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Abbreviations 

AIDS                                 Acquired Immune Deficiency Syndrome 

ART                                                 antiretroviral therapy 

CA                                                        capsid protein 

CCR5                                       C-C motif chemokine receptor 5 

C1~5                                                  constant region 1~5 

CXCR4                                    C-X-C motif chemokine receptor 4 

DC-SIGNR                         dendritic cell-specific intercellular adhesion- 

molecule-3-grabbing non-integrin 

df                                                     degrees of freedom 

DDJB                                          DNA DATA BANK of Japan 

DHHS                              Department of Health and Human Services 

D/M                                                       dual or mixed 

DMEM                                  Dulbecco’s modified Eagle’s medium 

DSP                                                     dual split protein 

DSP1-7                                                                          dual split protein 1-7 

DSP8-11                                                                        dual split protein 8-11 

Env                                                            Envelope 
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ER                                                  endoplasmic reticulum  

ES Trofile                        enhanced sensitivity Trofile HIV tropism assay 

FBS                                                    fetal bovine serum 

FDA                                          Food and Drug Administration 

FPR                                                     false positive rate 

GTAs                                                    genotypic assays  

HIV-1                                  human immunodeficiency virus type 1 

HRD                                                    HIV related drugs 

IN                                                             integrase 

IMSUT                  the Institute of Medical Science, the University of Tokyo 

UNAID                           Joint United Nation Programme on HIV/AIDS 

LTR                          long terminal repeat 

MA                                                        matrix protein 

MDM                                        monocyte-derived macrophages 

MEM                                             modified Eagle’s medium 

M-tropic                                                macrophage-tropic 

MVC                                                          maraviroc 

NC                                                         nucleocapsid 
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NFAT                                    nuclear factor of activated T cells 

NF-κB                                         nuclear transcription activator 

PBMC                                    peripheral blood mononuclear cells 

Pol                                                          polymerase 

PR                                                             protease 

PTAs                                                   phenotypic assays 

RT                                                   reverse transcriptase 

SDF-1                                          stromal cell-derived factor-1 

spGFP                                         split green fluorescent protein 

spRL                                                split Renilla luciferase 

SU                                                        surface protein 

TM                                                 transmembrane protein 

V1~5                                                  variable region 1~5
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Abstract 

Human immunodeficiency virus type 1 (HIV-1) uses two receptors upon 

infection: Cell surface CD4 molecule as a primary receptor and either CXCR4 or CCR5 

as a co-receptor. Based on the co-receptor it uses, HIV-1 is categorized as an X4 virus, an 

R5 virus, or an R5X4 virus.  

Co-receptor usage can be estimated by a phenotypic assay based on virus-to-cell 

infection (virus-cell fusion assay) utilizing pseudoviruses. TrofileTM (Monogram 

Biosciences Inc., California, USA) is an example. The virus-cell fusion assay mimics the 

natural infection most accurately, but it has shortcomings such as biosafety 

considerations and a long turnaround time. Genotypic co-receptor assay utilizing amino 

acid sequences of the viral envelope has also been developed. While a genotypic assay 

such as the Geno2pheno assay is safe, rapid and universally accessible, its calculation 

depends on short amino acid sequences in the V3 region of the envelope. Calculation 

depends also on historical data with known genotype and phenotype. Therefore, a simple, 

safe and rapid phenotypic assay is in need. Our laboratory has reported a new rapid and 

safe co-receptor assay based on cell-cell fusion (DSP-Pheno). In an effort to compare the 

validity of the three assays, I first applied the envelope glycoprotein gene amplified 

directly from the plasma of six patients to an in-house virus-cell fusion assay, 
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Geno2pheno assay, and cell-cell fusion assay. The Geno2pheno assay predicted R5 

co-receptor usage in all six patients; however, the results of the phenotypic assays using 

the whole envelope protein were quite different: The virus-cell fusion assay predicted 3 

R5 and 3 R5X4, and the cell-cell fusion assay predicted that all 6 were R5X4 viruses. 

Patients’ plasma viruses are composed of quasispecies, therefore I isolated 25 clones of 

the whole envelope gene from the 6 patients and tested their co-receptor usage. The 

Geno2pheno assay (using False Positive Rate <10), predicted that 17 or 8 clones could 

use CCR5 or CXCR4, respectively. An in-house virus-cell fusion assay, which is 

supposed to reflect the natural infection, predicted that all 25 clones could use CCR5 and 

that only 4 out of 8 clones predicted by Geno2Pheno could use CXCR4. These results 

showed that envelope regions outside V3 should be considered in predicting the 

co-receptor usage. In patient IMS0718, the amino acid mutation correlating R5 to R5X4 

change distributed in C1, C2, and V3, however the frequency of the mutation was not 

statistically significant. In patient IMS1000, 11 amino acid differences accumulated in C1, 

V2 and C3. Among them, the clustering of amino acid mutation in V2 was statistically 

significant.  

In the cell-cell fusion assay, 20/25 clones were predicted as R5X4 virus while 

only 5 clones were predicted as R5 virus. By comparison between the virus-cell fusion 
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assay and the cell-cell fusion assay, the amino acid mutation correlating the R5 to R5X4 

change were scattered in C1, V1, C3, V4, and V5.  

These results suggested first that the amino acid change in V2 which covers V3 

before CD4 binding could influence the subsequent co-receptor binding. Second, it is 

likely that the cell-cell fusion assay might over-estimate the CXCR4 usage and it would 

be difficult to apply the cell-cell fusion assay to the clinical decision on the use of CCR5 

antagonist, maraviroc. However, the cell-cell fusion assay may be useful for the research 

on cell-to-cell infection of HIV-1.  
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Introduction 

Human immunodeficiency virus (HIV) is a pathogen that causes Acquired 

Immune Deficiency Syndrome (AIDS). It was estimated that 35 million people were 

living with HIV globally by the end of 2013. About 24.7 million (70%) or 4.8 million 

people (14%) lived in sub-Saharan Africa or in Asia and the Pacific, respectively. Also, 

an estimated 2.1 million new infections and 1.5 million AIDS-related deaths were 

reported by WHO and UNAIDS globally in 2013. The cumulative estimated number of 

HIV carriers and AIDS patients was 437,000 at the end of 2013 in China.  

AIDS was first reported in Los Angeles, United States in 1981 [1]. The hallmark 

of the laboratory test was the virtual elimination of the Leu-3+ helper/inducer subset, 

which are now known as CD4+ T cells. Françoise Barré-Sinoussi, et al. isolated a new 

retrovirus in 1983, which was later named HIV type 1 (HIV-1) [2]. The genomic 

organization of HIV-1 contains three structural genes typical of a retrovirus, gag, pol, env, 

and six accessory genes, vif, vpr, vpu, tat, rev and nef [3]. After successful entry into the 

cytoplasm, the viral core is transported to the cellular nucleus while viral RNA genomes 

are reverse-transcribed to the DNA by the viral reverse transcriptase (RT) encoded in the 

pol gene (Fig. 1). Viral DNA is then integrated into the host chromosome by the viral 

integrase (IN) that is also encoded in the pol gene. Integrated viral DNA is transcribed 

into RNA, which is used for the genome of a progeny virus or messenger RNA to be 
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translated into viral structural proteins (Gag) and enzymes (Pol). After the translation on 

ribosomes associated with the rough endoplasmic reticulum (ER), the Env precursor 

protein (gp160) is transported to the Golgi apparatus and cleaved by a host protease into 

two mature envelope glycoproteins, surface protein (SU) gp120 and transmembrane 

protein (TM) gp41. Gp120 is expressed on the cell surface via transportation through the 

intracellular membrane trafficking system. Structural proteins and enzymes form the viral 

core and are budded from the cell membrane coated with the envelope glycoproteins. On 

the surface of the cell membrane and virion membrane, mature glycoproteins are present 

as the trimeric form of gp120 and gp41. 

During the HIV-1 replication cycle, the first key step is the binding of the viral 

gp120 to the cellular receptor on the cell membrane. Since the CD4+ T cell count was 

significantly deleted when AIDS was first described [1], the CD4 molecule was the first 

candidate for the cellular receptor for HIV-1 and actually it was; however, CD4 was not 

sufficient for HIV-1 entry in murine or non-human primate models [4, 5]. A breakthrough 

experiment using a novel functional complementary DNA (cDNA) cloning strategy 

identified a G protein-coupled receptor with seven transmembrane domains as a 

potentially candidate for co-receptor and was named “fusin” [6]. Fusin was later renamed 

as C-X-C motif chemokine receptor 4 (CXCR4). A CXC chemokine, stromal cell-derived 
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factor-1 (SDF-1), secreted by a lymphocyte was proven to be a potent inhibitor of HIV-1 

entry [7]; however, the identification of CXCR4 as a co-receptor of HIV-1 in addition to 

the principal receptor, CD4, could not explain the whole picture. Laboratory HIV-1 

strains could infect and fuse CD4+ T cell lines that express CXCR4 but primary HIV-1 

isolates from the patients could not. Primary HIV-1 isolates showed preferential growth 

in monocyte-derived macrophages or primary T-cells and did not induce cell fusions. 

