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Abstract

In this paper, the Euler characteristic formula for projective logarithmic minimal degenera-
tions of surfaces with Kodaira dimension zero over a 1-dimensional complex disk is proved under
a reasonable assumption and as its application, we show that any degenerations of abelian or
hyperelliptic surfaces have relatively projective log minimal models whose singular fibre has only
V-normal crossing singularity and the possible local fundamental groups of the singular points
of the total spaces of type II and IIT ( in the generalized sense ) degenerations are determined.
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1 Introduction

Based on the 2-dimensional minimal model theory, Kodaira classified the singular fibres of degen-
erations of elliptic curves ( [25], Theorem 6.2 ). It is quite natural that many people have been
interested in the degenerations of surfaces with Kodaira dimension zero as a next problem. The
first effort began by his student Iitaka and Ueno who studied the first kind degeneration ( i.e., de-
generation with the finite monodromy ) of abelian surfaces with a principal polarization ( [64] and
[65] ) while in that time, 3-dimensional minimal model theory had not been known. After Kulikov
succeeded to construct the minimal models of degenerations of algebraic K3 surfaces in the analytic
category from semistable degenerations and to classify their singular fibres, extension to the case of
the other surfaces with Kodaira dimension zero has been done ( see for example, [45], [36] ). As for
the non-semistable case, there are works due to Crauder and Morrison who classified triple point free
degeneration ([8], [9]). 3-dimensional minimal model theory in the projective category was estab-
lished by Mori ( [37] ) but we can not start studying the degenerations from minimal models because
of their complexity while it has been known that log minimal models of degenerations of elliptic
curves behaves nicely (see [49], (8.9) Added in Proof.). After the establishment of 3-dimensional log
minimal model theory, we introduced the notion of a logarithmic minimal degeneration in [44] as
a good intermediate model to a minimal model which acts like a “quotient” of minimal semistable
degeneration by the transformation group induced from a semistable reduction. Of course, because
of the non-uniqueness of minimal models, the transformation group does not act holomorphically on
the total space in general.

Definition 1.1 Let X be a normal Q-Gorenstein 3-fold with a relatively projective connected mor-
phism f : X — D to a unit disk D := {2z € C;|z| < 1} which is smooth over D* := D \ {0} and
put © := f*(0)peq- f: X — D is called a projective logarithmic ( or abbreviated, log ) minimal
degeneration of surfaces with Kodaira dimension zero if the following two conditions hold.

(1) Kx+© ~qQ 0
(2) A log 3-fold (X, ©) has only divisorially log terminal singularity.
(3) Each component of © is Q-Cartier.

We note that any degenerations of algebraic surfaces with Kodaira dimension zero over a 1-
dimenstonal unit disk D are bimeromorphically equivalent to a projective log minimal degeneration.
In fact. we can take a bimeromorphic model g : Y — D, where g is a relatively projective connected
morphism from a smooth 3-fold Y such that each component of the singular fibre g*(0) is smooth
and Supp ¢*(0) has only simple normal crossing singularity by the Hironaka’s theorem ([19]). By
the existence theorem of log minimal models established in [27], Theorem 1.4, [58], we can run the
log minimal program with respect to Ky + g*(0)rea starting from Y to get a log minimal model
f: X — D satisfying the conditions (2) and (3) as above. By the base point free theorem in [41],
we infer that Kx + © ~Q 0.

Definition 1.2 Let G be a finite group and p : G — GL(3,C®) be a faithful representation. Let
C?/(G.p) denote the quotient of C* by the action of G defined by p. We assume that the quotient
map C® — C3/(G, p) is étale in codimension one. A pair (X, D) which consists of a normal complex
analytic space X and a reduced divisor D on X is said to have singularity of type V1(G, p) (resp.
Va(G.p) ) at p € X if there exists an analytic isomorphism ¢ : (X,p) — (C*/(G, p),0) between
serms and a hypersurface H in C* defined by the equation z = 0 (resp. 2y = 0), where 2. y and z
are semi-invariant coordinates of C® at 0 such that D = ¢*(H/(G, p)). In particular, if G is cyclic
with a generator o € G and (p(0)*x, p(0)*y, p(0)*2) = ((°z, (%, (°2), where a, b, ¢ € Z and ( is
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a primitive r-th root of unity for some coordinate z, y and z of C? at 0, we shall use the notation
Vi{ria.b.c) (resp. Va(r;a,b.c) ) instead of Vi(G, p) ( resp. Va(G,p) ).

Remark 1.1 We note that if (X, D) has singularity of type Vi(G, p) at p, the local fundamental
group at p of the singularity of X is isomorphic to G by its definition.

Let © = 3, O, be the irreducible decomposition and put A; := Diffe, (© —©;) for any i. For
p € X. let d(p) be the number of irreducible components of © passing through p € X. Then the
following holds.

(a) For any i, ©, is normal, A; is a standard boundary and (©;,A;) is log terminal (see [58],
Lemma 3.6, (3.2.3) and Corollary 3.10).

(b) d(p) <3

(c) If d(p) = 2, (X,©) has singularity of type Va(r;a,b,1) at p, where r € N, a,b € Z and
(r.a,b) =1 (see 7], Theorem 16.15.2).

(d) Ifd(p) =3,p € © C X is analytically isomorphic to the germ of the origin 0 € {(z,y, 2); 2yz =
0} € C® (see [7], Theorem 16.15.1).

(e) For anyiandp € ©;\Supp A, if ©, is smooth at p, then X is smooth at p (see [58], Corollary
3.7).

One of the aims of this paper is to give the following Euler characteristic formula for log minimal
degenerations with K x + © being Cartier. We note here that the study of log minimal degenerations
of surfaces with Kodaira dimension zero reduces to this case by taking the log canonical cover with
respect to Kx + © globally (see §6).

Theorem 1.1 Let f : X — D be a projective log minimal degeneration of surfaces with Kodaira
dimension zero such that Kx + © 1is Cartier. Let f*(0) = >, m;O; be the irreducible decomposition.
Then fort € D*, the following formula holds.

etop(Xe) = Zmi<eorb(@i VA + Y 6(X,60)),

PEO;\A;

where X, := f*(t), eqrp (0:\ A;) is the orbifold Euler number of ©;\A; and 6,(X, ©;) 1s the invariant
of the singularity of the pair (X, ©;) atp € ©;\A; which is well defined and can be calculated explicitly
as explained in the next section.

The above formula turns out to be quite useful for further study of degenerations. In fact, we
apply the following corollary to the study on non-semistable degenerations of abelian or hyperelliptic
surfaces.

Corollary 1.1 Let notation and assumptions be as in Theorem 1.1. Assume that eqqp(X:) =0 for
t € D*. Then, for any i, we have s, (©: \ Ai;) = 0 and for any p € ©;\ A;, (X,©) has only
singularity of type Vi(r;a,—a,1) at p, where (r,a) = 1.

Based on the result of Corollary 1.1, we shall prove the following theorem.

Theorem 1.2 Let f : X — D be a projective log minimal degeneration of abelian or hyperelliptic
surfaces. Then the possible singularities of (X,0) at p € X are the following three types :

(0) X is smooth at p € X and © has only normal crossing singularity at p,
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(1) (X.O) has singularity of type Va(r;a,b,1) at p, wherer € N, a,b € Z and (r,a,b) = 1.
(2) (X,O) has singularity of type V1(G, p) at p.

More precisely, if f is of type I1, we have r = 2,3,4 or 6 in (1), and G ~ Z/nZ or Z/2Z & Z /nZ,
where n = 2,3,4 or 6 in (2). The dual graph of © is a linear chain or a cycle. Moreover, there
exists a projective bimeromorphic morphism ¢ : X — X* over D such that for the induced projective
degeneration f* @ X* — D, we have Kxu ~q 0 and f#(0) = mO* for some m € N, where
O = ¢,0. The possible types of singularity of (X*,©*) and the dual graph of the support of the
singular fibre are the same as ones of (X, ©) ( but the components of the singular fiber may become
non-normal ). If f is of type 111, we have r = 2 in (1), and (2) is reduced to the following three types.

(IT1-2.1) (X,0©) has singularity of type Vi(r;a,—a,1) at p, where r = 2,34 or 6, a € Z and
(r.a) =1,

(IT1-2.2) (X.©) has singularity of type V1(2;1,0,1) at p,

(I11-2.3) (X,0©) has singularity of type Vi(G, p) at p, where G ~ Z /2Z & Z /2Z and letting {o, T}
denote a set of generators,

-1 0 O 01 0
p(a)(O -1 O), p(T)z(lO O).
0 0 -1 0 0 —1

In particular, of f is of type 111, then X has only canonical quotient singularity.
For the definition of types I, IT and III, see Definition 5.2.

Problem 1.1 Let f : X — D a projective log minimal degeneration of abelian or hyperelliptic
surfaces of type IllI. Applying the log minimal program to f with respect to Kx, we see that there
exists a projective bimeromorphic map 9 : X— — X* over D such that for the induced projective
degeneration f* : X* — D, we have Kxu ~Q 0 and f**(0) = mO* for some m € N, where
©* = 19,0 and that X* has only canonical singularity but the possible types of singularity of
(X*.©#) may differ from the ones of (X, ©). So determination of the types of singularity of (X*, ©#)
remains to be done.

In §2, we define the invariant ,, and prove Riemann-Roch formula for divisors on singular 3-fold
under some assumptions ( Proposition 2.3 ) to prove Theorem 1.1 and Corollary 1.1. In §3, we
classify type II and III log surfaces ( for the definition, see Definition 3.4 ) under certain typical
assumption which are supposed to appear canonically as the components of the singular fibres of
the degeneration of surfaces with Kodaira dimension zero. In §4, we give a theory to calculate
local fundamental groups seeing differents, which will be used to determine the singularity of the
total spaces from the information of log surfaces obtained in the previous section. In §5, we prove
Theorem 1.2 by using the results in the previous sections.

Notation and Conventions

In this paper, we shall use terminologies defined in [27] or [58], but let us fix again the notion of log
terminal to avoid confusions. Let X be a normal log variety defined over an algebraically closed field
or a normal Stein space or a germ of a normal complex analytic space with a point p € X with a
Q-boundary A such that Kx + D is Q-Cartier. Take a projective resolution g : Y — X such that
each components of the support of u7'!A+ ¥ ,c; F; are smooth and cross normally, where {£,}.¢; is a
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set of all the exceptional divisors of 1 and put d; := multg, (Ky +p; ' A+ B~ (Kx+A)) € Q
for i € I. The pair (X, A) is said to be log terminal, if all d; are positive for some u. log terminal pair
(X,A) is said to be divisorially log terminal, if the exceptional loci of p is purely one codimensional
for some p. (X,A) is said to be purely log terminal, if all d; are positive for any pu.

In this paper, we shall use the following notation:
v: X¥ — X : The normalization of a scheme X.
Diffr-(A) : Q-divisor which is called Shokurov’s different satisfying
V'(Kx +T'+ A) = Kpe + Diffre (A),

where " is a reduced divisor on a normal variety X and I' + A is a Q-boundary on X such
that Kx + '+ A is Q-Cartier. (see [58], §3, [7], §16).

AY : Q-divisor on Y satisfying Ky +AY = f*(Kx+A), where f : Y — X is a birational morphism
between normal varieties and A is a Q-boundary on X such that Kx + A is Q-Cartier.

ind,(D) : The smallest positive integer r such that D is Cartier on the germ of X at p, where D
is a Q-Cartier Q-divisor on a normal variety or a normal complex analytic space X.

Ind(D) : The smallest positive integer r such that rD ~ 0, where D is a Q-Cartier Q-divisor on
a normal variety X such that D ~qQ 0

multprD : The coefficient of the irreducible decomposition of D at a prime divisor I', where D is a
Q-divisor on a normal variety X.

Excf : Exceptional loci of a birational morphism f.
~ : Linear equivalence.
~Q - Q-linear equivalence.
[A] : Round up of a Q-divisor A.
|A] : Round down of a Q-divisor A.
{A} : Fractional part of the boundary A.
etop © Topological Euler characteristic.
eorh - Orbifold Euler number.
p(X/Y) : Relative Picard number of a normal Q-factorial variety X over a variety Y.
¥4 : Hirzebruch surface of degree d.
Card § : Cardinality of a set S.
For a normal complete surface S with at worst Du Val singularities, we shall write

Sing S =Y v(7T)T,
T

where v(7) denotes the number of singular points on S of type 7.
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2 The Euler characteristic formula

Firstly. let us recall the following result due to Crauder and Morrison.

Proposition 2.1 ([8], Proposition (A.1)) Let X be a smooth 3-fold and let D be a complete
effective divisor on X whose support has only simple normal crossing singularities. Then the following
holds.

1 1
- ZmiX(ODi) -+ 6(D3 — Zsz?) + Z(DQ — ZmiD?)Kx,
where D = 3", m,D; 15 the trreducible decomposition.

Let (X, p) be a germ of 3-dimensional terminal singularity at p whose index r is equal to or greater
than 2. Take a Du Val element S € | — K x| passing through p, where we say that S € | — Kx| is a Du
Val element, if S is a reduced normal Q-Cartier divisor on X passing through p such that S has a Du
Val singularity at p. The canonical cover 7 : X — X with respect to Ky induces a covering of Du
Val singularities  : S := 771(S) — S. There is a coordinate system z, y and z of C*® which are semi-
invariant under the action of the Galois group Gal (S/S) such that p := 71(p) € S is analytically
isomorphic to the germ of the origin of the hypersurface defined by a equation f(z,y,z) = 0. Let
o be a generator of Gal (S/S) and let ¢ be a primitive r-th root of unity. The actions of ¢ are
completely classified into the following 6 types (see [50]).

(1) pe Sisof type A,y and p € S is of type Apn_y (n > 1). f =2y + 2"0*z = (°x, o'y = (~°y
and o*z = 2, where (r,a) = 1.

(2) pe S is of type Agn—g and p € Sis of type Dony1 (n > 2). 7 =4, f =22+ 2+ 271 o'z = (z,
o*y =y and 0%z = (32
(3) p€Sisof type As,_1 and p € S is of type Dnyo n>2).r=2 f=22+y*+ 2" o'z =12,

o'y =—yand ¥z = —2z.

(4) pe Sisof type Dgand p € S is of type Es. 7 =3, f = 22 + 13 + 2%, 0"z = z, o™y = (y and
oz =z

(5) p € Sisof type Doyq and p € S is of type Da,. 7 = 2, f=22+y22+4 2", o'z = —x, o'y = —y
and 0%z = z.

(6) p 3softypeE6andpESlsoftypeE7 r=2 f=224+y*+2% o'z = -z, o'y = y and

otz = —Z.



Definition 2.1 For p € S C X as above, we define the rational number ¢,(X, S) € @ as follows:

0 Case p € X Gorenstein,
n{r—(1/r)} Case (1),
3(2n +3)/4  Case (2),
p(X,8):=¢ 3 Case (3),
16/3 Case (4),
3n/2 Case (5),
9/2 Case (6).

Definition 2.2 Let p € S C X be as above. we define the rational number 6,(X, S) € Q as follows:

6,(X,5) = e,(S) ~ OPES) — 6 (X,5) € Q,

where e,(.S) is the Euler number of the inverse image of p by the morphism induced by the minimal
resolution and o,(S) is the order of the local fundamental group of S at p.

If the index of X at p is equal to or greater than 2, we obtain the following table.

Table I

(%) | 0(9) | XS | 6p(X, 5)
(1) | rn ™ n{r—(1/r)} (n® —1)/rn
(2)[2n+2| 8 —4 | 3(2n+3)/4 n(n—1)/(2n—1)
3) | n+3 4n 3 (4n* —1)/4n
@ 7 74 16/3 13/8
(5)[2n+1]8n—1) 3n/2 (4n®+ 4n —9)/8(n — 1)
6) |8 48 9/2 167/48

Proposition 2.2 §,(X,S) > 0. 6,(X,S) = 0 if and only if (X,S) has only singularity of type
Vi(r;a.—a, 1) at p, where (r,a) =1.

Proof. If p € X is Gorenstein, it is easy to see that 6,(X,S) = €,(S) — 1/0,(S) > 0 and that
6,(X,S) =0if and only if X and S is smooth at p. Assume that the index of p € X is equal to or
greater than 2. If we have 6,(X, S) = 0, we infer that € S is smooth (hence € X) from Table L.
Thus we get the assertion. ]

We give a proof of the following Reid’s Riemann-Roch formula, which seems to be more clear
than the one in [50], (9.2) to see the last satement in the theorem which is a crucial point for our
subsequent argument.

Theorem 2.1 ([50], Theorem 9.1 (I)) Let X be a projective surface with at worst Du Val singu-
larities and let D be a Weil divisor on X. Then

Y(Ox(D)) = X(Ox) + 2D(D — Kx) + 3 (D),

2 peX

where ¢, (D) 1is the rational number which depends only on the local analytic type of p € X and
Ox(D).



Proof. Let p:Y — X be the minimal resolution of X. Put I" := [u*D] — |p*D]. Then there
exists the following exact sequence:

0 — Oy(lu*D]) = Oy([p*D]) — Or([u*D]) — 0.

Since we have p. Oy (|u*D]) ~ Oy (D) by [52], Theorem 2.1 and R'u.Oy([p*D]) = 0 for i > 0 by
152]. Theorem 2.2, we obtain the following exact sequence:

0 — Ox(D) = Oy ([u*D]) = 1Or([1* D) — ROy (lu*D]) — 0
to get
x(Ox(D)) = x(uOy([u*DI))
—length Ker{u.Or([p*D]) — R'1uOv(|u* D])}.
Put A := [p*D] — p*D. Then x(1.Oy ([*D])) can be written as follows:

X Oy ([1*DY)) = x(Oy([u*D1))
= X(Oy) + 5 [uD1([u D] -
= WOx)+ (WD + A)wD + A - )
= x(Ox)+ %(D2 — DKyx) + %AQ.
Putting ¢,(D) := (1/2)(A],-1())* — length T(D),, where
7 (D) := Ker{p,Or([p*D]) — R'1n.Ov (" D))},

we get

x(Ox(D)) = x(Ox) + D(D Kx)+ ) 6(D
peX
As for the last assertion, for any two Weil divisors Dy and D4 such that Dy — Dy is Cartier at p € X,
since A for D = Dy and D = D, is the same and we have 7 (D), = 7 (D2), ®ox, Ox(D1 — D3)p,
we infer that c,(D1) = c,(D2). Thus we get the assertion. n

Lemma 2.1 Let X be a germ of reduced irreducible normal Q-Gorenstein analytic spaces and D be a
non zero Q-boundary on X. Assume that (X, D) is canonical and that the center on X of any divisor
E; with discrepancy zero is contained in the support of D, then X has only terminal singularities.

Proof. Let u:Y — X be a Hironaka resolution of X and write Ky = u*Kx + X ;csa;E; and
D = u;'D+3,c;v;E;, where {E;|j € J} is the set of all the u-exceptional divisors and a;, v; are
non-negative rational numbers for any 7 € J. By the assumption, we have a; > v; for any j € J. By
the choice of our resolution, v; = 0 implies that E; is obtained by blowing up the center which is not
contained in the support of the weak transform of some multiple of D. Thus we get the assertion. m

Proposition 2.3 Let X be a normal Q-Gorenstein 3-fold and D be an effective complete Cartier
divisor on X such that the log 3-fold (X, Dyeq) 15 divisorially log terminal and that X is smooth
outside the support of D. Assume that Kx + D.eq is Cartier and each irreducible component of D is
algebraic and Q-Cartier. Then the following formula holds :

x(Op) = Zm x(Op,) + Zm D3?) + D? — ZmiD?)I\
__Ezml Z CP(X, D,’)7

peD?

where D =32, m,D; is the irreducible decomposition and D? := D; \ U, D
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Proof. We calculate the contribution of singularities to the formula in Proposition 2.1 using Reid’s
Riemann-Roch for surfaces with Du Val singularities and examining the original proof of Proposi-
tion 2.1. By the assumptions, we infer that if X is not smooth or X is smooth but D4 is not
a normal crossing divisor at p € X, then p € D? for some ¢, X has only terminal singularity by
Lemma 2.1 and D; has at worst Du Val singularity at p € D; C X since (X, D;) is canonical for any
i. We note that if a singularity p € X is Gorenstein then this singularity does not contribute to the
Riemann-Roch. Assume that p € D? for some ¢ and that r := ind ,Kx > 2. Take the canonical
cover 7 : X — X locally at p (here we used the same notation X for an open neighbourhood of
peX). Puttmg p:=7"Yp) and D; := 7-1(D;), let ¥; € O be a defining equation of D; and let o
be the generator of the covering action. For any | € N, there is the following exact sequence locally
at p which is compatible with the action of o.

0— ﬁﬁobi = Ouyp, = Op, = 0.

