pair with a low LOD score calculated by interval mapping. On the other hand, the
significant pair of the latter case are classified into three types (Figure 7). The first case is the
interval pair with both high LOD scores calculated by interval mapping. The second case is
the interval pair with only one high LOD score calculated by interval mapping. The third case
is the interval pair with both low LOD scores calculated by interval mapping. It’s notable that

the gene in the marker interval affects mutually and is related to the phenotype in the third

case.
(1) 2)
ichl M1 M2 ich2 m1 m2 ev % chl M1 M2 ch2 m1 m2 ev %
3 149.7 83.5 3 149.7 83.5 66.87 3 33.7 49.7 3 149.7 83.5 60.64
5 1 18 5 18 54 44.75 3 149.7 83.5 3 33.7 149.7 58.32
5 18 54 5 18 54 53.23 3 149.7 83.5 3 149.7 83.5 46.16
5 18 54 6 2.5 26.5 142.04 5 1 18 5 18 54 51.94
3 15.5 40 5 18 54 41.30 5 18 54 5 18 54 149.03
8 15.5 40 i 15.5 40 59.81 5 18 54 i 15.5 40 147.63
10 17 36 3 15.5 40 142.78 3 15.5 40 3 15.5 40 48.89
10 17 36 10 17 36 39.52 11 31 U764 5 18 54 50.69
10 40 44 5 18 54 147.38 11 31 u7.64 (11 31 47.64  [51.38
16 16.9 143 16 16.9 143 140.51 11 47.64  |55.6 11 31 47.64  [45.36

Table 2 Explained variance for two-dimensional interval mapping
Explained variance was calculated from each o calculated by two-dimensional interval mapping. ev is

the value of explained variance. ((1): FST, (2): TST)

3.2.2 Prameters

Next, the term of epistatic effects is paid to attention among the results of each parameter.
In chromosome 5 (1.0-18.0cM and 18.0-54.0cM) in FST, the values of additive effects (a,
a,) are low, but the value of additive x additive epistatic effects (i;2) is high. In chromosome 3
(49.7-83.5¢M) in FST, the value of the first of additive effects (a;) and the value of the second
of dominant effects (d,) are low, but the value of additive x dominant epistatic effects (j;2) is
high. In chromosome 11 (31.0-47.64cM) in TST, the value of the first of dominant effects (d;)

and the value of the second of additive effects (a;) are low, but the value of dominant x
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additive epistatic effects (j;) is high. Each epistatic effect affects the phenotype more

effectively in these places.

3.2.3 Explained variance
Explained variance was calculated from each ¢ calculated by two-dimensional interval
mapping. (Table 2). Values are 40 ~ 60 %, and a lot of parts are shown by another parameter

by two-dimensional interval mapping.

g e A: chromosome 3 (33.7-49.7)
I'n @7 B |.|\ @ B: chromosome 3 (49.7-83.5¢cM)

b4 T C: chromosome 5 (1.0-18.0cM)

D: chromosome 3 (18.0-54.0cM)
E: chromosome 6 (2.5-26.5¢M)

F: chromosome 8 (15.5-40.0cM)

G: chromosome 10 (17.0-36.0cM)

H: chromosome 10 (40.0-44.0cM)

I: chromosome 11 (31.0-47.64cM)

J: chromosome 11 (47.64-55.6cM)

K: chromosome 16 (16.9-43.0cM)
Figure 8 The prediction of marker interval network

A marker interval network was predicted from the ten high-ranking marker interval pairs. It enclosed full
shows the marker interval where the high score was calculated in interval mapping. It enclosed with the
square shows the marker interval where the low score was calculated in interval mapping. The line where
each marker interval is connected shows the interaction. The arrow shows the epistatic effects that their

starting point is high rank. The line connected with oneself shows that it has the pair in the marker interval.

3.2.4 Prediction of maker interval network

Finally, the network is predictable from the ten high-ranking marker interval pairs of the
marker interval network, is described. When both FST and TST results are synthesized, the
network is like Figure 8 being composed is predictable in these ten marker intervals. It
enclosed full shows the marker interval where the high score was calculated in interval
mapping. It enclosed with the square shows the marker interval where the low score was
calculated in interval mapping. The line where each marker interval is connected shows the
interaction. The arrow shows the epistatic effects that their starting point is high rank. The line

connected with oneself shows that it has the pair in the marker interval.
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In Figure 8, a big network is composed centering on the marker interval of chromosome 5
(18.0-54.0cM). Although it was considered the ten high-ranking marker interval pairs in this
research, a bigger marker interval network can be predicted by paying attention to more

marker interval pairs.
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Chapter 4

