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Abstract

 In sky radiance calculations for clear and turbid atmospheres, the neglect of polarization effects 

produces systematic errors up to about 10 %. This paper describes a technique for reducing such 
errors by adding a correction term to the result of scalar transfer code. A semi-empirical expression 
for the correction term was constructed based on the successive order theory and several parameter-
izations. Our expression reduces the error to about 0.6 % in the case of homogeneous, optically thin 
or moderately thick atmospheres.

1. Introduction

  Various methods have been developed for sky ra-
diance calculation and some of them have been gen-
eralized to include the polarization effects (Chan-
drasekhar, 1960; Herman and Brouwning, 1966; 
Kattawar and Plass, 1968; Tanaka, 1971a, Garcia 
and Siewert, 1986). Scalar versions (we refer the 
term scalar to the formulation neglecting polariza-
tion effects) of these methods are widely used by var-
ious investigators since they are comparatively sim-
ple to formulate and can be easily coded for comput-
ers. Their solutions, however, involve systematic er-
rors up to about 10 % due to the neglect of polariza-
tion effects (Chandrasekhar, 1960; Tanaka, 1971b). 
Vector versions, in which we refer to the formulation 
taking account of polarization effects, on the other 
hand, give exact solutions for all Stokes parameters 
I, Q, U and V, but are comparatively more compli-
cated and naturally require considerable computer 
time. In many of the practical problems, the scalar 
approximation turns out to be fairly accurate, so 
that one would not want to go through all the labor 
required for fully-fledged computer codings. For this 
reason, tables, library computer codes, and approxi-
mate formulations have been used extensively in the 
field of remote-sensing (see, e.g., Box and Deepak, 
1981). 

 In this study, we divide the true sky radiance into 
two parts, i.e., the radiance calculated using the
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scalar approximation and that produced by polar-
ization effects, as follows: 

I = I~calar + QI. 

We shall hereafter refer to the second term as ad-
ditional sky radiance. If, therefore, some simple ex-
pression for aI is available, we can correct the re-
sults from scalar transfer codes at the expense of 
only a small amount of additional computer time. 
To the best of our knowledge, there has been no 
study in this direction. We use the successive order 
theory to yield a correction term. Unfortunately, 
however, the efficiency of this method is not satis-
factory in its original form because of a slow rate 
of convergence (Sec. 3.1). We will therefore modify 
this technique in order to include more efficiently 
the contributions from the higher orders of scatter-
ing and present a simple and yet practical expression 
(Secs 3.2 and 3.3), and finally examine its accuracy 
(Sec. 4). A complete formulation for the correction 
term is summarized in Appendix B for convenience 
of application. 

2. Characteristics of the additional sky radi-
  ance 

 First of all, we investigate several important char-
acteristics of the additional sky radiance. Con-
sider a plane-parallel homogeneous atmosphere of 
optical thickness -roilluminated by solar radiation 
propagating toward (tto, 00) with its Stokes vec-
tor (Fo, 0, 0, 0). The additional sky radiance is ex-
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Fig. 1. The additional

conditions.

sky  radiance

The assumed

in the principal

values of the parameters

plane for transmission and for various

are co m=1 , rn=1.5 — 0i, J=4 ,and

atmospheric

po=1013 mb.

pressed as 

21/(P, Poi -00;7,To) 
= I({i, PO, q5 — 00;7,70) 

—I scalar GI, P0,0 — 00; r, r0).(1) 

In the equation, I is the exact sky radiance (vector 
intensity), Iscalar is that calculated by a scalar ap-
proximation (scalar intensity), and T is the optical 
depth of the observer's position measured from the 
top of the atmosphere. The optical thickness of the 
molecular atmosphere, Tm, is assumed to be given 
by the following expression: 

    _po 6 + 3p 
      1013 6-7p 

x 0.0825.-(3.916+0.074a+0.050/A)(2) 

where Po is the ground pressure, p is the depo-
larization factor of molecular scattering, and A is 
the wavelength. This relation was originally pro-
posed by Frolich and Shaw (1980) for the case of 
p= 0.0095. In the calculations for turbid atmo-
spheres, the size distribution of aerosols is assumed 
to obey the following power law:

where n(r)dr is the particle number with radii be-
tween r and r + dr, and C is a constant. 

