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Basic Study on Similarity in Walking Machine 
from a Point of Energetic Efficiency 

Abstract-Because of the size of walking machines, scaled-down 
models having geometrical similarity can be used instead of  full-scale 
models to measure energetic efficiency.  First, to cope with this  situation, 
five  nondimensional parameters that control energetic efficiency of 
walking machines are introduced for nine physical parameters  by 
applying dimensional analysis techniques. Next, in  order to check those 
influences on energetic efficiency, computer simulations are performed 
for an n-legged walking model. In these simulations, the influence on 
ground reaction forces  is considered to satisfy  the approximate balance of 
forces and moments when an overall walking machine assembly is 
assumed as  a free body.  Resultantly, several  new facts are acquired from 
the viewpoint of similarity law. 

S 
I. INTRODUCTION 

PECIFIC resistance [l] is  used as an index to evaluate the 
energy efficiency of  walking machines. Specific resistance 

is a measurement of the amount of energy required to move  a 
unit  weight  of  a  mobile  body over a unit distance. The 
nondimensional parameter, having  a clear concrete meaning, 
is  used  not only for artificial mobile machines  but also in the 
field of zoological physiology. Since specific resistance means 
nondimensional consumed energy, the smaller the specific 
resistance number, the better the performance of  mobile 
machines. Therefore, although specific resistance is somewhat 
remote from the concept of efficiency, this paper uses specific 
resistance as the index for evaluating the energy efficiency of 
walking machines. 

The coordinate system showing specific resistance on the 
ordinate and average moving speed on the abscissa is known as 
the Gabrielle-von Karman diagram [2]. It is often used to 
compare the energy efficiency of artificial mobile machines 
[3], [4]. The purpose of plotting the specific resistance of 
walking machines on the Gabrielle-von Karman diagram is to 
provide intuitive, visual information to compare the specific 
resistance of  walking machines with other kinds of artificial 
mobile machines. However, as the average moving  speed  used 
in the abscissa is  a dimensional number, the similarity law 
cannot be applied. 

On the other hand, because of the size of  walking machines, 
scaled-down models having geometrical similarity can be used 
instead  of full-scale models to measure specific resistance. In 
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such a case, how can a direct relationship of specific resistance 
be obtained from a scaled-down model to a full-scale model? If 
this is impossible, what similarity law exists between the two? 
Although conventional walking machine research includes 
experimental specific resistance [5] considerations based  on 
numerical simulation [6], studies based  on similarity law have 
not  been made. In the field of zoological physiology, although 
studies have been made of specific resistance using nondimen- 
sional parameters [7], they have potential defects, in  that 
important nondimensional factors, such as body height, duty 
factor, and leg-body mass ratio, have not  been  taken into 
consideration. 

To cope with these defects, six independent nondimensional 
parameters relating to a walking machine having two degrees- 
of-freedom with knee joints are introduced by applying 
dimensional analysis techniques. This paper further explains 
that certain combinations of these six nondimensional parame- 
ters can  be converted into physically meaningful parameters 
such as specific resistance E ,  leg-body  mass ratio rFi, stride 
ratio 3, nondimensional body height k, nondimensional veloc- 
ity zi, and  duty factor P ,  which represents the ratio of support 
phase to one cycle. The leg systems are classified into two 
types according to the actuator arrangement, and numerical 
simulation is made for both leg systems to check the influences 
of each nondimensional parameter on the specific resistance. 
As  a result, several new facts are acquired from the viewpoint 
of similarity law. 

II. INTRODUCTION OF NONDIMENSIONAL PARAMETERS 

A .  Assumptions for Dimensional Analysis 
Now let us assume a walking model having knee joints as 

shown in Fig. 1. The following assumptions simplify the 
discussion, so as not to lose the true nature of the phenomena. 

,I). friction loss in joints shall be neglected; 
2) actuator system is assumed not to have an energy storing 

3) mass distribution of the thigh and shank is  assumed 
system; and 

uniform. 

B. Dimensional Analysis 

ship is assumed as follows: 
For walking  model shown in Fig. 1, a functional relation- 

f (E,  m19 m2, 1, s, h,  a, g, To) =o. (1) 

0882-4967/87/0200-0019$01 .OOO 1987 IEEE 



20 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. I ,  FEBRUARY 1987 

u 
Fig. 1. Legged  walking  model  (any number of legs is possible). 

These physical values, except h, coincide with those used for 
the simulation study [6]. As for h, it is  used as a parameter to 
determine the degree of insect type leg and  mammal type leg 
and  is considered a physical parameter having a great effect on 
consumed energy E. Therefore in this paper, dimensional 
analysis is conducted with h included. Besides these physical 
parameters, several parameters relating to the gGometry  of the 
body  of  walking machines influence the consumed energy, but 
in  this paper, this influence is considered a secondary effect 
compared with the above physical parameters, and therefore 
neglected.  Although ml and m2, or I ,  s, and h in (1) have  the 
same dimension, their influence on the physical phenomena 
are considered differently. Therefore each parameter cannot 
be used  independently as a representative parameter. This idea 
is  based  on the concept of directional dimensional analysis. 
According to Buchingham's n theorem [ S I ,  (1) and (2) are 
equivalent. 

