東京大学 大学院新領域創成科学研究科 基盤科学研究系 先端エネルギー工学専攻 2016 年 3 月修了 修士論文要旨

機械学習を用いたプラズマ合体中の磁場構造推定法の開発

学生証番号 47-146078 氏名 西田 賢人 (指導教員 小野 靖)

Key Words: ST-ST merging, Machine Learning, Magnetic field, Equilibrium reconstruction, MHD simulation

1. 序論

究極のエネルギー源として期待される核融合炉において, 高 β 運転は経済性の観点から重要視されている. 球状トカ マク (ST) 配位は,高 β 運転を実現することができるが,そ の形状から中心ソレノイドコイルを使用することができず, 立ちあげに問題がある. プラズマ合体法は,2つの ST 配位 を合体させ,効率的な ST 立ちあげを行う手法である.東京 大学 TS-4 装置では,磁気リコネクションによる加熱を活か した強磁場高温合体実験が予定されている.強磁場合体 ST は,安定かつ高効率な平衡配位であることが望ましいが,従 来使用してきた磁気プローブによる診断が高温領域では使 用できず,また合体中には平衡を仮定することができない ため,EFIT等,既存の手法を用いることができない.そこ で機械学習を用いた新たな非接触/非平衡磁場推定手法を開 発,合体配位がどのような平衡配位に緩和するかを数値計 算で調べ,強磁場合体 ST の平衡制御を目指す.

2. 機械学習を用いた磁場構造推定

2.1 実験データベースによる学習

Fig.1 に示すように TS-4 内の磁気プローブ計測データを 用いて,サポートベクトル回帰 (SVR) を訓練し,磁場推定 を行う.磁場信号に対する推定値は,磁気プローブによっ て計測された値と高い精度で一致しており,平均した誤差 2 乗値 (MSE) は 2.56 × 10⁻⁵ である.これは,平均の誤差率 が~5% であり, SVR が高い精度で推定可能であることを 実証している.

Fig.1: TS-4 の磁場測定点と SVR に入力する特徴量と磁場 予測地点,予測結果. 壁際のコイルを用いて内部の測定点 の磁場を推定する. 結果は推定と実験値が良い一致を見せ ている.

Fig.2: 各時刻の等磁束線分布 (a) 実験 (b) 推定.

Fig.2 に示した等磁束線図では,各時刻において(左)実験 値と(右)推定値が一致しており,サポートベクトル回帰に よって合体率や磁気軸位置の推定が非接触で可能であるこ とが実証されている.磁束推定結果から,合体後の平衡を 仮定することで,平衡再構成が可能である.再構成から算 出した,形状パラメータ,ベータ値及び,安全係数を Table.1 に示す.合体後の配位は楕円度が高いことが特徴的である. 通常のトカマクに比較して,トロイダル・体積平均ベータ 値も高い.安全係数及びポロイダルベータ値が低いのは, 磁気リコネクションによる加熱を大きくするためにポロイ ダル磁場が強いためで,合体後も散逸されなかった磁場が 残っていることが示唆される.

2.2 シミュレーション学習による磁場構造推定

強磁場合体においては、磁気プローブを用いて学習デー タの収集が難しいため、強磁場高温領域の磁場構造学習デー タとして MHD シミュレーションを適用することを考えた. 訓練に用いるシミュレーション結果を Fig.3 に示す. 推定 結果は、合体の進展を定性的に予測することはできたが、磁

Table.1: TS-4 合体後配位の平衡パラメータの評価

アスペクト比 A	2.12
楕円度 <i>κ</i>	3.52
三角度 δ	0.149
トロイダルベータ β_t	17.4 %
ポロイダルベータ β_p	0.107
体積平均ベータ 〈β〉	14.3 %
95 % 磁気面における安全係数 q95	2.55

Fig.3: MHD 合体シミュレーションによる圧力 (色) / 磁束 (等高線) / 磁場 (ベクトル) の時間発展

場分布の定量的な一致は得られていない.その要因として, シミュレーションの磁場分布と実験の磁場分布が一致して いないことが挙げられる.磁場推定システムは壁付近のコ イルによって内部の磁場信号を推定するため,端における 不一致は推定において不利に働く.特に,径方向端付近で, (i)シミュレーションの初期磁束分布が common flux を持っ ていないこと,(ii)実験で垂直平衡磁場が径方向の平衡を保 つのに十分でないこと,(iii)シミュレーションの境界条件が 実験と完全には一致しないこと等が原因と考えられる.

