WEKO3
アイテム
The Penrose Transform for Certain Non-Compact Homogeneous Manifolds of $U(n,n)$
http://hdl.handle.net/2261/1778
http://hdl.handle.net/2261/177827d0ea73-aec7-4c0e-ad2b-8440864f9a7e
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2008-03-04 | |||||
タイトル | ||||||
タイトル | The Penrose Transform for Certain Non-Compact Homogeneous Manifolds of $U(n,n)$ | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源 | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | departmental bulletin paper | |||||
著者 |
Sekiguchi, Hideko
× Sekiguchi, Hideko |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | We construct \lq\lq{the Penrose transform}\rq\rq\ as an intertwining operator between two different geometric realization of infinite dimensional representations of $U(n,n)$, namely, from the space of the Dolbeault cohomology group on a non-compact complex homogeneous manifold to the space of holomorphic functions over the bounded domain of type $AIII$. We show that the image of the Penrose transform satisfies the system $(\Cal M_k)$ of partial differential equations of order $k+1$ which we find in explicit forms. Conversely, we also prove that any solution of the system $(\Cal M_k)$ is uniquely obtained as the image of the Penrose transform, by using the theory of prehomogeneous vector spaces. | |||||
書誌情報 |
Journal of mathematical sciences, the University of Tokyo 巻 3, 号 3, p. 655-697, 発行日 1996 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 13405705 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA11021653 | |||||
フォーマット | ||||||
内容記述タイプ | Other | |||||
内容記述 | application/pdf | |||||
日本十進分類法 | ||||||
主題Scheme | NDC | |||||
主題 | 415 | |||||
Mathematical Reviews Number | ||||||
MR1432112 | ||||||
Mathmatical Subject Classification | ||||||
22E4(MSC1991) | ||||||
Mathmatical Subject Classification | ||||||
43A85(MSC1991) | ||||||
Mathmatical Subject Classification | ||||||
33C70(MSC1991) | ||||||
Mathmatical Subject Classification | ||||||
32L25(MSC1991) | ||||||
出版者 | ||||||
出版者 | Graduate School of Mathematical Sciences, The University of Tokyo | |||||
原稿受領日 | ||||||
1995-08-26 |