Data of physical map distance

According to the result of two-dimensional interval mapping treated as the data of which unit
was a marker interval, the data enabled the comparison with the data by a physical map
distance, because a position of a marker by a physical map distance is clear. Here, as one
example of the comparison between the data by marker interval network and a physical map
distance, it compares with the PPI (protein-protein interaction) database, and the candidate

gene of QTL is extracted.
)

chmewaass K cheoreawrs 1

o Smmrpaalm s g i

o s

Figure 9 Result of two-dimensional interval mapping of size of sexual organs of fly (Zeng et al, 2000)
The unit of each mass is a marker interval. Chromosome 1, 2, .., X queue up from the left sequentially.
In the chromosome, it queues up from the left sequentially in order in which cM of the marker is low.

((1): father is maulitiana, (2): father is simulans)

4.1 Marker interval network and PPI database

Two-dimensional interval mapping was applied to the data of the size of the sexual organs
of fly (Zeng et al, 2000), and Marker interval network was made (Figure 9). The gene list in
each marker interval can be made by listing the gene placed between the franking markers
(Figure 10). Thus, the allocated LOD score of each marker interval pair means how strongly
at least one pair among the genes in the marker interval pair is related to the phenotype.
Whether it is interactive immediately or acts indirectly is not asked, the possibility where at
least one or more gene pairs with high possibility of being related mutually to the expression

of the phenotype exist, is high in the marker interval pair with high LOD score (For example,
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it may be a part of the metabolic pathway for the expression of the phenotype, or be the one
like the edge and the edge in the pathway, etc.).

"
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Figure 10 The making of the gene list from the marker interval network

Two data with different father was arranged to be comparable. The unit of each mass is a marker
interval. Chromosome 1, 2, X queue up from the left sequentially. In the chromosome, it queues up
from the left sequentially in order in which cM of the marker is low. The gene list can be made

respectively by listing the gene placed between the franking markers from each marker interval pair.

barker Interval Network PF| data baze

Figure 11 The comparison between marker interval network and PPI database
The comparison between a marker interval network (left) by two-dimensional interval mapping and

PPI database (right).

The gene being related to the phenotype is included in one or more gene pair included in
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the marker interval pair with high LOD score, whether immediately or indirectly is not asked.
On the other hand, the protein that has been interactive immediately is included in PPI
database, which phenotype is related is not asked. Here, the gene to which each protein of the
pair of the protein in PPI database that has been interactive immediately is coded is retrieved,
and the list of the gene pair is made, and each gene pair is allocated in each marker interval
pair. Then, it is related to the phenotype, and the gene pair with high possibility of interactive
immediately is included in the retrieved gene pair in PPI database included in the marker

interval where the LOD score is high (Figure 11).

4.2 Extraction of the candidate genes of QTL
The extracting the candidate genes of QTL become possible by the comparison with data
by physical map distance having become possible. Here, as continuation of 4.1 the one

example, the candidate genes of QTL of the size of the sexual organs of fly is extracted.

courtship behavior qtc, Est-6, per, ple, pros, spin, tko, y
male courtship behavior qtc, fru, tko
mating behavior dsf, per

mating behavior,
dsf, fru
sex discrimination

dsf, br, BtbVII, CG3056, CG6118, fru, lolal, mod(mdg4),
sex discrimination
sc, Sox100B, Sox14, Stat92E, ttk, vir

somatic sex discrimination | dsf

copulation dsf, fru, ken

Table 3 Biological process and gene thought to be related to the size of sexual organs
List of kind of Biological process thought to be related in the size of sexual organs used by this

research and the gene that belongs to it.

