{"created":"2021-03-01T06:59:33.655684+00:00","id":39999,"links":{},"metadata":{"_buckets":{"deposit":"d919809d-3c07-46d4-a3a1-3267cb1e0591"},"_deposit":{"id":"39999","owners":[],"pid":{"revision_id":0,"type":"depid","value":"39999"},"status":"published"},"_oai":{"id":"oai:repository.dl.itc.u-tokyo.ac.jp:00039999","sets":["312:6865:6889:6893","9:504:6868:6891:6894"]},"item_4_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2014-01-15","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"3","bibliographicPageEnd":"460","bibliographicPageStart":"445","bibliographicVolumeNumber":"20","bibliographic_titles":[{"bibliographic_title":"Journal of mathematical sciences, the University of Tokyo"}]}]},"item_4_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"The first half of this paper concerns the topology of the space A(M) of (not necessarily contact) Anosov vector fields on the unit tangent bundle M of closed oriented hyperbolic surfaces Σ. We show that there are countably infinite connected components of A(M), each of which is not simply connected. In the second part, we study contact Anosov flows. We show in particular that the time changes of contact Anosov flows forma C1-open subset of the space of the Anosov flows which leave a particular C∞ volume form invariant, if the ambiant manifold is a rational homology sphere.","subitem_description_type":"Abstract"}]},"item_4_publisher_20":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"Graduate School of Mathematical Sciences, The University of Tokyo"}]},"item_4_source_id_10":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA11021653","subitem_source_identifier_type":"NCID"}]},"item_4_source_id_8":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"13405705","subitem_source_identifier_type":"ISSN"}]},"item_4_subject_15":{"attribute_name":"日本十進分類法","attribute_value_mlt":[{"subitem_subject":"415","subitem_subject_scheme":"NDC"}]},"item_4_text_16":{"attribute_name":"Mathematical Reviews Number","attribute_value_mlt":[{"subitem_text_value":"MR"}]},"item_4_text_17":{"attribute_name":"Mathmatical Subject Classification","attribute_value_mlt":[{"subitem_text_value":"37D20(MSC2010)"},{"subitem_text_value":"37C40(MSC2010)"}]},"item_4_text_33":{"attribute_name":"原稿受領日","attribute_value_mlt":[{"subitem_text_value":"2013-08-26"}]},"item_4_text_4":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"Department of Mathematics, College of Science and Technology, Nihon University"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Matsumoto, Shigenori"}],"nameIdentifiers":[{"nameIdentifier":"92426","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2017-06-14"}],"displaytype":"detail","filename":"jms200306.pdf","filesize":[{"value":"132.0 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"jms200306.pdf","url":"https://repository.dl.itc.u-tokyo.ac.jp/record/39999/files/jms200306.pdf"},"version_id":"0971db02-21fb-4597-bd33-06cde3c77aad"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"Anosov flows","subitem_subject_scheme":"Other"},{"subitem_subject":"contact Anosov flows","subitem_subject_scheme":"Other"},{"subitem_subject":"C1-open subset","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"The Space of (Contact) Anosov Flows on 3-Manifolds","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"The Space of (Contact) Anosov Flows on 3-Manifolds"}]},"item_type_id":"4","owner":"1","path":["6893","6894"],"pubdate":{"attribute_name":"公開日","attribute_value":"2015-12-15"},"publish_date":"2015-12-15","publish_status":"0","recid":"39999","relation_version_is_last":true,"title":["The Space of (Contact) Anosov Flows on 3-Manifolds"],"weko_creator_id":"1","weko_shared_id":null},"updated":"2022-12-19T04:14:31.917868+00:00"}