Figure 1 shows the values of Z I in the principal 
plane for various conditions of molecular anisotropy, 
ground reflection, and aerosol optical thickness. 
The notations cum, Ta, and A9 represent the single-
scattering albedo of molecules, optical thicknesses 
of aerosols, and Lambertian surface albedo, respec-
tively. The complex refractive index of aerosols, m, 
is assumed to be 1.5-0i. In the case of the molecular 
atmosphere, we cannot ignore the depolarization ef-
fect produced by the molecular anisotropy (Behethi 
and Fraser, 1980) since it affects both the extinction 
coefficient and the degree of polarization. The value 
of oI is reduced by about 10 % as the depolariza-
tion factor increases from 0 to 0.03. The presence 
of ground reflection, on the other hand, has little 
effect on the value of LII. In turbid atmospheres.
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Fig. 2. The angular distribution of the relative errors in the sky radiance calculated by the scalar approx-
  imation for a molecular atmosphere (a) and a turbid atmosphere (b). Left halves are for transmitted 

 radiances and `S' denotes the solar point; right parts are for reflected radiances and 'A' denotes the an-
  tisolar point. Nadir/zenith angle is linearly plotted in degrees, and the outer arcs indicate the horizon. 

   Meanings of the parameters are given in the text.

the presence of aerosols gives rise to a noticeable 
decrease in dI, although the overall pattern of an-
gular distribution is almost the same as those for 
molecular atmospheres. 

 Figure 2 illustrates the angular distributions of 
the error in scalar intensity, —AI/I, for both molec-
ular and turbid atmospheres. The error distribu-
tions exhibit a symmetric feature for transmitted 
(TRANS) and reflected (REFL) radiations; a neg-
ative error appears around the solar (or antisolar) 
point, and a positive error along the line 90° distant 
from the solar (or antisolar) point. 

To investigate the azimuth dependence of AI, we 
expand the additional sky radiance in a Fourier se-
ries as 

Al (µ,tio, 0 — 00; 7, 70) 

M 

     _ E Alm (p, po; 7, To) cos m(¢I— 00). (4) 
m=0 

The highest order of expansion M is equal to 2 for 

Rayleigh atmospheres. In turbid atmospheres, the 

value of M depends on the degree of polarization 

caused by the aerosols. Fortunately, for ordinary 

earth's atmospheres, the representative size param-
eters of aerosols are large enough that the degree 

of resulting polarization is small compared with the 

case of molecular scattering. The values of L/"' for 

m > 3 have been found to be smaller by about 2 

orders of magnitude than those for 7n < 2, so that 

we can safely adopt M = 2.

3. Semi-empirical expression for the addi-
  tional sky radiance 

3.1 An expression for ,AI based on the successive 
order theory 

In view of the origin of the additional sky radi-
ance, an expression for ZI can be derived based 
on the theory of the successive order of scattering 

(Hovenier, 1971), according to which Aim can be 
expanded in the scattering order n: 

    m 

  DIµ, µo; T, To 

N 
= E I m (n)(µ, p0; T, 70) 

n=1 

N 

- E'scalar m (n)(P, PO; r, r0) 
n=1 

N 

 =QImPo(5) 
           n==2 

In the equation above, the identity It (1) _ 

'scalar "' (1) for unpolarized incident radiations has 

been used. The expansion coefficients AP' (n) are 

expressed as
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Table 1. Maximum Error and Root-Mean-
  Square Errors (in Parentheses) in Trans-

  mitted Radiance for a Molecular Atmo-
  sphere Corrected by Eqs. (5) and (6) with 

   Assuming N=2.

