2006年度 修 士 論 文

プロピオン酸を基質とする PHA 蓄積細菌の 機能遺伝子と種の同定の試み Attempt to the identification of functional gene and species of PHA accumulating bacteria fed propionate

> 村上 達也 Murakami, Tatsuya

東京大学大学院新領域創成科学研究科 社会文化環境学専攻

目次

目次			i
第1	章	緒言	1
1	研究	清景	1
	1.1	水環境問題	1
	1.2	プラスチックに関わる環境問題	2
2	研究	この目的	2
3	本論	a文の構成	3
第2	章	既往の知見	4
1	活性	污泥法	4
2	PHA	Δ	6
3	活性	汚泥と PHA	6
4	PHA	合成にかかわる酵素	7
5	良好	Fな生物学的リン除去時(PAO)の代謝パターン	8
	5.1	PAOについて	9
6	生物	9学的リン除去の悪化時(GAO)の代謝パターン	10
	6.1	グリコーゲン蓄積細菌(GAOs)について	10
7	分子	生物学的手法による細菌群集解析	13
,	7.1	磁気ビーズによる特定配列の濃縮	13
,	7.2	Percoll による密度勾配遠心分離法	14
,	7.3	DNA について	15
	7.4	16S rRNA 遺伝子(16Sr DNA)について	15
	7.5	phaCについて	16
	7.6	環境サンプルからの DNA の抽出	16
	7.7	PCR (Polymerase Chain Reaction)	16
	7.8	PCR Cloning Sequencing 法	17
	7.9	PCR/T-RFLP (Terminal Restriction Flagment Length Polymorphism) 法	20
第3	章	実験方法	22
1	実験	室規模リアクターの構築	22
	1.1	PAOリアクター	24
	1.1.1	タイムシーケンス	24

	1.1.2	濃縮基質	24
	1.2	GAO-like リアクター	25
	1.2.1	タイムシーケンス	25
	1.2.2	濃縮基質の組成	25
	1.3	水質分析項目	26
2	プロ	ピオン酸を基質とした回分実験	26
3	水質	分析方法	26
	3.1	低級脂肪酸及びリン酸などの溶存性イオン	26
	3.2	MLSS(活性汚泥浮遊物質濃度)、MLVSS(活性汚泥有機性浮遊物質濃度)	27
	3.3	PHA	27
4	磁気	ビーズを用いた標的遺伝子濃縮手法の検討	29
	4.1	ベクターの選択	29
	4.2	DNA 抽出手法の検討	30
	4.3	DNA せん断条件の検討	31
	4.4	<i>phaC</i> ビオチンプローブの合成	32
	4.5	phaC 含有配列の濃縮	33
	4.6	標的 DNA の濃縮評価	35
	4.6.1	プライマーのデザイン	35
	4.6.2	磁気ビーズを用いた標的遺伝子濃縮手法の評価	37
5	密度	勾配遠心分離法を用いた方法	38
	5.1.1	PHA 蓄積細菌の密度勾配遠心分離	39
	5.1.2	濃縮率の算出	39
	5.2	DNA の抽出	40
	5.3	PCR 法	40
	5.3.1	16S rRNA 遺伝子の PCR	41
	5.3.2	$phaC \oslash PCR$	44
	5.4	PCR Cloning Sequencing 法	45
	5.4.1	Cloning	45
	5.4.2	インサートチェック	46
	5.4.3	Sequencing	47
	5.5	系統解析	48
	5.6	PCR/T-RFLP 法	48
第4	章	EBPR 良好時の PHA 蓄積細菌群集解析	49
1	PAO	リアクターの水質モニタリング結果	49
2	PAO	リアクターの phaC 群集構造の経時変化	54
3	バッ	チ試験結果	60

4	密度勾配遠心分離法結果	65
第5章	重 EBPR 悪化時の PHA 蓄積細菌群集解析	67
1	GAO-like リアクターの水質モニタリング結果	67
2	GAO-like リアクターの phaC 群集構造の経時変化	71
3	バッチ試験結果	74
4	密度勾配遠心分離法結果	77
第6章	章 総括	79
1	総括	79
2	課題と今後の展望	80
付録		81
謝辞		83
参考文	て献	84

第1章 緒言

1 研究背景

1.1 水環境問題

近年、わが国では、湖沼や内湾など閉鎖性水域において富栄養化の問題が深刻化している。も ともと河川の下流部に位置する湖沼や内湾は、陸域から流れている物質が集積する位置にあるた めに富栄養化しやすいのである。富栄養化自体は我々人間にとって不都合な現象ではなく、富栄 養化は、元来、流域からの窒素、リン等の栄養塩類の供給により湖沼が徐々に肥沃化される現象 を指すものであった。しかし、人口、産業の集中により、閉鎖性水域に窒素、リン等の栄養塩類 が大量に流入し、栄養物質を取り込んで成長する植物プランクトンがアオコや赤潮などの異常増 殖を起こすと、景観の悪化、異臭、貧酸素化による魚介類の死滅などの弊害が生じるため富栄養 化が水質保全上問題になっている。

さらに淡水資源である湖沼に関しては富栄養化問題は早急に対応しなければならない問題で ある。私達たちはみな、宇宙から眺めた地球が「青い惑星」であるというイメージに親しんでい る。このことは水が豊富にあるという印象を与えており、実際そのとおりで、地球上に存在する 水の総量は約14億km³と推定されている。しかし、このようなイメージには落とし穴がある。 淡水は地球上の水全体のうち、2.15%を占めるにすぎない。しかもこの数字でさえ誤解を与えか ねない。なぜなら、地表の全淡水の99.5%は、大氷山や氷河として凍っているか、あるいは地下 深く埋もれているからである。つまり、私たちは最後に残された河川水、湖水、および汲み上げ 可能な地下水を産業活動等に用いているのである。淡水資源は有限であり、地球を覆う水のごく 一部しか人間は使えないことから、21世紀の地球環境問題の一つとして淡水資源の問題があげ られているのである。

富栄養化現象を解決するためには、窒素やリンなどの栄養塩を過剰に水系に流入させないこと が重要であり、当然下水処理においても栄養塩を除去することが求められている。本論文では、 リンに対象を絞り、下水処理におけるリン除去を研究対象とした。

1.2 プラスチックに関わる環境問題

プラスチックに関わる環境問題が深刻化している。廃棄プラスチック量は増え続ける一方で、 ゴミ焼却能力、埋め立て地の許容範囲を大きく上回り始めている。また、野生動物がプラスチッ クゴミをエサと間違えて食べてしまい、消化器系を詰まらし、死に至らしめてしまうという被害 が多発している。さらに、昨今、その廃棄プラスチックの問題に加えて、原材料となる石油の枯 渇問題も浮上してきている。

そのような背景のもと現れたのが「生分解性プラスチック」である。生分解プラスチックとは 「通常のプラスチック製品と同じように使え、使用後は自然に水と炭酸ガスに分解されるプラス チック」のことである。また、生分解性プラスチックは人体においても自然に分解され、生体適 合性を併せ持つことから医療分野からも注目されている。

この生分解性プラスチックの原材料の一つである PHA (Polyhydroxyalkanoates) が下廃水処理 に用いる活性汚泥中において蓄積されることが確認されている。活性汚泥を用いた生分解性プラ スチック生産は廃水が基質となるためこの部分にかかるコスト削減、余剰汚泥の再利用に新しい 道がつくであろう。このような廃棄物の再資源化は、「循環型社会の構築」が重要視される今日、 その一端を担うことができる技術として非常に価値がある。

2 研究の目的

PHA は様々なモノマーユニットから構成されており、異なる炭素源あるいは細菌で、合成さ れる PHA 組成が異なると報告されている。PHA 組成の違いはプラスチックの性質にも反映する ため、PHA 組成を制御することで物性を制御できる物質として注目されている。中でも、3H2MV (3-hydroxy-2-methylvalerate)というモノマーユニットは、主鎖から出る側鎖の数が2本あるこ とにより分子間をつなぐエステル結合が立体的に保護され、生物分解を受けにくいことが予想さ れ、"分解を受けにくい" という理由で注目されている。

プロピオン酸を基質として用いると、3H2MV のような物性が特徴的な PHA が生産されるこ とが知られている。生分解性プラスチックとして利用可能な PHA を活性汚泥中で制御するうえ で、生分解性プラスチックの合成のキーとなる遺伝子である phaC とその生分解性プラスチック 生産菌種を把握しておくことは重要なことである。詳しいことは2章で述べるが、リン除去汚泥 中にはリン除去が良好時に現れる PHA 蓄積細菌の PAO とリン除去悪化時に現れる PHA 蓄積細 菌 GAO の代表的な2 つのグループが存在する。そこで PAO 汚泥中のプロピオン酸を基質とす る PHA 蓄積細菌、GAO 汚泥中のプロピオン酸を基質とする PHA 蓄積細菌の、phaC を特定し、 16S rRNA の同定を試みた。

3 本論文の構成

本研究では、生物学的リン除去プロセス中に出現する PHA 蓄積細菌の機能遺伝子 *phaC* と種 とを関連付けることを目的として研究を行った。

第2章では既往の知見を整理した。

第3章では検討実験、本実験を含めた本研究で行ったすべての実験方法をまとめた。

第4章、第5章では PAOと GAOの PHA 蓄積細菌の解析結果をまとめた。

第6章で第4章、第5章の結果をまとめ総合考察を行い、今後の課題と展望を示した。

第2章 既往の知見

1 活性污泥法

標準活性汚泥法は、曝気槽、つまり好気工程のみからなる。曝気槽では活性汚泥中の従属栄養 細菌が溶存酸素を利用して下水中の有機物を摂取し、成長・増殖するエネルギーを得る。よって 処理水上清中の有機物は菌体内に取り込まれるか、二酸化炭素として放出されることにより除去 される。菌体として固定された有機物は余剰汚泥として活性汚泥を系外へ除くことにより下水中 に有機物が分離され、処理される。この方法は主に排水中の炭素源を処理するための方法として 用いる。

1970 年頃、活性汚泥を嫌気条件と好気条件に交互にさらすと、菌体内にポリリン酸余剰に蓄 積する細菌(ポリリン酸蓄積細菌、polyphosphate accumulating organisms: PAOs)が優占するこ とが知られるようになった。余剰にリンを蓄積した細菌を水系から分離すれば、水系からのリン 除去が可能になることから、リン、有機物の同時除去が可能な活性汚泥変法である嫌気好気法が 提案された¹⁾。今日、生物学的リン除去法もしくは enhanced biological phosphorus removal (EBPR) プロセスと言った場合、実質的にはこの嫌気好気活性汚泥法を指す。さらにリン、窒素共に除去 できる嫌気無酸素好気法などが開発された¹⁾ (Figure 2.1)。

PAO が菌体内にリンを蓄積する性質を利用して、その菌体を余剰汚泥として取り出すことで 排水中のリンを処理することができる。擬似嫌気好気法も嫌気好気法の一種である (Figure 2.1)。 このシステムはもともと標準活性汚泥法を行っていたシステムを嫌気好気法に変更する上で、好 気工程の初期好気槽の曝気量を制限することで嫌気に近い状態を作ったものである。実際には少 量の曝気を行っているため、嫌気好気法と区別して擬似嫌気好気法と呼ばれる。ここでの少量の 曝気は槽内の下水・汚泥の攪拌・混合の役割をしており、うまく曝気量を制限することで、溶存 酸素濃度はほぼゼロの状態にすることができる。

4

嫌気無酸素好気法(Anaerobic Anoxic Oxic: A2O)

Figure 2.1 様々な下水処理システム

2 PHA

多くの細菌は種々のポリエステルを生合成し、エネルギー貯蔵物質として菌体内に蓄積してい る。これらはすべてヒドロキシアルカン酸をモノマー単位とする高重合度の脂肪族ポリエステル であり、総称して PHA と呼ばれている。完全な微生物分解を示すのみならず、熱可塑性で加熱 成形が可能であること、また微生物に炭素源として与える糖や植物油が再生産される資源から得 られるため、生分解性プラスチックの1つとして実用化が期待されている。

細菌は普通、代謝ストレスの反応として菌体内に PHA を一時的に蓄積する。最初に発見された PHA は poly-3-hydroxybutyrate (PHB) であるが、1990 年代に入ってから多くの PHA が発見された。PHA のモノマーユニットの範囲は主鎖の炭素数が 3 つの 3-hydroxypropionate のようなものから 3-hydroxydodecanoate のような主鎖の炭素数が 12 のものまで広範に及ぶ。多くの場合 PHA ポリマーはコポリマー (共重合体) もしくはターポリマー (三元重合体)の構造をとっている。だが、多くの土壌から細菌より共通に見つかる PHB だけはホモポリマー (単独重合体)の構造をとっている。代表的な PHA モノマーを Figure 2.2 に示した。

(4HB)

Figure 2.2 代表的な PHA 構成モノマー

3 活性汚泥と PHA

活性汚泥は複合微生物系で成り立ち、細菌どうしの共生や栄養源の競争が存在する。下水中の 炭素源についても同様の競争が行われており、この競争に勝つ戦略の1つとして、摂取した炭素 源を即座に増殖等に用いるのではなく、まず、エネルギー源として体内に蓄積する細菌の存在が 明らかとなった。特に炭素源が豊富でかつ炭素以外の代謝に必要な栄養塩やエネルギー(炭素代 謝を行う上で必要な酸化剤(酸素)など)が不足している状況下において、この戦略は有効に働 き、系内で優占することができる。そのような細胞内炭素源蓄積物質として PHA が合成される。 活性汚泥中に存在する PHA 蓄積細菌の代表として前述した生物学的リン除去法で活躍する PAOs やリン除去悪化時に現れるグリコーゲン蓄積細菌(GAOs: glycogen accumulated organisms) が報告されている。

4 PHA 合成にかかわる酵素

多くの微生物は糖、有機酸などの栄養源から PHA を合成する。PHA は、前駆物質である基質 (細菌が成長するための炭素源)からの誘導体、あるいは炭素代謝の主要な中間生成物の存在に よって合成され、ヒドロキシアルカノイル-CoA チオエステルとなる。つまり、細菌に糖類や 酢酸を与えると、菌体内でアセチル CoA に変換される。アセチル CoA は TCA 回路に入りアミ ノ酸合成やエネルギー生産のための供給源となる一方で、酵素β-ケトチオラーゼによって2量 化し、アセトアセチル CoA となる。ついで NADP 依存性アセトアセチル CoA リダクターゼによ り還元され、3-ヒドロキシアルカノイル CoA となる。これが PHA シンセターゼの作用によって 超高分子量の(数十万~数百万)の PHA となる。その後、PHA 合成酵素によってポリマー化さ れる。

つまり、PHA の合成は主に3つの工程、ケトチオラーゼにより、基質から誘導された補酵素 A (アセチルーCoA やアセトアセチルーCoA など)を2量化され、レダクターゼにより、2量化 された中間体は水素を付加され、PHA シンターゼ(合成酵素)(またはポリメラーゼとも呼ばれ る)により、合成されたモノマーを PHA に重合することにより行われる。

例えば酢酸やプロピオン酸を出発物質とする場合、酢酸はまずアセチル補酵素 A に、プロピオン酸はプロピオニル補酵素 A 変換され、その後二分子のアセチル補酵素 A またはプロピオニル 補酵素 A はケトチオラーゼにより縮合され、レダクターゼによる還元され、3-ヒドロキシアル カノイル CoA を生じる。3-ヒドロキアルカノイル CoA はシンターゼにより重合されて、PHA を 生じる。

分子量の大きな有機酸はアルカノイル CoA に転換されてからβ酸化経路に入る。そのまま 3-ケトアルカノイル CoA から PHA 合成系に入れば与えた有機酸よりも炭素数が2個少ないモノマ ーユニットとなり、3-ケトアルカノイル CoA がアセチル CoA と縮合してから PHA 合成経路に 入れば、与えた有機酸よりも炭素数が2個多いモノマーユニットとなる²⁾。

5 良好な生物学的リン除去時(PAO)の代謝パターン

各槽内における上清中の有機物の濃度とリン酸濃度、菌体中の蓄積 PHA 量の典型的な挙動を Figure 2.3 に示す。嫌気槽では、上清中の有機物濃度が減少するのと同時に、リン酸濃度が上昇 する。一方、好気槽では、上清中のリン酸濃度が減少する。嫌気槽での上昇分以上に減少するの で、リン酸が除去される。

この現象は、以下のように説明されている。嫌気好気活性汚泥中には、リン酸をポリリン酸の 形で余剰に蓄積する細菌 (PAO) が増殖する。ポリリン酸は高エネルギー化合物であり、ポリリ ン酸を加水分解するとエネルギーを取り出すことができる。したがって PAO は、嫌気槽内でポ リリン酸を加水分解してエネルギーを生産し、そのエネルギーを使って有機物を摂取することが できる。このとき、加水分解によってできたリン酸が上清中に放出され、上清中のリン酸濃度が 上昇する。同時に、上清中の有機物濃度は菌体に摂取されて減少する。加水分解によるエネルギ ーだけでは、菌体増殖は行えないため、摂取された有機物は一旦、PHA に変換されて菌体内に 蓄えられる。

