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Abstract 

 

Deoxyribonuclease II (DNase II) digests DNA in endolysosomes. In the absence of 

DNase II, undigested DNA activates cytoplasmic DNA-sensing pathways. Little is 

known, however, about the role of DNase II in endolysosomal DNA sensing by TLR9. 

Here we show that DNase II is required for TLR9 responses. Two types of TLR9 

ligands, CpG-A and CpG-B, were used. Only CpG-A responses were impaired in DNase 

II-deficient DCs. Enzymatically inactive DNase II mutants did not rescue CpG-A 

responses. DNase II cleaved CpG-A from 20mer to 11-12mer oligodeoxynucleotides. A 

synthetic 3’ 11mer CpG-A fragment was able to activate DNase II-deficient DCs. Since 

CpG-A is reported to induce type I IFN production in LAMP-2
+ 

lysosomes in 

conventional DCs, the localizations of endogenous DNase II and internalized CpG-A 

were examined. Results showed that CpG-A exhibited greater colocalization with 

LAMP-2
+ 

lysosomes than CpG-B or the 3’11mer, CpG-A also increased DNase II 

trafficking to LAMP-2
+ 

lysosomes. These results suggest that TLR9 responds to DNA 

fragments cleaved by DNase II. 
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1. Introduction 

 

1.1 Innate and adaptive immunity 

The mammalian immune system is comprised of two interrelated arms of responses, 

namely, the innate and adaptive immune systems. The innate immune system is the 

first-line of defense against microbes [1]. This system allows the host immediate 

action towards pathogens. This is achieved by a set of germ-line encoded receptors 

known as the “pattern recognition receptors” (PRRs), which detect microbial 

components conserved among pathogens (collectively regarded as pathogen-

associated molecular patterns, PAMPs) [2].  Antigen-presenting cells (APCs) such as 

macrophages and dendritic cells are the main inducers and effectors in this system. 

Upon stimulation through the PRRs, they are capable of mediating inflammatory 

responses at the site of infection. In addition, these APCs undergo maturation and 

antigen processing, presenting the captured antigens to cells in the adaptive immune 

system [3]. Upon epitope recognition with their surface receptors, specific clones of B 

and T lymphocytes swiftly proliferate and differentiate into effector cells. Even after 

antigen clearance, a small number of these lymphocytes persist as memory cells, 

which provide long-lasting protective immunity against subsequent encounter of the 

same antigen [4, 5]. In addition to the PRRs from APCs, PRRs from adaptive immune 

cells can also directly trigger the cells to mount an immune response [6, 7]. In general, 

productive immune responses require the interactions between these two arms with 

delicate controls. 
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1.2 Innate pathogen sensors  

To detect the numerous pathogens in our surrounding environment, the innate 

immune system has to equip with a broad array of sensors that detect different 

components of the pathogens. The initially identified innate receptor is the Toll-like 

receptor (TLR) family, which consists of specialized family members responsible for 

sensing lipids, proteins and nucleic acids from microbes. Subsequently, cytosolic 

receptors for nucleic acids were also identified, which include the retinoic acid-

inducible gene I (RIG-I) like receptor family for sensing cytosolic RNA, and various 

cytosolic DNA sensors. In the latter category, a number of candidates have been 

identified, such as the DNA-dependent activator of interferon (IFN) (DAI) regulatory 

factors, Asp-Glu-Ala-Asp (DEAD) box polypeptide 41 (DDX41) and IFN-inducible 

protein 16 (IFI16) [8]. Recently, a seminal progress on intracellular DNA sensing has 

been the identification of the dinucleotide cyclic-GMP-AMP (cGAMP) synthase 

(cGAS) [9], which generates cGAMP, the ligand that can directly stimulate the 

common adaptor protein called stimulator of interferon gene (STING) [10]. STING 

resides on the endoplasmic reticulum (ER) membrane and upon detection of upstream 

messenger, activates the transcription factor nuclear factor κ-light-chain-enhancer of 

activated B cells (NF-κB) and IFN regulatory factor 3 (IRF3), resulting in production 

of type I IFN and proinflammatory cytokines [11].  

 

1.3 The DNA-sensing TLR9 

The Toll receptor was initially discovered in Drosophila melanogaster for controlling 

embryonic patterning and immune responses in the organism [12]. However, in 

mammals, TLRs are specialized in immune defense [13]. TLRs, like the Drosophila 

Toll, are evolutionarily conserved type I transmembrane (TM) receptors that bear an 
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ectodomain made up of leucine-rich repeats (LRRs) domain for PAMPs detection 

(Figure 1). Each TLR consists of 19-25 tandem LRR motif, and each LRR contains 

24-29 amino acids. Following the LRRs are the cysteine-rich motif, the TM region 

and the intracellular Toll-interleukin-1 receptor (TIR) domains. Due to the conserved 

nature of the TIR domain between interleukin-1 receptor (IL-1R) and TLRs, they 

share similar downstream signaling pathways [14, 15]. There are currently 13 known 

TLRs in the mammalian genome (TLR1-13). Their respective ligands and subcellular 

localizations are briefly depicted in Figure 2.  

There is only one DNA sensor within the TLR family, TLR9, which is found 

in the endosomes in the steady state (Figure 2a). It was initially discovered as a 

receptor for bacteria-derived DNA containing unmethylated CpG motifs [16]. Later, 

the target of TLR9 has been extended to viral CpG-rich DNA as well [17]. Since CpG 

DNA is potent in stimulating TLR9 in immune cells to produce T helper type 1 (Th1) 

cytokines, such as IL-12 [18-20], it is commonly used as an adjuvant in vaccines 

against infections or tumors [21, 22]. 

 

1.4 TLR9-stimulating ligands 

Before the discovery of TLR9, synthetic CpG oligodeoxynucleotides (ODNs) have 

been developed as immunostimulants for clinical purposes [23, 24]. Later, the 

receptor for these ODNs was found to be TLR9 [16]. Currently, there are three major 

types of CpG ODNs: CpG-A, CpG-B and CpG-C. CpG-C can be considered as a 

combination of the properties from CpG-A and CpG-B. These three types of CpG 

DNA have in common the stimulatory CpG motif made up of the sequence formula 

“purine-purine-CG-pyrimidine-pyrimidine” [25].  Experimental analyses revealed that 

the best sequence for stimulating various species contains GTCGTT. The stimulatory 
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effect is enhanced when the optimal sequence is preceded by a TC dinucleotide at the 

5’ end and followed by pyrimidine-rich sequences at the 3’ end [25]. The three classes 

of ODNs differ in terms of nucleotide sequences and backbone modifications [26-28]. 

CpG-A has a central palindromic sequence and poly-G at both the 5’ and 3’ ends. 

These poly-G sequences are phosphorothioated (nuclease resistant) in each of the 

CpG-A subtypes (Table 1). For CpG-B, all the bases are phosphorothioated and there 

is no central palindrome as that found in CpG-A. On the other hand, nucleotides in 

CpG-C are all phosphorothioate (PS)-modified with palindromic sequence near the 3’ 

end (Table 1).  

The effects of CpG-A and CpG-B also differ as they tend to stimulate different 

cell types and induce different inflammatory responses. CpG-A is potent in inducing 

the type I interferon (IFN), while CpG-B strongly activates the NF-κB pathway [27, 

29, 30]. Oligodeoxynucleotides with phosphodiester (PO) backbones are believed to 

be more potent in stimulating plasmacytoid dendritic cells (pDCs) and natural killer 

(NK) cells [27]. Plasmacytoid dendritic cells are known to respond to CpG-A 

vigorously with the production of IFN-α, which in turns activate NK cells [31]. The 

nuclease-resistant PS-modified ends render a longer half-life of CpG-A in stimulating 

the cells. To unravel the potency of CpG-A in inducing massive production of IFN in 

pDCs, Kerkmann and others have demonstrated that both the central palindrome and 

the poly-G motifs cooperatively form a stable tertiary structure that resembles a virus 

particle [32]. Such nucleic acid-based nanoparticle strongly induces IFN-α production, 

and that CpG-B-coated polystyrene nanoparticle also gains the potency of IFN-α 

induction as that of CpG-A [32]. Thus, forming aggregated structure appears to be 

important in IFN induction.  
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Figure 1. The structural differences and similarities between the three types of inter-
related receptors. The ectodomain of IL-1R is composed of three tandem Ig-like 
motifs, which is tremendously different from that of the Drosophila Toll and 
mammalian TLRs, indicating the difference in the nature of ligand bindings. IL-1R 
binds to the proinflammatory cytokine IL-1β, whereas the Drosophila Toll binds to a 
cleaved internal protein called Spatzle in response to PAMPs [33, 34]. The 
mammalian TLRs are close relatives of Toll that are able to bind to PAMPs directly. 
The three types of receptors share a conserved TIR domain, thus recruiting similar 
repertoires of signaling adaptors and firing similar responses.  
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Figure 2. Subcellular localizations and representative ligands of the murine TLR 
family. (a) The surface TLRs (TLR1-6) have been found to detect bacterial cell wall 
components. TLR1/2 and TLR2/6 forms heterodimers that recognize bacterial lipids, 
while other TLRs form homodimers [35]. The intracellular TLRs (TLR3, 7, 9) are 
devoted to the recognition nucleic acid from viruses or bacteria. (b) TLR11-13 are 
also localized in endosomal compartment. TLR11 and TLR12 can form homodimer 
or heterodimer with each other. TLR13 has only been found to form homodimer with 
itself.  
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ODNs 5’-3’ sequence Species specificities References 