 3.2 An approximate formula of /AI  for Rayleigh at-
   mospheres 

 We would like to modify Eqs. (5) and (6) in order 
to include the contributions of higher order scatter-
ings. First, we expand the phase matrix P' as in 
Siewert (1981): 

L

The matrices Ai niand Br are of the forms:

Note: The

p=0, A9=0,

following conditions

and po=1013 mb.

are assumed: w,,,=1,

where co is the single-scattering albedo, [ ]ki denotes 
the matrix element of the k-th row and l-th column, 
and e(„) is the geometrical factor for n-th-order scat-
tering (of which formulations for n. = 1 and 2 were 
given by Hovenier, 1971). The matrix Pm is the 
m-th Fourier coefficient of the phase matrix P such 
that

where D = diag. (1, 1, i, i,). The simplest expres-
sion of Eq. (5) is obtained by assuming the maxi-
mum order oPscattering N to be 2. The residual er-
rors in radiances corrected by this method are listed 
in Table 1. The correction with N = 2 provides a 
fairly good result at A = 600 nm, but the errors in-
crease as the wavelength decreases and reach a max-
imum of 6.8 % at A = 350 nm. The errors are not 
negligible even for N = 3 and are estimated to be 
about 4% maximum at 350 nm. The error would de-
crease if a larger scattering order is assumed, but the 
formulation of the geometrical factor would simul-
taneously becomes too complicated to write down 
and the computer time would increase significantly. 
Obviously, therefore, Eqs. (5) and (6) are not ap-
propriate for a handy and yet economical correction 
procedure.

where

with P,;,,„ (µ) being the generalized spherical func-
tion (Gel'fand and Sapiro, 1956; Hovenier and van 
der Mee, 1983). In these expressions, we use some-
what different definitions for Pl m, Rim,Tim  and Bl 
from those employed by Siewert (1981) in order to 
simplify the formulations that follow. In the case of 
a Rayleigh atmosphere, the coefficient matrix, BR, 
can be expressed by the following 3 x 3 matrices 
(Vestrucci and Siewert, 1984),

and
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By using Eqs. (8) and (9), Eqs. (5) and (6) are 
modified as

where

and

radiance x and direction rl(or —ri). We have exam-
ined this assumption with numerical calculations, 
and have found that x and 7) can be determined 
almost uniquely for each set of m, 1, 10 and r0. 

After rewriting x and i to 440(7.0) and r/m (ro), 
respectively, we obtain an approximate expression 

for A/ for Rayleigh atmospheres: 

    m 

  QIp, po; r, r0) 
    ~' Eli:,Pi m(11)1'10m GO 

x x'170(ro)E (p , rliio(70)) µo; r, ro)Fo. (13) 

Equation (13) is simple enough for practical use. 
The values of X(To) and Co(r0) have been deter-
mined to fit to the values ofdI for 0<ro<2,as 
listed in Appendix B. The maximum optical thick-
ness of To = 2 is large enough for the ordinary earth's 
atmosphere. The contribution of the surface albedo 
is neglected since it hardly affects the additional sky 
radiance at least in the case of the Lambertian sur-
faces. 

3.3 Approximate formula of "AI for realistic earth's 
   atmospheres 

 In the case of an actual atmosphere, the value of 
ZI is affected considerably by molecular depolariza-
tion and aerosol loading, as shown in Fig. 1. To deal 
with such effects, we consider an atmosphere char-
acterized by the optical thickness of To, the single-
scattering albedo of w, and a Rayleigh-like phase 
matrix B given by

  Here we make a rather rough approximation as 

    °° 111     1 

  l + som~2nfdpn—1 ...dµ1       JI 
   n_211 

      XXIo(n)(µn-1, ... , pi; 1, BR) 
xe(n)(p, Pm-1 i ...' Po; T, To) 