続く好気槽内で PAO は、蓄積した PHA を酸素によって酸化分解(好気呼吸)してより多くの ATP を生産し、その ATP を利用してポリリン酸の再合成と菌体増殖を行う。ここで、加水分解 時に上清中へ放出した以上のリン酸を取り込むので、上清からリン酸は除去される。一方、好気 性の従属栄養細菌は、嫌気条件下ではエネルギーを生産することはできないので、嫌気槽中の有 機物摂取をできない。呼吸が可能な好気条件下では、すでに PAO によって有機物はほぼ食べつ くされてしまっている。こうして、嫌気好気活性汚泥法は、ポリリン酸蓄積能を有する細菌に有 利な環境となり、PAO が汚泥内で優占する。好気槽の後に続く沈殿槽で固液分離を行うことで、 最もポリリン酸を蓄積した状態の PAO を水系から取り除くことができ、リン除去が実現する。

Figure 2.3 活性汚泥の典型的な代謝パターン

 ①で得たエネルギーを利用し、有機 物を PHA として取り込む

- PHA を酸化分解しエネルギーを得る
- ①で得たエネルギーを利用し、 Poly-Pの再合成(Piの取り込み)お よび菌体増殖を行う

Figure 2.4 PAO の代謝

5.1 PAO について

生物学的リン除去のメカニズムが明らかになるのと並行して、実際に Figure 2.3 のような代謝 を行ってリン除去に貢献する PAO を突き止める努力がなされてきた。以下に PAO 候補を示す。

a. グラム陽性高 GC グループ

Wagner ら^{エラー! ブックマークが定義されていません。)}は、ポリリン酸顆粒を多量に含む汚泥中に、グラム陽 性高 GC グループが多量に存在したことから、グラム陽性高 GC グループがリン除去を担ってい る可能性を示唆した。Kampfer ら³⁾も、Wagner 同様、グラム陽性高 GC グループがリン除去を担 っている可能性を示唆している。Christensson ら⁴は、酢酸を主要な炭素源とする人工下水を与え た実験室スケールのリアクターを対象として、ランダムクローニングによる 16S rRNA 遺伝子配 列決定を行い、51 クローンのうち 31%がグラム陽性高 GC グループであるという結果を得た。

さらに Kawaharasaki ら⁵⁾は、グループ特異プローブと DAPI 染色で二重染色を行い、DAPI で 染まるものの中には、グラム陽性高 GC グループとα-Proteobacteria グループが多かったという 報告もしている。

b. Candidatus 'Accumulibacter phosphatis'

Bond ら⁶は、生下水を基質として馴養した嫌気好気活性汚泥を対象に PCR-Cloning-Sequencing 法による 16S rRNA 遺伝子配列決定を行い、リン除去能が高い汚泥からは、リン除去能が低い汚 泥からに比べて、*Rhodocyclus* が多く検出されるという結果を得た。さらに Hesselmann ら⁷⁾、 Crocetti ら⁸⁾は、酢酸を主な基質にしたリアクターから、非常に高い割合で *Rodocyclus* 属に近縁 なグループを検出した。Crocetti ら⁸⁾は、これらの細菌群を特異的に検出する遺伝子プローブを 設計し、FISH 法を行うことで、これらの細菌群が実際にポリリン酸を蓄積しているとした。 *Rhodocyclus* とは、光合成細菌として単離、命名された属であるが、これらのグループは、 *Rhodocyclus* 属に近縁だが、光合成能が無いので、Hesselmann らは新属 *Candidatus* 'Accumulibacter phosphatis'を提案している。

6 生物学的リン除去の悪化時(GAO)の代謝パターン

全小節で述べたメカニズムから考えると、嫌気好気法の運転を続けている限り、PAO に有利 な環境が続き、安定したリン除去が期待できるはずだが、実際の嫌気好気活性汚泥法の安定性は あまり高くない。突然、あるいは徐々にリン除去能を失う場合が報告されている。

嫌気好気法の安定した運転を行うためには、リン除去のメカニズム解明だけでなく、リン除去 能が失われていくメカニズムの解明もまた重要である。

6.1 グリコーゲン蓄積細菌(GAOs)について

リン除去が失われていくときの現象として、嫌気条件下で有機物は摂取されているのに、リン の吐き出し取り込みが見られなくなっていくというケースが注目された。この時の各水質項目の 挙動を図示したのが Figure 2.5 である。このケースを説明するため、以下のような細菌が提案さ れた。好気条件下でポリリン酸を蓄積する代わりにグリコーゲンを蓄積し、嫌気条件下でこのグ リコーゲンをエネルギー源(かつ還元力供給源)として基質を摂取する、という細菌である。グ リコーゲンを加水分解によりグルコースに分解するときにエネルギーとして取り出すことが可 能なので、グリコーゲンは、ポリリン酸同様、嫌気条件下でのエネルギー源として使用可能であ るとされる。したがって、グリコーゲンを蓄積する能力を持つ細菌が存在すれば、嫌気条件下で エネルギーを生産して、基質を摂取することができ、嫌気好気活性汚泥法において PAO と競合 できる。もしグリコーゲンを蓄積する細菌が優占すれば、図に示したような代謝が見られ、リン 除去能は失われることになる。Minoら⁹はこの代謝パターンを持つ細菌を、PAO との対で GAO と名付けている。以後 GAO は、PAO 同様、単離も同定もされていないものの、PAO と競合し、 生物学的リン除去を悪化させ得る細菌の1つとして広く受け入れられることとなった。

本研究においては、生物学的リン除去が悪化するときの1つのパターンとして、嫌気工程にお いてリン酸の放出を伴わずに有機物が摂取される代謝をGAO-like な代謝と呼ぶ。GAO-like とし たのは、グリコーゲンの定量は行っておらず、グリコーゲンを蓄積しているかどうか判定してい ないためである。

Figure 2.5 グリコーゲン蓄積細菌の代謝パターン

Figure 2.6 GAOの代謝

6.1 で述べたように、グリコーゲン蓄積細菌は、リン除去を悪化させる原因の一因と考えられている。しかし、その正体についてはポリリン酸蓄積細菌 (PAO) 同様ほとんど明らかになっていない。

リン除去能が失われた汚泥中で、tetrad が塊状になっている細菌が優占していることが、Cech and Hartman^{10,11)}によって報告され、G-bacteria と名付けられてリン除去悪化の原因菌とされた。 これらの G-bacteria は、酢酸を基質として与えていたときはあまり見られなかったのに対し、酢酸とグルコースを混ぜて与えるようにしたところ優占したので、Glucose の G をとって G-bacteria と命名された。Liu ら¹²⁾は GAOs の代謝が支配的なときに、「G-bacteria」(tetrad の塊をつくるもの)を検出している。

a. G-bacteria

その後、Cech and Hartman^{10,11)}の G-bacteria と似たような形態を持つ細菌は、嫌気好気活性汚 泥法に限らず活性汚泥に広く(そして活性汚泥以外からも)見つかることが報告されるようにな った。Seviour¹³⁾は、G-bacteria を「tetrad や sheets もしくはクラスターを形成している球菌」と定 義し直している。したがって、今日「G-bacteria」といっても、Mino ら¹⁴⁾が言うところの GAO だというわけでもなく、嫌気好気活性汚泥群集とどれくらい関係があるかもよく分からないのが 現状である。それでも活性汚泥から頻繁に検出されるグループであり、また嫌気好気活性汚泥か ら検出されることもやはり多いことから、G-bacteria についてこれまでに分かっている知見を本 小節にまとめておく。

Sevior¹³⁾の再定義に基づいて、「G-bacteria」を幅広く検索した結果(つまり見た目だけで探し た結果)、いくつか単離に成功するものも出てきた。得られた単離株について、16S rRNA 遺伝子 配列解析等を行った結果、G-bacteria(様の形態を持つ細菌)は、系統学的には非常に多様な細 菌たちで、見た目は似ていても系統学的には全く異なる細菌が多く存在することが明らかとなっ た。特に、グラム染色陽性の G-bacteria 様単離株は、非常に多様で、様々な系統的グループに属 していた、以下の例は、主に Maszenan らによって micromanipulation で単離された、G-bacteria 株である。

b. Amaricoccus 属

Maszenan ら¹⁵によって定義された。α-Proteobacteria に属する。Blackall ら¹⁶によって *Tetracoccus* 属に分離された株も、*Amaricoccus*属と見なされるようである。グラム陰性 G-bacteria の大部分 は *Amaricoccus* かというくらい広く分布する。標準活性汚泥からも嫌気好気活性汚泥からも広く 見つかる。Cech and Hartman¹¹⁾の報告における、リン除去を悪化させた「G-bacteria」もこれでは ないかと思われる。しかし今のところ、*Amaricoccus* と名付けられた単離株で、嫌気条件下で酢 酸やグルコースを摂取するものはない。(好気では、酢酸やグルコースを用いて PHA をよく生産 する。) GAO である可能性は低い。

c. Lampropedia 属

ポリリン酸蓄積細菌(PAOs)候補とされる細菌だが、G-bacteria様の球菌である。

d. Friedmaniela 属

Maszenan¹⁵⁾によって単離された。Shintani ら¹⁷⁾は、*Micropruina glycogenica* を単離。G-bacteria 様の形態を持ち、純菌株の状態でグリコーゲンを蓄積することが確認された唯一の株。嫌気でも好気でもグルコースをグリコーゲンに変える。

e. Tetrasphaera 属

リンを蓄積しているとされる。系統的には Candidatus Nostocoida limicola II と近縁である。 Candidatus Nostocoida limicola II は、糸状菌になったり球菌になったりするとされる。しかし、 Tetrasphaera の単離株で糸状体に変化したものは無い。Terrabacter、Terracoccus にも近い。

f. Microsphaera multipartia

Yoshimi ら¹⁸⁾によって単離されているグラム陽性 G-bacteria だが、16S rRNA 遺伝子配列解析など がまだで、系統分類は分かっていない。*Microlunatus* と共生しているという説がある。

g. Candidatus 'Competibacter phosphatis'

Candidatus 'Competibacter phosphatis'の PHA 蓄積能は Crocetti ら¹⁹⁾によって確認されており、 実下水処理場において広く分布していることが知られている²⁰⁾。また、*Candidatus* 'Competibacter phosphatis'と *Candidatus* 'Accumulibacter phosphatis'の摂取できる基質の種類が極めて類似してい ることが確認されており²¹⁾、この報告は *Candidatus* 'Competibacter phosphatis'がポリリン酸蓄積 細菌と有機物を巡る競合細菌であることを裏付けている。

7 分子生物学的手法による細菌群集解析

7.1 磁気ビーズによる特定配列の濃縮

磁気ビーズとは、標的配列を濃縮されたいときに用いる方法である。本研究で用いた磁気ビー ズの方法概略を Figure 2.7 に示す。標的配列と同じ配列(プローブと呼ばれる)にビオチンを結 合させたビオチンプローブを作成し、ビオチンプローブをサンプルに結合させる。ビオチンはス トレプトアビジンという磁性を持った粒子と特異的な結合をすることを利用し、ビオチンにスト レプトアビジンを結合させ、ビオチンの結合した標的配列を含む配列を濃縮させる方法である。 この方法は、真核生物における Total RNA からの mRNA の精製によく用いられる方法である。 つまり、真核生物の mRNA は polyA というアデニンが並んだ配列を 3'末端に含んでいるので、 polyT ビオチンプローブを 3'末端に結合させ、磁性的に mRNA を回収するのである。

Figure 2.7 磁気ビーズによる特定遺伝子の濃縮の概略

7.2 Percoll による密度勾配遠心分離法

密度勾配遠心分離法とは、遠心管内の溶液に通常は底部から上部に向かって密度を低下させ、 その中を試料を遠心分離すると、目的とする物質や細胞が一定の密度溶液のところで層を形成す ることを利用して目的物を分取する方法のことである。ショ糖や Percoll といった比重の高い溶 液に試料を懸濁させることで密度分離を行う。

Figure 2.8 密度勾配法の概略

7.3 DNA について

DNA はほとんどの場合二本鎖である(ウイルスの中には一本鎖のものもいる)。DNA は、ア デニン(A)、グアニン(G)、シトシン(C)、チミン(T)の4種類の塩基より構成されている。 二本鎖 DNA では、アデニンにはチミンが、グアニンにはシトシンが水素結合により対合するの で、2つの鎖は反対向きに走り(逆方向)、二重らせん構造をとっている。このような DNA を細 菌は遺伝情報として保持している。Table 2.1 はヌクレオチドの略語表を示した。A、T、G、C、 U、I 以外は数種類の塩基が混ざった塩基、いわゆる混合塩基である。

		-		
略語	塩基の名称		略語	塩基の名称
А	Adenine		R	A、G
В	C、G、T		s	C, G
С	Cytosine		Т	Thymine
D	A、G、T		V	A、C、G
G	Guanine		W	A、T
Н	A、C、T		Y	C, T
К	G、 T		U	Uracil
М	A、C		I	Inosine
N	A、C、G、T			

Table 2.1 ヌクレオチド略語表

7.4 16S rRNA 遺伝子(16Sr DNA)について

small-subunit rRNA 遺伝子は保存性が高く、広範な生物種に共通する PCR プライマーの作成が 可能である。そのため、様々な生物の簡便な種同定や群集構造解析、系統解析などに最も頻繁に 使われている。我々ヒトをはじめとする真核生物の SSU-rRNA の大きさは 18subunit、細菌をは じめとする原核生物の SSU-rRNA 遺伝子の大きさは 16subunit なので、各々18S rRNA 遺伝子、 16S rRNA 遺伝子と呼ばれている。

環境サンプルの中の難培養性のものも含めた微生物相の解明には16S rRNA遺伝子解析は必須 であり、一般に大腸菌などが属する真性細菌(bacteria)と高熱細菌などが属する古細菌(始原 菌; Archaea)の16S rRNA遺伝子にそれぞれ共通なプライマーを用いて PCR 増幅し、クローン 解析、T-RFLP(Terminal-Restriction Fragment Length Polymorphism)解析、DGGE(Denaturing Gradient Gel Electrophoresis)解析などを行う。これらにより難培養性細菌も含めた環境サンプル中の、細 菌相の解明、細菌種多様性の推定・比較、細菌群集構造の推定・比較、などが可能である。

環境中の細菌相の解明に 16S rRNA 遺伝子解析が必須であることは、現在認識されている真性 細菌の門レベル系統(division) 35 のうち 13 系統が 16S rRNA 遺伝子解析からしか得られておら ず²²⁾、そのような新門候補(candidate division)が増え続けていることからも明白である。しか し、16S rRNA 遺伝子解析結果を細菌群集構造解析に用いる場合には、問題点も多い。最大の問題はバイアスである。すなわち、16S rRNA 遺伝子解析結果が細菌の実際の群集構造を反映しているか、という問題である。16S rRNA 遺伝子の数は細菌種によって異なるため、サンプル中の主要細菌種間で差がある場合、16S rRNA 遺伝子解析結果が実際の菌数の割合と大きく異なってしまう可能性がある。さらに、PCR に伴うバイアスがある。プライマーとのミスマッチによる選択的増幅^{23,24,25}と、PCR 産物同士のセルフアニーリングによる優占細菌由来 DNA の減少^{26,27)} (つまり優占種の過少評価と少数種の過大評価)である。

7.5 phaC について

*phaC*はPHA 合成の最終段階である(*R*)-3-hydroxyacyl-CoA monomer のポリマー化を触媒する酵素の機能遺伝子である。この酵素はPHA 合成のキーとなる酵素である。よって、PHA 蓄積細菌 は必ず *phaC* をもつと考えられている。また、単離されている PHA 蓄積細菌の phaC 配列の全長 はおよそ 2000bp 程度である。

7.6 環境サンプルからの DNA の抽出

環境サンプルから DNA を抽出する際に、注意しなければならないことは、細菌の種類によっ て抽出のバイアスがかかってしまう点である。例えば、グラム陽性菌の細胞壁が、一層の厚いペ プチドグリカン層から構成されているのに対し、グラム陰性菌では、何層かの薄いペプチドグリ カン層の外側を、外膜と呼ばれる脂質二重膜がさらに覆っているので、グラム陰性細菌では細胞 壁が壊れやすく、グラム陽性細菌では細胞壁が壊れにくい。このポイントで双方の抽出効率が変 わってくるので、十分な細胞壁破壊処理が重要である。細胞壁破壊処理には化学的破砕法と物理 的破砕法があるが、物理的破砕法の法が細胞壁破壊効率は優位である。