$(TI, n2, n3, - * * nJ=O (2) 

As the  physical value that controls the function f is 
represented by a combination of the units of mass [MI, length 
[ L ] ,  and time [TI ,  ri is a nondimensional parameter 
consisting of a combination of less than four physical 
parameters. As there are nonzero determinants among  the 
cubic determinants obtained from the dimensional matrix 
which has [MI, [ L ] ,  and [TI on the row  and the physical 
parameters selected from (1) on the column, the rank of the 
dimensional matrix becomes three. Therefore p becomes six, 
which  is obtained by deducting the number of  units from the 
number of physical parameters. This indicates that  six 
independent nondimensional parameters exist. 

Assuming the relationship 

EK1m~2m~31K4~K5hK6UK7gK8 T f g =  nondimensional (3) 

can  be established, dimensional analysis provides the follow- 
ing  six nondimensional parameters: 

E m2 

mlgl ml 

S h 
n3=- 

I 
n4=- 

I 

TI=- n2 =- 

B.  Modified  Nondimensional Parameters  and Their 
Physical Meanings 

The physical meanings of the six  nondimensional parame- 
ters obtained in the preceding section are unclear as they are. 

original  non- modified  non- 
dimensional dimensional 
parameters parameters 

Fig. 2. Modified  nondimensional parameters. 

In general, six independent nondimensional parameters ob- 
tained from dimensional analysis are not  the  only possible 
form. For example, body height h can  be  used  instead of leg 
unit length I in n3. It is equivalent to the  idea  that  assumed n3/ 
n4 is  an independent nondimensional parameter instead of n3. 
Such a permutation is permitted because the concept  is  based 
on  the  idea that the independence of the six  nondimensional 
parameters can be  maintained  even  though  they are multiplied 
by or divided by factors. In this section the nondimensional 
parameters obtained are modified into physically  meaningful 
forms by multiplying them by appropriate factors or combin- 
ing them. Then the physical meanings of those parameters 
obtained is discussed. Modified  nondimensional parameters in 
Fig. 2 are based  on this philosophy (n represents the  number 
of legs). When specific resistance is  indicated by E ,  it  is 
represented by a formula E = E/(ml gB) [6].  Whereas B ( = 
s /p)  is the movement  of  the center of gravity of the body 
during one cycle, r,/(n5*n6) is a nondimensional parameter, 
which coincides with the definition of E .  n2 is a nondimen- 
sional  mass ratio (the mass of one leg/the mass of the body), 
but generally m ,  which  is obtained by  dividing  the  mass of legs 
by the  mass  of  body  instead of r2, is more convenient. If f i  is 
used, the approximate influence due to the  number of legs  can 
be deleted in an evaluation of the energy consumed by the leg 
system. On the other hand, the leg unit length I is  used for the 
typical length of a walking machine in a3, n4, and n5. The leg 
length, or 21, is used for the typical  length  in the corresponding 
nondimensional parameters; i.e., stride ratio 2, nondimen- 
sional  height k, and nondimensional velocity fi. The leg length 
21 presents a more perceptive image  of the typical  length  of a 
walking  machine  than the leg unit length I .  The nondimen- 
sional  velocity tl essentially coincides with the Froude number 
[8]. Its physical meaning  is  that it indicates the ratio of  the 
inertial force to gravitational force. When the Froude number 
is considered in relationship to a walking machine, it means 
the ratio of the centrifugal force m1U2/(21) generated at the 
hip by the rotating motion of the body  about  the toe in the 
support phase against the gravitational force mlg (it is assumed 
that the body makes a rotating motion of radius 21 having  the 
center at the foot tip). Therefore, as the Froude number (or 
nondimensional  velocity fi) approaches 1, a walking motion, 
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in which at least one leg remains on the ground in the support 
phase, cannot be maintained, and the gait changes from 
walking to running. The change of the gait according to the 
changing Froude number has been  pointed  out  by R. M. 
Alexander [7]. For walking machines premised on static 
stability, li is assumed to be sufficiently smaller than 1. 
Finally, by making a3/(x5, as) a new  nondimensional parame- 
ter instead of the duty factor /3 (the ratio of time when the 
legs are in the support phase to one cycle) can be derived, 
which is an important parameter controlling the  motion of a 
walking machine. The duty factor influences the specific 
resistance from the aspects of the kinetic energy of the transfer 
leg and  the movement of the center of gravity of the body 
during one cycle. 

Therefore, the specific resistance can be indicated by (4) as 
a function of five modified nondimensional parameters: 

€ = E ( &  2, 6, 6, 0). (4) 

111. COMPUTER SIMULATION 

To investigate the influence each nondimensional parameter 
has on the specific resistance, this section discusses computer 
simulation using an n-legged walking  model  having two 
degrees-of-freedom for each leg. 

As for research of simulation of specific resistance, conven- 
tional research was performed using a very simple model by S. 
Hirose et al. [6]. However, since scale effects are not 
considered in [6], the simulation results are only available for 
a limited scale machine. The simulation in this paper espe- 
cially takes the following conditions into consideration. 

1) Based  on the similarity law, all the results are indicated 
in nondimensional parameters. 

2) The influence of the difference in  the arrangement of 
actuators on specific resistance is discussed. 

3) The effect of the inertia reaction force of the ground is 
discussed in order to satisfy the approximate balance of 
forces and  moments  when an overall walking machine 
assembly is  assumed as a free body. 

4) The effect of nondimensional height 6 is examined. 

