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Abstract 

CD4+CD25-LAG-3+ T cells are newly reported regulatory T cell subset that plays a 

significant role in suppressing peripheral inflammation and specifically expresses the 

transcription factor Egr2. Although the lack of LAG-3 molecule is expected to induce 

autoimmunity, LAG-3-deficient mice present minimal immunopathological change. I tried to 

deplete CD4+CD25-LAG-3+ regulatory T cells using immunological procedure in wild type mice 

and analyzed its sequelae in vivo. 

In order to deplete CD4+CD25-LAG-3+ T cells, I adopted DNA vaccination procedure 

and generated pCAGGS-LAG-3 vector construct that contained mouse LAG-3 cDNA sequence. 

I injected 100 µg pCAGGS-LAG-3 vector into C57BL/6 mice intravenously and observed their 

pathophysiological conditions.  

After several months of vaccination, mice with pCAGGS-LAG-3 vector developed 

severe dermatitis, Proteinuria and high titer of anti-dsDNA antibody, while control mice were 

normal. Histopathological analysis revealed glomerulonephritis with IgG/C3 deposition and 

dermatitis with epidermal hyperplasia, hyperkeratosis and mononuclear cell infiltration. In FACS 

analysis, pCAGGS-LAG-3 injected mice with severe lupus-like lesion presented the depletion of 

CD4+CD25-LAG-3+Egr2+ T cells. Moreover, serum ELISA in these mice revealed high titer of 

anti-LAG-3 antibody. 

DNA vaccination with pCAGGS-LAG-3 was considered to be the main cause of anti-

LAG-3 antibody production and the depletion of CD4+CD25-LAG-3+Egr2+ T cells, which is 
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responsible for the development of lupus-like lesions. This is the first report about the procedure 

of efficient CD4+CD25-LAG-3+Egr2+ T cells depletion.   
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1. Introduction 

 

1.1. Systemic Lupus Erythematosus (SLE) 

Systemic lupus erythematosus (SLE) is a common connective tissue disorder that is 

characterized by the breakdown of tolerance to self–antigen, the production of autoantibody and 

the formation of immune complexes. Circulating immune complexes lead to the complement 

activation and inflammation, and deposit on the basement membranes of multiple target organs 

including skin and kidneys. Serum antinuclear antibodies (ANAs) are found in nearly all 

individuals with SLE. Moreover, antibodies to double-stranded DNA (dsDNA) are specific for 

SLE and reflect the disease activity of SLE [1].  

The pathogenesis of SLE involves immune disturbances which includes autoantibody 

production and hyperactivation of B cell and T cell. One widely proposed mechanism for the 

development of autoantibodies involves a dysregulation in apoptosis that causes increased cell 

death and a disturbance in immune tolerance [2, 3]. Regulatory T cells (Tregs) contribute to the 

maintenance of self-tolerance [4]. Tregs in MRL/lpr mice are not properly stimulated by antigen 

presenting cells (APCs) and are unable to suppress proinflammatory cytokine secretion from 

effector T cells [5].  

 

1.2. Lymphocyte Activation Gene-3 (LAG-3) 

Our immune system is equipped with a number of mechanisms to fine-tune the immune 

responses, which helps to reject the invading pathogens efficiently with a little damage to the 
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host cells. Multiple regulatory pathways are working to maintain this equilibrium and one 

molecule which is taking part in this well-orchestrated mechanism is lymphocyte activation 

gene-3 (LAG-3). 

LAG-3 is a transmembrane protein and a member of immunoglobulin super family 

(IgSF) with four extracellular Ig like domain and binds with major histocompatibility complex 

(MHC) class II molecule which is homologous to CD4 (Supplemental figure 1) [6, 7]. CD4 and 

LAG-3 both binds toMHC class II, however LAG-3 binds with 100 fold higher affinity than CD4 

[8, 9]. Moreover, while CD4 acts as a positive co-stimulatory molecule, LAG-3 acts as a 

negative regulator of TCR-mediated signal transduction, proliferation and homeostasis [10, 11]. 

Unlike CD4, LAG-3 is expressed on multiple cells including plasmacytoid dendritic cells (pDC) 

[12], B cells [13], NK cells [14], γδ T cells [15], tumor-infiltrating lymphocytes [16], exhausted 

CD8+ T cells [17], and activated CD4+ T cells [18]. 

The inhibitory function of LAG-3 was observed on activated T cells, where the 

simultaneous cross-linking of the T cell receptor (TCR) and LAG-3 causes decreased calcium 

flux when compared to TCR cross-linking alone and reduce IL-2 production and Th1 

polarization [19, 20]. In contrast, the blockade of LAG-3 with anti-LAG-3 antibody during 

antigen specific T cell stimulation led to increased T cell proliferation and function [21]. These 

studies illustrate that the interaction between MHC class II bearing antigen presenting cells and 

CD4+LAG-3+ T cells induces a T cell-intrinsic inhibitory signaling pathway, which indicates 

LAG-3 as a cell-intrinsic inhibitory molecule. However, LAG-3 knockout mice, which were first 

generated in the late 1990’s [22], displayed apparently normal pathological condition and 

showed no defect on T cell function [23].  
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Supplemental figure 1. Structure of LAG-3  

 