Since H'(< ¢ >,0,0p,) = 0, taking the invariant part of the above exact sequence, we obtain the
following exact sequence locally at p:

0— (192(951_)<"> — Ou41yp; — Oip; — 0,

where (!0 )<> is the o-invariant part of 9:O0p,. We note that in fact, (9:0p,)<°> is a restriction
of the divisorial sheaf F; := Ker {Oyi1yp, — Oip,} on D;. Define a € N so that o*d; = (20,
where ¢ is a primitive r-th root of unity and note that (a,r) = 1 since Kx + Dygq is Cartier.
we note that for any ¢ € Op,, vy € ﬁlOD is o-invariant if and only if c*¢ = (*¢, so we have
Fi~{p € mOp;0*0 = (“p} locally at p € D?. Assuming that p € D; is smooth (the case (1),
n = 1) for simplicity, we calculate the summation of the contribution to the Riemann-Roch for F;
(1 <1< m;—1), that is, =7 ' c,(F) as follows. Note that there exists a natural number d; € N
such that m; = rd; since m;D; is Cartier at p.

my;—1 m;—1 r—1
S oA = 3 al(r2r al) 4 Z al(r al) e l<r27, 1)
=1 =1 =1
I
- T
where al € Z is the unique integer such that al = al (mod r) and 0 < al < r — 1. The other cases
can be treated similarly using the Q-smoothing method as explained in [50]. [

Proof of Theorem 1.1. Since f is flat, we have x(Ox,) = x(Ox,) for t € D*, where Xy := f*(0).
Using Proposition 2.3 and the assumption that Kx + © ~Q 0, we obtain
etop(Xe) = 12x(Ox,)
= Zml (12x Oe)—293+32626 - 3 o(X,65). (2.1)

PpEON\A;

On the other hand, since for any i, A; is either 0, disjoint union of smooth elliptic curves or a cycle
of rational curves ( see Lemma 3.4 ), we have

K3, +etop(Ai) = Al +egop(A) = > 00243 Y 0,064

7% J.k#Fiandj<k
3
= Yeel+s ¥ e66
I i#j,kandj#k

= 29— Y 06! -3y 6%, 1 gzeiejek‘
J J gk



Therefore, we have
i 7 7

since 3, m,©; ~ 0. From (2.1) and (2.2), we obtain

etop(Xt) = > mi(12x(Oe,) - K(%i — €op (A) = D (X, 6:).
g PEO:\A;

For any i. let ©/ — ©; be the minimal resolution of the singularities of ©,. Since we have

etop(QZ) = etop(@i) + D (ep(©:) = 1)

PEO;

and ©, has only Du Val singularities, we have

etop(ei) = 12x(0e,) — Kéi — > (e(©:) — 1)
PES;
by Noether's equality. Thus we obtain

trop(X) = Smilerop(@\A)+ T (660 — 1 - (X, 0.)}
i PEG:\A;

= D milegrp (@i \ Ai) + > 6(X,80)).

PEO;\AQ;
]

Proof of Corollary 1.1. Since we have e (©; \ A;) > 0 for any i by Miyaoka’s inequality ([35],
Theorem 1.1), we obtain the assertion from Proposition 2.2. ]

3 Structures of log surfaces with a standard boundary whose
log canonical divisors are numerically trivial

3.1 S-extractions and S-elementary transformations

Definition 3.1 A normal log variety (X, A) defined over an algebraically closed field is said to be
a log variety with a standard boundary, if multrA € S := {(b— 1)/blb € N U {oc}} for any prime
divisor I.

Definition 3.2 Let (S,T'+A) be a normal log surface with a Q-boundary I'+ A, where I' is a prime
divisor on S. For a point p € ', we define a rational number m,(I'V; A) € Q as follows.

m,(D¥; A) := mult,Diffr (A).

Let (S, A) be a normal log surface with a standard boundary defined over an algebraically closed
field k. Assume that (S, A) is log canonical and |A] # 0. Take p € |[A| and let T" be an irreducible
component of the germ of |A] passing through p. Then m,(I'; A —I') can be written as follows:

b—1

n—1 & k
my(Ti A =T) = — +Z—b—gb,
b=2

where n € N and k, is a non-negative integer for all b and &, = 0 except for finite number of b. We
note that this is well known in the case of characteristic 0 but in fact this is just a conclusion of the
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intersection theory, so we don’t have to worry about the characteristic of k about this matter. Since
(S.A) is log canonical, we have

-1 &b-1k
L]
+bz::2 b n ™~

Noting that (b—1)/b > 1/2, we get 332, ki, < 2. Therefore, one of the following three cases (1), (2)
and (3) occurs.

(1) k, =0 for all b,
(2) There exists ¢’ such that ky =1 and k, =0if b # ¥,

So we have (- 1)jn  Case (1)
my(I5A -=T) = { (bn —1)/bn  Case (2),
1 Case (3).

Let p: T — S be a birational morphism from a normal surface T which is the blow up of p if S is
smooth at p or is obtained from the minimal resolution of p € S by contracting all the exceptional
divisors that do not intersect the strict transform of I if S is singular at p. We call this p an
S-extraction.

Lemma 3.1 (T,AT) is a log surface with a standard boundary.

Proof. Let E be the exceptional prime divisor for p. We only have to show m := multzAT € S. By
definitions, we have

Kr + (A" =T1")|p + mE|r = p*(Kr + Diffip(A = T)),
where A’ and I" are the strict transform of A and I' respectively, hence
(A =T, 1)y +m =m,(T; A =T),

where p' := p~!(p) NT" and (A’ — I, I"),, denotes the local intersection number of A’ — I and [ at
p/. 1f we are in the cases (1) or (2), we see that (A’ —TI",T"),, = 0, hence m = m,(I'; A —~T) € S.
Assume that we are in the case (3). Since (A'~T",1"), € (1/2)Z, m > 0and m = 1 — (A’ =T",T"),,
we have m =0, 1/2 or 1. Thus we get the assertion. n
Assume that there exists a proper surjective connected k-morphism ¢ : § — B to a smooth
curve B defined over k such that p(S/B) = 1 and that the support of |A| is not entirely contained
in a fibre of ¢ and that Ks + A is relatively numerically trivial over B. Let p : T — S be a
birational morphism to a normal surface S obtained by contracting the other component of the fibre
of £ o p which contains E and put A := = p,AT. Then (S A) with the induced morphism ¢ : S—B
\dllbfl€§ the same conditions as (S, A) and ¢ : S — B. We call this transformation a S-elementary
transformation.

Definition 3.3 For ¢t € B, we define the Q-boundaries Af(t) and A7 (t) on S as follows.

Ab(t) = A + (1 = multe,yA)C, (1),
AZ(t) = A — (multe, A)Cw( ),

where C(t) := 2" (t)reqd-
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Lemma 3.2 Assume that (S, A} (t)) s not log canonical overt € B. Then one of the followings (a)
or (b) holds.

(a) ¢ is smooth overt € B and AZ(t) = [AZ(t)]. AZ(t) is smooth in the neighbourhood of C,(t)
and AZ(t) - Cy,(t) = 2p, where AZ(t) - C,(t) denotes the intersection cycle.

(b) There exists a sequence of S-elementary transformations over t € B such that for the resulting
log surface (S, A), (S,AT(p;t)) is log canonical in the neighbourhood of the fibre overt € B.

Proof. Assume that (S, Af(t)) is not log canonical at pp € C,(t). From

Z mp(Coy(t); A;(t)) = 2 and my, (Cy(1); A;(t)) > 1,

PEC,(t)

we deduce that m,(Cy(t); AZ(t)) < 1 for any p # po, that is, (S, A}(t)) is purely log terminal at
p € C,(t) if p # po. In particular, we see that [AZ(t)] N Cy(t) = {po}. Let p: T — S be the
S-extraction at po and let £ be the exceptional divisor for p. Put ¥ := ¢ o p. Then we have
2= (AZ(0).97(1) 2 (A1), Cu)) + (A5 (1), E) =2 (AL, Co(t)) + 1,

where AL and C,(t)" are the strict transforms of AZ(t) and C,(t) respectively. Let py € T be
as in the proof of Lemma 3.1. Suppose that py € C,(t)". Since (AZ(t), Cp(t) )y > 1, we have
(AZ(t), Co(t)') = (AZ(t), E) = 1 and 9¥*(t) = C,(t) + E. Noting that C,(¢t) N E = {p)} and T is
smooth at pp, we see that T is smooth in the neighbourhood of the fibre over ¢t € B and that C,(¢)’
and E are (—1)-curves with (C,(t)', E) = 1, hence we are in the case (a). In the case that pj ¢ C,(¢t),
by a S-elementary transformation, we may assume that S is smooth at po and (Cy(t), |[A(t)])p, =1
at first. Moreover we may assume that (|AZ(t)],{A;(t)})p = O after operating S-elementary
transformations. Thus we are in the case (b). ]

Lemma 3.3 Assume that (S,A%(t)) is log canonical over t € B. Then one of the followings (I) or
(IT) holds.

(I) deg|Diffc, (A7 (t))] =1, then the dual graph of Supp p*@*(t) U Supp u; A7 (t) is one of the
three types (I-1)y, (I-2)y or (1-3), as below, where u: M — S is the minimal resolution of the
singularities of S overt € B.

1/2 (=2 (b—1)/2b)
(I-1)s / (I-2)s /
(=1; (b—1)/b)

M (0; (b—1)/b) 1 \
\ 1/2 (=2 (b—1)/20)

12



1/2

Co @ 1)) (=1 (b—=1)/b)

(=2; (b—1)/2b)

(II)  If deg|Diffc+)(A;(t))] = 2, then there exists a S-elementary transformation such that for
the resulting log surface (S,A), the dual graph of Supp i*¢*(t) U SuppA/fL;lA;(t) is one of the
three types (1I-1)y, (1I-2), or (1I-3)px (kK > 1) as below, where i : M — S 1is the minimal
resolution of the singularities of S overt € B.

(T1-1), (11-2)s
>~ o ——9 ] o o——29]/2
1 (0; (b—1)/b) 1 (0; (b—1)/b)

(=2 (b—1)/2b)
(11-3)6.k (2. (b—1)/b) /

1 —2; (b—

. . o— - — (=2; (b—1)/b)

(=1 (b= 1)/b) ——
k times

(=2 (b—1)/2b)

In the above dual graphs, e denotes a germ of curves or a smooth rational curve which is not
u-, (resp., i )-exceptional and o denotes a -, (resp., fi )-exceptional curve. The numbers attached
on e are the multiplicities in AM, (resp., AM ) (x;%) denotes ( the self-intersection number; the
multiplicities in AM, (resp., AM ) ). b is a natural number or oo such that multc, A, (resp.,
multcﬂt)A )=(b—1)/b.

Proof. Since we have Y_pec () Mp(Cp(t); AZ(t)) = 2, we have deg|Diffe, (A7 ()] = 1 or 2. Firstly
assume that deg| Diffc, () (A7 (¢))] = 1. Since we have m,(C,(t); AZ(t)) € S for any p € C,(t), there
exists three points py, p2 and ps € C,(t) such that

1 if p = po,
mp(Cyp(t); AZ (1)) = 1/2 if p=p; or po,
0 otherwise

and one of the following three case occurs. (1-1) S is smooth at p; and ps, (1-2) S has Du val

singularities of type A; at p; and p» or (1-3) S is smooth at p; and has a Du val singularity of type
A; at py. Assume that S is not smooth at pp and let y : M — S be the minimal resolution of
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{pli = 0.1,2}. Write p*C,(t) = ptCL(t) + 5 (1/2)E; + i 1l;F;, where I; > 0 for any j and
{E|l < i< s} {F;]1 <j <n} are p-exceptional divisors over p; (i = 1, 2) and pp respectively. Say
(F1.u47'C4(t)) = 1, then we have

0= (" Co(t), u " Co(t)) = (17 Co(1))? + (1/2)5 + Iy

and 1 + (1/2)s = 1, since (u7'C,(t))? = —1. We know that 0 < I3 < 1, so we see that S must
be smooth at po in the cases (1-1) or (1-2) and that we are in the cases (I-1) or (I-2) respectively.
Assume that we are in the case (1-3). Let p : T — S be the S-extraction at po and F; be the
p-exceptional divisor. Since we have p*C,(t) := p7*C,(t) + (1/2)F1, we see that F? = —2 and that
T is smooth in the neighbourhood of Fy, hence we are in the case (I-3). Secondarily, assume that
deg|Diffc, (1) (A7 (t))] = 2. Take two points py and p; € C,(t) such that

A-(yy ) 1 ifp=poor py,
mp(Co (1) B (1)) = { 0 otherwise.

By operating a S-elementary transformation at po € [A7(t)], we may assume that S is smooth at
po- It S is smooth at p;, then we see that we are in the cases (II-1) or (II-2). Assume S is not smooth
at p1 and let g : M — S be the minimal resolution of p;. Write u*C,(t) = uy'C,(t) + >y Ly
and p*Ks = Ky + X7y a;F; where a; > 0, [; > 0 for any j and {Fj|1 < j < n} are u-exceptional
divisors over p1. Say (Fi, u;'Cy(t)) = 1, then we have 0 = (u*Cy(t), uT1C,(2)) = (u7'Cu(t))? + 1y,
hence /; = 1 and a; = 0. So we deduce that (S, C,(¢)) is not purely log terminal but S has a Du Val
singularity at p; and (Cy(t), A7 (t))p, = 0. So we are in the case (II-3)pz. n

Using the technique of S-elementary transformations as above, we can obtain partial generaliza-
tion of Proposition 3.2 to the positive characteristic case. We note that Proposition 3.2 is proved by
the covering trick and the Hodge theory both of which does not work well in the positive characteristic
case.

Proposition 3.1 Let (S,A) be a normal projective log surface with a standard boundary defined
over an algebraically closed field k such that (S,A) is log canonical and Kg + A is numerically
trivial. Assume that there exists a proper surjective connected k-morphism ¢ : S — B onto a smooth
projective curve B defined over k and that there exists an irreducible component of | A| which is not
contained in a fibre of ¢. Then we have 8(Ks + A) ~ 0 or 12(Ks + A) ~ 0 and in particular if
char k # 2, we have 4(Ks + A) ~ 0 or 6(Ks+ A) ~ 0, where D ~ 0 for Q-divisor D means that D
15 integral and is linearly equivalent to 0.

Proof. By contracting all the components of singular fibres of ¢ except one in each fibre and operating
S-elementary transformations, we may assume that p(S/B) =1 and all of the fibres of ¢ are of type
(a) as in Lemma 3.2 or of types (I-i), or (II-i), (i = 1, 2 or 3) as in Lemma 3.3. Let I be an
irreducible component of |[A]. Since m,(I5A —T) € S and ¥perm,(F; A — I') = 2, the possible
values of m,(I'; A—T") are 0, 1, 1/2, 2/3, 3/4 or 5/6. So we deduce that 4( Ky +AM) or 6( Ky +AM)is
not integral if and only if ¢ has a fibre of types (I-2), or (II-3), (b =4, 6). Assume that char k # 2
and that v has a fibre of type (I-2)4 or (II-3)s. Then there exists distinct three points po, p1 and po
in [ such that

1/2 if p = po,

my(I;A=T) = { 3/4 if p=pyor ps,
0 otherwise

and the induced morphism ¢ : I' ~ P! — B has degree 2 which is separable by the assumption and
branches at {p;|0 < i < 2} but which is absurd by the Hurwitz’s formula. Assume that v has a fibre
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of type (I-2)g or (I1-3)¢. Then there exists distinct three points pg, p; and ps in I' such that

1/2 if p = po,
. _ ) 2/3 ifp=mp,
mp(D A = T) = 5/6 if p = po,

0 otherwise

and we can derive the absurdity as in the same way as above. Therefore, we only have to check
that if 7(Kp + AM) is an integral divisor on M for some r € IV, then we have (K + AM) ~ 0
or (r—1)(Ky + AM) ~ 0. Put D := r(Kpy + AM). If the genus of B is zero, then M is a
rational surface, hence D ~ 0. Assume that the genus of B is positive. Then |AM] contains an
smooth elliptic curve I" and M is birationally elliptic ruled. From x(Ou (D)) = x(Op) = 0, we have
h(Own (D)) +h*(On(D)) = h1(Op(D)). If R2(Op(D)) # 0, then h®(On (Ky— D)) # 0 by the Serre
duality and for an ample divisor H, we have 0 < (Ky — D, H) = (Kp, H) = —(AM, H) < 0 which is
absurd. Thus we get A2(Op(D)) = 0 and h°(Op (D)) = h(Op(D)). Assume that h?(Op (D —T)) #
0. Then h%(Op (K — D +T)) # 0 by the Serre duality again and (K + T, H) > 0, hence AM =T
and (r — 1)(Kp + AM) ~ 0. So we may assume that h?(O (D —T)) = 0. By the assumption, there
exists a surjection: H'(Oym(D)) — HY(Or(D)) ~ H'(Or), hence h°(On (D)) = h}(On(D)) > 0.
Thus we get the assertion. =

3.2 Case ey, (S \A)=0and [A] #0

Let (S,A) be a projective log surface with a standard boundary defined over an algebraically closed
field k. Assume that (S, A) is log terminal and Ks+ A is numerically trivial. (S, A) can be roughly
classified into the following three types.

I:]|A]=0,

I : |A] #0and [Diffap(A — [A])] =0,

III : |A] 0 and [Diffiap (A — [A])] #0,

where v denotes the normalization map v : [A]¥ — [A].

Definition 3.4 Log surfaces (S,A) with the above conditions are said to be of type I, II and III
respectively.

The classification of the log surfaces as above in the case that Kgs + A is Cartier is well known.

Lemma 3.4 Assume that Ks + A is Cartier, then one of the following hold.

(1) S is either an abelian surface, a hyperelliptic surface or a normal surface with at worst Du Val
singularities whose minimal resolution is a K3 surface and A = 0.

(2) S is a rational or birationally elliptic ruled surface with Du Val singularities and A is either a
smooth elliptic curve or a disjoint union of two smooth elliptic curves and the support of A is
disjoint from the singular loci of S.

(3) S is a rational surface with Du Val singularities and A is a connected cycle of smooth rational
curves which is disjoint from the singular loci of S.

Proof. By the definition and assumptions, the proof reduces to the well known results (see [28]). =

In what follows we assume that char £ = 0.
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Lemma 3.5 Let (S.A) be a germ of log surfaces with a standard boundary and let (S,A) be the log
canonical cover of (S.A). If (S,A) is log terminal, then (S,A) is also log terminal.

Proof. If the number of irreducible components of |A] is less than 2, then (S,A) is purely log
terminal. hence so is (S, A) (see [58], Corollary 2.2). If not, we get the assertion since the index of
Kgs+ Ais 1 in this case. [}

By the log abundance theorem for surfaces, there exists a global log canonical cover (S,A) of
(S.A).

Lemma 3.6 If (S,A) is of type 1 ( resp., 11, resp., 111 ), then (S,A) is also of type 1 ( resp., 1,
resp.. 111 ).

Proof. Firstly, we prove that (S,A) is log terminal. By Lemma 3.5, we only have to check that
any irreducible components of [A] does not have self-intersections. Assume that there exists an
irreducible component I' which has self-intersections. Let I" be the image of I on S. Since we have

Kz + 7 () =" (Ks + T + {A}),

where 7 is the covering morphism = : S — S, (8,7 1(T")) is purely log terminal, hence so is (S, f)
but which is absurd. Noting that A = W‘I(A) and that [Diff 5. (0)] = 7~ LDlﬂﬂLAJu(A - [A])], w
get the assertion. [

The following result is essentially due to S. Tsunoda.

Proposition 3.2 (c.f. [63], Theorem 2.1)
(1) If(S.A) is of type I1, then 4(Ks+ A) ~ 0 or 6(Ks + A) ~ 0.
(2) If(S,A) is of type 111, then 2(Ks + A) ~ 0.

Proof. The argument in the proof of [63], Theorem 2.1 can also be applied in the case in which S
is rational. If S is not rational, we only have to apply the argument in the last part of the proof of
Proposition3.1 [

Let (S, A) be a projective log surface with a standard boundary defined over the complex number
field C. Assume that (S, A) is log terminal and that Ks+ A is numerically trivial. Let (S, A) be the
log canonical cover. To classify log surfaces as above, we need some conditions for (S, A) especially
in the case [A| # 0. In this section, we shall classify (S, A) with [A] # 0 under the condition that

orb(S \ A) = 0 which seems to be the most fundamental case. In general, applying the log minimal
program for S with respect Kg + {A}, we get a birational morphism 7 : S — S” to a projective
normal surface S” such that (1) Kg + {A®} is nef, where A" := T*A (2) —(Kg +{A"}) is ample and

p(S%) =1 or (3) there exists a projective surjective morphism ¢’ : S* — B onto a smooth projective
curve B with p(S°/B) =1 and —(Kg + {A"}) is relatively ample with respect to . Assume that
we are in the case (1). Then we have |A’] =0 and K5+ A = 7*(Kg + {A’}). On the other hand,
we have K+ {A} — 7*(Kg + {A®}) > 0 by our construction. Thus we see that the condition (1) is
equivalent to |A| = 0. The following is the key lemma for our purpose.

Lemma 3.7 Assume that e (S \ A) = 0. Then Exc 7 C |A].
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Proof. We may assume that [A] # 0. Let 7% : S — S% be a birational extremal contraction with
respect to Ks + {A}. Let E denote the exceptional divisor for 7% and put Af := 75A. Assume tha‘c
Ks + Ais Cartier firstly. By [29], Theorem 0.1, we see that £ is a (—1)-curve and that (£, A) =
Moreover, there exists a point p € F such that E NSing S =0 or {p} and E contracts to a smooth
point of S” Therefore, if F is not contained in Supp A, we have

On the other hand, we have eorb(S\A) =0 and eorb(S“\A“) > 0, which is absurd. If Ks+ A is not
Cartier. we take log canonical covers (S, A) and (S%, A) of (S, A) and (S*, A*) respectively such that
there exists a birational morphlsm 7 .S — S%induced by 7%. Let 7 denote the covering morphism
S — S. Since we have (K3, 7*E) = degm(Ks + {A},E) < 0, we see that 77'E C Supp A =
Supp 77! [A] by the prev1ous argument, hence we conclude that £ C |A]. =

3.2.1 Case Type Il

Let (S.A) be a projective log surface with a standard boundary and assume that there exists a
structure of a conic fibration ¢ : S — B with p(S/B) = 1, where B is a smooth projective connected
curve such that ¢ has only fibres of types listed in Lemma 3.3. We denote the number of fibres of
tyvpe 7 by v(7) if it is finite.