7.7 PCR (Polymerase Chain Reaction)

PCRの原理は Mullis によって考案された²⁸⁾。PCR により微量の DNA サンプルから目的とする 特定の領域の DNA が、3時間ほどで 20 万から 50 万倍に増幅できる。

PCR は、DNA 合成酵素 (DNA ポリメラーゼ) が DNA の合成に際してプライマーを必要とし、 このプライマーから 5'→3'の方向へ DNA を合成していくということを利用している。分析した い DNA 領域を 1 組のプライマーではさんで、DNA の一本鎖への変性 (denature)、→プライマ ーの結合 (annealing) →DNA ポリメラーゼによる相補性 DNA の合成 (extension)、という 1 回 の反応でその領域を含む DNA を倍加できる。この反応を次々と繰り返していけば n 回繰り返す ごとにこの領域の DNA を (1+E)ⁿ倍だけ増幅できる。ここで E は、denature から extension まで の増幅反応効率で、0 < E < 1 の値をとる。

Figure 2.9 PCR の原理

7.8 PCR Cloning Sequencing 法

cloning とは、クローン(同じ遺伝子型をもつ集団)を作成することを意味する。分子生物学的な手法においては、クローンをつくる対象として大腸菌(*E. coli*)などが用いられ、遺伝子を単離する方法として用いられる。

cloning 法の概略は Figure 2.10 に示す。まず、PCR 法により様々な細菌種の 16S rRNA 遺伝子のような特定遺伝子領域を増幅させる。増幅した遺伝子領域をベクターという大腸菌へ運ぶための遺伝子に結合させる。特定遺伝子領域が結合したベクターを、ベクターの受け入れ能を高めた大腸菌(コンピテントセル)へ挿入する(トランスフォーメーション)。この大腸菌は一晩培養することで生長しコロニーというクローンの集団を形成する。

cloning で問題となる擬陽性のクローンは次の3つのケースによって作成されてしまう。一つ 目のケースは、ベクターのセルフライゲーションである。つまり、インサートが何も入らずにベ クターが環状構造を形成してしまい、何もインサートが入っていないクローンが作成されてしま うケースである。このケースを防ぐため、通常 Blue/White セレクションや ccdB 遺伝子によるセ レクション²⁹⁻³⁰⁾を行う。Blue/White セレクションとは、*lac*Zα遺伝子の間に外来 DNA が入るよう

にしておき、外来DNAが挿入されたクローンは*lac*Zαタンパクが合成できないようにしておく。 誘導物質の IPTG (Isopropyl β-D-Thiogalactoside) と X-gal (5-bromo-4-chloro-3-indolyl-beta-D-galact opyranoside)を基質として加えると青色を呈する不溶性産物ができるため、外来 DNA が挿入さ れていないクローンは Blue のクローンとなり、外来 DNA 挿入の有無が簡単に分かる仕組みで ある。ccdB遺伝子によるセレクションの方法はccdB遺伝子の間に外来 DNA が入るようにして おく。外来 DNA が挿入されなかったクローンは ccdB 遺伝子が発現により死んでしまうので、 外来の DNA が入ったクローン以外は成長しないようにしておく仕組みである。本研究で用いた pCR4-TOPO vector は後者の仕組みでセルフライゲーションのクローンを単離できないようにし ている。擬陽性クローンが作成されてしまう 2 つ目のケースは、プライマーダイマー等の PCR artifact が外来 DNA として挿入されてしまうケースである。この問題は PCR 産物の精製、もし くは電気泳動後のゲル抽出により、目的の DNA 断片のみにインサート DNA を調整することで 解決できる。擬陽性クローンが作成されてしまう3つ目のケースは、形質転換されていない大腸 菌、つまりベクターが入っていない大腸菌が生えてしまうケースである。この問題は抗生物質耐 性の遺伝子をベクターに導入しておくことで防ぐことができる。抗生物質入りの培地に大腸菌を 撒くと、ベクターが導入された大腸菌は抗生物質に耐性があるので生えることができるが、ベク ターが導入されていない大腸菌は抗生物質に耐性がないので生えることができない。本研究で用 いた pCR4-TOPO vector は Ampicillin と Kanamycin の 2 つの抗生物質への耐性を持っている。 Ampicillin は細菌の細胞壁の合成を阻害し、Kanamycin 70S リボソームに結合することで mRNA の misreading をひき起こす。本研究では Kanamycin を抗生物質として用いた。ただ、Kanamycin は殺菌的に働く抗生物質なので、いきなり大腸菌を Kanamycin 入りの培地に撒いてしまうと、 菌は死んでしまうので、1 時間 SOC 培地で事前培養する必要がある。

Figure 2.10 cloning の概略

Sequencing 法とは遺伝子の塩基配列を解読する方法である。その解読方法の原理は以下の通り である。解読したい DNA の Template (鋳型 DNA)、dNTP、蛍光標識された ddNTP (ddATP 用、 ddTTP 用、ddCTP 用、ddGTP 用の、計4種類の蛍光色素を用いる)、と DNA ポリメラーゼを混 合し、PCR の原理で DNA を増幅させる。増幅される DNA の塩基部位では dNTP か ddNTP いず れかが取り込まれる。ddNTP は五炭糖の 3'の位置が-OH ではなく-H である。dNTP が取り込ま れれば相補鎖はさらに伸張するが、ddNTP が取り込まれると、3'末端の OH 基がないのでリン酸 ジエステル結合をつくれず、伸長はそこで停止してしまい、末端の塩基が一定の DNA 断片が形 成される。dNTP/ddNTP 比を適当に選ぶと、その塩基に対応して特異的に伸長が停止した、鎖長 がランダムな相補鎖が合成される。このランダムな相補鎖の末端塩基は蛍光色素が結合している ddNTP なので検出可能である。これを利用して塩基配列を決定する。

Figure 2.11 dNTP と ddNTP

PCR Cloning Sequencing 法は、PCR により様々な細菌種の特定遺伝子領域を増幅させた遺伝子 を、cloning 法で1つの遺伝子に単離し、単離した遺伝子の塩基配列を Sequencing 法で解読する 方法である。

7.9 PCR/T-RFLP(Terminal Restriction Flagment Length Polymorphism)法

PCR Cloning Sequencing 法では塩基配列による詳細な分類(系統)関係が分かるものの、一般 に環境中の細菌相はきわめて多様な細菌種で構成されているため、数十クローン程度の解析では サンプル数が少なすぎて確率的誤差が大きく、実際の細菌群集の構成比を反映していない可能性 がある。しかしながら費用と時間の制約によって、特に複数のサンプルを比較したい時には十分 な数のクローンを解析できないことが多い。その場合、PCR-T/RFLP 法や PCR-DGGE 法を用い れば、迅速かつ低コストで細菌群集構造の概観をつかみ、多数のサンプルの比較が可能である。 PCR-DGGE 法は電気泳動に用いるアクリルアミドゲル中の変性剤含量(ホルムアミドと尿素) に濃度勾配をかけることで、PCR で得られた混合配列を、その長さと塩基対構成比によって高 い解像度で分離するものである。最大の利点は、主なバンドをゲルから切り出しての Sequencing 解析(単一種の配列でバンドが構成されていないことも多い)が可能なことである。ただ DGGE 法は各バンドを Sequencing 解析しないかぎり各バンドがどのような細菌種・群に由来するか予想 困難なため、サンプル間の比較や優占種だけを知れば十分な場合において特に有用である。

PCR-T/RFLP 法は 5'末端を 6-FAM や Texas Red などの蛍光色素でラベルしたプライマーを用い て PCR を行い、PCR 産物を制限酵素で切断後、DNA シーケンサーで電気泳動して、ラベルされ た 5'断片長と蛍光強度を解析する。PCR-DGGE 法のようにバンドを切り出して解析することは 不可能だが、配列データベースから制限酵素切断サイトの予測が可能であり、特に PCR Cloning Sequencing 解析を平行して行う際には、各ピークが由来する配列種・種群を特定しやすい。

Figure 2.12 PCR/T-RFLP

第3章 実験方法

1 実験室規模リアクターの構築

本研究では、微生物群集構造を単純化するために嫌気・好気法でリン除去を行っている実下水 処理場の返送汚泥を種汚泥とし単純な組成で構成された基質を用いてリアクターを運転した。

Figure 3.1 および Figure 3.2 に示すようなリアクターにて、運転を行った。このリアクターは連 続回分式リアクター(Sequencing Batch Reactor; SBR)と呼ばれ、時間によって流入工程、嫌気 工程、好気工程、沈殿工程に区切る一槽式のリアクターである。実下水処理場においては嫌気槽、 好気槽、沈殿槽と別々の処理槽を流下していく方式(連続式)を採用していることが一般的であ るが、実験室規模においては連続式回分リアクターのほうの運転が安定しているため本研究では この方式を採用した。

リアクターの本体は、PAO に関しては容積 20L、GAO-like に関しては 10L の円筒形容器であ る。底部は、活性汚泥の攪拌の際にデッドゾーンが少なくなるように、円錐台形となっており、 側部には各種センサーの設置・排水・排気が出来るように孔があり、通常はその部分をゴム栓で 塞いだ。上部に O リングを挟んで蓋を乗せ、蓋と本体をナットで固定することで、気密性が確 保されている。蓋には 4 つの口径 5cm 程度の孔と攪拌機が取り付けられている。4 つの孔には、 それぞれ適したサイズのゴム栓をあて、それぞれのゴム栓に穴を開けてチューブを通し、リアク ターへの水道水・濃縮基質・空気・余剰汚泥・処理水の出入りを行った。リアクターは 2006 年 10 月 16 日から 10 月 23 日までは 21℃の恒温室で運転し、10 月 24 日から 11 月 19 日までは 20 度の恒温室で運転し、11 月 20 日から 12 月 3 日まで 18℃の恒温室で運転し、12 月 4 日以降は 18 度の恒温室で運転した。

Figure 3.1 リアクター写真

Figure 3.2 リアクターセット模式図

1.1 PAO リアクター

EBPR が良好な、リアクターを構築した。種汚泥は小菅処理場の AO 法の返送汚泥に由来している。

1.1.1 タイムシーケンス

嫌気好気式循環運転は、4時間を1サイクルとして、Figure 3.3 に示すタイムシーケンスで運転した。このタイムシーケンスはオムロン社のオートプログラマブルコントローラーC28H型により、全て自動制御した。

Figure 3.3 PAO リアクターのタイムシーケンス(単位:分)

まず、始めの6分間で処理水を放流する。放流が終わると、続いて水道水が流入する。水道水 流入は14分間で行われ、終了の5分前から濃

縮基質・リンの流入が始まる。流入が終わる と、60 分間の嫌気工程に入り、攪拌のみ (600rpm)を行う。続いて120分間の好気工 程に入り、ここでは攪拌と空気曝気を行う。 最後は40分間の沈殿工程で、活性汚泥と処 理水の分離を行う。なお、流入水量、放流水 量はそれぞれ10Lに設定した。

1.1.2 濃縮基質

人工下水とは下水組成を模倣した有機物 や無機物質を含む混合液のことである。この 人工下水を濃縮基質として作成し、水道水で 希釈して流入させた。濃縮基質の組成を Table 3.1 に示す。表中の基質 A は、運転開始から 15 日目まで、16 日目から 24 日目(7 日間) までは基質 B で運転した。25 日目以降は基 質 C で運転した。濃縮基質の TOC は約

成分	基質 A	基質 B	基質 C
CH ₃ COONa·3H ₂ O	51.25	38.44	25.63
CH ₃ CH ₂ COONa	-	6.03	12.06
Yeast extract	1.25	1.25	1.25
Peptone	1.25	1.25	1.25
CaCl ₂ ·2H ₂ O	1.10	1.10	1.10
MgCl ₂ ·6H ₂ O	11.34	11.34	11.34
KCI	5.25	5.25	5.25
NH₄CI	2.20	2.20	2.20
$(NH_4)_2SO_4$	2.70	2.70	2.70
K ₂ HPO ₄	2.25	2.25	2.25
KH ₂ PO ₄	1.75	1.75	1.75
Allylthiourea	0.50	0.50	0.50
Pr の割合(炭素比)	0	1/4	1/2
CP比(mgC/mgP)	12.5	12.5	12.5

Table 3.1 濃縮基質の組成(単位:g/L)

10000mgC/L、C/N 比は約 12mgC/mgN、CP 比は約 15mgC/mgP である。濃縮基質は活性汚泥の有 機物摂取能力に応じて1 サイクルにつき 100mL(TOC 換算で約 50mgC/L)投与した。

1.2 GAO-like リアクター

EBPR が悪化するリアクターを構築した。種汚泥は小菅処理場の AO 法の返送汚泥に由来している。

1.2.1 タイムシーケンス

容量 10L の回分式リアクターを Figure 3.4 に示すタイムシーケンシングにて嫌気好気運転を行った。このタイムシーケンスはオムロン社のオートプログラマブルコントローラーC28H 型により、全て自動制御した。

Figure 3.4 GAO-like リアクターのタイムシーケンス(単位:分)

まず、始めの 30 分間で処理水を放流する。放流が終わると、 続いて水道水が流入する。水道水流入は 20 分間で行われ、次 に濃縮基質の流入が始まる。濃縮基質の流入は 10 分間で行わ れる。濃縮基質の流入が終わると、90 分間の嫌気工程に入り、 撹拌のみを行う。続いて 150 分間の好気工程に入り、ここでは 撹拌と空気曝気を行う。最後は 60 分間の沈殿工程で、活性汚 泥と処理水の分離を行う。なお、流入水量、放流水量はそれぞ れ 6L に設定する。リアクター内の pH は自動で測定する。pH の範囲を 7.8~8.0 に設定した。汚泥滞留時間(SRT)は約 8 日、 水理学的滞留時間(HRT)は 10 時間とした。

1.2.2 濃縮基質の組成

GAO-like リアクターの濃縮基質はに示す基質 D で運転開始 時期から運転した。

Table 3.2 GAO-like リアク ターの濃縮基質組成			
成分	基質 D		
CH ₃ COONa·3H ₂ O	25.63		
CH ₃ CH ₂ COONa	12.06		
Yeast extract	1.25		
Peptone	1.25		
CaCl ₂ ·2H ₂ O	1.10		
MgCl ₂ ·6H ₂ O	11.34		
KCI	5.25		
NH₄CI	2.20		
$(NH_4)_2SO_4$	2.70		
K ₂ HPO ₄	0.56		
KH ₂ PO ₄	0.44		
Allylthiourea	0.50		
Pr の割合(炭素比)	1/2		
CP比(mgC/mgP)	55		

1.3 水質分析項目

基質の摂取・リン除去・活性汚泥内 PHA 蓄積状況、活性汚泥量などを把握するために、活性 汚泥混合液上清液中のリン酸・酢酸・プロピオン酸の濃度、活性汚泥中の PHA 量、MLSS・MLVSS などの項目をそれぞれ測定した。

2 プロピオン酸を基質とした回分実験

リアクターから沈殿工程直前の汚泥を1L 採取し、実験容器 (Figure 3.5 参照)に移した後、炭素源として 250mgC/L のプロ ピオン酸を投与した。適時採取したサンプルのプロピオン酸、 PHA 濃度を測定し、炭素源の摂取や PHA 蓄積状況をモニタリン グした。

採取した活性汚泥を容器に移した後、10 分程度窒素ガスによ る曝気を行い、酸素を追い出して嫌気状態を形成する。続いて、 基質投与前のサンプルを採取してから基質を投与する。基質の 投与は、装置のシリコン栓をはずしてから、ピペットで濃厚な 水溶液を所定量注入してから行った。窒素曝気は基質投与が終 わった時点で止め、再び密栓する。サンプリング時以外は、排

Figure 3.5 実験装置

気口を閉め、容器を密閉する。容器内の撹拌はマグネティックスターラーと撹拌子で行う。実験 時間は6時間行った。

3 水質分析方法

3.1 低級脂肪酸及びリン酸などの溶存性イオン

低級脂肪酸(酢酸・プロピオン酸)及びリン酸は、水溶液中では陰イオンとして存在するので、 Waters 社の CIA(Capillary Ion Analyzer)を用いて、キャピラリー電気泳動法により測定した。キャ ピラリー電気泳動法では、イオンをその大きさや電荷数で分離し、間接紫外線吸光(254nm)によ り同定・定量を行うものであり、様々なイオンを同時に短時間で測定できる特色を有している。 本研究では、CIA を用いたキャピラリー電気泳動法により、酢酸・プロピオン酸・リン酸につい て測定を行った。

使用したキャピラリーは、長さ 70cm,内径 60 µ m のものを用い、印加電圧は 30.0V とした。分 析に用いたバッファーは、Waters 社で指定されたバッファー(クロム酸水溶液と OFM Anion BT の混合溶液)を使用した。