A .  Considerations on Arrangement of Actuators 
The arrangement of actuators of  walking  machines are 

classified into two types as shown in Fig. 3. One type shown  in 
Fig. 3(a) is  such that the rotation of the thigh actuator drive 
shaft makes the fixed side of the shank actuator rotate at the 
same angle. This type is called a relative coordinate system 
(RCS) arrangement in this paper. Another type shown in Fig. 
3(b)  is  such that regardless of  the rotation of the thigh actuator 
drive shaft, the fixed side of shank actuator points in the same 
direction. This type is called body coordinate system (BCS) 
arrangement in this paper. The muscle-bone system of living 
things including animals and the legs of various walking 
machines have RCS actuator arrangement. As indicated in 
Fig. 3(b), BCS actuator arrangement is limited to artificial 
legs. Although the specific resistance of  BCS actuator arrange- 
ment has been examined [6], the specific resistance of RCS 
actuator arrangement has not been examined except the 

21 

0 : a c t u a t o r  

A// Y/, , / / / / / / / /  /Y/// <///,////. 
F T (a) F (b) 

Fig. 3. Two types of actuator  arrangement. (a) Relative  coordinate  system 
(RCS):  The  muscle-bone  system of living  things including animals has this 
type of actuator  arrangement. (b) Body coordinate  system (BCS): BCS 
actuator arrangement is limited to artificial  legs. 

massless model (m2 = 0) [7]. For example, let us assume a 
case in which supporting force F acts as the reaction force of 
the ground, with the mass  of the legs assumed zero, as shown 
in Fig. 3.  In the case of  RCS arrangement, magnitude of the 
moment acting on the hip joint is expressed by the product of 
the supporting force F and A x  (Ax is the horizontal distance 
between the supporting point  and the hip joint). In the case of 
BCS arrangement, the magnitude of the moment acting on the 
hip joint appears as if a vertical force F acted on the knee joint. 
Therefore the difference in  the actuator arrangements should 
impose a decisive influence on the specific resistance. 

B. Assumption for  Analysis 
Now we will discuss an n-legged walking  model (Fig. 4) 

and its coordinate system. To simplify the analysis, the 
following assumptions are made. 

Assumption 1: 

Assumption 2: 

Assumption 3: 

Assumption 4: 
Assumption 5: 

Assumption 6: 

Assumption 7: 

The actuator characteristics are given by 
(5)  according to [6]. Thus 

P = 6 ( P ’ )  = 
0 P’gO 

where P’ is the drive power to be 
generated at each joint and P represents 
the power consumption of  the actuator of 
each joint. 
The body makes a constant speed and 
horizontal motion. 
The foot in the transfer phase returns 
close onto the ground. 
An even number of legs is provided. 
The legs make a reciprocating motion 
close to the body. 
The body is sufficiently long as compared 
with the’body height. 
Ground reaction forces with  the same 
magnitude act on the legs on the same 
side of the body in the support phase. 

Generally, walking machines have one more freedom related 
to overall leg rotation aroundx-axis in each hip. However, this 
€reedom  is  not absolutely necessary for generating normal 
walking pattern, but necessary for avoiding obstacles and  body 
rotating. Therefore, the legged walking  model  with two 
degrees-of-freedom legs as shown in Fig. 4 can keep the 
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(b) 
Fig. 4. A legged walking model and its coordinate  system. (a) Top view. (b) 

Side  view. 

generalization for analysis of the energetic efficiency in 
normal walking. 

Assumption 1 is equivalent to the phenomena  that the 
actuator consumes power in the positive work mode  and does 
not consume power in the isometric negative work mode [6]. 

Assumptions 2 and 3 suppose that simulation tests are 
performed with the energy consumption of the actuator at zero 
or a minimum,  which relates to changes in the potential energy 
of  the  body  and the leg system. Both assumptions are 
established to simplify analysis. On the other hand, if the 
number  of the legs in the support phase is more than four, 
determination of the ground reaction force becomes an 
indeterminable problem, and the force generally cannot be 
determined uniformly. As for the horizontal reaction force, the 
calculation becomes indeterminable even if the number of the 
legs in the support phase is three. Assumptions 5-7 are 
established to satisfy the equations of balancing of the forces of 
the overall body, and of the  moments approximately. Details 
are explained in Section D. 

C. Introduction of Joint  Moment 

The equation of motion about leg i of a walking  model  in 
Fig. 5 is expressed by (6), and the ground reaction force vector 
is represented by Ri; 

Ajej+Bie;+Ci sin Oj+DjRi=Mi (6) 

where 

e, = [e;l , e j21  

e ,  - 1  j l '  j2 
2 -  4 2  4 2 1 '  

sin O i =  [sin O j l ,  sin B j 2 l r  

R;= 

M; = [Mi 1, Mi21 

[Hi ,  Vi] f, (support phase) 
[O, OIZY (transfer phase) 

The coefficient matrices A;,  Bi, Ci, and Di are dependent on 
the actuator arrangement and are given in Appendix A. In (6), 

Mil:hip moment 
Ebi ;body r eac t ion   fo rce  
Xi : i n e r t i a   f o r c e  
R j  :ground r eac t ion   fo rce  
G : g rav i t a t iona l   fo rce  

Eb i 

+ d i r e c t i o n  

@ : s tance   l eg  

0: l i f t e d   l e g  

Fig. 5 .  Free body diagram of the model. (a)  Free body diagram  for  ith  leg. 
(b) Horizontal-force  balance. 

when a foot motion trajectory that  will realize a constant-speed 
horizontal motion is assumed, angles 19i of each joint, angular 
velocity Bi, and angular acceleration 6; are determined uni- 
formly. As each coefficient matrix becomes the function of Oij  
(i = 1 to n, j = 1,  2), all the factors except the ground 
reaction force vector Rj become known values. 