Therefore, laboratory HIV-1 strains were often referred to as T-cell-line-tropic (or 

fusogenic) HIV-1, while primary isolates were called macrophage-tropic (or 

non-fusogenic) HIV-1. Another breakthrough in macrophage-tropic HIV-1 was published 

in 1995. Interestingly, ß-chemokines, such as RANTES, MIP-1α, and MIP-1β, which are 

the ligands for C-C motif chemokine receptor 5 (CCR5), could suppress the 

macrophage-tropic HIV-1 [8]. CCR5, a G protein-coupled receptor for a ß-chemokine 

with seven transmembrane domains, was the co-receptor for the macrophage-tropic 

HIV-1 [9, 10]. CCR5 is expressed on rather limited cell types, such as monocytes, 

macrophages, and primary T cells, but CXCR4 is more ubiquitously present on CD4+ T 

cells, CD4+ T-cell-lines, and other cell types [11].  

Berger et al. proposed a new classification for HIV-1 based on co-receptor usage 

[12]. HIV-1 isolates that use CCR5 but not CXCR4 are termed R5 viruses, isolates using 
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CXCR4 but not CCR5 are designated as X4 viruses, and isolates able to use both 

co-receptors with comparable efficiency are called R5X4. (Fig. 2). R5 viruses are the 

strains most commonly transmitted sexually, which is consistent with the high resistance 

of infection for individuals lacking CCR5 [13, 14]. A cross-sectional analysis in the early 

stages of the infection showed that 70-80% of the population with HIV-1 was due to R5 

[15]. Individuals harboring X4 viruses had poorer baseline clinical profiles (higher viral 

load and lower CD4 count) than individuals harboring exclusively R5 viruses [16]. While 

R5 viruses are detectable over the entire clinical course of HIV-1 infection [17], X4 

viruses emerge in 40-50% of infected persons during the clinical course [18]. Why R5 

viruses grow preferentially in the early clinical course is still an open question. The 

appearance of R5X4 or X4 viruses in a patient exacerbates the clinical progression 

leading to AIDS, since HIV-1 can kill CD4+ T cells more efficiently by taking advantage 

of the expression of CXCR4 in wider subsets of CD4+ T cells. Therefore, the co-receptor 

usage of HIV-1 is highly related to the pathogenesis of HIV/AIDS and needs further 

research. 

The crucial role of the V3 region in gp120 was originally considered to be the 

determinant for T-cell-line-tropic or macrophage-tropic HIV-1 and was designated as the 

co-receptor binding site [19, 20]. The molecules playing a key role in the binding of 
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HIV-1 gp120 to cellular receptors are schematically shown in Fig. 3. Upon binding to 

CD4, gp120 undergoes a major conformational change exposing the V3 region necessary 

for the co-receptor binding (Fig. 4). The binding of the V3 region of the viral envelope 

and the cellular co-receptor induce a further conformational change in gp120 as well as in 

gp41. The fusogenic domain with hydrophobic amino acids in the transmembrane protein 

gp41 (green bars in Fig.4) plays a crucial role in the membrane fusion between the virus 

membrane (envelope) and the cell membrane, though the precise mechanism is unknown.  

Another important feature of HIV-1 is its tremendous genetic heterogeneity. 

Highly error-prone RT produces a diverse and changing HIV-1 population and forms 

quasi-species in patients [21, 22]. It is noteworthy that a highly variable region, such as 

V3, serves as a co-receptor binding function. In addition, HIV-1 co-receptor usage has 

implications of treatment and/or prophylaxis. The Food and Drug Administration (FDA) 

approved an entry inhibitor, maraviroc, for clinical use in 2007. Maraviroc is a specific 

antagonist against CCR5 and inhibits HIV-1 entry into the cells [23] (Fig. 2). 

Understandably, maraviroc was not effective for treatment-experienced patients infected 

with non-R5 HIV-1 [24, 25]. Although the CXCR4 specific entry inhibitor AMD3100 is 

available for experiments, its clinical development has been discontinued due to 

hepatotoxicity.  
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A tropism assay is mandatory before the initiation of treatments if maraviroc is 

included. Although HIV-1 co-receptor usage can be predicted by a phenotypic assay or a 

genotypic assay, there are pros and cons of each assay (Fig. 5). From 2007 to 2009, the 

phenotypic assay used in association with maraviroc treatment was solely Trofile™ 

(Monogram Biosciences Inc, California, USA), a CD4+ T cell culture assay using 

replication-defective but infectious pseudoviruses [26]. The method of infecting cells 

with pseudoviruses (virus-cell fusion assay) was believed to best mimic the natural 

infection. Actually, according to the present guidelines, a phenotypic assay is preferred 

rather than a genotypic assay to predict HIV-1 co-receptor usage in patients 

(http://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-arv-guidelines/8/co-rece

ptor-tropism-assays); however, due to some inconveniences that are shown in Fig. 5, the 

phenotypic co-receptor assay has not been widely used for clinical practice [27]. The 

genotypic assay, which is based on amino acid sequences in the V3 region, was developed 

for wider use. The genotypic co-receptor assay is a rapid and widely applicable test; 

however, its dependence solely upon the V3 amino acid sequences does not guarantee the 

co-receptor binding activity of the whole envelope protein that patients’ viruses may have. 

Our laboratory developed and reported a new phenotypic HIV-1 co-receptor assay based 

on cell-cell fusion, called DSP-Pheno [28]. The assay takes advantage of a newly 
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developed cell-cell fusion assay system called Dual-Split Protein (DSP) [29]. DSP is a 

two-way assay system of cell fusion employing Renilla luciferase (RL) and green 

fluorescent protein (GFP). (Fig. 6). DSP-Pheno is a safe and rapid phenotypic co-receptor 

assay; however, its application in clinical samples should be validated carefully. 

Moreover, the results obtained by the DSP-Pheno may overestimate the CXCR4 usage of 

HIV-1 isolates compared to virus-cell fusion (unpublished observation, Hosoya, N.).  

The aim of my experiments was to apply three available co-receptor assays to 

clinical samples: one genotypic assay (Geno2Pheno) and two phenotypic assays based on 

virus-cell fusion or cell-cell fusion. Since envelope genes that are amplified by the 

polymerase chain reaction (PCR) include mixed envelope sequences (quasi-species), I 

isolated clonal envelope genes from the patients and tested them as well. Through the 

comparison between an in-house virus-cell fusion assay and a Geno2Pheno assay, I 

identified a region outside of V3 significantly correlated with the change in co-receptor 

usage. Then, I compared the two phenotypic co-receptor assays with the clinical samples 

to identify the role of amino acid mutations which correlated with the difference in 

co-receptor usage between virus-cell fusion and cell-cell fusion assays.
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Materials and Methods 

Cell lines 

There were three cell lines in the experiments: the 293FT cell line, which served 

as an HIV-1 Env-expressing cell line, and human glioma derived NP2 cell lines - N4X4 

cells and N4R5 cells, which served as the receptor-and-co-receptor-expressing cell line. 

The N4X4 cells were based on NP2 cells (received from professor Hiroo Hoshino, 

Gunma University, Gunma, Japan), which stably expressed CD4 and CXCR4 on the 

surface of the cell. The N4R5 cells were based on NP2 cells, which stably expressed CD4 

and CCR5 on the surface of the cell. N4X4 and N4R5 both expressed a Dual split 

protein1-7 (DSP1-7, 70% split green fluorescent protein and 70% split Renilla luciferase) 

stably.  

The 293FT cells (Invitrogen, California, USA) were cultured in a D10+ medium 

composed of Dulbecco’s modified Eagle’s medium (DMEM; Sigma) supplemented with 

10% FBS, 100 units/ml of penicillin, and 0.1 mg/ml of streptomycin. The N4X4 and 

N4R5 cells were maintained in a M10+4 medium composed of modified Eagle’s medium 

(MEM; Sigma, Missouri, USA), 10% heat inactivated fetal bovine serum (FBS), 100 

units/ml of penicillin, 0.1 mg/ml of streptomycin, and 4 mg/ml of blasticidin. All cell 

cultures were maintained at 37℃ in a humidified 5% CO2 incubator. 
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Clinical samples 

There were six patients enrolled in this study. Treatment-naïve clinical samples 

from the patients were used. This study has been approved by the institutional review 

board of the Institute of Medical Science, the University of Tokyo (approval number: 

20-31-1120). All patients provided written consent. 

 

Reference HIV-1 Env expression plasmids for positive control 

CXCR4-using and CCR5-using reference HIV-1 envelopes expression plasmids 

were used for the positive control of the cell-cell fusion assay or virus-cell fusion assay. 

NL4-3 (GenBank accession number U26942) represented the X4 virus, and BaL 

(GenBank accession number M68893) represented the R5 virus strain. The full-length 

envelope gene of NL4-3 or BaL was amplified and inserted into pRE11 with the XbaI and 

XhoI double restriction enzymes cut.  