以下に分析手順を示す。

採取した汚泥混合液サンプルを遠心分離(3500rpm, 5min)し、汚泥と上澄み液を分けた後、 上澄み液を 0.45 µ m のメンブレンフィルターでろ過し、ろ液を適当倍率に希釈する。希釈した ろ液を 1.5mm の専用バイアルに移し、CIA にセットする。また、同定・定量のための標準溶液 をそれぞれ調製し、サンプルと同様にセットする。分析結果は、各成分のピーク面積がその成分 の濃度に比例するという関係を利用して濃度を計算した

3.2 MLSS(活性汚泥浮遊物質濃度)、MLVSS(活性汚泥有機性浮遊物質濃度)

活性汚泥浮遊物質濃度(Mixed Liquor Suspended Solids, 以下 MLSS)及び活性汚泥有機性浮遊物質濃度(Mixed Liquor Volatile Suspended Solids, 以下 MLVSS)は、下水道試験法(1997)に基づき、分析を行った。分析手順を以下に示す。

まず、600℃のオーブンで 30 分乾燥させ、その後 110℃オーブン、デシケーター中で放冷させた蒸発皿の重量を測定する・・・(1)。汚泥混合液サンプルを 25mL 採取し、遠心 (3500rpm, 5min) した後、上澄み液を捨てる。沈殿物に RO 水を加えて攪拌し、もう一度遠心分離 (3500rpm, 5min) する。上澄み液を捨て、沈殿物を蒸発皿に RO 水で流し込み、ウオーターバス上で水分を蒸発させる。その後、蒸発皿を 110℃のオーブンで 2 時間乾燥させ、デシケーター中で 30 分以上放冷させた、蒸発皿の重量を測定する・・・(2)。最後に、600℃のオーブンに蒸発皿を 30 分放置し、110℃ オーブン、デシケーター中で放冷させた蒸発皿の重量を測定する・・・(3)。ここで、{(2)-(1)}×40000 が MLSS(mg/L)であり、{(2)-(3)}×40000 が MLVSS である。

3.3 PHA

佐藤の方法³¹⁾に従い、PHAの同定・定量を行った。

汚泥混合液サンプル 10mL を遠心分離 (3500rpm, 5min) し、上澄み液を捨てた後、汚泥ペレ ットを冷凍庫の中で凍結させる。凍結した汚泥ペレットを凍結乾燥させ、ミクロスパーテル等で 乾燥汚泥を粉末状にする。粉末汚泥が入った試験管に内部標準物質として 200mg/L の安息香酸 を含んだ 10%硫酸酸性メタノールを 2mL と、クロロホルムを 2mL 加えて激しく攪拌する。充 分に攪拌した後、99℃のオーブンで 24 時間反応させ、汚泥中の PHA 構成モノマーのメチルエス テル (HA エステル)を生じさせる。サンプルをオーブンから取り出し、室温まで放冷させた後、 28%アンモニア水 0.5mL を加えて激しく攪拌し、遠心分離 (3500rpm, 5min) すると、サンプル は 3 層に分離される。下から、硫酸アンモニウムの固体層、クロロホルム層、水+メタノール層 である。疎水性である HA メチルエステルはクロロホルム層に溶解しているので、クロロホルム 層を、パスツールピペットで 1.5mL バイアル中に回収する。これに純水 0.5mL を加えてよく攪 拌した後、遠心分離 (3500rpm, 5min) し、ガスクロマトグラ

フィー (GC) により分離・同定・定量した。3-ヒドロキシ酪酸 (3HB)の標準物質として市販の 3-ヒドロキシ酪酸ナトリウムを 558mgC/Iの水溶液としたもの、3-ヒドロキシ吉草酸(3HV)の標準物質として *R. eutropha* から抽出し精製された PHA コポリマーP(3HB-co-19%(w/w)3HV) (ICI Japan 社より 1995 年頃入手)を用い、活性汚泥サンプルと同様の処理を施した。

 Table 3.3
 GC 分析における

 昇温プログラム

Initial Temp.	. 60°C
Initial Time	4 min
Final Temp.	200°C
Prog.Rate	12°C∕min
Final Temp.	3min

GCには、島津製作所 14A/FID を用いた。カラムは GL サイエンス社の Neutrabond-1(長さ 30cm, 内径 250 μ m, 膜厚, 0.4 μ m)を使用した。検出器及び注入口の温度をそれぞれ 250 °C 及び 180 °C で保持し、カラム温度は図に示すような昇温プログラムに従った。昇温プログラムは Table 3.3 の通りである。

サンプルの注入は、島津オートインジェクターAOC-14A を用いて、試料 1µL をマイクロシリ ンジによりスプリット注入(スプリット比は 1:40) した。

約 2.0 分に 3HB、約 3.0 分に 3H2MB、約 3.5 分に 3HV、約 5.0 分に 3H2MV、約 6.4 分に安息 香酸の内部標準のピークがそれぞれメチルエステルとして検出される。

得られたクロマトグラムから、各 HA 成分の濃度を計算した。計算方法は以下のとおりである。

ここで、各 HA 成分の感度定数(k_{HA})は、各標準物質のクロマトグラムから計算した。3HB の 標準物質には 55.8mgC/L の 3-ヒドロキシ酪酸ナトリウムを用い、3HV の標準物質には ICI 社の P(3HB-co-19%(w/w)3HV)を用い、 k_{3HB} 、 k_{3HV} を計算した。また、3H2MB と 3H2MV については、 標準物質が手に入らないため、3H2MB は 3HV の構造異性体であるので、 $k_{3H2MB} = k_{3HV}$ とし、 3H2MV は佐藤(1992) に従い $k_{3H2MV}=0.52 k_{3HB}$ とした。

なお、測定のためのサンプル調製から GC による定量までの一連の工程を含めた定量値の誤差 は±5%程度であった。

$$k_{3HB} = 55.8 \cdot \frac{86}{48} \cdot \frac{$$
内部標準のピーク面積
3HBのピーク面積
 $k_{3HV} = k_{3HB} \cdot \frac{19}{81} \cdot \frac{3HBのピーク面積}{3HVのピーク面積}$

 $k_{3H2MB} = k_{3HV}$

$k_{3H2MV} = 0.52k_{3HB}$

活性汚泥による PHA 生産能力は、主に以下の指標により評価、比較した。

・最大 PHA 含有率(100×mg-PHA/Int.mg-MLSS、wt%)

PHA 生産回分実験中の最大 PHA 蓄積量を実験開始直後の MLSS (Initial MLSS) で除した値を 最大 PHA 含有率とした。工学的には、PHA の抽出・精製効率、プロセス全体の生産性など、様々 な側面に影響を与え、重要な指標である³²⁾。微生物学的には、活性汚泥の PHA 蓄積許容量を表 すと考えられる。

4 磁気ビーズを用いた標的遺伝子濃縮手法の検討

道中によれば、phaCの、OTU[AR#4]というクラスター配列が3H2MVの蓄積との相関(R2=0.98) が示されている³⁹⁾。そこでOTU[AR#4] phaCを有する細菌種の同定を行う。方法は、まず磁気 ビーズを用いた方法により、OTU[AR#4] phaCを有するゲノム DNA を濃縮させる。そのゲノム DNA を対象に大容量のインサート DNA を挿入できるベクターを用いてクローニングを行う。 クローンに挿入された DNA 中の 16S rRNA 遺伝子を同定することで 3H2MV を蓄積する細菌の phaC と種を同定する。

道中が同定した phaC 遺伝子配列は約 500bp である。この配列をもとに phaC の全長配列を決定するために、まず磁気ビーズによる標的遺伝子濃縮手法を検討した。モデル生物として PHA 蓄積細菌である Ralstonia eutropha H16 (synonym : Cupriavidus necator H16, Alcaligenes eutropha H16, Wautersia eutropha H16, Cupriavidus necator ATCC 17699, Ralstonia eutropha ATCC 17699)を用いた。

4.1 ベクターの選択

既知の phaC 遺伝子の平均鎖長は約 2000bp であ る。phaC と 16S rRNA 遺伝子が同一インサート上 に得るためには、大容量のベクターが必要である。 また、大きな DNA 断片をクローニングすること により、phaC 遺伝子の近傍にある可能性がある phaC 以外のその他の PHA 合成遺伝子、phaA や phaB の遺伝子の配列決定できるかもしれない。 Table 3.4 に示すのは頻繁に用いられているベクタ 一の種類である。この中で今回の目的の、大きな DNA 断片をクローニングするのに最適なのは、最

Voctor	Voctor Sizo	Insett Size
VECIOI	VECIOI SIZE	Max/Average
Plasmid	2kb	10/1kb
λ phage	28kb	25/20kb
Cosmid	8kb	51/40kb
Fosmid	8kb	51/40kb
BAC	8kb	190/70kb

Table 3.4 ベクターの種類

も大きな DNA 断片をクローニングできる BAC ベクターであるが、BAC ベクターはエレクトロ ポレーションという方法で、宿主である大腸菌にトランスフォーメーションされる。この方法は、 非常に効率が悪い。この点で BAC は確実性に欠けている。次に大きな DNA 断片をクローニン グできるベクターは Cosmid ベクターか Fosmid ベクターである。この両者のクローニング方法 はほぼ同様である。唯一決定的に異なるのは、Cosmid ベクターは1つの大腸菌に複数個の Cosmid ベクターが導入されてしまう可能性がある一方で、Fosmid ベクターは F 因子ベクターというベ クターに由来しており、1 つの大腸菌には 1 つの Fosmid ベクターしか導入されない。これらの 点を踏まえた上で、本研究では Fosmid ベクターを用いることとした。

4.2 DNA 抽出手法の検討

Fosmid を用いるにあたって、DNA が 40kb 以上で抽出されなければ、クローニングできない。 そこで DNA 抽出手法を検討した。サンプルにはリアクターサンプルを用いた。DNA 抽出手法 は、物理的菌体破砕法、化学的菌体破砕法を用いた。物理的菌体破砕法として ISOIL for Beads Beating (Nippongene, Tokyo, Japan)を用いた。化学的菌体破砕法として、ISOIL (Nippongene)、 ベンジルクロライド法、QIAamp DNA Stool Mini Kit (QIAGEN)、NucleoSpin Tissue (Nippon Genetics, Tokyo, Japan)を用いた。化学的菌体破砕法のキット仕組みの詳細は、メーカー側で公 表していないため詳しいことは把握できていないが、試薬から推定する限り、ISOIL は SDS 存 在下での加熱処理、QIAamp DNA Stool Mini Kit と NucleoSpin Tissue Kit は SDS および ProteinaseK 処理により菌体の細胞壁を破砕していると考えられる。ベンジルクロライド法は、ベンジルクロ ライド、SDS 存在下における加熱処理である。方法はキットに関しては付属のプロトコールに 従った。ベンジルクロライド法に関しては以下に示す。

遠心(14000rpm、5 分間、4℃)(TOMMY, Tokyo, Japan)で汚泥サンプルをペレットにし、上清 を除去した。TE で際懸濁し、遠心(14000rpm、5 分間、4℃)し、上清を除去した。Extraction buffer (100mM Tris HCl [pH 9.0]、40mM EDTA[pH 8.0])を 250µl、10% SDS 溶液を 50µl、ベンジルク ロライドを 150µl 混合し、50℃で 30 分間インキュベートした。インキュベートの最中は 5 分お きにボルッテクスすることで混合した。3M NaOAc を 150µl 加え、ボルテックスし、直ちに 15 分間氷上に静置した。遠心(15000rpm、10 分間、4℃)し、先端を切り取ったチップを用いて上 清だけを吸い取り、別チューブに移した。別チューブに移した水層と等量のイソプロピルアルコ ールを加えて、軽く転倒混和した。遠心(15000rpm、10 分間、4℃)し、上清を捨てた。真空乾燥機を用いて 乾燥させた。100µl の滅菌ミリ Q を加えた。数秒 vortex し、50℃で 30 分間インキュベートした。 インキュベート後 30 回ピペッティングすることで核酸を溶解させた。つづいて、DNA の正確な 濃度を把握するため、RNA の除去を QIAGEN Genomic-tip 20/G(QIAGEN)を用いて行った。操 作は付属のプロトコールに従った。

DNA の大きさの比較には DR-III Cell (Bio-Rad Laboratories, CA) を用いてパルスフィールドゲ ル電気泳動 (PFGE) を用いた。アガロースには SeaKem Gold agarose (FMC, ME) の粉末を用い た。バッファーは、 $0.5 \times TBE$ を用いて、1%(w/v)となるようにアガロースゲルを作成した。泳動 条件は、電圧は 6V/cm、泳動時間は 16 時間、温度は 14°C、バッファーは $0.5 \times TBE、スイッチタ$ イムは 1-10 秒で行った。分子量マーカーとして Mixture of Molecular Weight Marker for DNA 0.1–200kb from Lambda phage (Sigma–Aldrich, MO) と MidRange II PFG marker (New England Biolabs, MA, UK)を泳動した。泳動終了後、ゲルは 1×SYBR Green I (FMC BioProducts, Rockland, ME) を用いて 20 分間染色し、FluorImager (Molecular Dynamics, CA) を用いて観察した。結果 を Figure 3.6 に示す。

Figure 3.6 各 DNA 抽出手法の抽出 DNA 断片結果

Figure 3.6 に示すとおり、レーン 5 のベンジルクロライド法が DNA 断片の大きさ・抽出量が 他より優れており、この方法を DNA 抽出手法として採用した。

4.3 DNA せん断条件の検討

Fosmid に挿入する DNA のサイズである 40kb の DNA を大量に得るため、マイクロシリンジ で物理的に切断する条件を検討した。サンプルには *R.eutropha* H16 を用い、ベンジルクロライド 法で DNA を抽出した。シリンジは 10µL のガラスマイクロシリンジ (Hamilton, NV) を用い、0 回、10回、100回、200回の各回数 Pipetting を行った。DNA の大きさの比較にはパルスフィー ルドゲル電気泳動を用いた。泳動条件は 4.2 で示した条件と同様である。ただ今回は、エチジウ ムブロマイド溶液を用いて 20 分間染色し、UV トランスイルミネーターFASIII システム (Toyobo, Osaka, Japan) を用いて観察した。結果を Figure 3.7 に示す。

M : 0.1–200kb from I phage 1,2,3,13 : 0 回 Pipetting 4,5,6 : 10 回 Pipetting 7,8,9 : 100 回 Pipetting 10,11,12 : 200 回 Pipetting

Figure 3.7 Pipetting と DNA 断片の大きさ結果

Figure 3.7 より、レーン 11,12,13 の 200 回 Pipetting することにより 40kb 付近の DNA が全体の 10%以上を占めることが分かった。よって、本研究では 200 回 Pipetting することで 40kb の DNA を作成することにした。

4.4 phaC ビオチンプローブの合成

ビオチンプローブの合成・標的 DNA の濃縮は RecActive Gene Enrichement Kit (Active Motif, CA) に付属のプロトコールに従った。方法は以下の通りである。

R. eutropha H16 の *phaC* 配列のビオチンプローブを作成した。まず純菌の *R. eutropha* H16 から ベンジルクロライド法により DNA を抽出した。DNA ポリメラーゼに Fidelity の高い KOD Plus

(TOYOBO, Osaka, Japan)を用いて、*R. eutropha*の*phaC*部分配列を対象にPCRを行った。Buffer、 MgSO₄、dNTPs は付属のものを用いた。この PCR に用いたプライマーは、Table 3.5 に示す。PCR 反応液組成を Table 3.6 に示す。温度条件を Figure 3.8 に示す。サーマルサイクラーには T3

(Biometra, Goettingen, Germany) または Tgradient (Biometra) を用いた。得られた PCR 産物を 確認するために、i-Mupid (Cosmo bio, Tokyo, Japan) または i-Myrun (Cosmo bio) を用い、1%~2%

アガロースゲル電気泳動によっ てその産物の長さを確認した。電 気泳動後のゲルはエチジウムブ ロマイドにより染色後、UV トラ ンスイルミネーターFASIII シス テムによりバンドとして DNA を

Table 3.5 R. eutropha H16phaC 増幅プライマー

プライマー	配列(5'→3')
C1580f	ATCAACAAgTACTACATCCTggACCT
CWr	AggTAgTTgTCgACCACgTAgTTCCA
可視化した。電気移動の Buffer は 50×TAE Buffer を希釈し、0.5×TAE Buffer を用いた。Loading Buffer は 6×Loading Buffer を用い、サンプル 5µL と 6×Loading Buffer 1µL を混合し、流した。 ただし、インサートチェックの電気泳動は 3×Loading Buffer を用い、サンプル 2µL と 6×Loading Buffer 1µL を混合し、流した。PCR 産物をクローニングした。クローニングの操作は Zero Blunt PCR Cloning Kit (Invitorogen, CA) を用いた。操作は付属のプロトコールに従った。塩基配列を 決定し、*R. eutropha の phaC* 部分配列のノーミスマッチの配列であることを BLAST 検索するこ とで確認した。得られたクローンを対象に nested PCR を行った。つまり、まず *phaC* 配列の上流 にあるベクターの配列プライマーセットを用いて PCR を行った。DNA ポリメラーゼには *KOD* を用いた。得られた PCR 産物を希釈して次の PCR の鋳型の DNA として用いた。2 回目の PCR のプライマーには鋳型 DNA の内側にある配列である *phaC* のプライマーセットを用いた。DNA ポリメラーゼには *KOD* を用いた。ビオチンが結合した dNTP を用いることでビオチンプローブ を作成した。