D. Introduction of the Ground Reaction  Force 
With the ith leg body reaction force and the inertia force 

represented by Fbi = [ X b i ,  Ybj] ' and Xi = [ X j ,  Y;] ' 
respectively as shown  in Fig.  5(a), the gravity force G; = [0, 
- 2mgl f, (7) can be established. 

Fb;+Xi+G;+Rj=O. (7) 

Then, by adding (7) for leg 1 through leg n and  dividing the 
sum  into x and y components, (8) and (9) are obtained. The 
positive direction of the force, and  the  moment  is  shown  in 
Fig. 5 .  Thus 

C(X,j i- xj f Hj) = 0 (8) 

C( Y,j + Yj + vi - 2mg) =.o. (9) 

According to assumption 2, as the body  makes a constant 
speed horizontal motion 

CXbi=O, xYbj= -mlg.  (10) 

Therefore, (8) and (9) are converted into ( 1  1) and (12). 

C(Xj + Hj) = 0 (1 1) 

C( f 6) = (nzl f 2nzn)g. (1 2)  

Because Xi  and Y j  are inertia forces, they become known 
values  when  the  motion  of the foot is determined. Equations of 
balance of the moments about each axis having the center of 
gravity ofthe body as the origin are expressed as the following 
(13)-(15). 

C(Hi + Xj)Zj = 0 (1.3) 

x( v, + Yj)Zj = 0 (14) 

C[Hih  +Xihi+ (Vi+ Y i ) ~ i ]  = 0. (15) 

However, (15) can be established for primary approximation. 
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And hi is y coordinate of the acting point of the inertia force. 
Regarding (1 1)-(15), for very slow walking, Hi = 0, C K  = 
(ml + 2mn)g, C Kzi = 0, and CKxi = 0, which coincide 
with the equations that C .  A. Klein et al. [9] are using for the 
force control of six-legged walking machines. Now, for a 
three-leg supporting system, which corresponds to the mini- 
mum number of legs required to maintain static stability, each 
reaction force becomes an indeterminable problem and cannot 
be determined uniformly because (1 1)-(15) provide only five 
equations for six unknown values. One of  the  methods to solve 
such an indeterminable problem is the pseudo-inverse method, 
which is based  on  a philosophy that the norm of solution is 
made minimum. However,  as zi provides z2i = W1/2, zZi- = 
- W1/2 due to its symmetry, (13) and  (14) do not practically 
rely on the size of W l .  However, since (15) contains 
coordinate value xi in the direction of x, concrete numerical 
values  must  be given for the geometrical shape of the body  of  a 
walking  body to use this method. Therefore, by applying the 
pseudo-inverse method to (1 1) and (13), (16) gives the 
horizontal reaction force with H representing the horizontal 
reaction force vector. Thus 

E. Introduction of Specific Resistance 
This section introduces the equation of specific resistance 

using the joint moment Mi, which is obtained by the 
procedures up to Section 111-D, to calculate the consumed 
power of the actuators. 

First, let us assume an RCS actuator arrangement. Assum- 
ing  that angular velocity of the actuator of jointj  of leg i as CGij, 

ki = [ cii l ,  ki2] can be expressed as (19)  using Oi = [ O i l ,   O i 2 ]  
of Fig. 4: 

kj = Kej. (19) 

K is given in Appendix B. 
Therefore, the power consumed by the actuator of joint j of 

leg i and the energy E to be consumed by all the legs during 
one cycle are indicated by (20) and (21), respectively: 

Therefore, based on the definition [6], (22) represents the 
H=A'(AA')-'b.  (16) specific resistance: 

However, A as a coefficient matrix consists of  (1  1) and (13), 
and b = (- EXi, - + CX2i-1)t. Actual calculation of 
(16)  using (1 1)  and (13) indicates that horizontal reaction 
forces of the same magnitude act on the legs on the same side 
in the support phase. Applying the pseudo-inverse method to 
(12) and (14) achieves the Same result. Among the elements of 
(15), V ,  generally has the largest value, which correlates with 
the body mass, but  if the body is long enough (assumption 6), 
and the legs in the support phase are distributed evenly fore 
and aft of the body, it is generally supposed that similar size 
vertical reaction forces act on the legs on one side in the 
support phase. That is  to  say, it is predicted that there will be 
no remarkable difference between the two solutions even if 
pseudo-inverse solutions obtained with (15) are taken into 
consideration. Therefore this paper sets assumption 7 from the 
viewpoint of the simplification of the problem. 

Based on the above philosophy, (17) expresses the horizon- 
tal reaction force: 

n/2 

H2i= - xzi/nl 
i= 1 

n / 2  

f?2j- = - /n2 .  

Further, specific resistance corresponding to BCS arrange- 
ment  can be obtained by  using  BCS joint moment MI and K' 
(Appendix B) in place of K. 