 

Preparation of patients’ HIV-1 Env expression plasmid 

The recombinant DNA experiments used in this research were approved by the 

Institutional Review Board (approval number 08-30) and by the review board in the 
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Ministry of Education, Culture, Sports, Science and Technology (MEXT; approval 

number 23-1927). The full-length HIV-1 envelope (env) was amplified by PCR from 

patients’ plasma as described. Viral RNA was extracted from 140μl patients’ plasma using 

a QIAamp® Viral RNA Mini kit according to the manufacturer recommendations 

(QIAGEN, Hilden, Germany).  

Viral RNA was reverse transcripted with the one-step RT-PCR using SuperScript 

Ш (Invitrogen, California, USA) and Platinum® Taq DNA polymerase high Fidelity 

(Invitrogen). One sample was amplified separately in three reactions containing the 

same15μL mixture for the latter combination to minimize experiment bias. The15μL 

reaction mixture contained 2μL of RNA template, 7.5μL of 2×reaction buffer, 0.3μL of 

5mM MgSO4, 0.3μL of each 10μM of forward primer Env-1F, reverse primer Env-3Rmix 

(equimolar mixture of two 30-mer sequences) (Table 1), 0.6μL of SuperScript Ш and 

Platinum Taq DNA polymerase high Fidelity, 0.25μL RNAse OUT, and 3.75μL of SQ. 

The one-step RT-PCR was carried out in the following conditions. The first step was 

reverse transcription at 55℃ for 30min, followed by inactivation at 94℃ for 2 min. The 

second step included thirty cycles; each cycle composed of three sequential steps: 

denaturation at 94℃ for 20 sec, annealing at 55℃ for 30 sec, extension at 68℃ for 4 

min. After the 30 cycles, final extension at 68℃ for 5 min was added. The amplification 
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product spanned the positions of the envelope gene from position 5,853 to position 8,936 

referred to NL4-3. From a combination of the three reactions of the first-round PCR 

product, 1.2μL was used as a template in a 15μL system for the second-round PCR with 

the forward primer EnvB-2F-XbaMlu and the reverse primer EnvB-4R-AgeXho. The 

second-round PCR was carried out for five separate reactions. The second-round PCR 

product spanned the positions of the envelope gene from position 5,957 to 8,817 referred 

to NL4-3. The five reactions were mixed and purified using a QIAquick PCR Purification 

Kit (QIAGEN) by first adding 5 volumes of Buffer PB to 1 volume of the PCR sample 

and mixing and then adding 10 μL of 3 M sodium acetate if the color of the mixture was 

orange or violet and then mixing. The sample was applied to the QIAquick column and 

centrifuged for 30–60s, washed with 0.75 ml Buffer PE, and eluted with 30μL EB. The 

PCR purification product around 3000bp with a variation in each product was purified by 

1% agarose gel and the QIAquick gel extraction kit (QIAGEN). The purified product was 

double digested by the XbaI (5’C|TCGAG) and XhoI (5’ T|CTAGA) restriction enzymes 

at 10μg plasmid with a 30 unit XbaI and a 30 unit XhoI in a 50μL system at 37℃ 

overnight. Therefore, the double restriction enzyme cut mixture was ligated to a double 

restriction enzyme cut pRE11 by ligation at a 3:1 molar ratio at a total volume of 5μL in a 

system containing the 5μL solution I of the DNA Ligation Kit Ver. 2.1 (TAKARA, Shiga, 
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JAPAN) at 16℃ for 3-4 hours. The 10μL ligation mixture was transformed into 100μL 

JM109 competent cells with incubation on ice for 10 minutes and heat shock at 37℃ for 

90 seconds followed by a 2 minute incubation before an additional culture for 30 minutes 

in a 450μL Super optimal broth with catabolite repression (S.O.C.), which was composed 

of 2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM 

MgSO4, and 20 mM glucose. The culture was pelleted down by a 1 minute centrifuge at 

13,000 rpm, resuspended in 50μL S.O.C, and plated on an Amp+ LB-agar plate. The plate 

was cultured at 37℃ overnight, and all of the colonies on the plate were collected in a 

1mL LB medium and prepared in bulk (pRE11-envbulk) with the PureYieldTM Plasmid 

Miniprep System (Promega, Wisconsin, USA). The purified plasmid DNA was applied to 

a 0.8% gel electrophoresis, and the DNA band according to the positive control 

pRE11-NL4-3 was cut and purified using the QIAquick Gel Extraction Kit (QIAGEN). 

The purified DNA was transformed again into the JM109 competent cells, and single 

colonies were picked up and amplified by an overnight culture in 2mL LB-amp in 37℃, 

5% CO2. The plasmid DNA were purified by the QIAquick Gel Extraction Kit and 

confirmed by 0.8% gel electrophoresis, and the envelope DNA were applied to 

sequencing PCR using the BigDye® Terminator v3.1 Cycle Sequencing Kit with two 

primers of sense strands and antisense strands covering the V3 region of the envelope 
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gene in condition of pre-denaturation at 96℃ for 1 minute and denaturation at 96℃ for 

10 seconds, annealing at 50℃ for 5 seconds and extension at 60℃ for 4 minutes for 25 

cycles. The PCR product was purified in Sephadex and applied to ABI 3730xl DNA 

Analyzers (Applied Biosystems, California, USA). The sequencing product was read by 

sequencher 4.8 (Gene Codes Corporation, Michigan, USA) and analyzed by Genetyx 

12.0.0 (Genetyx Corporation, Tokyo, Japan). 

 

In-house virus-cell fusion assay 

The virus-cell fusion assay was also called the single round assay, which used 

the Env-expressing vector pRE11-env to pseudotype 293FT cells with a HIV-1 genomic 

vector pNL4-3.Luc.R-E-. The co-receptor-expressing cells, also called indicator cells, 

were N4X4 and N4R5 cells. The virus-cell fusion assays were carried out to examine the 

co-receptor usage of the clones phenotypically. The HIV-1 genomic vector 

pNL4-3.Luc.R-E- carried a Luciferase gene, which can easily embody the infectivity of a 

pseudovirus. Also, pNL4-3.Luc.R-E- had envelope deletion (Δenv), which should be 

compensated with an Env-expressing vector to produce the full-length HIV-1 without Vpr, 

that indicates an incompetent replication or single round infection (Fig. 7). 

On day 1, 1.4×106 cells/well of 293FT cell in 2mL D10- were seeded in a 6-well 
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tissue culture plate in order to achieve 100% confluency on the next day. 

One day 2, pRE11-env and pNL4-3.Luc.R-E- were co-transfected into 293FT 

cells. 123.7μL OPTI-MEM I Reduced Serum Medium (GIBCO) were aliquoted into each 

5mL polystyrene round-bottom tube (BD Falcon), and 1250ng plasmid DNA of 

pRE11-env and 1250ng pNL4-3.Luc.R-E- were added into the medium followed by a 

brief vortex and incubated at room temperature for 10 minutes. Then, a 8.7μL Fugene6 

transfection reagent was added into each tube for another 20 minutes of incubation. 

Finally, the mixture was added into the medium of 293FT cells in a 6-well tissue culture 

plate in a manner of three dot scattering. 

On day 3, N4X4 cells and N4R5 cells were plated on the 96 Well Optical Btm Plt 

PolymerBase White w/Lid Cell Culture Sterile PS (Thermo Fish Scientific, Maltham, 

USA) at 4.0×104 cells/well in a total volume of 100μL/well of M10+4. 

On day 4, 8.9μM of AMD3100 or MVC (Sigma) in 80μL M10+4 was added to 

each well of a 96 well optical bottom plate according to N4X4 cells or N4R5 cells. Ninety 

minutes later, the supernatant of transfected 293FT cells in a 6-well tissue culture plate 

was recovered and filtered with a 0.45μm syringe filter (Sartorius stedim biotech, 

Goettingen, Germany), and 1.5mL DEAE was added to the filtered virus per mL and fully 

mixed. Each 100μL recombinant virus was added into each well of N4X4 cells and N4R5 
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cells in the 96-well optical bottom plate with AMD3100 or MVC pretreatment or without 

AMD3100 or MVC treatment and duplicated.  

On day 7, a 185μL supernatant was removed, and a 75μL reagent of ONE-Glo™ 

Luciferase Assay System (Promega) was added into the medium of each well of the 

96-well optical bottom plate. After incubation for 3 minutes at room temperature, the 

plate was read with a GloMax® 96 Microplate Luminometer. The luciferase activity was 

measured three times consecutively and was recorded as the relative light unit (RLU). 

The average of three measurements represented the actual mean luciferase activity of 

each well. HIV-1 envelope references, NL4-3 and BaL, in pRE11 backbone were 

transfected into 293FT cells, and 293FT cells were co-cultured with N4X4 cells and 

N4R5 cells, respectively, serving as positive controls. pRE11 served as negative control 

and was transfected into 293FT cells and co-cultured with both indicator cells. 