Lemma 3.8 Assume that (S,A) is of type 11 and that eorb(g \ A) = 0. Then the followings holds.

1) There exists a pro ective surjective morphism @ S — B onto a smooth p’le&Cti’UC’ curve B with
]
,O(S/B) =

(2) (S,AX(t)) is log canonical for any t € B and
(3) Supp |Diffe, ) (AZ (1)) C [A(t)] for any t € B.

Proof. Firstly, assume that Kg + A is Cartier. If (1) does not hold, S is a rank one Gorenstein log
del Pezzo surface by Lemma 3.7. Therefore we have 0 = e, (S \ A) = eorb(S) = 3 — T pes{l —
(1/0,(S))}, which contradicts the Table IV. Hence (1) holds under the assumption that Kg + A is
Cartier. Assume that h'(Og) = 1. Then we have 0 = eorb(S\A) = =3 cs{1—(1/0,(S5))}, hence ¢
gives a structure of relatively minimal elliptic ruled surface on S. Noting that the induced morphism
v A — B is étale, we see that (2) and (3) hold. If A'(Os) = 0, we have

1= 2 (- ,,(5)

teB peC(t)

II 3)1 k)

k>1

We note here that we do not have to operate any S-elementary transformation by examining the
proof of Lemma 3.3. By the Hurwitz’s formula we have v((I-2),) + Y v((I1-3); ;) < 4, hence we
deduce that v((I-2),) = 4 and v((11-3),,) = 0 (k > 1). Thus we get the assertion (2) and (3) under
the assumption that Ks + A is Cartier. We note that A? = K2 = 0 in each of the above cases.
Assume that Kg+ A is not necessarily Cartier and that there exists a birational extremal contraction
70 S — S% with respect to Ks + {A} and let F be as in Lemma 3.7. Then by the assumption and
Lemma 3.7. we have (Ks+ A, E) = (Ks+{A}, E)+ E*+(|A]— E,E) < 0, since (Ks+{A}, E) <0,
E® < 0 and (|[A] = E.E) = 0, but which is absurd. Thus if (1) does not hold, —(Ks + {A}) is
ample and p(S) = 1. which implies that A = 7 *|A] s ample. Thus we get the absurdity. By taking
the Stein factorlzatlon there exists a finite morphism w : B — B from a smooth projective curve
B and a proper surjective connected morphism @ : S — B such that pom = wo . Since we have
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RNt Yo AT(7:8) = 77 (Ks+ Ak (1)) and we know that (S, Sog— A*(F; 1)) is log canonical, we
conclude that (2) holds. As for (3), we get the assertion by the following diagram:

Supp > Diffogn(A7(#1)) = Supp 77! [Diffe, (A7 (1))
w(t)=t
N n
2 ATt = A @)
w(t)=t

=
Let (S,A) be a projective log surface with a standard boundary and assume that there exists a
structure of a conic fibration ¢ : S — B with p(S/B) = 1, where B is a smooth projective connected
curve such that ¢ has only fibres of types listed in Lemma 3.3. If ¢ has fibres of type 73, ..., 7, and

generically of type 7, then we shall write Typ(S,A;¢) = (1 + -+ 75 7).

Proposition 3.3 Type 11 log surfaces (S,A) with eorb(g \ A) = 0 are classified into the following
22 types modulo S-elementary transformations.

(@) S ~ Pg(&), where € is a rank two vector bundle on an elliptic curve E and A = T (a-1),
[+ Ty (a-2), T'+ (1/2)2 (a-3) or I' + (1/2)E; + (1/2)Z, (a-4), where I', I';, = and =; are
smooth elliptic curves which are disjoint from each other.

(b) S~ P!'x P! and
%_ (1/2)‘-‘2]’
1(2/3)Z2,5,
(1/ 2)Z91 + X5-2(3/4)%s, or
(1/2)Z21 + (2/3)Z22 + (5/6)Z23,

where I' and Z1; are fibres of the first projection for any i and Zs; is a fibre of the second
projection for any j.

2
A=T+> (1/2)=1; +
=1

(c) There exists a sequence of S-elementary transformations such that for the resulting log surface
(S,A), S~ P! x P! and
117255

A T r (2/3)*-‘3’
A=Ditlt (1221 + 52 ,(3/4)5; or

(1/2)Z1 + (2/3)~2 + (5/6)Zs,
where I'; is a fibre of the first projection for any i and Ej is a fibre of the second projection for
any j.

(d) There exists a structure of P'-fibration ¢ : S — P! with p(S/P') = 1 such that one of the
followings in Table 11 holds.

Table 11
| A l Typ(S, A p)

(d-1) r (4(1-2)y; (1I-1),)

(d-2) T+ (1/2)Ex @(13)1; (I1)1)

@3) [T+ (1220 + (1/DZ1 + /250 | @012 T 2(13)1; (1))
(d-4) | T+ (1/2)50 + (1/2)Z01 + (3/4)Z02 | (T-1)a + (I-3)s + (I-3)1; (I-1)1)
[d5) | T+ (/205 + >, (1/2)5,, 2(13)5 1 (-1)a; (I-1))
(@6) [T+ (1/2)Z + (2/3)Zu1 + (2/3)50s | (-1 1 (1-3), + (I-3)s; (I-1)7)

18



I in (d-1) and =y in (d-2) denote a smooth elliptic curve with I? = =2 = 0. T in (d-2), (d-3),
(d-4), (d 5) and (d-6), =y in (d-3), (d-4), (d-5) and (d 6) denote smooth rational curves with
[? = 2} = 0 which are horizontal with Tespect to p. =, ; in (d-3), (d-4), (d-5) and (d-6) denote
smooth rational curves which are vertical with respect to ¢ for any j.

(e) There exists a structure of P'-fibration ¢ : S — P with p(S/P') = 1 and there exists a
sequence of S-elementary transformations such that for the resulting log surface (S A), one of
the followings in Table IlI holds.

Table 111

A Typ(S, A; ¢)
-1 I¥+Z§1]/m5' (2(1-2)g + (I1-1)g; (I1-1);)
5 (2(1-2); + 2(11-1)9; (I1-1)4)

e-1) (

e2) | T+32,(1/2)
e-3) | T+ 1(2/3)= | (-2 + (1-2)s + (II-1)5; (11-1)y)
e-4) | '+ (1/2)=1 + (3/4)=s | ((1-2)1 + (I-2)p + (1I-1)4; (11-1)1)

I' denote a smooth rational curve with (I, 3*(t)) = 2 fort € P and =; denote a smooth rational
curve which are vertical with respect to ¢ for any 1.

Proof. Let I'y be an irreducible component of |A|. Then we have 2¢(I';) —2+deg Diffy, (A—-T4) =
0. where g(I';) denote the genus of I';. (1) Assume that g(I';) = 1. Then degDiffr, (A —T';) =0
and ¢ has only fibres of types (I-1);, (I-2); or (II-1); by Lemma 3.3 and Lemma 3.8. (1-1) Assume
that g(B) = 1. Since the induced morphism I'; — B is étale, type (I-2); fibre does not exist, hence
we are in the case (a). (1-2) Assume that g(B) = 0. Applying the Hurwitz’s formula to the induced
double covering I'y — B, we obtain v((I-2);) = 4, hence we are in the case (d-1). (2) Assume that
g(I'1) = 0. Then we have 3" cr, m,(I';; A —I'y) = 2. (2-1) Assume that Ty is a section of ¢. Then
y has only fibres of types (I-1), (I-3), or (II-1),. (2-1-1) Assume that I’y = |A]. Then ¢ has only
fibres of types (I-1), or (I-3), and we have 3y51{(b—1)/0}v((I-1)s) + Zp1{ (20 — 1) /20 }v((1-3)w).
Let =5 be the sum of all the horizontal components of Supp{A}. If Z, is reducible, then ¢ has only
fibres of type (I-1)s, hence we are in one of the cases (b). Assume that =, is irreducible. Then we
have emp(Eh) =4 — Y5 V((I-3)w) by the Hurwitz’s formula. On the other hand, since we have
Rs+T1+Z+{A}, ~Q (1/2)=Z), where {A}, denotes the vertical part of {A}, we have etop(Sn) =
deg Diffz, ({A}o) = (1/2)Z} = 25451{(b — 1)/b}v((-1)e) + Ti5:{(t/ — 1)/ }((I-3)y) — (1/2)Z3,
hence :‘7’1 = 0. Since eyop(Sx) < 2 and egop(Ex) € 22, we have Ty v((I-3)y) = 2 or 4. If
Zp>1v((I-3)y) = 4, then we have eyqp(Sx) = 0 and v((1-3)1) = 4, hence we are in the case (d-2).
Assume that Yp5q v((I-3)y) = 2. Then we have eyop(Sn) = 2 and we see that we are in the cases
(d-3). (d-4), (d-5) and (d-6). (2-1-2) Assume that |A] is decomposed into two sections I'; and
[';. Then ¢ has only fibres of type (II-1), after S-elementary transformations, hence we are in the
cases (). (2-2) Assume that (I'y,¢*(t)) = 2 for t € P!. Then ¢ has only fibres of types (I-2), or
(II-1), after S-elementary transformations. We note that Y5 {(b— 1)/b}v((I-2)s) + 2 Xy { (' —
1)/6'}v((II-1)y) = 2. By the Hurwitz’s formula, we have 37,5, v((I-2),) = 2. Thus we see that we
are in the cases (e-1), (e-2), (e-3) and (e-4). [

We prove the lemma needed later which was taught to the author by Prof. A. Fujiki.
Lemma 3.9 Let X be a complex manifold and let G be a finite subgroup of the holomorphic auto-

morphism group Aut X. Let I1 : U — X be the universal cover of X. Then there exists a discrete
subgroup G of Aut U which acts on U properly discontinuously such that U /G ~ X /G
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Proof. Let Autnld be the subgroup of Aut & which consists of all the elements 4 € Aut ¢/ such that
there exists an element v € Aut X which satisfies v o II = IT o 4. Then there exists the following
exact sequence of groups: 1 — m1(X) ~— Autp/ — Aut X — 1. Let G be the inverse image of
G by the third map in the above exact sequence. We note that G is a discrete subgroup of Autpd/
and that we have the following exact sequence: 1 — m(X) — G—G—1. Therefore, we see
that G acts on U properly discontinuously and that /G ~ (U /7 (X))/G ~ X/G. ]

Let (X.D) be a normal log variety with reduced boundary D. Assume that a finite group G acts
on X faithfully preserving D. Let f : X — X/G be the quotient morphism and assume that any
component of D is not contained in the ramification divisor of f. For a prime divisor I" on X/G,
take a prime divisor I' on X contained in f~ I(I") and let G; denote the subgroup of G consisting
of all the element of G which acts on I trivially. The order |Gz| of Gy, which is nothing but the
ramification index of f at I', does not depend on the choice of I'. Put ep := |Gz]. We define the
Q-boundary D¢ on X/G as follows.

DG =

I';prime

where the summation is taken over all the prime divisors I" on X/G. We note that by the definition,
we have f\"x + D= f*(KX/G + DG> if KX/G + DG is Q—Cartier.

Here is a corollary of Proposition 3.3.

Corollary 3.1 Let (S,A) be a type 11 log surface with eorb(g\A) = 0. Then there ezists a relatively
minimal elliptic ruled surface m: P — E over an elliptic curve E which admits a m-equivariant action
of a finite abelian group G with |G| = lInd(Ks+A), wherel = 1, 2 or 4 and there exists a G-invariant
reduced divisor D on P which is a smooth elliptic curve or a disjoint union of two smooth elliptic
curves such that (S,A) ~ (P/G,Dg). In particular, (S,A) is uniformizable to C x P! in the sense
of R. Kobayashi, S. Nakamura and F. Sakai (see [23], [24]).

Proof. We only have to consider the case where B ~ P!. We define a Q-divisor § on B as
¢ = Yiep{(mebe — 1)/mibe}t, where m; := multc,;9*(t) and b = (1 — multc,yA)~! for ¢t € B.
Then by checking the list in Proposition3.3, we see that degé = 2. Put r := Ind(Kp + §). We
can also check that r = Ind(Ks + A). Let C(z) C K := C(z,y) be the field extension induced by
¢ We define a finite Galois field extension K C L as follows. Take a rational function a(z) on B
such that div a(x) = r(Kp + 6). If =, = 0, we put L := K({/a(z)). If Z, # 0. Let =), be the
restriction of Z, to the generic fibre S, ~ P*(C(z)) of y. Then the defining equation of =, can
be written as y* = B(x). Let =45 be the pull back of =5, on PY(C(z,/B(z))). By substituting

y for y = (y — /B(2))/(y + /B(x)), we may assume that =, ; corresponds to y = 0, oc. We put
L:= K({/a(z),/B(r),/y). We note that L is a Kummer extension of K by the construction. Let
[ P — S be the normalization of S in L. We show that P is a desued relatively minimal elliptic
ruled surface. Let fi : P, — S be the normalization of S in K({/a(z)) and ¢; : P, — Bj be the
induced morphism from ¢ by taking the Stein factorization. By our construction, B; is nothing but
the log canomcal cover of (B.6), hence B; is an elliptic curve. Since locally on S, we can write
div o*a(x) = {r(b: = 1)/b: }C,(1), fTC,(t) is Cartier, hence y is smooth and the ramification index
at the generic point of prime d1v1sors in fTY(C,(t)) is b;. Thus in the case where =), = 0, we get
the assertion. Assume that Zj # 0. Then we see that fi'(Zx) is smooth and eqqp(fi'(E4)) = 0

from Kp, + fiY(0) + (1/2)f7'(Eh) = f1(Ks + A) ~q Oand (fi'(Zw)* = 0. Let fo: P, — P
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be the normalization of Py in K ({/a(z),/8(z)) and ¢ : P, — Bs be the induced morphism from
1o K ({a(z),1/6(z) # K({Ja(z)), then fT'(Z,) is an elliptic curve and By ~ fi(Z,) by the

construction. Therefore, P is also a relatively minimal elliptic ruled surface and f3!fi(Z,) is a
disjoint union of two sections over which f3 : P — P, ramifies with the index two, where f3 is the
normalization map of P, in L. Thus we conclude that P is a relatively minimal elliptic ruled surface
with a section f~'(|A]). The last assertion follows from Lemma 3.9. |

3.2.2 Case Type III

Lemma 3.10 (c.f. [3], [6] and [24], §5. Appendix) Let (S,A;p) be a germ of normal log sur-
face with Q-boundary A at p such that |A| = 0. Assume that (S,A) is purely log terminal and
ind,(R's + A) = 2. Then there exists a resolution f: T — S such that f~'(p) USupp f'A has only
normal crossing singularities whose dual graph is one of the following types.

(1) Casep € S smooth.

A0/2 A2k+1/2-C¥ (:IC Z 0)
. 2 -2 ,///

——— _1
k times
Asiey2/2-8 (k > 0)

/ —2 Dogys5/2-a (k > 0) -2
2 2 -3
o— - —0 o o\ -2 -2 -3 /

— 00— —O © —
———— —1
k times

— \ —10
k times \\
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(2) Casep € S singular.
;41/2-’)"

—4

[¢]

;42};_{_'3/2-6 (,ZC 2 0)

A2k+3/2-6 (k Z 0)

-3 -2 -2 -3
| S —
k times

Ast1/2-C (k = 1)

-2 -2 -3 —2
—— o — - —0——0 ¢ ©

N—————

k times

D2k+6/2—6 (k‘ 2 0)

k times

e

-3 -2 -2
| —
k times

In the above dual graphs e denotes the strict transform of Supp {A} by f and o denotes an
f-exceptional rational curve. The number attached on o is its self-intersection number.

Proof. We give a proof for the convenience of the readers. In the case where S is smooth at p,
the proof reduces to the well know fact about the resolution of plane curves, so we omit the proof
in this case. Assume that S is singular at p and let u: M — S be the minimal resolution of p € S.
Put = := Supp A and T’ := u!'Z. Let p~!(p) = U'_, E; be the irreducible decomposition. Then we
can write Ky + (1/2)Z + Y\, a,F; = p*(Ks + A), where a; = 0 or 1/2 for any ¢ by the assumption.
Since we have (K + (1/2)Z' + ¥\_; a:Ei, E;) = 0, we have (Z' + ¥4, 20, E;, E;) = 4+ 2(1 — a;) E?

O

"N\
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for any _] Assume that a;, = 0 for some i, say for ip = 1. Then we see that (E'+3, 4 2a,E;, Fy) =0
since £ < —2, which implies that p='(p) = Ug,—0F I Ug,—1 2 E;. Since u~!(p) is connected, we infer
that a; = 0 and (£, E;) = 0 for any i, hence mdp(KS + A) = 1, which is absurd. Thus we obtain

= 1/2 for any i and (' + Zix; Ei, E;) = 4 + E? for any j, which implies that E? = —2, -3
or —4 for any . Assume that there exists F;,, say El, such that E? = —4. Then since we have
(2 + Y., B By = 0, we see that p~!(p) = E; and (2, E;) = 0, which implies that we are in the
case A;/2-y. Thus we may assume that F? = —2, —3. We note that we have E+54,E,E) =1
if £2 = -3 and 2if E? = —2. Assume that there exists E,,, say E1, such that E? = —3. Then it is
casily seen that we are in the cases Agi3/2-6 (K > 0) or Agia/2-€ (k > 0). Thus we may assume
that E? = —2 for any 1. Assume that (2, E;)) = 1 for some i9. Then by the inductive argument,
we see that we are in the cases Aoky1/2-C (k> 2). Assume that (2, E;,) = 2 for some 4. Then we
have p=!(p) = E,, since (3,4, Ei, E;,) = 0, from which we deduce that we are in the cases As/2-C,
D4/2-W,. D2k+5/2-(5 (k’ Z O) and D2k+6/2‘€ (k‘ 2 O) ||

Definition 3.5 A normal complex projective surface S is called a rank one log del Pezzo surface if
S has at worst quotient singularities, —Ks is ample and the Picard number one and moreover, if S
is Gorenstein, S is called a rank one Gorenstein log del Pezzo surface.

Singular rank one Gorenstein log del Pezzo surfaces are classified into the following 27 types listed
as follows (see [14], [34]). We need the list below to study type III log surfaces.

Table IV

(=Ks)*| Sing S | ey n(S) (—Ks)* | Sing S | eqp(S)
1) 8 A 5/2 | (5)] 1 Es 241/120
(2) 6 Ay + Ay 11/6 | (16) 1 E. + A4 73/48
(3) 5 A, 11/5 | (17)] 1 Er+ Ay 65/43
@ 4 Ds 25/12 | (18) | 1 As 19/9
(5) 4 Az + 24, 5/4 (19) 1 A7+ Ay 13/8
) 3 A+ AL | 5/3 | (2) ] 1 Ds 49/24
(®) 3 34, 1 (22 1 Ds + 24; | 17/16
(9) 2 E- 97/48 | (23) 1 Ds + As 4/3
1) | 2 Ds+ A1 | 25/16 | (24) | 1 2D, 5/4
(11) 2 A~ 17/8 | (25) 1 44, 1/3
a2y 2 Dit As | 11/8 | (26)] 1 245 + 2A; 1/2
3 2 | As+4 | 3/2 [@0] 1 24, /5
(14) 2 243+ Ay 1

Proposition 3.4 Let (S,A) be of type I11. Assume that Ks+ A is Cartier and that e, (S\A) = 0.
Then there exists a birational morphism 7 : S — S° which is composed of contractions of (—1)-curves
with Exe 7 C A to a normal projective surface S° and (S°, A®) satisfies one of the followings.

(a) S* >~ T4, where £q is a Hirzebruch surface and A* = Y% | T where T and T are two disjoint
sections, [ and T are two fibres.

(b) S" is a rank one Gorenstein log del Pezzo surface with Sing S = 3A4s, A1+ 243, or A1+ As+ A
and A® is a rational curve with only one node as its singularities.