1585 ggGGTCAACGTTGAgggggg Mouse [29] 

2216 ggGGGACGATCGTCgggggg Human/mouse [36] 

2336 gggGACGACGTCGTGgggggg Human [37] 

684 tcgacgttcgtcgttcgtcgttc Human/mouse [38] 

1668 tccatgacgttcctgatgct Mouse [25] 

2006 tcgtcgttttgtcgttttgtcgtt Human [36] 

2395 tcgtcgttttcggcgcgcgccg Human/mouse [39] 

M362 tcgtcgtcgttcgaacgacgttgat Human/mouse [22] 

 

Table 1. Examples of different subtypes of CpG-A (1585, 2216 and 2336; shaded in 
pink), CpG-B (684, 1668 and 2006; shaded in green) and CpG-C (2395 and M362; 
shaded in blue). The species specificities are mainly determined empirically. The 
palindromic sequences are underlined, with phosphodiester bonds represented by 
capital letters and lower cases the phosphorothioated bases.  
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1.5 TLR9 activation and downstream signaling cascades 

TLR9 has to be transported to the site where DNA is internalized. Unc-93 homolog 

B1 (Unc93B1) is an ER-resident transmembrane glycoprotein that carries TLR9 to the 

ligand-containing endolysosomal compartments [40]. After the ligand is delivered to 

endolysosomal compartments where TLR9 is present, TLR9 has to be proteolytically 

cleaved by cathepsins to its active form for signalling [41-44].  

The TLR family employs two different types of signaling pathways, namely 

the myeloid differentiation primary-response 88 (MyD88)-dependent and the TIR-

domain-containing adapter-inducing interferon-β (TRIF)-dependent pathways [14].  

However, TLR9, similar to the endosomal RNA sensor TLR7, only relies on the 

MyD88-dependent pathway to mediate downstream signals [45] (Figure 3).  

Engagement of MyD88 to the TIR domain of TLRs recruits the IL-1R-

associated kinase 4 (IRAK4), IRAK1, and IRAK2 in a sequential manner. This 

complex in turn interacts with the tumor necrosis factor (TNF) receptor associated 

factor 6 (TRAF6). Recent reports suggest that TRAF6 transmits downstream signals 

with two different modes of actions: oligomerization with IRAK1 or production of 

K63-linked polyubiquitin chain [46, 47]. Either mode of action by TRAF6 leads to the 

activation of the downstream kinase, the transforming growth factor-β activated 

kinase 1 (TAK1). TAK1 then activates both the mitogen-activated protein kinases 

(MAPKs) and the inhibitor of kappa B (IκB) kinase (IKK) complex. The latter leads 

to the nuclear translocation of NF-κB. Both the MAPKs and IKK activations are 

essential for the induction of inflammatory cytokines by TLR9 [48, 49]. The major 

inflammatory cytokines produced are IL-6, IL-12p40 and TNF-α.  

The MyD88-dependent pathway can also result in the production of type I IFN 

by recruiting the IRF family of transcription factors. Depending on the type of 
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immune cells, different IRFs are used [45, 50, 51]. In pDCs, TLR9 can induce 

exceptionally large amount of IFN-α through IRF7 and the TRAF6 complex. Some of 

the signaling molecules such as IRAKs and TRAF6 are also used in NF-κB activation 

[52]. However, in case of macrophages and conventional dendritic cells (cDCs), 

signals fired from TLR9 also induce type I IFN (IFN-β for cDCs), but only IRF1 is 

used [51].  

 
 
 

 

Figure 3. Simplified signaling pathways of TLR9. TLR7 and TLR9 are the endosomal 
TLRs that both employ MyD88 as a relay to recruit further signaling molecules. The 
NF-κB and MAPKs are required for inflammatory cytokine productions whereas 
IRFs are induced for type I IFN production. The specific IRF involved is cell-type 
specific.  
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1.6 Roles of DNase in immune diseases 

Due to the constant surveillance by a multitude of DNA sensors in our body, DNases 

have to function properly to ensure normal DNA degradations. Previous reports have 

shown that mutations or polymorphisms in DNase I predispose to systemic lupus 

erythematosus (SLE) in humans [53, 54] and mice [55]. In the Dnase1-/- mice, 

production of anti-nuclear antibodies and the deposition of immune complexes in the 

kidney have been reported [55].  

 The acid DNase, DNase II, is found to be a key suppressor of STING 

functions in normal physiological conditions [56]. Kawane and coworkers have 

demonstrated that DNase II is required for digesting engulfed apoptotic DNA in liver 

phagocytes [57]. In the absence of DNase II, DNA is accumulated in lysosomes and 

stimulates STING to release a large amount of IFN-β, which causes premature death 

of the embryo [56, 58]. For double-ablation of DNase II and the type I IFN receptor 

(Dnase2a-/- Ifnar1-/-), although the mice survive and only slightly anaemic, they 

develop chronic polyarthritis with age [59]. Other study also relates DNase II 

polymorphism to complications developed in SLE patients [60]. Since SLE is caused 

by the production of autoantibodies against apoptotic DNA [61], and DNase II-

deficient mouse embryos accumulate undigested DNA in phagocytes found in various 

tissues [57, 62], it  is plausible that DNase II may play some roles in SLE.  

 DNase III (also known as the 3' repair exonuclease 1, Trex1) is another DNase 

that is involved in type I IFN-related autoimmune disease in human, called the 

Aicardi-Goutières syndrome (AGS) [63]. Mutations of DNase III in human 

autoimmune diseases have also been documented [64].  
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1.7 TLR9 and DNase II 

Since TLR9 responds to DNA in lysosomal compartments [65], it is possible that the 

lysosomal DNase II contributes to TLR9 responses, either to enhance or attenuate, by 

modifying the DNA ligands. Oka et al. have noticed that DNase II is crucial in the 

clearance of mitochondrial DNA (mDNA) leaked during haemodynamic stress in 

cardiomyocytes. Failure to timely remove the mDNA activates TLR9 and induces 

cardiac inflammation. This can ultimately lead to myocarditis and dilated 

cardiomyopathy characteristics of heart failure [66].  

As the role of DNase II in cytosolic DNA sensors regulation has been revealed, 

it is intriguing to investigate the function of DNase II in the endosomal counterpart of 

DNA sensor, the TLR9, in immune cells. The fact that TLR9 does not cause lethal 

inflammation in Dnase2a-/- mice [67] suggests that regulation of TLR9 responses may 

involve more complicated manipulation of the ligand. Since DNase II digests DNA in 

lysosomes [68], and that TLR9 is also found in lysosome after stimulation with CpG 

DNA [69, 70], I examined the mechanism underlying DNA sensing by TLR9 in 

relation to DNase II. The present study shows that DNase II is indeed required for 

TLR9 responses upon stimulation with its conventional IFN-inducing ligand, CpG-A.  
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2. Materials and Methods 

 

2.1 Mice 

The wildtype (WT) mice were purchased from Japan SLC. The Tlr9-/- mice were a 

gift from Prof. Shizuo Akira’s lab (Osaka University, Osaka, Japan). The Ifnar1-/- 

mice were purchased from B&K Universal, while the Dnase2a+/- mice were 

purchased from RIKEN BioResource Center. The Dnase2a-/- Ifnar1-/- mice were 

generated by mating the Dnase2a+/- and Ifnar1-/- mice. The DNase II conditional KO 

mice (Dnase2aflox/+) was also purchased from RIKEN BioResource Center [59]. The 

Dnase2aflox/flox Tie2 Cre mice were generated by mating Dnase2aflox/+ and Tie2-Cre 

transgenic mice (Jackson Laboratory). All the mice were either purebred or inbred to 

a C57BL/6 background. The animals were kept in a specific pathogen-free 

environment within the animal facility in the Institute of Medical Science, the 

University of Tokyo. All animal experiments were approved by the Animal Care and 

Use Committee, strictly performed in accordance to the institutional ethical guidelines 

issued by the University of Tokyo.  

 

2.2 Cell lines 

 The pro-B cell line Ba/F3 derived from the C3H mice was used in this study for 

murine DNase II protein production. It is cultured in complete RPMI medium 1640 

(10% fetal calf serum, FCS; 1X penicillin-streptomycin-glutamine; 50µM 2-

mercatoethanol, 2-ME) supplemented with IL-3, and maintained in 37°C CO2 

incubator. Plain RPMI medium 1640, FCS and penicillin-streptomycin-glutamine 

were purchased from Gibo. 2-ME was from Nacalai Tesque Inc.  