 

Cell-cell fusion assay 

A new phenotypic co-receptor assay based on cell-cell fusion was used [28]. To 

make the virus-cell fusion assay comparable to the cell-cell fusion assay (Fig. 8), the 

Env-expressing cells and the co-receptor-expressing cells were the same as were used in 

the virus-cell fusion assay. Thus, the difference between the two phenotypic assays 
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existed only in cell-cell fusion or virus-cell fusion, and the virus-cell fusion assay 

indicates the actual infection. 

293FT cells were used as envelope expression cells and were seeded at 2.8×105 

cells/well in a 24-well tissue culture plate with a 500μL D10- medium.  

On the next day, pRE11-env clones were transfected into the 293FT cells of a 

60-80% confluency. The transfections were carried out as follows: a 25μL OPTI-MEM® 

I Reduced Serum Medium (GIBCO) was aliquoted into each 5mL polystyrene 

round-bottom tube (BD Falcon), and each 500ng plasmid DNA of pRE11-env was added 

followed by a brief vortex and incubated at room temperature for 10 minutes. Next, a 

1.75μL Fugene6 transfection reagent (Promega) was added into each tube for another 20 

minutes of incubation. Finally, the transfection mixture was added into corresponding 

wells of 293FT cell cultures in the 24-well tissue culture plate. On the same day, N4X4 

cells and N4R5 cells were plated on a 96 Well Optical Btm Plt PolymerBase White w/Lid 

Cell Culture Sterile PS (Thermo Fish Scientific) at 2.0×104 cells/well in a 100μL M10+4 

medium.  

48 hours post-transfection, transfection efficiency was examined by red 

fluorescence observed with an IN Cell Analyzer 1000 (GE Healthcare Limited, 

Buckinghamshire, UK). The co-culturing of Env-expressing 293FT cells and indicator 



 
 

24

N4X4 or N4R5 cells was carried out by replacing the medium of 293FT cells with 1mL 

phosphate buffer saline (PBS) (Sigma), resuspended by gently pipetting, and each 100μL 

was aliquoted into N4X4 cells and N4R5 cells in a 96-well optical bottom plate in a 

duplicate manner, respectively. If needed, 8.9μM of AMD3100 or MVC (Sigma) in 80μL 

M10+4 was added to each well. The co-culture cells were incubated at 37℃ in a 

humidified 5% CO2 incubator for 6 hours before the 90μL supernatant was discarded and 

the 5μL EnduRenTM Live Cell Substrate (Promega) was added to each well. The plate was 

incubated at 37℃ for an additional 90 minutes. The luciferase activity was measured 

three times by a GloMax® 96 Microplate Luminometer (Promega) and recorded as a 

relative light unit (RLU). The average of three measurements represented the actual mean 

of luciferase activity in each well. HIV-1 envelope references, pRE11-NL4-3 and 

pRE11-BaL, were transfected into 293FT cells and co-cultured with N4X4 cells and 

N4R5 cells, respectively, serving as positive controls; pRE11 served as a negative control 

and was transfected into 293FT cells and co-cultured with both indicator cells.  

 

Geno2pheno assay  

The V3 region of clones were sequenced by an E110 forward primer and an 

Er115 reverse primer. The subtype and co-receptor usage were predicted by a 
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Geno2pheno algorithm with a false positive rate of 10%. The A or A/G clones were 

aligned by clustalW 2.1 on the DNA DATA BANK of Japan (DDJB) with the HIV-1 

reference genes representing subtype A1, A2, B, C, D, F1, F2, G, H, J, K, N, O, and 

CRF01_ AE and confirmed again with a phylogenetic tree draw by TreeView. An FPR 

above 10% was regarded as R5, and an FPR below 10% was regarded as X4 clones (Fig. 

9). 

 

Full-length env sequencing 

Twelve primers, including forward primers PGK-F2, E70, E110, E130, E170, 

and E250 and reverse primers Er35, Er65, Er115, Er145, and Er155, and ori-seq-R2 were 

used to cover the full-length env, which was 2551bp~2640bp in length with a variation in 

each clone (Fig. 10). The BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied 

Biosystems, California, USA) was used to amplify the corresponding fragment. The 

10μL reaction mixture contained 1μL of DNA template, 2μL of 5×reaction buffer, 1μL of 

BigDye® Terminator v3.1, 0.25μL of each 10μM of forward primer and reverse primer, 

and 6.25μL of SQ. PCR was carried out under the following condition. Predenaturation at 

96℃ for 1 minute, followed by 25 cycles of denaturation at 96℃ for 10 seconds, 

annealing at 50℃ for 5 seconds and extension at 60℃ for 4 minutes. For IMS0328, the 
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additional primer E2350 was used, and for IMS0718 and IMS1000, the additional primer 

E510 was used. The sequences of the total 14 primers are shown in Table 1. Sequence 

purification included filling illustraTM SephadexTM G-50 Fine DNA Grade (GE 

Healthcare, Buckinghamshire, UK) into a Multiscreen plate (Merck Millipore, 

Massachusetts, USA) by a sephadex loading plate and filling 300μL SQ in a 

Sephadex-contained well leaving the sephadex to swell at room temperature for at least 1 

hour before using it in the purifying step. The purifying step included spinning down the 

plate at 900×g for 5 minutes and loading the 10μL labelling PCR product on the middle 

top of the swelled sephadex and then filling 10μL SQ in a new skirted 96-well plate. 

Finally, the labelling product was spinned down to a new plate at 900×g for 5 minutes 

before being applied to the ABI 3100 Genetic Analyzer (Applied Biosystems, California, 

USA). The instrument protocol was RapidSeq36_POP7_BDv3, and the analysis protocol 

was KB_POP7_BDv3.  

 

Fisher’s exact test 

The numbers of conserved amino acids in each appropriate region (C1, C2, C3, C4, C5, 

V1, V2, V3, V4, and V5) was subjected to a contingency table analysis. The null 

hypothesis determined that the mutations in each region had no difference regardless of 

how many amino acids the regions contained. The degrees of freedom (df) was 9. To 
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calculate whether each clustering of mutations in a certain region was different from the 

others or not, the 2×2 contingency table was used. The df was 2. Fisher’s exact tests were 

applied. 
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Results 

Estimation and determination of cutoff level of each assay  

Ten percent was chosen as the false positive rate (FPR) in Geno2pheno as 

recommended by the European consensus groups on the clinical management of HIV-1 

tropism testing, which determined that the significance level of the conservation of 

detection of CXCR4 usage should be 10% (http://coreceptor.geno2pheno.org/index.php). 

The laboratory strains NL4-3 and BaL were used as positive controls in N4X4 

and N4R5 cells, respectively, and as negative controls in N4R5 and N4X4 cells, 

respectively. Each virus-cell fusion assay contained the positive control and the negative 

control and were duplicated in the cell-culture plates. The values of NL4-3 in N4R5 cells 

and BaL in N4X4 cells in each assay were used in the equation of the mean plus two 

standard derivations (SD) as a threshold calculation, which was 465 for the luciferase 

activity in N4X4 cells and 4686 for the luciferase activity in N4R5 cells. 

Each cell-cell fusion assay contained the positive control and the negative 

control and were duplicated in the cell-culture plates. The cell-cell fusion assays used the 

threshold of 911 relative light unit (RLU) in N4X4 cells and 435 relative light unit (RLU) 

in N4R5 cells, respectively (Fig. 11). 
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Patient characterization and the results of the three co-receptor assays on patients’ 

plasma viruses 

The patients enrolled in this study had not received ART therapy and were 

selected randomly. The numbers IMS0025, IMS0155, IMS0328, IMS0718, IMS0782, 

and IMS1000 assigned to the patients were used in this research. Among them, IMS0025 

and IMS0155 had a low CD4 count ranging from 19 to 33, and IMS0328, IMS0718, 

IMS0782, and IMS1000 had a relatively higher CD4 count that ranged from 233 to 399 

(Table 2).   

The envelope DNAs reversely transcripted from the patient serums were ligated 

to the pRE11 vector, and each contained the whole quasispecies infecting one individual. 