     '='XE(µ,77,11o;T,To),(11) 

where x and 71 are adjustable parameters and E is 
a newly defined geometrical factor given by 

E(p,11, Po; T,To) 
= Ir/I{e(2)(L,1), Po; T, ro) 

+e(2)02, —71, Po; T, To)}.(12) 

The precise expression for E is given in Appendix B. 
The meaning of this approximation is that the sum 
of the multiple-scattered light transferred through 
the polarization components Q, U or V at least one 
time can be represented by the fictitious second-
order scattering of the first order scattered light with

where a and b are adjustable parameters and ei = 
0 for 1 >_ 2. Note that B0 is always equal to 
diag.(1,0,0) in 3 x 3 form. Most of the atmospheres 
can be approximated by To, w, a and b, as shown in 
the following cases. 

Molecular atmospheres. 
 When the anisotropic polarizability of molecules is 

taken into account, the phase matrix is expressed by 
(Hansen and Hovenier, 1974; Vestrucci and Siewert, 
1984) 

     B1 = 0, B2 =+PBR2, 

                1 

               P/2 
Bl = O for 1 > 3. (15) 

By comparing Eq. (15) with Eq. (14), we have
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Aerosol atmospheres. 
 Here we must treat the phase matrix in its full 

 4 x 4 form. But it is expected that the neglect of el 
causes a quite small error because, when the incident 
radiation is unpolarized, only the photons scattered 
at least four times will affect the radiance by el. 
Hansen (1974) has shown that the error due to the 
assumption of ei=0 is less than 0.0001 % even for 
an optically thick atmosphere. We therefore omit el 
from the phase matrix in the subsequent discussion. 

 In order to eliminate the contribution of higher 
orders of 1>_ 2, we use the truncation method dis-
cussed in Appendix A. If the truncation fraction f is 
assumed to be (2/32 —1)/9, the expansion coefficients 
of the truncated phase matrix, B' , are approximated 
as

and hence, 

Z1/(n)(µ', PO; T, TO) 

QI(n)(µ, PO; T, To) I W=w B=B 
,., Q(wnanb2n6To n).(19c) 

In these equations, n110 is given by n00=2, n02=1 
and n22=0, and nb is an unknown real number. The 
factor 2 appearing before nb indicates that b2 is the 
fundamental value for the estimate of I. By using 
Eq. (19c), we assume

and for 1 > 3,

             Q:—(21-}-1)f 
  B',=11f71 
              0 

y,0 
at—(21+1)f 0O.(17c) 

0 —(21+1)f 

By using these approximations, the parameters are 
obtained as 

   To = (1 — fwa)Ta,w=(1 — f )wa(18a,b) 1 — fwa 

 a1,b3172f,andT= T
Or, (18c,d,e) 

where T is the modified optical depth of the ob-
server's position. The parameters for a homoge-
neous turbid atmosphere involving both molecules 
and aerosols are easily obtained by the combination 
of Eq. (16) and Eq. (18), as listed in Appendix B. 

We now derive the expression for Eq. (10a) to 
include To, w a and b. The order of magnitude of 
each of the quantities in Eq. (10a) is estimated as 

Xlto(n)(µn-1, ... , ~d1; wB) 
ti O(wnan—niiob2ne),(19a) 

e(e)(µ, tin-1, ... , µo; T, r0) ^' O(ro ), (19b)

In Eq. (20b), a hypothetical scattering order n+2nb 
is used. These relations are similar to those pre-
sented by Lenoble (1954) and Dave (1964), indicat-
ing that the ratio of two successive values of I(n) in 
each direction is almost constant in Rayleigh atmo-
spheres. By summing up the geometrical progres-
sions of .6Jm (n) for n > 2 with Eqs. (20a) and 
(20b) and by using Eq. (13), we obtain the desired 
approximate expression for the additional sky radi-
ance for general atmospheres: 

AIm(µ, po; T, To) (wab)2 

        1—L\am(TO) 1—Am(TO)  

 x------------------ 

      1 — WaZAa m(TO) 1 —b22bm(f0) 
     x LT.(w)nno P, m(p)Ptom(p0)Xllo (To) 

x E(p, l]iio (TO), µo; T, TO)Fo. (21) 

Here we added the term (w)' llo to complete the 
w-dependence of LII. The values of da m(TO) and 
Am (7-0)  have been estimated with numerical calcu-
lations as listed in Appendix B. 