Component	Volume	Final conc.
Distiled Water	-	
10×PCR Buffer	5μL	1×
25mM MgSO ₄	2μL	1mM
2mM dNTPs	20µL	200µM
10µM C1580f	3μL	0.2µM
10μM CWr	2.5μL	0.2µM
KOD	2.5μL	1U
Template DNA	-	10-200ng
Total Volume	50µL	

Table 3.6 phaCの PCR 試薬組成

Figure 3.8 phaCの PCR 条件

4.5 phaC 含有配列の濃縮

1.5mL チューブに 50ng の *phaC* ビオチンプローブを加え、14.4µL にメスアップした。95℃で 3 分間インキュベートし、*phaC* ビオチンプローブを変性させた。氷上で 1 分間急冷させた。その フラッシュした。

5×Coating Mix を 6µL、Nucleotide Cofactor を 3.7µL、RecA recombinase を 0.7µL、熱変性させた *phaC* ビオチンプローブを 14.4µL、を穏やかに混合させた。37℃で 15 分間インキュベートした。 インキュベートの間、以下のパラマグネチックビーズを準備した。

Streptavidin-Coated Paramagnetic Beads を懸濁するように穏やかにボルテックスした。新しい 1.5mLチューブに30µLのStreptavidin-Coated Paramagnetic Beadsを入れた。100µLのBinding Buffer を入れ、室温で2分間、環状振とうインキュベートした。すぐにフラッシュした。キャップを開け、約1分間マグネチックスタンドで静置した。その後、マイクロピペットで注意深く上清を取り除いた。もう2回この Binding Buffer 洗浄を行った。ビーズに 30μL Binding Buffer を穏やかに 混合し、室温で30分間、環状振とうインキュベートし、フラッシュした。キャップを開け、約 1分間マグネチックスタンドでチューブを静置した。マグネチックスタンドに tube を置いている 間、マイクロピペットで注意深く上清を取り除き、30μL Binding Buffer を加えた。

1.5µL の競合 DNA を新しい 0.5mL チューブに加え、148.5µL の TE でメスアップし、100 倍希 釈の競合 DNA を作成した。100 倍希釈競合 DNA を 5µL とって、新しい 0.5mL チューブに入れ た。95℃で 3 分間熱変性させ、1 分間氷上で急冷させた。フラッシュした。必要になるまで氷上 に置いた。

phaCビオチンプローブ反応産物を 37℃から取り出し、1µL の変性競合 DNA を加えた。穏や かにピペッティングで上下させることにより、入念に混ぜた。すぐに Target Additive 1.2µL、 Plasmid DNA library mix 3µL を加えた。穏やかに混合し、37℃で 20 分間インキュベートした。 SDS を 1.2µL 加え、穏やかに混合し、37℃で 10 分間インキュベートした。洗浄パラマグネチッ クビーズを 30µL 加えた。室温で 30 分間、環状振とうインキュベートした。インキュベート終 了後、フラッシュした。キャップを開け、約1分間マグネチックスタンドでチューブをインキュ ベートした。マグネチックスタンドにチューブを置いている間、マイクロピペットで注意深く上 清を取り除いた。1mL の Wash Buffer をビーズに加え、5 分間室温で環状振とうインキュベート した。インキュベート終了後、フラッシュした。キャップを開け、約1分間マグネチックスタン ドでチューブをインキュベートした。マグネチックスタンドにチューブを置いている間、マイク ロピペットで注意深く上清を取り除いた。この 1mL のウォッシュ操作を計4回行った。

ImL の 0.1×TE をビーズに加え、塩を除去した。5 分間室温で、環状振とうインキュベートした。キャップを開け、約1 分間マグネチックスタンドでチューブをインキュベートした。マグネ チックスタンドにチューブを置いている間、ピペッターで注意深く上清を取り除いた。10µL の 0.1×TE をチューブの中のビーズに加え、マイクロピペットを使ってビーズを入念に懸濁した。 ビーズ懸濁液を新しい 0.5mL チューブに移し、5 分間 65℃でインキュベートした。チューブを 室温でマグネチックスタンドの上に置き、マグネチックビーズを集めた。新しい 0.5mL tube に 上清を注意深く移した。

34

4.6 標的 DNA の濃縮評価

今回行った方法 で、phaCを含む配列 がどのくらい濃縮 されたかを評価し た。評価は、phaC配 列に対する PCR の 立ち上がりの違い によって比べる。濃 縮した系と濃縮し ない系とを比較し、 濃縮した系がより 少ない PCR 産物が アガロースゲル電 気泳動により確認

できれば、濃縮されたと判断でき、濃縮しない系がより少ない PCR サイクル数で PCR 産物がア ガロースゲル電気泳動により確認できれば、濃縮されなかったと判断できる。概略を Figure 2.1 に示す。

4.6.1 プライマーのデザイン

評価 PCR に用いるプライマーをデザインした。これまで *R*.eutropha の phaC 増幅に用いてき たプライマーである C1580f-CWr を使用すると phaC ビオチンプローブが多少混入している可能 性がある濃縮した系で擬陽性として検出してしまう。そこで phaC ビオチンプローブが PCR に かからないようにするため、phaC ビオチンプローブ配列の外側の配列のプライマーを設計した (Figure 3.10 参照)。

R. eutropha phaC DNA

Figure 3.10 評価 PCR 用プライマーの設計

評価 PCR 用プライマーの設計方法は以下の通りである。

Table 3.7 評価 PCR 用プライマー候補

まず *R. eutropha* の *phaC* 全 長配列情報を NCBI より入手 した。PDA により Table 3.7 の 2 セットのプライマーを設計 した。

実際に R. eutropha のゲノム DNA を鋳型として PCR の確 -

Primer	Sequence of the primer (5'-3')	GC%	Tm(°C)
C1520f	CAgTACAAgCCgCTgACCgACAAgg	60.00	57.50
C2122r	gCCgTTCCAgAACAgCAggTCgAAC	60.00	57.50
C1495f	CgAgAACgAgTACTTCCAgCTgTTg	52.00	54.22
C2089r	CgTgTTgCCCTTCAggTAgTTgTCg	56.00	55.86

認を行った。PCR 条件は、最終濃度が、1×PCR Buffer、1mM MgSO₄、200 μ M dNTPs、0.2 μ M プ ライマー、0.2U *KOD* の PCR 反応溶液に 10ng の鋳型 DNA を添加し、PCR を行った。サーマル サイクラーには T-gradient を用いて、50°C~60°Cの間で最適アニーリング温度を調べた。結果は Figure 3.11 に示すとおりである。

Figure 3.11 評価 PCR 用プライマー検討結果

上段が C1520f-C2122r プライマーセット、下段が C1495f-C2089r プライマーセット。 M: Φ×174-*Hae*III Markers、サンプルは 1,3,5,…、25,27,29,…の奇数レーン、偶数レーンは 左隣りのレーンの Negative Control。1,2、25,26 レーンが Annealing Temp. 50°Cで右のレーン にいくほど大きくなり、23,24、47,48 レーンが Annealing Temp. 60°C。

Figure 3.11 の結果より 1495f-2089r のプライマーセットでアニーリング温度が 58℃と決定した。

4.6.2 磁気ビーズを用いた標的遺伝子濃縮手法の評価

4.6.1 で決定した PCR 条件で、磁気ビーズで標的遺伝子が濃縮できるかを評価した。サンプルは、*phaC* 濃縮サンプル、*phaC* プローブサンプル、*R. eutropha* H16 ゲノムサンプル、である。各系は3 連で行った。結果を Figure 3.12 に示す。

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 M 1

Figure 3.12 濃縮検討実験結果

M : Φ × 174-HaeⅢ Markers 1,3,5: phaC 濃縮サンプル(15 cycles) 7,9,11: *phaC* プローブサンプル(15 cycles) 19 : Negative Control (15cycles)

 $M: \Phi \times 174$ -Hae III Markers 21,23,25: phaC 濃縮サンプル(25 cycles) 27,29,31 : *phaC* プローブサンプル(25 cycles) 39 : Negative Control (25cycles)

2,4,6: phaC 濃縮サンプル(20 cycles) 8,10,12 : *phaC* プローブサンプル (20 cycles) 13,15,17: R. eutropha H16 ゲノムサンプル(15 cycles) 14,16,18: R. eutropha H16 ゲノムサンプル(20 cycles) 20 : Negative Control (20cycles)

22,24,26: phaC 濃縮サンプル(30 cycles) 28,30,32 : *phaC* プローブサンプル (30 cycles) 33.35,37: R. eutropha H16 ゲノムサンプル(25 cycles) 34,36,38: R. eutropha H16 ゲノムサンプル(30 cycles) 40 : Negative Control (30cycles)

Figure 3.12 の結果を見ると、25 サイクルにおいて、*R. eutropha* H16 のゲノム DNA サンプルは 1 連だけではあるが、PCR が立ち上がっているのに対し、phaC 濃縮サンプルは PCR が立ち上が っていない。さらに、30 サイクルにおいては、phaC 濃縮サンプルは PCR が立ち上がっている ものの、全体として R. eutropha H16 のゲノム DNA サンプルと比べバンドが薄い (PCR 産物が少 ない)ということから、濃縮はできていないことが分かった。500bp ほどのプローブでは約 40kb のゲノム DNA を引っ張ってくることは難しいということが分かったので、密度勾配遠心分離法 を用いて PHA 蓄積細菌の濃縮し、目的を達成することとした。

5 密度勾配遠心分離法を用いた方法

パーコールによる PHA 蓄積細菌の濃縮は、押木³³⁾が開発した方法に従った。概略を Figure 3.1 に示す。以下に手順について示す。

Figure 3.13 密度勾配法の概略

5.1.1 PHA 蓄積細菌の密度勾配遠心分離

-80°Cで凍結保存しておいたペレット状の活性汚泥サンプルを解凍し、1mlの1×PBS (phosphate buffered saline) バッファー (130mM NaCl, 90mM KH₂PO₄, pH 7.2) に溶解させ、ピペッティング でよく混合させた。遠心分離 (14000rpm、5 分間、4°C) し、上清を捨てた。再び 1mlの1×PBS バッファーを加え、ピペッティングでよく混合させた。遠心分離 (14000rpm、5 分間、4°C) し、 上清を捨てた後、ペレットを 5ml の TE バッファー (10mM Tris-HCl, 1mM EDTA, pH 7.5) に溶解 させた。IKA Science U200S を用いて Amplitude 20%、パルス間隔 0.5 の設定で4 分間の分散処理 を行った。分散したサンプル 380µl に 150µl の 1.5M NaCl、1050µl のパーコール (GE Healthcare Life Sciences, Uppsala, Sweden) を加えた。遠心分離 (7200rpm、5 分間、4°C) した。下層のペレット を回収し、50µl を採取し顕微鏡観察のサンプルとした。

5.1.2 濃縮率の算出

3.5.1 で得た分散前後のサンプル 50µl を用いて、Nail blue A 染色により濃縮率を算出した。Nail blue A 染色とは PHA を染色する方法である。この染色を行うことにより、PHA 蓄積細菌を染色 することができる。方法は以下の手順で行った。

a. パラホルムアルデヒド固定とプレパラートの作成

6.5mlの MilliQ 水を 60℃に加熱させた後、パラホルムアルデヒドを 0.5g 加えた。2M NaOH 溶 液を 1 滴加え、ほぼ透明になるまで撹拌した。1M HCl で pH 7.2 に調整した。ポアサイズ 0.2µm のフィルターでろ過した。4℃まで急冷し、パラホルムアルデヒド溶液を作成した。パラホルム アルデヒド溶液をサンプルに 2、3 滴加え、4℃で 1~3 時間固定した。遠心分離(5000g)し、固 定液を捨てた。1×PBS バッファーを適当量加え、懸濁後、再び遠心分離し、上清を捨てた。200µl の 1×PBS バッファーを加えた。100% エタノールを 200µl 加えた。氷冷しながら IKA Science U200S を用いて Amplitude 20%、パルス間隔 0.5 の設定で 4 分間の分散処理を行った。予めゼラ チンコート(0.1%ゼラチン溶液に2分間浸し、風乾)を施したスライドグラスのウェルに約2µl ずつ超音波分散済みサンプルを分注し、ドライヤー用いて風乾させた。

b. Nail blue A 染色

Nail blue A 染色により PHA 蓄積細菌を染色し、PHA 蓄積細菌を顕微鏡下で検出した。同時に 漸近を染色する DAPI 染色も行い、全菌に占める PHA 蓄積細菌の割合を算出した。方法は以下 の通りである。

50%エタノール、80%エタノール、100%エタノールの順に3分間浸した後、スライドグラス を風乾させた。Nail blue A で 30分間染色した。RO 水でよくすすいだ。酢酸で1分間すすいだ。 MilliQ 水で1分間すすいだ。ドライヤーで風乾させた。Slow Fade 溶液(invitrogen)をスポット に適量加えた。カバーグラスをした。

5.2 DNA の抽出

DNA の抽出は FastDNASPIN Kit for Soil (MP Biomedicals) により行った。抽出は基本的には キットのプロトコールに従った。以下に手順について記す。

-80℃で凍結保存しておいたペレット状の活性汚泥サンプルを解凍し、TE buffer (pH 8.0) 1mL を混合させた。遠心分離(14000rpm、5 分間、4℃)し、上清を捨てた。Sodium Phosphate Buffer 978山加え、Lysing Matrix E tube に移し、MT buffer 122山を加えた。サンプルの入った Lysing Matrix E tube は Fast Prep を用いて、同装置の速度を Speed 5.5 に設定し、30 秒間の条件でホモジナイズ 処理を行った。このホモジナイズ処理を3回行った。遠心分離(15000rpm、1分間、4℃)後、 上清液を 2ml チューブに移し、PPS 250µl 加えた。10 回転倒混和した。遠心分離(15000rpm、5 分間、4℃)し、上清を 15ml チューブに移した。Binding Matrix Suspension を懸濁し、1ml を添 加した。2 分間反転振蕩により DNA を吸着後、3 分間静置することで DNA を吸着したマトリッ クスを沈殿させた。上清を 500µl 捨て、再び混和した。混和液を SPIN Filter に移し、遠心分離 (14000g、1 分間、4℃) した。Catch tube 内の液は捨て、2 度の同操作でチューブ内のすべての Binding Matrix を Spin filter に集めた。その後 Spin filter に SEWS-M 500µl を加え Matrix を洗浄し た。Binding Matrix はさらに 12000g 2 分間の遠心分離をすることで SEWS-M を除去し、Spin filter は新しい Catch tube へ移し、室温で5分間乾燥させた。最後に滅菌 MilliQ水 100µl を加え、タッ ピングし、1分間静置した後、12000g1分間遠心分離にかけて DNA 抽出液を得た。抽出した核 酸は NanoDrop ND-1000(NanoDrop)により 260nm と 280nm での吸収を測定し、260nm の値か ら核酸濃度を、260nmと280nmの吸収度の比から精製度合を計算した。

5.3 PCR法

PCR 法は基本的に目的遺伝子領域を増幅する方法であるため、目的遺伝子領域に依存して、 用いるプライマー、反応液組成、温度条件が決まる。DNA ポリメラーゼには AmpliTag Gold (Applied Biosystems, CA)を用いた。PCR buffer、dNTP は付属の GeneAmp 10×PCR Buffer (100mM Tris-HCl, pH 8.3, 500mM KCl, 15mM MgCl₂, 0.01%(w/v) gelatin)、GeneAmp 2mM dNTPs、を用いた。 滅菌水は Distiled Water を用いた。サーマルサイクラーには T3 または Tgradient(Biometra)を用 いた。得られた PCR 産物を確認するために、i-Mupid または i-Myrun を用い、1%~2%アガロース ゲル電気泳動によってその産物の長さを確認した。電気泳動後のゲルはエチジウムブロマイドに より染色後、UV トランスイルミネーターFASIII システムによりバンドとして DNA を可視化し た。電気移動の Buffer は 50×TAE Buffer を希釈し、0.5×TAE Buffer を用いた。Loading Buffer は 6×Loading Buffer を用い、サンプル 5µL と 6×Loading Buffer 1µL を混合し、流した。ただし、 インサートチェックの電気泳動は 3×Loading Buffer を用い、サンプル 2µL と 6×Loading Buffer 1µL を混合し、流した。