One of the gene pair at least is related to the size of sexual organs by using the data of
Biological process of Gene ontology extracted from among the retrieved gene pair in PPI
database included in the marker interval pair with high LOD score. Biological process and the
gene belonged to it that had been used at this time were summarized in Table 3. The gene pair
for one of the pair to contain these genes at least is sorted in order with high LOD scores
(Table 4).
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intervall genel interval2 gene2 LOD score
2-28.5-34.7 | CG6415 2-147.7-157.7 | mod(mdg4) 28.59117255
2-22.0-285 | CG14534 2-43.2-50.0 | Est-6 26.54336379
2-0.0-7.0 | CG15631 2-134.6-147.7 | fru 26.36016013
2-28.5-34.7 | Nupl70 2-14.3-21.3 | ple 25.21665039
2-34.7-55.2 | BG:DS06874.2 | 2-147.7-157.7 | Stat92E 2494588041
2-34.7-55.2 | CG4959 2-147.7-157.7 | CG31160 24.94588041
2-34.7-55.2 | CG4959 2-134.6-147.7 | fru 24.94588041
2-14.3-21.3 | Src64B 2-147.7-157.7 | mod(mdg4) 23.00990654
2-14.3-21.3 | CG12607 2-147.7-157.7 | mod(mdg4) | 23.00990654
2-14.3-21.3 | ple 2-147.7-157.7 | RpS30 23.00990654
intervall genel interval2 gene2 LOD score
2-14.3-21.3 | Src64B 2-147.7-157.7 | mod(mdg4) 27.48448759
2-14.3-21.3 | CG12607 2-147.7-157.7 | mod(mdg4) 27.48448759
2-14.3-21.3 | ple 2-101.3-114.2 | hb 27.48448759
2-143-213 | ple 2-147.7-157.7 | RpS30 27.48448759
2-28.5-34.7 | CG6415 2-147.7-157.7 | mod(mdg4) 27.11054392
2-21.3-28.7 | Nmt 2-147.7-157.7 | CG31160 27.02120768
2-28.7-43.2 | SH3PX1 2-123.3-126.6 | pros 25.99129802
2-14.3-21.3 | ple 2-114.2-123.3 | CG14684 24.81583541
2-0.0-7.0 | CG15631 2-134.6-147.7 | fru 2428721228
2-22.0-285 | CG14534 2-43.2-50.0 | Est-6 24.03511424

Table 4 List of the gene pair for one of the pair thought to be concerned in the size of sexual organs
at least.

Ten high-ranking gene pair of each dataset was listed. intervall and interval2 show the chromosome
number and the starting point and the terminal of the marker of the gene pair. genel and gene2 show
the gene pair. LOD score indicates the LOD score of the marker interval pair that includes the gene

pair. (top10: father is maulitiana, under10: father is simulans)

As for the threshold, when assuming the significance level of 95% by the permutation test
of 400 times, the threshold in the dataset that father is mauritiana was 8.17, and the threshold
in the dataset that father is simulans was 8.87(Figure 12). When the LOD score pays attention
to the gene pair more than the threshold, the gene pair with high possibility of being related to
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the expression of the size of sexual organs can be extracted.

L1

Figure 12 The result of the permutation test of 400 times
When assuming the significance level of 95%, the threshold in the dataset that father is mauritiana is

8.17, and the threshold in the dataset that father is simulans is 8.87.

The gene in no examination beforehand by Gene ontology of the gene pair extracted thus
was referred to the thesis. As a result, the genes that seem that it is related to the size of sexual

organs as follows:

CG6415, SrC64B, Nmt, Nup170, hb, CG4959, CG4328, krz, AP-50, CG31973, CG7291,
CG17666, HLHm7, CG33070, tun, Mst84a, Mst84b, Gld.

The genes related to the size of sexual organs are included in the list of these genes though it
has not been included in Gene ontology yet. There are the genes that are related to the size of

sexual organs though it has not been known yet in the extracted genes other than these.
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Chapter 5

Discussion and future work

In this research, two-dimensional interval mapping that is considered multiple gene loci
and their interactions is developed and a marker interval network was made from the result of
the two-dimensional interval mapping. Further discussions of these and the views in the future

are described.

5.1 Two-dimensional interval mapping (2DIM)

There are two advantages of advancing interval mapping to two dimensions. One is to have
come to calculate the terms of the interactions that are not considered in the interval mapping.
The other one is to have come to be able to treat as a network.

The terms of interactions make four parameters calculably, not only the additive xadditive
epistatic effects but also the additive x dominant epistatic effects, the dominant x additive
epistatic effects, and the dominant X dominant epistatic effects is included. Therefore, it is
clear which becomes significant by high-ranking time among pairs of the pseudmarker.
Moreover, which the interaction affects a lot is calculated for the pair of each QTL
presumption place.

The network by two-dimensional interval mapping specializes in whether is related to the
phenotype, and it doesn't ask whether the pair has physically interactive or relation by a
distance like the edge and the edge in the metabolic pathway. This is a new network with the

side in the existing one without.