F. Numerical Calculation 
The calculation procedure described up to Section 111-E is 

summarized by the flow chart shown in Fig. 6. The flow chart 
shows numerical calculations for three kinds of foot time 
charts shown in Fig. 7. Fig. 7 shows the relative foot velocity 
against the body. Fig. 7(a) shows a case where changes of the 
foot velocity becomes discontinuous when t = (1 - P)T0. 
This cannot be used unless the leg mass is zero ( f i  = 0). If ri2 
k 0, a joint moment  of an infinite value generates when t = 
(1 - P)T0. Fig. 7(b) shows the most simple time chart without 
physical contradiction even  when f i  k 0. In this case, 
although the joint moment becomes discontinuous, it does not 
become infinite. Furthermore, Fig. 7(c) shows a concept that 
makes  even the joint moment continuous. In this paper, time 
charts of Fig. 7(b) and (c) are called type 1  and type 2, used for 
the calculations in  a case of f i  k 0. Equation (23) gives the 
time chart for type 2: 

i =  1 

where n1 and n2 are the number of the legs in the support phase 
at even number leg row and odd number leg row, respectively. u=- 15 [L (L- 1 > 4 - ~  (L- 1)2 

A similar idea gives (1 8) for the vertical reaction force: 

(i) O ~ t z s ( 1  --P)T0 

8 1 -P  TI 1 - 0  TI 

. L i=  I u= - u  
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inertia 
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)-.. - ground reaction  force 

( per  one  leg ) 

resistance 

Fig. 6 .  Flow  chart for simulation 

where TI = (1 - /3)To/2. 
The  next step is to define the stride s of a walking  model. 

Stride s for 6 < 0.5 is defined as shown in Fig. 8(a). 
Therefore the mobility  range of the foot is expressed 
by [mz, n2 + i] using a nondimensional 
coordinate  system  having its origin at the hip joint, and 
thereby ZmaX = - is introduced. The 
definition is so made that, when 6 > 0.5, the foot makes  a 
reciprocating motion  having its center at the hip joint as shown 
in Fig.  8(b).  Therefore  the mobility  range of the foot becomes 
[ - $12, 3/21, and &,,,,, = 2 m .  

The results of calculations when the leg mass is zero (& = 
0) ,  which are carried out to check the program,  are shown in 
Fig. 9(a) and (b), which are of the RCS-type actuator 
arrangement. Fig. 9(c) shows a BCS-type actuator arrange- 
ment.  In Fig.  9, the solid line indicates the analytical solution. 
Numerical integration including the above solution is gener- 
ally called analytical solution. The alternate long  and  short 
dotted line indicates the linear analytical solution based  on an 
assumption that the stride is small  compared to the leg length. 

* -------- - =bn- -------- - 
t - l  

(b) 
Fig. 8. Definition of leg stride length and mobility  range of foot.  (a) A < 

0.5. (b) f i  > 0.5. 

s=o. 0 

0.5 

0.4 

0.3 

E 

0.2 

0.1 

0.0 
0 

E 

0 0.1 0.2 0.3 0 .4  -0.5 3.6 0.7 
5 

(C) 

Fig. 9. Specific resistance in A = 0. The solid  line  indicates  the  analytical 
solution. The  alternate  long and short dotted  line  indicates the  linear 
analytical  solution  based on an assumption  that the  stride is small compared 
to the leg  length.  The solid  dots  indicate  the  numerical  solution  based on 
Fig. 6 .  (a) RCS. (b) RCS. (c) BCS. 
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These calculations are given in Appendix C. The solid dots 
represent the numerical solution obtained from calculation 
based on Fig. 6. In this case the calculation was  made  based on 
an assumption that, in order to make correspondence with the 
analytical solution, the ground reaction force is distributed 
evenly to all the legs in the support phase. Comparison of these 
results clearly indicates that all results fairly agree. 

Let us examine the calculation results for rit = 0. In the case 
6 < 0.5, the specific resistance is  in approximate proportion 
to the stride ratio ŝ . The specific resistance of  RCS type 
arrangement becomes greater than that of  BCS type arrange- 
ment, and approximately doubles when h -+ 0. In case rit = 0, 
the work of  the hip joint and the knee joint have equal 
magnitude  with opposite signs. The reason  that  the specific 
resistance of RCS type doubles that of  BCS type when 6 -+ 0, 
corresponds to the fact that the knee joint angular change for 
the same knee joint moment differ in double magnitude. When 
t$ > 0.5, the specific resistance of either RCS or BCS type 
becomes smaller as  iiapproaches 1. Contrary to that, E is in 
approximate proportion to ŝ  for the RCS type, and the 
following approximate relationship can be established for BCS 
type; i.e., e = c,z - bŝ  (a > 0 ,  b > 0). Physical interpretation 
of  this result is described in Appendix D in detail. The model 
of  BCS type for which 6 -+ 0 is assumed corresponds to the 
insect type mentioned in [6], and, of course, the results of both 
types agree.  The consumed energy does not  become zero, 
although based  on an assumption of constant horizontal motion 
speed  of the body with the mass of the legs at zero because of 
the actuator model. As a detailed explanation of this phenome- 
non is presented by [6], to exclude nuisance duplication, this 
paper does not discuss this problem. 

Then, let us examine a case where rit t 0. As the influence 
of nondimensional height 6 on the specific resistance for rit = 
0 is almost known, nondimensional height 6 for the following 
calculations will be given typical fixed values of ii = 0.002 
and 6 = 0.9 for insect type and  mammal type, respectively. 

Fig. 10 shows the effects of the inertia reaction force on the 
specific resistance investigated using the time chart for type 1. 
The solid line indicates data for which  the inertia reaction 
force is taken into account, and the dotted line shows when the 
force is neglected. Fig. 10 indicates that the effects of the 
inertia reaction force on the specific resistance is unexpectedly 
large. The information given by Fig. 10 can be interpreted as a 
nondimensional form of Gabrielle-von Karman Diagram. 