 



13 
 

2.3 TLR9 ligands 

CpG-A (2216, sequence 5’-ggGGGACGATCGTCgggggg-3’), CpG-B (1668, 

sequence 5′-tccatgacgttcctgatgct-3′) and other ODNs were synthesized by Hokkaido 

System Science. Nucleotides in upper case represent phosphodiester linkage, whereas 

those in lower cases were in phosphorothioate bonds, which are nuclease-resistant. In 

some of the treatments, CpG ODN was pre-incubated with lipofectamine 2000 

Reagent (Invitrogen) at room temperature for 20 minutes, following the 

manufacturer’s instructions before added to cells. 

 

2.4 Murine DNase II protein 

Ba/F3 expressing the murine Dnase2a with a FLAG-His (fH) tag at the C-terminus 

was made. Culture supernatant from these cells was collected and purified with FLAG 

peptide (DDDDK peptide) (MBL International). To quantify the purified proteins, a 

small amount of each of the proteins was analyzed by Sodium dodecyl sulfate -

polyacrylamide gel electrophoresis (SDS-PAGE) and silver-stained (silver-staining 

reagents purchased from Invitrogen). The band intensities were then measured using 

Photoshop (Adobe).  

 

2.5 DNase II activity assay 

The DNA digestion activities of the purchased porcine DNase II, or the purified WT 

and mutant murine DNase II were determined by adding 10-50ng of the proteins into 

the activity reaction buffer (10mM Tris/HCl pH5.3, 5mM EDTA pH8.0) with 500ng 

of 6kb DNA plasmid and incubated at 37°C for 1 hour. The results were visualized by 

agarose gel electrophoresis with 1% agarose gel pre-stained with ethidium bromide.  
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2.6 Vector constructions 

The WT dnase2a coding sequences was obtained by Polymerase-chain reaction 

(PCR) using primary dendritic cells complementary DNA (cDNA) as template. It was 

then subcloned into the pMX, pMXpuro or pMXneo vector with FLAG-His (fH) tag 

at the 3’ end. The DNase II mutants H115A, H132A and H297A were generated by 

the site-directed mutagenesis with the PrimeSTAR Max PCR kit (TaKaRa), using the 

WT DNase II inserted into pMD20-T vector (empty vector from TaKaRa) as template. 

For the mutagenesis, the primer sets used for the various mutants is listed in Table 2.  
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Site of mutation Primers set used Amino acid change 

115 Fw: CATGGGGCAACGAAGGGTGTCCTGCTC 

Rv: CTTCGTTGCCCCATGGCCGGTAGAGTC 

HistidineAlanine  

132 Fw: CTGGTCGCCAGTGTGCCTCGCTTCCCA 

Rv: CACACTGGCGACCAGCCAGAAGCCCCC 

HistidineAlanine 

297 Fw: GAGGACGCATCCAAATGGTGTGTGGCC 
 
Rv: TTTGGATGCGTCCTCTGTGGCACTGAA 
 

HistidineAlanine 

 
 
Table 2. Primers used to introduce the amine acid mutations in the murine DNase II. The underlined primer sequences represent the amino acid 
being changed. 
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2.7 Retroviral transduction 

The respective vector was transfected into the Plat-E retroviral packaging cell line 

following the instructions from FuGene 6 (Roche). Two days after transfection, the 

viral supernatant in complete DMEM was collected. For transduction, the supernatant 

was added to the cells with the liposome DOTAP (Roche). The culture plate was then 

centrifuged at 2,000 rpm for 60 minutes.  

 

2.8 Reverse transcription and quantitative real-time PCR 

Cellular RNA was purified using the RNeasy Mini Kit (Qiagen) and then reverse 

transcribed to cDNA with ReverTra Ace qPCR RT Kit (Toyobo). The resulting 

cDNA was relatively quantitated with the TaqMan probes for β-actin or DNase II (all 

obtained from Applied Biosystems) using the machine StepOnePlus Real Time PCR 

System (Applied Biosystems).   

 

2.9 ELISA 

The production of IFN-α, IL-12p40 and RANTES were all measured using the 

ELISA kits from R&D Systems.  

 

2.10 Co-immunoprecipitation and Western blotting 

Cells were collected and washed twice with phosphate-buffered saline (PBS). The cell 

pellets were lyzed with lubrol lysis buffer (1% lubrol, 150 mM NaCl, 50 mM 

Tris/HCl pH 7.4, 5 mM EDTA pH 8 and complete proteinase inhibitor from Roche). 

Lysates were incubated on ice for 30 minutes with occasional vortexing. They were 

then centrifuged at 150,000 rpm with a bench-top centrifuge (Kubota) for 15 minutes 

pre-cooled at 4°C. In the meantime, sepharose-conjugated antibodies were washed 
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briefly in PBS and then lysis buffer before added to cell lysates. The mixtures were 

allowed to rotate in cold room for 1.5-2 hours before washing. After 

immunoprecipitation, the mixtures were washed three times with 0.1% lubrol washing 

buffer (0.1% lubrol, 150 mM NaCl, 50 mM Tris/HCl pH7.4, 5 mM EDTA pH8), and 

boiled with 2x sample buffer (0.1M Tris/HCl pH6.8, 20% glycerol, 10% SDS, 6% 2-

ME, 0.05% bromophenol blue) at 98°C for 8 minutes. The NHS-activated sepharose 4 

fast flow (GE Healthcare)-conjugated antibodies that were used for 

immunoprecipitation included: mouse anti-TLR9 N-terminal (B33A4) or C-terminal 

mAbs (C34A1) (both generated in our laboratory) [71], mouse anti-DNase II mAbs 

(#5-38 and #17) and mouse anti-FLAG mAb (M2, purchased from Sigma-Aldrich).  

For Western blotting, the boiled lysates were subjected to the standard SDS-

PAGE procedures and the proteins on the gel were transferred onto a polyvinylidene 

difluoride (PVDF) membrane, blocked with 2.5% skim milk in TBS-T (50mM Tris, 

150mM NaCl and 0.05% Tween-20, adjusted to pH7.4) and immunoblotted. The 

antibodies used include: rabbit anti-TLR9 TIR domain pAb made by Matsumoto F. in 

our laboratory; rabbit anti-GFP pAb (MBL International) and mouse anti-FLAG tag 

M2 mAb (Sigma-Aldrich). The signal was developed using the ECL Select Western 

blotting Detection Reagent and image captured with ImageQuant LAS500 (both GE 

Healthcare).  

 

2.11 Flow cytometry analysis 

Splenocytes were obtained by mechanical disruption of the whole spleen. The 

suspended cells were then passed through a mesh and red blood cells (RBCs) 

removed by lyzing with the RBC lysis buffer (0.144M NH4Cl, 0.017M Tris, pH7.2) 

(room temperature for 3 minutes). For surface staining of BM-pDCs and BM-cDCs, 
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cells were pre-incubated with anti-CD16/32 antibodies in fluorescence-activated cell 

sorting (FACS) buffer (2.5% FCS, 0.02% NaHCO3 and 0.1% NaN3 in PBS) to block 

the endogenous Fc receptors to avoid non-specific antibody binding. Cells were 

stained with the following antibodies purchased from eBioscience: CD11b-FITC 

(M1/70), CD11c-PE (N418) and B220-APC (RA3-6B2). For checking the 

monoclonal antibody immunoglobin (Ig) subclasses and the type of light chain, the 

following antibodies were used: anti-IgG1 (A85-1, BD Pharmingen), anti-IgG2a 

(m2a-15F8, eBioscience), anti-IgG2b (RMG26-1, Biolegend), anti-IgM (II/41, 

eBioscience), anti-kappa (RMK-12, Biolegend) and anti-lambda (RML-42, 

Biolegend). All staining procedures were performed at 4°C for 15 minutes. The 

stained samples were analyzed using the BD Biosciences FACSCalibur cytometer and 

FlowJo software.  

 

2.12 Bone marrow cell preparation 

Murine bone marrow-cDCs (BM-cDCs) were cultured in complete RPMI medium 

1640 supplemented with 10ng/ml recombinant murine granulocyte-macrophage 

colony-stimulating factor (GM-CSF) (Peprotech). BM-pDCs were cultured in 

complete RPMI medium 1640 supplemented with Fms-like tyrosine kinase 3 ligand 

(Flt3L) (Peprotech) at 100ng/ml. Both BM-cDCs and BMDMs were used for 

experiments on the 7th day of culture. For BM-pDCs, on Day 7, they were double-

stained with CD11c-PE (N418) and B220-APC (RA3-6B2) in culture medium before 

sorting with FACSAria cell sorter from BD Biosciences. The purity of pDCs was over 

93% after sorting.  
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2.13 Bone marrow stem-cell transduction 

On Day 1, fluorouracil (5-FU) (Kyowa) was injected intraperitoneally (at 5mg/head) 

into the mice to kill the actively dividing mature cells in the bone marrow. On Day 4, 

plasmids of interest were transfected into Plat-E for retrovirus packaging. Mice were 

sacrificed on the next day and the BM cells were obtained and maintained in stem cell 

medium (15% FCS, 10% sodium pyruvate, 1X penicillin-streptomycin-glutamine, 

0.1% 2-ME, 0.01% IL-3, 0.01% IL-6 and 0.1% Stem Cell Factor in plain DMEM). 