5.2 Marker interval network

It came to be able to make the network in pseudmarkers by two-dimensional interval
mapping. The network by the marker interval was made in this research, though a network by
a genetic map distance where cM was assumed to be a unit can be made. As a result, it comes
to be able to list the genes that exist in the marker interval assumed to be significant by
two-dimensional interval mapping.

In this research, the new candidate genes of QTL that are related to the phenotype are
extracted by using the marker interval network, PPI database, and Gene ontology. Thus, it
proposes what the new candidate genes of QTL that are related to the phenotype are

predictable by the comparison between a marker interval network and a database by a
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physical map distance. If the already-known genes increase in PPI database and Gene

ontology, a higher prediction of reliability becomes possible.

5.3 Marker interval network database (MINTDB)

A marker interval network is made from the result of two-dimensional interval mapping for
a variety of phenotypes, and the database that integrates them is being constructed. This is
named marker interval network database (MINTDB). Now, the database is composed by the
result of each two-dimensional interval mapping and the marker interval network for 24
phenotypes (the dataset of intercross about the blood pressure (Sugiyama et al, 2002, and
DiPetrillo et al, 2004), the dataset of intercross about the bone density (Beamer et al, 1999),
the dataset of backcross about the cholesterol (Wittenberg et al, 2002), and the dataset of
backcross about the blood pressure of salt-induced hypertension mice (Sugiyama et al, 2001)).
These datasets can be compared with data with a different marker as long as it is the QTL
dataset of mice. Moreover, it is possible to compare it with the dataset that integrates the

datasets of 24 phenotypes (Figure 13).
(1) (2)

chromosome 1,2,..,.X chromosome 1,2,..,.X )
—> —> marker interval

marker interval

X' 'Z'T Wosowo.y?

Figure 13 The comparison of marker interval networks.

In the comparison of the marker interval networks (1), the comparison between the dataset of the blood
pressure of salt-induced hypertension mice (upper right, Sugiyama et al, 2002) and the dataset of the
blood pressure (left under, Sugiyama et al, 2002) was enumerated as an example.

In the comparison with the database of marker interval networks (2), the comparison between the dataset
of FST (left under, Yoshikawa et al, 2002) and the dataset of the number of marker interval pairs of the

high rank of ten in 24 phenotypes (upper right) was enumerated as an example.

In this research, the comparison of the marker interval networks of a different phenotype
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was enabled by the database constructed with the datasets of marker interval networks of 24
phenotypes. There are the datasets that assumes that are related mutually though they are the
different phenotypes (for example, blood sugar and weight, etc.). Even if they are the same
phenotypes, there is the difference by the lineage. Therefore, it is important to enable these
comparisons. Hereafter, two-dimensional interval mapping is applied to more phenotypes, and

it aims at the construction of a larger database.
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Appendix

A.1 Detail of the derivation in interval mapping
Here, the detail of the derivation interval mapping that is abbreviated in 2.2.4 is explained.

oln(L)
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i
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A.2 P, backcross and P, backcross of interval mapping

Here, in P; backcross, and P, backcross lines, details of the EM algorithm are explained.

A.2.1 The E step of P; backcross
At the location where we calculate its LOD score (i.e., at pseudomarker), the genotype is
estimated in a probabilistic manner. The genotype at the pseudomarker is estimated using the

following nine cases of the flanking marker genotypes.

1: A1A1B1B1 2: A1A1B1B2 4. A1A2B1B1 5: A1A2B1B2

Here, A and B represent the flanking markers and the suffixes one and two represent from
whether maternal or paternal the marker inherits. On the other hand, the pseudomarker
genotype is represented one of Q;Q; and Q;Q,. Here, Q represents the pseudomarker between
marker A and B. Assume that the probability that a recombination happens between A and Q
is 11, the probability that a recombination happens between Q and B is 1, the probability that a
recombination happens only by one degree between A and B is assumed to be r;:2, and the
probability that a recombination happens both between A and Q and between Q and B is 1».
When the genotypes of the flanking markers are case i as above, we denote the probability
that the genotype of the pseudomarker is Q;Q; and Q;Q, by pi1 and pi, respectively. Here, i
ranges from one to four, and each is corresponds to one of the fore marker genotypes above.

The probabilities of p;; and pi; are represented as follows.

Q:Q: P Q:Q; pr
1 A/AB.B; 0, g,
2 A/A BB, 0 U4
4 AABB, Q4 03
5 A/ABB, (o]} d
Here,
qlz(l_’”l_rz+”12) qzzrl—z q}z(’”z_rlz) q4zw
(1-7..) (t-r.,) o iz

Using the assumption that the residue terms of Q;Q; and Q;Q, cases are normally distributed,

the probability densities @, and @, represented as follows.
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Therefore, frequencies of the three genotypes at the pseudomarker described as follows.

