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ABSTRACT

SHADOW ELIMINATION AND INTERPOLATION FOR

COMPUTER VISION AND GRAPHICS

DECEMBER 2002

by

YASUYUKI MATSUSHITA

Ph.D., THE UNIVERSITY OF TOKYO

Directed by: Professor Masao Sakauchi

Shadowing and other illumination effects give human beings rich clues to un-
derstand visual scenery. However, for many computer vision algorithms that rely
on visual appearance, such illumination effects generally become more harmful
than effective. Proper handling of shadowing effect has been a hard problem es-
pecially when computer vision algorithms are taken to outdoor scenes. Though
an extensive amount of work has been done for the case of parameterized light
sources to solve the problem, in practical terms we cannot expect such preassump-
tions are valid in outdoor scenes. We are motivated by this background, and our
focus is proper handling of scene illumination using a set of images captured using
a fixed camera but under several different illumination conditions without know-
ing the scene geometry nor lighting conditions. This work has two important parts.

The first part is estimation of scene illumination from a set of images captured
under various illumination conditions, and interpolation of captured illumination
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conditions. In this part, we first introduce an existing method to derive scene illu-
mination image, and propose our approach to enhance the estimates. In addition,
to deal with the non-linearity in variation of scene illumination along the time axis,
we propose two different approaches for non-linear interpolation of scene illumi-
nation which is used to estimate intermediate illumination conditions.

The second part is manipulation of scene illumination using obtained scene
illumination images to enhance the performance of computer vision algorithms
such as object tracking in outdoor scene. This part can lead to some application ar-
eas such as shadow removal from the scene for robust visual surveillance, image-
based scene texture editing for computer graphics and enhancement of image seg-
mentation. In this thesis, we investigate on those applications and confirm the
effectiveness of scene illumination handling. We also integrate our shadow elimi-
nation technique to an existing road traffic monitoring system and confirm that it
enhanced the accuracy of object detection and tracking.
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論文要旨

コンピュータビジョン・グラフィックスのための影の消去と補間

2002年 12月

松下康之

東京大学工学系研究科電子情報工学専攻

指導教官: 坂内正夫 教授

影を含む照明による影響は，視覚的な環境の構造を理解するための大きな手がか

りを人間に与える．しかしながら，これらの照明による影響は多くのコンピュータ・

ビジョンの手法に対して，手がかりを与えるのではなく，むしろその精度を下げる要

因として問題視されてきた．特に，光線が物体に遮られる際に生じるキャストシャド

ウは，屋外におけるコンピュータビジョンシステムの性能を低下させる要因として捉

えられており，これを適切に処理するフレームワークが求められている．これまでに

光源を既知としてこのような問題に対処する研究が多くなされてきたが，屋外環境下

では光線の分布が複雑であるため，このような前提を用いることは一般に難しい．こ

のような背景を配慮し，本研究ではシーンの構造・照明条件が未知である画像列中で，

照明による影響を適切に処理する手法について検討をおこなう．本論文は，二つの構

成からなる．

前半では，固定視点から撮影された様々な照明条件下の静的なシーンの画像列か

ら，シーンへ入射する照明分布を示す照明画像を推定，およびその補完をおこなう手

法を提案する．この中では，照明画像を推定する既存の手法を拡張し，より正確な照

明画像を導く手法について述べる．さらに，得られた照明画像列から，それらの中間
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的な照明画像を補完する手法について検討する．照明画像の時系列変化は非線形であ

り，これに対処するために二つの非線形補完手法を提案する．

後半では，得られたシーンの照明画像を用いて入力画像の照明成分を正規化する

ことにより，屋外での移動物体追跡に代表される，いくつかのコンピュータビジョン

アルゴリズムの精度向上に関する検討をおこなう．照明成分の正規化により，入力画

像列から影の消去，照明成分に依存しない二次元画像編集，さらに照明による影響を

排除した画像を用いた画像分割等のアプリケーションが実現する．本稿では，これら

の応用に関する検討をおこない，さらに既存の交通監視システムに本手法を組み込む

ことで物体追跡の精度が向上したことを確認した．
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CHAPTER 1

INTRODUCTION

1.1 Background

Rapidly increasing availability of video sensors and less expensive high per-

formance computers accelerate research on video understanding problems. Video

understanding has been a Computer Vision problem for a long time, and an exten-

sive amount of methods has been proposed to solve its central problem, i.e. object

detection and object tracking. Compared to Image Understanding, which uses only

a single image, video understanding allows to use massive information to solve

those problems. Though computational cost may be higher in video understand-

ing, but the problem becomes easier because of its much richer information. The

goal of video understanding is that automatically deriving a description under-

standable for human beings from an image sequence. The problem substantially

involves Artificial Intelligence problems.

Apart from the pure goal of video understanding, more practical video un-

derstanding systems start emerging in industry. For example, Face Recognition

has been widely studied [TP91, LGTB97, WFKM97, CTB92, LFG+01], and some of

practical face recognition systems are now commercialized in its potential appli-

cation area such as video telephony and authentication (identifying an individual)

which uses face as a biometric. Another example is video surveillance systems

which aim to monitor wide range of the scenes to automatically find out what is

1



CHAPTER 1. INTRODUCTION

going on in its coverage area. One of the obvious application is a security ap-

plication. The objective of those security applications is alerting security officers

when detecting intruders, or suspicious individuals before they become the crim-

inals. In fact, there already exist a lot of monitoring cameras mounted in stores

and banks. In addition, there are already commercial products of home security

packages [Sim, SV] composed of PC, cameras, and monitoring software.

While those face recognition systems and security applications are generally

categorized into indoor applications, outdoor video surveillance systems which

cover wider range of area have also been investigated. Especially, with the in-

creasing need for a more efficient road transporting system that is both econom-

ically sound and environmentally preferable, research and development on road

traffic monitoring systems are now a great deal of attention. Road traffic monitor-

ing specifically aims to accomplish automatically counting the number of vehicles

passing by, detecting traffic accidents, and recognizing vehicles’ number-plate, for

example. To archive those specific goals, the road traffic monitoring systems prim-

itively involve the collection of data that describe the appearances of vehicles and

their motion. Those data are then combined for the higher level processing, such

as congestion and incident detections.

Current road traffic monitoring systems rely on the technology of spot sensors

based on loop detectors or microwaves. In contrast to those spot sensors, vision

sensor is potentially much more powerful than those spot sensors currently avail-

able. In the economical aspect, installation of video cameras for road monitoring

becomes cheaper compared to installing other spot sensors densely, because one

video camera can cover much wider range of areas. Another advantage is that

vision sensor can gather plentiful variety of information from the scene as an im-

age sequence, while the spot sensor can only detect whether or not a vehicle exists

there. From the fertile information given as an input image sequence, the road

traffic monitoring techniques are expected to extract useful traffic information au-

tomatically.
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1.1. BACKGROUND

One of the major difficulties in outdoor video surveillance techniques is proper

handling of variation of the scene illumination and the dynamic scene structure.

As for the case of indoor scenes, more specifically in the dark room, we can rely on

the preassumptions that illumination do not vary and objects out of interest do not

move. However, methods developed under such preassumptions will not work in

the outdoor scenes. Suppose we are going to develop a method to detect vehicles

from the input image sequence of outdoor traffic scene. Trees lining a street are

waving, that can be mis-detected as vehicles, and illumination suddenly changes,

that can spoil the detection algorithm itself. To handle the dynamic background1,

several methods to absorb those changes have been proposed [KvB90, Kil92, SG99,

FR97].

Compared to those methods handle the dynamic background, the less amount

of study has been done to tackle the dynamic variation of scene illumination. In

the area related to handling illumination changes, illumination invariants are well

studied mostly in the color society. Especially, Color Constancy has been widely

studied [WB82, FHH01, BF97, FFB95, RBK98] which gives the ability to a vision

system by assigning a color description to an object that does not depend on the

illumination environment. It allows the system to recognize objects under many

different illumination conditions. Color constancy refers to the lack of change in

the perceived color of a colored patch as the global illumination changes. Another

strand of research has focused on photometric invariants under different types of

illumination conditions, e.g. using Reflectance Ratio [NB93, NB96] as illumination

invariants, choosing object features which is invariant to illumination changes, etc.

1Here, we refer to the background the area out of interest.
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1.2 Thesis overview

In this dissertation, we focus on deriving illumination invariant images us-

ing intrinsic images2 to enhance video surveillance technologies in the outdoor

scene. By deriving illumination invariant images, we believe many computer vi-

sion methods which had been only applicable in indoor scenes can be brought

to outdoor scenes. We start with estimating intrinsic images in Chapter 2. We

formulate the problem of decoupling a set of reflectance images and the corre-

sponding set of illumination images from an input image sequence as a problem

of edge classification in derivative domain. After introducing an existing effective

method [Wei01], we propose an approach to consider time-varying component of

reflectance values to enhance the estimates of scene illumination images.

There are several applications which we consider our intrinsic images are ca-

pable of enhancing their output. In Chapter 3, we introduce three application

areas where our intrinsic images is considered to be effectively applicable. The

first one is shadow removal for robust video surveillance described in Section 3.1.

We propose an approach to use illumination images to generate illumination in-

variant image sequence to reduce appearance variation of the moving objects,

which potentially is expected to solve the problems caused by dynamic illumina-

tion and large static cast shadows. Unlike previously proposed shadow removal

algorithms, our method does not explicitly treat cast shadow regions but use il-

lumination image. Secondly, scene texture editing using the reflectance images is

proposed in Section 3.2. Reflectance image essentially is an image containing only

the reflectance properties of the scene, and the illumination image is composed of

the illumination effects. Thus, if we want to change the texture of the object in

the scene in a 2-D image, it is preferable to accomplish editing using reflectance

images because the reflectance image is free from the illumination effects such as

cast shadow on the ground, shading on the object surface, etc. After editing scene

2Detailed introduction of intrinsic images is found in Section 2.1.
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textures in reflectance images, the final image is obtained by multiplying illumi-

nation images. The final one is the application to image segmentation described in

Section 3.3. We found the reflectance image is also effective in enhancing image

segmentation. Most image segmentation algorithms aim to put boundaries among

objects ignoring illumination effects. In this sense, illumination effects such as cast

shadows and shading are nothing but obstacles against image segmentation algo-

rithms. Thus, we have investigated the potential of using reflectance images for

image segmentation, and confirmed its effectiveness with some experiments.

It has been a difficult problem for a long time to estimate the scene appear-

ance under unsampled intermediate illumination conditions. The problem can be

formed like: given several photographs captured under the different illumination

conditions, can we produce an image under the novel illumination condition? We

simplified the problem to be reproduction of intermediate illumination images,

but not arbitrary illumination images. Since the illumination effects observed in

retinal images varies non-linearly, simple interpolation methods such as the linear

intensity interpolation would not work. In Chapter 4, we propose two different

methods to accomplish the non-linear interpolation of illumination images to esti-

mate intermediate illumination images. One type of method uses Shadow Hulls to

compute intermediate cast shadow shape from sampled illumination images asso-

ciated with the sunlight angles. Using the estimated intermediate shadow shape,

the intermediate illumination image is then computed. Details of this method is

described in Section 4.1. The other type of method described in Section 4.2 uses

roughly estimated scene geometry using a stereo algorithm to compute geometry-

based cast shadows. The geometry-based shadows are not correct because the

estimated scene geometry is not very accurate. However, they are still useful to

indicate global shadow motion. Thus, we use the geometrically-based shadow

as a guide to compute general shadow distortion between sampled illumination

conditions.
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Chapter 5 describes our approach to apply our illumination normalization method

to outside video surveillance systems, which is the final goal of this work. Our fo-

cus here is to enhance the accuracy of object tracking by removing cast shadows

from the input image sequences. We applied illumination normalization method

described in Section 3.3 to a set of images captured from a fixed view point but

under the different illumination conditions. In addition, we employed eigenspace

method to create a database of illumination images which we refer to as illumi-

nation eigenspace. We utilize the illumination eigenspace in order to accomplish

real-time search of similar illumination images, that consequently used to estimate

intermediate illumination images. The effectiveness of our method is confirmed

with experimental results on vehicle tracking in the urban scene.

The concluding chapter, Chapter 6, summarizes the contributions of the thesis

in more detail and discuss a number of directions for future research.
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CHAPTER 2

INTRINSIC IMAGES

This chapter first introduces the notion of Intrinsic Images in Section 2.1, then

summarizes the related works on estimating intrinsic images in Section 2.2. Af-

ter mathematical preparation for image filtering and reconstruction described in

Section 2.3, we formulate the decomposition into intrinsic images as the edge clas-

sification problem in Section 2.4. Section 2.5 describes recently proposed ML es-

timation framework to derive intrinsic images, and subsequently we propose our

approach to enhance the estimates obtained using ML estimation method in Sec-

tion 2.6.

2.1 Introduction

The notion of intrinsic images was first proposed by Barrow and Tenenbaum [BT78]

in 1978. They proposed to consider every retinal image as a composition of a set of

latent images, i.e. images containing only the reflectance properties, illumination

or depth of the scene. One type of the intrinsic images, a reflectance image, con-

tains the reflectance values of the scene, while the other one type, an illumination

image, contains the illumination intensities, and they are multiplied to produce a

single retinal image. First, let us make some terminologies clear.

• LuminanceL : the amount of visible light that comes to the eye from a surface

7
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(a) (b) (c)

Figure 2.1. Intrinsic images. A luminance image (a) is composed of a reflectance
image (b) and an illumination image (c).

• Illuminance E : the amount of incident lighting onto a surface per unit area

• Reflectance R : the proportion of incident light that is reflected from a surface

A luminance image is a retinal image of the scene that eyes can capture. As

shown in Figure 2.1, a luminance image (a) is supposed to be decomposed into a

reflectance image (b) and an illumination image (c). Without considering atmo-

spheric attenuation, the relationship among those three can be described by the

following Equation (2.1).