On Day 7, viral supernatant was collected and transduced into the stem cell with 50µl 

of the reagent premix (0.1% IL-3, 0.1% IL-6 and 1% Stem Cell Factor in 50µl of 

sodium pyruvate) added per well. The transduction procedure was repeated once more 

on the next day. GM-CSF was then added to induce differentiation in cDCs. Cells 

were used for treatments on Day 21.  

 

2.14 Generation of the anti-mouse DNase II mAbs 

The mAbs were established by immunizing a Dnase2a-/-Ifnar1-/- mouse with the 

purified WT mDNase II-fH protein mixed with CFA (v:v=1:1) intraperitoneally and 

also injected to the animal’s footpad. The same protein mixture with Incomplete 

Freund’s Adjuvant (IFA) was used as the boost two weeks later. The mDNase II-fH 

protein mixed with PBS was injected as further boost intraperitoneally and 

intravenously once a week for three more weeks. The immunized mouse was 

sacrificed one week after the final boost, and spleen cells were fused with the murine 

myeloma cell line SP2/O-Ag in a ratio of 5:1; while cells from lymph nodes were 

fused with SP2/O-Ag at 7:1. Polyethylene Glycol 1500 (Roche) was first added to the 

dispersed cell mixture pellet gently and slowly, after that, 12 ml of pre-warmed plain 

RPMI medium 1640 was also added carefully over a period of 5 minutes. After 
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removing the medium by centrifugation, the fused cells were seeded into 96-well 

plate. The hypoxanthine-aminopterin-thymidine (HAT) medium was added for 

selection 24 hours later.  

Ab screening started when the cell colonies were visible by bare eyes. The 

culture supernatant from the hybridomas was tested for the presence of the anti-

mDNase II antibody. FACS screening was done by using the Ba/F3 cells with forced 

expression of WT mDNase II on the cell surface by subcloning into the pDisplay 

vector (Life Technologies). Protein that is expressed from the pDisplay vector has a 

murine Ig-κ-chain leader peptide at the N-terminus, which directs the protein to the 

secretory pathway. The C-terminus of the protein is fused to the platelet derived 

growth factor receptor (PDGFR) transmembrane domain, so that it is anchored to the 

plasma membrane. Positive clones only for WT mDNase II were selected and 

expanded into 24-well plate in hypoxanthine-thymidine (HT) medium. Cells were 

stocked at this stage. Thymocytes from young BALB/c mice were obtained and 

seeded as feeder cells for hybridoma limiting dilution. The single-cell colonies were 

screened again for confirmation. Two mAbs (#5-38 and #17) were isolated.  

 

2.15 Purification of mAbs 

The monoclonal hybridomas were injected separately into the nude mice (Crlj:CD1-

Foxn1nu, purchased from Charles River Inc. Japan). One week after injection, ascites 

fluids were collected. To purify the mAbs, the ascites fluid from each of the mAbs 

was first centrifuged at 3,000 rpm for 30 minutes at 4°C. Two volumes of sodium 

acetate buffer (60mM sodium acetate, 29.5% acetic acid, adjusted to pH4.0 with HCl) 

were added and mixed by inverting. To precipitate impurities, amount of octanoic 

acid (Wako) equivalent to 0.04 volume of the ascites fluid was gently dripped into the 
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above mixture and shook on a seesaw shaker (at a speed of about 30 rpm) at room 

temperature for 30 minutes. After incubation, the mixture was centrifuged again for 

3,000 rpm for 30 minutes at 4°C. If the supernatant was not clear after centrifugation, 

additional octanoic acid has to be added in a unit of 0.01 volume of the ascites fluid, 

and repeat the incubation step again. This procedure was repeated until a clear 

supernatant was attained. After centrifugation, the supernatant was filtered through a 

0.45μm (non-sterile) and dialyzed against 1xPBS (about 2 litres) in cold room for 

overnight. On the next day, a second dialysis was performed by changing a newly 

prepared 1xPBS. The mAbs were dialyzed for the third time by changing another new 

volume of 1xPBS in the evening. On the following day, the dialysates were filtered 

through a 0.2μm filter (sterile). To determine the concentrations, optical density (OD) 

at 280nm (OD280) of 10x diluted dialysate was measured (OD280 of the value 0.146 

was calculated as 1mg/ml of mAb). Presence of the purified mAb was verified by 

running an SDS-PAGE and the gel stained with coomassie blue. The purified mAbs 

were label with biotin-XX, SE (Molecular Probes) and conjugated to the NHS-

activated sepharose 4 fast flow (GE Healthcare) for other applications.  

 

2.16 Fluorescent CpG-A or CpG-B uptake assay 

Fluorescein isothiocyanate (FITC)-conjugated CpG-A or CpG-B (Hokkaido System 

Science) was added to the cells seeded on a 24-well plate. The mixture was 

immediately chilled at 4°C for 30 minutes. After that, the culture was returned to the 

37°C CO2 incubator and incubated for the time indicated. Before FACS analysis, the 

cells were collected and washed twice in PBS. The fluorescent CpG clinging to the 

cell surface was quenched by trypan blue (Gibco) at 62µg/ml (diluted with PBS) for 

about 5 minutes before flow cytometry analysis [72].  



22 
 

2.17 CpG-ODN digestion assay 

CpG-A or CpG-B was incubated with purified murine DNase II protein in sodium 

acetate reaction buffer (50mM sodium acetate pH4.66 plus 5mM EDTA pH8.0) for 

24 hours at 37°C. Cleaved DNA was analysed by running in 20% Tris/Borate/EDTA 

(TBE) gel and stained with GelRed nucleic acid stain (Biotum) following the maker’s 

instructions. 

 

2.18 Confocal microscopy  

Cells were seeded onto a glass-bottom plate (Greiner bio-one) overnight and fixed on 

the next day with 4% paraformaldehyde for 20 minutes. After permeabilization with 

0.2% saponin in PBS for 8 minutes at room temperature, cells were stained with the 

following antibodies in combinations or separately: calnexin (abcam), EEA1 (Cell 

signaling), LAMP1-eFluor660 (eBio1D4B, eBioscience), LAMP2-eFluor660 

(eBioABL-93, eBioscience), wheat germ agglutinin-Alexa Fluor 594 (Life 

Technology), mDNase II (#5-38, #17). Anti-DNase II #5-38 and #17 were used at 

10µg/ml. All staining procedures were performed at room temperature. The 

fluorescent CpG ODNs were purchased from Hokkaido System Science. The images 

were viewed and analyzed using LSM710 Confocal Microscopy (Carl Zeiss) and 

ZEN 2009 software respectively. In all the statistical analyses, weighted 

colocalization coefficient was used.  

 

2.19 Monoclonal Ab cross-competition analysis 

To determine if the two anti-mDNase II mAbs #5-38 and #17 were derived from the 

same clone of hybridomas, Ba/F3 cells expressing mDNase II in pDisplay vector were 

pre-incubated with one of the undiluted mAb (unlabeled). The same or the other mAb 
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(biotinylated) was then added at the normal working concentration. Streptavidin-PE 

was used as the only secondary antibody bearing the fluorophore. The samples were 

then analyzed by flow cytometry.  

 

2.20 Statistical method 

Error bars in ELISA analysis were calculated according to the Student’s t test.  
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3. Results 

 

3.1 Role of DNase II in TLR9-mediated cytokine productions in BM-cDCs. 

I first examined the requirement of DNase II in TLR9 responses in BM-cDCs, one of 

the major APCs, by stimulating with CpG-A or CpG-B at different doses. As a 

control, the cellular responses to the TLR4/MD-2 ligand, lipid A (the active 

ingredient of LPS), were also studied. Since the Dnase2a-/- mice die prenatally [58], I 

used the DNase II and type I IFN receptor double-deficient mice (Dnase2a-/-Ifnar1-/-) 

[59]. To ensure that the BM-cDCs obtained from the double-deficient mice 

differentiated normally after 1 week of culture with GM-CSF in vitro, the cells were 

stained with the surface markers CD11b and CD11c. The wildtype (WT), Ifnar1-/- and 

Dnase2a-/-Ifnar1-/- BM-cDCs expressed similar percentage of CD11b and CD11c 

double positive cells after 1 week of culture (Figure 4a). I also examined TLR9 

proteolytic cleavage in these cells, and found that both the full length and cleaved 

TLR9 fragments were similarly immunoprecipitated in the three genotypes observed 

(Figure 4b). Thus, the GM-CSF-induced BM-cDCs from the Ifnar1-/- and Dnase2a-/-

Ifnar1-/- mice differentiated normally with similar expression levels of endogenous 

TLR9 as compared with the WT cells. Interestingly, when production of IL-12p40 

and RANTES from the Ifnar1-/- and Dnase2a-/-Ifnar1-/- BM-cDCs after CpG 

stimulation were measure with ELISA, only the CpG-A responses were severely 

impaired, while the CpG-B responses was mostly unaffected (Figure 4c).  