(¢) S has a structure of a conic fibration ¢’ : S* — P! with p(S*/P') = 1 and Typ(S”, A", ") =
(2(1-2)1 + (II-1)eo; (11-1)).  A® = T + T%, where I is a smooth rational curve such that
(T, ©"*(t)) = 2 for t € P! and that (I})?> =0 and [ is a fibre of ¢".
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Proof. As we have already seen in Lemma 3.7, by applying the log minimal program on S with
respect to K5, we get a birational morphism 7 : S — S” with Exc 7 C A to a normal projective
surface S” (1) which is a rank one Gorenstein log del Pezzo surface or (2) which admits a structure of
conic fibration ¢° : S* — P! with p(S®/P') = 1. Assume that we are in the case (1). Since we have
eorb(5”) = etop(A”) € N, we see that S* ~ P? and eqop(A’) = 3 or Sing 5* = 34;, Ay + 243, or
A1+ 4,4 As and etop(A") = 1 by Table IV. Thus we are in the cases (a) and (b). Assume that we are
in the case (2). By the assumption, we have 4 = eyqp (A")+1((1-2)1)+ g1 { (4k—1) /(4k) o ((11-3)1,1).-
where v((I-2);) and v((II-3);4) denote the number of fibres of type (I-2); and (II-3); 1 respectively.
Assume that A’ contains an irreducible component T% with (I, ¢**(t)) = 2 for t € P*. Since A" —T%
is composed of fibres of ¢°, we can write A® = T% + T, where I'} is a fibre of " and we see that
etop(47) = 2 and that v((1-2)1) + Cgx1{(4k — 1)/(4k)}r((11-3)1,4) = 2. On the other hand, since ¢’
induces a double cover ¢* : Iy ~ P' — P, we have v((I-2)1) + Y k>1 v((11-3)14) < 2 by the Hurwitz’s
formula. So we have v((I-2);) = 2 and v((1I-3), x) = 0 for any &, hence we are in the case (c). Assume
that there exist two sections of ¢°, I'} and I'). Then we see that v((I-2);) = v((1I-3)1) = O for any
k and that ¢° : §* — P' is smooth and eop(A®) = 4. Thus we are in the case (a). m

Let (S.A) be of type Il and assume that Ks + A is not Cartier and let |A] = % ,T; be the
irreducible decomposition. Then b > 1 and I';’s form a linear chain of smooth rational curves, that
is. (I.I;) =0,if i —j] > 1,1,if i —j| = 1 and {p € |A]| ind,(Ks + A) = 2}, namely the set of
points p € [A] at which Ks + A is not Cartier consists of four points p; (1 < ¢ < 4), where p;, € I'g
fori=1,2and p; € I, for i = 3, 4 by [44], Lemma 3.2 (1). Comparing the Euler numbers, we have

etop(A) = 2epop(lA]) — 4. (3.3)

Let (5°.A’) be a log surface obtained from (S, A) by applying log minimal program with respect to
(s + {A}. Write A’ = I + (1/2)Z", where I* := |A’| and = := 2{A"}. Put d := (-Kz)?. We
note that we have ]
etop(E”) = deg Diffzs. (I°) — 5(E")2 (3.4)
from Kg + [® + (1/2)2° ~@Q 0. Let ¢’ M° — S° be the minimal resolution of S” and put
§K? = K% — K2, 6p 1= p(M") — p(S”). Then we have
K% = K, + 6K* = 10— p(M") + 6K* =10 — p(S*) — 6p + 6 K2,
On the other hand, we have
2 b lz‘bQ_é b —=b _1_':\b2
hence

SK? —6p = g +(T°,2") + %(Eb)Q + p(S*) — 10. (3.5)

If we have p(S”) = 1, for any divisor D on S, there exists a € Q such that D is numerically equivalent
to al”. Noting that D? = a?(I")? = (1/2)da? by (I")? = (1/2)(A%)? = (1/2)(=Kg)? = d/2 and that
(I°, D) = a(I*)? = (1/2)da, we deduce that

D?* = (2/d)(I", D). (3.6)
Assume that eorb(g \ A) = 0. Then from Lemma 3.7, we have

p(S) = p(S") = etop(lA]) — etop(1A°)). (3.7)
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Let LC (S°, A®) be the set which consists of all point p € S” such that (S°,A) is not log terminal
at p. We see that LC(S®, A®) consists of at most two points and for p € LC(S", A"), T* and =
are smooth at p and (I*,Z"), = 2. Let 7° : §* — S be the log canonical cover of (S”, A?). Put
A= 7"71A" and s := Card LC(S®, A?). Comparing the Euler numbers again, we have

etop(AD) = 2€top(LAbJ) —4+s (3.8)

If ind(Kg + A%) =1 for p€ S\ |A’[, then p ¢ =" and S” has at worst Du Val singularity at p. In
this situation, we shall say that (S°, A”) has singularity of type A, at p, if S® has Du Val singularity
of type A, at p for instance. Let ¢ : U — B be a complex elliptic surface over a smooth complete
curve B with a section such that U is minimal over B. We shall write

Typ(U:9) = S vk + 3 v(IDI + v(IDI + y(IT)IT* + p(IIDII + p(I1F)1IT*

k>1 1>0

+r(IV)IV 4 p(IV)IV,

where v(7) denotes the number of singular fibres of type T in the Kodaira’s notation ([25]). It turns
out that the following lemma works better than the fixed point formula in our cases.

Lemma 3.11 Let G denote a finite subgroup of k-automorphism group of normal variety X defined
over an algebraically closed field k and let f : X — X/G be the quotient morphism. Assume that
X/G is Q-factorial. Then f induces the isomorphism Pic (X/G) ® Q ~ (Pic X ® Q)°.

Proof. The injectivity is trivial. As for the surjectivity, we only have to note that f*fuD = 3" cc gD
for any Q-divisor D on X, where f,D denotes the pushforward of D by f as a cycle. ]

Assume that = # 0 and that there exists a birational morphism n : W — S” from a normal
surface W with A" > 0 such that 7;'Z’ is nef and (n;7!=")? = 0. By applying the log abundance
theorem (see [13] or [11], Theorem 11.1.3) to Ky + AW + &= ~Q €= for sufficiently small positive
rational number ¢, we obtain a proper surjective connected morphism ¢ : W — P'. In what follows,
we shall frequently use this technique. In Propositions 3.5, 3.6, 3.7, 3.8 and 3.9, a log surface (S, A)
is assumed to be of type III such that Ks + A is not Cartier and ey, (S \ A) = 0.

Proposition 3.5 Assume that S is smooth. Then there exists a birational morphism 7 : S — S°

with Exc 7 C |A] such that there exists a conic fibration ¢° : S* — P with p(S°/P') = 1 and

that (S°, A%) is log terminal, where A° := 7,/A. Moreover, there exists a sequence of S-elementary

transformation such that for the resulting log surface (5°,A?), §* ~ P x P* with ¢ being the second
2

projection and A’ = Y22 (T¥ + (1/2) Y2 =%, where I¥ is a fibre of the first projection for i = 1, 2

and f‘['), E; are fibres of the second projection for j =1, 2.

Proof. From the exact sequence: 0 — Q}g — ng(log [X) — Ozn — 0, we have the following exact

sequence: 5 _
0 — H°(QL(logA)) — H*(Ozw) — Pic S®C — 0,

since Pic S©Q is generated by all the irreducible components of A. By taking the invariant subspaces
under the induced action of G := Gal(S/S), we get the the following exact sequence:

0 — H°(QL(log A))¢ — H°(Opa)) — Pic S® C — 0,

where H°(Q%(log A))C is the invariant subspace under the G-action. Since S\ A is a two dimensional
algebraic torus, we see that h%(QL(log A)) = 2 and that the natural morphism A? H°(QL(log A)) —
H°(Os(Ks + A)) is an isomorphism. Since the eigenvalue of the induced action of a generator of G
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on H°(Oz(K;+ A)) is =1, H(Q(log A))€ is one dimensional. Thus we get p(S) = etop(LA]) —

Firstly, we show that there exists a P'-fibration ¢ : S — P!. Assume that p(S") = 1. From (3. 7)
we get eqop(|A°]) = 3 which implies etop(A ) = 2+ s by (3.8), hence p(S*) = et;op(A )—2=s.
We note that =° # 0 since s > 0. By Noether’s equality, we have Kgb =10 — s. Since S has only
Du Val s1ngular1t1es of type A, we have § K* = 0. Combining this with 6p = 4 — (I'", "), we obtain
(=) = 25 = 0 from (3.5). Let ¢ : §” — S be the extraction of all the divisors over LC(S”, A)
whose log dlscrepancy w1th respect to (S”,A”) are 0. Noting that (:;1=%)? = (2°)? — 2s = 0 by our
construction and that = is irreducible by our assumption that p(S?) = 1 and S* is smooth, some
multiple of (7'Z" defines a P'-fibration " : S” — P. Since 7 factors into to7’, where 7 : S — S is
a birational morphism, we conclude that there exists a P'-fibration ¢ : S — P! and we may assume
that S” has a structure of conic fibration ¢’ : S* — P! with p(S*/P') = 1. Under this assumption,
we have etop([A ]) =4, etop(Ab) =4+s, p(S) =2+s, K% =8—s, (I")? = 4—(1/2)s and
(Z°)? = 2s in the same way as above. Let [’ =2 " be the 1rredu01ble decompOSItlon and assume
that I’y is horizontal with respect to ¢’. We may assume that I is contained in a fibre of ¢ since
(I, " (t)) < 2fort € P. Flrstly, assume that (F @*(t)) = 2 for t € P'. Then I}, I}, and =
are contained in ﬁbres of ¢’. Noting that (T}, I%) = 1 for i = 1, 2, we have (I'},=") = 0. Thus
we conclude that =" = 0 and that s = 0, hence (I'})? = 0. Since (=Kg,C) = (I*,C) > 0 for
any irreducible curve C on S, we see that NEg_, (S*) = 0 and that NE(S”) is spanned by exactly
two extremal rays with respect to Kg one of which corresponds to ¢”. Let ¢” be the extremal
contraction of the other extremal ray. If ¢° is birational, then, by Lemma 3.7, Exc ¢* C I'*, which is
absurd. Thus " defines another conic fibration ¢* — P' with p(S*/P') = 1 such that T*} and I} is
horizontal with respect to ¢°. Thus we may assume that [y is a section of @ at first. Assume that
I is contained in a fibre of ¢”. Then we have (I'})? = —(1/2)s. Since (I}))? € Z, we have s = 0 or
2. We may assume that s = 0 for if we assume that s = 2, then we have (I'})2 = —1 and we can use
the argument in the case p(S°) = 1. Under the assumption that s = 0, there exists another another
conic fibration ¢* — P with p(S°/P?') = 1 such that I% and I’} is horizontal with respect to ¢°, by
the same argument as above. Thus we may assume that Iy and [, are sections of ¢® at first. Then
we have (2%, ¢™(t)) =0 for t € P! and s = 0. Since we have p(S*) = 2, (S, A (t)) is log canonical
for any t € P! and Supp |Diff¢ b(t)(A*’b(t))J C |A%(t)] for any t € P by the argument in the

proof of Lemma 3.8. Therefore, poss,1bly after S-elementary transformations, ¢* has only fibres of
type (II-1), as in Lemma 3.3. Thus we get the assertion. =

Assume that S is not smooth. By Proposition 3.4, we see that p(S) = etop([l) and all the
irreducible components of A give a complete basis of Pic S ® Q, hence we get

p(S) = etop(A)/2 +1=ep(lA]) -1

by Lemma 3.11. Combining this with (3.7), we obtain etop([AbJ) =1+ p(S"). From (3.8), we have
p(S°) = etop(Ab = 2p(S*) — 2+ s. Let fi* : M* — S be the minimal resolution of $* and put
8p := p(M®) — p(S®). Then by Noether’s equality, we have

d = Kfm =10 — p(M")
= 10-2p(S") —s—6p
8, if Sing S = 44,
6, if Sing S = 34,,
5, if Sing § = A; + 243,
4 if Sing S = A; + Ay + As.

= —Zp(Sb) — S+ (39)
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Proposition 3.6 Assume that Sing S = 3A,. Then one of the followings holds.

(1) S"~P?and N’ =T° + (1/2)=°, where =° is an irreducible quartic curve with three cusps and
I is a double tangent.

(2) S is a rank one Gorenstein log del Pezzo surface with Sing S* = A; + A, and there exists
a birational morphism A : U — S° from a smooth projective surface U such that U admits
a structure of elliptic surface with a section v : U — P! which is minimal over P! with
Typ(U;s) = I} + 11+ 13 and that A YV = (1/2)9*(t +u) where ¥*(t) and ¥*(u) are the singular
fibres of type I and 11 respectively.

Proof. The possible singular types of (S*,A") on S”\ |A®] are types Aj, Ag/2, As/2-8 and Ay /2-¢
and we see that =’ is irreducible if p(S”) = 1. In what follows, v(7") denotes the number of points
of type 7. We note that we have 2v(A,) + v(As/2-8) + v(As/2-€) = 3. Firstly, we consider the
case in which S is a rank one log del Pezzo surface. Assume that s = 2. Then we have p(S?) = 2,
d=2 (I")? =1, (I",Z") = 4 and (Z)*> = 16. Thus we have §K> — §p = 0. On the other
hand. since we have §K? = (1/3)v(Az/2-€) and ép = 2v(Ag) + v(Ay/2-€), we have 6K? — §p =
—2v(Ay) — (2/3)v(As/2-€), hence v(Ay) = v(Ay/2-¢) = 0 and v(A;/2-8) = 3, which implies that
we are in the case (1). Assume that s = 1. Then we have d = 3 and p(S”) = 1. We note that we
have (I”.Z”) = 1 (mod 2) from (I")? = 3/2, so we have (I®,Z") = 3, (Z*)? = 6 and 6K — &p = —3.
On the other hand, since we have 6K? = (1/3)v(A2/2-€) and 8p = 1 + 2v(Ag) + v(Az/2-¢), we get
SR? — 6p = —1 — 2v(As) — (2/3)v(As/2-€). Therefore, we obtain 3v(A;) + 2v(As/2-€) = 3. Hence
(v(Ag).v(Az/2-€)) = (1,0) or (0,3). Since we have deg Diffzs. (I®) = 3+20(Ay/2-6)+(2/3)v( Ay /2-€),
we have etop(E*"’) = 2v(Ay/2-8) + (2/3)v(As/2-€). Assume that (v(Ay),v(Az/2-€)) = (1,0). Then
we have 1(Ay/2-8) = 1 and e¢op(=™) = 2, ie., " ~ P'. We can see that there exists a birational

morphism 7 : W — S from a smooth rational surface with p(W) = 13 such that Supp n71A" UExc 7
has only simple normal crossing singularities whose dual graph is as follows.

(=21/2) (=2;1/2) (=1;0)

(—2:1/2) (~2:1/2) (~1;0)

In the above dual graph, e denotes a curves which is not 7-exceptional and o denotes a 7-
exceptional curve. (x;x) denotes ( the self-intersection number; the multiplicities in A*". We shall
use the same notations in the subsequent dual graphs.

We see that there exists a birational morphism v : W — U to a smooth rational surface U with
p(U7) = 10 such that n = Ao v, where A : U — S® is a birational morphism and that A;'=" is nef
with (A\712°)? = 0 and (A" — (1/2)A712", A712%) = 0. We note that A®Y > 0. Applying the log
abundance theorem to Ky + AV + eA71=" for sufficiently small positive rational number ¢, we obtain
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a connected surjective morphism v : U — P!, which turns out to be a minimal elliptic fibration
since Ay + AY ~@ 0 and p(U) = 10. Put t := ¢(A\'I*) and u := 9(\;'="). Then we see that
v*(t) and ¥*(u) are singular fibre of type I and II respectively and that A" Y = (1/2)y*(t + u).
Since we have 3, , etop(w‘l(v)) = 3 and there exists v € P! such that the singular fibre ¢*(v)
has the dual graph containing A, as its dual subgraph, we deduce that ¥*(v) is of type I3 and
that v is smooth over P!\ {t,u,v}. Thus we are in the case (2). We shall show that the case
((A2).v(A2/2-€)) = (0, 3) does not occurs. Assume that (v(Asz), v(Az/2-€)) = (0,3). Then we have
v(ds/2-3) = 0 and = ~ P'. We see that that there exists a birational morphism n: W — S,
where 117 is a rational surface with p(W) = 11, such that Supp n;!A”UExc 71 has only simple normal
crossing singularities whose dual graph is as follows.

(=2;1/2) (=2;1/2) (=1;0)
(—3;1/2)
(=3;1/2)

(=31/2)

(=21/2) (=21/2) (=1;0)

Let v: W — U be a contraction of n71=". Then we see that U is smooth rational surface which

admits a structure of an elliptic fibration ¢ : U — P! by the same argument as above, such that there
exists two points t, u € P! with ¢*(t) and 1*(u) being singular fibres of type I7 and IV respectively.
From the above dual graph, we can see that there exists a smooth rational curve E on U such that
(v*(t). E) = 1 and (¢*(u), E) = 3 but which is absurd. Secondarily, we consider the case in which
there exists a conic fibration ¢’ : S* — P! with p(S*/P') = 1. In this case, we note that we have
erop([A”]) = 3. Let IV = I + I} be the irreducible decomposition. Assume that s = 2. Then we

have d = 0 and p(S"’) = 4, hence the self-intersection numbers of all the irreducible components of
A are (a) —1, =2, =2, =3 or (b) —1, —1, —3, —3. The case (a) is excluded for if we are in the case
(a). the —1-curve and the (—3)-curve is invariant under the action of the covering transformation
group. but which is absurd. Thus we may assume that (I'})? = 0, (T%)?> = ~2. Since Pic $* ® Q is
generated by T and T}, we have =’ ~@ 6 2+ 2I% from (I®,=") = 2 for ¢ = 0, 1, which implies that
(Z°)? = 16. Thus we have 0 = §K? — §p = —2u(A;) — (2/3)v(As/2-€), hence v(A;) = v(Ay/2-€) =0
and v(A4,/2-8) = 3. Moreover, since we have degDiffz.(I”) = 4 + 2v(A5/2-8) = 10, we have
etop (=) = 2. Since ¢’ is smooth, It is easily seen that I'y is a fibre, I'} is a section of ¢” and Z° is
irreducible, hence = ~ P'. ¢ induces a double cover ¢’ :  — P! with at least four branching
point. which contradicts the Hurwitz’s formula. Assume that s = 1. Then we have d = 1 and
p(5?) = 3. hence the self-intersection numbers of all the irreducible components of A” are —1, —1,
—2. Assume that LC(S*. A®) NIy # 0. Then we have (I'})> = —1 and (I'})? = —1/2 and we see
that I'] supports an extremal ray with respect to Kg + A”. Contracting I'}, this case reduces to the
rank one log del Pezzo case. Assume that s = 0. Then we have d = 2 and p(5°) = 2, hence the
self-intersection numbers of all the irreducible components of A® are —1, —1, hence (I?)? = —1/2 for
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i = 0. 1. By the same way as in the previous argument, we conclude that this case also reduces to
the rank one log del Pezzo case. Thus we get the assertion. ]

Example 3.1 The example of the case (1) is well known and goes back to [66]. To show the existence,
we only have to take a dual curve of a nodal cubic as =°. There exists exactly one double tangent by
the Pliicker’s formulae. It is also well known that for a suitable choice of homogeneous coordinates, a
defining equation f(X,Y, Z) of a nodal cubic curve can be written as f(X,Y,2) = Y*Z - XQ(X+Z)
and the defining equation f(X Y, Z) of its dual curve is calculated to be f(X,Y, Z) = 4X3Z +4X*—
36XY?Z — 8X2Y“ 27Y27Z% + 4Y*. (see, for example, [5], p.585, [10], p.131, Exercise (4.7)! or [32],
Table 6.8). In particular, we see that such a log surface (S, Ab) is unique up to isomorphisms. As
for the case (2), the existence of a minimal rational elliptic surface with a section ¢ : U — P! with
Typ(U; ) = 1] + 11413 is known (see [46]). By the list in [43], we see that MW(U,)) = Z P for some
P € MW(U,) with < P, P >=1/12, where MW(U,)) denotes the Mordell-Weil group of the generic
fibre [, and < *,* > denotes the height paring in the Shioda’s sense. Put ¢ := 3P. Then from the
formula (8.12) in [57], we have

3 1 —<Q@Q>=2+2(Q0) - > contr,(Q),

vER

where we followed the notations in [57]. Let ¥*(t) = ©:0 + O11 + Ora + O3 + 204 + 205 be the
tvpe 1] singular fibre and ¥*(v) = ©,0 + ©,,1 + O, be the type I3 fibre, where ©,¢ and ©, are the
components which intersect the section (O). From (8.16) in [57], we have

0 lf (Q@t,O) — ].,
contry(Q) = { 1 if (Q0¢1) =1,
5/4 if (Q©:2) =1or (Q6,;3) =1

and ©0.0)
] 0 if (QO,0) =1,
contry(Q) “{ 2/3 i (QOy1) =1 or (QOy2) = 1.

Noting that (QO) € Z, we see that (Q©0;2) =1 or (Q©;3) = 1 and that (@0,0) = 1 and (QO) = 0.
Since wy = w*Opl(—l), we have 2Ky + ¢*(t + u) ~ 0, where 9*(u) is the type II singular fiber.
Let A : U — S be the contraction of all the curves (0), (@), ©:; (0 <i<4)and 0, (1<j<2)
and put A’ := (1/2)A\.0*(¢ +u). Then (S°, A®) gives an example of the log surfaces of type (2) as in
Proposition 3.6.

Proposition 3.7 Assume that Sing S = A1+ 2As. Then there exists a birational morphism A : U —
S” from a smooth projective surface U which admits a structure of an elliptic surface with a section
v U — P which is minimal over P'. And one of the followings holds.

(1) S*~ P? and Typ(U; ) = I} + 111 + I,

(2) S® is a rank one Gorenstein log del Pezzo surface with Sing S° = 2A; + As and Typ(U;v) =
I’]k + I + 14.

Moreover, AV = (1/2)y*(t +u) where 1*(t) is the singular fibres of type I} and v*(u) is the singular
fibres of type 111 in the case (1), 1; in the case (2).