L = E · R (2.1)

It is worth denoting that the illuminance E is a function of incident lighting

S and surface normal N of the scene, i.e. E is the product of �S and �N . Because

illuminance is measured by per unit area, it is proportional to cosine of the angle

between the surface normal and the direction of incident lighting when the light

type is directional. One special case is that by formingE(x, y, t) = �S(t)· �N(x, y)with

an assumption that the scene is composed of Lambertian surfaces, the photometric

stereo algorithm [Woo78, Hay94] estimates both S(t) and N(x, y) by singular value

decomposition (SVD) technique.

8



2.2. RELATED WORK ON ESTIMATING INTRINSIC IMAGES

2.2 Related work on estimating intrinsic images

As we immediately notice, Equation (2.1) is essentially ill-posed, and it is hard

to decouple E and R without any prior knowledge about the scene, illumination

or their statistics. While decomposing a single image into the intrinsic images,

namely a reflectance image and an illumination image, remains a difficult prob-

lem [BT78, AP96, Lan77], deriving intrinsic images from a set of images has seen

great success. Recently, Weiss developed an ML estimation framework [Wei01] to

estimate a single reflectance image and multiple illumination images from a se-

ries of images captured from a fixed view point but under significant variation of

lighting condition. Weiss’s method to derive intrinsic images is useful for largely

diffuse scenes, however, it has a problem when applied to scenes containing non-

Lambertian surfaces. Weiss’s method assumes a single reflectance value constant

along the time-axis which implicitly presuppose the scene is composed of Lam-

bertian surfaces. This assumption is inevitable from the assumption of the single

reflectance image which has to be independent from illumination changes. For

real world scene, we can’t expect the assumption to hold. A typical example is

white lines and traffic signs on the road surface, which show variable reflection

with respect to illumination changes. To be more precise, because Weiss’s method

relies on the statistics, dense sampling of illumination conditions and properly

unbiased sampling are required even for the Lambertian scenes. Finlayson et

al. [FHD02] proposed a method which derives the scene texture edges from the

lighting-invariant image, and by subtracting those edges from the raw input im-

ages, they successfully derive shadow-free images of the scene.

2.3 Preparation: Image filtering and reconstruction

When we are going to manipulate images in derivative domain, it is necessary

to restore those modified images from derivative domain. In this section, we de-

scribe the mathematical preparation for image filtering and image reconstruction.

9
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Suppose we have a filter h and apply it to an image f . Filtering operation using a

2-dimensional filter h(x, y) applying to an input image f(x, y) can be described as:

g(x, y) = f(x, y)⊗ h(x, y)

=

∫ ∞

−∞

∫ ∞

−∞
f(x′, y′)h(x′ − x, y′ − y)dx′dy′ (2.2)

where ⊗ represents convolution1 and g(x, y) is the filtered image. In frequency

domain, Equation (2.2) changes to the following Equation (2.3).

G(u, v) = F (u, v) ·H(u, v) (2.3)

Upper scale letters in Equation (2.3) indicates corresponding variables in frequency

domain. They have the relationship as followings:

g ⇐⇒FT
G

f ⇐⇒FT
F

h ⇐⇒FT
H

(2.4)

where ⇐⇒FT
represents the Fourier transform F , and inverse Fourier transform F−1.

The definitions of the Fourier transform and the inverse Fourier transform respec-

tively are:

F (u, v) = F{f(x, y)}

1See Appendix A.
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=

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2πj(ux+vy)dxdy (2.5)

f(x, y) = F−1{f(x, y)}
=

∫ ∞

−∞

∫ ∞

−∞
F (u, v)e2πj(ux+vy)dudv (2.6)

In practice, functions are sampled at equally spaced discrete points. The dis-

crete Fourier transform and the discrete inverse Fourier transform respectively are:

F (u, v)n =
1

MN

M−1∑
x=0

N−1∑
y=0

f(x, y)e−2πj(ux/M+vy/N) (2.7)

and

f(x, y) =

M−1∑
u=0

N−1∑
v=0

F (u, v)e2πj(ux/M+vy/N) (2.8)

for an M × N grid in x and y. Usually, we set M = N to make those equations

more convenient, then Equation (2.7) (2.8) change to

F (u, v)n =
1

N

N−1∑
x=0

N−1∑
y=0

f(x, y)e−2πj(ux+vy)/N (2.9)

f(x, y) =
1

N

N−1∑
u=0

N−1∑
v=0

F (u, v)e2πj(ux+vy)/N (2.10)

Let us go back to Equation (2.2). Given the filtered image g(x, y) and the filter

h(x, y), we can derive the original image f(x, y) as followings. Such reconstruc-

tion procedure is necessary for recovering images from the derivative domain after

edge-based manipulation of the images.

11



CHAPTER 2. INTRINSIC IMAGES

hn hn
c

I I In r

Figure 2.2. Process of image filtering and reconstruction.

f(x, y) = g(x, y)⊗ F [H−1(u, v)] (2.11)

where F [h] = H and equally F [H−1] ⇐⇒FT
H−1. This reconstruction process is

described by deconvolution. If we write a(x, y) = F [H−1(u, v)], a is such that

satisfies the following equation.

a⊗ h = δ ⇐⇒FT
A ·H = 1 (2.12)

We look back the basis of image filtering and reconstruction in this section.

Image filtering and reconstruction problem is well studied in the field of image

and signal processing [GW87, Jai89, Mit98, Ant93, Str93].

2.4 Time-series analysis for estimating intrinsic images

Estimating intrinsic images from a single image is difficult without a strong

pre-knowledges, because the visual rays are the convolution of reflectance and il-

luminance, namely the decomposition problem is the inverse problem. Estimation

using multiple images can be less difficult because there is some change of relying

on time-series statistics or physics-based models of temporal intensity variations.

In this section, we first propose to treat the decomposition problem as the edge
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classification problem. After introducing ML estimation framework to derive in-

trinsic images, we enhance the method for practical use by deriving time-varying

reflectance images in Section 2.6.

2.4.1 Problem formulation

We formulate the problem of estimating intrinsic images as the problem of edge

classification of a derivative image sequence. Our interest is determining two of

the intrinsic images, i.e. illumination images E and reflectance images R from a

set of luminance images L captured from a fixed camera position but each under

the different illumination condition. In derivative domain, we assume that every

retinal image is composed of the mixture of various types of edges categorized

into the following five types. In some cases, the edge is referred to the binarized

line segment after thresholded, but we regard an edge as a real derivative value

between a point and the neighboring point.

• Cast shadow boundary ... An edge appeared on the boundary of a cast

shadow.

• Shading ... Reflected intensity is dependent of surface orientation.

• Highlights and Specularity ... Highlight on the object’s surface shows the high

brightness.

• Occluding boundary ... Boundary of structurally different objects.

• Pigment boundary ... Almost same as the occluding boundary. Boundary of

different pigments, but structurally on the same plane.

Figure 2.3 shows a sample luminance image (a) and its derivative image (b).

The derivative image (b) is generated by summing up the absolute values of hori-

zontally and vertically derivative-filtered outputs. Figure 2.4 is the same image as

Figure 2.3(b) but with the explanation of edge types.

13
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(a) (b)

Figure 2.3. A retinal image (a) and its derivative image (b).

Pigment Boundary
Occluding Boundary

Cast Shadow Boundary

Shading Edge

Specularity Edge

Figure 2.4. Categorization of edge types in the derivative image.
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2.5. ML ESTIMATION FOR DETERMINING REFLECTANCE EDGES

Our interest is to decouple the illumination component and the reflectance

component from an input image sequence. We propose to use edge-based ma-

nipulation in derivative domain to accomplish this. This manipulation in spatial-

derivative domain is quite useful because it originally holds the intensity relation-

ship among neighboring pixels and the computational cost becomes lower because

of its sparseness [HM99].

We consider that a problem of the decomposition into intrinsic images is the

categorization problem of edges in filtered input images. In derivative domain, a

reflectance image contains the following edges.

• Highlights and Specularity

• Occluding boundary

• Pigment boundary

On the other hand, an illumination image contains the following edges in deriva-

tive domain.

• Cast shadow boundary

• Shading

• Occluding boundary

In this way, we formulate the decoupling problem as the edge discrimination prob-

lem.

2.5 ML Estimation for determining reflectance edges

Recently, Weiss [Wei01] proposed an ML estimation framework to derive in-

trinsic images by formulating the problem as follows.

L(x, y, t) = Rw(x, y) ∗ Ew(x, y, t) (2.13)
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where ∗ is the pixel-wise multiplication. Here we denote Weiss’s reflectance im-

age Rw and illumination image Ew with small w attached. In log domain, Equa-

tion (2.13) changes into the following equation.

l(x, y, t) = rw(x, y) + ew(x, y, t) (2.14)

where (l, rw, ew) = (logL, logRw, logEw). With n-th derivative filter fn, the method

derives the filtered reflectance image rwn by taking median along the time-axis as

follows.

r̂wn(x, y) = mediant{l(x, y, t)⊗ fn} (2.15)

where r̂wn is the estimate of the filtered reflectance image. Finally, the illumination

images ew are computed in unfiltered domain.

êw(x, y, t) = l(x, y, t)− r̂w(x, y) (2.16)

2.6 Deriving Time-varying Reflectance Images

Weiss’s method which is described in Section 2.5 to derive intrinsic images

is useful for largely diffuse scenes, however, it has a problem when applied to

scenes containing non-Lambertian surfaces. Since his method implicitly assumes

the scene is composed of Lambertian surfaces, and this assumption is inevitable

from the definition of the reflectance image which has to be independent from

illumination changes. For real world scene, we can’t expect the assumption to

hold. A typical example is white lines on the road surface, which show variable

reflection with respect to illumination changes. Therefore, while the time invariant

reflectance image Rw(x, y) derived by Weiss’s framework reasonably describes the

scene texture without lighting effects, the estimated illumination images E(x, y, t)

tend to contain considerable amount of scene texture. Those scene textures should

16
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not really be a component of the “illumination” image, since illumination images

should represent the distribution of incident lighting per unit area. These annoy-

ing scene textures in illumination images arise at scene regions where surfaces of

different reflectance properties meet. Therefore it is necessary to assume a set of

time-varying reflectance images R(x, y, t) instead of a single one.

Our estimation method is based on Weiss’s method. We first estimate Weiss’s

reflectance image to use it as a scene texture image. Again, we denote Weiss’s re-

flectance image and illumination image with small w attached, i.e. Rw and Ew, and

our reflectance image and illumination image, R and E respectively. First, we ap-

ply the ML estimation method to the image sequence to derive a single reflectance

image Rw(x, y), and a set of illumination images Ew(x, y, t). Our goal is to derive

time-varying, i.e. lighting condition dependent, reflectance images R(x, y, t) and

corresponding illumination images E(x, y, t) that do not contain scene texture as

written as the following equation.

L(x, y, t) = R(x, y, t) ∗ E(x, y, t) (2.17)

where ∗ is the pixel-wise multiplication.

Equation (2.17) changes into the following equation in log domain.

l(x, y, t) = r(x, y, t) + e(x, y, t) (2.18)

We use lower-case letters to denote variables in log domain, e.g. r represents

the logarithm of R. With n-th derivative filters fn, a filtered reflectance image rwn

is computed by taking median along the time axis of fn ⊗ i(x, y, t). We used two

derivative filters, i.e. f0 = [0 1 −1] and f1 = [0 1 −1]T . With those filters, input

images are decomposed into intrinsic images by Weiss’s method as described in

Equation (2.19). The method is based on the statistics of natural images [HM99].
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r̂wn(x, y) = mediant{fn ⊗ l(x, y, t)} (2.19)

The filtered illumination images ewn(x, y, t) are then computed by using esti-

mated filtered reflectance image rwn.

êwn(x, y, t) = fn ⊗ l(x, y, t)− r̂wn(x, y) (2.20)

To be precise, e is computed by e = l − r in the unfiltered domain in Weiss’s

original work while we estimate e in the derivative domain for the following edge-

based manipulation.

We use the output of Weiss’s method as initial values of our intrinsic image es-

timation. As mentioned above, the goal of our method is to derive time-dependent

reflectance imagesR(x, y, t) and their corresponding illumination imagesE(x, y, t).

The basic idea of the method is to estimate time-varying reflectance components by

canceling the scene texture from Weiss’s illumination images. To factor the scene

textures out from the illumination images and associate them with reflectance im-

ages, we use the texture edges ofrw. We take a straightforward way to remove

texture edges from ewand derive illumination images e(x, y, t) with the following

Equation (2.21) (2.22).

en(x, y, t) =




0 if|rwn(x, y)| > T

ewn(x, y, t) otherwise
(2.21)

rn(x, y, t)=




rwn(x, y) + ewn(x, y, t) if|rwn| > T

rwn(x, y) otherwise
(2.22)
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where T represents a threshold value. While we currently manually set the thresh-

old value T used to detect texture edges in rwn, we found the procedure is not so

sensitive to the threshold as long as it covers texture edges well. Since the opera-

tion is linear, the following equation is immediately confirmed.

fn ⊗ l(x, y, t) = rwn(x, y) + ewn(x, y, t)

= rn(x, y, t) + en(x, y, t) (2.23)

Finally, time-varying reflectance images r(x, y, t) and scene texture-free illumi-

nation images e(x, y, t) are recovered from filtered reflectance images rn and illu-

mination images en through the following deconvolution process, which is same

as described in Weiss’s paper.

(r̂, ê) = g ⊗
(∑

n

f r
n ⊗ (r̂n, ên)

)
(2.24)

where f r
n is the reversed filter of fn, and g is the filter which satisfies the following

equation.

g ⊗
(∑

n

f r
n ⊗ fn

)
= δ (2.25)

The pseudo code of the algorithm is as shown in Figure 2.6.