4. Numerical results 

To validate the efficiency of our expression for ill, 
we have calculated the maximum and rms residual 
errors for various conditions. We used the doubling-
adding method with 30 discrete streams for the cal-
culation of sky radiance. The results of our trans-
fer code closely coincided with those of Coulson et 
al. (1960) for Rayleigh atmospheres, except that 
the differences were more than 0.1 % for the grazing 
angles 0< Ipl < 0.2 or 0< µo < 0.2. The radi-
ances for aerosol atmospheres were compared with 
the results of Garcia and Siewert (1986) and Fraser 
(1988). The former authors compiled the intensi-
ties only for the small solar elevation of po = 0.20, 
and their values agreed with ours to within 0.3 %
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Table 2. Maximum and Root-Mean-Square Errors in Transmitted and Reflected Radiances for Molecular 
Atmospheres Calculated with Scalar Transfer Code (Iscatar) and Corrected by Eq. (21)(Iscatar + LI).

Note: Ground pressure po = 1013 nib is assumed.

for 0.20 < Ip < 1. The errors reduced to less than 
0.1 % when we used the 90-streams transfer code. 
This was also the case for the polarization compo-
nents Q, U and V. The results of Fraser (1988) were 
calculated for the aerosol atmosphere with Ta = 1, 
J=4,  po = 0.695 and 0.242 by using the transfer 
code developed by Dave. A discrepancy of 0.3 % is 
also found in this case. This discrepancy is consid-
ered to be due partly to the spline interpolation of 
our results on the coarse grid of the zenith angles 
for the comparison, and due partly to the inaccu-
racy of the matrix method with 30-streams. These 
errors are not always negligible when the absolute 
value is discussed. The main problem in this study 
is, however, the relative value of the difference be-
tween the scalar and vector intensities, i.e. JUL A 
comparison of the value of is made with the re-
sults of Fraser (1988) for Rayleigh atmospheres, and 
an overall agreement was found within 0.1 % except 
for the near-grazing angles. The self-consistency in 
our results calculated by 30- and 90-streams code 
was also 0.1 % for both Rayleigh and aerosol atmo-
spheres. 

To ensure the precision, the thirteen qua.drature 
points corresponding to 0.251 < IpI(and po) < 0.997 
were adopted for the data points in the following dis-
cussion. The mean and rms errors were calculated 
from the radiance values in 1118 directions with dif-
ferent combinations of p, po and 0 —¢0. 

In Table 2 are shown the maximum and the rms 
errors in the scalar and the corrected intensities for 
molecular atmospheres. The correction with Eq. 
(21) is almost perfect for Rayleigh atmospheres (up-
per part of the table). Even if we consider the ab-

sorption and depolarization (lower part of the table), 
the maximum and the rms errors are reduced to less 
than 0.6 % and 0.2 %, respectively. In many ap-
plications for practical problems, these errors must 
be insignificant because of uncertainties inherently 
caused by a horizontal inhomogeneity of the atmo-
sphere, and by observational errors. The angular 
distributions of % error are shown in Fig. 3a. By 
comparing with Fig. 2a, it is found that the correc-
tion is quite satisfactory. In Table 3 are listed the 
errors for the downward and upward radiances at 
various pressure levels in Rayleigh atmospheres. It 
is also found that our expression is valid for the in-
ternal field. 