The DNA plasmids were called pRE11-envbulk or bulkenvs. The six bulkenvs were applied to 

the Geno2pheno assay, the virus-cell fusion assay, and the cell-cell fusion assay, 

respectively. The false positive rates of the six bulkenvs of IMS0025, IMS0155, IMS0328, 

IMS0718, IMS0782, and IMS1000 were 54.8%, 55.3%, 37.8%, 85.5%, 35.6%, and 

10.5%, respectively, as they were all above 10%. The six bulkenvs were all predicted to be 

the R5 genotype by the Geno2pheno assay. The virus-cell fusion assay showed that the 

luciferase activities of the six bulkenvs IMS0025, IMS0155, IMS0328, IMS0718, 

IMS0782, and IMS1000 in the N4X4 cells were 1173, 574, 558, 235, 204, and 254 
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relative light unit (RLU), respectively, and the luciferase activities of the six bulkenvs in 

the N4R5 cells were 1413289, 1622193, 215228, 10938, 74071, and 249309 relative light 

unit (RLU), respectively. Based on this, the six bulkenvs IMS0025, IMS0155, IMS0328, 

IMS0718, IMS0782, and IMS1000 were divided into two phenotypes: the R5 virus 

(CCR5-using) and the R5X4 virus (CXCR4-using). The bulkenvs of IMS0025, IMS0155, 

and IMS0328 were predicted to be R5X4, and IMS0718, IMS0782, and IMS1000 were 

predicted to be R5. The cell-cell fusion assay had a result of all R5X4 phenotypes for the 

six bulkenvs. The luciferase activities in the N4X4 cells were 2725, 2379, 1857, 27294, 

1778, and 18432 relative light unit (RLU), respectively, and the luciferase activities in the 

N4R5 cells were 14070, 30799, 75923, 25342, 29176, and 66013 relative light unit 

(RLU), respectively. This caused the bulkenvs of IMS0025, IMS0155, and IMS0328 to 

have concordant results with the virus-cell fusion assay, while IMS0718, IMS0782, and 

IMS1000 had discordant results with the virus-cell fusion assay, by cell-cell fusion assay 

(Fig. 12). To clarify the mechanism within the discordant results, single colonies were 

picked up after transforming the bulkenvs into JM109 competent cells, and the DNA clones 

were purified for the Geno2pheno assay, virus-cell fusion assay, and cell-cell fusion 

assay. 
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Clonal analysis of viruses originating from patients 

From IMS0025, 3 clones were separated. From IMS0155, 1 clone was separated. From 

IMS0328, 5 clones were separated. From IMS0718, 7 clones were separated. From 

IMS0782, 1 clone was separated. From IMS1000, 9 clones were separated. All of the 25 

clones were applied to a full-length sequencing. According to the references from subtype 

A, subtype B which included laboratory strains BaL, NL4-3, HXB2, and SF2, and 

subtype C, the phylogenetic tree was created (Fig. 13). Because the primary prevalent 

HIV-1 strains were subtype B, it was not surprising that all of the clones from the six 

patients were all subtype B. The clones from each individual were clustered in one branch 

and were separate from the others. 

 

Comparison between Geno2pheno assay and virus-cell fusion assay  

From bulkenv IMS0025, clones IMS0025-9, IMS0025-13, and IMS0025-15 all 

had an FPR of 54.8%. From bulkenv IMS0155, clones IMS0155-22 had an FPR of 41.9%. 

From bulkenv IMS0328, clones IMS0328-6, IMS0328-7, IMS0328-27, and IMS0328-29 

had an FPR of 37.8%. From bulkenv IMS0718, clones IMS0718-6, IMS0718-11, 

IMS0718-15, IMS0718-22, IMS0718-23, IMS0718-27 and IMS0328-63 had an FPR of 

52.8, 96.5, 52.8, 1.1, 52.8, 52.8, and 1.1%. From bulkenv IMS0782, clones IMS0782-35 
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had an FPR of 49.9%. From bulkenv IMS1000, clones IMS1000-27, IMS1000-32, 

IMS1000-35, IMS1000-42, IMS1000-63, IMS1000-64, IMS1000-81, IMS1000-109, and 

IMS1000-111 had an FPR of 1.7, 9.6, 13.2, 13.2, 9.6, 9.6, 5.0, 13.2, and 9.6%. Out of the 

25 clones, 17 were predicted to be R5 viruses, and 8 were predicted to be R5X4 or X4 

viruses (Fig. 14). These 8 CXCR4-using clones were derived from two individuals, 

IMS0718 and IMS1000. The V3 sequences were aligned. Geno2pheno used the 

following rules in the algorithm, interpreted as the positive charge should be calculated as 

the total number of positively charged (R/K/H) amino acid residues. The positive charges 

of the R5 clones were from 7 to 8 and from 8 to 10 for the CXCR4-using clones. A higher 

positive charge was correlated with the likelihood of CXCR4 use. The net charge was 

calculated as the number of positively charged (R/K/H) amino acid residues minus the 

number of negatively charged (D/E) residues. The 11/25 rule is an addition to the positive 

charge. Basic residues (R or K) at either or both of these sites is predictive of CXCR4 use. 

For the 11/25 rule, two basic R in the 11th position and one basic K in the 25th position 

from three CXCR4-using viruses, IMS0718-22, IMS0718-63, and IMS1000-27, obeyed 

the rule; however, the other 5 CXCR4-using clones did not obey the rule. Three R5 clones 

with an FPR of 13.2% had the same relatively high positive charge and net charge as the 

CXCR4-using viruses. The net charge of the CXCR4-using clones ranged from 7 to 10. 
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The false positive rate was the probability of classifying a CXCR4-not-using virus falsely 

as a CXCR4-using virus. The FPR of the R5 clones were from 13.2% to 96.5% and from 

1.1% to 9.6% for the CXCR4-using clones.  

In the virus-cell fusion assay, the recovered DSP activity was detected by the 

luciferase activity (Luc), and each clone had values in each N4X4 and N4R5 cell, 

respectively. The values of the luciferase activity of each clone in N4X4 and N4R5 were 

estimated by comparing them with the cutoff in N4X4 or N4R5, and the 25 clones were 

divided into two groups: one had luciferase activities above the cutoff for N4R5 but lower 

than the cutoff for N4X4, and the other group had both values positive for N4R5 and 

N4X4. The former group represented R5 clones, and the latter represented R5X4 clones. 

The number of R5 clones was 21, and the number of R5X4 clones was 4. These 4 R5X4 

were derived from two individuals, IMS0718 and IMS1000 (Fig. 15). The clones from 

IMS0718 and IMS1000 by the Geno2pheno assay and the virus-cell fusion assay were 

shown in the upper and lower panels. Panel (a) includes the results of the Geno2pheno 

assay, panel (b) includes the results of the virus-cell assay, and panel (c) shows the 

alignment of the V3 sequences. For IMS0718, the Geno2pheno and virus-cell assays 

predicted the same results: 5 R5 and two with CXCR4 usage. The alignment of the V3 

sequences showed that four consistent amino acid changes were related to the co-receptor 
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usage. For IMS1000, the results from the Geno2pheno and virus-cell assays did not match. 

In the virus-cell assay, 7 were predicted to be R5, and 2 were predicted to be R5X4. In the 

Geno2pheno assay, four of the 7 R5 were predicted to be CXCR4 usage. The V3 

alignment showed that E/K in the 25th position was related to the co-receptor usage; 

however, it did not appear to obey the rules. The alignment also showed that there were 4 

clones with identical V3 sequences with different phenotypes. Three were R5 clones, and 

one was an R5X4 clone, which suggests that the co-receptor usage could be determined 

outside of the V3.  

Figure 16 shows the full-length Env alignment of the clones from IMS0718. The 

clone numbers are shown on the left. The R5 clones are shown in the upper panel of the 

aligned sequences separated by a green line from R5X4 clones in the lower panel. The 

sequences were divided into C1 to V5 regions, respectively. The consistent mutations 

T303I, R304K, S306R, and D321G in V3 are shown in the yellow bar. The S306R and D321G 

positioned in the 11th and 25th amino acid of the V3 sequence of Env, respectively, obeyed 

the rules of positive charge. There are two consistent mutations, E5G in C1 and E268K in 

C2, shown in the pink bar. The 3D structure of gp120 with a PDB file name, 4TVP, 

summarizes the consistent amino acid usages that were different in the R5 and R5X4 

clones. After CD4 binding, V1V2 was repositioned relative to V3, and the conserved 
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mutations were predicted (Fig. 17). The mutations of the amino acid in V3 are shown in 

red in the left panel, and the mutations of the amino acid outside of V3 are shown in the 

right panel. The mutations in V3 were in the co-receptor binding site; however, the 

mutations in C1 and C2 appear to be far from the co-receptor binding site. Figure 18 

shows the full-length Env alignment of another patient, IMS1000. The sequences in V1 

were quite heterogeneous. The 9 clones can be differentiated into two groups, as shown in 

red and pink. Sequence IMS1000-27 does not appear to belong to either of the two groups 

because of some mutations that are scattered throughout the full-length Env. From the 

analysis of the phylogenetic tree, we can see that the 9 clones that originated from the 

same branch evolved into one single clone and two groups, which are colored in red and 

pink, respectively. Group 1 had one R5X4 clone, IMS1000-32, and four R5 clones. Group 

2 had 3 R5 clones (Fig. 19). To keep the homogeneity of the sequences, the clones from 

group 1 only were aligned. Figure 20 shows the alignment of the R5 and R5X4 clones in 

group 1. It can be observed that the consistent mutations K2R, A3V, R9K in C1, T161A, 

T162P, Y173H, Y177S, Q183R, S190R, and N195H in V2 and M347I in C3 were responsible for 

the difference between the R5 and R5X4 clones. Figure 21 shows the crystal structure of 

the consistent mutations in IMS1000. In the left structure, seven amino acid changes in 

