WEKO3
アイテム
Gross'Conjecture for Extensions Ramified over Three Points of $\Bbb P^1$
http://hdl.handle.net/2261/43961
http://hdl.handle.net/2261/439618333a6c6-978e-4e03-bc79-13d4be95957a
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2011-06-16 | |||||
タイトル | ||||||
タイトル | Gross'Conjecture for Extensions Ramified over Three Points of $\Bbb P^1$ | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源 | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | departmental bulletin paper | |||||
著者 |
Reid, Michael
× Reid, Michael |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | B. Gross has formulated a conjectural generalization of the class number formula. Suppose $L/K$ is an abelian extension of global fields with Galois group $G$. A generalized Stickelberger element $θ \in \ZZ[G]$ is constructed from special values of $L$-functions at $s = 0$. Gross'conjecture then predicts some $I$-adic information about $θ$, where $I \subseteq \ZZ[G]$ is the augmentation ideal. In this paper, we prove (under a mild hypothesis) the conjecture for the maximal abelian extension of the rational function field $\FF_q(X)$ that is unramified outside a set of three degree $1$ places. | |||||
書誌情報 |
Journal of mathematical sciences, the University of Tokyo 巻 10, 号 1, p. 119-138, 発行日 2003 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 13405705 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA11021653 | |||||
日本十進分類法 | ||||||
主題Scheme | NDC | |||||
主題 | 415 | |||||
Mathematical Reviews Number | ||||||
MR1963800 | ||||||
Mathmatical Subject Classification | ||||||
11R58(MSC1991) | ||||||
Mathmatical Subject Classification | ||||||
11G40(MSC1991) | ||||||
出版者 | ||||||
出版者 | Graduate School of Mathematical Sciences, The University of Tokyo | |||||
原稿受領日 | ||||||
2002-06-17 |