 In order to confirm the above observation in BM-cDCs that express intact IFN 

receptor 1, mice lacking DNase II specifically in hematopoietic cells were generated 

by mating Dnase2aflox/flox mice with Tie2-Cre transgenic mice. The conditional 

knockout mice generated (with genotype Dnase2aflox/flox Tie2-Cre) were analyzed. 
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Although the conditional knockout mice were born normally, the number of 

Dnase2aflox/flox Tie2-Cre mice obtained was much less than that predicted by the 

Mendelian ratio. The DNase II mRNA expression level was reduced by 80% in the 

mutant GM-CSF-induced BM-cDCs (Figure 4d upper panel). After a week of 

differentiation, the expression of CD11c and CD11b on the Dnase2aflox/flox Tie2-Cre 

BM-cDCs was similar to that of the Dnase2a+/+ Tie2-Cre control (Figure 4d lower 

panel). Again, CpG-A response, but not CpG-B response, was impaired in the mutant 

BM-cDCs (Figure 4e). However, the drop in cytokine production was milder than that 

observed in Dnase2a-/-Ifnar1-/- BM-cDCs, and this may be due to the residual DNase 

II expressed in these conditional knockout mice.  
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Figure 4. DNase II was only essential for CpG-A-induced TLR9 responses in BM-
cDC. (a) Flow cytometry analysis showing the cell surface expression of CD11b and 
CD11c staining in the in vitro GM-CSF-derived BM-cDC obtained from WT, Ifnar1-/- 
or Dnase2a-/-Ifnar1-/- mice. (b) Immunopreciptation of the endogenous TLR9 from the 
cells indicated. (c) Cell supernatants were collected 24 hours after ligand stimulations 
and cytokines productions were then measured by ELISA. (d) Real-time PCR analysis 
for checking the knockout efficiency in Dnase2aflox/flox Tie2-Cre GM-CSF-induced 
BM-cDCs. The surface expression of CD11b/CD11c on the BM-cDCs was analyzed 
by flow cytometry. (e) BM-cDCs from Dnase2aflox/flox Tie2-Cre mice were treated as 
in (c) and the IL-12p40 production measured by ELISA. The experiments in (a)-(c) 
were repeated for at least three times, while (d) and (e) were repeated twice due to 
unavailability of the conditional knockout mice. -, untreated. IP, immunopreciptation; 
IB, immunoblotting; N-ter., N-terminus; C-ter., C-terminus; FL, full length. *, 
p<0.05; **, p<0.01. 
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3.2 Impaired TLR9 responses in conditional DNase II-deficient BM-pDCs. 

Since type I IFN signaling is important in pDCs in that positive feedback loop 

mediated by the type I IFN receptor is crucial for robust type I IFN response [73], the 

Dnase2aflox/flox Tie2-Cre mice were used to examine the responses of pDCs. The 

DNase II knockout efficiency in the Flt3 ligand-induced BM-pDCs was examined 

(Figure 5a). The DNase II mRNA expression was reduced but about 80% as 

determined by real-time PCR. The surface CD11c and B220 expressions were also 

comparable in both the control and Dnase2aflox/flox Tie2-Cre BM-pDCs (Figure 5b). 

The gated cells shown in Figure 5b were sorted and used in the following experiments. 

To examine the TLR9 responses in the DNase II-deficient BM-pDCs, the cells were 

treated with CpG-A or CpG-B and cytokine production was evaluated by ELISA. IL-

12p40 secretion was impaired upon CpG-A stimulation (Figure 5c). The IFN-α 

production was also measured after CpG-A stimulation. As expected, CpG-A-induced 

IFN-α production was significantly diminished in the BM-pDCs (Figure 5d). In both 

IL-12p40 and IFN-α, the reductions were not as dramatic as those found in BM-cDCs 

(Figure 4). Such difference maybe due to the incomplete ablation of DNase II in these 

pDCs. Thus, together with the results from BM-cDCs, TLR9 signaling requires 

DNase II in order to mount an intact response especially towards one of its ligands, 

CpG-A.  
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Figure 5. CpG-A responses required the presence of DNase II in BM-pDCs. (a) About 
80% of DNase II was reduced in the Dnase2aflox/flox Tie2-Cre BM-pDCs as 
determined by quantitative real-time PCR. (b) The gated population of the Flt3L-
induced pDCs were sorted and used in experiments.  (c) ELISA detection of IL-12p40 
or IFN-α production after stimulation of the sorted cells from (b) with various doses 
of CpG-B (nM) or CpG-A (µM) for 24 hours. The experiments were only repeated 
twice as only two Dnase2aflox/flox Tie2-Cre mice were available for analysis. *, 
p<0.05; **, p<0.01.  
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3.3 Effect of DNase II-deficiency on CpG ODNs uptake in BM-cDCs 

To investigate the step where DNase II exerted its effect on TLR9 responses, possible 

defect in DNA internalization in Dnase2a-/-Ifnar1-/- BM-cDCs was examined. FITC-

labeled CpG-A or CpG-B was incubated with the BM-cDCs. After incubation, 

fluorescence by the surface-bound CpG ODN was removed by quenching. The 

fluorescent CpG ODN remained inside the cells after internalization was examined by 

flow cytometry analysis.  

The amount of fluorescent CpG-A or CpG-B internalized by the cells was not 

differ between the Ifnar1-/- and Dnase2a-/- Ifnar1-/- BM-cDCs 30 or 120 minutes after 

incubation (Figure 6). This indicated that DNase II is not required for DNA uptake 

and subsequent internalization in BM-cDCs.  
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Figure 6. DNase II did not affect CpG ODN uptake in BM-cDCs. The cells were 
incubated with the FITC-conjugated CpG ODN for 30 or 120 minutes at 37ºC and 
quenched before flow cytometry analysis. A representative result out of 3 trials is 
shown.
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3.4 Requirement of the enzymatic activity of DNase II for TLR9 responses. 

To gain a mechanistic insight into the role of DNase II in CpG-A responses, the 

requirement for the DNase activity was examined. Histidines at the amino acid 

positions 115, 132, and 297 are indispensable for DNase activity in porcine DNase II, 

and these three sites are conserved in the murine homolog (Figure 7). It was also 

shown that the H132A DNase II mutant is trapped in the ER and cannot be secreted, 

implying that the histidine at amino acid position 132 is important for proper protein 

folding [74].  

In this study, I constructed the H115A and H297A mutants, containing 

Alanine in lieu of Histidine at position 115 or 297 respectively. The H115A and 

H297A mutants were overexpressed separately in cell line and purified (Figure 8a). It 

is noticed that the H115A and H297A mutants exhibits a higher apparent molecular 

weight compared with the WT protein, presumably owing to an additional 

glycosylation on these mutants [74]. The DNase activities of these mutants were 

evaluated by incubation with plasmid DNA. H297A DNase II failed to degrade DNA 

even after 24 hours of incubation (Figure 8b), indicating that the mutant is 

enzymatically inactive. However, the H115A mutant still remained residual activity 

as shown by after 24 hours of incubation using a higher dose of the protein.  

Next, the ability of the H297A mutant to rescue the TLR9 responses upon 

CpG-A stimulation in the DNase II-deficient cells was monitored. Green fluorescent 

protein (GFP)-tagged WT or H297A DNase II was transduced into the bone marrow 

stem cell obtained from the Dnase2a-/-Ifnar1-/- mice. The cells were allowed to 

differentiate into cDC in the presence of GM-CSF. Flow cytrometry analysis showed 

that the transduction efficiencies were similar between the WT and the H297A mutant 

(Figure 8c). These transduced cDCs were subjected to stimulation with CpG-A and 
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cytokine production examined. Only the WT DNase II was able to rescue the TLR9 

responses to CpG-A, but not the enzymatically-deficient mutant H297A (Figure 8d). 

From these results, I conclude that the enzymatic activity of DNase II is required for 

the TLR9 signaling by CpG-A.  

 

 

 

 

 

Figure 7. Schematic representation of the murine WT DNase II and its amino acid 
sequence. (a) Native mouse DNase II is predicted to be composed of one single 
polypeptide with two symmetric motifs. The three histidine (H) residues critical for 
enzymatic activity are denoted by a cross with amino acid positions written. (b) 
Amino acid sequence of the mouse Dnase2a. The letters in red are the histidine 
residues marked in (a). The sequence in green is the amino acids linking the two 
putative halves of the enzyme.  
 