V2 were found, and they were in the co-receptor binding site. In the right structure, 4 
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amino acid changes in C1 and C3 were found, which appear far from the co-receptor 

binding site. For fisher’s exact test, the number of conserved amino acids compared to the 

full-length of each appropriate region (C1, C2, C3, C4, C5, V1, V2, V3, V4, and V5) 

were applied to a null hypothesis, and the groups did not have significant differences; 

however, the hypothesis was rejected by p<0.05 (Fig. 22). The region with significantly 

different mutations needed to be identified. Thus, C1, V2, or C3 was extracted from the 

full-length Env. The frequencies of amino acid mutations in each of the three regions and 

amino acid mutations in the remaining total of envelope were applied to a 2×2 

contingency table analysis. When C1 was extracted to be compared with the remaining 

regions, it showed p>0.05. When V2 was extracted to be compared with the remaining 

regions, it showed p<0.05. When C3 was extracted to be compared with the remaining 

regions, it showed p>0.05. To eliminate the effect of the significant influence of amino 

acids in V2, the frequencies of amino acid mutations in C1 and C3 and frequencies in the 

remaining total of envelope excluding V2 were applied to another two 2×2 contingency 

table analysis. They still showed no significant difference of C1 or C3 from the contrast, 

p>0.05. This means that the number of consistent amino acid changes in V2 had 

significant differences in comparison with the full-length Env. 

The comparison between the Geno2pheno assay and the virus-cell fusion assay 
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can be summarized as: an amino acid outside of V3 could influence the co-receptor usage 

by the virus-cell fusion assay. By the summary of the mutations from IMS0718 and 

IMS1000, there were a total of 4 mutations in C1, 7 mutations in V2, 1 mutation in C2, 

and 4 mutations in V3. Generally speaking, the amino acid differences that were 

correlated with CXCR4 usage clustered in V2 and C1, especially in V2. The amino acid 

changes in C2 and C3 may be related to CXCR4 usage and may also be a consequence of 

the small number of samples. 

 

Comparison between the virus-cell fusion assay and cell-cell fusion assay 

 

Figure 23 shows the results of the 25 clones in the cell-cell fusion assay. Panel 

(a) is the result of the Geno2pheno assay, (b) is the result of the virus-cell assay, and (c) is 

the result of cell-cell fusion assay. Co-receptor usage predicted by cell-cell fusion assay 

of the 25 clones is described as the following. 5 clones were predicted as R5, and 21 

clones were predicted as R5X4. Compared with the virus-cell assay, there were 16 R5 

clones in the virus-cell fusion assay turning out to be R5X4 clones in the cell-cell fusion 

assay. The clones were from four patients: IMS0025, IMS0718, IMS0328, and IMS1000. 

Panel (d) shows the location of the consistent mutations S49T, I100M located in C1, S134V 

located in V1, E336R, R344K located in C3, K410E located in V4, and I465T located in V5. 
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The crystal structure shows the sites of the consistent mutations by the cell-cell fusion 

assay. It can be observed that the amino acids that differentiate in the discordant clones 

between the virus-cell and cell-cell assays were scattered in different regions of the 

envelope.
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Discussion 

The most important parameters in an HIV-1 infected patient are the CD4+ T cell 

counts and the HIV RNA loads in the plasma. It has been discovered that the HIV-1 

infected patients with CD4+ T cell counts that ranged from 200 to 350/μL had a high 

mortality related to complications such as liver diseases and coronary artery diseases 

compared to those with CD4+ T cell counts above 350/μL. An HIV-1 infected individual 

with CD4+ T cell counts less than 200/μL has a higher possibility of complications of 

opportunistic infections. The relationship between the CD4+ T cell counts and the HIV 

RNA loads appear to be negative. Research on the proportion of variability in the rate of 

CD4+ T cell loss in untreated HIV-infected persons shows that an average decreasing 

percentage of CD4+ T cells by year has a significantly higher value in the group with 

higher HIV RNA loads than in the group with lower HIV RNA loads [30]. An analysis of 

NA-ACCORD in 2009 shows that groups starting antiretroviral therapy (ART) when the 

CD4+ T counts ranged from 351~500/μL have a higher mortality than groups starting 

ART when the CD4+ T counts dropped to below 350/μL [31]. The data from HIV related 

drugs (HRD) shows that the mortality between the patients with CD4+ T cell counts 

ranging from 200 to 350/μL and those with CD4+ T cell counts over 350/μL had a 

significant difference [32].  
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In this study, two patients had CD4+ T cell counts lower than 200/μL, and four 

patients had CD4+ T cell counts ranging from 200 to 350/μL. Three of the four patients 

with CD4+ T cell counts ranging from 200 to 350/μL were predicted to be R5 by the 

bulkenv virus-cell fusion assay, and the remaining one patient with CD4+ T cell counts 

ranging 200 to 350/μL and two patients with CD4+ T cell counts lower than 200/μL were 

predicted to be R5X4 by the bulkenv virus-cell fusion assay. This suggests that the 

CXCR4-using viruses were comparably increasing for the patients with lower CD4+ T 

cells. It has been reported that faster disease progression and rapid CD4+ T cell loss is 

associated with the emergence of CXCR4-using HIV-1 during the disease’s course in 

some AIDS patients [33]. The prognosis of the patients was unknown; however, the 

co-receptor usages reflected the HIV-1 infection stages of each individual properly. 

The clones showed a discrepancy with the bulkenvs in co-receptor usages by the 

Geno2pheno assay or virus-cell fusion assay. As for the Geno2pheno assay, the 

discrepancy for the bulkenvs and clones existed in IMS0718 and IMS1000, which had 

CXCR4-usage clones, but the bulkenvs were both R5. The other four bulkenvs and clones 

were R5. This can be explained because the Geno2pheno assay has a low sensitivity in the 

detection of X4 minority variants in a bulkenv. For the maraviroc treatment, the presence 

of CXCR4-using viruses could not be included; however, because the limited sensitivity 
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of the Geno2pheno for the detection of a CXCR4-using virus is 10%, it had been implied 

that the genotypic assay is inadequate for the prediction of the X4 variant in a clinical 

setting [34]. Many methods have been suggested to improve the genotypic assay, 

including raising the repeating times on samples from the same patient, combining 

several algorithms together, changing the assay threshold parameters, and incorporating 

the results based on regions other than the V3 [35-38]. V3 loop mutagenesis studies have 

demonstrated that co-receptor binding is strongly related to basic residues, including R298, 

R308, R315, R327, and two hydrophobic residues, F317 and I323, both in the R5 and X4 virus. 

For R5 co-receptor usage, residues N302, D325, and I326 were proven to be important for 

determining co-receptor preference [39]. For X4 co-receptor usage, two basic residues, 

R306 and K322, were proven to strongly correlate to CXCR4 use [40]. Because CCR5 

structures have a more open ligand binding pocket, the V3 loop backbone residues 

318-320 are engaged in hydrogen bond interactions with the ECL2 of CCR5, and the 

crown GPGR motif has residue P313 engaged in hydrophobic contact with helices I and 

helices II of CCR5. The V3 mutation S306R from the CCR5/R5-V3 model to the 

CXCR4/X4-V3 model showed a decreased binding ability to CCR5 and a suggested 

determinant of co-receptor preference. It was proven that Q310-R311 in V3 were commonly 

absent in most HIV-1 isolates, except particular X4-tropic viruses. When the prototypical 
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X4 isolate HXBc2 is removed from the two residues, it becomes an R5X4 strain, which 

suggests that the R5 tropic should not have the residues 310-311. I323V was reported to be 

related to the resistance to the CCR5 antagonists, including the small molecule maraviroc 

and the polypeptide 5P12-RANTE [41-44]. It is widely accepted that reductions in CCR5 

affinity can reduce fusion levels and viral infectivity [45, 46]. 

By the virus-cell fusion assay, three bulkenvs showed R5X4 for IMS0025, 

IMS0155, and IMS0328, but the clones from the three patients all showed R5 viruses. 

Two bulkenvs showed R5 for IMS0718 and IMS1000, but the clones showed R5 as well as 

R5X4. Only for one bulkenv IMS0782, virus-cell fusion assay predicted R5 in 

concordance with clones. The discordance of bulkenvs and clones may be explained by the 

high sensitivity on X4 minorities of bulkenvs and the small number of clones separated 

from each bulkenv. Dr. Noriaki Hosoya tested the sensitivity for the minor variant detection 

of the virus-cell fusion assay using the reference strains pRE11-NL4-3 or pRE11-BaL. 