0101 zi @i/ (P ipa+ @pi)
010> z2 @i/ (@ pi+ @2pix)

A.2.2 The M Step of P, backcross
The M step is carried out by using the result of the E step. The likelihood is represented as

follows.

L oc Hﬁ(pn%l)zm (pi2¢ij2 )ZU2
i

Here, i indicates the genotype of the marker (one of the four types), and j indicates each
individual (1 ~ »;) that has the marker genotype.
Logarithm of the likelihood calculated as follows:

In(L) = const + Zi (zl.j1 Inp, +z;,Inp, )— 0.5N1n<27ro*2 )
i

N Zrl()’,-~—”_a)2 Z@‘Z(yr_”_d)z
_Z;{/ 120'2 = /20'2 ‘

Here, const is a constant, and N is the number of individuals. By differentiating the

log-likelihood with respect to u, a, d, and 02, and setting the derivatives to zero, we have

n;
22z
,

n;
DI
L —qta, 1 —j4d,

3z DR
i J i J
G’ :%Zi{zw(yy —u—a)2 +z€./.2(yy. —u —d)z}.
i
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These equations are sufficient to carry out the M step. We don’t have the estimators of each
parameter. Now we have updated values of the four parameters. By using these values, the
next E step is carried out. Until the values of parameters converge, the rounds of the E step

and the M steps are iterated. The way to obtain the LOD score are the same as intercross.

A.2.3 The E step of P, backcross
At the location where we calculate its LOD score (i.e., at pseudomarker), the genotype is
estimated in a probabilistic manner. The genotype at the pseudomarker is estimated using the

following nine cases of the flanking marker genotypes.

5: A1A2B1B2 6: A1A2B2B2 8: A2A2B1B2 9: A2A2B2B2

Here, A and B represent the flanking markers and the suffixes one and two represent from
whether maternal or paternal the marker inherits. On the other hand, the pseudomarker
genotype is represented one of Q;Q; and Q,Q,. Here, Q represents the pseudomarker between
marker A and B. Assume that the probability that a recombination happens between A and Q
is 11, the probability that a recombination happens between Q and B is 1, the probability that a
recombination happens only by one degree between A and B is assumed to be rj42, and the
probability that a recombination happens both between A and Q and between Q and B is 1».
When the genotypes of the flanking markers are case i as above, we denote the probability
that the genotype of the pseudomarker is Q;Q; and Q,Q; by pi» and pj3, respectively. Here, i
ranges from one to four, and each is corresponds to one of the fore marker genotypes above.

The probabilities of p;, and pj; are represented as follows.

Q:Q: Pi QQ: Pis
5 A/A,B;B, 0, o s
6 AAB.B, Js U4
8 A,A,B;B, U4 s
9 AA,B,B, 0, o
Here,
ql_(l_’”l_’”2+”12) 7, v q32(72 ’”12) q4:(”1 ’"12)
(1=, (1-7.,) . o

-41 -



Using the assumption that the residue terms of Q;Q; and Q,Q, cases are normally distributed,

the probability densities @ and @; represented as follows.

1 _(y-u-ay 1 (y-u+a)®

Therefore, frequencies of the three genotypes at the pseudomarker described as follows.

0102 z2 @opi2/ (@2t @ 3pi3)
00> zz @3pi3s/ (P pi2t+ @ 3pi3)

A.2.2 The M Step of P, backcross
The M step is carried out by using the result of the E step. The likelihood is represented as

follows.

L oc HH(pi2¢zj2 )ij (pi3¢ij3 )213
i

Here, i indicates the genotype of the marker (one of the four types), and j indicates each
individual (1 ~ »;) that has the marker genotype.

Logarithm of the likelihood calculated as follows:

ln(L) = const + Zi (ZU,2 Inp,+z;Inp, )— 0.5N1n(27z02)
i

_Zi“{zzjz(yijz_”_d)z +Z,-j3(y,,- _z‘+a)2}.

o 20

Here, const is a constant, and N is the number of individuals. By differentiating the

log-likelihood with respect to u, a, d, and o, and setting the derivatives to zero, we have

n; n;
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i i
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2 :%Zi{zyz(%] _”_d)z "'Ziﬂ(yij —u+a)2}.
L J

These equations are sufficient to carry out the M step. We don’t have the estimators of each
parameter. Now we have updated values of the four parameters. By using these values, the
next E step is carried out. Until the values of parameters converge, the rounds of the E step

and the M steps are iterated. The way to obtain the LOD score are the same as intercross.

