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Abstract

A variation of umbrella sampling is proposed. I have developed an efficient umbrella sampling method
based on the concept of Jumping-Among-Minima model and quasi harmonic approximation. I demon-
strated that the new method is capable of finding both the meta-stable state structure and the transition
state structure of 5-residue peptide Met-enkephalin. I also showed that the same method can search the
transition state structure of 160-residue protein T4 lysozyme.
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1 Introduction

Molecular dynamics (MD) simulation has become a
powerful tool for analyzing macromolecules such as
proteins, in cooperation with various experimental
methods. Recent development of MD simulation
techniques, combined with faster computers, opens
up a detailed observation of macromolecules. Al-
though the simulation is an established technique
to investigate dynamic structures, it can hardly find
non-stable states such as transition states during
a limited simulation time. The gap between the
time scale of simulations and that of functionally
important events still exists even now. This is the
sampling problem in protein dynamics.

A possible way to overcome is disposing time-
dependent information. First we carry out a sim-
ulation, using a modified Hamiltonian to obtain
modified probability distribution. After that, the
original probability distribution is reproduced by
a certain procedure. Modified Hamiltonian is de-
signed to sample a larger configurational space
within a limited simulation time. Two ideas are
successful in obtaining the modified Hamiltonian:
one is the iterative procedure, and the other is the
parallel procedure.

In the former, we optimize an additional energy
term iteratively. In multicanonical [1] method, for
example, the additional energy term is optimized
until a flat probability distribution as a function of
energy is obtained, while in adaptive umbrella sam-
pling [2] as a function of coordinate space. These
methods can be applied without a priori knowl-
edge on the target molecules, but they require much
computation time, and are difficult to parallelize. It
should also be noted that they are reported to have
problems with complex macromolecules [3].

In the latter idea we first run simulations with
different Hamiltonian in parallel. After that, we
perform a reweighting calculation to reproduce dis-
tribution. This idea is commonly used in um-
brella sampling [4, 5]. It requires, however, a priori
knowledge on the system such as reaction coordi-
nates, thus it is not straightforward to apply them
to the molecules whose behavior is not well inves-
tigated.

Is it possible to combine the advantages of both
ideas? One such successful example is replica ex-
change multicanonical MD method [6]. It com-
bines both two ideas, replica exchange method and

multicanonical method, to generate good ensem-
ble over phase space. This method first optimize
the modified Hamiltonian by iterative procedure,
then applies parallel procedure for detailed anal-
ysis.  Although this method still requires rather
long simulation time for setting up, results on small
molecules are quite promising. One lesson from this
method is that even if our knowledge on the target
system is imperfect, multiple simulations can min-
imize the error, and realize the exploration of a
large phase space. This implies that we only need
approximate information on the target system.

In this thesis, I present a method to exploit both
two, as a natural extension to chemical flooding [7]
combined with JAM model [8]. This method ex-
ploits approximate information on protin dynamics
based on currently existing structures. By the sug-
gested method, we are now able to sample larger
phase space, with only a short preparation time,
without a priori knowledge on reaction coordinates.

2 Methods

In this section, first I review the umbrella sampling
method. After that, I will describe Chemical flood-
ing and JAM flooding method, which is based um-
brella sampling method. To consult the basics of
umbrella sampling and molecular dynamics, please
see Appendix B.

2.1 Umbrella sampling

The detail of umbrella sampling is described ev-
erywhere [5]. 1 briefly review umbrella sampling
method below.