1.3. Regulatory T cell (Treg) 

Regulatory T cell (Treg) is crucial to maintain immune homeostasis and avoid immune-

mediated pathology by inhibiting the activity of effector T cells. There are two groups of Tregs: 

one termed as naturally occurring Tregs (nTregs) and other known as induced Tregs (iTregs). 

nTregs are normally generated in thymus, while iTregs developed in the periphery from naïve T 

cells following antigen-specific activation in an immunosuppressive condition. nTregs are 

mainly CD4+CD25+ T cells and characteristically express transcription factor forkhead box P3 

(FoxP3) [24]. Scurfy mutant mice (having mutation in the FoxP3 gene) exhibits a fatal 

lymphoproliferation and severe inflammatory infiltration in multiple organs [25] which is similar 

to human disease IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked 
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syndrome) [26, 27]. This confirms that Treg is indispensable in maintaining self-tolerance and in 

the prevention of autoimmune diseases.  

Regarding peripherally induced iTreg, there are several reports about regulatory T cell 

subsets other than conventional CD4+CD25+Foxp3+ Treg. For example, Roncarolo et al. reported 

IL-10-secreting CD4+FoxP3− T cells, named as type 1 Tregs (Tr1 cells) [28]. Ochi et al. reported 

CD4+CD25-LAP+ T cells produce both IL-10 and TGF-, and suppress autoimmune 

encephalomyelitis [29].  

 

1.4. CD4+CD25-LAG-3+Tregs 

In naïve animals, LAG-3 expression on CD4+ T cells is mainly restricted to the 

CD4+CD25−CD45RBlow memory T cells. In a recent study, Okamura et al. found that 

CD4+CD25−LAG-3+ T cells are in high numbers in Payer’s patch and in smaller number in the 

spleen, mesenteric lymph node and inguinal lymph node. These CD4+CD25−LAG-3+ T cells 

produce elevated amounts of IL-10, Blimp-1 and LAG-3 mRNA than other T cell subsets and 

also express IFN-γ, but did not express the Treg marker Foxp3 [30]. Transcription factor Blimp-

1 is necessary for the production of IL-10 by CD4+ T cells [31] and also required for the 

formation of IL-10 producing effector Tregs [32]. CD4+CD25−LAG-3+ T cells secret high 

amount of IL-10 upon antigenic stimulation and inhibit the development of colitis in an IL-10 

dependent manner. As CD4+CD25−LAG-3+ Tregs from scurfy mice also retained regulatory 

activity in the colitis model, the function of CD4+CD25−LAG-3+ Tregs was independent of 

Foxp3. 

CD4+CD25−LAG-3+ Tregs characteristically express the transcription factor Early 

growth response gene 2 (Egr2), and intracellular staining of Egr2 revealed a strong correlation 
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between Egr2 and LAG-3 expression in CD4+ T cells. Retroviral gene transfer of Egr2 gene 

makes CD4+ naïve T cells to have regulatory activity and express LAG-3 and IL-10 [30]. Egr2 is 

considered as key transcription factor of CD4+CD25−LAG-3+ Tregs (Supplemental figure 2).  

 

 

Supplemental figure 2. Schematic view of regulatory T cell subsets 

 

1.5. Early Growth Response Gene 2 (Egr2) 

Early growth response (Egr) is a transcription factor that binds with DNA through a 

highly conserved Cys2His2-type zinc finger domain (Supplemental figure 3) [33]. There are four 

members of Egr family: Egr1, 2, 3 and 4. They play a key role in coordinating gene expression 

that underlie the long-term changes in various biological processes including proliferation, 

apoptosis, and differentiation [34]. Egr2 has been found to play an essential role in hindbrain 

development and myelination of the peripheral nervous system as null mutation of Egr2 resulted 

in perinatal or neonatal death due to respiratory and feeding deficits [35].  
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Egr2 plays a critical role in anergy induction in T cells. Egr2 is induced early upon TCR 

engagement in a nuclear factor of activated T cells (NFAT) dependent manner in vitro, which 

causes inhibition of T cell activation. Egr2 is also induced in vivo by the antigen stimulation in 

tolerant T cell and deletion of Egr2 prevents the induction of anergy [36, 37]. Another study also 

proposed that both Egr2 and Egr3 play role in the formation of T cell anergy by augmenting the 

expression of the E3 ligase Cbl-b and inhibiting IFN-γ and IL-2 secretion by T cells [38].  

Egr2-deficient mice are perinatally lethal [35], and Egr2 conditional knockout mice 

(Egr2-CKO) in which the Egr2 gene was deleted specifically in T cells and B cells demonstrated 

massive infiltration of Th1 and Th17 cells in multiple organs and developed a lupus-like 

syndrome in later stage of their life. This Egr2-deficient T cells did not show the alteration in 

primary activation but highly proliferated in response to stimulation [39].  

