
Modeling of the Visual Approach to Landing
Using Neural Networks and Fuzzy Supervisory ControlI

Jorg Onno Entzinger, Shinji Suzuki

University of Tokyo, School of Engineering, Department of Aeronautics & Astronautics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Abstract

During the visual approach to landing of a fixed wing aircraft, a human pilot bases control and timing of subsequent maneuvers
mainly on the out-the-window view, as there is not sufficient time to read all instruments. The skill of making smooth and soft
landings is acquired mainly through experience. Research has been done to identify the most important features in the visual scene
(cues) for two phases of the visual approach to landing: glide slope tracking and the flare maneuver. Using simulator and real flight
data, neural networks have been trained for both phases to mimic the pilot’s control based on the visual cues available. By using
the γ operator in neuron transfer functions, a transparent model is obtained. Fuzzy supervisory control is proposed to couple the
networks and thus provide insight in the pilot’s decision making process with respect to timing the flare initiation.
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1. Introduction

The visual approach to landing is generally considered one
of the most demanding phases in human pilot control [1]. The
combination of high workload, having to interpret the visual
scene, timing the initiation of subsequent maneuvers and ex-
ecuting those maneuvers, all with the risks inherent to low-
altitude flight, makes this process difficult to learn for new pi-
lots. Real and/or simulated experience is indispensable to ob-
tain and maintain landing skills, and performance feedback is
thought to greatly improve learning efficiency [1, 2]. However,
most pilots cannot explain what they look at or how they make
their decisions and even training methods are not consistent.

The research presented in this paper focuses on finding the
visual cues a pilot uses, through analysis of scene and flight
control data. A method is presented to construct a model of a
human pilot which takes visual cues and generates longitudi-
nal control actions during the visual approach to landing. This
model is based on numerical data from real or simulated land-
ings by human pilots. The model itself however is merely used
to verify correspondence between the real pilot and the model.
Of main interest are the structure and parameters of the result-
ing model, i.e., the driving inputs, internal relations and thresh-
olds, as these give insight in the pilot’s (subconscious) behavior.

The knowledge gained from this “reconstruction of the pi-
lot’s mind” would be useful in training or evaluation of pilots:
if we know how experienced pilots use the available visual cues
to make smooth and soft landings, these insights can be taught
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to trainees. Comparison of behavior between pilots could be
helpful to give specific feedback to improve one’s performance.
It can also help finding out why and when optical illusions arise
and how pilots can be trained to recognize or avoid them. Di-
rect application of this knowledge to automatic landing sys-
tems may not be meaningful, since accurate state information is
abundant within the flight computer, and image processing may
not be sufficiently robust to meet safety requirements. Such au-
tomatic landing systems could however prove useful for small
unmanned aerial vehicles (UAVs) [3] —which have limited po-
sitional and state information due to payload restrictions— pro-
vided the availability of a camera and microprocessor (which
might be on board for specific mission goals anyway). Apart
from pilot training and UAV landing systems, there is a wide
application for the knowledge of which visual cues pilots use,
ranging from cockpit display design and human-machine inter-
action studies, to enhancing the realism of the important cues
in flight simulators.

2. Visual Perception during Landing

Some of the earliest studies on the visual perception for ve-
hicular guidance1 are those on ego-motion and motion perspec-
tive (optical flow) by Gibson et al. [4] and Gordon [5] in the
1950s and ’60s. Since then several researchers have investi-
gated the way pilots look at the out-the-window scene and a
wide variety of visual cues has been suggested for guidance
during the final approach to landing.

1The problem discussed in this paper is closely related to that of car driving,
a skill which is also learned through experience.
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Figure 1: Definition of visual cue variables. Y and H are the vertical positions of the horizon and the touch down zone markings (TDZM) relative to a fixed location
in the aircraft. The implicit horizon is therefore defined by Y − H. W is the apparent distance between the TDZM, and thus a cue for distance. θ is the apparent
inclination of the runway edge, an altitude cue. τθ will be defined as θ/θ̇, with θ̇ the time derivative of θ.