 

 

 

 



33 
 

 

 
 
Figure 8. Only the enzymatically active WT DNase II was able to complement the 
TLR9 responses in the Dnase2a-/-Ifnar1-/- BM stem cell cDCs. (a) The WT, H115A or 
H297A DNase II was allowed to express in a cell line and the secreted DNase II was 
purified and visualized by silver staining (The bands were cut out since the proteins 
were not run in adjacent lanes, although they were run on the same polyacrylamide 
gel). (b) Activities of the purified proteins were examined by DNA digestion assay for 
1 hour or 24 hours as shown. (c) WT or the H297A mutant DNase II was transduced 
into the cells, and the transduction efficiencies determined by flow cytometry analysis. 
(d) The transduced BM-cDCs were stimulated with 1.5µM of CpG-A for 24 hours. 
IL-12p40 or RANTES secretions in the culture supernatant were measured by ELISA. 
EV, empty vector. Each set of experiment was repeated for three times.  **, p<0.01.  
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3.5 Cleavage of CpG-A by DNase II.  

Since the expression of enzymatically active DNase II but not inactive DNase II 

rescued TLR9 responses to CpG-A in DNase II-deficient cells, it is possible that 

CpG-A is cleaved by DNase II. Using the purified DNase II proteins as shown in 

Figure 8a, I next performed in vitro DNA cleavage experiments. The CpG-A that was 

used throughout this study consists of 20 nucleotides. After 24 hours of incubation 

with different doses of WT or mutant DNase II, a shorter band of DNA was observed 

only in incubating with the WT DNase II (indicated by black arrow in Figure 9a), but 

not with the H115A or H297A mutant. Such cleavage was not observed in case of 

CpG-B. From these results, it is speculated that the major role of DNase II is to cut 

CpG-A into smaller pieces, which may directly stimulate TLR9.  

 To mimic the cleaved CpG-A, truncated CpG-A 2216 fragments of various 

lengths were synthesized based on the original sequence (Figure 9b). CpG-A-like 

ODNs containing the 5’-9 or -11 nucleotides, or the 3’-9, -10, -11, -12 bases of the 

original sequences were designed. Comparing the DNase II-cleaved CpG-A 

(indicated by white arrow in Figure 9c) and the 9-12-nucleotide fragments, I observed 

that the cleaved band of CpG-A had a length of around 11 bases (Figure 9c). To 

confirm that these CpG-A fragments specifically activated TLR9, BM-cDC response 

from the Tlr9-/- mice was examined. Among the four types of short CpG-A examined, 

only the A3’11 ODN induced a detectable amount of IL-12p40 from the WT BM-

cDC, but not from Tlr9-/- BM-cDC (Figure 9d). Although the short CpG-A alone was 

stimulatory to the WT cells, complexing with the transfection reagent, lipofectamine, 

enhanced TLR9 activation by the short CpG-A fragment, which was also TLR9-

dependent (Figure 9d). To investigate the requirement of DNase II in TLR9 activation 

by these short CpG-A ODNs, BM-cDCs from the Dnase2a-/-Ifnar1-/- mice were 
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treated similarly as in Figure 9d. The results showed that the Dnase2a-/-Ifnar1-/- BM-

cDCs responded to the truncated CpG-A fragment A3’11 ODN by producing as much 

cytokine as the Ifnar1-/- control cells (Figure 9e). The same results were obtained with 

or without the addition of lipofectamine.  
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Figure 9. A truncated CpG-A sequence stimulated TLR9 in BM-cDCs even in the 
absence of DNase II. (a) WT DNase II was shown to cleave CpG-A from a 20-base 
sequence to about 10 bases (pointed by black arrow). (b) Short CpG-A fragments 
based on the original CpG-A ODN 2216 were synthesized. Compare with several 
CpG-B sequences shown, the A3’11mer has sequence (underlined) similar to the 5’-6 
bases in CpG-B (boxed). (c) DNase II-cleaved CpG-A (pointed by white arrow) was 
run in parallel with several truncated CpG-A fragments of various lengths. (d) TLR9-
dependency of some of the fragments shown in (b) was examined. (e) The responses 
of the Dnase2a-/-Ifnar1-/- BM-cDCs towards the short CpG-A ODNs were measured 
by ELISA. All the experiments shown had been repeated for three times. Stim., 
stimulation; LF, lipofectamine. **, p<0.01. 
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3.6 Generation of monoclonal antibodies against endogenous DNase II  

Identifying the distribution of endogenous DNase II is important in understanding its 

mechanism of action. As monoclonal antibody (mAb) against mouse DNase II was 

not available, it was generated by immunizing Dnase2a-/-Ifnar1-/- mouse with the 

purified mouse WT DNase II protein as shown in Figure 8a. Two positive 

monoclones (#5-38 and #17) were obtained after screening. The mAbs were typed as 

IgG1 with kappa light chain (Figure 10).  

 

 

 

 

 

Figure 10. Characterization of the anti-mDNase II mAbs established. The type of light 
chain and the Ig subclasses of the two monoclones were examined by flow cytometry 
analysis using Ba/F3 cells overexpressing the WT DNase II on the cell surface.  
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 Next, to determine the usability and specificity of these mAbs, they were 

tested in immunoprecipitation and confocal microscopy experiments, with the 

Dnase2a-/-Ifnar1-/- BM-cDCs used as the negative control (Figure 11). As pre-

incubating one mAb was unable to block the staining using the other mAb, they were 

regarded as targeting different DNase II epitopes (Figure 11a). Both sepharose-

conjugated #5-38 and #17 were capable of immunoprecipitating the endogenous 

DNase II in WT, Tlr9-/- and Ifnar1-/- BM-cDCs, but not from Dnase2a-/-Ifnar1-/- cDCs 

(Figure 11b). For confocal microscopy, using the same staining conditions, #17 

stained the endogenous DNase II more efficiently than the #5-38 mAb (Figure 11c). 

Thus, #17 was used in subsequent confocal experiments. The DNase II staining in 

WT BM-cDCs using mAb #17 were also shown (Figure 11c).  

In addition to detecting WT DNase II, the mAbs also recognized the H115A 

and H297A mutants, but not the H132A mutant (Figure 12). These results showed 

that single amino acid mutations in the H115A and H297A mutants did not affect the 

antibody-binding epitopes for both mAbs.  
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Figure 11. The anti-mDNase II mAbs detected different epitopes and were applicable 
to immunoprecipitation and confocal experiments for detecting the endogenous 
DNase II protein. (a) Cross-competition analysis using Ba/F3 cells overexpressing 
DNase II anchored on the cell surface via the pDisplay vector. Streptavidin-PE was 
used as the secondary antibody before flow cytometry analysis.  (b) BM-cDCs were 
lysed and the endogenous DNase II was immunopreciptated by either mAb in all the 
three genotypes shown, but not in Dnase2a-/-Ifnar1-/- cDCs. The arrow represent non-
specific signal. (c) Confocal staining of endogenous DNase II in BM-cDCs using the 
two mAbs.   
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Figure 12. The mAbs recognized the WT, H115A and H297A, but not H132A DNase 
II. Ba/F3 cells were transduced with the indicated constructs (each with a FLAG-His 
tag at the 3’ end). The respective cell lysates were collected and immunoprecipiated 
with the respective anti-DNase II mAbs. The membranes after Western blotting were 
immunoblotted with anti-FLAG M2 mAb, and detected using the ECL system.  
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3.7 CpG-A induced lysosomal trafficking of DNase II. 

The results obtained from previous sections suggest that TLR9 requires DNase II-

dependent CpG-A cleavage, but not for CpG-B. Since the optimal environment of 

DNase II activity is below pH5.6 [75], it is speculated that DNase II would colocalize 

with CpG-A in acidic compartment, such as the lysosome. 

The steady state subcellular localization of DNase II was first determined with 

the mAb #17. It is believed that DNase II mainly resides in the lysosome in the resting 

state [68]. Using the established mAbs to detect the endogenous DNase II, it was 

observed that a significant amount of DNase II resided in the lysosomes (stained with 

the lysosome-associated membrane protein 1 (LAMP1) or LAMP2) than the ER or 

early endosome (stained with calnexin and early endosome-associated protein 1, 

EEA1, respectively). However, even greater amount of DNase II was found to 

colocalize with the lectin wheat germ agglutinin (WGA) (Figure 13a).  

 Localization of DNase II after CpG-A, CpG-B or the A3’11 ODN treatment 

was then studied. At 3, 6 and 8 hours after addition of the respective CpG ODN, the 

WT BM-cDCs were fixed and stained with the endogenous DNase II and the 

lysosome marker LAMP2 for confocal analysis. CpG-A induced increasing 

colocalization of DNase II with LAMP2 (Figure 13b), whereas CpG-B did not recruit 

DNase II to the lysosome for the same time courses examined (Figure 13c). Similarly, 

the A3’11 ODN, which may resemble the DNase II-processed CpG-A (Figure 9), also 

did not affect the localization of DNase II with LAMP2 (Figure 13d). Fluorescent 

CpG-A was also found in LAMP2-positive compartment after 8 hours (Figure 13e). 