These previous observations strongly suggest the pivotal roles of Egr2, Egr3 and 

CD4+CD25-LAG-3+ Treg in the control of autoimmunity. In order to understand the 

immunological function of CD4+CD25-LAG-3+ Treg in vivo deeply, the analysis of mice without 

CD4+CD25-LAG-3+ Treg is important. Since CD4+CD25−LAG-3+ Tregs are regulated by Egr2, 

the depletion of CD4+CD25−LAG-3+ Tregs in Egr2-CKO mice was expected. However, there 

were still IL-10 expressing CD4+CD25−LAG-3+ Tregs, although they lost their suppressive 

function to B cells (unpublished data). I speculate that this is due to the compensatory function of 

other factors including Egr3. As mentioned above, the phenotype of LAG-3-deficient mice is 

almost normal [22, 40]. Moreover, administration of monoclonal antibody against mice LAG-3 

did not deplete CD4+LAG-3+ T cells; just affected the function of CD8+ T cells [16]. In order to 

produce an efficient anti-LAG-3antibody that enables depletion of CD4+CD25−LAG-3+ Tregs, I 

adopted DNA vaccination procedure. 
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Supplemental figure 3. Early growth response (Egr) family [33] 

 

1.6. DNA Vaccination 

DNA vaccination was reported in the early 1990s as a time- and labor-saving unique 

method compared to the conventional vaccination using foreign protein [41-43]. DNA vaccines 

basically need the preparation of a plasmid in which eukaryotic and synthetic sequences 

administered by genetic engineering. Plasmids are circular double-stranded DNA that contains 

replication origin, drug resistance gene and a multiple cloning site for insertion of DNA fragment 

[44].  

DNA vaccination can induce a wide range of immune response. Several reports showed 

that plasmid DNA elicits both humoral and cellular immunity (Supplemental figure 4) [45]. 

Iwasaki et al. proved that antigen presenting cells (APCs) presented the encoded antigen after 

immunizing with plasmid vector, which proves antigen uptake by APCs mainly dendritic cells 

[46]. These APCs are capable of activating both MHC class I and MHC class II pathways, 

resulting in the activation of all arms of the immune response including helper T cells, cytotoxic 
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T lymphocytes and B cells. By inducing CD8+ and CD4+ T cells, this vaccination mimics some 

aspects of natural infection of the hosts and differs with traditional antigen-based vaccines that 

generally induce only antibody response [47]. Till today this vaccination possibly applied for 

development of protective vaccinations, control of tumors and the management of allergies and 

autoimmune diseases [44].  

DNA vaccination is a simple, versatile and safe immunization platform. However, the 

main limitation is the relative impotency. DNA vaccination usually requires multiple boosts with 

high doses to raise responses comparable to that achieved from a single virus vaccination [48]. 

Multiple strategies had been taken in order to enhance the potency of DNA vaccine.  

In order to increase gene expression, the human cytomegalovirus (CMV) immediate-

early enhancer/promoter is most commonly used [49]. However, CMV promoter has been down 

regulated in the presence of IFN-, and inactive in the skin [50]. Consequently, because of the 

need for more consistent and stronger gene expression, vectors containing a hybrid CMV 

enhancer coupled with a modified chiken -actin promoter (CAG) had been used for DNA 

vaccination [51].  

Plasmid can be delivered by intramuscular [43], epidermal [52], intradermal [53], 

intravenous [54], intranasal [55]. Intramuscular and epidermal injection are the major inoculation 

route, however several reports described that the intravenous inoculation is also effective [43, 

54]. Moreover, in order to increase the uptake of APCs, inoculation with gold colloids [54], 

employing gene gun [52], lidocaine administration before intramascular injection [56] had been 

reported.  

Based on these findings, I adopted DNA vaccination procedure for successful 

immunization. I selected pCAGGS vector consist of CAG promoter that is mostly used for DNA 
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vaccination. I immunized C57BL/6 mice with pCAGGS-LAG-3 vector, and found that the mice 

developed severe lupus-like systemic autoimmunity including dermatitis, antibody production 

and deposition of immune-complexes in organs. Anti-LAG-3 antibody production was also 

found, and depletion of CD4+CD25-LAG-3+ Tregs in mice was detected. Although the detailed 

mechanism of the depletion is still to be considered, DNA vaccination and antibody production 

is estimated to be related closely. This procedure is the first report about the efficient depletion 

of CD4+CD25-LAG3+Egr-2+ T cells.  
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Supplemental figure 4. Schematic view of DNA vaccination [45] 
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2. Materials and Methods 

 

2.1 Plasmid DNA 

The Plasmid pCAGGS-LAG-3 vector was constructed by cloning the PCR product of 

mouse LAG-3 D1-D3 portion and then this portion was inserted into pCAGGS vector. Plasmid 

DNA encoding LAG-3 gene was amplified in Escherichia coli JM 109 bacteria and purified by 

using Qiagen Plasmid Purification Kit (QiagenPlasmid Maxi Kit). The quantity and quality of 

the purified plasmid DNA were assessed from the optical density at 260 and 280 nm. The 

insertion sites of the plasmid DNA was confirmed using restriction enzyme EcoRI. The empty 

plasmid pCAGGS was used as control. 

