{"created":"2021-03-01T06:20:45.577672+00:00","id":4103,"links":{},"metadata":{"_buckets":{"deposit":"d73feaac-30cb-4d24-9899-730e3f4ce6e3"},"_deposit":{"id":"4103","owners":[],"pid":{"revision_id":0,"type":"depid","value":"4103"},"status":"published"},"_oai":{"id":"oai:repository.dl.itc.u-tokyo.ac.jp:00004103","sets":["6:273:326","9:233:280"]},"item_7_alternative_title_1":{"attribute_name":"その他のタイトル","attribute_value_mlt":[{"subitem_alternative_title":"Motion Control of a Robot Limb Using Simultaneous Drive of Mono- and Bi-articular Muscles"}]},"item_7_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2011-03-24","bibliographicIssueDateType":"Issued"},"bibliographic_titles":[{}]}]},"item_7_date_granted_25":{"attribute_name":"学位授与年月日","attribute_value_mlt":[{"subitem_dategranted":"2011-03-24"}]},"item_7_degree_grantor_23":{"attribute_name":"学位授与機関","attribute_value_mlt":[{"subitem_degreegrantor":[{"subitem_degreegrantor_name":"University of Tokyo (東京大学)"}]}]},"item_7_degree_name_20":{"attribute_name":"学位名","attribute_value_mlt":[{"subitem_degreename":"博士(工学)"}]},"item_7_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"今日、人間を直接手助けするためや人間が立ち入れない環境下で代わりとなって働くための介護・アシストロボット等の研究が行われている。本論文は、産業応用分野と異なり、人間の生活環境のようにある程度広い環境適応性を持つロボットの四肢を対象とし、ヒトの持つ筋骨格構造と出力特性を生かした運動制御の理論と簡単かつ柔軟な制御手法の提案およびそれら工学的検証に関して論ずる。四肢の二次元平面運動は、上肢における物を押したり持ち上げる動きに相当し、下肢における直立・着地・二足歩行などの基本となる。ロボットがスムーズな二足歩行を実現することは、階段などの段差が存在する環境下に直接適応出来る点で有用であり、ヒトの筋骨格構造に学びロボットの腕や脚の制御が簡単化されれば、直接的にヒトの手助けが実現する点で有用性がある。本論文では、医学者や理学療法士らが注目する生物の筋骨格構造の中で、生体に特有の二関節筋と呼ばれる筋肉の役割と一関節筋と呼ばれる筋肉との協調性に着目する。生体に特有の二関節同時駆動とは、二関節筋と呼ばれる二つの関節にまたがった筋肉が、収縮時に両関節を同時に同じ力で回転させる駆動系を意味する。従来のロボットは各関節に一関節駆動を装備し、各関節を独自に制御することで多関節マニピュレータの運動を実現してきた。それぞれの関節を独自に駆動するマニピュレータの運動制御手法はロボット工学によって確立されているが、生体には二関節筋が存在することは事実であり、一関節筋と二関節筋の協調活動が行われていることが筋電図測定より明らかになっている。最初に、3対6筋モデルと呼ばれるヒトの上肢と下肢に備わる筋骨格構造の特徴を利用した2リンクアーム・レッグのモデル化を導出した。次に、静止状態におけるヒトの構造的特徴と一関節・二関節同時駆動の協調性を生かした、先端での力と関節トルクの関係を理論的に検証した。ヒトが頻繁に行う基本動作である支点と先端を結んだ方向への力の発生に着目し、ヒトの構造的特徴として二つのリンクの長さと関節の回転半径がそれぞれ等しいという条件の下で、一関節・二関節同時駆動の協調性を考慮したアクチュエータ出力と先端力の関係を定式化した。この条件下では、アクチュエータの制御が特異的に簡略化出来ることを理論的に導いた。この特徴的な条件は、先行研究のヒトの先端力と筋電位の同時測定の結果と一致し、ヒトが一関節筋と二関節筋の協調活動によって合理的な先端力制御を行っていることが分かった。そして、二関節筋を持つヒトは、支点と先端を結んだ軸に対称な先端力分布を備えおり、筋電図測定で示された各筋肉の出力制御により先端力の方向を見通し良く制御している。これに習ったアクチュエータ出力の制御手法を提案した。続いて、腕や脚の運動における質量や慣性および重力の影響を考慮した関節トルク制御の理論を導いた。前述と同じヒトの基本動作である曲げ伸ばし運動に着目し、各リンクの質量が等しいという仮定を置くことで、関節トルクの数学的記述が簡略化出来る。この伸縮運動時の関節トルク分布を計算し、一次関数と二次関数を主とした関数であることから、伸縮運動時の非線形性の補償は簡単であることを導いた。さらに、生物の柔軟性を仮想的なバネ・ダンパで再現した電磁アクチュエータ制御を利用し、支点と先端を結んだ軸に仮想的なバネ・ダンパを備え、粘弾性をソフトウェアで簡単に調整出来る制御の考え方を提案した。この基本的な伸縮運動が、以上の先端力制御と前項のトルク補償の重ね合わせで実現することを利用し、伸縮運動のヒトに学んだ簡略化手法を提案した。また、ヒトの歩行についてのモデル化を行い、立脚時に地面を踏む力の方向が支点と先端を結んだ方向を基準に微少変化していることに着目して、提案した伸縮動作を応用した歩行動作を制御する方法を提案した。そして、提案した伸縮運動制御を実験機に実装し、性能と問題点の評価を通じてその有効性を検証した。本論文は、ヒトの構造的特徴と運動の特性の何が具体的に優れているのかという視点でヒトの特徴を抽出し、腕や脚の運動を工学的に解析した。その結果、ヒトの持つ二関節筋の役割とリンク長が等しいなどの構造的特徴が、基本動作の簡単な実現に役立っていることが明確化され、その知見がロボットの運動制御の簡単化に役立つことを示した。そして、その制御の具体的実装と実験的検証を試験機を用いて行った。","subitem_description_type":"Abstract"},{"subitem_description":"Research on a robot for assisting a human is presently advancing. In this paper, characteristics of limbs of a robot which has wider environment adaptability than industrial applications are mainly discussed. In addition, motion control taking account of musculoskeletal mechanisms and output characteristic of a human is discussed. There are a lot of basic motions of the tip at the two-dimensional plane for a human such as picking up a heavy load by upper limbs and standing, landing and biped-walking in lower limbs. It is qualitatively proven that cooperation of mono- and bi-articular simultaneous drives which are typical mechanisms of a human derives simplified relationship between each actuator