A.3 Derivation of two-dimensional interval mapping

Here, the detail of the derivation interval mapping that is abbreviated in 2.4.3 is explained.
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As a result,
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i J J

i i

n 81 n;
+’1222(2m —Zptip _sz@)
T

22
From (6) + (12),
81 7,
ZZ(zzijl -2z, )yij
[
81 81 81 s
=ﬁz (22,.1.1 —2207)+ &IZZ(ZZUI +2z,, )+&ZZZ(2ZUI -2z, )+i1222(22[ﬂ +2z,.j7)
i J i J i J i J
23
From (17),
81 n; 81 n; 81 n; 81 81 m

Z;(Zw)yij:ﬁzi:;(zw) a, ;(zﬂ) a,

i

Z]:( y7)_{122;(zij7)

i

81
DIPIEIN
P

Wzﬁ—dl-i-dz—lf:lz 24
$5-,
i
From (21),
n; 81 n; 81 R 81
ZZ( u9)yu ”ZZ( 119) 22(25/9)_‘3222(24/9)"'ilzzZ(Zw)
i J 1 J i J
81 n;
s
L —i-a4,-a,+i, 25

81
2.2 %
i

A.4 P; backcross and P, backcross of two-dimensional interval mapping
Here, in P; backcross, and P, backcross lines, details of the EM algorithm in

two-dimensional interval mapping are explained.

A.4.1 The E step of P, backcross
At the location where we calculate its LOD score (i.e., at pseudomarker), the genotype is

estimated in a probabilistic manner. The genotype at the pseudomarker is estimated using the
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16 cases (Multiplication of four cases (A;A;B1B; ~ A;A;B;B,) and four cases (C,C;DD; ~
C,C,D;D»)) of the flanking marker genotypes. Here, A and B represent the flanking markers
and the suffixes one and two represent from whether maternal or paternal the marker inherits.

On the other hand, the pseudomarker genotype is represented one of the following four cases.

1: QiQiQQ3  2: QQ1Q3Q4  4: Q1Q2Q3Q;3  5: Q1Q2Q3Q4

Here, Q; and Q; represent the pseudomarker between marker A and B, and Q; and Qq
represent the pseudomarker between marker C and D. The suffixes one and two represent
from whether maternal or paternal the pseudmarker inherits, and the suffixes three and four
represent from whether maternal or paternal the pseudmarker inherits.

Assume that the probability that a recombination happens between A and Q is rj, the
probability that a recombination happens between Q and B is r, the probability that a
recombination happens only by one degree between A and B is assumed to be rj4, and the
probability that a recombination happens both between A and Q and between Q and B is 5.
Moreover, assume that the probability that a recombination happens between C and Q is r3,
the probability that a recombination happens between Q and D is 14, the probability that a
recombination happens only by one degree between C and D is assumed to be r3.4, and the
probability that a recombination happens both between C and Q and between Q and D is r34.
When the genotypes of the flanking markers are case i as above, we denote the probability
that the genotype of the pseudomarker is Q;Q;Q;Q; ~ Q:Q2Q:Q2 by pii, pi2, pPis, and pis,
respectively. Here, i ranges from one to nine, and each is corresponds to one of the nine
marker genotypes above. The probabilities of pi;, piz, pia, and p;s are obtained from the product
of the probability in the gene locus of the first pseudmarker and the second pseudmarker.

The probabilities in the gene locus of the first pseudmarker are represented as follows.

Q:Q1 P Q:Qz Pus
1 A/AB.B; 0; o !
2 AAB;B, 03 U4
4 AA,B;B; U4 (o8
5 A/A,B;B, 0, o
Here,
qlz(l_”l_rz""’lz) qzzrl—Z q}z(rz_”lz) %zM
(-r.,) (1-r.) Mo i



The probabilities in the gene locus of the second pseudmarker are represented as follows.

Q3Qs Pirs Q3Q4 Pizs
1 C,C,D,D, o 0,
2 C,C,D,D, s Qs
4 C,C,D,D, Q4 s
5 C,C,D,D, (o]} s
Here,
g = (l—r3 -7, +r34) g = T4 g = (r4 —r34) ¢. = (r3 —r34)
(l—r3+4) (l—r3+4) P34 T34

Using the assumption that the residue terms of Q;Q;Q3Q3 ~ Q:Q2Q3Q4 cases are normally
distributed, the probability densities @;, @, @4, and @s represented as follows.