This is in contrast to that of CpG-B or the A3’11 ODN.  
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Figure 13. Localization of the endogenous DNase II in resting and stimulated states in 
WT BM-cDCs. (a) Double staining of DNase II and various organelle markers in the 
resting state. DNase II and LAMP2 were stained in stimulated cells after 3, 6 or 8 
hours, 1.5μM of each of the (b) CpG-A, (c) CpG-B or (d) the ODN A3’11 were used. 
(e) Localizations of CpG-A, CpG-B or A3’11 ODN were monitored by staining with 
LAMP2 8 hours after addition. DNase II and various organelle markers were 
indicated as green and red fluorescence respectively in (a-d). In (e), green represents 
ODNs, while red represents LAMP2. All the experiments have been repeated for at 
least three independent trials. Scale bar at the left upper corners represents 2μm; ns, 
not significant; *, p<0.05; **, p<0.01. 
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4. Discussion 

 

4.1 Putative stimulatory motif for TLR9 activation 

The present study demonstrated that DNase II was required for TLR9-mediated 

responses to CpG-A, but not to another ligand of TLR9, CpG-B. Such observation 

was consistently found in both BM-cDC (from the Dnase2a-/-Ifnar1-/- and 

Dnase2aflox/flox Tie2-Cre mice) and BM-pDC (from the Dnase2aflox/flox Tie2-Cre mice). 

Further examination revealed that the active sites in H115 and H297 of the murine 

DNase II were indispensable in supporting the TLR9 responses. Re-introduction of 

WT DNase II rendered the Dnase2a-/-Ifnar1-/- cDCs responsive to CpG-A stimulation. 

This led to the finding that CpG-A was indeed cleaved by the WT DNase II. Although 

I have not examined whether the cleaved product of CpG-A by the WT DNase II can 

stimulate TLR9 in this study, the synthetic short CpG-A-like ODNs (A3’11 ODN) 

with similar length with the cleaved product (about 11 bases as judged in the TBE gel 

electrophoresis) was made, and found to induce the cytokine production response in 

the DNase II-deficient BM-cDCs. It is interesting that out of the 4 types of short CpG-

A examined (A5’09, A5’11, A3’09, A3’11), only A3’11 was able to induce similar 

amount of cytokine in Ifnar1-/- and Dnase2a-/-Ifnar1-/- BM-cDCs. It has been reported 

that CpG ODN sequence of GTCGTT is potent in stimulating cells from various 

species, and that when such sequence is preceded by a TC dinucleotide, the 

stimulating effect is even more prominent [27]. With referring to the underlined 

sequence in Figure 9b, the A3’11 ODN contains the first 4 nucleotides (GTCG) in the 

GTCGTT sequence, with a TC dinucleotide in front of GTCG. Only TCGTCG may 

also be able to stimulate TLR9. The combination of TC and GTCG was not found in 

the other three sequences studied (A5’09, A5’11, A3’09). Thus, the role of DNase II-
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dependent cleavage of CpG-A may be just to expose such motif to stimulate TLR9. 

Consistent with this notion, CpG-containing sequences as short as 5-6 nucleotides in 

length are enough to stimulate the human and murine DCs [76, 77]. On the contrary to 

CpG-A, CpG-B responses were not dependent on DNase II, and it was not cleaved by 

incubation with DNase II. Apart from the DNase-resistance in the phosphorothioated 

backbone, this may be explained by the fact that the first several bases found in the 

CpG-B matches the “TC+GTCG” pattern as described above, therefore are sufficient 

in directly stimulating TLR9. Some of the CpG-B sequences used to stimulate TLR9 

also harbor sequence that is similar to the first couples of nucleotides found in the 

A3’11 ODN. However, even though the A3’11 ODN can stimulate TLR9 in the 

absence of DNase II, it does not necessarily represent the real cleaved product of 

CpG-A by DNase II. The exact sequence may be determined by purifying the cleaved 

product and subcloned into plasmid vector for sequencing.  

 

4.2 Localization of DNase II in resting and stimulated states 

Since mAb against the endogenous murine DNase II is not currently available, I 

generated them in this study. With the mAb, the subcellular distribution of DNase II 

in BM-cDCs was studied. The results show that in addition to lysosome-localization 

as reported, DNase II also resided in compartments stained with the lectin WGA. 

Compared with the colocalization observed with WGA, only a fraction of DNase II 

was localized in LAMP1/LAMP2-positive lysosome, but not with calnexin or EEA1 

in BM-cDC. A recent report has shown that DNase II is localized in LAMP1 positive 

lysosome in cyrosections of the murine spleen and bone marrow, using a polyclonal 

anti-DNase II antibody they have generated [78]. However, from their results, the 

LAMP1-stained region was mainly surrounding albeit with very partial apparent 
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colocalization, with DNase II. Thus, it is possible that most of the DNase II is not 

found in lysosomes but other compartments. Wheat germ agglutinin (WGA) has been 

shown to specifically stain the trans-Golgi subcompartment [79, 80]. However, in 

another study, the authors compare the reliability of WGA on staining the Golgi 

apparatus before and after treatment with a cytokinesis inhibitor. They found that 

WGA overlaps with the trans-Golgi markers, the trans-Golgi network 46 (TGN46), 

but not with another trans-Golgi markers, syntaxin-6 [81]. Thus, it implies that WGA 

staining does not necessarily represent the Golgi apparatus in all the cell status or cell 

types. The murine DNase II has a calculated molecule weight of about 35kDa based 

on the transcript length. It is believed to be cleaved from the pro-enzyme to two 

products of 30-35 and 10-23kDa [74, 78] by cathepsins [78]. Consistent with this, our 

results also demonstrated that the endogenous DNase II in BM-cDCs was cleaved into 

two products of around 30 and 23 kDa. During the proteolytic processing, some of the 

DNase II proteins may remain and function at the Golgi apparatus, while some are 

being transported to lysosome. It would be interesting to discriminate which pool(s) 

of DNase II is/are important in facilitating the responses of TLR9 upon CpG-A 

stimulation.  

 Our results have shown that in BM-cDC, after CpG-A stimulation, DNase II 

was progressively recruited into LAMP2-positive lysosomal compartments. Besides, 

nearly all of the CpG-A was found in such LAMP2-positive lysosome 8 hours after 

stimulation. This is consistent with earlier study that in cDC, CpG-A preferentially 

moves to the LysoTracker-stained lysosome, in contrast to the endosomal retention 

found in pDC [52]. However, different from the previous study [52], we observed that 

CpG-B was mostly localized outside the lysosomes, albeit very close to the LAMP2-

stained compartment. Other study also shows that CpG-B DNA localizes in 
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lysosomes in pDCs [82]. Although additional reports show the same results, the type 

of CpG ODN used in the localization analysis is not specified [83, 84]. One of the 

possible explanations for the discrepancy in the current and previous studies is that, 

there are different kinds of lysosomes, which may be characterized by different sets of 

markers. LAMP2 used in the current study may not represent all the LysoTracker-

positive lysosomes exist in cDCs. 

Since CpG-A is potent in inducing type I IFN [29], and that IFN induction by 

TLR9 requires trafficking to lysosome-related organelle, which is also characterized 

by LAMP2 [69], DNase II may cleave CpG-A into short sequences in the lysosome, 

which in turn activate TLR9 to produce IFN in BM-cDCs. In case of BM-pDCs, as 

CpG-A is retained inside the endosome for type I IFN induction [52], and that DNase 

II is required for type I IFN production by CpG-A as found in this study, DNase II 

may be recruited to the endosome to cleave CpG-A in BM-pDCs, instead of the 

lysosome. The pH of the endosome where CpG-A is localized in BM-pDCs may be 

acidic enough for DNase II activity.  

 

4.3 Property of DNA ligands that induce DNase II intracellular trafficking 

From the confocal analysis, I have shown that CpG-B and A3’11 ODN did not induce 

lysosome trafficking of DNase II. This implies that for DNA that needs not to be 

cleaved, DNase II would not respond or move to lysosomes. Whether a DNA 

fragment has to be cleaved or not is likely to depend on its ability to form 

nanoparticles inside the cell. It may be DNA nanoparticle that recruits DNase II.  