 

2.2 Detection of protein in transfected cells 

To conform the expression of protein mediated by the vector, 293T human embryonic 

kidney cells were plated in 60 mm diameter tissue culture dishes containing Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% fetal calf serum (FCS) 24 hours prior to 

transfection. They were then transfected with the plasmid DNA after mixing them with FUGEN6 

Transfection Reagent (Roche Applied Science) according to the manufacturer’s instruction. 48 

hours after transfection, the cells were lysed. The lysates were separated by 7.5% polyacrylamide 

gel electrophoresis (SDS-PAGE) and transferred to a PVDF membrane by using an 

electroblotting apparatus. The membrane was then blocked by using 5% skim milk and incubated 

with anti mouse LAG-3 antibody (R&D Systems. cat. No. AF3328) followed by a goat anti-

rabbit IgG antibody (BETHYL Laboratories.INC) and finally detected with ECL. 
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2.3 Animals 

9 to 16 weeks C57BL/6 mice were used in these experiments (purchased from Japan 

SLC) and maintained under specific pathogen-free conditions. All animal procedures were 

conducted according to the guidelines of the University of Tokyo Institutional Animal Care and 

under an approved protocol. For all experiment female mice were used. 

 

2.4 DNA vaccination  

Different routes of administration were used for DNA inoculation. Mice were immunized 

with plasmid DNA encoding LAG-3 protein intravenously, intradermally and intramuscularly. 9-

16 weeks C57BL/6 mice received either single or three repeated vaccination with 100 µg of each 

vector. For the intravenous inoculation, tail vein was used by taking all aseptic precaution. For 

intramuscular inoculation, the mice were pretreated with 50 l 0.25% Lidocaine hydrochloride 

[57] in each quadriceps muscle one day before the first vaccination in order to enhance the 

muscle cell uptake of plasmid DNA. 100 µg of pCAGGS-LAG-3 vector was used three times at 

three weeks intervals. Mice immunized with empty pCAAGS vector were served as negative 

control. 

 

2.5 Anti-dsDNA antibody ELISA 

Mice blood was collected by retrobulbar puncture using glass pipettes or by tail bleeding 

at different time points. Serum samples were collected from the blood and used for antibody 

assays. The titers of anti-dsDNA antibody were measured by enzyme-linked immunosorbent 
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assay (ELISA) using Shibayagi’s mouse anti-dsDNA antibody ELISA kit (code. No. AKRDD-

061). ELISA was performed sequentially by following the maker’s protocol. In brief, strips 

pretreated with antigen were washed and 100 µl serum samples were applied after diluting with 

the supplied buffer. Dilution rate was 100x and 500x. After two hours of incubation at room 

temperature, the plates were washed three times with wash buffer. 100 µl of diluted secondary 

antibody was added and incubated for another 2 hours at room temperature. Next, the plate was 

washed for three times and color was developed by adding TMB solution following 20 minutes 

incubation. The reaction was stopped by adding 1M H2SO4. The absorbance was measured at 450 

nm on a microplate reader. 

 

2.6 Anti-LAG-3 antibody ELISA 

To detect anti-LAG-3 antibody, mice serum samples were collected as described above. 

Then the titers of antibody against LAG-3 were evaluated using ELISA. Briefly, mouse LAG-3-

Fc (IgG2a) chimera protein (Enzo ALX-522-099) was used as antigen. The 96-well Nunc plates 

were coated overnight at 4°C. After washing three times with phosphate buffer solution (PBS) 

containing 0.05% Tween 20 (PBST), plates were blocked by 300 µl of 3% skim milk in PBS 

tween (0.05%) at room temperature for three hrs. Next, 100 µl of diluted serum sample were 

added to each well and incubated overnight at 4°C. Next day the plates were washed three times 

with wash buffer and 100 µl of diluted horseradish peroxidase (HRP)-conjugated rat-anti-mouse 

IgG1 (invitrogen) was added to each well followed by 30 minutes incubation at room 

temperature. Then, the plates were washed with PBST for five times and color was generated by 

the addition of substrate solution (KPL) for 20 minutes. The reaction was stopped by using 1M 

H2PO4. The absorbance was measured at 450 nm on a microplate reader. 
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2.7 Histopathology  

Mice were anaesthetized with pentobarbital sodium intraperitoneally. Then, they were 

incised ventrally along the median line from the xiphoid process to the point of chin. For 

hematoxylin and eosin staining, skin, spleen and kidney were taken out and fixed with 4% 

paraformaldehyde phosphate buffer solution. For immunofluorescent staining with rabbit anti-

mouse IgG and C3d was performed on frozen kidney sections. IgG and C3 deposition was 

visualized by incubation with anti-rabbit ATTO488 antibody. About kidney histopathological 

scoring, glomerular score and interstitial inflammation scores were taken. Glomerular scores is 

the sum of scores for glomerular inflammation, proliferation, crescent formation, and necrosis 

(each scored from 0 to 4). Interstitial inflammation was also scored 0-4 [58]. For Lung injury 

score, alveolar and periluminal injury scores were taken based on the former report [59]. Ten 

fields at ×400 magnification were viewed for each lung section and scored for alveolar 

infiltration as follows: 0= no infiltrate was present, 1= the infiltrate could be visualized easily 

only at ×400 magnification, 2= infiltrates were readily visible, and 3= consolidation. Similarly, 

each section was scored for periluminal damage (airway or blood vessel) at ×100 magnification 

as follows: 0= there was no infiltrate, 1= the infiltrate was 1–3 cell layers thick, 2= the infiltrate 

was 4–10 cell layers thick, and 3= the infiltrate was >10 cell layers thick. On the basis of the 

overall involvement of the section, a severity score was calculated as follows: 1 for 0–25% 

involvement, 2 for 25–50% involvement, and 3 for >50% involvement. For calculation of the 

total lung injury score, the means of alveolar and periluminal scores for each section were 

summed and multiplied by the severity score, which gave a final score of 0–18. 
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2.8 Cell Isolation and FACS analysis 