1 _(y—”—al—az —ipy )’ 1 (y-u-a,-dy—jp )
— e 202 — e 202
" x "= Tox
1 (y-u-d,—ay—jy )? 1 (y-u-d,-d, -1, )?

¢4:\/ge 2o ¢5:m

Therefore, frequencies of the nine genotypes at the pseudomarker described as follows.

Y
000,0;:z = :
= 1 QP+ 0D+ PP DDy +PsDis + B Dis + & D7 + BiDis + Do Dso

$,D:
000,0,:z, = l
QD+ PPy + D +uDiy + G5 Dis + P Dio + B D + B Dis + Py Dio

Py D4
00,0,0,:z, = :
e PPy + PPy T O Dis T Dy T D5 Dis + G Dig + P1Di7 + B Dis + Do Dso

PsD;s
00,0,0,:z, = '
reEmE QPy DD T DD+ DD+ PsDis + PsDis + PPy + iDig + Do Dio
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A.4.2 The M Step of P, backcross

The M step is carried out by using the result of the E step. The likelihood is represented as
follows.

n;

Lo H H (pi1¢ij1 )Zijl (pi2¢ij2 )Zijz (pi4¢ij4 )ZW (pi5¢ij5 )Zijs

J

Here, i indicates the genotype of the marker (one of the 16 types), and j indicates each
individual (1 ~ »;) that has the marker genotype.
Logarithm of the likelihood calculated as follows:

161

In(L)= const + ZZ(ZUI Inp, +z,Inp,+z,Inp, +z;Inp, )- 0.5N1n(27r02)

i J

RV Y
Z{/l(yij_u_al_a2 _112) +sz/2(ygf_“_a1_dz _le)

IR eby 207 20
ZZ N Z,-,-4(y,y —u-d, —a, _j21)2 + Zg,'s(yfj —u-d, —d, _112)2
202 20

Here, const is a constant, and N is the number of individuals. By differentiating the

log-likelihood with respect to u, ay, di, as, da, i12, j12, j21, 112, and 02, and setting the derivatives

to zero, we have as follows.

81 n; 81 n;
Zzzwyy Zzzzﬂyﬁ
i Jj A A i J 3

81

Z;ZUI Zzzgz

81 81 n;

Zzzwa Zzziﬁya
' T
81

Zzzm Z‘Z,:ZUS

=u+d, +d,+1,

i

EIU Zijl(y[j —u—a —a, _i12)2 +Z[,’2(y[/ ~u—a, —d, _j12)2
2

+zij4(yl./. -u—-d, —a, —jZI)2 +z,.j.5(y,.j -u—d, —d, —llz)z

These equations are sufficient to carry out the M step. We don’t have the estimators of each
parameter. Now we have updated values of the ten parameters. By using these values, the next
E step is carried out. Until the values of parameters converge, the rounds of the E step and the

M steps are iterated. The way to obtain the LOD score are the same as intercross.
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A.4.3 The E step of P, backcross

At the location where we calculate its LOD score (i.¢., at pseudomarker), the genotype is
estimated in a probabilistic manner. The genotype at the pseudomarker is estimated using the
16 cases (Multiplication of four cases (A;A,B1B> ~ A,A;B,B,) and four cases (C,C,D D, ~
C,C,D;D»)) of the flanking marker genotypes. Here, A and B represent the flanking markers
and the suffixes one and two represent from whether maternal or paternal the marker inherits.

On the other hand, the pseudomarker genotype is represented one of the following four cases.

5:QiQ2Q3Q4  6: Q1Q2Q4Q4  8: Q2Q2Q3Qs  9: Q2Q2Q4Q4

Here, Q; and Q; represent the pseudomarker between marker A and B, and Q; and Qq
represent the pseudomarker between marker C and D. The suffixes one and two represent
from whether maternal or paternal the pseudmarker inherits, and the suffixes three and four
represent from whether maternal or paternal the pseudmarker inherits.