Apart from general cues such as optical edge- and flow rate
and texture [6–8], the ‘implicit horizon’ (distance between the
horizon and the aim point, measured in the visual plane; Y-H
in Fig.1) is often mentioned as an important cue [9–12], espe-
cially for keeping the preferred glide slope. The position of the
horizon (Y) is known to have a close relation to the pitch of the
aircraft. The runway shape in general (also referred to as per-
spective), or specific cues like the perceived inclination angle
of the runway edges (splay; θ) and the apparent length or width
of the runway are also mentioned in literature, but there is no
consensus about their use [2, 9, 11, 13].

Another controversial cue is τ, the time to contact as defined
by Lee [14], which can be derived from the optical flow or from
a specific feature such as the apparent runway width. τ has been
suggested as a guide for the flare phase (roundout) [2, 15], al-
though others [16] could not confirm this and found a depen-
dency on sink rate instead (which is consistent with [17], but
sink rate is not a readily available visual cue).

This quick overview of possible cues shows that there are
many visual cues available to the pilot and for most of these
cues, taking the time derivative of the cue into account could
also be meaningful. Figure 1 shows an overview of the cues
considered in this research. It must be kept in mind that the
usage of cues varies through the phases of the landing [18], and
that some cues are used as a trigger to commence a new phase.

3. The Final Approach to Landing

The final approach to landing can be divided into two phases.
In the first phase the pilot should maintain a constant de-

scent which is generally about 3 degrees and keep the airplane
aligned with the runway centerline. This phase will be referred
to as the ‘glide’. The second phase is the ‘flare’ (also called
roundout), where the pilot slowly pulls the column to make the
aircraft pitch up in order to decrease the sink rate and land on
the main landing gear first before the nose gear (Fig. 2).

Proper timing and execution of the flare are critical for a soft
and safe landing. The rate at which the roundout is executed
depends on the airplane’s height above the ground, the rate
of descent, and the pitch attitude. A roundout started exces-
sively high must be executed more slowly than one from a lower
height to allow the airplane to descend to the ground while the
proper landing attitude is being established. The rate of round-
ing out must also be proportionate to the rate of closure with
the ground. When the airplane appears to be descending very
slowly, the increase in pitch attitude must be made at a corre-
spondingly slow rate. [12]

4. Data Acquisition

To find the cues a pilot is using when landing an airplane,
a relation is sought between the available cues and the pilot’s
control. The current investigation only considers longitudinal
motion (i.e., motion in the vertical plane) which limits the pilot
control inputs to throttle setting and column deflection. As the
throttle setting is normally2 kept constant and only set to idle at

2It should be mentioned that in simulated landings of a Dornier Do228-202
propeller airplane, some flares appeared to be performed by slowly decreasing
the throttle, while column deflections were minimal (see Fig.5). In the experi-
ments with jet aircraft this behavior has not been observed.
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Figure 2: In the final approach to landing, the pilot pitches up to arrest sink rate
and land softly on the main gear. This maneuver is called the flare.

the end of the flare, the control column deflection is the main
source of pilot response data.

4.1. Simulated Landings

From the simulated landings the main aircraft states (posi-
tion, velocities, attitude, rotational speeds, control surface set-
tings) and the column deflection and throttle setting were ob-
tained. Knowing the simulated airport geometry, the states are
translated into visual cues as they would be seen through the
cockpit window.

Landing data has been obtained in several sessions using:

• A simple parabolic screen simulator with a Boeing 767
model and an abstract scene (no texturing and a simple air-
field geometry) [@50Hz] However, the hardware allowed
only coarsely discretized column deflection data to be ob-
tained.

• A high class simulator with Wide Angle Collimated
display owned by JAXA (Japan Aerospace Exploration
Agency) [Dornier Do228-202 propeller airplane @20Hz]

The simulators were always operated by experienced pilots
holding a license to fly the real plane.