To demonstrate the effectiveness of our method for deriving time-dependent

intrinsic images, we prepared a CG scene which contains cast shadows and sur-

face patches with different reflectance properties, which is analogous to real road
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DERIVE rwn(x, y) AND lwn BY WEISS’S METHOD
FOREACH x,y DO

IF |rwn(x, y)|> THRESHOLD THEN
en(x, y, t) = 0
rn(x, y, t) = rwn(x, y) + ewn(x, y, t)

ELSE
en(x, y, t) = ewn(x, y)
rn(x, y, t) = rwm(x, y)

END IF
END

RECOVER UNFILTERED IMAGES

Figure 2.5. Pseudo-code of deriving time-varying reflectance images

surfaces, e.g. white lines on a pedestrian crossing. Figure 2.6 shows a side-by-side

comparison of the results applying Weiss’s method and our method. The first two

columns are the CG scenes, where each scene has the property that the histogram

of derivative-filtered output is sparse, which is the required property of the ML

estimation based decomposition method and also is the statistics usually found in

natural images [HM99]. The last column is the real world scene. As can be seen

clearly, texture edges are successfully removed from our illumination image while

they obviously remain in Weiss’s illumination image in each result. Considering

an illumination image to be an image which represents the distribution of incident

lighting, our illumination image is much better since incident lighting has nothing

to do with the scene reflectance properties.

The proposed method is practical but contains important limitation. That is

our method can only applied to the largely planar scenes, since it cannot discrimi-

nate occluding boundaries and pigment boundaries. However, it is still useful for

those scenes where traffic monitoring systems are required because they mostly

are planar on road surfaces.

20



2.6. DERIVING TIME-VARYING REFLECTANCE IMAGES

(a)

(b)

(c)

(d)

(e)

Figure 2.6. (a) an input image i(x, y, t), (b) Weiss’s reflectance image rw(x, y),
(c) Weiss’s illumination image lw(x, y, t), (d) our time-varying reflectance image
r(x, y, t), (e) our illumination image l(x, y, t).
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2.7 Summary and Future Work

Estimating intrinsic images has been a difficult problem since it essentially is an

ill-posed problem. Although human beings immediately and unconsciously dis-

tinguish illumination effects from reflectance properties, it is difficult for machines

to do this. Because the observed intensities are the convolution of incident lighting

and the surface reflectance property, computationally it is the inverse problem. As

we described in Section 2.4.1, solving the inverse problem naturally comes down

to the edge discrimination problem in derivative domain. Our future work is to

give a solution to this problem with large coverage of the properties of the scene.

In this chapter, we first introduced the notion of intrinsic images. Followed

by mathematical preparation for image filtering and unfiltering, Weiss’s ML es-

timation framework for deriving intrinsic images is introduced. Subsequently,

we propose a method to improve Weiss’s result with the notion of time-varying

reflectance images. Edge-based manipulation is done to derive time-varying re-

flectance images, and we confirmed the improved illumination images and corre-

sponding time-varying reflectance images are robustly derived. Though we haven’t

finished the estimation of intrinsic images starting from the problem formulation

described in Section 2.4.1 yet, the work is on-going and we believe the edge-based

classification yields one solution.
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ILLUMINATION NORMALIZATION

USING INTRINSIC IMAGES

Representation of intrinsic images is useful to analyze and manipulate the scene

illumination and reflectance properties, once a luminance image is decomposed

into a reflectance image and an illumination image. We can think of a lot of av-

enues of applications using the intrinsic images with taking its advantage of effi-

cient representation.

In this chapter, we first show the efficiency of shadow removal using illumina-

tion images in Section 3.1. This shadow removal technique is used in our real-time

illumination-normalization framework described in Chapter 5, and more detailed

evaluation is also found there.

We also describe a method utilizing intrinsic images to accomplish scene tex-

ture editing in Section 3.2. Modifying scene texture with preserving scene illumi-

nation has been a difficult and tough labor for CG creators because the scene tex-

ture and scene illumination are not separated in ordinary 2-D images. However, it

becomes quite simple using intrinsic images because the scene texture and scene

illumination are essentially separated in the representation of intrinsic images. We

show the simplicity of the texture editing using real world images.

Finally, in Section 3.3, we propose an approach to use the reflectance image for

image segmentation. The objective of image segmentation is generally to discrim-
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inate foreground objects from the background, or to separate respective objects

from each other. For those objectives, illumination effects such as cast shadows

and shading on the scene surface are obstructive for the most of image segmenta-

tion algorithms. We consider the reflectance image is the ideal input to the most

image segmentation algorithms, since it is free from confusing scene illumination

effects. We confirmed that the better results are obtained using reflectance images

with three different image segmentation algorithms. Though the performance of

image segmentation algorithms cannot be measured by a single criterion, but our

objective here is to decrease the number of erroneous subimage regions caused by

shading and cast shadows.

3.1 Shadow removal for video surveillance systems

Video surveillance systems involving object detection and tracking require ro-

bustness against illumination changes caused by variation of, for instance, weather

conditions. Annoying obstacles include not only the change of illumination con-

ditions, but also the large shadows cast by surrounding structures such as large

buildings and tall trees. Since most visual tracking algorithms rely on the appear-

ance of the target object, typically using color, texture and feature points as cues,

these shadowing effects degrade the accuracy of object tracking. In urban scenes

where building robust traffic monitoring systems is of special interest, it is usual to

have large shadows cast by tall buildings surrounding the road. Building a robust

video surveillance system under such an environment is a challenging task. To

make the system insensitive to dramatic changes of illumination conditions and

robust against large static cast shadows, it would be valuable to cancel out those

illumination effects from the input image sequence.

This section describes our method to “normalize” an input image sequence of

traffic scene in terms of the distribution of incident lighting to remove illumination

effects including shadowing effects. We should note that our method does not
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cope with shadows cast by moving objects but those cast by static objects such as

buildings and trees.

Using the scene illumination images obtained by our method described in Sec-

tion 2.4, the input image sequence can be normalized in terms of illumination.

To estimate the intrinsic images of the scene where video surveillance systems

are to be applied, it is necessary to remove moving objects from the input im-

age sequence because our method requires the scene to be static. Therefore we

first create background images in each short time period (∆T ) in the input image

sequence, assuming that the scene illumination does not vary in that short time

period. We simply use the average image of the short input sequence as the back-

ground image, but of course the more complicated methods would give the better

background images [TKBM99]. These background images B(x, y, t) are then used

for the estimation of intrinsic images. Using the estimation method described in

the former section, each image in the background image sequence is decomposed

into corresponding reflectance images R(x, y, t) and illumination images E(x, y, t).

B(x, y, t) = R(x, y, t) ∗ E(x, y, t) (3.1)

where ∗ is the pixel-wise multiplication.

Once decomposed into intrinsic images, any image whose illumination con-

dition is captured in the series of B(x, y, t) can be normalized with regards to its

illumination condition by simply dividing the input image L(x, y, t) by its corre-

sponding estimated illumination images E(x, y, t). Through this normalization,

cast shadows are also removed from the input images.

Since the incident lighting effect is fully captured in illumination images E(x, y, t),

the normalization by dividing with E corresponds to removing the incident light-

ing effect from the input image sequence. Let us denote the resulting illuminant-

invariant images N(x, y, t) that can be derived by the following equation.
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Figure 3.1. An input image L (left of each pair) and the illuminance-invariant
image N (right or each pair).

N(x, y, t) = L(x, y, t) � E(x, y, t) (3.2)

where � is the pixel-wise division.

Figure 3.1 shows the results of our normalization method. The left-hand side

figure shows the input image L and the right figure represents the illuminance-

invariant image N. Notice that shadows of the buildings are removed and shadow

boundaries become seamless in N. We can see the shadowing effect are clearly

removed by simple division operation once we obtain the corresponding illumina-

tion image.

26



3.1. SHADOW REMOVAL FOR VIDEO SURVEILLANCE SYSTEMS

The limitation of this method is that, when the scene structure changes dramat-

ically, this method bears an unreasonable result since the illumination image E is

thoroughly associated with the scene structure. This implies that the output value

on the image around the moving object is locally not correct because the scene

structure has changed around it. However, globally it gives the correct output in

terms of illumination normalization.
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3.2 Scene Texture Editing

One of the most difficult problem in image editing is preserving consistency of

illumination through the image manipulation. Suppose we have two photographs

taken under the different illumination conditions and want to move an object (ac-

tually it would be a subimage region) from one photo to another. Since the illu-

mination condition is not parameterized in those two photos, adjusting the illumi-

nation condition when superimposing is hard to be accomplished. As can be seen

from this example, preserving the consistency of scene illuminations throughout

the photo editing has been a tough task when the illumination conditions are not

parameterized.

Our method permits scene texture manipulation without considering the true

distribution of illumination of the scene nor the scene geometry. It can modify

texture of the scene, e.g. modifying wall paper of a room in the image. Our scene

texture modification goes along the following steps.

1. Estimation step : Estimate intrinsic images of the scene using our method

described in Chapter 2.

2. Modification step : Make a modification on scene texture in the reflectance

image R.

3. Rendering step : Take a product of the modified reflectance image R and

illumination image E to get the final result.

Since the reflectance image can be regarded as the scene-texture image which is

free from illumination effects, the ideal editing of the scene texture is enabled us-

ing the reflectance image. During the texture modification, we don’t need to take

into account the illumination effects such as cast shadow. After the texture modi-

fication, the final result is obtained by taking the product of the edited reflectance

image and the corresponding illumination image.
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(a) (b) (c)
Figure 3.2. Decomposition into intrinsic images. (a) An original image, (b) the
reflectance image, (c) the corresponding illumination image.

(a) (b)
Figure 3.3. Scene texture manipulation using the reflectance image. (a) Edited
reflectance image, (b) brick texture used for the modification.

(a) (b)
Figure 3.4. Final result of scene texture modification. (a) our method, (b) resulting
image with alpha blending.
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We tested our scene texture editing approach to the cross road scene. Figure 3.2

shows estimation step, a single sample from the input image sequence (a) and

resulting intrinsic images, i.e. the reflectance image (b) and the corresponding

illumination image (c). In the estimation step, the input image sequence is decom-

posed into a set of reflectance images and illumination images using the method

described in Chapter 2. Though only one input image is displayed in Figure 3.2,

several input images under the different illumination conditions are required. Us-

ing the obtained reflectance image, the scene texture is edited in modification step.

We changed the asphalt texture on the road surface to a brick texture by manually

selecting the area. The interim output of the modified reflectance image is shown

in Figure 3.3 (a), and (b) is the brick texture used for the modification. Finally, at

rendering step, the modified reflectance image is multiplied together with the cor-

responding illumination image to produce the final result. Figure 3.4 depicts the fi-

nal rendered result (a) in comparison with the resulting image with ordinary alpha

blending (b). Notice that shadowed regions and well lighted regions are properly

preserved with regard to their shape and contrast in the result of our method (a),

while the resulting image (b) using alpha blending is much less natural.

Modification of the scene texture without intrinsic images is a tough task. Be-

cause the graphics designer first has to select shadowed area to create a shadow

mask by clicking, and choose different alpha values associated with lit areas and

shadowed areas to determine the blending function. By using intrinsic images,

such terrible tasks are simplified to just multiplying the corresponding illumina-

tion images. Our method is fully in 2-D image domain, and since we don’t have

the scene geometry, the method cannot archive 3-D object insertion.

For the scene texture editing, another key point is that the reflectance image

used for texture modification contains variation of the reflectance properties. The

difference between using a constant reflectance image and the time-varying re-

flectance image is well observed when we apply texture modification over the pig-

ment boundary. Figure 3.5 depicts the comparison of the scene texture editing us-
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(a) (b) (c)

(a’) (b’) (c’)

Figure 3.5. Texture manipulation. (a), (b) and (c) show the modified reflectance
image, corresponding illumination image, and the resulting image respectively
using our method. (a’), (b’) and (c’) show the same but using Weiss’s method.

ing reflectance image derived by Weiss’s method [Wei01] with our reflectance im-

age. Results using our method and Weiss’s method are shown in the first row and

the second row respectively. From left to right, (a) reflectance image after modifica-

tion, (b) corresponding illumination image and (c) final rendered result obtained

by taking product of (a) and (b). The trapezoid appeared in (a) is the modified

area replacing the original image by simple uniform colored texture. Looking at

the final result (c’), we notice that an undesirable effect, i.e. a horizontal edge on

the modified texture, is appeared in the final result. The edge is obviously pro-

duced by the illumination image (b’), since the illumination image contains the

pigment boundary which primarily should not be included in the illumination
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images. On the other hand, the undesirable edge is clearly removed using our

method as shown in Figure 3.5 (c). This is because our time-varying reflectance

image correctly absorbs the variation of reflectance properties, and as a result, the

corresponding illumination image (b) becomes more accurate compared to (b’).
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3.3 Enhancing image segmentation

A technique that is used to find the area of interest is usually referred to as

a segmentation technique, i.e. segmenting the foreground from the background

or distinguishing objects from each other. In this section, we propose to use re-

flectance images as input to segmentation algorithms. Since the reflectance image

is essentially illumination-free image, it is expected to reduce the number of unde-

sirable subimage regions caused by illumination effects such as shadowing effects

when the reflectance image is used as input. This section is composed of three

parts. In each part, we introduce a major technique of image segmentation and

evaluate the improvement of the segmentation result using our method.

[Thresholding-based method]

The thresholding method itself is too simple and cannot be used as an effec-

tive segmentation algorithm by itself, however, lots of algorithms are based on

the thresholding method in fact. In this part we first introduce the idea of image

thresholding and compare the output of using normal input images and using our

reflectance images as input. Image thresholding is based upon the simplest idea.

Parameters T1, T2 called thresholds are chosen and then applied to an image I as

follows.

I(x, y) = the object if T1 > I(x, y) > T2

= others otherwise (3.3)

The output is usually labeled as a boolean variable ’0’ or ’1’ to indicate ’object’

or ’the others’. A widely used method of thresholding, which is particularly useful

for thresholding based on several features, is the method of Clustering [JMB91].
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(a) (b) (c)

Figure 3.6. Results of image segmentation using watershed algorithm.

Once clustering is applied , a complete segmentation of an image I is a finite set of

subregions {I1, ..., IN}.

