ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 121 数理科学研究科
  2. Journal of Mathematical Sciences, the University of Tokyo
  3. 5
  4. 2
  1. 0 資料タイプ別
  2. 30 紀要・部局刊行物
  3. Journal of Mathematical Sciences, the University of Tokyo
  4. 5
  5. 2

The Spaces of Hilbert Cusp Forms for Totally Real Cubic Fields and Representations of $SL_2(\Bbb F_q)$

http://hdl.handle.net/2261/1342
http://hdl.handle.net/2261/1342
59fa6303-b0ad-4418-9a94-89f18a49d857
名前 / ファイル ライセンス アクション
jms050207.pdf jms050207.pdf (253.5 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2008-03-04
タイトル
タイトル The Spaces of Hilbert Cusp Forms for Totally Real Cubic Fields and Representations of $SL_2(\Bbb F_q)$
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
著者 Hamahata, Yoshinori

× Hamahata, Yoshinori

WEKO 138877

Hamahata, Yoshinori

Search repository
抄録
内容記述タイプ Abstract
内容記述 Let $S_{2m}(Γ(\frak p))$ be the space of Hilbert modular cusp forms for the principal congruence subgroup with level $\frak p$ of $SL_2(O_K)$ (here $O_K$ is the ring of integers of $K$, and $\frak p$ is a prime ideal of $O_K$). Then we have the action of $SL_2(\Bbb F_q)$ on $S_{2m}(Γ(\frak p))$, where $q=N\frak p$. When $q$ is a power of an odd prime, for each $SL_2(\Bbb F_q)$ we have two irreducible characters which have conjugate values mutually. In the case where $K$ is the field of rationals, M. Eichler gives a formula for the difference of multiplicites of these characters in the trace of the representation of $SL_2(\Bbb F_q)$ on $S_{2m}(Γ(\frak p))$. In the case where $K$ is a real quadratic field, H. Saito gives a formula analogous to that of Eichler for the difference. The purpose of this paper is to give a formula analogous to that of Eichler in the case where $K$ is a totally real cubic field.
書誌情報 Journal of mathematical sciences, the University of Tokyo

巻 5, 号 2, p. 367-399, 発行日 1998
ISSN
収録物識別子タイプ ISSN
収録物識別子 13405705
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11021653
フォーマット
内容記述タイプ Other
内容記述 application/pdf
日本十進分類法
主題Scheme NDC
主題 415
Mathematical Reviews Number
MR1633870
Mathmatical Subject Classification
11F41(MSC1991)
Mathmatical Subject Classification
10D21(MSC1991)
Mathmatical Subject Classification
12A50(MSC1991)
出版者
出版者 Graduate School of Mathematical Sciences, The University of Tokyo
原稿受領日
1997-12-24
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 21:03:08.470133
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3