4.2. Real Landings

During a few real ladings of a Cessna Citation data were
gathered using 2 video cameras installed in the cockpit (Fig.
4). One records the out-the-window view, the other camera is
capturing the column movements from the side (@30Hz). A
marker is put on the column to simplify video post-processing
and extracting numerical column deflection values. The images
of the out-the-window view are also post-processed to obtain
numerical values for the selected cues.

Figure 3: The JAXA owned flight simulator used with the Dornier Do228-202
propeller airplane model and scene with rich texture.

5. Proposed Modeling Method

The cues used are strongly influenced by the task, the avail-
ability of other cues, the experiment setup and also on a pilot’s
experience or even preference. Identification of the cues which
contribute most to the pilot’s control is therefore a major part of
the proposed assessment.

First the proposed modeling techniques are introduced, after
which the application of those techniques to the human pilot
modeling problem will be explained in the second subsection.

5.1. Modeling Techniques
The crossover or optimal control models from the 1960s

[19, 20] are still the base for most of the proposed pilot mod-
els [21–23]. This classical control theory approach has some
limitations. One important limitation is that it assumes a linear
feedback loop, which may be no problem for modeling a (lab-
oratory) tracking or pursuit task, but a more general model is
needed for a complex maneuver like the flare, where multiple
(visual) inputs, visibility thresholds and saturation, and multi-
ple control objectives (sink rate, touch-down point, final pitch
attitude) play a role. Another important limitation of the clas-
sical control models is that they are highly mathematical and
therefore ill suited for explaining human functioning in normal
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Figure 4: The control command is recorded using a white cross marker on the
column (left), the visual cues are recorded with the camera on the right.

linguistic terms, which is essential when they are to be used for
evaluating pilot strategies and for generating feedback to pilots.

The use of fuzzy logic and neural networks (NNs) is con-
sidered because of their close correspondence to human func-
tioning and their generality and flexibility. As the main interest
lies in the structure of the model, it is important to choose a
model with high transparency, which is often a problem with
NNs. To obtain a transparent network which can still be trained
from data, the γ-model proposed by Zimmermann and Zysno
[24] is used as a transfer function in a NN framework. The ‘γ-
network’ and training procedure as described by Krishnapuram
and Lee [25]] was implemented.

The neuron transfer function y = f (x1 . . . xN), which is usu-
ally the sigmoid function, is in this research defined using the
γ-model:

y =
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Parameters γ and δ can be trained using error back propagation
algorithms [25], similar to the training of biases and weights in
standard NNs.

The left part in (1), which is raised to the power 1 − γ, repre-
sents an ‘AND’ connection between the inputs xi, each weighed
by its respective δi. The right part, raised to the power γ, rep-
resents an ‘OR’ connection. By adjusting the value of γ a
weighted combination of the non-compensatory ‘AND’ and the
fully compensatory ‘OR’ [24] is obtained. Such partially com-
pensatory behavior is often found in human actions. Another
strong point is that the proper values of γ can be obtained from
the NN learning process, so no presumptions have to be made
about the ‘AND’ or ‘OR’ structure of the model.

For the transition from glide to flare phase, a fuzzy supervi-
sor is proposed. This high level controller basically models the
pilot’s decision making process with the possibility of a gradual
instead of an abrupt change of control style. It takes the visual
cues as an input and decides whether the glide model, the flare
model, or a combination of outputs is appropriate.

5.2. Modeling Process

The modeling process can be split into 4 steps:

Step 1. Splitting data into glide and flare phase data. The
landing data is manually split into data for each phase
by close observation of the time histories. Especially
the column data, climb rate, horizon and change of
horizon are considered. Explorative studies on separa-
tion by fuzzy clustering have been done, but robustness
against unrelated input variables and accuracy are still
issues.