I = ∪N
n=1In Ii ∩ Ij = ∅ if i �= j (3.4)

In the gray scale images, we frequently use the histogram technique to find the

threshold. The threshold value may be global. But in most cases, a global thresh-

old is not the best threshold to segmentation. Then we need the local self-adapting
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Figure 3.7. Erosion caused by shading and shadowing effects.

threshold. So far, lots of methods choosing locally self-adaptive threshold has been

proposed. Salembier et al. proposed an approach based on area morphology op-

erators [SS95]. The area morphology operators generate scaled images based on

the area of connected components within the image level sets, i.e. thresholded

versions of the gray scale image. In the context of scale space, Maragos [Mar89]

presents a multi-scale shape description with morphological filters. One of the

most widely used algorithm is Watershed algorithm [GP93, Vin91, Vin93, Mey93,

BM93] which is also widely used in the area of mathematical morphology. In the

framework of the watershed transformation, the image gradient magnitude is con-

sidered as a topographic surface which is formed by surrounding ridges. The areas

surrounded by those ridges are the watersheds, that share the local minimum in

gradient magnitude. In this way, the watersheds define a segmentation of the im-

age.
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One of the annoying factors complicating thresholding-based methods is shad-

ing effect caused by illumination. With shading, a single object shows appear-

ance variation on its non-planar surface, which makes the problem difficult when

choosing the threshold value. In this scene, using reflectance image for the thresh-

olding based image segmentation is expected to give the better result since it does

not contain shading nor shadowing effects.

We applied the watershed algorithm to several sets of images, a test set is com-

posed of a reflectance image of the scene and the same scene under several illumi-

nation conditions. The result is shown in Figure 3.6. In the figure, (a) and (b) are

the results of different illumination samples and (c) is the result obtained by using

the reflectance image. Along the row from top to bottom, the input image, ridges

computed by watershed algorithm and the output obtained by filling areas sur-

rounded by the ridges. Since we used the most basic watershed algorithm which

does not contain rich post-processing, the resulting images are not very sufficient

throughout the data set. The output shown in Figure 3.6 is rather the intermediate

output for succeeding post processes such as merging and splitting. However, we

can see the effectiveness of using reflectance image in respect of reducing undesir-

able effects caused by shading and shadowing. Figure 3.7 is the closeup view of

the image in the bottom of Figure 3.6 (a). We can notice the eroded parts in the

figure, and those areas are then connected to the background. The eroded parts ac-

tually are the dark area with effect of shading and shadowing as can be seen in the

original input image in Figure 3.6 (a). This is the typical undesirable effect caused

by shading and shadowing, however, it is well reduced when reflectance images

are used.

[Edge finding-based method]

Edge detection is one of the most common approach in discontinuity segmenta-

tion as well as thresholding. Edge detection is usually followed by edge relaxation
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and edge following to archive image segmentation, since the image resulting from

edge detection cannot be used as the image segmentation result by itself. Sup-

plementary processing steps must follow to combine edges into edge chains that

correspond better with borders in the image. The final aim is to reach at least a par-

tial segmentation, i.e. to group local edges into an image where only edge chains

with a correspondence to existing objects or image parts are present.

• Edge detection ... Finding edges by the mentioned edge detecting operators.

The detection of discontinuity of an image is accomplished by using gradient

operators. The gradient ∇ is the first order derivative operator described as

follows.

∇I =


 δI

δx

δI
δy


 =

δI

δx
+
δI

δy
(3.5)

The second order derivative operator is the Laplacian operator ∇2 which is

given by

∇2I =


 δ2I

δx2

δ2I
δy2


 =

δ2I

δx2
+
δ2I

δy2
(3.6)

Those operators, such as gradient and Laplacian operators, are defined in

many ways suitable for each applications. For example, the simplest gradient

operator can be defined as:

δ

δx
=

[
−1 0 1

]
,

δ

δy
=

[
−1 0 1

]T

(3.7)
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• Edge relaxation ... Process of considering edge properties in the context of

their neighborings to increase the quality of the edge image. This process is

required, since the resulting edge image is often strongly affected by noise

which causes surplus edges or missing of the important edges. Edge relax-

ation considers not only the magnitude of the edges and adjacently but also

the context of edges.

• Edge linking ... Linking adjacent edge pixels by seeing if they have the similar

properties. One of the most common discrimination function is like :

∣∣∣‖∇f(x1, y1)‖ − ‖∇f(x2, y2)‖
∣∣∣ ≤ Tm (3.8)

for some magnitude different threshold Tm to combine edges have similar

magnitude properties. As for the edge orientation, the discrimination func-

tion can be described as :

∣∣∣φ(∇f(x1, y1))− φ(∇f(x2, y2))
∣∣∣ ≤ Ta (3.9)

where Ta is the angular threshold.

Once we get the linked edges, we can use them as the boundary of the region

where we want to segment.

• Region construction from borders ... Region construction is the final step

of the edge-based image segmentation. Connected borders are processed to

form subimage regions to produce the final resulting image.
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(a) (b)

Figure 3.8. Results of edge detection. Edges are overlaid to the original images in
blue color (a), and edge mask images (b).
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(a) (b)

Figure 3.9. Closeup view for comparison of the results of edge detection. (a) Re-
sults using the reflectance image, (b) results using images under certain illumina-
tion conditions.

As we briefly reviewed the ordinary process of the edge-based image segmen-

tation, the most important step is Edge Detection step because it has the most

strong effects on the whole following steps. Since retinal images are textured by

shading and cast shadows, those effects give undesirable effects to edge finding-

based image segmentation. For those applications which aim to extract objects’

boundary, shading effect is nothing but troublesome noise. By using reflectance

images, since illumination effects are factored out from them, it is assumed that

the more accurate segmentation results are obtained.
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In this experiment, we focus on how the edge detection result can be improved

using our reflectance images. We used a low-level feature extraction tool named

EDISON (Edge Detection and Image SegmentatiON) developed at the Robust Im-

age Understanding Laboratory at Rutgers University [RIU] which implements the

work of confidence based edge detection [MG01] presented by Meer et al. We ap-

plied its edge detection algorithm to the reflectance image obtained by using our

method and two images captured under different illumination conditions. Camera

parameters when capturing and parameters used for the edge detection algorithm

are totally the same. The results are shown in Figure 3.8. From top to bottom,

resulting images using the reflectance image and two different illumination sam-

ples. In column direction, (a) is the results overlaid with detected edge segments,

and the corresponding edge masks are in (b). We can see the detrimental edge

segments appeared in the resulting images using original illumination samples

(the second and third row), but they are much reduced in the result using our re-

flectance image (the top row). Let us have a closer look at those images. Figure 3.9

is the closeup view of parts of Figure 3.8. Note that though the boundary of cast

shadow and shading are detected as edge segments in results using illumination

samples (b), those excessive edge segments are clearly reduced in the result using

our reflectance image (a).

[Richer method : Mean-Shift Algorithm-based method]

The essential challenge of image segmentation is its ambiguous objective. Sup-

pose we have an image of zebra. Some applications may want to segment out the

whole region of zebra, while the others may want to detect the white stripes on

zebra. In this way, the objective is application-dependent and cannot be defined

for general use. So, is the image segmentation useless? The answer is no. It is still

useful for specific applications. Each segmentation algorithm has its own goal, and

41



CHAPTER 3. ILLUMINATION NORMALIZATION USING INTRINSIC IMAGES

(a) (b) (c)

Figure 3.10. Results of the mean shift algorithm-based image segmentation.

for those specific goals a lot of heuristic algorithms have been presented. They use

much richer techniques compared to simple thresholding or edge-based methods.

Here are well known image segmentation methods based on the mean shift

algorithm [CF85, Fuk90, Che95, CM97, CM99, CRM00]. The mean shift algorithm

basically is a method to find modes of distribution of data represented as arbitrary-

dimensional vectors using a non-parametric procedure for estimating density gra-

dients. The algorithm consists of the following steps.

1. Choose a radius for the search window in the vector space.
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(a) (b) (c)

Figure 3.11. Closeup view of resulting images of the mean shift algorithm-based
image segmentation.

2. Define the initial location of the window.

3. Compute the mean of the data points inside the window and set the center of

the window at this point.

4. Repeat Step 3. until the translation distance of the window is converged.

When applied to image segmentation, it starts with mapping the image domain

into the feature space. Then, an adequate number of search windows at random

locations in the feature space is defined to find centers of high density regions.

After that, regions in the image domain corresponding to high density regions in

the feature space is obtained. Finally, some post-processing is applied to get the

final segmentation results.

Figure 3.10 shows the image segmentation result using Comaniciu’s method [CM97].

From left to right, the first and the second column represent input images and re-

sulting images of illumination samples, and the last column corresponds to those

of the scene reflectance image. From top to bottom, the original input image, re-
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sulting image and the boundary mask image corresponding to the result image.

The resulting images are colored in the mean color of the same subimage region

for each segments.

Let’s have a closer look at the results in Figure 3.11. In Figure 3.11, (a) and

(b) are the results using ordinary illumination samples as input, while (c) is the

result obtained by using the reflectance image as an input. We can notice that the

number of subimage regions caused by illumination effects are well reduced in

(c) compared to (a) and (b). Those subimage regions caused by scene illumination

observed in (a) and (b) are regarded as the independent image regions though they

really are connected to other subimage regions. In this point, (c) shows the more

correct result in terms of distinguishing objects because (c) is not affected by the

scene illumination.

3.4 Summary

Though the illumination effects make the scene the charm of variety for human

beings, the variety is nothing but annoying effect for the most of computer vision

algorithms. Our focus in this chapter is enhancing three different applications by

handling illumination effects using our intrinsic images.

The first application is shadow removal from input image sequences described

in Section 3.1. Our method permits removing shadowing effect from the input im-

age sequence without explicit representation of shadowed regions. Large shadows

cast on the road surface has been one of the most troublesome factor which lower

the accuracy of moving object detection / tracking in traffic monitoring systems.

We believe our shadow removal technique would immediately bring much better

results for those systems. In addition, our method can be used as a preprocessing

stage for video surveillance algorithms, and this directly means that our method

can be integrated into existing video surveillance systems. As for the integration

to existing video surveillance systems, we describe our approach in Chapter 5.
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Secondly, we presented a method to use intrinsic images for scene texture edit-

ing in Section 3.2. Using reflectance images for scene texture modification, we

don’t need to be careful not to change the scene illumination when editing, since

the scene illumination is utterly removed from the reflectance images. This ad-

vantage is quite needed in applications such as viewers of products like houses

and cars for a user who wants to change the wall or floor texture of the house, for

example. For those applications what we have to prepare is only photos from a

fixed view point but under the several different illumination conditions. It doesn’t

require 3-D model of the scene for the editing. After scene texture editing using

the reflectance image, the corresponding illumination image is then multiplied to

generate the final result.

Finally, in Section 3.3, we investigated the use of reflectance images to improve

results of image segmentation. For most of image segmentation algorithms, effects

caused by scene illumination such as shading and cast shadows are nothing but

harmful to decrease accuracy of the methods because illumination effects basically

have no bearing on the scene structure. Illumination gives the scene the additional

texture that consequently increase the number of subimage segments. However,

using reflectance images, the segmentation algorithms do not suffer from the scene

illumination effects and become capable of generating stable and reasonable re-

sults.

In this section, we focus on advantages of shadow elimination using illumina-

tion images. However, we should denote that there are several applications that

take advantage of shadowing effects by contraries. Tzomakas et al. for example,

model the intensity of the road and shadows under the vehicles and use moving

shadows cast by those vehicles to estimate the possible presence of vehicles [TS98].

The method proposed by Stauder et al. [SMO99] explicitly detects shadow regions

first to enhance object segmentation. We agree the illumination effect can be a clue

for the image understanding for some applications, however, for most existing al-

gorithms which do not use the scene illumination effects the scene illumination is
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nothing but harmful to decrease the quality of output. We believe our method to

handle scene illumination in 2-D images can be applied to many applications in

addition to three applications described in this Chapter.
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CHAPTER 4

NON-LINEAR INTERPOLATION OF

ILLUMINATION IMAGES

Suppose we have relatively sparse sampled illumination images and want to

estimate intermediate illumination images among them. The most intuitive and

easiest way is the linear image interpolation using nearest neighbor illumination

images. But we immediately notice that it doesn’t work. Since the linear image

interpolation is only an interpolation of intensities of each pixel among frames but

the motion of cast shadows and specular reflections cannot be described by this

scheme because of their non-linearity. In this chapter, we present two methods to

estimate intermediate illumination images by non-linear interpolation.

One method is the interpolation using Shadow Hull described in Section 4.1.

Shadow hull is analogous to Visual Hull, which is composed of the largest pos-

sible intersection of shadow volumes that are computed from sampled illumina-

tion images and light directions. We use the shadow hull to compute intermediate

shadow shapes which cannot be represented by linear interpolation in 2-D images.

Finally, we estimate intermediate illumination images using intermediate shadow

shapes.

The other method uses rough scene geometry to compute the geometrically-

based shadow motion as described in Section 4.2. The cast shadow computed

using rough scene geometry is not precise but it gives the general motion of the
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shadow. We describe the method to use the geometrically-based shadow mo-

tion represented by 2-D affine transformation to compute the shadow distortions.

In the same way as the Shadow hull-based approach, intermediate illumination

images are then estimated using intermediate shadow shapes computed using

shadow distortions.

4.1 Shadow hull-based approach

In this section, we propose an approach to use Shadow Hulls for generating in-

termediate illumination images. We first derive shadow regions from illumination

images and associate them to sunlight angles. Using computed shadow regions,

shadow volumes are then pitched to construct shadow hull which is the largest pos-

sible intersection of shadow volumes.

4.1.1 Introduction

To explain the notion of Shadow Hull, we first introduce the idea of Visual Hull.

Visual hull construction, or Shape from Silhouette, is a popular method in the topic of

shape estimation. A visual hull is a geometric shape constructed using silhouettes

of an object as seen from a number of view points. Each view volume from view

points pitch a cone-like volume1. The intersection of these volumes results in a

visual hull. As we add more cameras, the visual hull better approximates the shape

of the object because it gives the more information of the shape.

Since the idea of the ’Shape from Silhouette’ was first proposed by Baum-

gart [Bau74], a large amount of work has been done to explore better represen-

tations and more efficient algorithms.