If the system obeys canonical ensemble, the den-
sity probability is given as:

_exp(=pV(T))
p(T) = [dT” exp(—BV(T7))’ S

where, § = 1/kgT, and T, V(T'), kg, and T being
generalied coordinate, potential function, Boltz-
mann constant, and temperature, respectively. In
umbrella sampling method, the original poteintial
V(T) is changed to the modified potential V'(T'),
to generate a weighted sampling. Changes to the
potential function is described as,

V/(T) = V(T) + Vi (T). (2)



The additional term Vi is called umbrella po-
tential. Performing simulations with the umbrella
potential, we can obtain new probability density p/,
with the following relation to p:

_ pl(r) eXP(ﬁVumb (F))
0 =TIy () exp(Van @)

Using this relation, we can reconstruct p from p,
which can be obtained as the result of simulation
on the modified potential. To obtain an accurate
probability density map p, we have to set proper
Vimp so that we can sample p’ sufficiently. This
requires a priori knowledge on simulated system,
thus it was one of the largest problem in applying
umbrella sampling to large molecules.

2.2 JAM flooding

I propose Jumping-Among-Minima flooding (JAM
flooding), a natural specialization to multiple po-
tential chemical flooding method [7, 9]. This
method depends on the concept of principal compo-
nent analysis (PCA) [10, 11] and Jumping-Among-
Minima (JAM) model [8]. Here is their brief review.

Given a set of structure {I'}, variance-covariance
matrix A can be calculated as follows:

A={a;} =(Qi — Qi) (Q; — Qy) -

(4)
()

In this equation, m; is the mass of atom that
correspond to i-th coordinate, @ being square root
mass weighted atomic coordinate, {@Q} being a set
of ones, and @ is the averaged value of {Q}. Di-

agonalizing A, we can obtain k-th eigenvector Xy,
that is called principal component azis (PC axis),

AXy = M X,
XFx, =1.

(6)
(7)

X, denotes the direction along which trajectories
have strong correlation. Using X as new basis,

we can introduce the linear combinations of atomic
coordinates, PC' coordinate o:

or = X (8)

Jumping-Among-Minima model denotes that
protein energy landscape is mostly harmonic or

quasi-harmonic if projected on PC coordinate
space, and only a few coordinates have hierarchical
multiple minima. Based on this model, I approx-
imated potential function to be harmonic around
each local minimum structure.

V(T) ~ Z Aol S 1A, 9)

Aoy, =0 — 0y, (10)

Here &,, is the coordinate of m-th minimum

structure, S, is the variance-covariance matrix of

trajectory around each local minimum structure.

Additionally, I assumed potential function to have

no strong correlation between different axis.
S = {sih} = dansi'.

(11)

The desired shape of umbrella potential should
“flood” potential well of each minimum. That is,
umbrella function should also have harmonic prop-
erty around some minimum structure. For practical
reason, I propose to employ Gaussian function for
flooding out from stable structures,

minima

Vamb(T) = Z Efexp (Aol K, Aay,) .

Ko = {7} = 0apk™.

Here E°% is an adjustable parameter that deter-
mines the height of umbrella function, and K is the
diagnoal matrix that determines fluctuation. Com-
paring V and Vi, upto the second order, £ and
K, are required to have the following relation,

B = 51 (14)

Thus, only E¢F should be determined to run this
method. This value should be determined empiri-
cally, to reflect the real simulation time scale.

To perform MD simulation with this potential,
forces to all atoms should also be calculated. Fur-
ther details are described in Appendix A.

o' obtained with umbrella potential can be
reweighted to original probability density, using eq.
(3) for single trajectory. Free energy f can be ob-
tained by,
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Figure 1: Reference structure A (left) and reference
structure B (right). The former corresponds to the
structure 2, and the latter to the structure 1 of [13],
respectively. This figure is generated by VMD [14].

1
f= —Elnp—&—const. (15)
For multiple ones, WHAM method [12] is appli-
cable.

3 Results and discussion

3.1 Met-enkephalin test

Preliminary simulations For the test of new
method, I choose Met-enkephalin, 5-residue pep-
tide (sequenced YGGFM) as a model case. Previ-
ous results on this molecule is discussed in [13]. I
modeled Met-enkephalin as an all-atom model in
vacuum, where acetyl group and N-methyl group
were added at the N- and C- terminus, respectively.