Fig. 11 shows the results of calculation made in concurrence 
with the data of [6]-in an attempt to compare with the existing 
calculation results. The solid line indicates data for which the 
effects of the inertia reaction force are taken into account, and 
the dotted line indicates when the force is neglected. The 
numerical calculation was made for the time charts of types 1 
and 2. The calculation result using  type 2 time chart gives 
generally large values because the maximum  speed  is about 
three times that of type 1 to obtain a smooth-speed change. 
The calculation results of types 1 and 2, which exclude the 
inertia reaction force (dotted lines) aptly put between the 
calculation results of [6] (with inertia reaction force ne- 
glected), suggest adequacy of the calculation results. 

Fig. 12 shows the results of examination of  the  duty factor 

0.0 L 
0.0 0.2  0.4 0.6 ~ 0.8 1.0 

U 

Fig. 10. Specific resistance.  The  dotted  line  indicates  the  data  in  which  the 
inertia  reaction  force  by  the  ground  is neglected, while  it  is  considered  in 
the  solid line. 

0=0.33 BCS 
fi=0.3,R=!3.002.6=0.75 

E 

0 0.1 0.2 0.3 0.4 0.5  0.6 0. 
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Fig. 1 1 .  Specific resistance.  The  inertia  reaction  force  by  the  ground is 
considered  in  the solid line, while it is not considered in the  dotted  line  and 
the  alternate  long  and  short  dotted line. 

E 
1 0.8 B=O. 75 

same ground 
reaction force 

0.0 
0 

I I I I 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Fig. 12. Specific resistance  (parameter:  duty  factor 0). The  same  ground 
reaction  force is assumed in the  dotted line. f i  = 0.3 is  selected  in  the 
alternate  long  and  short  dotted line. 

effects using the time chart of type 1. Fig. 12 indicates that the 
duty factor affects the specific resistance seriously. Now, p = 
0.75 and = 0.5  are the minimum values permitting static 
stability  of four-legged and six-legged  walking machines. Let 
us evaluate the merit offered by the number of legs from the 
viewpoint  of specific resistance. When both four-legged and 
six-legged  walking machines are assumed to be similar in size 
and leg form, and walking at the same speed, Fig. 12 indicates 
that four-legged walking machines essentially consume greater 
energy. Of course, the difference shown in Fig. 12  is  based on 
an assumption that the mass ratio rit is equal. The alternate 
long  and short dotted line of Fig. 12 shows the calculation 
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results that assumption that f i  of a four-legged walking 
machine was 0.2 and  that f i  of a six-legged  walking  machine 
was 0.3 in proportion to the number of legs, prepared for 
general comparison purposes. Although the difference be- 
tween /3 = 0.75 (the minimum value of a four-legged walking 
machine)  and /3 = 0.5 (the minimum value of a six-legged 
walking  machine)  becomes small, the qualitative characteris- 
tics do not change. However, when zi -+ 0, a six-legged 
walking  machine consumes greater energy than a four-legged 
machine due to the energy consumption resulting from the 
potential energy change of the leg system. The dotted line 
represents the calculation results based  on  an assumption that 
the ground reaction force acts evenly  on all the legs in the 
support phase. From those facts, it is clear that the ground 
reaction force distribution effect is not so significant. 

Fig. 13 shows the results of examination of the mass ratio f i  
effect using  the time chart for type 1. Fig. 13 indicates that, for 
the same stride, a relationship represented by E - eo = kfi 
exists, where €0 is the specific resistance for riz = 0. This fact 
corresponds to the phenomenon that the leg mass  is a linear 
function of the joint moment. 

Fig. 13 shows not  only the calculation results for n = 4 
(solid  line)  but also that of n = 6 (dotted line) to check that the 
number  of legs n affects the results only slightly. In this case, 
the  maximum difference between n = 4 and n = 6 is three 
percent and 1.5 percent on the average. Although cases for n 
2 8 should be examined, because the results will not  be 
changed remarkably even if the number of legs is unnecessar- 
ily increased, n = 6 is considered satisfactory. 

Fig. 14 shows the results of examination of  nondimensional 
velocity fi effects for a mammal type walking  model  having 
RCS actuator arrangement, using the time chart for type 1. 
The reason  why the asymptote for zi 4 0 becomes E k 0 with 3 
+ 0 is the same for the fact that, in Fig. 9(c), E = 0 is  not 
available with s^ -+ 0. (Refer to Appendix D). 

As all the calculation results are indicated in  nondimen- 
sional parameters (Figs. 9-14), results can be applied to every 
scale of walking machine. 

Now let us consider the sensitivity of the results for 
assumptions. The number of legs in the support phase  and the 
distribution of support forces are not so important factors for 
the sensitivity of the results as shown  in Figs. 12 and 13. 
Accordingly, the influences caused by assumptions 4-7 are 
negligible small. The consumed energy due to the up-and- 
down  motions of the center of gravity of each leg is also 
negligibly small for the usual nondimensional mass ratio, 
which  can  be recognized from no remarkable difference 
between tl -+ 0 and riz -+ 0 in Fig. 12. Therefore the 
assumption 3 is also negligible. 

On the other hand, since a mass of  body is much larger than 
that of all legs, the consumed energy will remarkably increase 
with the body acceleration, deceleration, and  up-and-down 
motion. However, these situations are only  limited to the 
starting period, stopping period, and  avoiding obstacles in 
irregular terrain. In normal walking, a body  is so controlled 
that it may keep its velocity  and absolute height constant. 
Therefore, assumption 2 will ensure validity  in normal 
walking. 

