{"created":"2023-05-16T08:14:40.962949+00:00","id":2007505,"links":{},"metadata":{"_buckets":{"deposit":"acf8b086-bdfc-4b88-bc85-40a9cc1ee3f2"},"_deposit":{"created_by":18,"id":"2007505","owners":[18],"pid":{"revision_id":0,"type":"depid","value":"2007505"},"status":"published"},"_oai":{"id":"oai:repository.dl.itc.u-tokyo.ac.jp:02007505","sets":["312:6865:1684224059064:1684224099751","9:504:6868:1684224137175:1684224167915"]},"author_link":[],"item_4_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2022-05-02","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"1","bibliographicPageEnd":"148","bibliographicPageStart":"115","bibliographicVolumeNumber":"29","bibliographic_titles":[{"bibliographic_title":"Journal of Mathematical Sciences The University of Tokyo","bibliographic_titleLang":"en"}]}]},"item_4_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"Let $F(x, y, y\u0001') = 0$ be an analytic or algebraic differential equation with $y\u0001'$-degree $d$. We deal with the qualitative study ofsuc h equation through the geometry ofthe planar $d$-web generated by the integral curves. Using meromorphic connection methods associated with the analytic class of F, Lie or infinitesimal symmetries of these configurations are studied for essentially $d ≥ 3$ in the nonsingular case and from the viewpoint of their singularities. Maximal rank problems related to Abel’s addition theorem are also discussed. Basic examples are given from different domains including classic algebraic geometry and Frobenius 3-manifolds or WDVV-equations.","subitem_description_language":"en","subitem_description_type":"Abstract"}]},"item_4_publisher_20":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"Graduate School of Mathematical Sciences, The University of Tokyo","subitem_publisher_language":"en"}]},"item_4_source_id_10":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA11021653","subitem_source_identifier_type":"NCID"}]},"item_4_source_id_8":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"13405705","subitem_source_identifier_type":"ISSN"}]},"item_4_text_17":{"attribute_name":"Mathmatical Subject Classification","attribute_value_mlt":[{"subitem_text_language":"en","subitem_text_value":"14C21(MSC2020)"},{"subitem_text_language":"en","subitem_text_value":"53A60(MSC2020)"},{"subitem_text_language":"en","subitem_text_value":"32S65(MSC2020)"}]},"item_4_text_33":{"attribute_name":"原稿受領日","attribute_value_mlt":[{"subitem_text_value":"2021-08-20"}]},"item_4_text_4":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_language":"fr","subitem_text_value":"Institut de Mathématiques de Bordeaux, Université de Bordeaux et CNRS"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorAffiliations":[{"affiliationNames":[{"affiliationName":"Université de Bordeaux","affiliationNameLang":"fr"}]},{"affiliationNames":[{"affiliationName":"Centre national de la recherche scientifique","affiliationNameLang":"fr"}]}],"creatorNames":[{"creatorName":"Hénaut, Alain","creatorNameLang":"en"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_access","date":[{"dateType":"Available","dateValue":"2023-05-16"}],"displaytype":"detail","filename":"jms290104.pdf","filesize":[{"value":"265.7 KB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"objectType":"fulltext","url":"https://repository.dl.itc.u-tokyo.ac.jp/record/2007505/files/jms290104.pdf"},"version_id":"410cd3a8-401b-4960-a28a-89c2772f6cc7"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"Web geometry","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Lie algebra of symmetries","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"abelian relations","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Frobenius 3-manifolds or WDVV-equations","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Lie Symmetries for Implicit Planar Webs","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Lie Symmetries for Implicit Planar Webs","subitem_title_language":"en"}]},"item_type_id":"4","owner":"18","path":["1684224167915","1684224099751"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2023-05-16"},"publish_date":"2023-05-16","publish_status":"0","recid":"2007505","relation_version_is_last":true,"title":["Lie Symmetries for Implicit Planar Webs"],"weko_creator_id":"18","weko_shared_id":-1},"updated":"2023-05-16T08:14:47.688504+00:00"}