Two reference structures, denoted in figure 1,
were chosen from local minima structures, as rep-
resented in [13]. All simulations were performed
with molecular dynamics package NAMD [15], us-
ing CHARMM?22 force field [16]. Two structures
are modeled with NAMD to reconstruct the hy-
drogen bonding pattern described in the literature.
They were then equilibrated at 300K, with stan-
dard molecular dynamics procedure. Langevin heat
bath was used to establish NVT ensemble. First
I performed two preliminary simulation on Met-
enkephalin’s known two stable structure (structure
A and B in figure 1), 5 ns each, plus 5 ns equi-
libration time. PCA was performed on these two
trajectories with an equal weighting to each set of
coordinates. Only the coordinates of 23 main chain
atoms were used for this analysis.
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Figure 2: Typical trajectory of 40 ns simulation on M-
enkephalin, projected on first and second PC modes.
In the reweighting procedure, I dropped first 1 ns tra-
jectoy for eqilibration. (top) Trajectory from canoni-
cal ensemble. Trajectory only switch once between two
stable states. (bottom) Trajectory from JAM flood-
ing. With JAM flooding, the system achieves frequent
switching between two stable states.

JAM flooding simulation After obtaining PC
vector, 30 simulations of 10-ns run were performed,
with JAM flooding potential enabled. I applied
JAM flooding on this molecule with the number
of minima equals to 2 in eq. (12). Flooding heights
E;ﬁff are set to 3.0, 4.5, 6.0, 7.5, 9.0, 10.5 kcal/mol
for all m. 5 distinct simulations were performed
with each parameter. First 1-ns trajectory of all
simulation was dropped as equilibration time. For
the comparison of trajectory, I also have performed
40-ns simulations on both canonical ensemble and
JAM flooding condition. Typical trajectory of
JAM flooding is shown in figure 2. While standard
canonical sampling could not accomplish switching
between two minimum states, JAM flooding simu-
lation demonstrates a good sampling over PC co-
ordinate.
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Figure 3: Free energy maps, reconstructed from JAM
flooding simulation runs. Each contour represents 2
kcal/mol difference on free energy. Two axis represents
first and second PC axis. (top) Map was reconstructed
from 6 trajectories. A and B is reference conformation,
where C is transition state found by this algorithm.
(bottom) Map was reconstructed from all 30 trajecto-
ries.

Reweighting and free energy analysis Free
energy map was reconstructed from the trajecto-
ries of JAM flooding, according to eq. (3) and
WHAM analysis [12]. Figure 3 shows the diagram,
representing free energy map of M-enkephalin re-
constructed from simulation result. From the short
simulation result, we can clearly observe both two
stable minima structure. Additionally, we can
also clearly see transition structure coordinate on
the map. Energy difference between three states
are calculated and shown in figure 4. The result
demonstrates the capability of obtaining accurate
energy on small molecules.

Presumed transition state structure of free en-
ergy map in figure 3 was reconstructed. Figure
5 shows the resulted structure, which has a hy-

Figure 4: Free energy difference of M-enkephalin’s sta-
ble structures and a transition structure, in figure 3.
The unit of each value is kcal/mol. Values shown are
the averaged values and standard deviations of 5 dis-
tinct set of simulations.

Figure 5: Presumed transition state structure, recon-
structed from C of figure 3. This figure is generated by
VMD [14].

drogen bonding between CO of Gly-2 and NH of
Phe-4. The structure and hydrogen bonding pat-
tern showed an excellent agreement with previously
proposed transition state conformation in [13].

From these analysis, it is shown that the new
method is capable to sample multiple minima of
small molecules in a reasonable time. It also shows
that the method can be used to estimate the en-
ergy difference between stable state and transition
structure.

3.2 Application to macromolecules:
T4 lysozyme

Preliminary simulations As the example of ap-
plication to macromolecule, I have used JAM flood-
ing method to T4 lysozyme, 18 kDa hydrolysis en-
zyme, which is known to make large conformational
change with only one sequence. T4 lysozyme struc-
tures were taken from PDB-ID 150L (open) and



Figure 6: Reference structure of two T4 lysozyme struc-
ture. (light gray) “Open” structure, taken from PDB-
ID 150L. (black) “Closed” structure from 2LZM.