Step 2. Cue identification/modeling of each phase. For each
phase, a γ-network is trained using the (normalized)
cue data as inputs and the corresponding column de-
flection as output. The weights and structure of the re-
sulting networks show which cues are used and how
they are used.

Step 3. Identification of the visual cues used for phase tran-
sition. This is similar to step 2, but using the full data
set (i.e., both glide and flare data) as input and an out-
put which is high in the few seconds preluding the flare
initiation.

Step 4. Determination of the fuzzy supervisory control pa-
rameters. Based on the results of step 3, a high level
fuzzy controller is designed to adjust the contribution
of the phase-specific network outputs to the control.
This step integrates the models and knowledge ob-
tained in the previous steps and is considered mainly
for verification purposes.

6. Results

First one landing analysis case will be highlighted to illus-
trate how information can be derived from the obtained data
and models. After that, the second subsection presents a short
overview of results obtained from the other data sets.

6.1. A ‘Typical’ Landing Case

[The flare] should be a continuous process until the air-
plane touches down on the ground [. . . ] back-elevator pressure
should be gradually applied to slowly increase the pitch atti-
tude and angle of attack [. . . ] power normally is reduced to
idle during the roundout [. . . ] This will cause lift to decrease
again, and it must be controlled by raising the nose and further
increasing the angle of attack. [12] The green line in Fig.5
shows such a landing, where the column is pulled gradually
(then released gradually to prevent a too high pitch at landing)
and when the throttle is set to idle, the column is pulled again
slightly.
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Figure 5: In the landings carried out in the Dornier Turboprop simulator several
different control strategies appeared to be used. The thick part of each line
corresponds to the flare phase. The green line shows a ‘typical’ landing, as
described in the FAA Handbook [12]. The red line shows a strategy where the
flare is mainly performed by decreasing the throttle.

The data has been separated into ‘Glide’ and ‘Flare’, which
are distinguished by the thinner, respectively the thicker part of
the lines in Fig. 5. For the typical case the column movement
itself gives a clear indication of the timing of flare initiation,
which is supported by the pitch, climb rate, horizon height and
change of horizon height.

Figure 6 shows the trained γ-networks. Networks with only
2 hidden layer neurons proved sufficient; when adding a third
hidden neuron, its contribution to the output layer neuron was
always weighed virtually zero. The lower row of black rectan-
gles in each of the 3 plots represents the inputs (cues) available
to each network. These input values are propagated to the hid-
den layer neurons, where the γ-function is applied. The outputs
of the hidden layer neurons are then propagated to the output
neuron, where the γ-function is applied again to obtain the final

output. The relative weights δi are represented by the widths
of the connection lines, the values of γ are written next to the
neurons. The small graphs at the left of each network show
the original training data (black) and the network outputs (red).
The upper 2 networks in Fig. 6 are the models obtained for the
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√

W 1-θ 1-θ̇ 1-τθ 1-Y 1-Ẏ H-Y 1-
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Figure 6: The result of identification of cues used by the pilot. From top to bot-
tom for Glide phase, Flare phase and for timing of the Flare initiation. Thicker
lines represent stronger weights. Note that all variables were normalized, so
1-θ is just the complement of θ.

glide and flare phase control. The lower one identifies the cues
which trigger the flare initiation. If we look at the network for
the glide, we see that there is a strong connection between input
‘Y-H’ (the implicit horizon), via the left hidden layer neuron to
the output neuron at the top. The right hidden layer neuron re-
acts as ‘τθ AND 1-θ’ which corresponds to the general trend
that the column deflection is small in the beginning (far away,
so the time to contact is large and the runway angle is small) and
slowly grows (the downward trend in Fig. 5, top-right). How-
ever, from the connection weights between the hidden layer and
the top layer, it becomes clear that the implicit horizon is the
main cue for glide control.

