{"created":"2021-03-01T07:00:41.793755+00:00","id":40997,"links":{},"metadata":{"_buckets":{"deposit":"7ce7f765-9ee3-45a7-b62b-308418c7e24f"},"_deposit":{"id":"40997","owners":[],"pid":{"revision_id":0,"type":"depid","value":"40997"},"status":"published"},"_oai":{"id":"oai:repository.dl.itc.u-tokyo.ac.jp:00040997","sets":["312:7290:7296","9:504:7292:7297"]},"item_4_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1990","bibliographicIssueDateType":"Issued"},"bibliographicPageEnd":"47","bibliographicPageStart":"37","bibliographicVolumeNumber":"40","bibliographic_titles":[{"bibliographic_title":"Scientific papers of the College of Arts and Sciences, the University of Tokyo"}]}]},"item_4_description_13":{"attribute_name":"フォーマット","attribute_value_mlt":[{"subitem_description":"application/pdf","subitem_description_type":"Other"}]},"item_4_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"We conclude our study of finite groups G and H with a common 2-subgroup S such that $\\mid G : S \\mid $ and $\\mid H : S \\mid $ are powers of odd primes q and r, respectively, and Sylowy q-subgroups of G and Sylow r-subgroups of H are cyclic and nontrivial. The main objective is to obtain generators and relations of these groups in certain important cases.","subitem_description_type":"Abstract"}]},"item_4_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.15083/00040988","subitem_identifier_reg_type":"JaLC"}]},"item_4_publisher_20":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"The University of Tokyo"}]},"item_4_source_id_10":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA10538733","subitem_source_identifier_type":"NCID"}]},"item_4_source_id_8":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"02897520","subitem_source_identifier_type":"ISSN"}]},"item_4_subject_15":{"attribute_name":"日本十進分類法","attribute_value_mlt":[{"subitem_subject":"410","subitem_subject_scheme":"NDC"}]},"item_4_text_4":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"Department of Mathematics, College of Arts and Sciences, University of Tokyo|Department of Mathematics, Faculty of Science University of Tokyo"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Gomi, Kensaku"}],"nameIdentifiers":[{"nameIdentifier":"139870","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Tanaka, Yasuhiko"}],"nameIdentifiers":[{"nameIdentifier":"139871","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2017-06-27"}],"displaytype":"detail","filename":"scp040003.pdf","filesize":[{"value":"736.6 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"scp040003.pdf","url":"https://repository.dl.itc.u-tokyo.ac.jp/record/40997/files/scp040003.pdf"},"version_id":"ffadec8a-0899-4f2a-b8c2-46fbfa407d57"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"On Pairs of Groups Having a Common 2-Subgroup of Odd Indices, II","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"On Pairs of Groups Having a Common 2-Subgroup of Odd Indices, II"}]},"item_type_id":"4","owner":"1","path":["7296","7297"],"pubdate":{"attribute_name":"公開日","attribute_value":"2008-11-19"},"publish_date":"2008-11-19","publish_status":"0","recid":"40997","relation_version_is_last":true,"title":["On Pairs of Groups Having a Common 2-Subgroup of Odd Indices, II"],"weko_creator_id":"1","weko_shared_id":null},"updated":"2022-12-19T04:14:21.544302+00:00"}