2LZM (close), respectively. Figure 6 shows two
reference structure used for this simulation. Miss-
ing terminal loop was constructed by MODELLER,
[17]. Four residues from C terminus were dropped
off, thus 160 amino acid residues were used for the
simulation. Models were solvated by 10 A TIP3P
water box and equilibrated on 1 atom, 300K con-
dition, with a standard molecular dynamics pro-
cedure. Langevin piston algorithm was used for
achieving constant pressure controls. CHARMM22
force field [16] was used for all simulation. All
simulations were performed on molecular dynam-
ics package NAMD [15], with integration time step
set to 2 fs, along with a SHAKE algorithm.

After the 10-ns unconstrained equilibration run,
two 5-ns MD simulations were performed for each
starting structure. Snapshots were taken and saved
for every 1 ps of simulations. PCA was per-
formed on trajectory from both 150L and 2LZM
with equal weighting factor, where only main-chain
heavy atoms were used in all three analysis.

JAM flooding simulation I applied JAM
flooding for this system, with the number of min-
ima set to 2 on eq. (12). Four PC axes were chosen
for JAM flooding so that they cover more than 80
% of the coordinate space. Intensity of flooding
umbrella (B in eq. (12)) was chosen from 4.0-
8.0, 5.0-7.0, 6.0-6.0, 7.0-5.0, 8.0-4.0, 9.0-3.0, 10.0-
2.0 kcal/mol, where the former number is the en-
ergy on the “closed” structure A, and the latter is
on “open” structure B. Two simulations were per-
formed on each 7 conditions, 14 simulations in to-
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Figure 7: Typical trajectory of (top) canonical sam-
pling simulation and (bottom) JAM flooding sampling
simulation. Trajectory was taken for 36 ns, and first 1
ns was dropped from analysis as an equilibration time.

tal. Each trajectory was taken for 5 ns, after 1-ns
equilibration time.

Figure 7 shows typical time course of trajectory
projected on PC axis. Canonical simulation fluc-
tuate around current known minima, while JAM
flooding sweep the region between two minima. Al-
though the latter even visits both two states, struc-
tural switch to another state is not sufficiently fre-
quent in one simulation. This would be severe prob-
lem when we investigate the free energy difference.
One possible reason is that the Gaussian flooding
potential does not fit well in this case, or inappro-
priate BT value is used. For the detailed analysis
of protein energy landscape, further refinement is
necessary.



Free energy landscape of T4 lysozyme
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Figure 8: Free energy map obtained from T4 lysozyme
simulation with JAM flooding. State A and B repre-
sents known stable structures, while state C denotes
presumed transition state structure.

Reweighting and free energy analysis Fig-
ure 8 illustrates a free energy map of T4 lysozyme
obtained by reweighting calculation [12]. From free
energy map we can see two known stable states,
along with presumed transition state structure.
Reconstructed transition state structure is repre-
sented as in figure 9. It has the hydrogen bond-
ing between Glu-22 to Arg-137, which connects the
two “heads” of T4 lysozyme, but does not have
tight hydrogen-bonding at Arg-52, Thr-59, Glu-62,
which locks the hinge angle. As both hydrogen
bonds exist in “closed” structure and does not ex-
ist in “open” structure, it is reasonable to conclude
that this presumed structure represents proper in-
termediate structure between these two, therefore
enforcing the validity of this method. I propose
that in the transition from “close” to “open” struc-
ture, first the three hydrogen bonds are cleaved,
then hinge angle flucuates, and finally hydrogen
bond that locks two heads of lysozyme will be
cleaved. I note here, however, that this molecule
need an extra caution on analysis, as it is liable to
be artifact from the reasons mentioned above.