5.3.1 16S rRNA 遺伝子の PCR

第2章7.4 において述べたとおり、16S rRNA 遺伝子解析のバイアス・エラー・キメラ生成な どの artifact を最小限にするため、以下の4点のことが重要である。

- ① 適切なプライマーを選ぶ
- ② PCR サイクル数を最小限にする
- ③ アニーリング温度を低くする
- ④ 高精度・高効率の DNA ポリメラーゼを使う

本研究では 16S rRNA 遺伝子の PCR Cloning Sequencing 解析で精密な系統解析結果を得るためほ ぼ全長(約 1500bp)を増幅させるプライマーの 27F-1492R³⁴⁾(SIGMA-Aldrich, Hokkaido, Japa n)の組み合わせを採用した。配列は Table 3.8 に示す。また、プライマーの 3'末端に目的の配列 とのミスマッチがある場合、増幅効率が

極端に落ちてしまう。そのバイアスを少 なくするため 3'末端の塩基をイノシン にしたプライマーにすると、多様な細菌 種の増幅が可能になると報告されてい る³⁵⁾。これはイノシンがアデニン、グア ニン、シトシン、チミンのいずれの塩基 とも結合が可能だからである。そこで本 研究では上記の 27F-1492R の 3'末端を

Table 3.8 16S rRNA 遺伝子増幅プライマー

プライマー	配列(5'→3')
27F	AgAgTTTgATCMTggCTCAg
1492R	TACggYTACCTTgTTACgACTT
27F-I	AgAgTTTgATCMTggCTCAI
1492-I	TACggYTACCTTgTTACgACTI

イノシンにしたプライマー(SIGMA-Aldrich)も試した。配列は Table 3.8 に示す。

PCR 反応には次の試薬を用いた。Ampli*Taq* Gold with GeneAmp Kit (Applied Biosystems, CA) を用いた。PCR 反応液組成は最終濃度が各々1×buffer、200µM each dNTPs、1µM プライマー、 1.25U Ampli*Taq* Gold、となるように調整した。50µL スケールで PCR を行った。

温度制御には T3 または Tgradient (Biometra) サーマールサイクラーを用いた。できるだけ細菌分類群間で偏りのない増幅を行いたいので、アニーリング温度は 27F-1492R のプライマーセ

ットを用いておこなっている研究をレビューし、最も低いアニーリング温度の 48℃とした。キ メラ生成やDNAポリメラーゼによる複製ミスを含めこれらのartifactを最小限にするためには前 述の PCR サイクル数を少なくすることと低いアニーリング温度に加え、伸長時間(extension step)

を 4 分以上にすることも効果 的であると報告されている³⁶)。 そこで本研究においても伸長 時間を 4 分間として検討した。 Template DNA に関しては、今 回抽出された DNA の濃度が 8ng/ μ L だったので、この Day 22nd の DNA を 8ng/ μ L に希釈 して、1 μ L 投入して条件検討を 行った。サイクル数は 10 サイ クル、15 サイクル、20 サイク ル、30 サイクル、と条件をふ

TTable 3.9 16S rRNA 遺伝子の PCR 試薬組成

Component	Volume	Final conc.
Distiled Water	37.75μL	
10×PCR Buffer	5μL	1×
2mM each dNTPs	5μL	200µM
100µM 27F or 27F-I Primer	0.5μL	1μM
100µM 1492R or 1492R-I Primer	0.5µL	1μM
5U Ampli <i>Taq</i> Gold	0.25µL	1.25U
Template DNA (8ng/µl)	1μL	
Total Volume	50μL	

った。温度条件をまとめると、Initial denaturation を 95℃ 10min、各サイクル数の denaturation 94℃ 1min、annealing 48℃ 1min、extension 72℃ 4min、Final extension を 72℃ 20min で行った。各系 は 4 連で確認した。アガロースゲル電気泳動結果を Figure 3.14、に示す。

Figure 3.14 PCR プライマー、サイクル数の条件検討

上段が 27F 1492R プライマーセット、下段が 27F-I 1492R-I プライマーセット。 42 M: Φ×174-*Hae*Ⅲ Markers、サンプルは 4 連、N:Negative control

Figure 3.14 の結果より、まず 3'末端をイノシンに置換したプライマーでは 30cycle でも増幅さ れないことが分かった。Eitan Ben-Dov らは通常の PCR 条件から MgCl2の濃度を変更し、さらに BSA (bovine serum albumin; ウシ血清アルブミン)を加えると増幅がよかった³⁵⁾としているので、 今回これらの試薬の変更をしていなかったので増幅が認められなかったと考えられる。しかし、 これらの試薬の変更によって、増えやすい DNA、増えにくい DNA のバイアスが加わることが 予想される。できるかぎり基本的な PCR 条件で増幅させたいと考えたので、今回はイノシンの プライマーは用いないこととした。27F-1492R のプライマーセットの各サイクル数の結果を見る と、30 サイクルでは多少スメア化しているもの、20 サイクルまで非特異的な増幅は確認されな かった。10 サイクルではエチジウムブロマイド染色のアガロースゲル電気泳動では検出されず、 15 サイクルから増幅が確認された。よって、増幅したかしていないかが確認できることと、 Negative control が増えていないことが確認できる 15 サイクル以上を条件として採用することと した。しかし、15 サイクルでは Negative control の増幅も確認できるので、再度 15 サイクルの増 幅を確認した。また、20サイクルと30サイクルでは増幅がよいことが確認できたので、つづい ての PCR では 15 サイクルと 20 サイクルの間の 18 サイクルの増幅も調べた。Template DNA は PAO、GAO それぞれの PHA 蓄積細菌濃縮汚泥を用いた。Primer は 27F-1492R を用い、反応液組 成、温度条件は上記と同様である。そのアガロース電気泳動結果を Figure 3.15 に示す。

Figure 3.15 PCR サイクル数の条件検討

M: Φ×174-*Hae* Markers、P: PAOのPHA 蓄積細菌濃縮 汚泥、G: GAOのPHA 蓄積細菌濃縮汚泥 N: Negative control

Figure 3.15 の結果より、15 サイクルではエチジウムブロマイド染色のアガロースゲル電気泳

動では検出されず、18 サイクルではバンドが薄いものの増幅が確認された。よって、本研究では 18 サイクルの PCR 産物を以下の Cloning に供することとした。

上記の決定した 16S rRNA 遺伝子の PCR 条件で PAO の PHA 蓄積細菌濃縮汚泥、GAO の PHA 蓄積細菌濃縮汚泥の PCR を行った。PCR ごとの産物構成のばらつきを軽減するため、50µL スケ

ールで4本反応させた。PAOのPHA 蓄積細菌濃縮汚泥のPCR 95℃ 10min
産物のアガロースゲル電気泳動結果を Figure 3.17 に示す。

4 本の PCR 反応溶液を混合し、PCR 産物を QIAquick PCR Purification Kit (QIAGEN) で精製した。操作は以下の通りである。

PCR サンプルに 5 倍量の Buffer PBI を入れ、ボルテックスす ることで混和させた。混和させた溶液を QIAquick カラムにアプ ライし、遠心(12000rpm、1 分間、23°C)した。ろ過液を捨て た。750µLの 35%(w/v)塩酸グアニジン(SIGMA)水溶液を QIAquick カラムにアプライした。遠心(12000rpm、1 分間、23°C) し、ろ過液を捨てた。750µLの Buffer PE を QIAquick カラムに アプライした。遠心(12000rpm、1 分間、23°C)し、ろ過液を

rRNA 遺伝子の PCR 条

捨てた。さらに遠心(12000rpm、1分間、23℃)し、新しい1.5mL チューブに QIAquick カラム をのせた。30µL の滅菌 Milli-Q 水を QIAquick メンブレンの中央に添加し、1 分間室温で放置し た。遠心(12000rpm、1分間、23℃)し、DNA を溶出させた。精製した PCR 産物のアガローゲ ル電気泳動結果を Figure 3.18 に示す。

Figure 3.17 PAOの PHA 蓄積細菌濃縮汚 泥の 16S rRNA 遺伝子 PCR 結果

M: Φ×174-*Hae*Ⅲ Markers、P1-4: PAO の PHA 蓄 積細菌濃縮汚泥、N: Negative control

5.3.2 phaC Ø PCR

*phaC*のPCR は道中(2005)の

Figure 3.18 PAO および GAO の PHA 蓄積細 菌濃縮汚泥の 16S rRNA 遺伝子 PCR 精製産物

M: Φ × 174-*Hae*Ⅲ Markers、P: PAO の PHA 蓄積細菌 濃縮汚泥、G: GAO の PHA 蓄積細菌濃縮汚泥 N: Negative control

Table 3.10 phaC 増幅プライマー

プライマー	配列(5'→3')
CF1	ATCAACAARTWCTACRTCYTSgACCT
CR4 44	AggTAgTTgTYgACSMMRTAgKTCCA

条件³⁹⁾に従った。プライマーは Sheu らが作成した CF1、CR4³⁷⁾(SIGMA-Aldrich)を用いた。 PCR 反応には次の試薬を用いた。Ampli*Taq* Gold with GeneAmp Kit(Applied Biosystems)を用い た。滅菌水は Distiled Water(Invitrogen)を用いた。PCR 反応液組成は最終濃度が各々1×buffer、 200µM each dNTPs、1M betaine(N,N,N-trimethylglycine; [carboxymethyl]trimethylammonium)、 3%(w/w) DMSO (dimethyl sulfoxide)(Wako, Osaka, Japan)、2.5µM プライマー、2.5U Ampli*Taq* Gold、 Template DNA は 100ng アプライし、100µL スケールで PCR を行った。

betaine、DMSO は GC リッチな配列が形成する二次構造をほぐして PCR をかかりやすくする ための試薬である³⁸⁾。

PCR 産物を QIAquick PCR Purification Kit (QIAGEN) で精製した。操作は 5.3.1 と同様である。

Table 3.11 phaCの PCR 試薬組成 94°C 10min

		2 00012000	L
Component	Volume	Final conc.	51°C 2
Distiled Water	-		
10×PCR Buffer	10µL	1×	/202 L
2mM each dNTPs	10µL	200µM	● 94°C
5M betaine	20µL	1M	↓
DMSO	3μL	3%(w/w)	48°C
CF1	2.5μL	2.5μM	₹ 72°C
CR4	2.5μL	2.5μM	<u> </u>
5U Ampli <i>Taq</i> Gold	0.5μL	2.5U	72°C
Template DNA	100ng	1ng/μL	↓ 1°⊂
Total Volume	100µL		40

FFigure 3.19 phaCの PCR 条件

5.4 PCR Cloning Sequencing 法

5.4.1 Cloning

Cloning には TOPO TA Cloning Kit for Sequencing (Invitrogen)を用いた。操作は以下 の通りである。

Table 3.12 に示すとおり、4 μ L の精製済み PCR 産物と 1 μ L の Salt Solution、1 μ L の pCR4-TOPO vector (Fig 参照) をタッピングに より穏やかに混合させた。サーマルサイクラー にて 22.5℃で 30 分間反応させた。反応終了後、

Table 3.12 ライゲーション反応液組

成

Component	Volume
精製済み PCR product	4μL
Salt Solution	1μL
pCR4-TOPO vector	1μL

反応液を氷上に移した。2µLの反応液を One Shot Chemically Competent E. coli に穏やかに混合さ

せた。氷上で5分間インキュベートした。42℃で30秒間インキュベートした。すぐにチューブ を氷上に移した。250µLの室温 SOC を加えた。1時間、200rpm で水平振蕩培養した。50µg/mL kanamycine の入った LB 培地で16-18時間培養した。

FigFigure 3.20R4-TOPO vector

5.4.2 インサートチェック

Cloning で生えてきた全てのクローンが目的の DNA 断片を保持しているとは限らない。つま り、QIAquick PCR Purification Kit でプライマーダイマー等の目的以外の DNA 断片を除去してい るとはいえ、完全には除去しきれない。その理由でプライマーダイマーがインサートとして入っ てしまったクローンも生えてきてしまう。そこで目的のインサートが入ったクローンのみを単離 するため、インサートチェックを行った。インサートチェックはコロニーダイレクト PCR によ り行った。この方法は生えてきたコロニーを滅菌した楊枝でつついて、PCR 反応溶液に Template として浸す PCR である。

PCR 反応溶液の PCR はベクターの配列 に特異的な T3、T7 プライマーを用いた。 配列は Table 2.1 に示す。PCR 反応液組成 は最終濃度が各々1×buffer、200µM each

Table 3.13	インサー	トチェック	フ用プライマー
------------	------	-------	----------------

プライマー	配列 (5'→3')
Т3	ATTAACCCTCACTAAAGGGA
Т7	TAATACGACTCACTATAGGG

dNTPs、0.2µM プライマー、0.2U Ampli*Taq* Gold、10µL スケールで PCR を行った。2µL の PCR 産物をアガロース電気泳動に供した。

 $M: \Phi \times 174$ -Hae III Markers

5.4.3 Sequencing

コロニーPCR 産物を Montage PCR µ96 (MILLIPORE, MA) を用いて精製した。Sequence 反応 には ABI PRISM BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) を用いた。滅 菌水は Distiled Water (Invitrogen) を用いた。Primer は、16S rRNA 遺伝子に関しては 357F とい う 16S rRNA 遺伝子の途中のプライマーを用いた。Sequence 反応溶液は、BigDye Terminator 0.5µL、 5×Sequencing buffer 1.75µL、1µM のプライマー 1.6µL、である。Template は 500bp ほどの配列 長のシーケンスの phaC に関してはおよそ 20ng になるように、1500bp ほどの配列長の 16S rRNA 遺伝子に関してはおよそ 50ng になるようにアプライした。反応系の全容量は 10µL とした。温 度条件は、Initial denatiration 96°C 1min、25 サイクルの denaturation 96°C 10sec、annealing 50°C 5sec、 extension 60°C 4min で行った。Sequence 反応産物を Montage SEQ (MILLIPORE) で精製したも の 10µL に HiDi ホルムアミドを 10µL 加え、ABI PRISM 3100-Avant Genetic Analyzer (Applied Biosystems) でキャピラリー電気泳動を行った。

5.5 系統解析

得られた配列を Blastn によりホモロジー検索を行った。ホモロジー検索により基準株を選ん だ。また、97%の相同性が得られた配列同士は OTU(Operational Taxonomic Unit)としてまとめ た。得られた配列、基準株と E. coli FR-2 の配列を ClustalW 解析を行った。その解析結果から Mega 3.1 にて分子系統樹を描画した。なお系統解析の方法は NJ 法にて行った。

5.6 PCR/T-RFLP 法

リアクター内の *phaC* の遺伝子構成変化を追跡するため、*phaC* を標的とした PCR/T-RFLP を行った。

Table 3.10に示した CF1 プライマーの5'末端に蛍光色素 6-FAM でラベルしたプライマーを PCR に用いた。PCR 条件は 5.3.2 に示した条件である。

精製した PCR 産物を各制限酵素で切断し

た。条件は道中³⁹⁾に従った。制限酵素には *Mbo*I (Takara bio, Shiga, Japan) と *Acc*II (Takara bio) 最終濃度が 5U、1×Buffer とな るように反応液を調整した。反応に用いた PCR 産物量は 8µL で、最終反応液量は 20µL となるように調整した。反応液はサーマルサ イクラーで、37℃で2時間反応させ、65℃で 10 分間インキュベートすることで制限酵素 を失活させた。

Table 3.15	制限酵素処理試薬組成

Component	Volume	Final conc.
Distiled Water	9.5μL	
10×K buffer or 10×M buffer	2μL	1×
MboⅠ (10U) or AccⅡ (10U)	0.5µL	5U
精製済み PCR product	8μL	
Total Volume	20µL	

制限酵素により切断された PCR 産物を 2.5µL と Hi-Di ホルムアミド (Applied Biosystems) 42µL と DNA マーカー (GeneScan 500 ROX size Standard) (Applied Biosystems) 0.5µL を混合し、サー マルサイクラーで 95℃、2 分間熱処理した後、すぐに 5 分間氷上に置いた。サンプルを ABI PRISM 310 Genetic Analyzer にて解析した。 測定データの解析には GeneMapper (Applied Biosystems) を 用いた。

第4章 EBPR 良好時の PHA 蓄積細菌群集 解析

本章では、第3章 1.1 の方法で行った EBPR 良好時のリアクター(ここでは PAO リアクター と呼ぶこととする)に関する水質分析、DNA 解析についての結果と考察について述べる。さら に、このリアクターの汚泥を用いて行った回分(バッチ)実験の水質分析、DNA 解析について の結果と考察を述べる。

本リアクターは 2006 年 10 月 16 日から運転を開始し、40 日をすぎるとバルキングが現れはじめ、2006 年 12 月 15 日にバルキングがひどくなったので運転を止めた。本研究は 2006 年 12 月 5 日まで 51 日間を対象に行った。