3. 合体前後の平衡量の評価

3.1 0次元量の時間発展

合体によって平衡配位がどのように緩和するかを MHD シミュレーションで調べた. MHD 合体シミュレーション における 0 次元量の時間発展を Fig.4 に示す.

合体の前後で、トロイダル磁束が保存されることがわかる. 合体開始後、合計プラズマ電流は減衰している. ポロ イダル磁場エネルギー $W_{B_{pol}} = \Psi^2/2L$ が磁気リコネクショ ンによって散逸するが、ポロイダル磁束 Ψ は保存されるの で、インダクタンス L は増える. 合体前後で Ψ 一定のため、 $I_p = \Psi/L$ は減少していると考えられる. 磁気リコネクショ ンによって解放されたポロイダル磁場エネルギー $W_{B_{pol}}$ は 運動エネルギー K_r, K_t, K_z へと変換され、一部は断熱圧縮 等を介してプラズマ熱エネルギー W_{th} へと変換される. ト ロイダル磁束は保存する一方、圧縮によってプラズマ体積 が減少するため、トロイダル磁場も圧縮され、トロイダル 磁場エネルギー $W_{B_{tor}}$ も増加することが示唆される.

3.2 合体前後の平衡パラメータの変化

シミュレーションにおいて合体前後の平衡パラメータの 変化を Table.2 にまとめる.合体によって,高楕円度の配位 へと緩和している.トロイダル磁束が保存するため,トロ イダル磁場を圧縮しない場合,軸方向に合体したプラズマ は軸方向に伸びる. β_p は磁気リコネクションによってポロ イダル磁場エネルギーが解放され,断熱圧縮による加熱で 熱エネルギーへと変換されるため,顕著に上昇する.β_t は

Fig.4: プラズマ合体の 0 次元量の時間変化. (a) 合体率. (b) プラズマ電流 I_p , トロイダル磁束 ϕ . (c) セパラトリク ス内トロイダル磁場エネルギー $W_{B_{tor}}$, ポロイダル磁場エネ ルギー $W_{B_{pol}}$, 熱エネルギー W_{th} . (d) 運動エネルギー (径 方向 K_r)/(トロイダル方向 K_t)/(軸方向 K_z)

Table.2: ST-ST 合体前後における平衡パラメータの変化.

パラメータ	合体前	合体後	合体圧縮後
アスペクト比 A	1.78	1.76	1.83
楕円度 к	1.69	3.10	2.31
三角度 δ	0.496	0.766	0.655
β_t [%]	10.1	12.9	13.5
β_p	0.363	0.353	0.568
$\left< eta \right> [\%]$	5.54	5.77	6.01
<i>q</i> 95	7.18	17.1	14.6

トロイダル磁場エネルギーも圧縮され,増加するため,β_p ほど顕著に増加しないと考えられる.ST-ST 合体において は、トロイダル磁束の保存が圧縮を妨げる方向に働くため, 合体時に外部から圧縮をかけることが重要であると考えら れる.

4. 結論

強磁場合体に向けた合体中磁場推定及び合体後平衡解析 を行うため、機械学習を用いた非接触磁場構造推定システ ムを開発・評価した.サポートベクトル回帰を用いること で、実験データベースを有限時間で効率良く学習し、相対 誤差率 5% 程度の高い誤差で推定を行うことができた.強 磁場高温実験に向けてシミュレーション学習による推定を 試み、合体中プラズマの定性的な予測を行うことができた が、定量的一致には改善が必要であると考えられる.シミュ レーションを用いた合体前後の平衡量解析では、トロイダ ル磁束の保存と圧縮が ST-ST 合体で重要であることが示唆 された.