4 Conclusion

I modified multi-minima chemical flooding to adapt
JAM model, yielding JAM flooding method, which
gives probability density of protein structure with
reasonably good approximation. The method could

Figure 9: Transition state structure obtained on T4
lysozyme. (black) Presumed transition structure, cor-
responding state C in figure 8. (light gray) Open and
closed reference structure.

be straightforwardly applied to small molecules,
showing equivalent convergence compared to the
previously reported methods. The method was also
capable of drawing energy landscape and finding
transition structure, in an application to macro-
molecules. Further refinement of the process and
the validation is now on the progress.
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Appendix

A Derivation of force

In the present research, the umbrella potential is
defined as,

mlnlm&
Vamb(T') = Z E ffexp AUTK 1Adm) (16)
mlIll[[la
= Z w (Ao, (T)) . (17)
Where w(Ao,), and Ao, (T) is,
w(Aoy,) :Effexp( A0'7T,LK7 Ao), (18)
AO’m(F) = X};;,Q — Oy = X;J;LM /2 11bestﬁt -
(19)

Tpestit is best-fit structure of T' to reference one,
and M is a diagonal matrix that represents the
mass of atoms. Force is calculated from this rela-
tion. Deriving potential energy by coordinate, we
get

minima

B 8Vumb B ow,, 8Aamj
v h Z Z 3A0m] 1‘
(20)
mlIl][[la A i
=2 Z ZEeﬁkmAam‘j exp(— Aam]k‘;”)aa;?_n].
(21)

Last derivative term vanishes for all j except
when ¢ and j point to the coordinate of the same

atom.
0Ao 0 same atom
= 1/2 .
ar; ijm/ M otherwise.

(22)

Here Lli“f“ is best-fit rotated structure differ-

entiated by coordinates. The differentiated fraction

is also the function of I'. As it is difficult to obtain

this differentiation analytically, I solved this equa-
tion numerically.

8]--‘bestitit
or;

AI}iHi»O 2AF1
(Fbcstﬁt (F + Arlel)_
Tpestic (I — ALe;)).  (23)
At each step, we have to fit each molecule to
reference structure, and also have to calculate per-
turbed value of best-fit rotation quaternion for each
coordinate. Both requires the calculation of eigen-
vectors [18], thus fast calculation was necessary for
speeding this method up. I used inverse power
method to calculate eigenvectors quickly, reusing
the vector at best-fit calculation. Conjugate gradi-
ent method was also used to solve linear equation
that arises on the inverse power calculations. For
the details of these methods, please see [19, 20].



B Molecular Dynamics Simu-
lation

Molecular dynamics inspects the behaviour of the
mechanical system through numerical calculation.

If we have Hamiltonian H, initial coordinates and
momenta q(0), p(0), we have the following,

. OM

e 24

a=5, (24)
OH

y— - °, 2

D 9 (25)

Solving these differential equations numerically,
we can get the discrete time series of coordinates
and momemta. We denote this as generalized co-
ordinate on phase space, I' for simplicity.

T(t) = < Zg ) . (26)

Probability density p(T") are defined as the prob-
ability that system is found in the value T

p(T, 1) = /0 A's(D(t') - T). (27)

If we can assume the ergodicity on the system,
this value converges to one, time-independent prob-
abilty density p,

Jim p(T, ) = p(T). (28)

Depending on the type of system, this p con-
verges to different value. This 'type’ of the system
is called as “ensemble”, and represents much of the
characteristics of the system. Canonical distribu-
tion is a kind of ensembles, which can be observed
on the constant temperature system with no par-
ticle exchange. In canonical ensemble, probability
density p will converges to:

_ exp—3V(T)
~ [dlMexp -8V (IY)’

where V is the potential energy of the system.

In the simulation, we can never simulate for in-
finite time nor simulate for enough time to observe
all possible configuration of molecules. Thus, we
need an efficient algorithm to generate modified
density probability distribution, to sample appro-
preate configurational spaces.

pcanonicad(]-‘) (29)
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