For example, Aggarwal et al. [KA86, MA83] suggested using voxel as a repre-

sentation of visual hulls. Almost at the same time, Potmesil [Pot87] used an oc-

1If the intrinsic parameter of the camera is approximated by perspective transformation. If it is
like orthographic projection matrix, the view volume be like a pillar.
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tree data structure to speed up the construction of visual hulls. As for the camera

positioning problem, Shanmukh et al. [SP91] derived optimal positions and direc-

tions to take silhouette images for building 3D volume models. Szeliski built a

non-invasive 3D digitizer using a turntable and a single camera with Shape from

Silhouette as the reconstruction method [Sze93]. Laurentini studied the theoreti-

cal properties of visual hulls of 3D polyhedral objects [Lau94, Lau95] and curved

objects [Lau99]. De Bonet and Viola extended the idea of voxel reconstruction to

transparent objects by introducing the concept of Roxels [BV99]. Buehler et al. used

visual hull as the geometric basis for image-based rendering [BMMG99]. Cipolla

et al. recovered the camera positions and orientations from silhouettes under cir-

cular motions [MWC01, WC01]. Ponce et al. studied the exact Visual Hull of ob-

jects with smooth surfaces. In the past five years, due to advances in extracting

silhouette (background subtraction) [EHD99, HHD99, EHD00] from images and

video sequences, a large number of researchers have applied Shape from Silhou-

ette to human related applications. In other words, Shape from Silhouette has

become a standard and popular method of shape estimation. Estimating shape us-

ing Shape from Silhouette has many advantages. Silhouettes are readily and easily

obtainable, especially in indoor environment where the cameras are static and the

background subtraction is relatively effective. The implementation of most Shape

from Silhouette methods is relatively straightforward, especially when compared

to other shape estimation methods such as multi-baseline stereo [OK93] or space

carving [KS00]. Visual hull constructed from Shape from Silhouette is upper bound

of the object of interest. This inherently conservative property is particularly use-

ful in applications such as obstacle avoidance in robot manipulation and visibility

analysis in navigation where an upper bound on the shape of the object is preferred

to a lower bound.

What we call Shadow Hull is analogous to Visual Hull, but it is composed of

not the intersection of view volumes but that of shadow volumes. In the past, cast

shadows have been used to determine the object surface and orientations [KS87,
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BP98, SK83]. Our objective is different from them, i.e. to estimate intermediate

shadow shapes with not accurate shadow hulls.

4.1.2 Shadow Hull Scenario

Figure 4.1. Computing shadow hulls using shadow regions associated with pa-
rameterized light sources.

Suppose we have N illumination images associated with parameters of the

light source, and in those illumination images we have a set of cast shadow re-

gions {Sn
j ;n = 1; ..., N} of an object O with the light source Ln. We can assume

Ψn : �3 ⇒ �3 is the projection function of cast shadows, i.e. p = Ψn(P) where

P is a point on a shadow -generating surface andp is the corresponding point

on a receiver surface. If we assume the flat receiver surfaces, as is assumed in

our experiments over the road scene, p becomes 2 dimensional and Ψ changes

to Ψn : �3 ⇒ �2. Here is a notion of Shadow volume V . The shadow volume is
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constructed from rays cast from the light source, intersecting the vertices of the

shadowing object, then terminated at the vertices of the shadowed object. Defined

in this way, the shadow volume is a pyramid /pillar when the light source is a

point/directional light source. Thus the following equation is derived from the

definition.

Ψn(Vn) = Sn
j (4.1)

Given a set of N cast shadow regions {Sn
j } and projection functions {Ψn}, we

immediately have shadow volumes {Vn} by

Vn = Ψn−1(Sn
j ) (4.2)

Here, our interest is a volume H which satisfies

Ψn(H) = Sn
j for all n ∈ {1, ..., N} (4.3)

If there exists at least one entity which satisfies Equation (4.3), we say the

{Sn
j }and projection functions {Ψn} are consistent. Otherwise, they are inconsis-

tent. Thus the shadow hull is defined as followings.

Definition of Shadow Hull :

The shadow hull Hj of a set of consistent cast shadow regions {Sn
j } and pro-

jection functions {Ψn} is defined by the largest possible intersection volume of the

volumes {Vn}which satisfies Equation (4.3).
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4.1.3 Computing shadow hulls

Practically, to compute a shadow hull in the outdoor scene, it is necessary to be

provided the following conditions.

1. The camera is fixed and the camera parameters are known.

Not necessarily all the camera parameters should be known. If we can as-

sume the scene to be planar, only a plane-to-plane projection matrix, which

is a projection matrix from image plane to the scene plane, is required. As

for the case of plane-to-plane projection, corresponding points between the

image plane and the real world are related by

λX = Hx

λ



X

Y

1


 =



h11 h12 h13

h21 h22 h23

h31 h32 h33






x

y

1


 (4.4)

where λ is a scaling factor and H is a 3 × 3 matrix. The other notation used

is that points on the world coordinate are represented by an upper case vec-

tor, X, and their corresponding points in the image plane are denoted by a

lower case vector, x. In the case of the plane-to-plane projection, the cam-

era model is completely determined once the matrix H is known. To deter-

mine projection matrix H, at least 4 pairs of corresponding points are needed.

Equation (4.4) can be rewritten as the following Equation (4.5).

Ah = b (4.5)

where
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A =




x1 y1 1 0 0 0 −X1x1 −X1y1

0 0 0 x1 y1 1 −Y1x1 −Y1y1

x2 y2 1 0 0 0 −X2x2 −X2y2

0 0 0 x2 y2 1 −Y2x2 −Y2y2

x3 y3 1 0 0 0 −X3x3 −X3y3

0 0 0 x3 y3 1 −Y3x3 −Y3y3

x4 y4 1 0 0 0 −X4x4 −X4y4

0 0 0 x4 y4 1 −Y4x4 −Y4y4




(4.6)

h = (h11, h12, h13, h21, h22, h23, h31, h32)
T (4.7)

b = (X1, Y1, X2, Y2, X3, Y3, X4, Y4)
T (4.8)

By choosing correspondences as A−1 could exist, h and projection matrix H

are determined.

2. A number of images are captured, each under the different illumination con-

ditions.

3. The geometry of shadow receiver is roughly known.

4. Sunlight angles are associated with the captured images.

We assume global intensity changes are linear as long as they are densely sam-

pled, but the motion of cast shadows cannot be represented by linear image inter-

polation. Thus, we create shadow hulls from given shadow regions, that are de-

rived from illumination images, and sunlight angles computed from time stamps
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Figure 4.2. Result of interpolating cast shadow using a shadow hull.

of the input image sequence 2. The resulting hull is not necessarily precise, but

it gives enough information to compute intermediate cast shadow shapes between

sampled illumination conditions.

In our approach, input images are decomposed into intrinsic images first. By

thresholding, shadow regions are derived from the illumination images. We as-

sume the intrinsic parameters of the camera is estimated beforehand. Shadows are

cast on a plane in the real world and a projection matrix from the image plane to

this scene plane can be computed by manually providing several correspondences

between the two planes. Shadow regions are then mapped onto the world coor-

dinate, and shadow volumes are computed using shadow regions associated with

sunlight angles.

By taking the intersection of shadow volumes in the 3D space, we get the rough

geometry of the objects casting the shadow, which has enough information for

computing intermediate cast shadow (Figure 4.2 (a)). Figure 4.2 (b) shows the

2Sunlight angles can be computed precisely provided the latitude and longitude of the scene
and the date and time.
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Figure 4.3. Shadow hull based shadow interpolation. Figures in top and bottom
row are shadow regions and sampled illumination images. The middle row shows
the interpolated results. The grid is overlaid for better visualization.
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Figure 4.4. Interpolation of shadow region using shadow hull. Shadow region is
deforming from left top shadow sample to right bottom shadow sample.

result of shadow interpolation in a CG scene using an estimated shadow hull. The

dark regions show the interpolated shadow regions, while the lighter gray regions

represent the sampled shadow regions.

Shadow interpolation using shadow hulls is useful to estimate the intermedi-

ate shadow shapes between sampled lighting conditions. Figure 4.3 shows the

interpolated result of the real world scene. The left-hand side column represents

the estimated shadow regions, while the right-hand side column shows the corre-

sponding illumination images. The top and bottom row represent the images un-
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(a) (b)

Figure 4.5. Comparison with the ground truth. (a) interpolated result using our
method, (b) the ground truth

der sampled illumination conditions, and the middle row depicts the interpolated

result. To obtain the intermediate illumination image, we first estimate shadow

boundaries using the estimated shadow hull.

Once we obtain intermediate shadow boundaries, we then compute the inter-

mediate illumination image Eint(x, y) with the following equation.

Eint(x, y) =




δint(x, y)
P

k wkδk(x,y)Ek(x,y)
P

k wkδk(x,y)

δ̄int(x, y)
P

k wk δ̄k(x,y)Ek(x,y)
P

k wk δ̄k(x,y)

(4.9)

whereEk is the k-th illumination image obtained by nearest neighbor search in the

illumination eigenspace3, and wk is the weighting factor which is the distance from

E∗
w to Ewk

(See Section 5.4) in the illumination eigenspace. δk(x, y) is the function

which returns 1 if Lk(x, y) is inside the shadow region, otherwise returns 0. δ̄k(x, y)

3Illumination Eigenspace and the nearest neighbor search is described in detail in Section 5.3
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Figure 4.6. Image differencing between the ground truth and interpolated result
using our method.

is the inverse of δk(x, y). The resulting intermediate image is shown in mid-right in

Figure 4.3. Once we obtain the shadow hull, we can compute intermediate shadow

shapes at arbitrary sampling rate. Figure 4.4 depicts the more intermediate shadow

shapes at denser sampling rate between two illumination samples. It is more ev-

ident by comparing the resulting image with the ground truth. Figure 4.5 shows

the comparison between the result of our method (a) and the ground truth (b). The

output of pixel-wise differencing of the ground truth and the estimate using our

method is shown in Figure 4.6. We can notice the slight difference between (a) and

(b) in Figure 4.5 from Figure 4.6, however, it gives a globally correct shadow shape

which is useful to remove shadowing effects from the input image.

58



4.2. INTERPOLATION USING ROUGH SCENE GEOMETRY

4.2 Interpolation using Rough Scene Geometry

In this section, we propose an approach to interpolate cast shadows using rough

scene geometry and parameterized light source. This work is also documented in

[MKL+02].

4.2.1 Introduction

In the field of Computer Graphics, in the pursuit of photo-realism, methods

for photo-realistic rendering generally forms two categories. One type requires

accurate scene geometry and accurate physically-based rendering, which is called

model-based rendering (MBR).

The other type of method requires densely sampled images to represents com-

plex 3D environments with those sets of images, and the method is called image-

based rendering (IBR). In recent years, much progress has been made in image-based

rendering. One class of such methods relies on densely sampled images, such as

the light field [LH96] and the Lumigraph [GGSC96]. Another class requires an

accurate physically-based rendering algorithm and sufficiently detailed geometric

and material properties of the scene and light sources [Deb98, SWI97, YDMH99].

Others require all of the above information [WAA+00].

Methods that rely on densely sampled images have the advantage that they

do not require accurate geometry, which in practice requires a high-quality and

expensive range finder. However, this advantage is achieved at the expense of a

large database. In addition, it is not possible to relight the scene using these cur-

rent image-based representations, with the exception of Wong et al. [WHON97],

who use dense sampling of camera locations and illumination conditions (and

hence may not be practical for real scenes). Methods that permit scene relight-

ing typically need a detailed and accurate 3D geometric model in order to extract

surface properties in the form of a Bidirectional Reflectance Distribution Function

(BRDF). Usually, such models can only be acquired using expensive range find-
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ers, and even then, the shapes used as examples tend to be simple. Nimeroff et

al. proposed another approach [NSD94] to use steerable linear basis functions to

accomplish re-rendering of a scene under a directional illuminant at an arbitrary

orientation. One drawback of the method is that the method requires a huge basis

set to handle narrow illuminants.

We are motivated by the need for a more practical approach to interpolate light-

ing appearance of a scene that has sparsely sampled lighting conditions. We re-

quire only images (light fields) as input, and assume that the camera positions

associated with these images are known. The light fields are captured under a

relatively small set of different lighting conditions. From these light fields, we can

extract two separate datasets: view-dependent geometries using stereo, and intrin-

sic images using the mentioned method in Chapter 2.

4.2.2 Prior Work

Much of the work on realistic rendering relies on reflectance modeling and

known 3D geometry. A representative approach in this area is presented by Sato

et al. [SWI97], which merges multiple range datasets to yield a single 3D model.

This shape is subsequently used for diffuse-specular separation and reflectance

estimation. They showed results for single objects with no shadows. Wood et

al. [WAA+00] also use color images and laser range scans. Their range datasets

are merged manually to produce a global 3D model. Subsequently, a function that

associates a color to every ray originating from a surface is constructed and com-

pressed.

Yu et al. [YDMH99] compute surface BRDFs based on Ward’s anisotropic BRDF

model [War92] from multiple images and a 3D model. They assume that at least

one specularity is observed per surface. On the other hand, Boivin and Gagalow-

icz [BG01] propose a technique for recovery of a BRDF approximation from a single

image based on iterative analysis by synthesis (or inverse rendering [MG97]). The

emittance of the light sources are assumed known. This is an extension of Fournier
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et al.’s work [FGR93], which assumes perfectly diffuse surfaces, and Loscos et

al. [LDR00], who additionally considered textured surfaces. Marschner and Green-

berg [MG97] directly estimate the BRDF model of Lafortune et al. [LFTG97] from

an image and a surface model. Malzbender et al. [MGW01] proposed a space and

time efficient method for encoding an object’s diffuse lighting response as the light

position varies with respect to the surface by encoding a set of coefficients.

Debevec [Deb98] uses global illumination for augmented reality applications.

He uses local geometry and manually computes reflectance parameters, with which

objects can be inserted with realistic-looking inter-reflections. In a series of works

geared for augmented reality, Sato et al. estimate the illumination distribution from

shadows [SSI99b], and subsequently from the brightness distributions in shad-

ows [SSI99a].

In our work, we rely on intrinsic images as a means for predicting shadows.