AiLZk7 %=0.002,6=0.75,5’=0.3 
1 . o  I I I 

- n=4 

‘I 

I I 

0 0.1 0.2 0.3  0.4 0.5 0.6 0.7 
9 

Fig. 13. Specific  resistance  (parameter: mass ratio pi2). Four-legged model is 
selected in the solid  line, while six-legged model is selected in the dotted line. 
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Fig. 14. Specific  resistance  (parameter: nondimensional velocity ti). 

G.  An Example of Functional Form E = E(%, 9, 6, zi, 0) 
In  this  section the functional form of E is considered using 

the results of the simulation tests discussed in the preceding 
section. As it is very difficult to express E in universal form, 
the discussion in this section  is limited to a case of  an insect 
type  with RCS actuator arrangement (h^ -+ 0). As the above 
condition fixes the nondimensional number E, E is regarded as 
the  function constituents of riz, 3, 6, and 0. 

Now, then, the specific resistance E of walking  machines of 
this  study  is considered to consist of the following three terms: 

Term I :  A term based  on the kinetic energy of the leg 
system -+ 

Term 2: A term based  on the potential energy generated by 
the vertical motion of the center of  gravity of the 
leg system -+ €2  

Term 3: A term corresponding to the positive work of the 
actuator against the ground reaction force -+ €3 .  

Kinetic energy El of the leg system  consumed by actuators can 
be expressed by the  maximum kinetic energy of the leg system 
seen from the body as El - m2( P/(1 - p)}2z12, and 
expressed in a form of the specific resistance using kl for a 
constant as E ,  = kl/3riz{ /3/(1 - p) ] 2zi2/s^. On the other hand, 
it is known from Fig. 12 that  and €3, based  on terms 1 and 2, 
are expressed as e2 = k2q(fi) and €3 = k39, respectively. 
Furthermore, k3 is 0.5 according to linear analysis. Now, as 
the energy consumption due to vertical motion of the center of 



KANEKO et a[. : SIMILARITY IN WALKING MACHINE 27 

gravity of the leg system is in proportion to A, q(&) is RCS,6=0.3,6=0.75,%=0.002 

expressed by q(&) - A. If it is assumed that the overall 
specific resistance is expressed as the sum of e l ,  e2 ,  and e3 ,  the 

approximate eq. - 
$2 

E =h(fi, PI .+h(fi)s" (24) 

where 
- 

P 3  
(1 - PI2 

A(&, 0) = kl& ~ (25) I t I 0.0 
0 0.1 0.2 0.3 0.4 &0.5  0.6 0.7 

S 

f2(A)= k2A + k3. (26) 
Fig. 15. Comparison  between  numerical  analysis  and  approximate  equation 

(&, p, A are  fixed). 

As (24) has kl and k2 as unknown quantity, a solution can 
easily be obtained using two appropriate sets of numerical 
values for A, 9, and ti. Thus kl = 0.56 and k2 = 1.01  are 
obtained. Figs. 15-17 show the results of verification of  each 
parameter to the extent approximate calculation results are 
available. It is clear that although (24)  is obtained using  rough 
approximation, fairly accurate approximation of the calcula- 
tion results is available by selecting appropriate kl and k2 
values. In addition, since (24) is very simple as compared with 
the equations used for simulation tests, theoretical specific 
resistance E can easily be calculated by preparing a fixed 
equation such as (24) for a typical leg. 

After all, there are two primary energy related factors 
considered here. First is the occurrence of vertical foot force 
(kg?. This results in large bidirectional transfers of energy 
through the joint actuators even if the vehicle center of gravity 
is not  moving vertically and there is no horizontal foot force 
required to propel the machine. Second is the bidirectional 
transfer of energy through the actuators due to acceleration of 
leg inertias 

and vertical motion (kz&i) of the leg centers of gravity during 
the stride cycle. Some of the most advanced walking machines 
[I] , [4], [ 1 11, [ 121 in existence totally eliminate the first factor 
(k3 -+ 0) by incorporating gravitationally decoupled actuating 
system [ 121. 

IV. AN INTERPRETATION OF SIMILARITY LAW 
Let us assume two models, model 1 and 2, which are 

different in size but  in perfect geometrical similarity. If as far 
as the gait pattern is the same, relations 6, = 62, s"l = J2, and 
p1 = P2 are valid. Now assuming that = f i 2  and the sizes 
differ by k times (Z1/Z2 = k), it is only  when a, = a, that 
the specific resistance of  model 1 and  2 become theoretically 
the same. That is to say, the specific resistances of  two similar 
walking machines differ when the sizes of the machines are not 
the same, and the specific resistances become the same only 
under limited operating conditions. 

V. CONCLUSION 
This paper uses specific resistance as the evaluation index of 

energetic efficiency, conducted investigations of the similarity 

- numerical 
analysis -__ approximate eq. 

0.6 

0.4 

RCS 
6-0.2 

G=o .002 
o=O. 3 

0.01-1 
0.5 1.0 

Fig. 16. Comparison  between  numerical  analysis and  approximate  equation 
( f i ,  li, f i  are fixed). 
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c=O . 3  

fi-0. 002 

0.4 
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Fig. 17. Comparison  bet$veen  numerical  analysis  and  approximate  equation 
(ti, 0, 6 are fixed). 

law  of  walking machines, including simulation tests, from a 
viewpoint of specific resistance. This work has determined the 
following results. 

1) Specific resistance E can be expressed by  a function of 
five nondimensional parameters, mass ratio &, nondi- 
mensional height 6, stride ratio s", duty factor p, and 
nondimensional velocity ti. 