Previous study has shown that in pDCs, the multimeric nature of the CpG-A ODN, 

rather than its sequence, is responsible for potent IFN-α production mediated by 

TLR9 [32, 85]. Multimerization of ODN can be achieved by using its 3’ poly-G 
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extension or by complexing with the cationic lipid N-[1-(2,3-dioleoyloxy)]-N,N,N-

trimethylammoniumpropan methylsulphate (DOTAP) [52, 85]. The DNA/cationic 

lipid complex has been suggested to mimic virus that carries its genetic materials 

across the cell membrane [86]. In this regard, self-DNA also can stimulate TLR9 by 

complexing with endogenous DNA-binding proteins for type I IFN release. In 

psoriasis, an autoimmune lesion of the skin, DNA that is released from skin cell 

injury is captured by the anti-microbial peptide LL37 (also known as cathelicidin 

antimicrobial peptide, CAMP). The DNA/LL37 complex stimulates pDCs to produce 

IFN-α via TLR9, ultimately breaking the innate tolerance and trigger the disease [87, 

88]. Besides, LL37 is also important in carrying the DNA/antibody complex in SLE 

patients so as to prevent the complex from nuclease degradation [89]. Similarly, high-

mobility group box (HMGB) proteins, the nuclear DNA-binding proteins, can also 

bind to DNA or CpG ODNs to promote internalization into pDCs, and activates TLR9 

and cytosolic DNA sensors to produce IFN-α [90, 91]. Taking into account the role of 

DNase II in activating TLR9 for IFN-α production, the protein carriers (LL37 or 

HMGBs) binding to self-DNA or CpG ODNs may facilitate DNA contact, acting as a 

catalyst to speed up the DNA-cleaving reaction mediated by DNase II. It would be 

interesting to examine any interaction between these carriers and DNase II in the 

context of TLR9-dependent autoimmune diseases like psoriasis and SLE. 

 How the DNA nanoparticles activate cellular machinery or DNase II is still 

unknown. However, from the confocal microscopy results, it is known that in the 

resting state, more of the DNase II proteins may remain in the Golgi apparatus, 

presumably in the TGN, instead of the lysosome. Therefore, it is possible that the 

CpG-A nanoparticles have engaged the retrograde transport pathway, and are being 

carried from the endosome to the TGN [92]. At the TGN, numerous DNase II proteins 
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may bind to a CpG-A nanoparticle due to its large size compared with CpG-B or 

A3’11 ODN. The protein machinery for multivesicular bodies/lysosome biogenesis, 

the endosomal sorting complex required for transport (ESCRT) [93], may be able to 

sense or interact with DNase II/CpG-A complex, so as to direct vesicle fusion with 

lysosome. Thus, it is interesting to examine any interaction between the ESCRT 

subunits with DNase II after CpG-A stimulation. 

 

4.4 Possible explanation for the anergy of TLR9 in DNase II single-knockout 

mice model 

Kawane and others have reported in their series of studies that single knockout of 

DNase II in mice is embryonically lethal due to the induction of various defects [57-

59, 62, 94]. Later, it is found that the cytosolic DNA sensor/adaptor STING is 

responsible for the excessive production of IFN-β that finally kills the organism [56]. 

The results presented in this study suggest that TLR9 may only be able to recognize 

DNA that are cleaved by DNase II and contains a stimulatory motif to induce IFN. 

The apoptotic DNA that is accumulated would not be able to trigger TLR9, since it is 

too long and the stimulatory sequence may not be exposed to TLR9. The accumulated 

DNA possibly leaks into the cytoplasm and activates STING. The type of DNA 

ligands that is recognized by STING may be less restricted compared with the DNA 

that stimulates TLR9. STING detects a wide variety of DNA ranging from necrotic or 

apoptotic DNA to single-stranded or double-stranded DNA-containing pathogens [95]. 

Recent studies found that STING is activated by the upstream second messenger, 

cGAMP, which is generated by cGAS [9, 10, 96]. In the DNase II single knockout 

mice model, the DNase II-TLR9 pathway for IFN induction is impaired while the 

cGAS-STING pathway remains intact and functional. This may mean that STING can 
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fully respond to cGAS-generated ligands, whereas TLR9 is not fully functional 

because the enzyme (DNase II) that produces TLR9 ligands (likely to be cleaved short 

DNA fragment) is ablated. Consequentially, there seems to have a certain degree of 

crosstalk between the cGAS-STING pathway and the DNase II-TLR9 pathway, 

because STING activity is also controlled by DNase II [95]. It is intriguing to know if 

knockout of cGAS would affect TLR9 responses. 

 

4.5 Potential therapeutic application of the current findings 

As mentioned in the Introduction, DNase II is required to digest apoptotic DNA in 

mice [57]. Together with the results obtained in the current study, DNase II may have 

a role in inducing TLR9-dependent type I IFN production in response to apoptotic 

DNA. In diseases involving TLR9 hyper-activities, such as psoriasis and arthritis [42, 

87], TLR9 may be hyperactivated due to altered DNase II digestion of the released 

self-DNA. DNA binding proteins such as LL37 and HMGBs may contribute to such 

alteration by facilitating DNA cleavage by DNase II. Therapeutic intervention 

targeting these DNA binding proteins may thus avoid TLR9 hyperactivation and 

relieve disease severity. In cell types that express a large amount of TLR9, for 

instance, the pDCs, it is interesting to examine any modulation of DNase II-dependent 

DNA digestion when TLR9-triggered diseases develop.  

In diseases caused by DNA viruses, TLR9 plays a protective role in confining 

the infection, and this is achieved by the induction of type I IFN [97]. Viruses such as 

herpes simplex viruses (HSVs) [17, 98, 99] and murine cytomegalovirus (MCMV) 

[100] stimulate IFN-α release from pDCs in a TLR9-dependent manner at the early 

phase of infection. The type I IFN released is important in subsequent induction of 

anti-HSV cytotoxic T cells [101]. Therefore, from the results obtained in this study, 
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DNase II is likely to be indispensable in promoting TLR9-dependent IFN production 

in mice infected with these viruses. The importance of DNase II in anti-viral 

responses may be studied by infecting the control or DNase II conditional knockout 

mice with HSVs or MCMV, and their survival examined.  

Although CpG ODNs are synthetic ligands, they are widely used as an 

effective vaccine adjuvant against tumors or infectious diseases, due to their ability to 

induce prominent TLR9-dependent innate and adaptive immune responses [21, 22, 

102, 103]. All the three classes of CpG ODNs, CpG-A, CpG-B and CpG-C, have been 

shown to induce cytotoxic or memory T cell responses when used as the adjuvant [21, 

104]. CpG-A induces a large amount of type I IFN by virtue of forming tertiary 

structures [32, 105], and is shown to be superior to CpG-B in enhancing memory 

CD8+ T cell response and cytotoxicity [36, 103]. Besides, administration of CpG-A, 

but not CpG-B, improved the clinical outcome in healthy and immunocompromised 

primates against Leishmania major challenge [106]. Similar conclusion is also found 

in human immunodeficiency virus (HIV)-infected individuals, in which CpG-A 

activates pDCs to produce IFN-α in the patients [107] and this is important in 

suppressing HIV replication [108]. CpG-A is suggested to be a significantly better 

immune adjuvant in vivo compared with CpG-B [109]. However, due to the difficulty 

in maintaining a uniform higher-order multimeric CpG-A structure clinically without 

aggregation or precipitation, an effective thermolytic prodrug form of CpG-A has 

been developed [110]. A recent study shows that encapsulating such CpG-A prodrug 

in a special synthetic nanoparticle core enable the induction of antigen-specific T cell 

responses [111]. The nanoparticle core protects the adjuvant/vaccine until they are 

delivered to the large intestine. This strategy induces a protective immune response in 

subsequent viral challenges [111]. Besides, since CpG-A is potent in inducing type I 
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IFN in dendritic cells, which in turn activates NK cells [28, 31], administrating CpG-

A alone in a murine model of human melanoma induces long-term survival of the 

mice [31]. Concerning the ability of CpG-A to induce Th1 responses, CpG DNA is 

suggested to be useful in treating asthma and allergic diseases [112]. In addition, a 

melanoma-specific antigen mixed with CpG-A-coated nanoparticles has been found 

to induce strong T cell responses in a clinical trial [113]. To mimic the IFN-α 

inducing property of CpG-A, coating CpG-B sequence on synthetic nanoparticles is 

also shown to induce CpG-A-like responses in cells, which also acts as a potent 

vaccine adjuvant in mouse models [114, 115]. In light of the essential role of DNase 

II in facilitating TLR9 responses to CpG-A in cDC and pDC, DNase II may be 

important in mediating the anti-viral or anti-tumor effect of various vaccines as 

mentioned above. It may be intriguing to study the cytotoxic T cell responses in 

vaccinated DNase II-deficient mice after infection in vivo.  

In retrospect, the reason for the identification of CpG-A as a potent IFN-

inducing ODN [29] may be the result of the selection for interacting with DNase II, as 

well as it can be efficiently transported to the endosome or lysosome to activate TLR9.  

The present study revealed a novel role of DNase II in TLR9-dependent CpG-

A responses, my findings may contribute to understanding the mechanism of actions 

in some drugs or vaccines that involve the use of CpG-A.  
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