{"created":"2021-03-01T06:59:34.199956+00:00","id":40007,"links":{},"metadata":{"_buckets":{"deposit":"99e9bc97-25d2-46ae-b142-1356bbd9cd01"},"_deposit":{"id":"40007","owners":[],"pid":{"revision_id":0,"type":"depid","value":"40007"},"status":"published"},"_oai":{"id":"oai:repository.dl.itc.u-tokyo.ac.jp:00040007","sets":["312:6865:6889:6897","9:504:6868:6891:6898"]},"item_4_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2013-07-11","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"1","bibliographicPageEnd":"146","bibliographicPageStart":"127","bibliographicVolumeNumber":"20","bibliographic_titles":[{"bibliographic_title":"Journal of mathematical sciences, the University of Tokyo"}]}]},"item_4_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"This paper is intended to investigate a fractional differential Whittaker’s equation of order 2α, with α ∈]0, 1], involving the Riemann-Liouville derivative. We seek a possible solution in terms of power series by using operational approach for the Laplace and Mellin transform. A recurrence relation for coefficients is obtained. The existence and uniqueness of solutions is discussed via Banach fixed point theorem.","subitem_description_type":"Abstract"}]},"item_4_publisher_20":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"Graduate School of Mathematical Sciences, The University of Tokyo"}]},"item_4_source_id_10":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA11021653","subitem_source_identifier_type":"NCID"}]},"item_4_source_id_8":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"13405705","subitem_source_identifier_type":"ISSN"}]},"item_4_subject_15":{"attribute_name":"日本十進分類法","attribute_value_mlt":[{"subitem_subject":"415","subitem_subject_scheme":"NDC"}]},"item_4_text_16":{"attribute_name":"Mathematical Reviews Number","attribute_value_mlt":[{"subitem_text_value":"MR"}]},"item_4_text_17":{"attribute_name":"Mathmatical Subject Classification","attribute_value_mlt":[{"subitem_text_value":"35R11(MSC2010)"},{"subitem_text_value":"34B30(MSC2010)"},{"subitem_text_value":"42A38(MSC2010)"}]},"item_4_text_33":{"attribute_name":"原稿受領日","attribute_value_mlt":[{"subitem_text_value":"2012-07-19"}]},"item_4_text_4":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"CIDMA - Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Rodrigues, M. M."}],"nameIdentifiers":[{"nameIdentifier":"92439","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Vieira, N."}],"nameIdentifiers":[{"nameIdentifier":"92440","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2017-06-14"}],"displaytype":"detail","filename":"jms200105.pdf","filesize":[{"value":"141.4 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"jms200105.pdf","url":"https://repository.dl.itc.u-tokyo.ac.jp/record/40007/files/jms200105.pdf"},"version_id":"b4064877-5051-4dbf-96c7-2341bd6a75cb"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"On Fractional Whittaker Equation and Operational Calculus","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"On Fractional Whittaker Equation and Operational Calculus"}]},"item_type_id":"4","owner":"1","path":["6897","6898"],"pubdate":{"attribute_name":"公開日","attribute_value":"2015-12-15"},"publish_date":"2015-12-15","publish_status":"0","recid":"40007","relation_version_is_last":true,"title":["On Fractional Whittaker Equation and Operational Calculus"],"weko_creator_id":"1","weko_shared_id":null},"updated":"2022-12-19T04:14:25.923222+00:00"}