 Results for homogeneous turbid atmospheres with 
several aerosol polydispersions are summarized in 
the upper and middle parts of Table 4 and Fig. 
3b. The maximum and the rms errors were re-
duced to less than 0.6 % and 0.3 %, respectively, in 
most cases. The largest error of 0.9 % was found 
for the case of strongly absorbing aerosols with 

= 1.5 — 0.05i. Such large errors, however, occur 
for limited angles; small values of p for small values 
of Po in transmitted radiances near 0 — 00 = 180°, 
and large values of Ip1 for large values of µo in re-
flected radiances. The variety of the phase matrix 
is well represented with the two parameters, )32 and 
72. Since 72 is the only unknown quantity within 
a scalar transfer code, we need no additional Mie 
calculation for the correction if the parameter 72 is 
assumed to be zero. The errors calculated with this 
assumption are about twice as large as those in the 
previous calculation, as listed in the lower part of 
Table 4. This result indicates that an introduction
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Fig. 3. Same as Fig. 2 but corrected by Eq. (21).

Table 3. Maximum and Root-Mean-square Errors in Internal Fie Ids at Several Pressure Levels in a Molec-

ular Atmosphere.

 Note: The following conditions are  assumed: Wm=1 p=0, po=1013 mb, and A9=0.1.

of 72 is important for the improved correction. 
 The computer time required for the correction, 

on the other hand, depends on the number of data 

points but is usually negligible. If the corrections 
are performed on the scalar intensities in 150 direc-
tions, for example, the required CPU-time is 1/200 
of that of scalar transfer code which is quite small 
compared with the increment of CPU-time for vec-
tor calculation (about 5 times that of scalar transfer 
code). 
 Now let us turn to the applicability of our method 

to inhomogeneous atmospheres. We have tested a 
two-layered atmosphere consisted of a homogeneous 
turbid layer and an overlaying pure molecular layer. 
Equation (21) is used to correct the scalar reflection 
and transmission matrices of each layer before ap-
plying the adding procedure. The results are listed

in Table 5. Since this method can account for the po-
larization effects only roughly, the errors are larger 
by about one order of magnitude than those of ho-
mogeneous atmospheres (corresponding to the rows 
of 0-1013mb in the table). Nevertheless a consider-
able improvement is achieved, especially for the case 
of low-level haze layers, say at 900 — 1013 mb pres-
sure levels, as are frequently observed in the actual 
atmosphere. 

5. Summary 

 We have analyzed the angular distribution of the 
errors involved in sky radiances caused by the use 
of the scalar approximation, and proposed a semi-
empirical expression for reducing the errors. The 
validity and efficiency of our expression are found to 
be quite satisfactory for homogeneous, optically thin



October 1989 H. Ogawa, M. Tanaka and T. Nakajima 885

Table 4. Maximum and  R.nnt-Mean-Smiare Frrnrs in Trancmit.t.Pg and RPflprtarl RarlianrPe fnr Ti~r}~irl

Atmospheress.

Note: The following conditions are assumed: w,,,=1

is assumed in the calculation ofIM

, p=0.03, po =1013 mb, and A9=0. For the last three rows, 72=0

Table 5. Muximum and

Layered

Root-Mean-Square Errors in

Inhomogeneous Atmospheres.

Transmitted and Reflected Radiances for Two-

Note: The fo lowing conditions are assumed: w,,,, p = 0.03 ,rn=1.5-0i, J = 4, po = 1013 mb, and Ag = 0.

and moderately thick, but not strongly absorbing 
atmospheres. The errors are reduced to less than 
0.6 % in most cases, except for strongly absorbing 
atmospheres. The present method should also re-
duce the amount of labor required for reprogram-
ming a scalar transfer code in order to include the 

polarization effects. Rapid and yet rather accurate 
calculation of sky radiance can be carried out if the 
correction term proposed in this work is added to a 
fast scalar transfer code (Stamnes, 1986; Nakajima

and Tanaka, 1986). Such a fast transfer code is re-
quired, for example, to retrieve some optical prop-
erties of aerosols from sky radiance measurements. 
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Fig. A. Sky radiance in the solar meridian for L=60 model of Garcia and Siewert (1986) calculated with 
10-streams code for a not-truncated phase matrix (triangle); 10-streams for the truncated case (open 
circle); 30-streams for the truncated case (full circle). Squares are taken from Garcia and Siewert(1986).

 carried out by ACOS-l000 and SX-1 of Computer 
Center, Tohoku University. 