133

'Unfortunately. there is a minor misprint in [10], p131 which says ..
“nodal .

bl

.cuspidal cubic ...”. “cuspidal " should be
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Proof. The possible singular types of (S°, A?) on S”\ |A”| are types As, Ao/2, A1/2-ar, A;/2-7, As/2-
a. As/2-6 and As/2-(. We note that we have v(A;/2-a) + v(A;/2-y) = 1 and 2v(As) + v(As/2-a) +
v(As/2-6) + v(A3/2-¢) = 2. From 6K? = v(A1/2-y) + v(As/2-6) and 6p = 4 — (I®,Z°) + 3v(As) +
v(Ay/2-y) + 2v(As/2-6) + v(As/2-C), we obtain §K? — p = (I",Z") — 4 — 3v(A3) — v(A3/2-6) —
v(As/2-C), hence we have 3v(As) + v(As/2-6) + v(As/2-C) = 4— (1/4)(Z)%. Moreover, since we have
deg Diffzs. (I7) = (I, Z°) + 2v(A;/2-a) + 4v(A3/2-a) + 2v(As/2-C), we have etop (E7) = (I, 2°) +
21/(Al/‘2-a) + 4v(As/2-a) + 2v(Az/2-C) — (1/2)(Z*)2. Firstly, we consider the case in which $° is a
rank one log del Pezzo surface. In this case, we have d = 3 — s, hence (I*)? = (3 — s)/2. We note
that we have s = 1 or s = 2 since p(S”) = s. Assume that s = 2. Then we have (I'")2 = 1/2, which
is absurd since I'* N Sing S = @ by our assumption. Thus we have d = 2, hence (I*)2 = 1 and
(2°)? = (I",2")%. We note that (I'*,Z") = 2 or 4 since (I'*)? € Z. Assume that (I*,Z") = 4. Then we
have 3v(As) + V(A3/2 0) + v(As/2-¢) = 0, hence we have v(A3) = v(A3/2-6) = v(A3/2-() = 0 and
v(As/2-a) = 2. We note that we have eyop (E) = 4+2v(A1/2-a) > 4, so we see that = is reducible
and consists of two or three irreducible components since p(S°) = 1. In fact, we show that =° consists
of exactly three irreducible components. Assume that =" consists of two irreducible components =}
and =). Since we have etop(""’) < 4, we have v(A;/2-a) =0, v(A;/2-y) = 1 and =, =} ~ PL
We note that we have (_1,:2) = 4 since (22)? = (I[*,=%)%? = 4 for i = 1, 2. Thus we see that there
exists a birational morphism 7' : W’ — S°, where W' is a rational surface with p(W’) = 14 such that
Supp 7,"'A® U Exc 17 has only simple normal crossing singularities whose dual graph is as follows.

(=21/2) (=21/2) (-=1;,0) (=41/2)

(—4;1/2)

(=1;0) (—2:0) .

FI

(—4;1/2)
(=1;0)

From the above dual graph, we see that there exists a birational morphism v : W/ — W to a
rational surface with p(W) = 12 such that 7 factors into v o 7 where n : W — S* is a birational
morphism and that 77'=" is nef and (n;'=")? = 0. By the log abundance theorem, some multiple
of 7,'=" determines the structure of elliptic fibration with a section ¥y : W — P!. We see that
U (u) = n71=" is a singular fibre of type III where u := Yy (n71="). Write AW = Ty + Ty +
(1/2) (L, E 4+ 0712 + F), where Tg := v, I, T := v, [, E; := U*E{ (1<i<4)and F:=uv,F"
Let ey be a (—1)-curve on W which is contained in a fibre of Yw and let vy : W := Wy — W) be the
contraction of ey. Assume that (eg, F) = 0. We can see that (eg, "+ ; F;) < 2 by the semi-negativity
of fiber components. Since we have (g, A"Y) = (eg, —Kw) = 1, we have (e, 2%, E,) € 2Z, hence
we obtain (eg, i1 E;) = 0 and (ep, o + I'1) = 1. Noting that p(W) = 12, we have (ep, T'g) = 1 and
(e0.Ty) = 0. Let 9w, : Wi — P! be the induced morphism from 1 and put t := ¢ (T'o). Then we see
that ¢y (t) is a singular fibre of type I7. Let e; be a (—1)-curve on W; which is contained in a fibre
of ¥u,. 11 : Wi — W, be the contraction of e; and put F := v, F. We note that (e;, FV) = 2.
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Let ¢y, : Wy — P! be the induced morphism from 4y, and put v := ¢y, (F(")). Then we see that
U, (V) is a singular fibre of type II or of type I; and that 2Ky, + Yy, (t +u +v) ~ 0. On the
other hand, since ¥w, : Wo — P! is a rational elliptic surface with a section which is minimal over
P! we have ww, = ¢}, 0 p:(—1), which is a contradiction. Thus we may assume that (eg, F') > 0.
I the same way as the above argument, we see that (e, F') = 1, hence (eo, >f_; E;) = 1. Since
p(W) = 12, we see that (ep, F3) = 1 or (e, Ey) = 1. Say (ey, E4) = 1. By contracting ey and
L4, we obtain a minimal elliptic fibration such that the singular fibre over ¢ is of type I. Thus we
see that ¥y (t) = 2l + 2I'y + % | E; + 3F4 + 4eo + F. Put G := v,G". The above decomposition
implies that (y7(f), G) > 3(E4, G) = 3. On the other hand, we have (¢}, (u), G) = 1, but which
is absurd. Thus we conclude that =" has three irreducible components assuming (I, Z°) = 4. Let
= = ¥! | 2! be the irreducible decomposition such that (I*,Z) = 2 and (I",Z*) = 1 for § = 2,
3. For i =2, 3, we have (2} + 22)2 = (I, =} + =%)? = 9, hence (Z5,Z) = 2. In the same way, we
have (25 + =3)* = (I",Z5 + =3)% = 4, hence (Z},Z%) = 1. Thus we infer that v(4,/2-0) = 1 and
v(A1/2-y) = 0, that is, S* ~ P? =} is a conic and = is a line for ¢ = 2, 3. Moreover there exists
a birational morphism 1 : W — S* from a smooth rational surface W with p(W) = 12 such that
Supp 7;'A” U Exc 7 has only simple normal crossing singularities whose dual graph is as follows.

(—=1;0) o (—2:0)
(=2;1/2) (=2;1/2) (-1;0) (=4;1/2)
LN
(=2;1)
—T (—4;1/2)
(_27 1/2) (_21 1/2) (—11 0) (_1; 0)

We see that there exists a birational morphism X : W — U to a smooth rational surface U with
p(U) = 10 such that A\['=" is nef and (A\;'=*)? = 0. Thus we get a rational elliptic surface with a
section ¢ : U — P! which is minimal over P* with singular fibres %" (¢) of type I and 9*(u) of type
[II. Noting that we have 3=, , etop(¥~!(v)) = 2 and that there exists a singular fibre ¥*(v) whose
dual graph contains a subgraph of type A, we see that 1*(v) is of type I, and 1 is smooth over P!\ {t,
u. v}. Thus we see that we are in the case (1). Assume that (I”,=") = 2. Then we have (Z°)? =
(I°.Z%)* = 4, which implies that =’ is irreducible, and 3v(As) + v(As/2-6) + v(As/2-C) = 3. Since
we have v(A3/2-6) + v(A3/2-C) < 2, we see that v(As3) = 1, v(As/2-a) = v(A3/2-6) = v(A3/2-¢) =0
and we get etop(E"”) = 2v(A1/2-a). We note that v(A;/2-a) = 0 or 1 but in fact we can show
that v(A4;/2-a) = 1 as follows. Assume that v(A;/2-a) = 0. Then we have v(A;/2-y) = 1 and
etop(E"’) = 0. hence =¥ is a smooth elliptic curve. We see that there exists a birational morphism

n: W — S° from a smooth rational surface W with p(W) = 11 such that Supp 7 'A” U Exc 1 has
only simple normal crossing singularities whose dual graph is as follows.
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(=2;1/2) (=2;1/2) (=1;0) (0;1/2)

\ (_2§ O)
(=25 1)
(2:0) (—4,01/2)
(=2, 1) i
(=2;0)

o}

(—2:1/2) (~2;1/2)

Some multiple of n7'=" determines an elliptic fibration ¥w : W — P! with a section. Let
eo be a (—1)-curve on W which is contained in a fibre of ¥w. Then we have (eo, F') = 2 from
2(Ky +A°™) ~ 0. Let v: W — U be the contraction ep and ¢ : U — P! be the induced morphism
Uw. Then ¢ is minimal since p(U) = 10 and v, F' supports a singular fibre of type I; or II. We see
that v.A™™ = (1/2)9*(t + u + v), where ¥*(t) is a singular fibre of type I, ¢*(u) = vsn'=" and
©*(v) = v F, but which is absurd since wy = ¥*Opi(—1). Thus we conclude that v(A;/2-@) = 1,
v(A1/2-y) = 0, hence eop(Z°) = 2, that is, = ~ P'. We see that there exists a birational morphism
A: U — S from a smooth rational surface U with p(U) = 10 such that Supp A\7'A? U Exc A has
only normal crossing singularities whose dual graph is as follows.

(=2,1/2) (=2;1/2) (=1;0) (0;1/2)

(=2;0)
(=2;1)

(—2;0)
(=2;1)

(=2;0)

(~21/2)  (<21/2)

Some multiple of A;'=" determines a minimal elliptic fibration with a section ¥ : U — P! with
singular fibres ¢*(t) of type I and ¢*(u) of type I;. Since we have ¥, ., etop(w“l(v)) = 4 and
there exists a singular fibre 9*(v) whose dual graph has a subgraph of type As, we see that ©*(v)
is of type I4 and ¢ is smooth except over ¢, u and v. Thus we are in the case (2). Secondarily, we
consider the case in which S” has a structure of a conic fibration ¢” : $* — P. In this case, we have
d = 1- s, hence (I")’ = (1—s)/2. Assume that s = 2. Then we have (I"*)? = —1/2, which is absurd
since I'” N Sing S* by our assumption. Assume that s = 1. Then we have p($*) = 3, hence the self-
intersection numbers of all the irreducible components of A’ are —1, —2 and —3, which implies that
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all the irreducible components of A’ are invariant under the action of the covering transformation
group. This contradicts the assumption s = 1. Thus we conclude that s = 0. Since p(5®) = 2, the
self-intersection numbers of all the irreducible components of A® are —1 and —2. Thus we infer that
there exists an irreducible component [y C I such that (I'})2 = —1/2. Contracting I, our. case
reduces to the rank one log del Pezzo case. [ ]

Example 3.2 By [46], there exists minimal rational elliptic surface with a section v : U — P! with
Typ(U;4p) = I +1; + 14 from which we can easily construct an example of (S*, A®) in (2). We can
also construct an example of (S°, A) in (1) from a pair (P, line+ (1/2)line + (1/2)line + (1/2)conic)
with properly chosen alignment.

Proposition 3.8 Assume that Sing S = As + Ay + A1. Then S° is a rank one Gorenstein log del
Pezzo surface with Sing S° = Ay and there exists a birational morphism X : U — S* from a smooth
projective surface U such that U admits a structure of elliptic surface with a section v : U — P!
which is minimal over P* with Typ(U;4) = It + 11 + I3 and that A U = (1/2)¢*(t + u) where V*(t)
and " (u) are the singular fibres of type 17 and 11 respectively.

Proof. The possible singular types of (S*, A’) on S”\ |A] are types Ao/2, A1/2-a, A1/2-y, As/2-B,
Ay/2-¢, As/2-a, As/2-6 and As/2-(. We note that v(A;/2-a) + v(A1/2-y) = 1, v(As/2-B) +
v(As/2-€) = 1 and v(As/2-a)+v(As/2-6) +v(As/2-¢) = 1. Firstly we consider the case in which S” is
a rank one log del Pezzo surface. Assume that s = 2. Then we have p(S”) = 2 and the self-intersection
numbers of all the irreducible components of A® are —1 and —3, which is absurd. Thus we have s = 1,
hence p(S*) = 1. Sinced = 1, we have (I*)?> = 1/2, hence (I", =) = 3, (£°)2 = 18 and 6K2—6p = —1.
From 6K? = v(A1/2-y) + (1/3)v(Az/2-€) + v(As/2-6) and 6p = 1 + v(A1/2-7) + v(Ag/2-€) +
3v(As/2-6)+3v(As/2-C) we obtain K2 —6p = —1—(2/3)v(Az/2-€) — 2v(As /2-6) — 3v(As /2-C). Thus
we get (2/3)v(Ag/2-€) +2v( A5 /2-6)+3v(As/2-C) = 0, hence v(As/2-€) = v(As/2-6) = v(As5/2-¢) =0
and v(As/2-8) = v(As/2-a) = 1. Moreover, since we have

deg Diffzs. (I°) = 3+ 20(A1/2-a) + 20(A2/2-8) + 6v(As /2-a)
= 11+ 21/(141/2—0'),

we have etop(Eb”) = deg Diffzy (") — 9 = 2+ 2v(A; /2-&). The number of irreducible components of
=" is one or two. Firstly, we shall show that =¥ consists of two irreducible components. Assume that
= is irreducible. Then since we have etop(Eb”) < 2, we have v(A;/2-a) = 0 and v(A;/2-y) = 1.
Thus we see that there exists a birational morphism 1’ : W/ — S° from a smooth rational surface
W’ with p(W') = 15 such that Supp 7,"'A” U Exc 7 has only simple normal crossing singularities
whose dual graph is as follows.




From the above dual graph, we see that there exists a birational morphism v : W — W to a
rational surface W with p(W) = 12 such that 7/ factors into o v where n: W — S” is a birational
morphism and that (n; 1=Z9)2 — 0. We note that A*" > 0. Some multiple of n;'=" determines an
elliptic fibration ¢y : W — P! with a section such that 93, (u) = 77 1= is a singular fibre of type I1.
Put G := v,G". Since (G,wév(u)) (G,n71=") = 2 we have (G,9*(t)) = 2, where ¢ := ww(n"ll“b)
On the other hand, by the previous argument in the proof of Proposition 3.7, we have (G, ¢35, (t)) >
which is a contradlctlon Thus we conclude that =° consists of two irreducible components. Let
= = =} + =} be the irreducible decomposmon such that (I'",Z}) = 2 and (I",Z5) = 1. We note that
since we have (%)% = 2(I'",2%)? = 8 and (23)? = 2(I*, =5)® = 2, we have 18 = (Z)? = 10+ 2(Z, Z5),
hence (Z,=%) = 4, which implies that V(A1/2 a)=1 and U(A1/2~’7) =0, hence etop(_ v) = 4, that

is. =¥ ~ P! (i = 1, 2). From Kg +Z5+ " + (1/2)=} ~Q (1/2)=5, we obtain
deg Diffos, (I” + 1"“”) = etop(Z5) + l(E")2 = 3.
& Uiz 2 op =2
On the other hand, we have

1
deg Diffz. (I + = (I",Z) + +3 (8}, E5) + deg Diff. (0)

= 3+ deg Diffz, (0).

2

Thus we get deg DiffE;.,(O) = 0 and consequently, we infer that the type As/2-3 point lies on =5,

Thus we see that there exists a birational morphism n: W — S® from a smooth rational surface W
with p(W) = 13 such that Supp 7;!A" U Exc 7 has only simple normal crossing singularities whose
dual graph is as follows.

(=2;1/2) (=2;1/2) (=1;0)

(—=21/2)

p——————CO

(=2;1/2) (=1;0)

We see that there exists a birational morphism v : W — U to a rational surface with p(U) = 10
and A’Y > 0 such that 7 factors into Aov, where A : U — S is a birational morphism and that \; 1=’
is nef with (A7'Z")? = 0. Some multiple A\J!=" determines an elliptic fibration ¥ : U — P' and we
see that Typ(U;4) = 17 + 11 + I3 as in the same way in the proof of Proposition 3.6. Secondarily, we
consider the case in which there exists a structure of a conic fibration ¢" : S — P!. Assume that
s = 2. Then we have p(S”) = 4 and the self-intersection numbers of all the irreducible components
are (a) =1, =2, =2 and -5, (b) —1, =2, =3 and —4 or (¢) —1, —1, —3 and —5, which is absurd
with the assumption s = 2. Assume that s = 1. Then we have p(5”) = 3 and the self-intersection
numbers of all the irreducible components are —1, —2 and —4, which is absurd with the assumption
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s = 1. Assume that s = 0. Then we have p(S") = 2 and the self-intersection numbers of all the
irreducible components are —1, —3. Thus we see that there there exists an irreducible component
[ C I* such that (I'y)* = —1/2. Contracting I', our case reduces to the rank one log del Pezzo
case. Thus we get the assertion. u

Example 3.3 We shall follow the notations in Example 3.1. By [57], Theorem 8.6, (8.12), we have

% =< =P, =P >= 2+ 2((—P), (0)) — contr,(—P) — contr,(—P)
and ((—P),(0)) € Z, we see that ((—P),0;) =1 for i = 2 or 3 and that ((—P),0,,) =1 for j =1
or 2. hence ((—P),(0)) = 0. From [57], Theorem 8.6, (8.11), we have

_i =< =P.Q >=1~((-P),(Q)) — contr,(~P, Q).

Noting that by [57], (8.16),

B _J 5/4 if (=P) and (Q) intersects the same components of 1/*(t)

contry(—P, Q) _{ 3/4 otherwise

and ((—=P).(Q)) € Z, we infer that ((—P),(Q)) = 0 and ((—P),6:,) = ((Q),0:;) = 1 for i = 2
or 3. Let A: U — 5° be the contraction of all the curves (0), (—P), (Q), {©.,lj # i, 5} and
{©uxlk =1, 2} and put A" := (1/2)A\9*(t +u). Then (S°, A®) gives an example of the log surfaces
as in Proposition 3.8.

Proposition 3.9 Assume that Sing S = 4A;. Then one of the following holds.
(1) =P xP and A’ =S T2+ (1/2) S =, where T}, 7 are fibres of the first projection

forj=1,2 and T}, Z° are fibres of the second projection for j =3, 4.

(2) (8", A% is log terminal and S° has a structure of conic fibration ¢’ : S* — P with p(S*/P?) = 1
and Typ(S*, A% ") = ((1-2)oo + (1-2)1 + (1I-1)g; (I1-1);) possibly after operating S-elementary
transformations. A" = Tg+T%+(1/2)Z*, where TY is a smooth rational curve with (T, ¢**(t)) =
2 fort € P! and (I3)? = 0, I, and =° are fibres of ¢ with reduced structure.

(3) S’ s arank one Gorenstein log del Pezzo surface with Sing S* = A; and there exists a birational
morphism A : U — S° from a smooth projective surface U such that U admits a structure of
elliptic surface with a section v : U — P which is minimal over P with Typ(U;) = I} + 21
and that A" Y = (1/2)9*(t + u) where ¥*(t) and ¥*(u) are the singular fibres of type I3 and I
respectively.

Proof. Firstly, we consider the case in which S” is a rank one log del Pezzo surface. In this case,
since we have s = p(5”) > 2, we have s = 2 and ([*,Z") = 4, hence d = 4 by (3.9), (I*)? = 2 and
(Z’)? = 8 by (3.6). The possible of singular types on S*\ |A"] are types A1, Ao/2, A1/2-a. A1/2-.
We note that we have 2v(A1)+v(A41/2-a)+v(A1/2-y) = 4. Since we have 6K? = v(A;/2-y) and §p =
v(A1)+v(A1/2-7), we have §K* —6p = —v(A;). On the other hand, we have §K?—6p = —1 by (3.5).
Thus we obtain v(A;) = 1 and v(A4,/2-a) + v(A;/2-7) = 2. Noting that we have deg Diff=., (I") =
44 2v(A,/2-a), we obtain etop(Eb") = 2v(A;/2-a)). We shall show that =’ is reducible. Assume the
contrary. Since we have etop(EbV) = 2v(A1/2-a) < 2, we have v(4;/2-a) > 1, hence v(A;/2-v) > 1.
Therefore, we see that there exists a birational morphism n : W — S® from a smooth rational
surface with p(W) = 10 + v(A;/2-y) such that A"™ > 0, (AW — (1/2)n71=% 7 1=%) = 0 and

35



(n7'=")? = 0. Some multiple of 771Z° defines an elliptic fibration with a section ¢w : W — P
Put ¢t := Yw (") and u = Yw(n71=°). We see that ¥, (t) is a singular fibre of type I and
Y- (u) is a singular fibre of type o, if v(A1/2-y) = 2, of type 1y, if v(A;/2-y) = 1, in particular,
Yw is minimal over ¢ and u. Consequently, we can write Kw + (1/2)¢3 (t +u) + (1/2)F ~Q 0,
where F' is a sum of disjoint (—4)-curves which comes from the minimal resolution of singularities
of type Ay/2-y. Let 9 : U — P! be the minimal model of %y and v : W — U be the induced
morphism. Then we have Ky + (1/2)¢*(¢ + u) + (1/2)v.F" ~ 0 which implies that v,F" = 0 since
wu = 1*O pi(—1). Thus we have Kw + (1/2)9j (t + v) + (1/2)F = v*(Ku + (1/2)¢"(t + w)), hence
Kw + (1/2)F = v*Ky, but which is absurd. Thus we conclude that =" is reducible. We note that
we can write = = 2% + 2%, where = are irreducible curves with (I'*,=?) = 2 and hence (=?)% =

by (3.6) for i = 1, 2. From 8 = (2°)? = 4 + 2(Z},Z3), we have (Z},=5) = 2, hence v(4;/2-a) = 2
and v(A;/2-y) = 0. Thus we see that there exists a birational morphism A : U — S° from a
smooth rational surface with p(U) = 10 such that A*Y > 0 and (A"Y — A\J12° AJ120) = 0, \[12°
is nef and (A\7'=")? = 0. Some multiple defines an elliptic fibration with a section ¥ : U — P’
which is necessarily minimal over P! such that v3,(t) is a singular fibre of type I, ¥}, (u) is a
singular fibre of type I, where t := 1w (A\7'T”) and u := 9w (A;!="). Noting that there exists a
singular fibre 1*(v) whose dual graph contains a Dynkin diagram of type A; as a subgraph and
that we have 3, ., etop(w“l(v)) = 2, we infer that ¢¥*(v) is of type I and ¢ is smooth over
P'\ {t,u,v}. Thus we conclude that we are in the case (2). Secondarily, we consider the case
in which there exists a structure of a conic fibration ¢* : $* — P! with p(S*/P') = 1. Let
I’ = ) + T be the irreducible decomposition. We note that we have d = 4 — s by (3.9), hence
we have (I")? = 2 — (1/2)s and (I'%)? + (I})®> = —(1/2)s. Since we have 6K? = v(A;/2-y) and
§p = v(A)) +v(A1/2-7) +4— (I°, =), we have 6K? —6p = —v(A1) — 4+ (I, Z). On the other hand,
we have §K2—8p = (I*,Z°)+(1/4)(Z")2—6—(1/2)s by (3.5), hence we obtain (Z°)? = 8+2s—4v(A;).
Combining this with (3.4), we obtain eop(2) = (I*,2") — 4 — s + 2v(41) + 2v(A1/2-a). We note
that if p(S°) = 2, (8*, A¥(¢%;1)) C [A%(t)] is log canonical and SuppLDiffcw(t)(Afp:(t))J C (A% (1)
for any t € P' by the same argument as in the proof of Lemma 3.8. Assume that (T, ¢"*(t)) = 2
for t € P'. Then I'} and = are contained in fibres of ¢’, hence s = 0 and p(S®) = 2. Therefore,
v has only fibres of type (I-2), and (II-1), by Lemma 3.3. We note that ¢"*(¢*(T)) is a fibre
of type (I-2)e. Since ¢’ induces a double cover ¢’ : T% — P! ¢ has exactly one fibre of type
(I-2); by Hurwitz’s formula. Thus we conclude that ¢* has exactly one fibre of type (II-1)y since
pers, Mp(Ty, A” — Tg) = 2 and the other fibres are of type (II-1);, hence we are in the case (2).