Cell suspension was prepared from spleen of pCAGGS-LAG-3 immunized and control 

mice. Splenocytes were harvested from mice after 8 months of vaccination and treated with 

hemolysis buffer (ACK) to remove red blood cells. 1×107 cells from each mouse were Fc 

blocked (antimouse CD16/CD32 mAb) for 10 minutes and stained with the surface and 

intracellular staining. Indicated mAbs for surface staining: FITC anti-CD45RB, PE anti-LAG-3, 

APC-Cy7 Anti-CD4, APC anti-CD25 and for the intracellular staining: Alex488 anti-LAG-3, 

APC-Cy7 anti-CD25, APC anti-CD4, PE anti-Egr2. After staining, cells were kept on ice for 30 

minutes. The antibodies were purchased from e-Bioscience. Then, cells were washed with PBS 

twice. For intracellular attaining with anti-Egr2 antibody, cells were stained using the FoxP3 

staining buffer set (e-Bioscience). Analysis and cell sorting was performed by using 

FACSVantage (BD). Data were processed with FlowJo software (Tree Star Inc.). 

 

2.9 Statistical analysis 

Statistical analysis was performed using GraphPad PRISM5. For parametric data, 

unpaired two group were compared using student’s t-test. For non-parametric data, unpaired two 

group were compared using Mann-Whitney U-test. Survival analysis was tested using Log-rank 

test. Pearson's correlation coefficient was analyzed for the correlation between the two groups. A 

p-value of <0.05 was considered to indicate a significant difference. *, p <0.05 and **, p < 0.01. 
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Results 

 

2.10 Construction of pCAGGS vector 

To develop the efficient way to deplete CD4+CD25-LAG-3+ regulatory T cells in mice 

model, I used commercially available monoclonal anti-LAG-3 antibody for intravenous 

administration at first. However, that did not deplete CD4+CD25-LAG-3+ T cells (data not 

shown). This follows the result of former report for the administration of monoclonal anti-LAG-

3 antibody that did not deplete CD4+LAG-3+ T cells, and just affected the function of CD8+ T 

cells [16].  

In order to develop an antibody against LAG-3 that can deplete CD4+CD25-LAG-3+ 

regulatory T cells efficiently, I adopted DNA vaccination procedure. Following former reports 

[49], I selected a plasmid vector named pCAGGS to induce DNA vaccination (Figure 1A). The 

D1-D3 portion of murine LAG-3 cDNA sequence was inserted into the cloning region of 

pCAGGS vector, and pCAGGS-LAG-3 vector was constructed. After inserting the sequence, 

expression of the cloned LAG-3 gene was confirmed by western blot analysis using 293 T cells 

transfected with pCAGGS-LAG-3 construct (data not shown). Insertion of cDNA was confirmed 

by the enzymatic digestion with restriction enzyme EcoRI and PCR (Figure 1B).  
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Figure 1. Construction of pCAGGS-LAG-3 vector. (A) Structure of pCAGGS vector. (B) 

Confirmation of subcloned gene by EcoRI and PCR. 
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2.11 Development of DNA vaccination protocol 

There are several reports for the route of administration of DNA vaccination. Based on 

the comparison study [49], I set a pilot study in 16 weeks female C57BL/6 mice in order to 

compare different routes of administration including intravenous, intramuscular and intradermal 

(Figure 2A). Control mice were immunized with empty pCAGGS vector. I also tried booster 

vaccination protocols thrice in three weeks apart by following a former report [52]. Surprisingly, 

several mice developed alopecia and dermatitis, and production of anti-dsDNA antibody. Among 

these administration protocols, the 100 µg intravenous administration protocol showed typical 

lupus-like pathological condition repeatedly (Figure 2B). 50 µg and 100 µg intramuscular 

vaccinations also showed pathological condition, however they took significantly prolonged time. 

And the comparison of anti-LAG-3 antibody production between intravenous and intramuscular 

administration showed; 8 months after vaccination only one intramuscular administered mice 

developed high titer of anti-LAG-3 antibody in their serum while the number in intravenous 

administration was more than half of the total immunized mice (Figure 2C). Therefore I decided 

to adopt 100 µg intravenous administration protocol.  
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Figure 2. Development of DNA vaccination protocol. (A) Pilot study protocol to compare 

inoculation route and dose of DNA vaccination. Five to seven mice were used for each group. 

(B) Result of pilot study. (C) Comparison of Anti-LAG-3 antibody production by intramuscular 

and intravenous administration. *, P <0.05 (Unpaired t-test). 
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2.12 DNA vaccination causing proteinuria and anti-dsDNA antibody production 