Intrinsic images are a mid-level description of scenes first proposed by Barrow

and Tenenbaum [BT78]. A given image of a scene can be decomposed into a re-

flectance image and an illumination image. Various methods have been proposed

to compute this decomposition, with piecewise constant reflectances using the

Retinex algorithm [LM71], with all-reflectance/all-illumination classification using

wavelets [FV98], and with maximum-likelihood (ML) estimation assuming time-

constant reflectance and time-varying illumination [Wei01].

4.2.3 Overview

An overview of our system is illustrated in Figure 4.7. The inputs to our method

are a number of light fields, each captured under a different illumination condition.

Once the light fields are acquired, view-dependent depth maps are computed at

the sampled camera positions using a multi-view stereo algorithm.

In addition, we decompose the light fields into intrinsic images in a similar

manner as [Wei01] (which handles a single image stream). For each camera and

lighting position, the pair of intrinsic images consists of an illumination image that
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Database for Rendering

Light Fields

Intrinsic Image
Decomposition

Multi-view
Stereo

Shadow Masks

Figure 4.7. Block diagram of the affine transformation-based interpolation.

exhibits shading and shadowing effects, and a reflectance image that displays the

unchanging reflectance property of the scene. The illumination images are used to

identify pixels that contain cast shadows or attached shadows, which result when

a surface area is occluded from the light source. These shadow masks are used

in conjunction with shadows predicted by the scene geometry to estimate shadow

appearance for novel lighting directions.

We call this new representation the Intrinsic Lumigraph, because it uses both ge-

ometry and intrinsic images for view reconstruction. When interpolating lighting

condition of the scene, the diffuse reflection and shading can be well-approximated

by interpolation of illumination images; however, shadows generally do not ap-

pear realistic when linearly combined. Our method for predicting shadow appear-

ance enables us to synthesize images with much more accurate lighting interpola-

tion.
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4.2.4 Constructing the Intrinsic Lumigraph

In this section, we detail the process of constructing the Intrinsic Lumigraph.

We first describe the capture of light fields under various illumination conditions,

and then outline our algorithm for multi-view geometry. We next present our

method for computing the intrinsic images, followed by the determination of shadow

masks.

[ Capturing light fields under various illuminations ]

Figure 4.8. Light field capture device.

We capture our light fields using the imaging setup shown in Figure 4.8. The

camera is digitally controlled to capture images at predefined positions on a 2D

grid. Each light field consists of an image sequence along a linear path that is
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captured under a fixed illumination condition, where the light source used is ap-

proximately a point light source.

[ Generating view-dependent geometries ]

Using the captured light fields, we compute depth maps at each camera po-

sition using a multi-view stereo algorithm. The stereo algorithm is based on the

work of Kang et al. [KSC01]; it was chosen because it is very simple to implement

and is very effective in handling occlusions. To improve the depth estimates, we

linearly combine depth estimates from separate light fields taken under different

lighting conditions. Depth estimates from areas that are more highly textured are

favored.

From a sequence of N light fields, for each reference view we first obtain N esti-

mated depth maps D(n) and N confidence maps C(n) using the multi-view stereo

algorithm. The confidence map C(n) is computed using the local matching error

variance, which provides an indication of the reliability of the estimated depths.

We use these confidence maps to refine the depth values through weighted aver-

aging, i.e.,

D(x, y) =

∑N
n D(n, x, y) · C(n, x, y)∑N

n C(n, x, y)
(4.10)

An alternative method for refining the estimated depth values is to use the local

Hessian of the local brightness distribution. The eigenvalues of the local Hessian

are correlated with the degree of local texturedness; the higher the amount of tex-

ture, the more reliable the depth estimates tend to be in general. To be conservative,

we use the minimum eigenvalues as a measure of depth reliability and as a means

for weighting the depth estimates.

Hessian is obtained from the differential method of SSD (sum of squared dif-

ferences).
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E(u, v) = Σk,l(I1(x+ u+ k, y + v + l)− Io(x+ k, y + l))2 (4.11)

The differential method uses a local Taylor series expansion of the intensity

function:

E(u+∆u, v +∆v)

= Σk,l(I1(x+ u+∆u+ k, y + v +∆v + l)− I0(x+ k, y + l))
2

� Σk,l(I1(x+ u+ k, y + v + l) +∇I1 · (∆u,∆v)T − I0(x+ k, y + l))2

= Σk,l(∇I1 · (∆u,∆v)T)2 + Σk,l(∇I1 · (∆u,∆v)T)ek,l + E(u, v) (4.12)

where ∇I1 = (Ix, Iy) = ∇I1(x+ u+ k, y + v + l) is the intensity gradient and ek,l is

the term inside the brackets in 4.11. Minimizing w.r.t. (∆u,∆v), we obtain a 2× 2

system of equations


 Σk,lI

2
x Σk,lIxIy

Σk,lIxIy Σk,lI
2
y





 ∆u

∆v


 =


 Σk,lIxek,l

Σk,lIyek,l


 (4.13)

The matrix on the left hand side is referred to as the Hessian of the system.

Both methods produce comparable results, which are significantly better than

the depth maps generated from any one light field alone. We tested this on a syn-

thetic light field with known 3D geometry, and compared our results that merge

the depth estimates from all the light fields to one that uses only a single light

field. The results can be seen in Figure 4.9. In this experiment, we used nine light

fields of a synthetic scene under different illumination directions (left). Each light

field has 9× 9 images, and only the central image (used as the reference) is shown

in Figure 4.9. In this work, the local matching error variance is used to improve

accuracy of the depth values.
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Figure 4.9. Illumination sampling (left) and comparison of mean depth errors
(right). The nine blue bars correspond to mean depth errors for each of the light
fields, the green bar is the error when the Hessian (5× 5 window) is used, and the
red bar is the error obtained when the matching error variance (5× 5 window) is
used.

Figure 4.10. Illumination sampling (left) and obtained depth map using multi-
view stereo (right).
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We chose to compute the local view-dependent geometries because the stereo

algorithm, while good, does not produce perfectly accurate geometry. In addition,

some degree of photometric variation along the image sequence usually exists,

making the direct production of a single accurate global 3D geometry from im-

ages very difficult. The local geometries encode such photometric variation, since

they are highly locally photo-consistent. The stereo algorithm has the tendency to

maximize this behavior.

Figure 4.2.4 (right) shows the obtained depth image (depthmap) using multi-

view stereo algorithm. In the figure, the darker pixel represents the smaller depth

value, while the brighter indicates the larger depth value. Though obtained depth

estimates are usually smoothed to get final depth estimates, the figure shows pre-

smoothed depth map to see the raw output.

[ Extracting intrinsic images ]

In this method, We applied Weiss’s ML estimation method [Wei01] to derive

intrinsic light fields. Given a sequence of N light fields with varying illumination,

it is decomposed into a single reflectance light field and N illumination light fields.

With images of u × v in size from s × t view points under n different illumination

conditions, we can denote this decomposition as follows:

L(s, t, u, v, n) = R(s, t, u, v) · E(s, t, u, v, n) (4.14)

where L(s, t, u, v, n), R(s, t, u, v), and E(s, t, u, v, n) are an input light field se-

quence, a reflectance light field, and an illumination light field sequence, respec-

tively. In the log domain, (4.14) is written as (4.15):

l(s, t, u, v, n) = r(s, t, u, v) + e(s, t, u, v, n) (4.15)
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For each of M derivative filters {fm}, a filtered reflectance light field r̂m is esti-

mated by taking the median of filtered input light fields:

r̂m(s, t, u, v) = mediann{l(s, t, u, v, n)⊗ fm} (4.16)

Finally, R(s, t, u, v) is recovered by deconvolution of the estimated filtered re-

flectance light fields r̂m.

4.2.5 Computing shadow masks

A major difficulty in lighting interpolation is the realistic generation of shad-

ows. To compute shadow masks for real scenes, our approach first infers shadow

pixels from the illumination intrinsic image by simple thresholding, since image

areas of lowest radiance can be taken as shadowed regions. A shadow mask com-

puted in this manner is shown in Figure 4.13.

While this technique might allow us to estimate shadow regions for images at

sampled illumination conditions, it cannot be employed for intermediate lighting

directions, because we do not have the associated images. Since we are not able

to predict the shape of intermediate shadow masks from intrinsic images, we in-

stead predict the general shadow distortion between the sampled lighting conditions

using the shadows cast from the view-dependent geometries. Although these ge-

ometries are not highly accurate, their shadows can be computed for arbitrary light

directions, and the distortions in shadow shape as a light source moves from one

sampled position to another can nevertheless be helpful in morphing the shadows

computed from intrinsic images.

In this process, we first estimate light source type (point / directional) and light-

ing directions of captured images with some user interaction. By clicking on sev-

eral pairs of corresponding shadow and object points in an image, the light source

position can be determined by least-squares triangulation. With the light position
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and the estimated geometry, the resulting shadows can be computed. We can also

compute the geometric-based shadows for light positions between the sampled

illumination directions.

AA i+1i+1i

Illumination Sample i Illumination Sample i+1

Intermediate illumination image
Figure 4.11. Illustration of subimage registration over the geometric-based shadow
blobs. Changes of intermediate shadows’ shape are represented by transformation
matrices from neighboring bases, i.e. the geometric-based shadows under sampled
illumination conditions.

After computing the geometric-based shadows, the changes in the geometric-

based shadows are represented by the region-based transformation matrices. As-

suming each shadow blob to be a subimage region, we employed subimage regis-

tration to compute the region-based shadow transformation matrices.

By computing those matrices, the changes in geometric-based shadow shape

from one sampled light position to another can be used to guide the transforma-

tions of shadows computed from intrinsic images. In Figure 4.11, transformation
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matrix A+j
i corresponds to warping of the shadow blob from base image i to inter-

mediate image j. Since those shadow blobs do not have texture in them, nearest

shadow blobs are assumed to be the corresponding shadow blobs. We assumed

geometric distortion of the geometric-based shadow blobs can be described by lin-

ear 2-D geometric transformations as long as they are densely computed. Thus,

we model the transform as 2-D affine and the transform A is described by 3 × 3

matrix.

Geometry-based Shadow Geometry-based Shadow
Intermediate

Register to

Compute A

Intrinsic Shadow

Intermediate
Intrinsic Shadow

Apply       toA

intrinsic shadow

Transfer the warping matrix A

Figure 4.12. After computing transformation matrix A of the geometric-based
shadow by subimage registration, the transform A is then applied to the corre-
sponding intrinsic shadow to generate intermediate shadow.

This is done by attaching the intrinsic image shadows to the geometric-based

shadows, and as the geometric shadows are morphed from one sampled light-
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(a) (b) (c)
Figure 4.13. Example of an illumination image and its shadow mask counterpart.
(a) Original image, (b) Illumination image, (c) Shadow masks.

ing to another, the intrinsic shadows are morphed correspondingly as shown in

Figure 4.12. Attachment is done by simply taking an AND operation on the corre-

sponding shadow regions. In this operation, correspondences between the intrin-

sic shadows and the geometric-based shadows are estimated by checking overlap-

ping regions of them. Figure 4.14 shows an example of geometric-based shadow

warping applied to intrinsic shadow masks. Once the shadow masks are pre-

dicted at intermediate illumination conditions, the view can then be synthesized,

as shown in Figure 4.15. This synthesis is computed by removing shadows in the

sampled images via intrinsic images, linearly interpolating diffuse reflections, then

computing shadows from the intrinsic lumigraphs.

4.2.6 Results

In this section, we show results of lighting interpolation for two real scenes.

[ Toy Scene ]

Figures 4.2.6 shows examples of interpolating lighting condition of a toy scene

with our shadow warping technique (a) and direct linear interpolation (b). For

this scene, we captured seven light fields with different lighting conditions, where

each light field is composed by 17 × 17 images. We can clearly see the difference

between the results of our method and those of linear interpolation, especially
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(a) (b) (c)

(d) (e) (f)
Figure 4.14. Illustration of applying the transformation of geometric shadows
to intrinsic shadows. (a) Geometric shadows at L1, (b) Geometric shadows be-
tween L1 and L2, (c) Geometric shadows at L2, (d) Shadow masks at L1, (e)
Shadow masks between L1 and L2 (after applying the geometric-based warping),
(f) Shadow masks at L2. L1 and L2 are sampled illumination conditions.

(a) (b)
Figure 4.15. Example of view synthesis at intermediate illumination conditions:
Warped intrinsic shadow masks (left), Synthesized view (right).
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on the cast shadow of left-hand side toy. This is more evident by comparing the

leftmost two images in Figure 4.2.6. The direct linear interpolation resulted in

significantly softer shadows, which is less consistent with the original sampled

images. And furthermore, a comparison among the ground truth, the result of our

method, and that of linear interpolation is shown in Figure 4.19. As we can see

clearly, our method successfully produces a realistic shadow while the result of

linear interpolation is quite unlike the ground truth.

To quantitatively compare the results of our method and simple interpolation

method, the difference between the results and the ground truth is pixel-wisely

computed. In Figure 4.19, (a) is the result of our method, (b) is the ground truth,

and (c) is the result of simple interpolation. The image difference between (a) and

(b) is shown in (d), and between (b) and (c) is shown in (e). The image differencing

is done by summing up the RGB components’ distance. As is shown in a color bar

in the figure, the larger difference is colored by red while the smaller differences

are colored in blue. We can clearly see the better result is obtained by our method.

[ Portrait scene ]

Figures 4.2.6 (a) shows the results of our lighting interpolation of a scene con-

taining a portrait. We captured ten light fields under different illumination con-

ditions for this scene. Each light field is composed of 16 × 16 images. While cast

shadows in Figure 4.2.6 (b) are blurred and exhibit jumpy movements in video for

linear interpolation, cast shadows warped by our method look more natural in Fig-

ure 4.2.6 (a) and move smoothly in video. This is more evident by comparing the

rightmost two images in Figure 4.2.6. Again the direct linear interpolation method

resulted in softer shadows, unlike those in the original input images.

4.2.7 Conclusions and Future Work

We have described an approach for lighting interpolation of a scene without the

need for accurate physically-based rendering or detailed 3D geometry. It uses only
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Figure 4.16. Closeup views. The left of each pair is generated using our method
while the other is computed using direct interpolation.

light fields captured under different, sparsely sampled, illumination conditions.