Assume that (I, **(t)) = 1 for t € P'. We shall show that I'} is contained in a fibre. Assume the
contrary. Then (Z°)? = 0, hence s = 0, which implies v(A;) = 2. Take type A; point p € S* \ |A®]
and take C,»(t) passing through p. Since S° has only Du Val singularities of type A1, we can write
#°(t) = 2C»(t), hence (I%,Cp(t)) = 1/2 for i = 0, 1. From (Kg + I*,C(t)) = 0, we have
deg Diffc o (I*) = 2, which implies m,,(C,»(t); ") = 0. Thus we get absurdity and we conclude that
I is contained in a fibre. We note that (I'y)? = —(1/2)s, hence the case s = 1 reduces to the case
in which $° is rank one log del Pezzo surface by contracting I;. Let =5 be the horizontal part of
Z° with respect to ¢°. Assume that s = 0. In this case, we may assume that = is reducible for if
=} is irreducible, since ¢” has only fibres of type (I-1)1, (I-1); and (I-3)1, we have v((I-1)2) = 0 and
v((1-3)1) = 2, hence (Z3)? = 0 by applying Hurwitz’s formula to the double cover ¢* : =5 — P,
thus some multiple defines another conic fibration @ : S — P! with (I}, 3"*(¢)) = 2, which case
was already considered. Assuming that =’ is reducible, we see that ¢’ has only fibres of type (I-2),
(b= 1.2, o). Thus we see that we are in the case (1). Assume that s = 2. Since T is a section of
2* which does not pass through any singular point of S°, ¢ is smooth, hence v(A;) = v(A;/2-y) =0
and v(A;/2-a) = 4, which implies that (=")* = 12 and eyqp(Z™) = 6. We see that =" is reducible.
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Let = = 2} + Z} be the irreducible decomposition of (I, =3) = 2 and (I}, Z3) = 2. Since =} is not

a fibre of ¢*, (I%. =) > 0, which contradicts (K + A?, %) = 0. m

Example 3.4 The existence of minimal rational elliptic surface with a section ¢ : U — P! with
Typ(U: ) = 15 + 21, is known (see [46]). From the list in [43], we see that MW (U,) = (Z/2Z)®2.
Take P € MW(D )\ {0}. From [57], Theorem 8.6, (8.12), we have

0 =< P, P >= 2+ 2(PO) — contr¢(P) — contr,(P) — contr,(P),

hence 1
(PO) = i(contrt(P) + contr,(P) + contr,(P)) — 1.

Let v*(t) = X2 00 + 22 4O be the type I3 singular fibre with (©:5,0;;) = 0 for any 7 such
that 0 <7 <3, ¢¥*(u) = Ou1+ Ouy, ¥*(t) = Ou1 + O, be the type I, singular fibre and assume that
the O-section intersects ©,9, ©,0 and ©,0. Then from [57], (8.16), we have

0 lf (P@t,(]) = 1,
contry(P) = ¢ 1 if (PO©:1)=1, and contr,(P)= {
3/2 otherwise

0 if(POyg) =1,
1/2 if (PO,4) =1

for v/ = u, v. Since contr¢(P) + contr,(P) + contr,(P) € 2N, there exists exactly two types of P,
(1) (PO:1) =1, (PO,;1) = 1 and (PO,;) = 1 or (2) (PO,;) = 1 for some i > 1, (PO, ) = 1 and
(PO©,0) = 1. Take two elements P, @ € MW(U,)) \ {0} which is distinct from each other. Assume
that both of P and @ are of type (1). Then from [57], Theorem 8.6, (8.11), we have

0=< P,@Q >= 1~ (PQ) — contr,(P,Q) — contr, (P, Q) — contr, (P, Q),

hence (PQ) = —1 from [57], (8.16), which is absurd. Consequently, there exists P € MW(U,) of
type (2). We may assume that (PO,0) = 1. Let A : U — S” be the contraction of all the curves
(0). (P), {©¢ili # 5} and {©,;]7 =1, 2} and put A® := (1/2)\*(t + u). Then (S°, A®) gives an
example of the log surfaces as in Proposmon 3.9.

4 Generalized local fundamental groups for analytic singu-
larities with Weil divisors

In this section, we give a theory to calculate local fundamental groups from differents. Let us review
here the theory due to Prill. For a germ of normal complex analytic spaces (X, p), put Reg X :=
projlim,eyopen Reg U, where Reg U is the smooth loci of U. 71°°(Reg X) := projlimyey.openm (Reg U )
called the local fundamental group for (X, p). We denote by #; e (Reg X) its profinite completion which
is called the local algebraic fundamental group of (X, p). Let 2 be an analytically closed proper subset
of X. According to Prill ({47], §1IB), there exists a contractible open neighbourhood U of p such that
there exists a neighbourhood basis {Uy}ea of p satisfying the condition that U, \ ¥ is a deformation
retract of U \ ¥ for any A € A. By the definition, we have m (U \ ¥) = projlim,c;s openm1 (U \ ).
We call such U as above a Prill’s good neighbourhood with regard to ¥ and we say that {Ux}aea is
a newghbourhood basis associated with U. Recall that Uy is also a Prill’s good neighbourhood with
regard to ¥ and for any two Prill’s good neighbourhood U and U’, U \ ¥ and U’ \ ¥ have the same
homotopy type. In particular, we have 7l°¢(Reg X) ~ m;(Reg U) for a Prill’s good neighbourhood
[ with regard to Sing X.
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4.1 B(D)-local fundamental groups

In this section, we introduce a generalized local fundamental group for a pair consisting of a germ
of a normal complex analytic space and a Weil divisor on it, which turns out to appear canonically
when we calculate local fundamental groups from differents. To introduce the generalized notion of
local fundamental groups, let us briefly review here the theory of universal ramified coverings due to
M. Kato ([20]), M. Namba ([42]) and J.P. Serre ([55], Appendix 6.4) according to M. Namba. Let
B be an integral effective divisor on a connected complex manifold M and let B := Y_;¢; b:B; be the
irreducible decomposition of B. Fix a base point x € M \ Supp B and let 7; be a loop which starts
from x and goes around B; once in a counterclockwise direction with the center being a smooth point
of Supp B on B;. Let N(M,B,z) C m{(M \ Supp B,z) denote the normal subgroup generated by
all the conjugates of the loops {7?}.c;. Recall that N(M, B, z) is known to be independent from
the choice of such loops. We define a B-fundamental group of M by putting

72 (M, z) := 11 (M \ Supp B,z)/N(M, B, z).

Here, let us fix our terminology from the category theory. By a projective system, we mean a
category 7 such that Hom 7(\, 1) is empty or consists of exactly one element f,, satisfying f, o
Suw = fap forany A, g, v € Ob Z. An object o € Ob Z ( resp. w € Ob Z ) is called an initial object
( resp. a final object ) if Card Hom z(a, A\) = 1 ( resp. Card Hom 7(\,w) = 1) for any A € Ob T.
A projective system 7 is said to be cofilterd if, for any given two objects A, 4 € Ob Z, there exists
v € Ob 7T with Card Hom 7(v,A\) = Card Hom z(v,u) = 1. A covariant functor & : Z° — I%
between injective systems Z° and Z'° is said to be cofinal, if, for any given X € Ob Z'°, there exists
A € Ob Z° such that Card Hom 70 (X, ®(A)) = 1. We shall also say that a projective subsystem Z’
in a projective system Z is cofinal in Z if the dual embedding functor from Z’° to Z° is cofinal. (see
(2], Appendix (1.5), [18], Exposé I, Definition 2.7 and Definition 8.1.1). A finite covering f : N — M
from a connected normal complex analytic space N which is étale over M \ Supp B is said to be
branching at most (resp. branching ) at B, if the ramification index e B,,(f) of f at any prime
divisor B;; such that f(B;;) = B; divides (resp. is equals to ) b; for any i € I. Let FCSB(M)
(resp. FCB(M) ) denote the category of finite coverings over M branching at most (resp. branching
) at B. Let FGCSB(M) (resp. FGCB(M) denote the full subcategory of FC<E(M) whose objects
consists of Galois covers over M. Triplet (N, f,y), where (N, f) € Ob FCSB(M) and y € f~!(z) are
called pointed finite coverings branching at most at B. Pointed finite coverings branching at most at
B and morphisms fy, € Hompe<sa((Ny, fo), (Va, fr)) such that £y, (y.) = yx, where (N, f.,y,.)
and (Na, fa,ya) are two pointed finite coverings branching at most at B form a projective system
denoted by FCSB(M)P. We also define the projective subsystems F(G)C(2)B(M)? in the same way.
From [42], Lemma 1.3.1, Theorem 1.3.8 and Theorem 1.3.9, we see that there exists a canonical
functor ¥ from FC<B(M)? to the projective system of subgroups of finite indices in 72 (M, z) such
that

(N, f,y)) = femi(N \ Supp f~'B,y)/N(M, B,z) C 77 (M, z)

for (N. f,y) € ObFC<B(M)? and that the functor ¥ defines an equivalence between the above two
projective systems. Thus by using the basic group theory, we obtain the following lemma.

Lemma 4.1 FGC=B(M) ( resp. FGCB(M) ) is cofilterd and cofinal in FCSB(M ( resp.
FCB(M)P ) and hence in particular, FGCB(M)? is cofinal in FGC<B(M)* if FGCB(M)? is not
empty.

Remark 4.1 Let 72(M, 2)" denote the profinite completion of 7#Z(M, ) called the B-algebraic
fundamental group of M. Assume that FGCE(M)P is not empty. Then by Lemma 4.1, we have

le(]\/j, .’L’)A ~ projlim(N,f,y)eobFGCB(M)pGa.l (N/M),
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where Gal (N/M) :=78(M,z)/f.7E(N,v).

In what follows, we shall use the following notation. Let X be a normal Stein space or a germ of
normal complex analytic spaces with a point p € X. Weil X is the free abelian group generated by
prime divisors on X and Div X is the subgroup of Weil X generated by Cartier divisors. DiVQX is
the Q-submodule of Weil X ® Q generated by Div X. Let f: Y — X be a finite morphism between
normal Stein spaces or germs of normal complex analytic spaces. The pull-back homomorphism
7 Weil X — Weil V' canonically extends to a homomorphism f*: Weil X @ Q — Weil Y ® Q.

Definition 4.1 For a germ of normal complex analytic spaces (X,p) and B € Weil X, we define a
B-local fundamental group of X with respect to B as follows:

7Tl Joc (Reg X) = prOJhmpeu open (Reg u)
Moreover, by 7). (Reg X)", we mean the profinite completion of T )0c (Reg X).
Remark 4.2 We note that apparently, we have 77 . (Reg X) = 71 (Reg X) and if B is reduced.

Definition 4.2 For D € Weil X ® Q, a finite surjective morphism f : Y — X, where Y is a germ

of irreducible normal complex analytic spaces such that f*D € Weil Y is called a integral cover with
respect to D. A integral cover f : Y — X with respect to D is called a strict integral cover, if
er(f) = er(D) for any prime divisors T on Y and T on X such that f(I') = T, where er(f) denotes
the ramification index of f at T' and er(D) := [Z(multrD) : Z(multrD) N Z) € N. By Int™(X; D)
( resp. Int'(X; D) ), we mean a category of integral covers ( resp. a category of strict integral covers
) with respect to D. We shall also define categories Int™ ! (G)(X; D)® similarly as before.

Let X be an arcwise connected, locally arcwise connected, Hausdorff topological space, A con-
tinuous map f : JV — X from a Hausdorff topological space ) with discrete finite fibres is called a
finite topological covering if for any x € X', there exists an arcwise connected open neighbourhood ¢/
of z € X such that the restriction of 7 to each arcwise connected component of of 7=1(i{) gives a
homeomorphism onto #. The following lemma is nothing but a consequence from the first covering
homotopy theorem (see [60], 11.3).

Lemma 4.2 Let f: YV — X be a connected finite topological covering. Assume that X is paracompact
and let Z C X be a topological subspace which is a deformation retract of X. Then Z:=1"YZ)Cy
is a deformation retract of Y. In particular, Z is also arcwise connected and m(Z) = m(Y).

For a germ of normal complex analytic space (X, p), let U be a Prill’s good neighbourhood with
regard to a proper analytically closed subset £ C X and let {Us}aca be a neighbourhood basis
associated with U. We put U~ := U\ ¥ and Uy := U, \ X. Take any connected finite topological
covering f~ : V= — U~. Then V™ has the unique analytic structure such that f~ : V- — U~ is
étale. By the Grauert-Remmert’s theorem, f~ extends uniquely to a finite cover f: V — U, where
V' is a normal complex analytic space such that f~}(U~) = V= (see [15], §2, Satz 8 and [17], XII,
Theorem 5.4). Recall here that f~!(p) consists of exactly one point, for if f~'(p) = {q1,...,¢.}
and n > 2, where ¢; are distinct from each other, then by [12], 1.10, Lemma 2, there exists A € A
such that f~Y(U,) = [I7.; Wi, where Wy, is an open neighbourhood of ¢; for i = 1,...,n. Since
f7HUT) € f7H(Us) is connected by Lemma 4.2, there exists 4, say 4o, such that f~Y(U;) € Wi,
and f~1(Uy) N Wy, is empty if i # 4o, but which is absurd for f~'(U7) N Wy, = Wi\ f74(2) is
non-empty for any 7. Thus we see that any connected finite topological covering f~ : V- — U~
determines a finite surjective morphism f : Y := (V,q) — (X,p) from a germ of normal complex
analytic spaces Y uniquely up to isomorphisms, where f~!(p) = {q}. For two connected finite
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topological coverings fi : Vi — U~ and fy : Voo — U™, let f; : Vi, — U~ be the extended
finite covers and f : ¥; — X be the corresponding finite surjective morphisms as above for i = 1,
2. By [17]. Exposé XII, Proposition 5.3, the restriction map r : Homy (Vi, V2) — Homg- (Vi Vs™)
is bijective and composed with the canonical injection Homy (14, Vo) — Homx (Y1, Y2), r~! gives a
canonical injection Homy-(V;7,V;") — Homx (Y3, Y2). From the above argument, we see that we
have a canonical faithful functor P called a Prill functor from the category of connected topological
finite coverings over U~ denoted by F7(U™) to the category of germs of normal complex analytic
spaces which is finite over X and étale outside over ¥ denoted by FC(X,¥).

Lemma 4.3 A Prill functor defines an equivalence between the categories FT(U™) and FC(X,Y).

Proof.  We note that the restriction functor Ry : FT(U~) — FT(Uy ) defines an equivalence of
categories between FT'(U~) and FT(Uy) since these are known to be determined up to equivalences
by the corresponding fundamental groups. Put (V;3}, fi) := Ra((Vi™, £i7)) € Ob FT(U,) and V , :=
f7H(Uy) for i = 1,2. Note also that the canonical map

injlimyeaHom g, (Vi x, Vou) — Hom poxx)(Ya, f1), (Y, f2))
is bijective and that we have
injlimye \Hom oy (Vi3 f10), (Vo f24)) = Hom -y (V7 f1), (Va7 £2))-
Therefore, we conclude that the canonical map

Hom rrw-y((Vi~, /1), Vo™, f3)) — Hom pexy (Y, f1), (Ya, f2))

is bijective, which implies that the functor P is faithfully full. Take any (Y, f) € Ob FC(X,¥).
Then f is represented by a finite cover f : V), — U, for some A € A, where V), is connected. Since f is
étale over U and Vi := f~1(Uy) is also connected, we obtain an object (V;, fly-) € Ob FT(UY)
which goes to (Y, f) € Ob FC(X,X) via PoRjy'. Thus we conclude that P is essentially surjective,
and hence P defines an equivalence. [ |

Remark 4.3 It is obvious that a Prill functor also defines an equivalence between the full sub-
category of Galois objects of FT'(U™) and FC(X,Y). Note that giving a pointing to an ob-
ject of FT(U™) and FC(X,X) has essentially the same meaning since the number of pointings
for (VV=.f7) € Ob FT(U™) and the number of pointings for (Y, f) € Ob FC(X,X) are both
deg f = deg f~. Thus we see that P induces an equivalence between FT(U~)P and FC(X, X)P.

For Q-divisor D on X, let Bx(D) be the set of all the prime divisors on X such that ep(D) > 1
and put DY := Yprepy(p)er(D)I' € Weil X. Combined with Lemma 4.1, Lemma 4.3 yields the
following proposition.

Proposition 4.1 There ezists a canonical functor P : FCP”(Reg U) — Int'(X; D) which defines
an equivalence between the categories FCP" (Reg U) and Int'(X; D). In particular, Int'G(X; D)? is
cofilterd and cofinal in Int'(X; D).

Remark 4.4 From Proposition 4.1, we deduce that projlimy, ;. eob mte(x;ppGal (Y/X) is iso-
morphic to 77, (Reg X)" in the category of profinite groups.
Definition 4.3 For Q-divisor D on X, we define a group 71°% (D] by 7% [D] := 70, (Reg X),

~loc

which is called the D-local fundamental group for ((X, p), D) and we denote by 7°% ,[D] its profinite
completion.

Remark 4.5 We note that 71°% [D] depends only on the class [D] € Weil X ® Q/Weil X and that
if D€ Weil X, 7% ,[D] ~ 71°°(Reg X).
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4.2 The category of Cartier covers and Comparison Theorem

In this section, we introduce a category which is easier to handle with than the category of integral
covers. Let (X,p) be a germ of irreducible normal complex analytic spaces and let Mx denote the
field of germs of meromorphic functions on X. In what follows, we fix an algebraic closure My of
My and the inclusion iy : Mx — Myx. Take any D € DinX and fix it. Recall that a holomorphic
map between complex analytic spaces is said to be finite, if it is proper with discrete finite fibres.

Definition 4.4 A finite surjective morphism f : Y — X, where Y is a germ of irreducible normal
complex analytic spaces such that f*D is integral and Cartier, is called an Cartier cover with respect
to D. A Cartier cover f:Y — X with respect to D is called Cartier Galois cover with respect to D
if f is Galois.

Definition 4.5 Cartier covers (resp. Cartier Galois covers) of X with respect to D form a full
subcategory of complex analytic germs denoted by Cart™(X; D) (resp. Cart™G(X; D)). For (Y, f) €
Ob Cart™(X; D), an injective homomorphism iy : My — My, where My is the meromorphic
function field of Y, such that iy o f* = ix is called a pointing. Triplet (Y, f,iy) composed of
(Y. f) € Ob Cart™(X; D) and a pointing iy are called pointed Cartier covers with respect to D.
Pointed Cartier covers (resp. pointed Cartier Galois covers) with respect to D and morphisms
frp € Hom carem(x:0) (Yas fu)s (Ya, f2)) satisfying iy, o ff, = iy, form a projective system denoted
by Cart™(X; D)P (resp. Cart™G(X; D)?).

Non-zero C-algebra A is called a complez analytic ring if there exists a surjective C-algebra
homomorphism OFy — A, where E ~ C™ for some n. Recall that the category of complex analytic
rings A which are finite Ox-modules and that category of germs of complex analytic spaces which
are finite over X are dual to each other via the contravariant functor Specany (see [12] and [16],
VI). The structure morphism f* : Ox — A is injective if and only if f : Specany A — X is
surjective by the Remmert’s proper mapping theorem (see, for example, [12], 1.18). Let ¢ be a
meromorphic function on X such that Ox(—rD) = ¢Ox and let 7 : X — X be the index one
cover with respect to D obtained by taking a r-th root of ¢, where r := ind,D and fix a pointing
iz. Take any (Y, f,iy) € Ob Cart™(X;D)?. For simplicity, assume that Mx C Mz C Mx and
Mx € My C Myx. The assumption on Y implies that there exists a meromorphic function ¥
on Y such that pOy = " Oy, which implies that there exists a unit v € Oy such that ¢¥" = up.
Since Oy is a henselian local ring whose residue field is the complex number field (see, for example,
[1], Ch. III, §20, Proposition 20.6), we see that y/u € Oy, hence Mx(/¥) C My. Consequently,
there exists a Ox-homomorphism 7,04 — f.Oy which induces a finite surjective morphism wy :
Y = Specany f,Oy — X = Specanym.Ox satisfying f = 7 o wy. The above argument implies
that Card Hom carem(x.0y (Y, foiy), (X, 7,4%)) = 1 for any (Y, f,iy) € Ob Cart™(X; D), that is,
(X.w.ig) is a final object, or equivalently, a colimit of Cart™(X;D)?. Let wy(iy,ix) denote the

element of Hom carem(x:pye (Y, f, iy ), (X, 7,1%)).