              Appendix 

A. Truncation Technique Including Polariza-
  tion Effects. 

  Wiscombe (1977) has developed the 6-M method 
which truncates the forward peak of the phase func-
tion P() as 

P()"'216(1— +(1— PP' (0,(Al) 

where = cos O (0 is the scattering angle) and f is 
the truncation fraction. We extend this technique to 
apply to the phase matrix with strongly asymmetric 
diagonal elements. 

When the phase matrix is expressed for the modi-
fied Stokes vector II, I,., Q and V, the forward parts 
of the diagonal elements can be represented by one 
value since the amplitude functions, S1 and S2, coin-
cide with each other at 0 0. Then the truncation 
formula for the phase matrix is given by 

P(e) "' 216(1 — )E + (1 — f)Pt (e), (A2) 

where E is the unit matrix. This equation is still 
valid if we use the Stokes vector (I, Q, U and 
V) or the CP-representation (12, 10, Lo and I_2). 
From the orthogonal completeness of the generalized 
spherical function (Gel'fand and Sapiro, 1956):

the expansion coefficients for the forward peak, 
216(1  — e)E, are easily estimated by using the CP-
representation as 

216(1 — ) = E (21 + 1)fPP m( ), (A3) 
1=lml 

for 7n = 2, 0, —0 and —2. After translating this into 

the Stokes vector, we have

The

then

truncated Part of the phase matrix,

expressed by

Pt (0, is
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 where f * =0 for 1=0 and 1, and f * = f for 1 >_ 2. If 
we assume the truncation fraction to be /3L, each 
element in B1 I almost vanishes for 1 > L, and can 
be approximated by 0. 

  We have performed several numerical calculations 
using this method by assuming the truncation order 
L to be twice the number of discrete streams. As 
shown in Fig. A, a considerable improvement can be 
achieved by such truncation. The principal cause for 
this improvement is thought to be the truncation of 
the 13 element, i.e. Eq. (Al). However, the conver-
sion of the polarized light of forward scattering into 
the direct transmitted light cannot be attained with 
the scalar truncation method alone.

The formulae for E are given bv (Hovenier. 19711
B. A Complete Formulation of the Expres-

  sion for the Additional Sky Radiance 
  Here we summarize the formulae needed for the 

correction procedure. The scalar intensity, I,cala,., 
is corrected to the improved one I as

The Fourier components ZAP" are calculated by

where

where

Greek letter constants, [32 and 72, are calculated by 

(Herman and Lenoble,1968; Hovenier and van der 
Mee, 1983)

where

the

Y(t.)is the scattering matrix

Stokes vector.
expressed for
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天空光強度における偏光の影響の補正法

　　　　　　　　小川　　浩

　　　　 (東北大学選鉱製錬研究所)

　　　　　 田中正之 ・中島映至

　　　(東北大学超高層物理学研究施設)

　分子大気お よび混濁大気における天空光強度 を計算す る場合、偏光効果を無視 した計算では最大10%程

度の誤差が生 じる。 この誤差 を補正す るための本研究で は、偏光効果から発生する天空光強度 を逐次散乱

法 に基づ いて定式化 し、いくつかのパラメタ リゼーションによって簡便 な補正式 にまとめた。光学的に厚

くない均一大気の場合、 我 々の得た補正式 は偏光の影響 による誤差を0.6%程 度まで減 らす ことができた。