1 PAO リアクターの水質モニタリング結果

Figure 4.1 に示すのは上清中の炭素源である酢酸とプロピオン酸の濃度の経時変化である。実 験期間を通して炭素源は1サイクルに約50mgC/L流入させた。リアクター立ち上げ時期におい て、嫌気で多少酢酸の食べ残しが認められたものの、11日目以降は完全に嫌気で酢酸とプロピ オン酸を食べきるようになったことが分かる。

Figure 4.2 に示すのは上清中のリン酸の濃度の経時変化である。嫌気終了時におけるリン酸の 濃度は、リアクターの立ち上げ時期には 30mgP/L であったものが、11 日目以降は 50mgP/L は上 清中に含まれていることが分かった。また、実験期間を通して、流入したリン酸は好気の終了時 には取りきっていた。

Figure 4.1 と Figure 4.2 の結果より、11 日目以降は、嫌気で炭素源を食べきり、嫌気でのリン酸の吐き出しがあり、完全にリンを除去している良好な EBPR リアクター、PAO リアクターを 構築できた。

Figure 4.3 に示すのはリアクターの MLSS と MLVSS の経時変化である。MLSS は実験期間を 通し、3000mg/L 前後を推移し、MLVSS は 2000mg/L 前後を推移し安定していた。 Figure 4.4 に示すのはリアクターの PHA 組成の経時変化である。酢酸のみで基質で運転していた時期は 3HB が合成され、プロピオン酸を混合していくにつれ、3H2MV と 3HV の割合が増していった。

Figure 4.5 に示すのは PHA 含有率の経時変化である。10%手前のラインを推移し安定していた。

Figure 4.1 PAO リアクターの酢酸・プロピオン酸濃度経時変化

Figure 4.2 PAO リアクターのリン酸濃度経時変化

Figure 4.3 PAO リアクターの MLSS・MLVSS 経時変化

(a) 単位:mgC/L, (b) 単位:mol%

Figure 4.5 PAO リアクターの PHA 含有率経時変化

2 PAO リアクターの phaC 群集構造の経時変化

制限酵素に *Mbo* I を用いたときの T-RFLP のピーク結果を、Figure 4.6、Figure 4.7 に示した。 制限酵素に *Acc* II を用いたときの T-RFLP のピーク結果を、Figure 4.8、Figure 4.9 に示した。40bp 以下のピークは精製しきれなかったプライマーもしくはプライマーダイマーである。また、道中 ³⁹⁾が得た *phaC* 配列クラスターとそのピーク(T-RFs)を Table 4.1 に示した。

Mbo I の結果から、リアクター立ち上げ時期から約 190bp のピークが認められ、終了時の 51 日目にもこのピークが認められた。このピークは道中の結果においてクラスターを形成するピー クとして得られていない。よって、道中の得た phaC 配列とは異なる phaC 配列が存在していた ことが考えられる。また、時系列を通してピークパターンに変化は認められなかった。つまり、 実験期間を通し、phaC の群集構造は変化がなかったということになる。しかし、500bp 付近に 切断されていない phaC が認められる。これは道中とは異なる phaC 群集構造のため切断されな かったと考えられる。つまり、phaC の群集構造は変化がなかったのではなく、単に今回用いた Mbo I では phaC 群集構造を把握できない可能性も考えられる。このことを検証するため、 PCR-Clonig-Sequencing 法により phaC の塩基配列を決定し、クラスター解析を行う必要がある。

Acc II の結果も Mbo I の結果と類似している。リアクター立ち上げ時期から約 68bp、97bp、 143bp、149bp、154bp、200bp のピークが認められ、このピーク構造を変化させることとなく終 了時まで維持した。ただ、Acc II では切断されなかった phaC は認められないので、phaC 群集構 造は実験期間を通して変わらず維持したことが示唆される。得られたピークを道中が得た結果と 比較してみると、これらのピークが属するクローンを道中は得ていないことが分かる。このこと からも道中が作成した phaC 群集構造とは異なる phaC 群集構造を得られた可能性が高いので、 PCR-Clonig-Sequencing 法により phaC の塩基配列を決定し、クラスター解析を行う必要がある。

Figure 4.6 PAO リアクターの phaC 群集構造の経時変化(その 1)、Mbo I

Figure 4.7 PAO リアクターの phaC 群集構造の経時変化(その 2)、Mbo I

Figure 4.8 PAO リアクターの phaC 群集構造の経時変化(その 1)、Acc Ⅱ

Figure 4.9 PAO リアクターの phaC 群集構造の経時変化(その 2)、Acc II

Table 4.1 AR5 のクローンライブラリーより計算された T-RFs の長さ³⁹⁾

BstUI	cg!cg	
T-RFs		N.O.C
30	AR5-30d_19	1
50	AR5-30d_34	1
56	AR5-30d_25	1
50	AR5-43d_14	1
83	[AR5#1]	51
108	AR5-43d_25	1
116	AR5-9d_28	1
	AR5-43d_13	1
119	[AR5 # 6]	2
113	AR5-43d_26	1
122	[AR5#2]	3
144	AR5-9d_4	6
	[AR5#11]	21
	AR5-43d_22	1
149	AR5-43d_11	1
140	AR5-30d_17	1
	AR5-43d_9	1
	AR5-9d_24	1
	[AR5#4]	85
	[AR5#10]	3
152	AR5-9d_25	1
102	AR5-9d_30	1
	AR5-43d_17	1
	AR5-43d_34	1
161	[AR5#4]	6
	[AR5#5]	3
	[AR5 # 6]	1
167	AR5-43d_19	1
	AR5-30d_7	1
175	[AR5#9]	11
180	AR5-30d_14	1
190	AR5-30d_31	1
195	[AR5#3]	21
206	[AR5#7]	17
224	AR5-9d_32	1
	AR5-30d_35	1
245	[AR5#8]	6
	[AR5#9]	1
	AR5-30d_15	1
263	AR5-9d_23	1
266	AR5-43d_21	1

HhaI	gcg!c	
T-RFs		N.O.C
30	AR5-30d_19	1
	[AR5#6]	1
	AR5-43d_19	1
52	AR5-30d_34	1
	AR5-43d_14	1
	AR5-43d_17	1
63	AR5-9d_24	1
	AR5-30d_14	1
74	AR5-43d_22	1
	[AR5#1]	51
	[AR5#10]	3
	[AR5#11]	21
	[AR5#4]	91
	[AR5#5]	3
	[AR5#6]	2
	LAR5#7]	17
	[AR5#8]	6
	[AR5#9]	12
96	AR5-30d_15	1
	AR5-30d_17	1
	AR5-30d_25	1
	AR5-30d_31	1
	AR5-30d_35	1
	AR5-30d_/	
	AR5-43d_11	1
	AR5-43d_13	1
	AR5-43d_21	
	AR5-43d_26	
	AR5-43d_34	
	AR5-43d_9	
	AR5-9d_23	1
	AR5-9d_25	1
	AR5-9d_28	1
	AR5-9d_30	1
100	AK5-9d_4	6
108	AK5-43d_25	1
120	[AR5#3]	1
144	LAR5#2]	3
195		20
218	AK0-9d_32	

T-RFs		N.O.C
45	[AR5#7]	17
	[AR5#2]	3
	AR5-9d_4	6
	AR5-9d_23	1
	AR5-9d_25	1
	AR5-9d_28	1
	AR5-9d_30	1
	AR5-30d_7	1
	AR5-30d_17	1
	AR5-43d_21	1
	AR5-43d_34	1
	AR5-43d_22	1
83	[AR5#1]	51
	[AR5#3]	20
102	AR5-30d_19	1
	[AR5#10]	3
153	[AR5#11]	21
	AR5-43d_11	1
	AR5-30d_15	1
	AR5-30d_25	1
	AR5-43d_9	1
	AR5-9d_24	1
	AR5-30d_35	1
161	[AR5#4]	91
101	[AR5#6]	2
	AR5-43d_14	1
	AR5-43d_17	1
170	AR5-43d_25	1
	[AR5#6]	1
177	AR5-9d_32	1
	AR5-43d_13	1
	AR5-43d_19	1
	[AR5#9]	12
180	[AR5#8]	6
	[AR5#5]	3
188	AR5-30d_34	1
197	AR5-30d_31	1
207	[AR5#3]	1
453	AR5-30d_14	1
-	AR5-43d_26	1
(bp)		

MboI !gatc

(Gp)

- :制限酵素認識部位がない N.O.C: 得られたクローン数

3 バッチ試験結果

バッチ試験は22日目のリアクター汚泥と30日目のリアクター汚泥を使用して行った。つまり、 22日目の汚泥は基質 Bのプロピオン酸の炭素源に対する割合が1/4の時で、30日目の汚泥は基 質 C のプロピオン酸の炭素源に対する割合が1/2の時の汚泥である。

Figure 4.10、Figure 4.11 に示すのは 22 日目のリアクター汚泥を用いて行ったバッチ試験の各測 定項目の結果である。Figure 4.12、Figure 4.13 に示すのは 30 日目のリアクター汚泥を用いて行っ たバッチ試験の各測定項目の結果である。

22 日目のバッチ試験に関してはおよそ 160mgC/L のプロピオン酸を摂取し、リンの吐き出し はおよそ 150mgP/L あった。PHA は全体としては、およそ 200mgC/L 生産され、3H2MV と 3HV がそれぞれ 40%程度占めていた。さらに 3HB の合成はなされなかった。

30 日目のバッチ試験に関しては、22 日目とほぼ同様の結果で、およそ 160mgC/L のプロピオン酸を摂取し、リンの吐き出しはおよそ 150mgP/L あった。PHA は全体としては、およそ 140mgC/L 生産され、3H2MV と 3HV がそれぞれ 40%程度占めていた。さらに 3HB の合成はな されなかった。PHA 含有率は最終的には 14%に達した。

これらの結果を踏まえて、密度勾配遠心分離法に供する汚泥は、より PHA の生産が大きかった 22 日目のサンプルを用いることとした。

Figure 4.10 バッチ試験(Day 22nd)の各測定項目の経時変化(その1)

(a) 溶存プロピオン酸濃度、菌体内貯蔵 PHA、上清リン酸 (b) PHA(成分別)(単位:mgC/L)

Figure 4.11 バッチ試験 (Day 22nd) の各測定項目の経時変化 (その 2)

(a) PHA(成分別)(単位:mol%) (b) PHA 含有量の経時変化

Figure 4.12 バッチ試験(Day 30th)の各測定項目の経時変化(その1)

(a) 溶存プロピオン酸濃度、菌体内貯蔵 PHA、上清リン酸 (b) PHA(成分別)(単位:mgC/L)

Figure 4.13 バッチ試験 (Day 30th)の各測定項目の経時変化 (その 2)

(a) PHA(成分別)(単位:mol%) (b) PHA 含有量の経時変化

4 密度勾配遠心分離法結果

22 日目のバッチ試験の汚泥を用いて密度勾配遠心分離法にて PHA 蓄積細菌を濃縮した。この 操作の結果、全菌に対する PHA 蓄積細菌の割合 (NBA/DAPI) は 83(SE±1)%であった。この PHA 蓄積細菌濃縮汚泥より 16S rRNA 遺伝子ライブラリーを作成した。Sequence は 94 クローン得ら れた。得られた系統樹を Figure 4.14 に示し、その近縁種の解析結果を Table 4.2 に示した。

優占種は PAO [OTU 14]、PAO [OTU 15]と PAO [OTU 16]にまとめられる *Candidatus* 'Accumulibacter phosphatis'に近縁な細菌たちである。*Candidatus* 'Accumulibacter phosphatis'近縁 種群が全体の 27%を占めていた。*Clostridium bartlettii* に近縁な PAO [OTU 14]は全体の 15%を占 めていた。また、*Clostridium bartlettii、Clostridium disporicum、Clostridium perfringens* の3種の *Clostridium* 属が、18%が占められていた。*Candidatus* 'Competibacter phosphatis'に近縁な PAO [OTU 12]、PAO-30 は全体の 5%を占めていた。

spiecies name	Relative abundance	
Candidatus 'Accumulibacter phosphatis'	27%	
Clostridium bartlettii	15%	
Clostridium disporicum	2%	
Clostridium perfringens	1%	
Candidatus 'Competibacter phosphatis'	5%	
Tetrasphaera elongata	3%	
Candidatus Monilibacter batavus	3%	
Tetrasphaera nostocoidensis	3%	
others	40%	

Table 4.2 PAO リアクター各細菌近縁種の存在割合

Figure 4.14 PAO リアクターPHA 蓄積細菌の分子系統樹

PAO-X の X はクローンナンバーを指す。 ホモロジー97%以上のクローンクラスターは OTU としてまとめた。「,」の隣の数字はまとめられたクローン数。

第5章 EBPR 悪化時の PHA 蓄積細菌群集 解析

本章では、第3章 1.2の方法で行った EBPR 悪化時のリアクター(ここでは GAO-like リアクターと呼ぶこととする)に関する水質分析、DNA 解析についての結果と考察について述べる。さらに、このリアクターの汚泥を用いて行った回分(バッチ)実験の水質分析、DNA 解析についての結果と考察を述べる。

本リアクターは 2006 年 12 月 16 日から運転を開始し、2007 年 1 月 2 日に運転を止めた。本研 究はこの 17 日間を対象に行った。

1 GAO-like リアクターの水質モニタリング結果

Figure 5.1 に示すのは上清中の炭素源である酢酸とプロピオン酸の濃度の経時変化である。実験期間を通して炭素源は1サイクルに約50mgC/L流入させた。嫌気で多少の食べ残しが認められたものの、ほぼ食べきっていた。

Figure 5.2 に示すのは上清中のリン酸の濃度の経時変化である。嫌気終了時におけるリン酸の 濃度は、リアクターの立ち上げ時期には 50mgP/L であったものが、徐々に減少していき、14 日 目以降には約 10mgP/L にまで減少した。

Figure 5.1 と Figure 5.2 の結果および PAO リアクターの Figure 4.1 と Figure 4.2 の結果より、嫌 気での炭素源の摂取量と嫌気でのリン酸の吐出し量の比を比べてみる。22 日目の PAO リアクタ ーのこの値は、1.0mgP/mgC である。15 日目の GAO-like リアクターのこの値は、0.23mgP/mgC である。つまり、この GAO-like リアクターは嫌気で約 10mgP/L のリン酸の吐き出しは認められ るものの、EBPR 良好な PAO リアクターと比較して、炭素源摂取に対するリン酸の吐出し量は およそ 1/5 なので GAO 優占のリアクターが構築できたといえる。

Figure 5.3 に示すのはリアクターの MLSS と MLVSS の経時変化である。MLSS と MLVSS は立ち上がり時期には 3000mg/L あったものが、GAO-like な代謝を示すと、2000mg/L で安定した。

Figure 5.4 に示すのはリアクターの PHA 組成の経時変化である。PAO リアクターと比較する

と、3HV が合成される割合が多かった。

Figure 5.5 に示すのは PHA 含有率の経時変化である。10%前後を推移していた。

Figure 5.1 GAO リアクターの酢酸・プロピオン酸濃度経時変化

Figure 5.2 GAO リアクターのリン酸濃度経時変化

Figure 5.3 GAO リアクターの MLSS・MLVSS 経時変化

(a) 単位:mgC/L, (b) 単位:mol%

Figure 5.5 GAO リアクターの PHA 含有率経時変化

2 GAO-like リアクターの phaC 群集構造の経時変化

制限酵素に *Mbo* I を用いたときの T-RFLP のピーク結果を Figure 5.6 に示した。制限酵素に *Acc* II を用いたときの T-RFLP のピーク結果を Figure 5.7 に示した。また、道中 ³⁹⁾が得た *phaC* 配列 クラスターとそのピーク (T-RFs) を Table 4.1 に示した。

Mbo I の結果から、PAO リアクターと同様に 190bp 付近のピークが優占していた。ただ、3 日 目までは 190bp のピークは大きかったが、7 日目以降ピークが小さくなっていった。これは GAO-like な代謝を示し始めた時期と重なる。さらに、PAO の結果と比べても、ピークが小さい。 さらに 7 日目には 300bp 付近に独特なピークも生じている。これは PHA 蓄積細菌群集構造がめ まぐるしく変化する過程で生じた可能性がある。

しかしながら、500bp 付近に切断されていない *phaC* が認められるので GAO-like な汚泥でも *phaC* の塩基配列を決定し、クラスター解析を行う必要がある。

Acc II の結果は、PAO と同等の約 68bp、97bp、143bp、149bp、154bp、200bp のピークが検出 された。これらのピークは立ち上げ時期から変わらず検出された。ただ、PAO の結果と異なる 点は、PAO では 143bp のピークが突出するのに対し、GAO-like では 149 のピークが突出してい る。この 2 つのピークは PAO の phaC か GAO の phaC かを特徴付けるピークの可能性ある。い ずれにせよ、塩基配列の決定することによりこのことを検証する必要がある。