2) The effect of nondimensional height 6 on the specific 
resistance is quite remarkable. In the case of  a  mammal 
type walking machine, the greater 6, the smaller the 
specific resistance for the same stride. And  in the case of 
an insect type walking machine, the phenomenon is 
reversed; i.e., the smaller 6, the smaller the specific 
resistance. 
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For same stride ratio, the effect of the mass ratio f i  on 
the specific resistance is linear. 
The consumed energy of the actuator due to the ground 
inertia reaction force generated by the acceleration 
motion of the leg system cannot be neglected  when the 
walking  speed increases. 
When four-legged and six-legged walking  machines 
using the same legs are operated at the same speed, the 
specific resistance of the six-legged walking  machine 
generally decreases at high  speed because the duty factor 
can  be reduced to 0.5. At low speed, the specific 
resistance of the four-legged machine decreases. 
When  two  walking machines, 1 and 2, have the same leg 
mass ratio f i  and are geometrically similar, the specific 
resistances of  both machines become the same when u1 
= & u 2 ,  where zl is the average walking  speed  and k is 
the similarity ratio (Il /12).  

APPENDIX  A 
RCS Type Arrangement 

1 1 
- mP+- mI2 cos ( O i l  -e i2)  
3 2 
1 
- m12 
3 

1 
2 

-- m12 sin (Oil - 0;2) 0 

m12 sin (Oi l  - Oi2)  - m12 sin ( O i l  - Oi2)  

2 

Dj = 
- I  (cos Oil + cos Bi2) - I (sin Bil + sin Oi2) 
- I  cos Biz - I sin 6Ji2 

BCS Type Arrangement 

1 
- m12 COS (eil - 
2 
1 

Biz) - mf2 
3 

1 1 

2 

-- m12 sin (eil - Oi2) 0 

Bi= [ - - mI2 sin (eil - B i z )  - mf2 sin (Oil -e iz)  

1 
2 

Di = 
- 1 cos Oil - I  sin Oil 
- I  cos ei2 - 1 sin Oi2 1 . ('48) 

APPENDIX B 

The RCS type arrangement is expressed by (A9), which 
explains the relationship between aij and 8, according to Fig. 
4. Thus 

Iail  = eil +- 7r 

2 taj2 = ei2 - eil + p. 

Therefore, K is given by (A10) when expressed by the relation 
of cii and 6,: 

K = [  -1  "1 1 

Similarly, K' for the BCS type arrangement is given by 

K ' =  [i y ]  
APPENDIX C 

When the leg mass is zero, the sum of the work of the hip 
joint and the knee joint is always zero. As the  body  moves  in a 
direction perpendicular to the direction of  the  machine support 
force, the machine-support force performs no work against the 
system. Taking the above facts into consideration and refer- 
ring to [7] and  model  of actuators (5) ,  the specific resistance of 
RCS type leg arrangement is determined by 

where coordinate x has its origin at the hip and  is  positive  in 
the forward direction (2 = x/21).  

On the other hand, in the case of the BCS type, the integrand 
is expressed by 

&2(1-$2-h^2 1/2 1 
($2 + 62)3/2  
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Then, assuming that the stride is sufficiently small as 
compared with the length of the leg (s/21 4 1), an 
approximate solution is obtained by neglecting terms beyond 
22: 

h>OS RCS, 
1s” 

E k - -  
. 4 h  

APPENDIX D 
Consumed energy E, when simplified, can be expressed by 

the product of joint moment A4 and joint angular change Aa as 
shown  by (A18). Hip joint and knee joint are considered for 
joint angular change, but when = 0, as the external work of 
both joints is always the same with opposite signs, taking up 
only the hip joint will  not lose universality: 

In the case of the RCS type and insect type leg arrangements, 
joint moment A4 and angular change ACY are considered M a 
s, Aa a s. Therefore the specific resistance for 3 = 0 is 
represented by (A19). 

ks2 
E=lim -=O. 

s-0 mlgs 

In the case of  mammal type BCS arrangement, as the hip joint 
moment does not become zero even if s = 0 (refer to Section 
111-A), A4 = k l  + k2s and Aa a s are obtained. Therefore the 
specific resistance for s = 0 is expressed by 

klS(k1 +k2s) o. 
E = lim 

s-0 mlgs 

The above-mentioned philosophy is the physical basis for E ?X 

0 if s = 0. A similar philosophy applies to mammal type RCS 
(m h 0). In this case, E h 0 if s = 0 because the leg mass 
normally generates moment about the hip joint. 
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NOMENCLATURE 
B movement of center of gravity of  body during 

E energy consumption by actuators during one 

g gravitational acceleration 

Hi horizontal ground reaction force in ith leg 

I leg unit length 

one cycle 

cycle 

h,  h body height, nondimensional  body height 

k similarity ratio 

P 
s, s“ 
TO 
zl, 22 

E 

P 

mass  of body, mass of one leg, nondimensional 
mass ratio 
hip joint moment of ith leg, knee joint moment  of 
ith leg 
number of legs, number of legs in support phase 
at even-number leg row, number of legs in 
support phase at odd-number leg row 
power consumption in joint actuator 
stride length, stride ratio 
walking period 
average walking velocity, nondimensional veloc- 
ity 
vertical ground reaction force in ith leg 
x-directional component of ith leg inertia force, 
x-directional component of ith body reaction 
force 
y-directional component of ith leg inertia force, 
y-directional component of ith leg body reaction 
force 
specific resistance 
duty factor. 
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