After immunization with pCAGGS-LAG-3 vector, mice were observed for possible 

outcome, and urine was monitored monthly for any change. In one experiment group I 

immunized 7 mice for each vector. Among the vaccinated mice, 4 mice immunized with 

vaccinated with pCAGGS-LAG-3 vector developed typical pathological condition including 

alopecia, dermatitis, loss of activity, weight loss and proteinuria within eight month of 

vaccination. At first, the mice started showing hair loss from back and increased protein level in 

urine while the control mice were normal and healthy. Within three to five months after 

vaccination, pCAGGS-LAG-3 immunized mice showed significant proteinuria which paralleled 

with the exacerbation of skin lesion (Figure 3A). The severity of proteinuria of pCAGGS-LAG-3 

immunized mice was higher than the control mice (Figure 3B). Furthermore, pCAGGS-LAG-3 

immunized mice with lupus-like skin lesion showed detectable level of serum anti-dsDNA 

antibody in comparison with the control vector immunized mice (Figure 3C). This high 

production of anti-dsDNA antibody in the serum of pCAGGS-LAG-3-immunized mice may be 

associated with the development of lupus-like skin lesion. In agreement with the lupus-like 

pathological condition, survival rate of pCAGGS-LAG-3-immunized mice is significantly low in 

comparison with the mice immunized with only pCAGGS vector (Figure 3D).  
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Figure 3. pCAGGS-LAG-3 immunized mice developed proteinuria and anti-dsDNA antibody 

production. (A) Incidence of proteinuria and (B) Severity of proteinuria in C57BL/6 mice 

immunized with pCAGGS-LAG-3 vector and empty pCAGGS vector. Each symbol represents 

an individual mouse. Horizontal line indicates the mean ± s.d. The difference was significant 

((A) Log-rank test, (B) Mann-Whitney U-test). **, P <0.01. (C) Serum concentration of anti-ds-

DNA antibody in pCAGGS-LAG-3 and empty pCAGGS vector immunized mice (n= 7). Each 

symbol indicates an individual mouse. Horizontal line shows the mean value. **, P <0.01 

(Unpaired t-test). (D) Survival rate of pCAGGS-LAG-3 and empty pCAGGS vector immunized 

mice (n= 7). The difference was significant (Log-rank test). *, P  <0.05. 



22 

 

2.13 DNA vaccination with pCAGGS-LAG-3 vector was associated with lupus-like 

inflammatory changes in multiple organs 

pCAAGS-LAG-3 immunized mice developed hair loss within 3-4 months of vaccination 

and displayed the features of dermatitis within eight months. Dermatitis developed from the back 

at the level of ears to the whole back and abdominal region. The severity of the inflammation 

exacerbated until eight months of vaccination (Figure 4A). On sacrifice, pCAAGS-LAG-3 

immunized mice showed obvious splenomegaly compared to the control mice (Figure 4B). 

Histopathological analysis of skin from pCAAGS-LAG-3-immunized mice revealed prominent 

epidermal hyperplasia with hyperkeratosis, liquefaction and mononuclear cell infiltration in 

dermis (Figure 4C). Pathological analysis of kidney showed C3 and IgG deposition in the 

glomeruli of pCAGGS-LAG-3-immunized mice, whereas the control mice were normal (Figure 

4D). Histopathological score of renal disease revealed the glomerulonephritis of mice immunized 

with pCAAGS-LAG-3 vector with lupus-like lesion (Figure 4E). Reflecting the fulminant 

infiltration of lymphocyte in pCAAGS-LAG-3-immunized mice, pathological analysis of lung 

presented lymphocyte infiltration around bronchiole (Figure 4F), and lung injury score shows 

remarkable tissue damage in pGAGGS-LAG-3 immunized mice with lupus lesion (Figure 4G). 
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Figure 4. Pathological change in mice after DNA vaccination. (A) Representative image of mice 

immunized with pCAGGS-LAG-3 after developing skin lesion compared with age-matched 

control mice. (B) Spleen size of pCAGGS-LAG-3 immunized mice 8 months after vaccination 

compared with control mice. (C) Pathological analysis of skin of mice immunized with 

pCAGGS-LAG-3 vector after 8 month of vaccination compared with control mice. Section of the 
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indicated tissue was stained with Hematoxylin and eosin (HE). (D) Pathological analysis of 

kidney presenting C3/IgG immune complex deposition in glomeruli and HEs staining. (E) 

Histopathological score of renal disease. A total of four mice in each group. *, P <0.05 (Mann-

Whitney U-test). (F) Pathological analysis of lung presenting lymphocyte infiltration around 

bronchiole stained with HE. (G) Lung injury score. A total of four mice in each group. *, P <0.05 

(Mann-Whitney U-test). 
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DNA vaccination with pCAGGS-LAG-3 vector induced the depletion of CD4+CD25-LAG-

3+Egr2+ T cells  

In order to evaluate the cause of lupus-like pathological condition in pCAGGS-LAG-3 

immunized mice, I analyzed the splenocytes by FACS analysis. Mice splenocytes were stained 

for LAG-3 and Egr2 both extracellularly and intracellularly. Interestingly, the pCAGGS-LAG-3-

immunized mice with lupus-like pathological condition showed significant depletion of 

CD4+CD25-LAG-3+Egr2+ T cells in comparison with the control mice and pCAGGS-LAG-3-

immunized mice without lupus-like pathological condition (Figure 5A). The expressions of Egr2 

among CD4+CD25-LAG-3+ T cells showed a significant decrease in pCAGGS-LAG-3-

immunized mice (Figure 5B). Percentage of CD4+CD25-LAG-3+Egr2+ T cells in pCAGGS-

LAG-3 immunized mice displayed a significant reduction compared to the control mice while 

the percentage of other T cell subsets  like CD4+CD25+T cells, CD4+CD25-LAG-3+Egr2― T cells 

and memory T cells were comparable in both vector immunized mice (Figure 5C).  
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Figure 5. pCAGGS-LAG-3 vaccination induced depletion of CD4+LAG-3+Egr2+ Treg cells: (A) 

Flow cytometric analysis of splenocytes in pCAGGS-LAG-3 immunized mice with lupus 

pathological condition, pCAGGS-LAG-3 immunized mice without lupus and control mice. 