Based on the luciferase activity, up to 0.3% in the pRE11-NL4-3 and 5% in the 

pRE11-BaL detection limit showed a significant level of the statistic test when mixing the 

two strains by different mixing ratios [28]. Because the sensitivity of detection on 

CXCR4-using minor variants was higher than the Geno2pheno assay, the virus-cell 

fusion assay could detect three R5X4 from the bulkenvs, but the Geno2pheno assay could 
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not. The virus-cell fusion assay appeared to have some limitations on viral load. The viral 

load for the Trofile assay should be >1,000 copies/mL; however, the recommended 

sample for the genotypic assay is plasma with a viral load >500 copies/mL. By 

comparison of the Geno2pheno and virus-cell fusion assay, it showed four discordant 

clones which were predicted CXCR4-using by Geno2pheno assay, but R5 by virus-cell 

fusion assay. The FPR of the four discordant clones IMS1000-81, IMS1000-63, 

IMS1000-64, and IMS1000-111, predicted by the Geno2pheno assay and the virus-cell 

fusion assay, were 5, 9.6, 9.6, and 9.6%, respectively. And remaining four CXCR4-using 

clones predicted by Geno2pheno assay were R5X4 by virus-cell fusion assay. The FPR of 

the four concordant CXCR4-using clones IMS0718-22, IMS0718-63, IMS1000-27, and 

IMS1000-32, predicted by the Geno2pheno assay and the virus-cell fusion assay, were 

1.1, 1.1, 1.7, and 9.6%, respectively. The two groups showed a statistical significance by 

the one-tailed unpaired student t-test, p<0.05. The luciferase activities in N4X4 by the 

virus-cell fusion assay of the two groups also showed a statistical significance, p<0.05, 

when the logarithmic values of the two groups in N4X4 were applied to the one-tailed 

unpaired student t-test; however, the luciferase activities in N4R5 did not show a 

statistical significance. The significant level of a false positive rate had been 

recommended to be 10%. If the cutoff is 5%, Geno2pheno assay would predict the 25 
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clones concordantly with virus-cell fusion assay. However, research on assessing the 

performance of the Geno2pheno assay in predicting CXCR4-using viruses compared 

with the enhanced version of the Trofile HIV tropism assay (ES Trofile) showed that 

when the significance level of the false positive rate was 20%, the Geno2pheno assay 

showed the highest sensitivity (76.7%) [47]. Although the Geno2pheno assay had been 

approved for clinical diagnostics to predict the co-receptor usage of an HIV-1 infection, 

the threshold for the CXCR4-usage level had not yet been conclusively established. In 

general, V3 genotyping samples from plasma HIV RNA or proviral DNA were 

recommended to be interpreted with a false-positive rate of 10%; however, if only one 

sequence can be generated from a DNA sample, it was recommended to interpret it with a 

false-positive rate of 20%. The ES Trofile was developed by Monogram Biosciences and 

improved by a 30-fold increase in analytical sensitivity on the detection of the 

CXCR4-using virus. Samples from naïve patients and CD4+ T cell counts that ranged 

from 200 to 500 cells/mm3 showed the best predictive performance. Another cell-cell 

fusion assay called VERITROP uses a homologous recombination by an innovative 

yeast-based cloning strategy. 

The discrepancy of the two R5 bulkenvs with the R5X4 clones from IMS0718 and 

IMS1000 showed that the sensitivity of the X4 minor variant was not high enough. In this 
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research, the E322 in V3 of the 4 discordant clones determined by the Geno2pheno assay 

and the virus-cell fusion assay were from one bulkenv IMS1000, and another two X4 

clones determined by the Geno2pheno assay showed K322 and E322, which may suggest 

that E322 may be the characteristic for the CXCR4 co-receptor usage at least for the one 

patient, IMS1000. It was reported that the combination of the mutations N197D, P311R, and 

E320K has the ability of a co-receptor switch in CCR5:CXCR4 chimeric co-receptors [48]. 

The result in this study of E322 is a new finding, which clearly suggests that the amino acid 

outside of V3 should be the determinant for co-receptor usage. The variable regions V1, 

V2, V3, V4, and V5 form an exposed loop of gp120, while the conserved regions C1, C2, 

C3, C4, and C5 form the gp41 binding surface and the CD4 binding surface [49]. It was 

generally considered that the coding of the variable region 3 (V3 loop) of gp120 of the 

HIV envelope is the major genetic determinant of CCR5 or CXCR4 associated with R5 or 

X4 virus binding. In the V3 regions, it has been reported that X4 tropic viruses have more 

positively charged amino acid residues and less N-linked glycosylation sites than R5 

viruses [50]. To differentiate the CCR5-using viruses from the CXCR4-using viruses, the 

amino acid variability, net charge, amino acid length, frequency of insertions and 

substitutions within the GPGQ crown motif, and frequency of glycosylation were 

investigated by the CXCR4-using V3 sequences [51]. Structural studies showed the 
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structure rearrangement of gp120 is primarily in the core structure. The gp120 3D 

structure analysis of the V3 loop from a R5 virus showed that the V3 loop protrudes from 

the gp120 core by 30 Å and likely interacts with the co-receptors following CD4 binding 

with this length, and 3D structure from both R5 virus and X4 virus showed the bridging 

sheet formed between the C1, C2, and C4 domains had a corresponding entropy loss in 

CD4-gp120 complexation [49, 52]. The V3 region and the bridging sheet formed after 

CD4 binding were reported to contact the N-terminal domain of CCR5 by using a 

∆V1/V2 HIV-1 clone TA1, which is derived from the R3A clone with a one-half 

truncation of the V3 loop [53]. The V1/V2 region was also reported to have an 

implication on co-receptor usage [50, 54] [48, 55-59], but it was controversial regarding 

whether or not V1/V2 plays a role in co-receptor selection [60, 61]. The co-receptor 

usage-related amino acid substitution is also mapped to the gp41 TM subunit and the 

fusion peptide of TM [62]. In this research, 7 conserved mutations T161A, T162P, Y173H, 

Y177S, Q183R, S190R, and N195H in V2 predicted by the virus-cell fusion assay were related 

to R5 to R5X4 changes and have statistical significance. 

The cell-cell fusion assay showed a high sensitivity on CXCR4-using viruses. 

The 25 clones measured by the cell-cell fusion assay showed no discrepancy with the 

bulkenvs. The bulkenvs were all predicted to be R5X4, and the clones from the bulkenvs all 
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contained R5X4. The clones also confirmed that the cell-cell fusion assay has a better 

sensitivity in the detection of the minority of CXCR4-using viruses than the virus-cell 

fusion assay. It would be too sensitive to apply for a clinical usage. So, I compared the 

virus-cell fusion assay and cell-cell fusion assay in order to find the amino acid 

differences in R5X4 prediction between these two assays. In Fig. 23, there were 16 

discordant clones out of the 25 clones that were predicted to be R5 by the virus-cell fusion 

assay but R5X4 by the cell-cell fusion assay. The luciferase activity in the N4X4 cells by 

the cell-cell fusion assay of the 16 discordant clones predicted by the virus-cell fusion 

assay and the cell-cell fusion assay, had a significant difference from the five concordant 

R5 clones predicted by the virus-cell fusion assay and the cell-cell fusion assay, 

IMS0025-9, IMS0025-15, IMS0328-27, IMS1000-109, and IMS1000-111, in the log 

transfer, P<0.05; however, the luciferase activity in the N4X4 cells by the virus-cell 

fusion assay of the discordant group and the concordant R5 group did not show a 

significant difference. In N4R5 cells, the luciferase activity of the 16 discordant clones 

and the five concordant R5 clones by both assays had a significant difference, P<0.05.  

The conserved mutations S49T, I100M located in C1, S134V located in V1, E336R, 

R344K located in C3, K410E located in V4, and I465T located in V5 had the tendency to 

affect the results of the cell-cell fusion assay. The mutations were scattered through the 
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envelope protein, and they may have affected the cell-cell fusion in other ways.
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Conclusion 

1.      In addition to V3, the V2 domain or C1 domain may be involved in 

co-receptor usage. 

2. Two phenotype assays, virus-cell and cell-cell fusion assays, provided 

many discordant results on CXCR4 indicator cells. 

3. The cell-cell fusion assay may be applied for CCR5 but not for CXCR4 

usage. 
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Table  1.  Sequences  of  primers  Env‐1F  and  Env‐3Rmix  for  Env  amplification  and 
PGK‐F2, E70, E110, E130, E170, E250, Er35, Er65, Er115, Er145, Er155, and ori‐seq‐R2 
for sequencing.   
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Table 2. The CD4+ cell count and viral load characteristics of enrolled patients. 

IMS number  CD4+ (cells/μL)  Viral load (log10 copies/mL) 

IMS0025  19  5.88 

IMS0155  33  6.23 

IMS0328  248  4.18 

IMS0718  310  3.76 

IMS0782  339  4.08 

IMS1000  233  6.62 
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Fig. 1 The genomic RNA structure (a) with protein products and the replication cycle 
(b) of HIV‐1. 

