{"created":"2023-05-31T04:34:13.223318+00:00","id":2007544,"links":{},"metadata":{"_buckets":{"deposit":"697b80bf-ff00-4a86-8673-8d1d4e88bb82"},"_deposit":{"created_by":18,"id":"2007544","owners":[18],"pid":{"revision_id":0,"type":"depid","value":"2007544"},"status":"published"},"_oai":{"id":"oai:repository.dl.itc.u-tokyo.ac.jp:02007544","sets":["312:6865:1684224059064:1685411592867","9:504:6868:1684224137175:1685411665638"]},"author_link":[],"item_4_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2022-05-27","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"2","bibliographicPageEnd":"256","bibliographicPageStart":"149","bibliographicVolumeNumber":"29","bibliographic_titles":[{"bibliographic_title":"Journal of Mathematical Sciences The University of Tokyo","bibliographic_titleLang":"en"}]}]},"item_4_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"In the series of this paper and the forthcoming papers [47, 48] we study the Navier–Stokes equations in a three-dimensional curved thin domain around a given closed surface under Navier’s slip boundary conditions. We focus on the study of the Stokes operator for the curved thin domain in this paper. The uniform norm equivalence for the Stokes operator and a uniform difference estimate for the Stokes and Laplace operators are established in which constants are independent of the thickness of the curved thin domain. To prove these results we show a uniform Korn inequality and a uniform a priori estimate for the vector Laplace operator on the curved thin domain based on a careful analysis of vector fields and surface quantities on the boundary. We also present examples of curved thin domains and vector fields for which the uniform Korn inequality is not valid but a standard Korn inequality holds with a constant that blows up as the thickness of a thin domain tends to zero.","subitem_description_language":"en","subitem_description_type":"Abstract"}]},"item_4_publisher_20":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"Graduate School of Mathematical Sciences, The University of Tokyo","subitem_publisher_language":"en"}]},"item_4_source_id_10":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA11021653","subitem_source_identifier_type":"NCID"}]},"item_4_source_id_8":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"13405705","subitem_source_identifier_type":"ISSN"}]},"item_4_text_17":{"attribute_name":"Mathmatical Subject Classification","attribute_value_mlt":[{"subitem_text_language":"en","subitem_text_value":"76D07(MSC2010)"},{"subitem_text_language":"en","subitem_text_value":"35Q30(MSC2010)"},{"subitem_text_language":"en","subitem_text_value":"76D05(MSC2010)"},{"subitem_text_language":"en","subitem_text_value":"76A20(MSC2010)"}]},"item_4_text_33":{"attribute_name":"原稿受領日","attribute_value_mlt":[{"subitem_text_value":"2021-03-04"}]},"item_4_text_4":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_language":"en","subitem_text_value":"Department of Mathematics, Kyoto university"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorAffiliations":[{"affiliationNames":[{"affiliationName":"Kyoto University","affiliationNameLang":"en"}]}],"creatorNames":[{"creatorName":"Miura, Tatsu-Hiko","creatorNameLang":"en"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_access","date":[{"dateType":"Available","dateValue":"2023-05-31"}],"displaytype":"detail","filename":"jms290201.pdf","filesize":[{"value":"613.5 KB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"objectType":"fulltext","url":"https://repository.dl.itc.u-tokyo.ac.jp/record/2007544/files/jms290201.pdf"},"version_id":"8bac5713-649a-43d0-bc1b-c4555307d329"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"Stokes operator","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"curved thin domain","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"slip boundary conditions","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"uniform Korn inequality","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"uniform a priori estimate","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Navier-Stokes Equations in a Curved Thin Domain, Part I : Uniform Estimates for the Stokes Operator","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Navier-Stokes Equations in a Curved Thin Domain, Part I : Uniform Estimates for the Stokes Operator","subitem_title_language":"en"}]},"item_type_id":"4","owner":"18","path":["1685411592867","1685411665638"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2023-05-31"},"publish_date":"2023-05-31","publish_status":"0","recid":"2007544","relation_version_is_last":true,"title":["Navier-Stokes Equations in a Curved Thin Domain, Part I : Uniform Estimates for the Stokes Operator"],"weko_creator_id":"18","weko_shared_id":-1},"updated":"2023-05-31T04:34:20.223891+00:00"}