WEKO3
アイテム
The Spaces of Hilbert Cusp Forms for Totally Real Cubic Fields and Representations of $SL_2(\Bbb F_q)$
http://hdl.handle.net/2261/1342
http://hdl.handle.net/2261/134259fa6303-b0ad-4418-9a94-89f18a49d857
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2008-03-04 | |||||
タイトル | ||||||
タイトル | The Spaces of Hilbert Cusp Forms for Totally Real Cubic Fields and Representations of $SL_2(\Bbb F_q)$ | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源 | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | departmental bulletin paper | |||||
著者 |
Hamahata, Yoshinori
× Hamahata, Yoshinori |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Let $S_{2m}(Γ(\frak p))$ be the space of Hilbert modular cusp forms for the principal congruence subgroup with level $\frak p$ of $SL_2(O_K)$ (here $O_K$ is the ring of integers of $K$, and $\frak p$ is a prime ideal of $O_K$). Then we have the action of $SL_2(\Bbb F_q)$ on $S_{2m}(Γ(\frak p))$, where $q=N\frak p$. When $q$ is a power of an odd prime, for each $SL_2(\Bbb F_q)$ we have two irreducible characters which have conjugate values mutually. In the case where $K$ is the field of rationals, M. Eichler gives a formula for the difference of multiplicites of these characters in the trace of the representation of $SL_2(\Bbb F_q)$ on $S_{2m}(Γ(\frak p))$. In the case where $K$ is a real quadratic field, H. Saito gives a formula analogous to that of Eichler for the difference. The purpose of this paper is to give a formula analogous to that of Eichler in the case where $K$ is a totally real cubic field. | |||||
書誌情報 |
Journal of mathematical sciences, the University of Tokyo 巻 5, 号 2, p. 367-399, 発行日 1998 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 13405705 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA11021653 | |||||
フォーマット | ||||||
内容記述タイプ | Other | |||||
内容記述 | application/pdf | |||||
日本十進分類法 | ||||||
主題Scheme | NDC | |||||
主題 | 415 | |||||
Mathematical Reviews Number | ||||||
MR1633870 | ||||||
Mathmatical Subject Classification | ||||||
11F41(MSC1991) | ||||||
Mathmatical Subject Classification | ||||||
10D21(MSC1991) | ||||||
Mathmatical Subject Classification | ||||||
12A50(MSC1991) | ||||||
出版者 | ||||||
出版者 | Graduate School of Mathematical Sciences, The University of Tokyo | |||||
原稿受領日 | ||||||
1997-12-24 |