Definition 4.6 A Cartier cover f: Y — X with respect to D is called a strict Cartier cover with
respect to D, if wy (iy, i) is étale in codimension one for any pointings iy, ix.

Remark 4.6 wy (iy.ig) is étale in codimension one if and only if wy (iy,iz) is étale over Reg X
by the purity of branch loci (see [1], V., §39, (39.8) or [12], 4.2).

Definition 4.7 A strict Cartier cover f : Y — X with respect to D is called a strict Cartier Galois
cover with respect to D, if f is Galois.
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Remark 4.7 Take another pointings 7y and 7y of (Y, f), (X, ) € Ob Cart™(X; D) respectively
and assume that f : ¥ — X is Galois. Then, by the Galois theory, there exist two isomorphisms
O(IY Z/}) € Hom Cart’"(X;D)P((K f7 /I:Y)y (}/a f7 ZIY)) and 6(7’5(’ Zl)‘{) € Hom Ca,rtm(X;D)P((Xa T, Z)_{)7 (X7 T, Zl)’())
such that the following diagram in Cart™(X; D)? commutes.

(Y fiv) (Y £
WY(Z‘Yvi)‘()l o lwy(i'y,i’x)
~ ) 'B(l)_(’zx) ~ y
(X,mig) — (X,';r,z)-()
Therefore, (Y, f) € Ob Cart™(X; D) is a strict Cartier Galois cover if one of wy(iy,iz) €
Hom carm (x;0)((Y, f). (X’ ,m)) is étale in codimension one. One can also check easily that the same
holds even if f is not Galois.

Let Cart'(X;D) (resp, Cart!(X;D)?) denote the full subcategory of Cart™(X;D) (resp. pro-
jective subsystem Cart™(X; D)P) whose objects are strict Cartier covers with respect to D (resp.
pointed strict Cartier covers with respect to D) and let Cart'G(X; D) (resp, Cart'G(X; D)?) de-
note the full subcategory of Cart!(X; D) (resp. projective subsystem Cart'(X; D)?) whose objects
are strict Cartier Galois covers with respect to D (resp. pointed strict Cartier Galois covers with
respect to D). Let fa, : (Ya, fu,iv,) = (Ya, fx, iv,) be a morphism in Cart'G(X; D)? and assume
that Mx C My, C My, C My for simplicity. Then by the Galois theory, there exists a canon-
ical surjective homomorphism gy, : Gal (My,/Mx) — Gal (My, /Mx) which is nothing but the
restriction map. Thus Galois groups Gal (Y/X) := Gal (My/Mcx) for (Y, f,iy) € Cart'G(X; D)?
form a projective system with the induced morphisms from Cart'G(X; D)P. Here is our comparison
theorem.

Theorem 4.1 There exists a canonical isomorphism :

~ loc

Trx [P = projlimey. +. seob carttexpypGal (Y/X)

in the category of profinite groups for any D € DiVQX .

To prove the above theorem, we need some lemmas and propositions as follows. Let C be a category
and let X € Ob C be an object of C and G C Aut X be a subgroup of the automorphism group of
X.

Definition 4.8 An epimorphism f : X — Y in C is said to be Galois with the Galois group G, if
G = Aut yX := {0 € Aut X|foo = f} and for any morphism f': X — Y’ such that G C Aut y/ X,
there exists a unique morphism ¢ : Y — Y’ satisfying f' = p o f.

Remark 4.8 Assume that two Galois morphisms f : X — Y and f' : X — Y’ with the Galois group
G are given. Then by the universal mapping property, there exists an isomorphism ¢ : Y — Y’ such
that f' = p o f, that is, Galois morphisms with the Galois group G is unique up to this equivalence.

Example 4.1 Let F := (Fields) be a category of fields such that Homz (K7, K>) is empty or consists
of inclusions for any Ky, Ky € Ob F. For any finite extension i : K; — K, i is a Galois extension if
and only if its dual i° : K5 — K7 in the dual category F° is Galois by the Galois theory.

Definition 4.9 For any two morphisms f € Home(X,Y') and g € Home(Y, Z), we define a subgroup
Auth X  Aut X x AutzY as Auth X := {(6,0)|f oG =0 o f}.

Lemma 4.4 Let f € Home(X,Y) and g € Home(Y, Z) be two Galois morphisms and assume that
the second projection pq : AutéX — AutzY is surjective. Then h:=go f is also Galois.
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Proof. Take any h' € Hom ¢(X, Z") with AutzX C Autz X. Since Auty X C AutzX and f is
Galois, there exists a morphism ¢ : Y — Z’ such that ¢ o f = h/. Take any o € AutzY. Then
there exists & € Aut X such that f o = oo f by the assumption. Since & € Autz X C Autz X, we
have i’ = h'od =9 o fod =1¢ooco f, hencepo f =1 ooo f. Since f is an epimorphism, we
deduce that ¢ = 9 o o, that is, AutzY C AutzY. Thus we conclude that there exists a morphism
v Z — Z' such that p o g = 1. Obviously ¢ satisfies p o h = /. As for the uniqueness of p, Let
¢': Z — Z' be another morphism satisfying ¢’ oh = h'. Then o f =W = @' oh = ¢ ogo f, hence
¢ og =1 =ypog. Since g is also an epimorphism, we obtain ¢’ = . ]

Remark 4.9 The assumption in Lemma 4.4 is satisfied in the following two theoretically important
cases.

(1) Let f and g are finite Galois covers between normal algebraic varieties over an algebraically
closed field or normal connected complex analytic spaces. Assume that there exits a Zariski closed
subset or an analytic subset ¥ on Y with codimy < 2 such that the restriction f~ of f to X~ :=
X\ f71(%) gives the algebraic universal cover of Y~ := Y \ ¥, that is, #;(X~) = {1}. Moreover
assume that Y~ is invariant under the action of Gal (Y/Z). Take any o € Gal (Y/Z). Since o acts
on Y. there exists an automorphism 6~ on X~ such that f~ o6~ = o o f~ by the property of
algebraic universal cover. 6~ extends uniquely to an automorphism & on X satisfying fod =co f
by the normality (see also [6], §1 and [62], Lemma 2.1).

(2) Let f and g are finite Galois covers between germs of normal complex analytic spaces. Assume
that X is obtained from Y by taking a r-th root of a primitive principal divisor P = div ¢ on Y such
that Oy (P) C My is invariant under the action of Gal (Y/Z) (for the definition of primitive principal
divisors, see [58], 2.3). Take any o € Gal (Y/Z). Then by the assumption, we have o*¢ = uy for
some unit u € Oy. As in the previous argument, there exists a unit v € O3 such that v" = u. Since
we can write Mx = My[T]/(T™ — ¢), it is obvious that ¢* lifts to an automorphism &* on Mx by
putting ¢*T" = vT. Thus we see that any elements of Gal (Y/Z) lift to elements of Gal (X/Z).

Lemma 4.5 (c.f., [54]) Let A be an integral complex analytic ring and M be its quotient field. Let
Ac be the normalization of A in a finite extension field £ of M. Then A. is also an integral complex
analytic ring which is a finite A-module.

Proof. Recall that A is noetherian ([16], II, Proposition 2.3). [54], Theorem 4 says that A is N-1,
hence N-2 by [30], Ch. 12, Corollary 1, that is, A. is a finite .A-module. By [54], Theorem 1, A is a
finite O g-module for some C™, hence so is A;. Thus by [54], Theorem 3, we conclude that A is
a complex analytic ring. |

Remark 4.10 Lemma 4.5 implies that if we are given a finite extension field £ of the meromorphic
function field Mx of an irreducible germ of complex analytic spaces X, there exists a germ of normal
complex analytic spaces Y with a finite surjective morphism f : ¥ — X such that My is isomorphic
to £ over Mx and such Y as above is uniquely determined up to isomorphisms over X.

The following proposition can be also derived from Proposition 4.1, but we shall give an algebraic
proof for further research such as extending our theory to the positive characteristic case.

Proposition 4.2 Cart'G(X; D) is cofilterd and is cofinal in Cart'(X;D)? for any D € DinX.

Proof. Firstly, we prove the first statement. Take any two objects (Yx, fa,iy,), (Ya, fu,iv,) €
Cart'G(X; D)P. Let £ := iy, (My,) Viy,(My,) be the minimal subfield of Mx containing iy, (My, )
and iy, (My,). We note that £ is a finite Galois extension of M x by its definition. Let g: Z — X
be the normalization of X in £ as explained in Remark 4.10. By the construction, we get an object
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(Z.g.iz) € Ob Cart™(X; D)? dominating both of (Y, fx,4y,) and (Y, fu,4y,) in Cart™(X;D)®.
Let (X.7,ig) € Ob Cart!G(X;D)? be a final object of Cart!G(X; D)?. From the equality iz =
iy o wy (iy.i¢)*, we see that there exists a canonical embedding:

®,  : Cart'G(X; D)P — Cart'G(X;0), (4.10)

depending on the choice of pointings iy for (X,n) € Ob Cart'G(X; D), such that @, ((Y, friy)) =
(Y. @y (iy,ig),iy) € Ob Cart'G(X;0)? for (Y, f,iy) € Ob Cart'G(X;D)?. Since Cart!G(X;0)" is
cofilterd as explained in Remark 4.3, there exists (W, h,iw) € Ob Cart*G(X 0)? which dominates
both of (Ya, @y, (ivy,7%),%yy) and (Y., @y, (fy,,i5), zy) in Cart*G(X 0)?. By the construction of
(Z.g.iz) € Ob Cart™(X; D), iz factorq into iw o 7%, where 7™ : Mz — My is an injective
homomorphism. Let 7 be the induced morphism 7 : W — Z. Then we see that h factors into
wz(iz.ig) o 7. Since h is étale in codimension one, hence so is wz(iz,i5). Thus we conclude
that (Z,g,iz) € Ob Cart'G(X; D)? and consequently, Cart!G(X;D)? is cofilterd. As for second
statement, take any (Y, f,iy) € Ob Cart!(X; D) and let {i{"|k = 1,2,...n} be all the pomtmgs for
(Y, f) € Ob Cart'(X; D). Let £ be the minimal subfield of My containing all the subfields ¢ )(My)
e ig})(My). Since £ is a finite Galois extension of Mx by its construction, we have an object

(Z.g.iz) € Ob Cart™G(X; D)P dominating all the (Y, f,i"), ..., (Y, f,i{") € Ob Cart'(X; D),
where g : Z — X is the normalization of X in £. In the same way as in the previous argument, we
conclude that (Z,g,iz) € Ob Cart'G(X; D)?. n

Proof of Theorem 4.1. By Proposition 4.1 and Remark 4.4, we only have to show that the full
subcategory Cart'G(X; D)? is cofinal in Int'G(X; D)? (see [18] Exposé 1, Proposition 8.1.3 or [2],
Appendix, Corollary (2.5)). Choose any object (Y, f,iy) € Ob IntTG(X D) and let my : Y —
Y be the index one cover with respect to f*D. We can choose a pointing iy so that a triple
(Y, f.i5) becomes an object in Int!(X; D)* dominating (Y, f,4y). From Remark 4.9, we deduce that
(Y. f.iy) € Ob Cart'G(X; D)? by its construction. n

4.3 Universal Cartier covers

Let U be a Prill’s good neighbourhood with regard to Sing X and {U,}.ea its associated neigh-
bourhood basis. Take any (Y, f,iy) € Ob Cart'(X;0)? and put (V=,f",y) := P, f,iy) €
FT(U~), where P is a Prill functor. Let f : V — U be the extended finite cover of f~. By
Lemma 4.2, V is a Prill’s good neighbourhood with regard to f~1(Sing X) with {Vi}aea being
its associated neighbourhood basis. Thus we have m(V~ ) = projlim ey, openmi(V \ f7'(Sing X)) =

projlim ey.qpen1(Reg V) = 71°°(Reg Y') since Reg VN f~(Sing X) is a closed analytic subspace of
codimension at least two in Reg V. (see, for example, [47], III, Corollary 2.). In particular, we see
that (Y, f,iy) € Ob Cart'(X;0)? is an initial object of Cart!(X;0)? if and only if #l°(Reg Y') = {1}.

Definition 4.10 For D € Div X, a strict Cartier Galois cover 7'+ Xt — X with respect to D is

called an algebraic universal Cartier cover, or abbreviated, a universal Cartier cover with respect to
D if #l¢(Reg X1) = {1}.

Remark 4.11 Singularity with trivial local algebraic fundamental group is quite restrictive one. For
example. 71°°(RegX) = {1} implies DinX NWeil X = Div X. Moreover, if we assume, in addition,
that (X.p) is analytically Q-factorial, then Ox is factorial (see, for example, [5], Satz 1.4).

Proposition 4.3 For D € DinX take the index one cover T : X — X with respect to D, the
there exists the universal Cartier cover of X with respect to D if and only if 71°°(Reg X) is finite.
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Proof. Assume that 7> (Reg X) is finite and take a final object (X,7,i5) € Ob Cart'G(X; D).
By the assumption, Cart!(X;0)? has an initial object (Y, f,iy) € Ob Cart'G(X;0)? such that
#l¢(Reg Y) = {1}. We note that iy is also a pointing for (Y, o f) € Ob Cart™(X; D) since
we have iy o f* o = iy o = ix. Consider an object (Y, 7 o f,iy) € Ob Cart™(X; D). By
the argument in Remark 4.9, (1), we see that m o f is Galois. Since wy(iy,iz) = f is étale in
codimension one, we conclude that (Y, 7o f,iy) € Ob Cart'G(X; D)?. Conversely, assume that there
exists a pointed universal Cartier cover (X', 7t,ixt) € Ob Cart'G(X; D)P with respect to D. Then
&, (X', 7! ixt)) € Ob Cart!G(X;0)7 is an initial object of Ob Cart'(X;0), hence #}°(Reg X) is
finite. [ ]

Remark 4.12 Assume that (X, A) is purely log terminal, where A is a standard Q-boundary. Then
(X.Ag) is known to be canonical, hence X has only canonical singularity if we assume that [A] =0
or X is Q-Gorenstein. Thus if dim X < 3, then #1°°(Reg X) is finite by [56], Theorem 3.6.

Proposition 4.4 (c.f., [17], Exposé IX, Remark 5.8) For D € DinX, Letm: X — X be the

index one cover with respect to D. Then there exists the following exact sequence in the category of
profinite groups :

{1} — 7 (Reg X) — #1%,[D] — Gal (X/X)~ Z/rZ — {1}, (4.11)
where 1 :=ind,D.

Proof.  Recall that we have a canonical embedding ®;, : Cart!(X; D)P — Cart!(X;0)? as in
(4.10). Since we have the exact sequence:

{1} — projhm(Y,f,iy)eObCa.rtTG’(X;D)PGa'l (Y/X) - ﬁ'iofx p[D] — Gal (X/X) — {1},

we only have to show that Cart'G(X; D)? is cofinal in Cart'G(X;0)? via the functor ®;,. Choose
any object (Y, f,iy) € Ob Cart'G(X;0)?. Then we see that (Y, 7 o f,iy) € Ob Int'(X; D)? since
7~ (Reg X \ Supp B) C Reg X and 7 o f is étale over Reg X \ Supp B. By Proposition 4.1,
There exists an object (Z,g,iz) € Ob Int!G(X; D)? dominating the object (Y,7 o f,iy). Since
Cart'G(X; D)? is cofinal in Int'G(X; D) (see the proof of Theorem 4.1), (Z, g,iz) is dominated by
some object in Cart'G(X; D)P. Thus we get the assertion. |

Corollary 4.1 A pointed universal Cartier cover (X', 7!, ixt1) € Ob Cart!G(X; D)? is an initial
object, or equivalently, a limit of Cartf(X ;D) and vice versa. In particular, a universal Cartier
cover with respect to D is unique up to isomorphisms over X if it exists.

Proof. Let (X,m,igz) € Ob Cart!G(X;D)? be a final object of Cart’(X;D)?. As we noted
firstly in this section, (X1, wxt(ixt,iz),ixt) € Ob Cart'(X;0)? is an initial object of Cart!(X;0)?,
hence (X1, 7t ixt) € Ob Cart!G(X; D) is also an initial object of Cart'(X;D)?. On the con-
trary, assume that there exists an initial object (X, ", ixw) of Cart'(X; D)?. By Proposition4.2,
we see that (XV 7 ix) € Ob Cart'G(X; D). Since w15 D] is finite, #1°°(Reg X) is also fio
nite by Proposition 4.4. Therefore there exists a pointed unlversal Cartier cover (X', 7' ixt) €
Ob CartTG(X, D) by Proposition 4.3 which is also an initial object of Cart'(X; D)P and hence
isomorphic to (X", 7" ix+). Thus we conclude that #1°°(Reg X) = {1}. [

The following Lemma is an algebraic generalization of Brieskorn’s fundamental lemma.

Lemma 4.6 (c.f., [5], Lemma 2.6) Let f: (X,p) — (Y,q) be a finite morphism between germs of
normal complex analytic spaces (X, p) and (Y, q). Then for any D € DinY, there exists a canonical

homomorphism f. : 7% ,|f*D] — 7% (D] which satisfies |7 [D] : Im f.| < deg f. In particular,
if 705 L7 D) s finite, s0 is Ty, [D].
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Proof. For a given pointing iy : My — My, we choose a pointing ix : Mx — Mx = My such
that iy o f* = iy. Take any (Z,a,iz) € Ob Cart'G(Y;D)?. Let v: W — Y be the normalization
of Y inix(Mx) Viz(Mz). We note that there exist morphisms 3: W — X and v: W — Z such
that aoy = fo B =v. Since B*f*D = v*a*D € Div W and f: W — X is Galois (see, for example,
[39], Theorem 3.6.3), we have (W, 3,iw) € Ob Cart™G(X; f*D)P for a suitable pointing iw. Let
(X.7x.ig) (resp. (Y, 7y,i5) ) be a final object of Cart™G(X; f*D) ( resp. Cart™G(Y;D)?). Since
(X. fomx.ig) € Ob Cart™(Y; D), there exists a morphism wg (ig,i3) : (X, fomx,iz) — (Y, 7y, iy)
in Cart™(Y; D)P. Let v* : Y* — Y be the normalization of Y in iz(Mz)Nig(M g). Since the induced
finite morphism 6 : Z — Y is Galois, iz(Mz) and i (M x) are linearly disjoint over iyt (My+), that
8. iz(Mz) Giy(Myy) 1x(Mg) = iw (Mw) (see, for example, [39], Exercise 4.2.3). Let 7 € W be the
generic point of a prime divisor on W and ¢ € Z (resp. € € X, resp. &' € Y!) be its image on Z
(resp. X, resp. Y*). Consider the canonical morphism & : iz(Oz¢) ®iy1(Oye ) 1% (O3 2) = tw (Owp)
and put S :=iy:(Oy:) \ {0}. We note that since iz(Oz) is flat over iy4(Oyx ¢1) by our construction,
12(0z¢) @iy (044 ) 1%(Ox¢) is a free ig(Ox ¢)-module, in particular, a torsion free iys(Oyr e )-
module. Since S~k : S*l(iZ(OZ:E)®iyn(0yn,gu)i)?(o)?,é)) ~ S7Hi2(02¢)) @iy My S 1% (Ox 2)) —
iw (M) is injective by the previous argument, so is «, hence, in particular, Im & is a normal subring
of iy (Ow,,) whose total quotient ring coincides iw (Mw) which implies that ITm x = 4w (M ). Thus
we conclude that  is an isomorphism and that iw(Ow,,) is flat over i (Ox ¢), which implies that
(W.3.1w) € Ob Cart'G(X; f*D)P. The canonical inclusion Gal (W/X) ~ Gal (iz(Mz)/iz(Mz) N
ix(Mx)) — Gal (Z/Y) induces a homomorphism f, : #1°% [f*D] — #1% [D]. Since we have
(Gal (Z/Y) : Gal (W/X)] = [iz(Mz) Nix(Mx) : iy(My)] < deg f, we get the assertion (see also
(4], 8§7.1, Corollaire 3). (]

4.4 Lefshetz type theorem for D-local algebraic fundamental groups

The aim of this section is to state and prove the Lefshetz type theorem for D-local algebraic funda-
mental groups.

Lemma 4.7 (c.f., [21], Corollary 10.8) Take any D € DivgX N Weil X' and let 7 : X — X be
the index one cover with respect to D. Assume that there exists a normal prime divisor T’ passing
through p € X such that the following three conditions hold.

(1) T :=7"'T is normal,
(2) T does not contained in Supp D,

(3)  there exists an analytic closed subset ¥ C X with codimxY > 2 and codimp(X NT) > 2 such
that D|y is Cartier and Dr := jtD € DivD, where U :== X\ Z and jr : Tg:=T\ Z — T is
the natural embedding.

Then D € Div X.
Proof. Consider the exact sequence:
0 — Og(n*D —T) — Ox(n*D) — Ox(7*D) — 0.

Note that Op(m*D) and 7*Or(Dr) are both invertible and coincide on ['\ 771(%), hence we have
Op(7*D) = w*Op(Dr) by the normality of I'. Since 7€ := T'§ o m, is an exact functor, where
G = Gal (X/X), the above exact sequence induces a surjective map

a: Ox(D) = 1804 (7*D) — 78 Op(7*D) = Or(Dr) ® (r]z)¢ Oz = Orp(Dr).
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Take por € Mrp such that div ¢or = —D|r. By the above argument, we have ¢ € Mx such that
a(yp) = ppr. Since (D + div ¢)|r = Dr +div or = 0 and D + div ¢ is Q-Cartier, we deduce that
[N Supp (D + div ¢) = 0, that is, D + div ¢ = 0, hence D € Div X. n

Lemma 4.8 (c.f., [48], Lemma 1.12, [53]) Let X be a normal complex analytic space embedded
in some domain i C™. Consider the hypersurfaces H, on C™ parametrized by 7 € P™ which is
defined by a linear equation 1o + >_i-y T:2; = 0, where 24, ..., 2, 18 a complete coordinate system of
C". Then there exist a non-empty open subset U C P™ and a countable union Z of closed analytic
subsets of U such that for any T € U\ Z, H, N X is a normal hypersurface on X.