Number adjacent to outlined areas indicate percent of LAG-3+Egr2+ T cells shown in all three 

mice; CD4+CD25- cells were gated. (B) Isolated splenocytes were stained and CD4+CD25-LAG-

3+ cells were gated for histogram comparison of Egr2 expression in all three groups. (C) 

Summary of the percentage of CD4+CD25-LAG-3+Egr2+ T cells, CD4+CD25+T cells, 

CD4+CD25-LAG-3+Egr2― T cells and memory T cells in mice immunized with pCAGGS-LAG-

3 vector and control vector. Each symbol indicates an individual mouse. 
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2.14  Anti-LAG-3 antibody in the mice with DNA vaccination 

As DNA vaccination causes protein expression which induces immune response, I 

hypothesized that after vaccination the mice injected with pCAGGS-LAG-3 vector produce anti-

LAG-3 antibody which might be the main cause of the depletion CD4+CD25-LAG-3+Egr2+ T 

cells and the severe lupus-like pathological condition. ELISA of anti-LAG-3 antibody revealed 

that the titer of anti-LAG-3 antibody significantly increased in pCAGGS-LAG-3 immunized 

mice with lupus-like symptoms compared with control mice (Figure 6A). Then, I tried to trace 

the time course of anti-LAG-3 antibody production using a part of mice serum in same 

experimental group. Here the mice immunized with pCAGGS-LAG-3 vector showed tendency to 

develop anti-LAG-3 antibody titer in their serum within 4 months of immunization and the titer 

increased later (Figure 6B). The correlation analysis found a negative correlation between the 

percentage of CD4+CD25-LAG-3+Egr2+ T cells and anti-LAG-3 antibody titers (Figure 6C). This 

result implied a working hypothesis that the DNA vaccination with pCAGGS-LAG-3 vector 

induced the production of anti-LAG-3 antibody, and anti-LAG-3 antibody depleted CD4+LAG-

3+Egr2+ T cells. Then, the depletion of CD4+LAG-3+Egr2+ T cells might induce lupus-like 

systemic autoimmunity. 
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Figure 6. pCAGGS-LAG-3 immunized mice with lupus pathological condition have high titer of 

anti-LAG-3 antibody. A) Serum concentration of anti-LAG-3 antibody in pCAGGS-LAG-3 

immunized mice compared with control mice (n= 7). Each symbol indicates an individual mouse. 

Horizontal line indicates the mean ± s.d *, P <0.05 (Unpaired t-test). (B) Time course of anti 

LAG-3 antibody production compared with control mice (n= 4). (C) Association between anti-

LAG-3 antibody titer and CD4+CD25-LAG-3+Egr2+ cells in pCAGGS-LAG-3 immunized mice 

with lupus pathological condition. 
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3. Discussion 

CD4+CD25-LAG-3+ Tregs are reported as a new subset that play a significant role in 

suppressing peripheral inflammatory reaction, and their function is IL-10 dependent and FoxP3 

independent [30, 60, 61]. LAG-3 on CD4+ T cell has been reported as a suppressive surface 

marker of conventional CD4+CD25+ Treg [62], however most CD4+LAG-3+ T cells are actually 

CD25 negative. Intracellular staining of CD4+CD25-LAG-3+ Tregs revealed a strong correlation 

with transcriptional factor Egr2, which was reported as a negative regulator of T cell activation 

and necessary for clonal anergy induction [38]. Transduction of Egr2 confers LAG-3 expression 

and regulatory activity on CD4+ naïve T cells [30]. Therefore, it is speculated that suppressive 

activity of CD4+CD25-LAG-3+ Treg is regulated by Egr2. In this experiment, I attempted to 

deplete CD4+CD25-LAG-3+ Tregs. 

I adopted DNA vaccination procedure, and constructed pCAGGS-LAG3 vector 

containing mouse LAG-3 cDNA. For DNA vaccination, several routes including intravenous, 

intramuscular and intradermal were practiced, however the most efficient result was obtained by 

intravenous administration. Within five months of vaccination, a part of mice immunized with 

pCAAGS-LAG-3 vector had developed lupus-like histological and functional abnormalities 

including alopecia, dermatitis and proteinuria while control mice did not. Intriguingly, only the 

pCAGGS-LAG-3 immunized mice with lupus-like lesion had high titer of anti-dsDNA antibody 

in the serum. On sacrifice, these mice had huge splenomegaly. Histopathological analysis of skin 

and kidney shows dermatitis with hydrophic degeneration of basal cells and Glomerulonephritis 

with IgG/C3 deposition in glomeruli. Thus, mice immunized with pCAGGS-LAG-3 vector leads 

to systemic autoimmunity in C57BL/6 mice. 
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FACS analysis of splenocytes revealed that CD4+LAG-3+Egr2+ T cells were depleted in 

pCAGGS-LAG-3 immunized mice with severe lupus-like lesions. Control mice or pCAGGS-

LAG-3 immunized mice without lupus-like lesions did not show the depletion of CD4+LAG-

3+Egr2+ T cells. Moreover, ELISA of anti-LAG-3 antibody revealed that CD4+LAG-3+Egr2+ T 

cells depleted mice developed high titer of anti-LAG-3 antibody. I hypothesized that the DNA 

vaccination with pCAGGS-LAG-3 vector induced the production of anti-LAG-3 antibody, and 

anti-LAG-3 antibody depleted CD4+LAG-3+Egr2+ T cells. The depletion of CD4+LAG-3+Egr2+ 

T cells might lead to lupus-like systemic autoimmunity (Figure 7).  