Assume that the probability that a recombination happens between A and Q is rj, the
probability that a recombination happens between Q and B is r, the probability that a
recombination happens only by one degree between A and B is assumed to be rj4, and the
probability that a recombination happens both between A and Q and between Q and B is 5.
Moreover, assume that the probability that a recombination happens between C and Q is r3,
the probability that a recombination happens between Q and D is 14, the probability that a
recombination happens only by one degree between C and D is assumed to be r3.4, and the
probability that a recombination happens both between C and Q and between Q and D is r34.
When the genotypes of the flanking markers are case i as above, we denote the probability
that the genotype of the pseudomarker is Q;Q.Q;Q: ~ Q2Q.Q2Q> by pis, pis, Pis, and pio,
respectively. Here, i ranges from one to nine, and each is corresponds to one of the nine
marker genotypes above. The probabilities of pis, pis, pis, and pio are obtained from the product
of the probability in the gene locus of the first pseudmarker and the second pseudmarker.

The probabilities in the gene locus of the first pseudmarker are represented as follows.

QiQ: Piss Q.Q: Piso
1 A/A,B;B, o o)
2 A/AB,B, 0 Qq
4 AABB, Q4 s
5 AAB;B, (o} Qs
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Here,

(1_”1_’”2"'”12) My (r2_r12) (7’1_7’12)
q, = Q=7 YG="—"—"— 4qG4=—"——
1 (1—7"1+2) ’ (l_rlJrZ) ’ Fii2 ! N2

The probabilities in the gene locus of the second pseudmarker are represented as follows.

QaQs Piss Q4Qu Pisg
1 C,C,D,D, o (o)
2 C,C,D,D, 0 Qq
4 C,C,D,D, U4 s
5 C,C,D,D, (o) 02
Here,
g = (1—r3 —7, +r34) g = Ty g = (r4 —r34) g. = (r3 —r34)
(1—r3+4) (1_”3+4) P34 F3.4

Using the assumption that the residue terms of Q;Q2Q3Q4 ~ Q2Q,Q4Q4 cases are normally
distributed, the probability densities @s, @5, &%, and @, represented as follows.

(y—“—dl +tay+ )2
e 202

(y—“—dl =d, -l )2

2 4 = 1
° N2
1

(y—u ta;+ay—ip )2
2

e 20

1
¢5ﬁ
1

¢8:\/ﬂe 2o ¢9:\/ﬁ

Therefore, frequencies of the nine genotypes at the pseudomarker described as follows.

b5 Dis
00,0,0,:z, = l
G Py + DD O D3 + By Diy + PsDis + B Dig + P Di7 + G Dig + Do Dio

P Dio
00,0,0,:z5 = '
e PGPy Py T ODis T ByDiy H sPis t B Pig + DD + BuPis + oD

Dy
0,0,0,0, 1 zg = :
e QPi+DPn T PP T DDy F sPis + B Pis + D D17 + BiPis + P Do

PoD;o
0,0,0,0,:2, = l
PPy + DDy + B Py Py Dis D5 Dis + P Pig + 1Dy + KD + Do Dio
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A.4.4 The M Step of P, backcross
The M step is carried out by using the result of the E step. The likelihood is represented as

follows.

n;

L H H (pi5¢ij5 )ZUS (pi6¢ij6 )Zijs (pi8¢ij8 )st (pi9¢ij9 )Zijg

J

Here, i indicates the genotype of the marker (one of the 16 types), and j indicates each
individual (1 ~ »;) that has the marker genotype.
Logarithm of the likelihood calculated as follows:

81 n;

In(L)= const + ZZ(ZI]S Inp,+z;Inpg+zInpg+z,Inp, )— 0.5N1n(27z02)

J

Z(,S(y,-j —u—d, -d, -1, )2 N Z(/()(y(/' —u—d, +a, +j21)2

81 7 2

_ZZ 20° 20

IRV Y
P +Zf/'8(yfj_”+a1_d2+]1z) +Zi/'9(yij_u+al+a2_l12)

2 2
20

20

Here, const is a constant, and N is the number of individuals. By differentiating the
log-likelihood with respect to u, ay, di, as, da, i12, j12, j21, [12, and 02, and setting the derivatives
to zero, we have as follows.

81 n; 81 n;
Zzzasyg ZZZ!iGyi/‘
i Jj [

81 n;

Zgzijs ZZ%

0 U {Z:‘jS(yij —u—d, —d, _112)2"’2[/6()’,'/_”_‘11+a2+j21)2 }

Y IRV
+zij8(y,.j—u+al—d2+121) +z,.j.9(yl./.—u+a1+a2—llz)

These equations are sufficient to carry out the M step. We don’t have the estimators of each
parameter. Now we have updated values of the ten parameters. By using these values, the next
E step is carried out. Until the values of parameters converge, the rounds of the E step and the

M steps are iterated. The way to obtain the LOD score are the same as intercross.
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