Our approach uses intrinsic images and local view-dependent depths computed

from stereo in order to predict shadows at intermediate illumination conditions,

which add significantly to the realism of the synthesized view. The limitation

of the method is that the method requires the scene to be largely diffuse scene,

since the reflectance image R(x, y) in the Weiss’s framework of intrinsic images is

lighting-invariant which basically can not handle the changes of reflectance prop-

erty. We are working on to derive time-varying reflectance image R(x, y, t) and

corresponding illumination images L(x, y, t) to overcome the limitation.
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(a) (b)

Figure 4.17. Interpolation results of the toy scene. (a) Lighting interpolation exam-
ples for the toy indoor scene. (b) Lighting interpolation using direct interpolation
for the toy indoor scene.
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(a) (b)

Figure 4.18. Interpolation results of the portrait scene. (a) Lighting interpolation
examples for the portrait indoor scene. (b) Lighting interpolation using direct in-
terpolation for the portrait indoor scene.
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(a) (b) (c)

(d) (e)

Figure 4.19. Comparison with the ground truth. (a) Interpolated result of our
method, (b) the ground truth, (c) simple pixel-wise interpolation, (d) difference
between our result (a) and the ground truth (b), (e) difference between simple in-
terpolation (c) and the ground truth (b).

In future work, we would like to be able to perform object manipulation such

as object insertion and removal, all while enabling realistic scene lighting inter-

polation. Moreover, we would like to address the more difficult issue of lighting

interpolation of outdoor scenes. This has the added difficulty of not being able to

capture light fields with a set of consistent illumination conditions, because of the

time elapsed between successive camera snapshots within a light field capture.

4.3 Summary

Scene illumination gives the scene complex and rich tone which helps us to

understand the scene geometry and surface materials. Physically, the illumination
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effects can be totally described by a set of ray emitted from light sources including

reflected ray on surfaces. Using the physically-based method with accurate scene

geometry, physically-based surface reflection model, i.e. BRDF (Bidirectional Re-

flectance Distribution Function), and completely parameterized light source dis-

tribution, we can compute the exact appearance of the scene. However, it is well

known that none of them is easy to obtain. Considering the interpolation of scene

illumination using only 2-D images captured under the different illumination con-

ditions, we immediately notice that it cannot be accomplished by simple image

interpolation because illumination effects concern complicated physics as men-

tioned.

We proposed two different methods to accomplish the non-linear interpolation

of scene illumination. Both of them rely on some kind of scene geometry to accom-

plish non-linear interpolation. The shadow hull-based approach uses the largest

possible intersection of shadow volumes, and the intrinsic lumigraph uses rough

scene geometry recovered using multi-view stereo algorithm. Those two methods

especially focus on the motion of cast shadows. Representing motion of cast shad-

ows is mathematically very complicated without knowing exact scene geometry

and light source parameters, therefore it has been a difficult problem in the field of

computer vision and graphics.

The first method described in Section 4.1 uses shadow hull to compute shadow

regions with the additional information of sunlight angle and ground plane as-

sumption. Using shadow regions estimated from sampled illumination images

associated with sunlight angles, first shadow volumes are constructed. Taking the

largest possible intersection of those shadow volumes, a shadow hull, which rep-

resents the minimally precise shape which is enough to cast sampled shadows,

is obtained. We assume the intermediate shadow shape is approximated by the

shadow shape computed using the shadow hull and the intermediate light source

position as long as illumination conditions are densely sampled. Finally, estimated

intermediate shadow regions are used to compute the intermediate illumination
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images, and we confirmed the resulting illumination images are much closer to

the ground truth.

The other method takes a different way from the shadow hull to use rough

scene geometry as described in Section 4.2. The scene geometry recovered using

multi-view stereo algorithm is not accurate, but it gives reasonably good indica-

tion of general shadow distortion. We assumed that the shadow distortion can

be represented by 2-D affine transformation on the image plane as long as they

are densely computed. We applied the geometrically-based shadow interpolation

framework to lumigraphs, more precisely to the intrinsic lumigraphs which we

refer to the new representation, to accomplish lighting interpolation of the scene.
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CHAPTER 5

APPLICATION TO REAL-TIME VIDEO

SURVEILLANCE SYSTEMS

For those outdoor vision applications, it is much preferred that the scene il-

lumination condition is static and stable. Under the unstable, or dynamic, scene

illumination condition, algorithms that rely on the visual appearance of objects

suddenly become precarious and this results in a drastic increase in the number

of errors. Even if the scene illumination condition is stable, illumination effects

such as large cast shadows lie in the scene give a bad effect to object detection and

object tracking. Suppose an object is crossing the boundary of a large cast shadow.

While the object is inside the shadow, it looks darker compared to when it appears

in a better lit area. This appearance variation causes tracking error when the object

moves across the boundary of cast shadows. We are motivated by this fact and

propose to normalize the illumination effect on the scene.

One of the most widely spread outdoor vision system is a road traffic monitor-

ing system. The road traffic monitoring using video cameras is expected to become

replacement for the human resources because of its faster and cheaper potential to

gather various kinds of information such as traffic accidents, congestion and etc.

We are going to integrate our illumination normalization technique described in

Section 3.1 to those existing road traffic monitoring systems. Supposed constraints
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are only two, i.e. 1) the camera is fixed and 2) various scene illumination condi-

tions are observed. Basically our illumination normalization method can be used

as a preprocessing stage for the subsequent processing, and can be integrated into

existing systems without changing the core system design. One may think of using

normalized correlation for illumination-free object tracking. However, normalized

correlation is known to fail when the object comes to the shadow boundary, and

the computational cost is more expensive compared to the basic block matching

algorithm. In addition, using normalized correlation may yield the need to change

the algorithm design itself. In this sense, we believe our method can be seam-

lessly integrated into the existing systems without dependency on their algorithm

design.

In this chapter, we first give an overview in Section 5.1 of our illumination nor-

malization framework for video surveillance systems and the following sections

go along as described in the overview.

5.1 System overview

Our method is composed of two parts as shown in Figure 5.1. The first part

is the estimation of intrinsic images, which is an off-line process, depicted in Fig-

ure 5.1 A. In this part, the scene background image sequence is first estimated to

remove moving objects from the input image sequence using a method described

in Section 5.2. Using this background image sequence, we then derive intrinsic

images using our estimation method described in Chapter 2. Using estimated il-

lumination images, which is one part of intrinsic images, we are able to robustly

cancel out the illumination effects from input images of the same scene. It enables

many vision algorithms such as tracking to run robustly. After the derivation, we

construct a database using principle component analysis (PCA), which we refer

to as illumination eigenspace [MNIS02a, MNIS02b], which captures the variation of

lighting conditions in the illumination images. The database is used for the follow-
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A

B

Off-line

Input images

Illumination Eigenspace

Shadow Interpolation

Illumination Images

Background Images

Estimation of

Intrinsic Images

Normalization

Figure 5.1. System diagram for illumination-normalization.

ing direct estimation method. Details of constructing the illumination eigenspace

is depicted in Section 5.3.

The second part is direct estimation of illumination images, shown in Figure 5.1

B. Using the pre-constructed illumination eigenspace, we estimate an illumination

image directly from an input image. In addition, to obtain more accurate illumina-

tion images, the method for shadow interpolation using shadow hulls described

in Section 4.1 is used to estimate final illumination images.
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5.2 Estimating background images

Background image is an image which does not contain moving foreground ob-

jects. The definition varies with the purpose of applications and extensive amount

of work have been done so far. Separating foreground moving objects such as ve-

hicles from a relatively static background scene is considered to be an important

preprocessing stage in many computer vision algorithms [DGWH00, WADP97].

In many visual surveillance applications that work in outdoor scenes, back-

ground of the scene contains many non-static objects such as tree branches and

bushes whose movement depends on the wind in the scene. This kind of back-

ground motion causes the pixel intensity values to vary significantly with time. To

model the dynamic background instead of the static background image, Elgam-

mal et al. present a non-parametric color modeling approach [EDD01b, EDD01a]

based on kernel density estimation. Fitting a mixture of Gaussians using the EM

algorithm provides the other way to model color blobs with a mixture of col-

ors [SG99, RMG98, RMG99]. Ridder et al. [RMK95] proposed to use Kalman-

Filtering for adaptively update the background image.

For the case of most road traffic monitoring systems, the background is the road

surface and considered to be roughly static. Our purpose to create background im-

ages is not for the object detection but for estimating intrinsic images. To estimate

the intrinsic images, it is necessary to remove foreground moving objects from the

image sequence. Therefore we took an approach to estimate a set of background

images for each short time period to generate an image sequence which does not

contain moving objects but captures the illumination variations. Preassumptions

here is that the scene illumination does not vary dramatically in the short time pe-

riods. To obtain background images, we took an approach to use color histogram.

We first create the color histogram by accumulating the observed pixel colors along

the time axis for each pixel. Subsequently, by taking the median of the color his-

togram, a static background image of the corresponding time period is obtained.

83



CHAPTER 5. APPLICATION TO REAL-TIME VIDEO SURVEILLANCE SYSTEMS

Of course the richer method such as Wallflower [TKBM99] would give the better

results, but the simple method like color histogram reasonably yields good back-

ground images for our case.

5.3 Illumination eigenspace

If the background image is determined by a method based on the color his-

togram in the short time period as mentioned in the former section, it can be fre-

quently updated to capture the slowly moving shadows in an up-to-date position

in the background image. However, especially on partially cloudy days, shadows

will come and go unpredictably and rapidly as the sun is obscured by clouds. This

will cause shadows to appear or disappear in the scene, depending on whether

the background was made during the overcast period or during the sunny period.

In either case, the state transitions of the shadows will be detected as movement

and not as the part of the background. This can cause problems, since we assume

that illumination would not change during the short time period for background

creation.

Therefore it is preferable to estimate illumination images e(x, y, t) directly from

the input image sequence without creating a background image: given one in-

put image i obtain its corresponding illumination image l. We accomplish this by

preparing a database of illumination images a priori. As a preliminary framework,

we propose to use principle component analysis (PCA) [NMN96] to construct an

illumination space of a target scene. PCA is widely used in signal processing,

statistics and neural computing. The basic idea of PCA is to find the basic compo-

nents [s1, s2, . . . , sn] that explain the maximum amount of variance possible by n

linearly transformed components.

To analyze key characteristics of the illumination variation of real world scenes,

we have stored image sequences for 120 days from 1 year, from 7:00 a.m. to 15:00

of an crossroad from a fixed view point. For each 1 hour image sequence, a back-
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ground image is estimated using 7 minutes image sequence, then corresponding

intrinsic images are estimated. We store Ew in the database and keep the map-

ping from Ew to R and E. The reason why we apply PCA to Ew but not L is that

we assume that the modeled eigenspace would represent a rough tendency of the

variation of illumination.

Ew =
R · E
Rw

(5.1)

First, an illumination space matrix is constructed by subtracting Ēw, which is

the average of all Ew, i.e. Ēw = 1
n

∑
n Ew, from each Ew and stacked column-wise.

P = {Ew1 − Ēw, Ew2 − Ēw, . . . , Ewn − Ēw} (5.2)

P is a N×M matrix, whereN is the number of pixels in the illumination image

and M is the number of illumination images Ew. We made the covariance matrix

Q of P as following Equation (5.3).

Q = PPT (5.3)

Then, the eigenvectors ei and the corresponding eigenvalues λi of Q are deter-

mined by solving Equation (5.4). We implemented Turk and Pentland’s method [TP91],

which is useful to solve the equation when Q is high dimension, to get the eigen-

vectors of Q.

λiei = Qei (5.4)
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Figure 5.2. Illumination eigenspace constructed using 120 days data of a crossroad.

Figure 5.2 shows the manifold constructed by mapping allEw onto the eigenspace

using all eigenvectors. Figure 5.3 shows the hyper-plane constructed by mapping

all illumination images onto the eigenspace using all eigenvectors. For display,

only the first three eigenvectors are used in Figure 5.2 and 5.3.

In Figure 5.3, while the three axes represent the first three eigenvectors, the

graph is transformed so that the variation along different days is aligned to the

vertical axis which is the first eigenvector (the eigenvector with the largest eigen-

value). Also the variation along time-line is shown as the parabolic curve when

the graph is sliced orthogonal to the vertical axis. For example, the upper part rep-
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Figure 5.3. Illumination hyper plane in the eigenspace.

resents illumination variation along the time-line of a sunny day, and lower part

represents rainy and cloudy days.

As can be seen clearly, the most significant variation caused by illumination and

time in the illumination images can be captured with the first few eigenvectors.

So that, by constructing an eigenspace of the illumination image sequence with

the first k significant eigenvectors and mapping all illumination images onto the

eigenspace, we obtain an efficient representation of the variation of illuminance in

the input image sequence.

The number of stored images for this experiment was 2048 and the contribu-

tion ratio was 84.5% at 13 dimensions, 90.0% at 23 dimensions, and 99.0% at 120

dimensions. The graph of the cumulative contribution ratio is shown in Figure 5.4.
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Figure 5.4. Contribution ratio of Illumination eigenvectors.

We choose to use 99.0% of eigenratio for this experiments. Thus the compression

ratio is about 17:1, and the space needed to store the subspace is about 120MBytes.

5.4 Direct estimation of illumination images

Computational cost of deriving illumination images using the method described

in Chapter 2 is high, and it is not yet possible for integration into real-time appli-

cations. For real-time applications, it is preferred if we could directly estimate

the illumination image given an input image. To accomplish the direct estima-

tion of illumination images, we take a straight forward way to store a lot of il-

lumination images into the illumination eigenspace as a database of illumination

images [MNIS02d, MNIS02c]. Though we construct the illumination eigenspace

using Ew in the previous section, what we actually need is not Ew modeled in this
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illumination eigenspace but E, the totally scene-texture-free illumination image.

However, it is useful to construct an illumination eigenspace with Ew because the

corresponding reflectance image Rw, which is the constant image along the time

axis, can be used to derive pseudo illumination images, i.e. E∗
w = L � Rw. Pseudo

illumination images contain the foreground moving objects, but the global illu-

mination effects are reduced in the images. Thus, we choose to use the pseudo

illumination images as a query to search the best approximation of the scene illu-

mination images. To estimate E directly from L, we take the following approach.