However, more experiment should be done. Although the production of anti-LAG-3 

antibody was certainly induced by pCAGGS-LAG-3 vaccination, it still needs to be elucidated 

whether this anti-LAG-3 antibody actually works for the depletion of LAG-3+ T cells. In order to 

verify the direct effect of anti-LAG-3 antibody, making monoclonal antibody using hybridoma 

technique from efficient antibody producing mouse is a rational plan. In vivo depletion of LAG-3 

Treg using monoclonal antibody can confirm the association between CD4+LAG-3+Egr2+ T cell 

depletion and anti-LAG-3 antibody formation. If these mice repeated the lupus-like pathological 

condition, our working hypothesis would be verified.  

This study inevitably raises a question why depletion of Egr2+LAG-3+ T cells results in 

lupus-like systemic autoimmunity in pCAGGS-LAG-3 vector-immunized mice. Previous report 

demonstrated that LAG-3-deficient mice displayed apparently normal pathological condition 

with no defect in T cells and B cells functions and no gross T cell abnormalities [22]. One may 

speculate that these LAG-3-deficient mice develop some compensative systems to avoid 

autoimmunity; whereas Egr2-cKO mice whose Egr2 gene was conditionally knocked out in T 

cells and B cells developed lupus-like systemic autoimmunity that is similar as our mice with 
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CD4+LAG-3+Egr2+ T cells depletion [39]. Several genome-wide associated study (GWAS) also 

showed there is a link between Egr2 and autoimmunity in human. Two independent GWAS 

study identified a strong association between Egr2 and Crohn’s disease, the most common form 

of chronic inflammatory bowel disease [63, 64], which is consistent with the study by Okamura 

et al. [30]. Another report demonstrated that Egr2 polymorphism influence SLE susceptibility in 

human [65]. However, further experiment is needed in order to confirm the role of CD4+LAG-

3+Egr2+ T cells depletion in the induction of lupus like pathology in mouse model. Adoptive 

transfer of wild type CD4+LAG-3+Egr2+ T cells in depletion model mice is a rational plan. 

The intricate part of this experiment is that the anti-LAG-3 antibody production reduced 

only CD4+LAG-3+Egr2+ T cells, but not CD4+LAG-3+Egr2- T cells. The reason why only 

CD4+LAG-3+Egr2+ T cells were depleted needs further investigation. One reason could be that 

the epitope expression of CD4+LAG-3+Egr2+ T cells might be suitable for depletion with anti-

LAG-3 antibody. LAG-3 is a transmembrane protein and consists of superficial D1, D2, D3, D4 

domain, connecting peptide (CP), transmembrane domain and cytoplasmic domain [66]. LAG-3 

was cleaved within the D4 transmembrane domain and connecting peptide, and generated both 

the truncated p54 LAG-3 fragment and soluble form LAG-3 (monomer). On the other hand, full-

length LAG-3 on the cell surface form LAG-3 dimer via the D1 domain which possesses high 

affinity for MHC class II molecule [8, 23]. To confirm that LAG-3 is expressed as dimer, Li et al. 

performed immunoblotting assay with anti-LAG-3 monoclonal antibody [66]. Interestingly, not 

all LAG-3 was cross linked in these experiments, then they hypothesized that momomeric form 

of LAG-3 might compete with membrane-associated LAG-3 for ligand binding. Here in my 

experiments, I used monomeric form of LAG-3 for the construction of DNA vaccination vector, 

therefore anti-LAG3 antibody induced by pCAGGS-LAG-3 might recognize monometric form 
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of LAG-3 more efficiently. If Egr2 positivity affects the expression of each form of LAG-3, the 

discrepancy between the number of LAG-3+Egr2+ T cells and LAG-3+Egr2- T cells might be 

explained by the difference of epitope recognition.  

A main drawback in our experiment is the low incidence rate of lupus-like lesions. 

Generally, induction of immune response after DNA vaccination considered as a slow process. 

The vector-encoded gene hardly reaches the lymphoid tissue under intravenous, intradermal or 

intramuscular administration. Instead, the encoded gene is expressed in some cells including 

hepatocytes and DCs that has limited access to T cells in lymphoid tissue [67]. Further 

modification of DNA vaccination protocol might solve this problem.  

This is the first report for the depletion of CD4+CD25-LAG-3+ Tregs in mouse model. I 

believe that this depletion model will help to analyze how LAG-3 Treg exert regulatory activity 

in vivo and will clarify what cells are important to develop lupus-like pathological condition  in 

mouse model. 
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Figure 7. Working hypothesis of CD4+CD25-LAG-3+ T cell depletion with DNA vaccination. 
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