torques and output force at the tip, and control system for a robot taking advantage of the characteristic and flexibility of a human is proposed and verified from the engineering point of view. Characteristic of the bi-articular simultaneous drive is that applies a rotational torque to adjacent joints simultaneously. On the contrary, a conventional artificial multi-joint manipulator does not have the drive and it has been totally controlled by combination of individual control of each joint drive. The conventional control for a multi-joint manipulator has been already realized by robotics. However, we have certainly the bi-articular muscles and the cooperation actuation has been confirmed by measurement of myoelectric potentials of human muscles. First, two-link model of an arm or a leg taking account of three pairs and six muscles mechanism of a human was theoretically described. In addition, relationship between output force at the tip and joint torques on static condition taking advantages of structural characteristics and cooperation of mono- and bi-articular simultaneous drives of a human has been theoretically described. Relationship between actuator torques depending on the cooperation of mono- and bi-articular simultaneous drives, and output force at the tip has been simply formulated, in case of that the direction of the output force is limited to the axis between a supporting point and a tip which is one of the fundamental action of a human and length of each link and radius of rotation of each joint are set to same respectively from an analogy to human structure. It has been theoretically derived that actuator control can be specifically simplified at the situation. Moreover, those actuator torques for the output force corresponded to activations of muscles of a human from the simultaneous measurement of output force and myoelectric potentials of muscles using Electromiogram (EMG). It has been proven that a human has rational mechanism for output force control at the tip taking advantage of the cooperative actuation of mono- and bi-articular muscles. Additionally, a human has a typical output force distribution which is symmetrical to the axis connecting between the supporting point and the tip, and control of the direction of the force is realized adjusting muscular forces based on the simple linear patterns for the direction to the axis. A simple patterned actuator control taking account of the direction of the output force and activation of each muscle has been proposed based on the investigation. Furthermore, a control of joint torques for dynamic motions of an arm and a leg taking account of mass, inertia and gravity have been theoretically derived. The characteristics have been simply formulated at stretching motion to the straight line in case of the specific situations as mentioned above and mass of each link is same. It has been derived from numerical calculation that the functional frames of torques for compensating such inertia and gravity effects are linear and quadratic. Therefore, compensation of the nonlinearity of the motion can be simplified in the stretching motion. Moreover, flexible control for the stretching motion using virtual spring and damper connecting between the supporting point and the tip has been proposed from biomechanical point of view. Flexibility of a biological subject can be modeled by an electric actuator control using virtual spring and damping factors, and its characteristics are to be tuned by software. The fundamental stretching motion can be realized by superposition of flexible output force control and supplemental simple torques including easy nonlinearity. The easy control method taking advantages of human features is useful