1. Construct illumination eigenspace using Ew with keeping the mapping from

Ew to E and R.

2. Given an input image L, divide L by Rw to get pseudo illumination image

E∗
w.

3. Accomplish nearest neighbor search in the illumination eigenspace using E∗
w

as the query and obtain Êw.

4. Get Ê and R̂ from Êw using the mapping table.

We employ the SR-tree search algorithm [KS97] for the nearest neighbor search

which is featured by the combined utilization of bounding spheres and bounding

rectangles to improve the performance on nearest neighbor searches by reducing

both the volume and the diameter of regions.

Figure 5.5 and 5.6 show the results of estimating Ew by the nearest neighbor

search using E∗
w as a query. Each input image is taken under different illumination

condition, i.e. rainy, cloudy, and sunny scene from top to bottom. Along the row,

(a) shows original input images that contain moving objects in the scene. (b) is the

pseudo-illumination image E∗
w obtained by simply dividing L by Rw. The column

(c) has the estimated illumination image Êw by nearest neighbor search in illumi-

nation eigenspace. (d) is the background image corresponding to the estimated

illumination image Êw in (c). The nearest neighbor search in PCA is very robust to
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Dimension 13 23 48 120
Contribution ratio (%) 84.5 90.0 95.0 99.0
NN Search time (µs) 6.7 6.8 7.9 12.0

Table 5.1. Dimension of the illumination eigenspace, Contribution ratio and NN
search cost.

estimate the most similar illumination image Ew from noisy query E∗
w. However,

there are slight differences in shadow shapes because the database is sparse. It is

possible to acquire the exactly correct illumination image Ew when the database is

dense enough, but it is not easy to prepare such a database. To solve this problem,

we used our method to interpolate illumination images which is described in Sec-

tion 4.1. Using k illumination images that are obtained by nearest neighbor search

in the illumination eigenspace, we generate an appropriate illumination image us-

ing our shadow interpolation method based on shadow hull.

As for the computational cost, the average time of the nearest neighbor search

is shown in Table 5.1 with MIPS R12000 300MHz, when the number of stored il-

lumination images is 2048 and the image size is 360 × 243. Since the input im-

age is obtained at the interval of 33ms (at 30 frames/sec), the estimation time is

fast enough for the real-time processing. The average time of computing an inter-

mediate shadow shape using shadow hull is also quite short. Once we prepared

shadow hulls for a scene, the process is only computing a silhouette of the shadow

hulls on the ground plane using the projection matrix which is determined by time

when the image is captured. The average processing time to compute intermediate

shadow shapes under one illumination condition in the intersection scene using

our current research code is about 0.1sec, and it would be undoubtedly improved

when those matrix operations are handed off to graphics hardwares that have spe-

cialized matrix operation units.
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(a)

(b)

(c)

(d)

Figure 5.5. Direct estimation of intrinsic images (result 1). (a) An input image L,
(b) the pseudo illumination image E∗

w, (c) the estimated illumination image Êw by
the nearest neighbor search in the illumination eigenspace, (d) the corresponding
background image B to (c).
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(a)

(b)

(c)

(d)

Figure 5.6. Direct estimation of intrinsic images (result 2). (a) An input image L,
(b) the pseudo illumination image E∗

w, (c) the estimated illumination image Êw by
the nearest neighbor search in the illumination eigenspace, (d) the corresponding
background image B to (c).
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5.5 Experimental results

To evaluate the effectiveness of our method, we preprocessed image sequences

with our method and ran object tracking based on a simple block matching ap-

proach. The reason why we chose the block matching algorithm is to show even

the simplest widely used tracking method can achieve good results after our illu-

mination normalization preprocess. The block matching based tracking is done by

pursuing the most similar window in the neighboring frame evaluated by Equa-

tion (5.5).

eB(x, y) = mini,j

{M−1∑
m=0

N−1∑
n=0

|ft(x+m, y + n)

−ft−1(x+m+ i, y + n+ j)|
}

(5.5)

In our tests, the maximal search distance of 10 pixels and window-size of 10×10

pixels were used. Since we focus especially on the advantage of our shadow elim-

ination, we chose image sequences containing images of vehicles crossing bound-

aries of cast-shadows. The result is shown in Figure 5.7. In Figure 5.7, the row

direction corresponds to the time axis from top to bottom. The first column of each

pair and the second column of that represent results of the block matching based

tracking applied to the original image sequence and image sequence with our pre-

processing of illuminance normalization, respectively. Using the original image

sequence (a), (b), (c), we get results where the block matching fails at shadow

boundaries, because there is large intensity variation between inside and outside

the shadow. On the other hand, after proper illuminance normalization using our

method, the shadow boundary becomes seamless and the appearances of vehicles

are preserved both inside and outside the cast shadow.

The outcome of the experiments over 502 sequences of vehicle tracking is shown

in Table 5.2. In Table 5.2 Ocorrect and Oerror indicate the number of correct tracking
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(a) (a’) (b) (b’) (c) (c’)

Figure 5.7. Result of tracking based on block matching. Along row from top to
bottom it shows the frame sequence. The first column of each pair, (a), (b), (c),
shows the tracking result over the original image sequence, and the second column
of each pair, (a’), (b’), (c’), shows the corresponding result after our preprocessing.

results and error results with original input image sequences respectively. Ncorrect

and Nerrorrepresent the same but with normalized image sequences. The tracking

performance with original input image sequences is 55.6%, while with normalized

input it improved to 69.3%. The effectiveness of our method is clearly confirmed

by looking at the Oerror column in the Ncorrect row, which indicates the number of

failure results with original image sequences while those were succeeded with nor-

malized image sequences. It says 45.3% (101 sequences out of 223) were rescued

by our method. On the other hand, 11.5% (32 sequences out of 279) got worse af-

ter applying our method. This bad effect happens typically when the shadow-edge

cast on the vehicle surface largely differs from the shadow-edge in the illumination

image. It happens because our method currently can handle only two-dimensional
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shadow on the image plane, but the actual shadow is cast three-dimensionally on

the scene. When the gap of the shadow-edge position is large, the error of the

normalization is getting large, as a result, the block matching fails. Our system

currently does not handle this problem since the error rate is small compared to

the improved correct rate, but we are investigating on handling cast-shadows 3-

dimensionally using the information of sunlight angle.

Ocorrect Oerror sum
Ncorrect 247 101 348
Nerror 32 122 154
sum 279 223 502

Table 5.2. Tracking result over 502 sequences.

5.6 Summary

In this chapter, we have described a framework for normalizing illumination

effects of real world scenes, which can be effectively used as a preprocess for ro-

bust video surveillance. We believe it provides a firm basis to improve the existing

monitoring systems. We integrated the framework to the existing traffic monitor-

ing system. We first described a method to normalize illumination effects from the

input image sequence using intrinsic images which is basically an off-line process.

Subsequently, we proposed to utilize illumination eigenspace as a key component of

our framework, a pre-constructed database which captures the illumination varia-

tion of the target scene, to directly estimate illumination images for elimination of

lighting effects of the scene including elimination of cast shadows. As for the inter-

mediate illumination images that cannot be represented by linear combination of

sampled illumination images, we combined our approach to use shadow hulls to

accomplish non-linear interpolation of cast shadow regions using sunlight angles

and camera parameters. The effectiveness of the proposed method is confirmed
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CHAPTER 5. APPLICATION TO REAL-TIME VIDEO SURVEILLANCE SYSTEMS

by comparing the tracking results between the original image sequence and the

image sequence preprocessed with our method. Since our method is used as a

preprocessing stage, we believe this method can be applied to many video surveil-

lance systems to increase robustness against lighting variations. Also, we have

investigated direct estimation of illumination images corresponding to real scene

images using the illumination eigenspace. Though our current implementation of

the direct estimation in research code is not fast enough for real-time processing,

we believe the framework has the potential to be processed in real-time.

96



CHAPTER 6

CONCLUSIONS

6.1 Summary

Elimination and interpolation of cast shadows have been one of the most dif-

ficult problems in the field of computer vision and graphics. Shadow elimination

involves the problem of determining shadowed regions and its darkness. It has

been difficult when the illumination condition is unknown. Separated from this

problem, shadow interpolation or shadow morphing has also been difficult be-

cause it is hard to find correspondence between sampled shadows. In this disser-

tation, we have contributed a collection of concepts and algorithms to cope with

these problems using intrinsic images.

• Time-varying Intrinsic Images

We have investigated the time-varying reflectance images to properly han-

dle the time-dependent characteristics of surface reflectance properties. We

started from Weiss’s ML estimation method and expand it to deal with the

incorrect estimates that were originally inevitable with its single reflectance

assumption. As a result, we successfully obtained the improved illumina-

tion images and time-varying reflectance images from an image sequence

captured from a fixed view point but under several different illumination

conditions.
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• Shadow Interpolation Framework

Shadow interpolation is a difficult problem because of two reasons. The

first reason is that the motion of the shadow is unpredictable only from a

set of sparsely sampled images. The second reason is that it is difficult to

find correspondence between shadow blobs among images because shadows

basically have no feature points. To overcome these difficulties, we proposed

two different methods.

One idea is to use shadow hulls constructed using shadowed regions in sam-

pled illumination images associated with the sunlight angles in the outdoor

scenes. Using the shadow hulls, the intermediate shadow shapes can be suc-

cessfully computed and consequently the intermediate illumination images

are robustly predicted. The framework is used to estimate the scene illumi-

nation images directly from an input image for robust video surveillance.

The other approach is for the arena of computer graphics, specifically for

image-based rendering techniques. Given a set of light fields captured under

the different illumination conditions, we first compute rough scene geometry.

The scene geometry is then used for computing global distortion of shadow

to estimate the appearance of the scene under the intermediate illumination

conditions.

• Illumination Normalization Framework with Intrinsic Images

We proposed an idea to normalize the input image sequence in terms of il-

lumination effects using illumination images. Normalization of illumination

effects yields a lot of benefits as described in this thesis, e.g. illumination-free

2-D image editing for computer graphics, enhancing the accuracy of object

segmentation and preserving appearance of moving objects inside and out-

side the cast shadow for robust video surveillance.

• Practical Application to Road Traffic Monitoring Systems

As a practical application, we integrated the illumination normalization
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6.2. FUTURE DIRECTIONS

framework into the existing road traffic monitoring system. To accomplish

the real-time estimation of illumination images, our idea of illumination eigen-

space is proposed. We evaluated the effectiveness by measuring error ra-

tio of vehicle tracking based on a basic block matching technique and con-

firmed the illumination normalization framework remarkably contributed to

increase the accuracy of vehicle tracking.

6.2 Future Directions

6.2.1 Modeling Illumination images

One potential application of this work is to construct meaningful model of illu-

mination images using the illumination eigenspace. Although we have confirmed

that the illumination eigenspace captures the key features of weather conditions

and time-line variation, it is not clear whether we can create a novel scene illumi-

nation image using the illumination eigenspace. This is what we have to inves-

tigate, and for instance, the resulting application would enable the weather and

time manipulation of the scene in terms of illumination conditions using only 2-D

images.

Another interest is to investigate the generic model of the illumination vari-

ation of arbitrary scenes in 2-D images. Our current illumination normalization

framework is scene specific, and it is necessary to start with estimating new intrin-

sic images when we apply our method to the new scene. It is still unclear whether

there is the generic illumination model in 2-D images, however, extensive amounts

of work remain to be done before this question is completely answered.

6.2.2 Estimating Intrinsic Images

Deriving intrinsic images from a set of images has not been solved yet. We are

now investigating the estimation of intrinsic images starting with the formulation

described in Section 2.4.1 and believe it would be solved in the near future.
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6.2.3 Shadow Distortion Model

In this work, we investigated lighting interpolation for computer graphics in

Section 4.2. To describe the shadow distortion, our approach used 2-D affine trans-

formation on the image plane, however, it would clearly yield the better results

using a more complex distortion model. For example, as proposed by Bregler et

al. [BLCD02] in the different context, a combination of affine transformation to de-

scribe the global motion and another interpolation such as key-shape interpolation

to represent the local motion would enhance the accuracy of resulting intermediate

shadow shapes.

In addition, it is not clear yet how dense sampling of illumination images are

required to archive shadow interpolation. Though it undoubtedly depends on the

complexity of the scene, it should be confirmed at least with empirical study to

give an idea on the parameter of sampling rate.
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APPENDIX

CONVOLUTION AND REFLECTION

Convolution defines a way of combining two functions. In the most general

form it is defined as a continuous integral. In one-dimension :

g(x) =

∫ ∞

−∞
f(u)h(u− x)du (A.1)

or in two-dimensions:

g(x, y) =

∫ ∞

−∞

∫ ∞

−∞
f(u, v)h(u− x, v − y)dudv (A.2)

The function h(•) in the above equations is usually called a filter. If both f(•) and

h(•) are discrete, the convolution integral is simplified to:

g(i, j) =
∑
m∈Ω

∑
n∈Ω

f(m,n)h(i−m, j − n) (A.3)

Usually the convolution kernel h(•) only has non-zero value in a small neighbor-

hood, and is also called a convolution mask. Rectangular neighborhoods are often

used with an odd number of pixels in rows and columns, enabling the specification

of the central pixel of the neighborhood.
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There are some important mathematical properties of convolution. In the fol-

lowing explanation, ⊗ represents the convolution.

1. Commutative law c = a⊗ b = b⊗ a

2. Associative law d = a⊗ (b⊗ c) = (a⊗ b)⊗ c = a⊗ b⊗ c

3. Distributive law d = a⊗ (b+ c) = (a⊗ b) + (a⊗ c)

where a, b, c and d are either continuous or discrete.

Recently, Ramamoorthi et al. [RH01] have shown that reflection is a unique type

of convolution. They derive a convolution theorem for reflection, where the BRDF

and the environment are represented by coefficients of Spherical Harmonics. This

allows us to interpret reflection from a signal processing point of view, where the

BRDF is a filter with a given frequency response, and the lighting is the input

signal. This framework is particularly useful for inverse rendering, which may be

formulated as a problem of deconvolution.
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