 
HIV‐1 genomic RNA includes three structural genes, gag, pol, and env, and six accessory 
genes. The structural genes encode the polypeptide of the Gag, Pol, and Env protein. 
By the cleavage of proteasome, precursor proteins are processed to MA, CA, and NA, 
PR, RT, and IN, SU, and TM, respectively. SU is also called gp120, and TM is also called 
gp41. The accessory genes encode for enzymes necessary for the infectivity and 
replication of HIV‐1. The replication cycle of HIV‐1 includes these steps with protein 
involved:  ①  Absorption (gp120),  ②  Membrane fusion・entry (gp41),  ③  Uncoating, 
④ Reverse transcript (RT),  ⑤Nuclear import,  ⑥Integration (IN),  ⑦  Transcription 
(Tat),  ⑧  Splicing and Nuclear export (Rev),  ⑨  Translation,  ⑩  Assembly,  ⑪ 
budding (Vpu),  ⑫  maturation (PR).  
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Fig. 2 Definition of the co‐receptor usage of HIV‐1. 
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Fig. 3 The crystal structure of the envelope protein. 
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Fig. 4 HIV‐1 entry process involving the transformation of the envelope protein after 
binding to CD4 and co‐receptor CCR5 or CXCR4. 
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Fig. 5 Description of the three co‐receptor assays.   
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Fig. 6 Genetic composition, structure, and availability of DSP. 
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Fig. 7 The schema of the virus‐cell fusion assay. 
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Fig. 8 The schema of the cell‐cell fusion assay. 
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Fig. 9 Website interface of the Geno2pheno assay and the interpretation. 
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Fig.  10  pRE11‐based  plasmid  preparation,  co‐receptor  assays,  clonal  analysis,  and 
sequencing.
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Fig. 11 Validation of (a) the Geno2pheno assay, (b) the virus‐cell fusion assay, and (c) 
the cell‐cell fusion assay with laboratory strains BaL and NL4‐3, respectively.   

  The validation of the three co‐receptor assays by laboratory strains BaL and NL4‐3 are 
practiced  ten  to  twenty  times  in  the  two  phenotypic  assays,  respectively.  Panel  (a) 
shows the false positive rate of the two strains by Geno2pheno, and the values are 24.7 
and 0.4, respectively, predicted to be R5 and X4. Panel (b) shows the 20 time repetition 
of  the  two  strains  in  the  virus‐cell  fusion  assay.  The  horizontal  axis  shows  BaL  and 
NL4‐3  infecting the N4X4 and N4R5 cells, respectively, and the vertical axis shows the 
luciferase activity. By calculation of the mean plus 2SD of the R5 strain in the N4X4 cell 
and the X4 strain in the N4R5 cells, the cutoff for the N4X4 cell and the N4R5 cells are 
calculated  to  be  465  and  4686  for  luciferase  activity.  Panel  (c)  shows  the  10  time 
repetition of the two strains  in the cell‐cell fusion assay. The cutoff  is calculated to be 
911 and 435, respectively.
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Fig. 12 Results of bulkenvs by Geno2pheno assay, virus‐cell fusion assay, and cell‐cell 
fusion assay.     

 
Envelope genes in 6 patients’ plasma were amplified and subjected to three 
co‐receptor assays. 
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Fig. 13 Phylogenetic tree of the full‐length Env sequences.   

 
Plylogenetic tree of amino acid sequences of the whole envelope that was analyzed by 
clustalW 2.1 on the DNA DATA BANK of  Japan  (DDJB) with the HIV‐1 reference genes 
representing subtypes A1, A2, B, and C drawn by TreeView. 
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Fig. 14 False positive rate and alignment of V3 amino acid sequences of the 25 clones.

 

In panel (a), false positive rates were shown for the 25 clones. Panel (b) showed the 
alignment of the V3 sequences. The horizontal line shows the boundary of 10% FPR. 
FPR under 10% are shown in red. The 11th and 25th amino acids of the V3 region are 
highlighted. The 11/25 rule means that the basic residues (R or K) at either or both of 
these sites is predictive of CXCR4 use.* pos.chg: total number of positively charged 
(R/K/H) amino acid residues. A higher positive charge has been correlated with the 
likelihood of CXCR4 use. **net.chg: number of positively charged (R/K/H) amino acid 
residues, minus the number of negatively charged (D/E) residues. A false positive rate 
indicates the probability of classifying an R5 virus falsely as an R5X4 or X4 virus. 
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Fig. 15 Results of the virus‐cell assay and the details of the R5X4 results for each 
individual. 

 

 
Panel (1) shows the results of the 25 clones by the virus‐cell fusion assay. The N4X4 
cells were NP2 cell lines that were stably transfected CD4 and CXCR4. N4R5 cells were 
NP2 cell lines stably transfected CD4 and CCR5. Panel (2) shows clones from IMS0718 
and IMS1000 by the Geno2pheno assay and the virus‐cell fusion assay in the upper and 
lower panel, respectively. Panel (a) shows the result of the Geno2pheno assay, panel 
(b) shows the result of the virus‐cell, and panel (c) shows the alignment of the V3 
sequences. In IMS0718, the amino acid usage that correlated with the CXCR4 usage by 
two assays is highlighted in yellow. In IMS1000, the blue horizontal line is the boundary 
of 10% FPR. The amino acid usage that correlated with CXCR4 usage by the virus‐cell 
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fusion assays is highlighted in pink. 
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Fig. 16 The alignment of the full‐length Env by the virus‐cell fusion assay. (Patient 
IMS0718)

 
Full‐length Env alignment of clones from IMS0718. The clone numbers are shown in 
the left. The green line is the boundary of R5 sequences and R5X4 sequences. The R5 
clones are shown in the upper, and the R5X4 clones are shown in the lower. The 
sequences were divided into C1 to V5 regions, respectively. Consistent mutations in V3 
are shown in the yellow bar. Consistent mutations in C1 and C2 are shown in the pink 
bar. 
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Fig. 17 Positions of the consistent mutations of the R5X4 clones by the virus‐cell 
fusion assay in the crystal structure of envelope. (Patient IMS0718) 

 

The crystal structure of the envelope is shown. Purple shows the binding site for the 
CD4 molecule. Red shows the positions of the consistent mutations. 
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Fig. 18 Alignment of clones by the virus‐cell fusion assay. (Patient IMS1000) 
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Fig. 19 Phylogenetic relationships of group1, group2, and IM1000‐27 from IMS1000. 

  By  the  analysis of  the phylogenetic  tree,  IMS1000 originated 9  clones  that evolved 
into two groups and an isolated clone IMS1000‐27. The clones in red with red branches 
are group1, and  the  clones  in pink with pink branches are group2. Group 1 has one 
R5X4 clone, IMS1000‐32, and four R5 clones. Group 2 has 3 R5 clones.   
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Fig. 20 Alignment of the clones from group 1 predicted by the virus‐cell fusion assay. 
(Patient IMS1000) 

  Full‐length Env alignment of the clones from group1 of IMS1000. The clone numbers 
are shown on the left. The green line is the boundary of R5 sequences and R5X4 
sequences. The R5 clones are shown in the upper of the green line, and the R5X4 
clones are in the lower of the green line. The sequences were divided into C1 to V5 
regions, respectively. The consistent mutations are shown in the yellow bar.   
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Fig. 21 Positions of the consistent mutations of the R5X4 clones of group1 in IMS1000 
in the crystal structure of the envelope by the virus‐cell fusion assay.     
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Fig.  22  Summary  of  the  consistent  mutations  in  each  region  and  the  statistical 
difference of the number of amino acid changes. 

 
The number of the conserved amino acids by the virus‐cell fusion assay in each 
appropriate region was analyzed by the contingency table. The mutation numbers of 
the R5 to the R5X4 change was compared between each group (C1, C2, C3, C4, C5, V1, 
V2, V3, V4, and V5). The total amino acid numbers were calculated in the contingency 
table. The dF was 9. Fisher’s exact tests were applied to a null hypothesis that the 10 
groups do not have differences. The ten groups showed that they had significant 
differences among them, p<0.05. Further analysis was conducted. The clustering of 
mutations in a certain region C1, V2, or C3 were compared with 
mutations/nonmutations in the full‐length Env except C1, V2, and C3. The dF was 2. 
Fisher’s exact tests were applied. When V2 were extracted to be compared with the 
remaining regions, it showed p<0.05. When C1 were extracted to be compared with 
the remaining regions except V2, it showed p>0.05. When C3 were extracted to be 
compared with the remaining regions except V2, it showed p<0.05. This means that the 
number of the consistent amino acid changes in V2 have a significant difference.
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Fig. 23 Comparison of the cell‐cell fusion assay with the virus‐cell fusion assay. 

 

Panel (a) is the result of the Geno2pheno assay, (b) is the result of the virus‐cell assay, 
and (c) is the result of the cell‐cell fusion assay of the 25 clones. The red dots in panel 
(b) and (c) show the concordant R5X4 clones by the cell‐cell and virus‐cell fusion assay. 
The orange dots show the discordant clones by the two assays. The green dots show 
the concordant R5 clones. Panel (d) shows the location of the consistent mutations. 
Panel (e) shows the sites of the consistent mutations in the crystal structure of gp120. 