Proof. Take an analytic open subset U C P™ such that for any 7 € U, H, := H, N X is non
empty and H, does not contain X. Since the base point free linear system {H,}.cy on X induces
a base point free linear system on Reg X, we have Sing H, C Sing X and codim g_Sing H, > 2 for
any 7 € U\ Z, where Z is a countable union of closed analytic subsets of U by Bertini’s theorem.
Moreover, we may assume that for k = 1,...,d — 2, H, does not contain any maximal dimensional
components of (Sing X )NSk;+1(Ox), where d := dim X and Sx(Ox) is a closed analytic set consisting
of points at which the profoundity of Ox does not exceed k. Since we have (Sing H,) N Sk(Og.) C
(Sing X) N Sky1(Ox), we see that dim(Sing H,) N Sk(Og,) < k — 2 for any k, hence H, is normal
for any 7 € U\ Z by [12], 2.27, Theorem. |

Remark 4.13 Let X be a normal Stein space. For Q-divisor A on X, let Multx(A) C @ denote
the subset consisting of all the multiplicities of A at prime divisors on X. We note that for general
normal hyperplanes H,, we have Multg_(Diffg_(A)) C Multx(A).

To state the Lefshetz type theorem, we need to fix some sort of general conditions. We shall
consider the following conditions assuming dim X > 2.

(M1) A is a standard Q-boundary.
(M2) (X,A) is divisorially log terminal.

(M2)* (M2)* (X,A) is divisorially log terminal and {A} = 0 or (M2)? (X,A) is purely log
terminal.

(M3) There exists an irreducible component I" of | A| passing through p € X such that Kx +1I"is
Q-Cartier.

Remark 4.14 (M2)* is a slightly stronger condition than (M2).
Proposition 4.5 Assume the conditions (M1), (M2) and (M3). Then
ind,(Kx + A) = ind,(Kp + Diffr(A — T)).

Proof. Put rp := ind, (Kt + Diffr (A —T)). Firstly, we note that (X,T) is purely log terminal and
that I"' N Supp (A — T') is purely one codimensional in I" since A — I' is Q-Cartier by the conditions
(M2) and (M3). We show that rr(Kx + A) is an integral divisor on X and is Cartier at general
points of any prime divisors on I'. By taking general hyperplane sections, we only have to check that
if dim X = 2. then rp(Kx + A) is Cartier. This can be checked by the classification of log canonical
singularities with a standard Q-boundary due to S. Nakamura (see, §3.1 or [24], Theorem 3.1), but
we can also argue in this way as follows. We note that p € X is a cyclic quotient singular point with
the order, say, n by the condition (M2). If ' N (|A] —T') # 0, then X is smooth, hence this case is
trivial. Assume that I'N (|A] —T') = 0. Since we can see that (X, A) is purely log terminal in this
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case from the condition (M2), we can write A =I' 4 dZ for a prime divisor = such that (I, Z), =1
and for some d = (I—1)/l, where [ is a natural number and we have mult,Diffr(A—T") = (nl—1)/(nl),
as in [59], Lemma 2.25, which implies 7r(Kx + A) € Div X. Going back to the general case, we see
that D := Kx + A € DivgX and T satisfies the conditions in Lemma 4.7 using [58], Corollary 2.2

and Lemma 3.6, hence we conclude that rr(Kx + A) € Div X. n

Remark 4.15 We note that Diffr(A —I') is also a standard Q-boundary, since Diffs((A — I') %) is
a Q-boundary (see [58], (2.4.1)).

Example 4.2 Let X be the germ of C* at the origin and put T’ := divz and A := div 2z +
(1/n)divw + (1/n)div (2 + w), where (z,w) is a system of coordinates and n € IN. Then we have
indg(K'x + A) = n while indy(Kr + Diffr(A —T')) = n/2 (resp. n) if n is even (resp. if n is odd),
which explains why we need the assumptions in Proposition 4.5.

A directed set (A, >) naturally forms a cofilterd projective system assuming that for \, u € A,
Card Homp (A, ) = 1 ifand only if A > p. We call this projective system A a cofilterd index projective
system. Let us recall the following basic result (see for example, [51]).

Lemma 4.9 Let ¢ : A" — A be a covariant functor between cofilterd index projective systems and
G : A — (Top. groups), H : A’ — (Top. groups) be two covariant functors to the category of
topological groups. Assume that the following three conditions (a), (b) and (c) hold.

(@) Gx:=G(A) and Hy := H(X') are compact for any A € Ob A and N € Ob A’
() G(A— u) and H(XN — ') are all surjective.

(c) There exists a natural transformation ¥ : G o ¢ — H such that W(XN) : Gyy — Hy are
surjective for any X' € Ob A’.

Then there exists a canonical surjective morphism in (Top. groups) :

¥ 1 projlim ,copaGa — projlim yecopa Ha

Let A be a Q-divisor on X such that Kx + A is Q-Cartier. In what follows, we put
™ (G)(X, )P = Z{™(G)(X; Kx + A)P.

Theorem 4.2 Assume the conditions (M1), (M2)* and (M3). Then there ezists a canonical con-
tinuous surjective homomorphism :

Yr : 778, [Diffp(A = T)] — 7% A].

Proof. For any (Y, f) € Ob Cart™(X,A), ' and T'y := f~'T" are normal by [58], Lemma 3.6 and
Corollary 2.2, hence they are irreducible since f~!(p) consists of just one point. A canonical inclusion
Or — injlimy 7 ;,.yeobcarm (x,a»Ory €xtends to an inclusion ir : Op — My and we fix this ip. Then
we have a canonical functor ¢ : Cart™ (X, A)P — Cart™(T, Diffp(A — T))®) such that ¢((Y, f)) =
(I'y-. fr). where fr := f|p,. Take any (Y, f) € Ob Cart!(X,A). We shall show that (T'y, fr) €
Ob Cart'(I'. Diffr(A —T)). Let X — X be the log canonical cover with respect to K x +A. Note that
T'; is also normal and 7p := 71|y : T := I'y — I is the log canonical with respect to Kr+Diffr(A-T)
by Proposition 4.5. Take any pointings i and i, for (T, 7r) and (I'y, fr) € Ob Cart™ (I, Diffr(A —
I')). We note also that wr, (iry,i;) = @y(iy,ig)|r, for some pointings iy and ig of (Y, f) and
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(X.7) € Ob Cart'(X,A). (Ty, fr) € Ob Cart'(I', Diffr(A — I')). By the covering theorem in [61],
(X.A) is divisorially log terminal of index one, which implies that X is smooth in codimension two,
hence, in particular, we have codim (Sing X N T) > 2. Since wy(iy,ig) is étale over Reg X, we
conclude that wr, (iry , i) is étale in codimension one and (I'y, fr) € Ob Cart!(I', Diffr(A —T)). In
other words, ¢® induces a functor ¢\ : Cart!(G)(X,A)®) — Cart!(G)(T, Diffp(A — I'))®, where
we used the same notation ¢». Consider the two functors

Gy : Cart'G(X,A)? — (Top. groups) and Gr : Cart'G(T, Diffp(A — I'))? — (Top. groups)

such that Gx((Y, f,iy)) = Gal (Y/X) and Gr((I",g,irv)) = Gal (I"/T'). Since f is étale over a
general points of T for any (Y, f) € Ob Cart'G(X, A), there exists a natural equivalence ¥r : Gr o
®? — Gx, which induces the desired surjection ¢r : #1% [Diffp(A —T')] — 1% »1A] by Lemma 4.9.
]

Remark 4.16 Assume the conditions (M1), (M2)* and (M3). Then, combined with Remark4.5,
Theorem 4.2 says that there exists a surjection ¥r : 7% ,[Diffp(A —T)] — @ (Reg X). For example,
if dim X = 4, 78 [Diffp (A — )] is finite under the assumptions as explained in Remark 4.12, hence
so is 7°¢(Reg X).

Letting notation and assumptions be as in Theorem 4.2, we obtain the following corollary.

Corollary 4.2 Assume that the universal Cartier cover of ' with respect to Kr+Diffp(A—T) ezists.
Then there ezists the universal Cartier cover of X with respect to Kx + A. Moreover, there exists
the following exact sequence :

{1} — A% (Reg Txr) — #1% ,[Diffn(A — I)] — 7% ,[A] — {1}, (412
where 7t : X1 — X is the universal Cartier cover of X with respect to Kx + A.

Proof. The first assertion follows from Proposition 4.3 and Proposition 4.4. As for the last
statement, let WTF : Tt — T be the universal Cartier cover of I" with respect to Kt + Diffr(A —T').
Then the induced morphism 7 : It — 'yt is the universal Cartier cover of I'xt since 1 is étale
in codimension one, which implies that Gal (I' /Txt) ~ #°¢(Reg I'xt), hence we obtain the desired

exact sequence. |

Remark 4.17 Let notation be as above. Assume that (X,p) is a three dimensional Q-Gorenstein
singularity and that (X,I") is purely log terminal with Sing X C I'. Then we see that (X,p) has
only terminal singularities and that (X' p') is an isolated compound Du Val singularity (see, [31],
Theorem 5.2). We also note that 't is smooth and that 'yt € |—Kxt| is a Du Val element. Moreover,
the above exact sequence (4.12) reduces to the following exact sequence:

{1} — 7°(Reg I'xt) — mpf,[Diffp(0)] — m1°(Reg X) — {1}, (4.13)

which enables us to calculate the local fundamental group of the germ (X,p), since mP°(Reg I'xt)
and =% [Diffr(0)] have faithful representations to the special unitary group SU(2,C) and the uni-
tary group U(2, C) respectively, both of which are classified. It is important to determine the pair
(XT.7(Reg X)) which will lead us to the classification 3-dimensional purely log terminal singular-
1ties.
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5 Types of degenerations of algebraic surfaces with Kodaira
dimension zero

Definition 5.1 (Minimal Semistable Degeneration) A minimal model X — D obtained from a
projective semistable degeneration of surfaces with non-negative Kodaira dimension g : ¥ — D
by applying the Minimal Model Program is called a projective minimal semistable degeneration of
surfaces.

A projective log minimal degeneration of Kodaira dimension zero is related to a minimal semistable
degeneration as in the following way.

Lemma 5.1 Let f: X — D be a projective log minimal degeneration of surfaces with non-negative
Kodaira dimension. Then there exists a finite covering T : D’ — D, a projective minimal semistable
degeneration f° : X° — D which is bimeromorphically equivalent to X xp D° over D’ and a
generically finite morphism 7 @ X — X such that fom = 7o f7 and Kxo + ©° = n*(Kx + 0),
where ©7 := f7*(0).

X X=X

| f})

D I,

Proof. We use the idea explained in [58], §2. Let p : Y — X be a projective resolution of X
such that the support of the singular fiber of the induced morphism g : ¥ — D has only simple
normal crossings as its singularities. By the semistable reduction theorem (]22]), there exists a finite
covering 7: D7 — D and a projective resolution Y7 — Y xp D? such that the induced degeneration
g° : Y? — D7 is semistable. Let 7 : X’ — X be the normalization of X in the meromorphic
functlon field of Y and let ¢ : X? — X' be a minimal model over X’ obtained by applying the
Minimal Model Program to the induced morphism ¥ — X’. Then, by the ramification formula, we
have Kx: + © = 7™*(Kx + ©), where ©' := 7/~10. Since (X’,0’) is log canonical, we infer that
Kxo + 07 = p*(Kx' + ©'). The induced morphism f° : X° — D as the Stein factorization of the
morphism X — D gives the desired minimal semistable degeneration. [ ]

Definition 5.2 (cf. Definition 3.4) A log minimal degeneration f : X — D of surfaces of Kodaira
dimension zero is said to be of type I (resp. of type 11, resp. of type II1), if there exists an irreducible
component ©; of © such that (©;, Diffe, (0 ~ ©;)) is of type I (resp. of type II, resp. of type III).

For a projective log minimal degenerations of surfaces of Kodaira dimension zero f : X — D,
take a projective minimal semistable degeneration f¢: X — D obtained from f as in Lemma 5.1.
Then the following holds.

Proposition 5.1 f is of type I ( resp. of type 11, resp. of type I11') if and only if f° is of type 1 (
resp. of type 11, resp. of type 111 ). Moreover two projective log minimal degenerations f; = X; — D
(J = 1.2) which are bimeromorphically equivalent to each other over D have ezactly the same types as
each other, i.e., types I, I and II1 are bimeromorphic notion which are independent from the choice
of log minimal models.

Proof. Let ©; be an irreducible component of © and ©7 be an irreducible component of 7=1(6,)
dominating ©,. Since we have Kxo + 07 = 7*(Kx + ©), we have Kos + A7 = m*(Ke, + A,), where
A? := Diffes (07 — ©7) and A, := Diffe,(© — ©;), hence |A7| = 771(| A, J) and

|Diff ae o (A7 — [A7])] = 771 Diff a0 (A = [A])],
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where 7 1 |A7]¥ — |A;]” is the induced morphism by 7 between the normalization of |A?] and
|A;|. Let «f : XT — X be the index one cover of X7 with respect to Kx- and f! : X! — Dt be the
degeneration obtained by Stein factorization. Then putting ©' := #1=1(©7), f1 is also a projective
minimal semistable degeneration with Kxt + ©' being Cartier. As in the same way as above,
letting ©! be an, irreducible component of 7'~}(©?) dominating ©7, we have |A!| = 71-1(]A?])
and LDIff}AI:,( — |Al))] = 7™ Diff as o (A7 — |A?])], where AT = Diffg; (0 - e!) and # :
|Al]¥ — | A7) is the induced morphism by 7! between the normalization of LAT | and |A?]. By
Lemma 3.4, if fT is of type I (resp of type 11, resp. of type III), then for any irreducible component
o! of 6, (6!, Diff, f(@T @!)) is of type I (resp. of type II, resp. of type III). Thus we infer the
first assertion. As for the last assertion, construct two projective minimal semistable degeneration,
f7 X9 — D7 (j = 1,2) as in Lemma 5.1 from f; : X; — D (5 = 1,2) such that f{ and f$ are
bimeromorphically equivalent over D°. Since there exists a sequence of flops between f{ and f$ ( see
126}, Theorem 4.9 ), it is easily seen that f{ and f§ have the same type, so we get the last assertion.
.

Remark 5.1 From Proposition 5.1, for a projective log minimal degenerations of surfaces of Kodaira
dimension zero f: X — D, we can see that if f is of type I (resp. of type II, resp. of type III), then
for any irreducible component ©; of ©, (8;,Diffe,(© — ©,)) is of type I (resp. of type II, resp. of
tvpe 1I1I).

6 Non-semistable degenerations of abelian or hyperelliptic
surfaces

In this section we prove Theorem 1.2. Let f : X — D be a projective log minimal degeneration
of surfaces with Kodaira dimension zero. Take the log canonical cover 7 : X — X with respect to

Kx + 0, where © := f*(0),eq and let f: X — D be the induced degeneration via Stein factorization.
For any irreducible component ©; of ©, (X,©;) is purely log terminal, hence so is (X,7~'©,).
Thus the irreducible decomposition w‘l@ =3, (:)i is disjoint, which implies that each component
of © := f*(0)req is Q-Cartier hence X is Q- Gorenstem By [61], Covering Theorem, we see that
(X, ©) is divisorially log terminal. Thus we conclude that f: X — D is a projective log minimal
degeneration of surfaces with Kodaira dimension zero with Kz + © being Cartier. Let 7, : ©; — ©;
be the log canonical cover with respect to Ke, + 4A;, where Ai := Diffe,(© — ;).

Lemma 6.1 There exists an étale morphism é;- — ;.

Proof. Put v, := Min{n € N|n(Ke, + A;) ~ 0}. By Proposition 4.5, we infer that there exists an
open neighbourhood U of X containing ©, such that Oy (r;(Ky + ©|y)) € Tor Pic°U. Let m; be the
order of Oy (ri(Ku + ©|y)). For any connected component V of 771U, =y factors into 7|y = fo o,
where a : V. — W is étale of degree m; and 8 : W — U is finite of degree r;. We note utl% also
factors into ; o w, where w : 7710, — O, is finite. Since mlv is cyclic, we see that 3716, ~ 6, and
that w is étale. Thus we get the assertion. n

Assume that egqp(X:) = 0 for ¢ € D*. From the first part of Corollary 1.1 and Lemma 6.1, we
obtain eorb(éi \ A;) =0, where A, := 7' [A;]. Let 7, : (X,5) — (X,p) be the log canonical cover
of the germ of X at p € ©; \ |A;]| with respect to Kx + ©;. The last part of Corollary 1.1 says
that (X,n;1©;) has only singularity of type Vi(r;a,~a,1) at § € X, where (r,a) = 1. Thus by
the exact sequence (4.13) in the previous section, we have 7> (Reg (X, p)) ~ 7\%, [Diffe,(0)]. So
when we want to calculate the local fundamental group 7\°¢(Reg (X,p)), we only have to calculate
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6, »[Diffe, (0)]. We note that the proof of the first assertion of Theorem 1.2 is straightforward since
(X.p) has the universal Cartier cover 7! : (X',p') — (X,p) with respect to Kx -+ ©; such that
(XT.p") is smooth ( see Proposition 4.3 ).

6.1 Case Type II

In this section, we prove Theorem 1.2 in the case of type II. From proposition 3.3, For p € 6, \ A,
possible 7% [Diffe,(0)] is calculated to be Z/nZ or Z/2Z & Z/nZ, where n = 2.3.4 or 6. In
applying the log minimal model program on f : X — D with respect to Kx, we see that each
extremal contraction contracts a prime divisor to a curve and reducing to the surface case, that
contracting generic curve does not intersect Supp {Diffe,(© — ©;)}. So the last assertion in the case
of type 11 follows from the following Lemma.

Lemma 6.2 Let X' be a normal Q-Gorenstein 3-fold and Sy, Sy, E be mutually distinct Q-Cartier
prime divisors on X such that Sy NSy = (. Putting D := Sy + Sy + E, assume that (X, D) is
divisorially log terminal and that there exists an extremal contraction ¢ : X — X® to a normal 3-fold
X such that S; is p-ample for i =1, 2 and the following (1), (2) and (3) hold.

(1) —=Kx 1is p-ample,
(2) Kx + D is numerically trivial over X1,

(3) E is contracted to a curve on X" and general fibres of the induced morphism v: B — ¢(F) does
not intersects Supp {Diffg(D — E)}.

Then (X®, DY) has only divisorially log terminal singularities, where D' := p,D.

Proof. Let F' be any exceptional divisor in the function field of X" centered on X' whose log
discrepancy with respect to Ky 4+ D* is non-positive. If F' = E, the conditions (1) and (3) imply
that X* is smooth and D* has simple normal crossings at the generic point of the center of F. If
F # E, log discrepancy at F with respect to Kx + D is non-positive from the condition (2), hence
the support of F' at X is a curve C' contained in S; N E. If C is contracted to a point by ¢, then
(52.C) > 0 which contradicts the assumption S; NSy = @. So X! is smooth and D* has simple
normal crossings at the generic point of the center of F' also in this case. Thus we get the assertion
by {61], Divisorial Log Terminal Theorem. ]

6.2 Case Type III

The the results of Theorem 1.2 in the case of type III follows from the Propositions 3.4, 3.5, 3.6, 3.7,
3.8, 3.9 and the following lemma.

Lemma 6.3 Let (X,p) be a three dimensional Q-Gorenstein singularity and [’ be a prime divisor
on X passing through p € X such that (X,T') is purely log terminal. Let 7 : (X,P) — (X,p) be the
log canonical cover with respect to Kx +T' and put T := 7~'T". Assume that (T,p) ~ (C?,0) and
Diffp(0) = (1/2)div(z® +w™) (n > 2 ), where (z,w) is a system of coordinate of ' at p € T' and that
(X.T) has singularity of type Vi(r;a,—a,1) at f € X, where (r,a) = 1. Then we have n = 2.

Proof. Tt can be easily checked that (X', p") and (I'f, p') are both smooth and that 7% [Diffr(0)] =
71 (Reg X) >~ G, where G is the dihedral group of the order 2n (see also [40]). Let G =< a,b;a™ =
1.6 = 1,b7'ab = a~! > be a presentation of G and pr: G — U (2,C) be a corresponding represen-
tation with respect to (I', Diff(0)) defined as follows.
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Let px : G — U(3,C) be a corresponding faithful representation with respect to (X,p). Since
I'" C X' is invariant under the action of G through px, px is equivalent to pr @ x for some character
v : G — C*. Let K be the kernel of the character G — Aut Oxt(Kxt + I'")/m Oxi (Kxt + ')
induced by px. Then we see that K = Ker det pp. Since we have det pr(a) =1 and det pr(b) = —1,
we have < a >C K and b ¢ K. Noting that we have 2 = [G :< a >] = [G : K]|K :< a >], we obtain
K =< a >. We also note that we have ord x(a) = n since § € X ~ C*/K is isolated. On the other
hand. since we have x(b~'ab) = x(a™!), we get x(a)? = 1. Thus we conclude that n = 2. n

The last assertion of the Theorem 1.2 in the case of type III follows from [48], Theorem 3.1.
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