When looking at the flare network, we see the main cue is ‘Ẏ
OR 1-θ’. The use of Ẏ indicates feed forward control during the
flare, while the ‘1-θ’ —‘pull up (large column deflection) when
θ is high (altitude is low)’— is modeling the pilot’s final pull
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of the column, which comes with the decrease of throttle. The
contribution of the implicit horizon via the left hidden neuron
can be explained by the fact that halfway through the flare, the
touchdown zone markers disappear from sight, thus saturating
the value of Y-H. This event may be a cue for the longitudinal
position with respect to the runway. In the model, the influence
of the high value of Y-H shows the pilot’s gradual release of the
column.

As discussed in §5.2 step 3, the cues likely to be used for
timing of the flare initiation are identified in the same way as
for glide and flare control. The lower network in Fig. 6 shows
the result. It is clear that θ̇ (change of angle between the run-
way edges) is the dominant variable. The right neuron states ‘θ̇
AND Ẏ’. The ‘AND Ẏ’ part is merely an artifact to ensure the
model output is low again during the flare, as Ẏ is low during
the flare. The appearance of Ẏ in the result is thus not due to its
importance for flare initiation timing, but just stresses that it is
the part preluding the flare that we are interested in.

To determine the parameters of the fuzzy supervisor, the data
has been split into 2 sets using Fuzzy c-means clustering (see
[26], App. I for a clear algorithmic description). As the time
derivatives of θ and Y were identified as important for flare tim-
ing in the previous modeling step, θ and Y will have relatively
large change of value during the transition, and are thus suitable
to base the clustering on. Figure 7 shows the clustering result.
The plot of the column deflection is shown as a reference, it was
not used for clustering. This result shows that good separation
can be obtained this way, which verifies the function of θ̇ and Ẏ
as cues for flare timing.

For further verification purposes the Glide and Flare net-
works could be integrated using a fuzzy supervisor based on
the membership function resulting from the clustering proce-
dure described above. Figure 8 shows the resulting model out-
put and the original column output as reference.
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Figure 7: Two classes, Glide (cyan) and Flare (magenta), were separated us-
ing fuzzy clustering. The black line shows the degree of membership to class
‘Flare’ for each sample.

6.2. General Results

Many landing approaches were analyzed. In general the im-
plicit horizon and time to contact are the main cues during glide,
often supported by a ‘distance cue’ such as the (change of) run-
way angle or distance between the markers.

For flare timing the change of runway angle appears to be
very important, but in many flights the value of the implicit
horizon seems to play a major role. Especially in the Parabolic
screen 767 simulator landings several ‘ballooned flares’3 were
flown, all of which had a value for the implicit horizon clearly
lower than normal flares at the time of flare initiation.

The control during the flare proved the most difficult to
model. Results vary widely, however it should be noted that
characteristics of human control also vary widely: from the
‘typical’ flare (Fig.5, green line), via strongly alternating col-
umn movements, to throttle-controlled flares with minimal col-
umn movement (Fig.5, red line).

In the real flight experiments the time to contact was shown
to be closely related to the control. In the simulations, rather
than this τθ(=θ/θ̇), the separate parameters θ and θ̇ (the apparent
angle between runway edges and its time derivative) were often
found to guide flare control. Also the position and movement
of the horizon were found as cues.
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7. Discussion

The result that the implicit horizon plays an important role in
glide is supported by literature as mentioned in §2. The find-
ing that τθ also seems to play a (secondary) role is interesting,
however it should be investigated whether the changes of this
cue are big enough to be perceived from such distance.

3A too strong pitch up such that not only sink rate is deceased, but the
airplane actually starts to gain altitude.
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The importance of the change of runway angle for the timing
of the flare initiation is remarkable, as no previous notion of this
was found in literature. As θ̇ contains combined information on
the altitude and the sink rate4, it is considered a very reasonable
cue for flare timing.