Figure 5.6 GAO-like リアクターの phaC 群集構造の経時変化、Mbo I

Figure 5.7 GAO-like リアクターの phaC 群集構造の経時変化、Acc II

3 バッチ試験結果

バッチ試験は15日目のリアクター汚泥を使用して行った。

Figure 5.8、Figure 5.9 に示すのはバッチ試験の各測定項目の結果である。

およそ 100mgC/L のプロピオン酸を摂取し、リンの吐き出しはおよそ 16mgP/L あった。 GAO-like リアクターと PAO リアクターのバッチ試験で、嫌気での炭素源の摂取量と嫌気でのリ ン酸の吐出し量の比を比べてみる。PAO リアクターのこの値は、0.94mgP/mgC である。一方 GAO-like リアクターのこの値は、0.16mgP/mgC である。つまり、この値は、6 倍近い差が認め られ、バッチ試験からも GAO-like 汚泥であったといえる。PHA は全体としては、およそ 94mgC/L 生産され、全体の約 55%を 3HV が占め、約 30%を 3H2MV が占めていた。PAO リアクターと比 較すると、GAO-like リアクターのほうが 3HV を生産しやすく、3H2MV が生産しにくいという ことが分かった。PHA 含有率は最終的には 14%に達した。

この汚泥を密度勾配遠心分離法に用いることとした。

☑ 3HB □ 3HV ■ 3H2MB ■ 3H2MV

(b)

Figure 5.8 バッチ試験(Day 15th)の各測定項目の経時変化(その1)

(a) 溶存プロピオン酸濃度、菌体内貯蔵 PHA、上清リン酸 (b) PHA(成分別)(単位:mgC/L)

Figure 5.9 バッチ試験(Day 15th)の各測定項目の経時変化(その 2)

(a) PHA(成分別)(単位:mol%) (b) PHA 含有量の経時変化

4 密度勾配遠心分離法結果

操作の結果、全菌に対する PHA 蓄積細菌の割合 (NBA/DAPI) は 86(SE±1)%であった。この PHA 15 日目のバッチ試験の汚泥を用いて密度勾配遠心分離法にて PHA 蓄積細菌を濃縮した。この

蓄積細菌濃縮汚泥より 16S rRNA 遺伝子ライブラリーを作成した。Sequence は 95 クローン得られた。得られた系統樹を Figure 5.10 に示し、その近縁種の解析結果を Table 5.1 に示した。

Figure 5.10 に示すように、GAO [OTU 12]は系統樹からは *Clostridium bifermentans* に近縁ではあるが、Blast 検索の結果、*Clostridium bartlettii* と 97%相同である。よって、GAO [OTU 12]は Clostridium bartlettii 近縁種として扱う。

優占種は PAO [OTU 12]、PAO-17、PAO-61 らが含まれる Clostridium bartlettii に近縁な細菌た ちである。Clostridium bartlettii 近縁種群が全体の 12%を占めていた。つづいて、Dechloromonas hortensis の近縁種および Candidatus 'Competibacter phosphatis'の近縁種がそれぞれ全体の 11%を 占めていた。さらに、Clostridium disporicum 近縁種群が全体の 5%、Acidothermus cellulolyticus 近 縁種群が 4%、Catellibacterium nectariphilum 近縁種群が 4%、GAO [OTU 4]が全体の 4%、占めて いた。GAO [OTU 4]の近縁種は特定できなっかたが、配列から&Proteobacteria であると考えられ る。Clostridium bartlettii、Clostridium disporicum、Clostridium bifermentans、Clostridium perfringens の 4 種に近縁な Clostridium 属の細菌が全体の 20%を占めていた。

spiecies name	Relative abundance
Clostridium bartlettii	12%
Clostridium disporicum	5%
Clostridium bifermentans	2%
Clostridium perfringens	1%
Dechloromonas hortensis	11%
Candidatus 'Competibacter phosphatis'	11%
Acidothermus cellulolyticus	4%
Catellibacterium nectariphilum	4%
GAO [OTU4]	4%
bacterium Ellin6075	3%
others	44%

Table 5.1 GAO リアクターの各細菌近縁種の存在割合

Figure 5.10 GAO リアクターPHA 蓄積細菌の分子系統樹

GAO-XのXはクローンナンバーを指す。 ホモロジー97%以上のクローンクラスターは OTU としてまとめた。「,」の隣の数字はまとめられたクローン数。

第6章 総括

1 総括

本研究では、生物学的リン除去プロセス中に出現する PHA 蓄積細菌の機能遺伝子 phaC と種 とを関連付けることを目的として研究を行った。

そこでまずリアクターを運転し、PAO 汚泥、GAO-like 汚泥双方でプロピオン酸を基質とする 汚泥を作成した(サンプルの作成)。これはバッチ試験により得ることができた。

*phaC*と16S rRNA 遺伝子の両方を同定するため磁気ビーズによる方法を考えた。しかし、検 討の結果、本実験で目指した方法、つまり Fosmid に挿入すべく、40kb のゲノム DNA を 500bp 程度のプライマーでは回収できないことが分かった。これは、mRNA 精製には磁気ビーズを用 いた手法が確立されているにもかかわらず、今回の実験がうまくいかなかったので、40kbの DNA を 500bp 程度のプライマーでは物理的に回収が難しかったと考えられる。プラスミドに挿入する ような小さいサイズの挿入断片を回収することは可能かもしれないが、本研究の目的のためには *phaC*と 16S rRNA 遺伝子が同一インサート上に乗っていることが重要なので磁気ビーズの手法 の確立は見送った。

磁気ビーズによる方法がうまくいかなかったので方法を変更した。つづいての方法は、密度勾 配遠心分離法による PHA 蓄積細菌の濃縮である。プロピオン酸を基質として用いる PHA 蓄積細 菌を濃縮し、*phaC*と 16S rRNA 遺伝子の同定を試みた。PCR/T-RFLP による *phaC*の同定では、 道中³⁹⁾が得た結果とは異なるピーククラスターが認められ同定できなかった。

つづいて 16S rRNA 遺伝子の系統解析結果より、プロピオン酸を基質とする PHA 蓄積細菌の 中で PAO 汚泥に出現する細菌種は、PAO の第 1 候補 *Candidatus* 'Accumulibacter phosphatis'が優 先していた。また、GAO-like 汚泥に出現する細菌種は、GAO の第 1 候補 *Candidatus* 'Competibacter phosphatis'が優先していた。さらに、興味深いことに、*Clostridium bartlettii* という *Firmicutes* に 属する細菌群が PAO 汚泥・GAO-like 汚泥双方で優先していた。*Firmicutes* に属する細菌が PAO、 または GAO 候補として検出された報告はほとんどなく、今回 PAO か GAO かは判断できないが、 新たな PAO、または GAO 候補を検出することができた。

2 課題と今後の展望

今回 PCR/T-RFLP 法による *phaC* の同定を行えなかったので、PCR-Clonig-Sequencing 法により *phaC* の配列クラスター解析を早急に取り組む必要がある。

*phaC*のクラスター解析を行い、*phaC*のクラスターと 16S rRNA 遺伝子クラスターの相関を求め、機能遺伝子 *phaC* と 16S rRNA 遺伝子を関連付けたいと考えている。

今後、機能遺伝子と16SrRNA遺伝子の関連付ける解析が進むことで下水処理の微生物の解明、 モニタリングや単離のツールが増えていくに違いない。それによって環境問題が解決されていく ことを期待する。

本研究で作成した試薬組成(その1)

0.5M EDTA (pH 8.0)

1M Tris-HCI (pH X)

EDTA·2Na·2H ₂ O	186.1g
Milli-Q 水	700mL
NaOH	about 20g
NaOHaq	pH 8.0
Milli-Q 水	mess up 1L

Tris base	121.1g
HCI	pH adjustment
Milli-Q 水 mess up 1L	
Autoclaved. Store at 4°C.	

Autoclaved. Store at 4°C.

TE (10mM Tris-HCI, 1mM EDTA pH8.0)

1M Tris-HCI (pH 8.0)	10mL
0.5M EDTA (pH 8.0)	2mL
Milli-Q 水 mess up 1L	
Autoclaved. Store at 4°C.	

10 × PBS (pH 7.4)

80g
2g
36.3g
2.4g
800mL
pH adjustment
mess up 1L

Autoclaved. Store at room temperature.

3M NaOAc (pH 5.2)

NaOAc·3H ₂ O	204.1g
Acetate	pH 5.2
Milli-Q 7k mess up 500mL	
Autoclaved. Store at 4°C.	

292.2g 800ml

5M NaCl

Milli-Q 7K	800mL
Milli-Q 水	mess up 1L
Autoclaved. Store at 4°C.	

NaCl

10 × TBE Buffer

108g
55g
7.43g
mess up 1L

Store at room temperature.

LB medium

LB Broth (DIFCO)	4g
Milli-Q 水	200mL
Autoclaved. Store at 4°C.	

2M KCI

KCI	1.491g
Milli-Q	mess up 10mL
Autoclaved.	Store at 4°C.

10 × TBE Buffer

Tris base	242g
Acetate	57.1mL
EDTA·2Na	7.43g
Milli-Q 水	mess up 1L

Store at room temperature.

0.5M EDTA (pH 8.0)

Bromophenol blue	25mg
Xylene cyanol FF	25mg
Glycerol	3mL
0.5M EDTA	100µL
Milli-Q 水	mess up 10mL

Autoclaved. Store at 4°C.

RNaseA (5mg/mL)

RNase	250mg
1M Tris-HCI (pH 7.5)	0.5mL
5M NaCl	0.15mL
100% glycerol	25mL
Milli-Q 水	mess up 50mL

Incubate at 100°C for 10min. Store at -20°C.

SOC medium

<soc solution=""></soc>		
Tryptone, Bacto	4g	
Yeast extract, Bacto	1g	
5M NaCl	343μL	
2M KCI	250μL	
Milli-Q	200mL	
Autoclaved.		
<mg solution=""></mg>		
MgSO ₄ • 7H ₂ O	2.465g	
MgCl₂ • 6H₂O	2.033g	
Milli-Q	10mL	
Autoclaved.		
<2M Glucose Solution>		
Glucose	3.603g	
Milli-Q	10mL	
Autoclaved.		
In clean bench		
SOC Solution	100mL	
Mg Solution	1mL	
2M Glucose Solution	1mL	

謝辞

本論文を執筆するにあたり、お世話になった方々に、この場をお借りして御礼を申し上げます。

まず、指導教官である味埜俊教授(東京大学大学院新領域創成科学研究科社会文化環境学専攻)、 佐藤弘泰助教授(同)、並びに小貫元治講師(東京大学サステナビリティ連携研究機構)には研 究の進め方や、実験方法などについて、熱心なご指導を賜りました。心より感謝いたします。他 学科から当専攻に進学し、右も左も分からない私にとっては、先生方の優しさに満ち溢れた指導 は非常にありがたいものでした。特に、佐藤先生には、ふと目的を見失いがちな私を何度も救っ て頂きました。

また、副指導教官を快く引き受けてくださいました工学系研究科付属水環境制御センター 栗 栖太 講師に深く感謝いたします。

東京都下水道局の方々には、活性汚泥を本研究のために快く譲渡して頂きました。ありがとう ございました。

教官や関係機関以外の方々にも、非常にお世話になりました。特に、道中敦子さん(現 麒麟 麦酒株式会社)には、研究についてアドバイスをいただきました。また、当博士課程3年小田和 賢一さんには分子生物学的手法についてよく教えていただきました。当博士課程3年福島寿和さ んにはリアクターの立ち上げ時にお世話になり、さらに私の研究についても親身になって相談に のっていただきました。当博士課程3年末岡一男さんには様々な実験操作法を教えていただきま した。当博士課程1年押木守さんにはリアクターの立ち上げにお世話になり、さらにPHA 蓄積 細菌の解析方法についてもご教授いただきました。ありがとうございました。

また、同期の金井祐樹さん、玉井暁大さん、新井俊介君、西条拓磨君、都築淳君、中野拓磨君、 藤原和也君、をはじめ味埜研究室の皆様には私の大学院での研究生活を豊かなものにしていただ きました。心より感謝いたします。

振り返ると、実に多くの方々に支えられながら、本論文が書き上げられたことを実感します。 皆様、本当にありがとうございました。

2006年1月29日

村上 達也

参考文献

- 1) Barnard, J. L. (1975). Water Res., 9, 485-490
- 2 Braunegg G, Lefebvre G, Genser KF. (1998) : J Biotechnol. 65, 127-61. Review.
- 3 Kampfer (1996) Microbial Ecology, 32, 101-121
- 4 Christensson (1998), Appl. Environ. Microbiol, 49 226-234
- 5 Kawaharasaki (1999) Water Res, 33, 257-265
- 6 Bond (1995) Appl. Environ. Microbiol., 61, 51910-1916
- 7 Hesselmann (1999) Syst Appl Microbiol. 22:454-65.
- 8 Crocetti (2000) Appl. Environ. Microbiol., 66. 1175-1182,
- 9) Mino, T., Liu, W.-T., Kurisu, F., and Matsuo, T. (1995). Wat. Sci. Tech., 31, 25-34
- 10 Cech and Hartman (1990) Environ. technol, 11, 651-656
- 11 Cech and Hartman (1993) Water Res. 27, 1219-1225. 1993
- 12 Liu (1996) Int. j. remote sens.17, 2761-2782
- 13 Seviour (2000) Environmental Microbiology Volume 2 Issue 6 Page 581 December 2000
- 14 Mino (1998) Water Res, 32, 3193-3207
- 15 Maszenan (1997) Journal of Industrial Microbiology and Biotechnology 18, 267-271
- 16 Blackall (1997) Letters in Applied Microbiology 25, 63-69
- 17 Shintani (2000) International Journal of Systematic and Evolutionary Microbiology, 50, 201-207,
- 18 Yoshimi (1996) Int. j. syst. bacteriol 46, 519-525
- 19 Crocetti (2002) Microbiology, 148, 3353-3364.
- 20 Wong (2004) *Microbiology* **150**, 3741-3748
- 21 Kong (2006) Environmental Microbiology 8, 479–489
- 22) P. Hugenholtz (2002), Genome Biol., 3, REVIEWS0003
- 23) M. F. Polz and C. M. Cavannoni, (1998) Appl Environ. Microbiol., 64, 3724-30
- 24) K. Ishii and M. Fukui, (2001) Appl. Environ. Microbiol., 67, 880-7
- 25) Y. Hongoh et al., (2003) FEMS Microbiol. Lett., 221, 299-304
- 26) M. T. Suzuki and S. J. Giovannoni, (1996) Appl. Environ. Microbiol., 62, 625-30
- 27) M. Suzuki et al., (1998) Appl. Environ. Microbiol., 64, 4522-9
- 28 Mullis (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction.
- 29) Bernard, P., and Couturier, M. (1992). Cell Killing by the F Plasmid CcdB Protein Involves

Poisoning of DNA-Topoisomerase II Complexes. J. Mol. Biol. 226, 735-745.

30) Bernard, P., Gabant, P., Bahassi, E. M., and Couturier, M. (1994).. Gene 148, 71-74.

30佐藤弘泰ら(1993): PHA の測定とその意味、環境微生物工学研究法、土木学会衛生工学委員会 編、技報堂出版、67-70

31 Choi J. S., and Lee S. -Y. (1997), 17, 335-342

31) 押木守(2006):活性汚泥中の PHA 蓄積細菌群集の分子生物学的手法による解析、東京大学 大学院新領域創成科学研究科修士論文

31) Lane, D.J. (1991): Wiley and Sons, 115–175

32 Choi J. S., and Lee S. -Y. (1997), 17, 335-342

33) 押木守(2006):活性汚泥中のPHA 蓄積細菌群集の分子生物学的手法による解析、東京大学 大学院新領域創成科学研究科修士論文

34) Lane, D.J. (1991): Wiley and Sons, 115–175.

35 Eitan Ben-Dov et al, (2006) Appl. Environ. Microbiol., 72 6902-9

36) X. Qiu et al, (2001) Appl. Environ. Microbiol., 67 880-7

37) Sheu D.S., Wang Y.I. and Lee C.Y. (2000) : , *Microbiology*, 146, 2019-2025

38) Henke W, Herdel K, Jung K, Schnorr D, and Loening SA. (1997), Nucleic Acids Res. 25 3957-8.

39) 道中敦子(2005):活性汚泥中に存在するポリヒドロキシアルカン酸合成遺伝子(phaC)の多 様性とその挙動、東京大学大学院新領域創成科学研究科博士論文

<参考 Webpage>

NCBI, National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/ PDA, Primer Design Assistant, http://dbb.nhri.org.tw/primer/index.html Blastn, http://www.ddbj.nig.ac.jp/search/blast-j.html ClustalX, http://www.ddbj.nig.ac.jp/search/clustalw-j.html Mega 3.1, http://www.megasoftware.net/, Molecular Evolutionary Genetics Analysis