from engineering point of view. Furthermore, a walking motion of a human has been modeled and it has been theoretically described that directions of the reaction force to the ground during the motion are set to the axis connecting the hip point and ankle points, with small displacements from the axis. A control method for the walking motion can be proposed based on the proposed stretching motion. Finally, the proposed stretching motion control was implemented to a test robot, and the availability of the control was verified through the control performance and a problematic point of experiment. In this paper, characteristic of motion taking advantage of a human structure and feature of a human has been analyzed from engineering points of view. Consequently, a function of bi-articular simultaneous drive and structural characteristics of a human such as length of each link is same, are useful for realization of simple fundamental motion. The simplified motion control can be applied to engineering robots directly. Experiment of a test arm have proven a practical way of implementation of the control to an artificial robot arm.","subitem_description_type":"Abstract"}]},"item_7_dissertation_number_26":{"attribute_name":"学位授与番号","attribute_value_mlt":[{"subitem_dissertationnumber":"甲第26803号"}]},"item_7_full_name_3":{"attribute_name":"著者別名","attribute_value_mlt":[{"nameIdentifiers":[{"nameIdentifier":"9450","nameIdentifierScheme":"WEKO"}],"names":[{"name":"Fukusho, Hiroyuki"}]}]},"item_7_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.15083/00004094","subitem_identifier_reg_type":"JaLC"}]},"item_7_select_21":{"attribute_name":"学位","attribute_value_mlt":[{"subitem_select_item":"doctoral"}]},"item_7_subject_13":{"attribute_name":"日本十進分類法","attribute_value_mlt":[{"subitem_subject":"548","subitem_subject_scheme":"NDC"}]},"item_7_text_22":{"attribute_name":"学位分野","attribute_value_mlt":[{"subitem_text_value":"Engineering (工学)"}]},"item_7_text_24":{"attribute_name":"研究科・専攻","attribute_value_mlt":[{"subitem_text_value":"Department of Electrical Engineering, Graduate School of Engineering (工学系研究科電気工学専攻)"}]},"item_7_text_27":{"attribute_name":"学位記番号","attribute_value_mlt":[{"subitem_text_value":"博工第7444号"}]},"item_7_text_4":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"東京大学大学院工学系研究科電気工学専攻"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"福正, 博之"}],"nameIdentifiers":[{"nameIdentifier":"9449","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2017-06-01"}],"displaytype":"detail","filename":"37077071_Part1.pdf","filesize":[{"value":"17.4 MB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"37077071_Part1.pdf","url":"https://repository.dl.itc.u-tokyo.ac.jp/record/4103/files/37077071_Part1.pdf"},"version_id":"5da74a1c-e2df-4a72-b43f-47ee2cf2f5ef"},{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2017-06-01"}],"displaytype":"detail","filename":"37077071_Part2.pdf","filesize":[{"value":"9.5 MB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"37077071_Part2.pdf","url":"https://repository.dl.itc.u-tokyo.ac.jp/record/4103/files/37077071_Part2.pdf"},"version_id":"6d57e5fe-7618-4632-bc49-25805507951e"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"thesis","resourceuri":"http://purl.org/coar/resource_type/c_46ec"}]},"item_title":"単・二関節筋同時駆動ロボットの四肢の運動制御","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"単・二関節筋同時駆動ロボットの四肢の運動制御"}]},"item_type_id":"7","owner":"1","path":["280","326"],"pubdate":{"attribute_name":"公開日","attribute_value":"2012-11-09"},"publish_date":"2012-11-09","publish_status":"0","recid":"4103","relation_version_is_last":true,"title":["単・二関節筋同時駆動ロボットの四肢の運動制御"],"weko_creator_id":"1","weko_shared_id":null},"updated":"2022-12-19T03:45:51.404714+00:00"}