Because of this result, the time histories of θ̇ and the column
deflection have been investigated closer. It is interesting to note
that θ̇ reaches nearly the same maximum value for each flight
in the same simulated environment (Fig. 9). Figure 9 also il-
lustrates the general finding that (for the typical landing style)
the pilot starts pulling the column shortly before this maximum
(marked ¬ in the figure)5. However, this first pull of the col-
umn is slight, slow and generally the pilot holds the column or
even releases it shortly before really flaring (from point  on).
This start of the real flare is found to coincide with the maxi-
mum value of θ̇. It seems the pilot notices θ̇ increasing rapidly,
slowing down this process by ‘pre-flaring’, and when θ̇ reaches
the right rate of angle increase, the pilot fully flares the aircraft.
Also of interest is the result that when the value of θ̇ gets too
high again, the pilot commands some additional pitch just be-
fore touchdown (marked °). This behavior has not only been
found in the Dornier turboprop simulated landings, but also in
landings recently carried out in a certified Boeing 767 training
simulator.

Several pilots participating in the experiments also men-
tioned that the runway edge is important for flare timing. Al-
though they say it is to estimate the altitude, no pilot can ex-
press this altitude in feet or meters. Taking into account that the
altitudes at flare initiation vary widely, it is argued that these ex-
perienced pilots do know where to look, but may not be aware
of the complexity of the perceived information.

As aircraft state data were available for the simulator land-
ings, a superficial analysis has been performed using the pro-
posed modeling method with these states as inputs. An interest-
ing result from the 767 simulator analysis is that a combination
of altitude and sink rate is found for timing of the flare. For
the Dornier landings, a combination of the altitude and time to
contact τz (altitude/sink rate) were often identified. Both results
confirm the findings of Grosz et al. [16] that not exactly τz, but
still some combination of altitude and sink rate determines the
flare timing.

8. Conclusion

The presented approach can reveal which visual cues a hu-
man pilot is using in the visual approach to landing. As land-
ing skills are obtained through experience and pilots often can’t
explain ‘how’ they fly, this information is valuable for trainee
pilots who have not acquired enough skill yet. However, this

4The apparent angle between the runway sidelines can be expressed as

θ = 2 · tan−1
(

1
2 Width
Altitude

)

, where “Width” stands for the real runway width (e.g.

in meters). The time-derivative of this cue is a function of both altitude and
sink rate: θ̇ = Width

Altitude2+
(

1
2 Width

)2 · Sink rate.

5The initiation of this ‘pre-flare’ varies considerably in time, value of θ̇, and
indeed also in all the other observed cues and states.
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pilot starts to pull the column more.

knowledge also has various other applications such as the de-
velopment of cockpit instruments, scene enhancement in bad
weather approaches and improvement of simulator fidelity.

Rather than abstract mathematical models or black-box mod-
eling approaches, a network employing the γ-operator was
used, which resulted in transparent models which could easily
be explained in natural language. Fuzzy clustering validated the
cues found to be important for the timing of the flare initiation.

The use of the implicit horizon as a cue for maintaining the
desired glide slope, which is commonly agreed on in literature,
is supported, as is the influence of both altitude and sink rate on
the flare timing. The most interesting result is that the change
of the apparent angle between the runway edges was identified
as the main cue for flare timing.

9. Future Works

The key to constructing effective models to capture human
pilot behavior in terms of vision based decision making and
control, is to know which cues are used. Further identification
of possible cues, representing them in suitable numerical vari-
ables, and knowing the limitations of the human visual system
with respect to these cues is considered of great importance.
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Once this information is available, data mining or modeling
such as the proposed method can reveal which cues are actu-
ally used and how. Future works are therefore considered in the
field that connects aeronautics and psychophysics.

In recent discussions experienced Boeing 767 pilots stated
that the flare timing, and especially the moment of setting the
throttle to idle depends on the head- or tailwind. Although ju-
nior pilots may flare at a more or less ‘fixed altitude’ as this
is easy to learn (using Radio Altitude call-outs), experienced
pilots perceive the right moment and thus have a more sophisti-
cated landing technique. Further investigation of this technique
and differences between junior and experienced pilots are there-
fore also considered promising directions for future research.
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